可再生过滤器单元、含其的可再生过滤器系统及操作方法 |
|||||||
申请号 | CN201210022922.3 | 申请日 | 2012-02-02 | 公开(公告)号 | CN102674596A | 公开(公告)日 | 2012-09-19 |
申请人 | 三星电子株式会社; | 发明人 | 金昌铉; 金泫锡; 姜孝郎; 梁好晶; 李柱郁; 权福顺; 金载恩; | ||||
摘要 | 本 发明 涉及可再生 过滤器 单元、含其的可再生过滤器系统及操作方法。过滤器单元可包括 电极 结构、 流体 净化 流动通道、和pH调节室。所述电极结构可以如下顺序包括 阴极 、阳离子交换膜、阴离子交换膜和 阳极 。所述流体净化流动通道可为在所述阴极中、在所述阴极和所述阳离子交换膜之间、在所述阴离子交换膜和所述阳极之间、及在所述阳极中的通道的至少一种。所述流体净化流动通道可包括 吸附 功能。所述pH调节室可在所述阳离子交换膜和所述阴离子交换膜之间。所述pH调节室可配置为控制所述流体净化流动通道中的流体的pH。 | ||||||
权利要求 | 1.过滤器单元,包括: |
||||||
说明书全文 | 可再生过滤器单元、含其的可再生过滤器系统及操作方法[0001] 相关申请的交叉引用 技术领域[0003] 各种示例性实施方式涉及可再生过滤器单元、过滤器系统以及其操作方法。更具体地,各种示例性实施方式涉及原位可再生的过滤器单元、过滤器系统、以及其操作方法。 背景技术[0005] 可将污染水移走和在水净化装置中净化,然后供应给家庭。然而,在水净化过程期间的氯气消毒步骤中,氯气与水中的有机物质反应。结果,可产生氯气消毒副产物例如氯仿。这样的副产物可未被完全除去且可残留在供应给家庭的水中。此外,在将水供应给用户期间,水中可包含从陈旧的供水管腐蚀/洗脱的重金属例如铜(Cu)、铅(Pb)、锌(Zn)、镉(Cd)等。 [0007] 各种实施方式涉及对于用户而言维护费用降低的可再生且环境友好的过滤器单元。 [0008] 各种实施方式涉及过滤器系统,其可在不分解系统的情况下使过滤器单元原位再生。 [0009] 各种实施方式涉及过滤器系统的操作方法,其可在不分解系统的情况下使过滤器单元原位再生。 [0010] 根据一个示例性实施方式,过滤器单元可包括:电极结构,其包括以如下顺序设置的阴极、阳离子交换膜、阴离子交换膜、和阳极;流体净化流动通道(例如,水净化流动通道),其为在所述阴极中、在所述阴极和所述阳离子交换膜之间、在所述阴离子交换膜和所述阳极之间、及在所述阳极中的通道的至少一种,所述流体净化流动通道包括吸附功能;和pH调节室,其限定在所述阳离子交换膜和所述阴离子交换膜之间,所述pH调节室配置为控制所述水净化流动通道的pH。 [0012] 根据另一示例性实施方式,过滤器系统的操作方法可包括:在不施加电压的情况下使流入水在过滤器单元的水净化流动通道中经过以使水净化,所述过滤器单元包括:电极结构,其包括以如下顺序设置的阴极、阳离子交换膜、阴离子交换膜、和阳极;水净化流动通道,其为在所述阴极中、在所述阴极和所述阳离子交换膜之间、在所述阴离子交换膜和所述阳极之间、及在所述阳极中的通道的至少一种,所述流体净化流动通道包括吸附功能;和pH调节室,其在所述阳离子交换膜和所述阴离子交换膜之间,并且所述pH调节室配置为控制所述水净化流动通道的pH;和通过向所述阴极和所述阳极施加电压和将水供应至所述电极结构的整个内部而使所述水净化流动通道再生。 [0013] 在所述阳离子交换膜和所述阴离子交换膜之间可进一步包括至少一个子电极结构,其中所述子电极结构可包括:以如下顺序设置的子阴离子交换膜、双极性膜、和子阳离子交换膜;和子水净化流动通道,其形成为在所述子阴离子交换膜和所述双极性膜之间、及在所述双极性膜和所述子阳离子交换膜之间的至少一种通道,所述水净化流动通道包括吸附功能。 [0014] 所述阴极和所述阳极可由可引起水分解反应的材料形成。 [0015] 当所述水净化流动通道为在所述阴极和所述阳离子交换膜之间、在所述阴离子交换膜和所述阳极之间、在所述子阴离子交换膜和所述双极性膜之间、及在所述双极性膜和所述子阳离子交换膜之间的通道的至少一种时,所述吸附功能可由填充在所述水净化流动通道中的吸附剂提供;且所述阴极和所述阳极可由包含流入水可通过其的流动通道的多孔材料形成。当在所述阴极和所述阳极的至少一个中形成所述水净化通道时,可通过所述阴极和所述阳极的吸附性质或者通过负载在所述阴极和所述阳极的表面上或者孔中的吸附剂提供所述吸附功能。 [0017] 与所述阳极接触或者负载在所述阳极中的吸附剂可在酸性条件下使污染物解吸。 [0018] 所述电压可引起所述阴极和阳极中的水分解。 [0019] 在再生步骤中,可将能够供应对于pH控制所需的离子的电解质供应至所述pH调节室。 [0020] 本发明的目的通过以下实现。 [0021] 1.过滤器单元,包括: [0022] 电极结构,其包括阴极、阳离子交换膜、阴离子交换膜和阳极,所述阳离子交换膜设置在所述阴极和所述阴离子交换膜之间,所述阴离子交换膜设置在所述阳离子交换膜和所述阳极之间; [0023] 流体净化流动通道,其为延伸通过所述阴极的通道、在所述阴极和所述阳离子交换膜之间的通道、在所述阴离子交换膜和所述阳极之间的通道、及延伸通过所述阳极的通道的至少一种,所述流体净化流动通道具有吸附功能;和 [0024] 在所述阳离子交换膜和所述阴离子交换膜之间的pH调节室,所述pH调节室配置为控制所述流体净化流动通道中的流体的pH。 [0025] 2.条目1的过滤器单元,进一步包括: [0026] 在所述阳离子交换膜和所述阴离子交换膜之间的至少一个子电极结构,所述子电极结构包括子阴离子交换膜、双极性膜、和子阳离子交换膜,所述子阴离子交换膜、双极性膜、和子阳离子交换膜在其间限定至少一个子流体净化流动通道,所述双极性膜在所述子阴离子交换膜和所述子阳离子交换膜之间,所述至少一个子流体净化流动通道具有吸附功能。 [0027] 3.条目1的过滤器单元,其中所述阴极和所述阳极由配置为引起水分解反应的材料形成。 [0028] 4.条目1的过滤器单元,其中所述吸附功能通过所述流体净化流动通道中的吸附剂提供,所述吸附剂为与所述阴极和阳极的至少一个的材料不同或相同的材料。 [0029] 5.条目4的过滤器单元,其中所述吸附剂在与所述阴极接触的或者至少部分地通过所述阴极限定的流体净化流动通道中,所述吸附剂配置为在碱性条件下使污染物解吸。 [0030] 6.条目4的过滤器单元,其中所述吸附剂在与所述阳极接触的或者至少部分地通过所述阳极限定的流体净化流动通道中,所述吸附剂配置为在酸性条件下使污染物解吸。 [0031] 7.过滤器系统,包括: [0032] 过滤器单元,其包括电极结构、流体净化流动通道、和pH调节室, [0033] 所述电极结构包括阴极、阳离子交换膜、阴离子交换膜和阳极,所述阳离子交换膜设置在所述阴极和所述阴离子交换膜之间,所述阴离子交换膜设置在所述阳离子交换膜和所述阳极之间, [0034] 所述流体净化流动通道为延伸通过所述阴极的通道、在所述阴极和所述阳离子交换膜之间的通道、在所述阴离子交换膜和所述阳极之间的通道、及延伸通过所述阳极的通道的至少一种,所述流体净化流动通道具有吸附功能,所述pH调节室在所述阳离子交换膜和所述阴离子交换膜之间,所述pH调节室配置为控制所述流体净化流动通道中的流体的pH;和 [0035] 电压施加器,其配置为向所述阴极和所述阳极施加电压。 [0036] 8.条目7的过滤器系统,其中所述过滤器单元进一步包括在所述阳离子交换膜和所述阴离子交换膜之间的至少一个子电极结构,所述子电极结构包括子阴离子交换膜、双极性膜、和子阳离子交换膜,所述子阴离子交换膜、双极性膜、和子阳离子交换膜在其间限定至少一个子流体净化流动通道,所述双极性膜在所述子阴离子交换膜和所述子阳离子交换膜之间,所述至少一个子流体净化流动通道具有吸附功能。 [0037] 9.条目7的过滤器系统,其中所述阴极和所述阳极由配置为引起水分解反应的材料形成。 [0038] 10.条目7的过滤器系统,其中所述吸附功能通过所述流体净化流动通道中的吸附剂提供,所述吸附剂为与所述阴极和阳极的至少一个的材料不同或相同的材料。 [0039] 11.条目10的过滤器系统,其中所述吸附剂在与所述阴极接触的或者至少部分地通过所述阴极限定的流体净化流动通道中,所述吸附剂配置为在碱性条件下使污染物解吸。 [0040] 12.条目10的过滤器系统,其中所述吸附剂在与所述阳极接触的或者至少部分地通过所述阳极限定的流体净化流动通道中,所述吸附剂配置为在酸性条件下使污染物解吸。 [0041] 13.过滤器系统的操作方法,所述方法包括: [0042] 通过使流入物通过所述过滤器系统的过滤器单元的流体净化流动通道而使流体净化,所述过滤器单元包括电极结构、所述流体净化流动通道、和pH调节室,所述电极结构包括阴极、阳离子交换膜、阴离子交换膜和阳极,所述阳离子交换膜设置在所述阴极和所述阴离子交换膜之间,所述阴离子交换膜设置在所述阳离子交换膜和所述阳极之间,所述流体净化流动通道为延伸通过所述阴极的通道、在所述阴极和所述阳离子交换膜之间的通道、在所述阴离子交换膜和所述阳极之间的通道、及延伸通过所述阳极的通道的至少一种,所述流体净化流动通道具有吸附功能,所述pH调节室在所述阳离子交换膜和所述阴离子交换膜之间,所述pH调节室配置为控制所述流体净化流动通道中的流体的pH;和[0043] 通过在将水供应通过所述电极结构的同时向所述阴极和所述阳极施加电压而使所述流体净化流动通道再生。 [0044] 14.条目13的方法,进一步包括: [0045] 在所述阳离子交换膜和所述阴离子交换膜之间布置至少一个子电极结构,所述子电极结构包括子阴离子交换膜、双极性膜、和子阳离子交换膜,所述子阴离子交换膜、双极性膜、和子阳离子交换膜在其间限定至少一个子流体净化流动通道,所述双极性膜在所述子阴离子交换膜和所述子阳离子交换膜之间,所述至少一个子流体净化流动通道具有吸附功能。 [0046] 15.条目13的方法,其中使所述流体净化流动通道再生向由引起水分解反应的材料形成的所述阴极和所述阳极施加电压。 [0047] 16.条目13的方法,其中使流体净化包括将吸附剂设置在所述流体净化流动通道中,所述吸附剂为与所述阴极和所述阳极的至少一个的材料不同或相同的材料。 [0048] 17.条目16的方法,其中使所述流体净化流动通道再生包括将所述吸附剂设置在与所述阴极接触的或者至少部分地通过所述阴极限定的流体净化流动通道中,所述吸附剂配置为在碱性条件下使污染物解吸。 [0049] 18.条目16的方法,其中使所述流体净化流动通道再生包括将所述吸附剂设置在与所述阳极接触的或者至少部分地通过所述阳极限定的流体净化流动通道中,所述吸附剂配置为在酸性条件下使污染物解吸。 [0050] 19.条目13的方法,其中使所述流体净化流动通道再生包括用所述电压在所述阴极和所述阳极中引起水分解。 [0052] 图1为根据一个示例性实施方式的过滤器系统的示意图。 [0053] 图2为说明根据一个示例性实施方式的过滤器系统的操作方法的示意图。 [0055] 图4为根据另一示例性实施方式的过滤器系统的示意图。 [0056] 图5为根据另一示例性实施方式的过滤器系统的示意图。 [0057] 图6为根据另一示例性实施方式的过滤器系统的示意图。 [0058] 图7为根据另一示例性实施方式的过滤器系统的示意图。 [0059] 图8为根据另一示例性实施方式的过滤器系统的示意图。 [0060] 图9为解释根据另一示例性实施方式的过滤器系统的再生机理的示意图。 [0061] 图10为根据另一示例性实施方式的过滤器系统的示意图。 [0062] 图11为显示根据另一示例性实施方式的过滤器系统的水净化步骤的示意图。 [0063] 图12为显示根据另一示例性实施方式的过滤器系统的再生步骤的示意图。 [0064] 图13为显示氯仿的吸附和再生性能的评价结果的图。 [0065] 图14为显示砷离子的吸附和再生性能的评价结果的图。 [0066] <附图标记描述> [0067] 1:过滤器单元 2:电压施加器 [0068] 10:电极结构 12:阴极 [0069] 14:阳离子交换膜 16:阴离子交换膜 [0070] 18:阳极 20:水净化流动通道 [0071] 30:pH调节室 40:阳极室 [0072] 50:吸附剂 501:过滤器单元 [0073] 502:电压施加器 510:电极结构 [0074] 512:阴极 514:阳离子交换膜 [0075] 516:阴离子交换膜 518:阳极 [0076] 520:水净化流动通道 530:pH调节室 [0077] 540:阳极室 601:过滤器单元 [0078] 602:电压施加器 610:电极结构 [0079] 612:阴极 614:阳离子交换膜 [0080] 616:阴离子交换膜 618:阳极 [0081] 620:阴极室 630:pH调节室 [0082] 640:水净化流动通道 650:吸附剂 [0083] 701:过滤器单元 702:电压施加器 [0084] 710:电极结构 712:阴极 [0085] 714:阳离子交换膜 716:阴离子交换膜 [0086] 718:阳极 720:第一水净化流动通道 [0087] 730:pH调节室 740:第二水净化流动通道 [0088] 750a:第一吸附剂 750b:第二吸附剂 [0089] 760:子电极结构 763:阴离子交换膜 [0090] 765:双极性膜 767:阳离子交换膜 具体实施方式[0091] 参照附图以及示例性实施方式,可更清楚地理解本文中描述的优点和特征、以及其实现方法。然而,应理解公开内容不限于以下实施例并且可以不同的实施方式实现。本示例性实施方式仅提供以确保公开内容的完整性和帮助本领域普通技术人员的理解以充分理解由权利要求限定的公开内容的范围。因此,为了简洁,在一些示例性实施方式,可未对公知技术进行具体解释。除非另有说明,说明书中使用的所有术语(包括技术和科学术语)可作为本领域普通技术人员通常理解的含义使用。此外,除非明确说明,词典中定义的术语不以与它们通常被接受的含义不一致的方式解释。此外,除非明确相反地描述,措辞“包含”和“包括”以及变型例如“含有”、“含”将理解为意味着包括所述要素但是不排除其它未描述的要素。除非明确相反地描述,单数形式可包括复数形式。参照作为示意图的理想图解释说明书中描述的示例性实施方式。因此,图中所示的部分可具有概要性质并且它们不限制公开内容的范畴。在说明书中,相同的附图标记始终表示相同的组成要素。 [0092] 根据一个示例性实施方式的过滤器系统可包括提供能够通过电化学水分解独立地形成碱性和/或酸性条件的空间的过滤器单元。所吸附的材料(例如,污染物)可附着至其上并且所吸附的材料可在碱性和/或酸性条件下从其解吸的流体净化流动通道(例如,水净化流动通道)包括在以上空间中。通过以上构造,可通过吸附进行水净化步骤,和可通过电化学方法原位进行再生步骤。具体地,由于所述过滤器单元可在不分解过滤器系统的情况下原位再生且再次使用,过滤器的寿命可提高并且用户的维护费用可降低。并且,由于所述水净化步骤通过吸附方法进行并且仅再生步骤通过电化学方法进行,可处理的流入水的范围可扩大且电消耗可最小化。虽然使用水的净化作为实例,然而应理解基于公开内容中阐述的方法,其它流体的净化也是可能的。下文中,将参照附图更详细地说明示例性实施方式。 [0093] 图1为根据一个示例性实施方式的过滤器系统100的示意图。 [0094] 参照图1,过滤器系统100包括过滤器单元1和电压施加器2。过滤器单元1包括电极结构10,电极结构10包括以如下顺序设置的阴极12、阳离子交换膜14、阴离子交换膜16、和阳极18。电极结构10限定水净化流动通道20、pH调节室30和阳极室40。 [0095] 图1说明在碱性条件下的可再生过滤器系统100。因此,过滤器系统100的水净化流动通道20可形成于在阴极12和阳离子交换膜14之间的可构成碱性条件的空间中。水净化流动通道20包括能够吸附存在于水中的重金属或氯气消毒副产物等的吸附功能。所述吸附功能可通过填充在水净化流动通道20中的吸附剂50提供。可填充在阴极12和阳离子交换膜14之间的水净化流动通道20中的吸附剂50可为可在碱性条件下使吸附的污染物解吸的吸附剂。污染物的具体实例可包括有机物质例如腐殖酸或黄腐殖酸、氯气消毒副产物例如氯仿、砷离子等。因此,吸附剂50可包括活性炭、相对高比表面积石墨(HSAG)、碳纳米管(CNT)、中孔碳、活性碳纤维、离子交换树脂、沸石、蒙脱石、蛭石、以及其组合,尽管示例性实施方式不限于此。吸附剂50可在其表面上和/或在其孔中吸附污染物(例如,有机物质、氯气消毒副产物)。此外,吸附剂50可包括铁氧化物、钛氧化物、铝氧化物、锰氧化物、钇氧化物、钼氧化物、钴氧化物、镍氧化物、铜氧化物、锌氧化物、锆氧化物、钌氧化物、锡氧化物、碳、以及其合金或混合物,其包含能够吸附以含氧阴离子例如三价或五价H3AsO3、- 2-H2AsO4、HAsO4 等的形式存在于水中的砷的表面官能团。吸附剂50可以纳米颗粒的形式涂布在阴极12上或者以薄膜的形式沉积。 [0096] 通过采取包括设置在阴极12和阳极18之间的阳离子交换膜14和阴离子交换膜16的电极结构10,当通过电压施加器2向电极结构10施加电压使得水分解时,可使阴极12- + 中产生的OH 和阳极18中产生的H 彼此隔离以防止其中和。因此,在阴极12和阳离子交换膜14之间的水净化流动通道20中可构成碱性条件,及在阴离子交换膜16和阳极18之- 间的阳极室40中可构成酸性条件。具体地,pH调节室30将阴极12中产生的OH 和阳极18+ 中产生的H 隔离以防止其中和从而控制再生步骤中水净化流动通道20的pH。进一步地,可另外向pH调节室30供应电解质,使得水分解可更有效地进行。所述电解质可为可向水净化流动通道20充分供应对于pH控制所需的离子的任何合适的材料。 [0097] 阴极12和阳极18可包括可引起水分解反应的材料。如果阴极12和阳极18包括可引起水分解反应的材料,则与由惰性材料形成的电极相比,可施加相对低的水分解电压,从而使过滤器单元1的电阻降低。阴极12和阳极18可包括金属、金属氧化物、不锈钢、玻璃碳、石墨、炭黑、以及其组合。所述组合可指两种或更多种组分的混合物、堆叠结构等。所述金属可包括铂(Pt)、钛(Ti)、钌(Ru)、银(Ag)、金(Au)、铱(Ir)、钯(Pd)、钴(Co)、钒(V)、铁(Fe)、以及其组合。所述组合可指两种或更多种金属的混合物、合金、堆叠结构等。所述金属氧化物可包括PtO2、IrO2、TiO2、CaTiO3、NaWO3、MnO2、RuO2、PbO2、以及其组合。所述组合可指两种或更多种金属氧化物的混合物、堆叠结构等。 [0098] 作为阳离子交换膜14和阴离子交换膜16,可使用本领域普通人员公知的各种交换膜,并且因此为了简洁,未对它们进行具体说明。 [0099] 图2为说明根据一个示例性实施方式的过滤器系统100的操作方法的示意图。 [0100] 参照图2,在水净化步骤中,在不向过滤器系统100施加电压的情况下通过吸附除去流入水中的污染物。具体地,如果流入水通过填充有吸附剂50的水净化流动通道20,则所述污染物可吸附至吸附剂50,同时可排放经处理的水。例如,有机物质、氯气消毒副产物等可物理和/或化学地吸附至吸附剂50。在一个非限制性实施方式中,含氧阴离子形式的砷离子可吸附至吸附剂50的表面氧原子(例如,与吸附剂50的表面氧原子反应),同时形成表面络合物例如氢键络合物、单齿单核(MM)络合物、双齿双核(BB)络合物等。 [0101] 随着水净化步骤进行,污染物吸附至吸附剂50。一旦污染物除去速度降低,则可开始再生步骤。在再生步骤中,通过电压施加器(图1中的2)分别向阴极12和阳极18施加负(-)电压和正(+)电压,和将水供应至电极结构10(例如,电极结构10的整个内部),使得可发生电化学水分解反应。具体地,与水净化步骤不同,将水供应至pH调节室30及在阴离子交换膜16和阳极18之间的阳极室40以及供应至水净化流动通道20。所施加的电压可为可引起水分解的电压,例如约1.23V或更高。在一个非限制性实施方式中,可施加约2V~约30V的电压。以下反应方案1表示在阴极12中发生的水分解反应,和反应方案2表示在阳极18中发生的水分解反应。 [0102] [反应方案1] [0103] 2H2O(l)+2e-→H2(g)+2OH-(水的) [0104] O2(g)+2H2O(l)+4e-→4OH-(水的) [0105] [反应方案2] [0106] H2O→O2+2H+(水的)+2e- [0107] 如以上反应方案1中所示,由于阴极12中产生的OH-,水净化流动通道20的pH变- +为碱性条件。因为阴极12中产生的OH 和阳极18中产生的H 由于通过阳离子交换膜14和阴离子交换膜16限定的pH调节室30而彼此隔离,因此随着水分解反应进行,水净化流动通道20中的溶液逐渐从弱碱变为强碱性条件。因此,可通过控制所施加电压的值和施加时间而控制pH。在这样的碱性条件下,附着至填充在水净化流动通道20中的吸附剂50的污染物通过竞争反应从吸附剂50解吸和排放。如果必要,可另外向pH调节室30供应可供应对于水净化流动通道20的pH控制所需的离子的电解质。作为所述电解质,可使用不产生沉淀、不是重金属、且不包括干扰所述水净化流动通道的pH控制的酸性离子的那些。例如,可使用氯化钠、硫酸钠、碳酸钠、硫酸钾、硝酸钾等。可将在pH调节室30中引入的流入水的流量控制为大于在水净化流动通道20和阳极室40中引入的流入水的流量。这是为了- 供应与阴极12中产生的OH 相等或更多的离子,从而将水净化流动通道20的pH控制为所需状态。 [0108] 以下反应方案3表示在碱性条件下的氯仿解吸机理。 [0109] [反应方案3] [0110] [0111] [0112] [0113] 图3显示在碱性条件下以铁氧化物作为吸附剂50使含氧阴离子形式的砷离子解吸的机理。如以上反应方案3和图3中所示,如果构成约pH 11或更高的碱性条件,则氯仿或含氧阴离子形式的砷离子等可相对容易地从吸附剂50解吸。因此,根据一个示例性实施方式的过滤器系统100可在不分解过滤器系统100的情况下进行水净化步骤和原位再生步骤。 [0114] 再生步骤的开始可根据所确定的或者所需的循环进行,或者其可根据经处理的水的流量、经处理的水的流速、和/或经处理的水中污染物的浓度的测量或监测的结果进行。为了实时测量或监测,过滤器系统100可进一步包括可检测经处理的水的流体特性的传感器或监测系统。 [0115] 如果过滤器系统100以此方式再生,则其可半永久性地使用并且维护费用可降低。 [0116] 图4~图6为根据另一示例性实施方式的过滤器系统200、300和400的示意图。图4和图5显示包括通过将多个过滤器单元1堆叠形成的堆叠的过滤器单元的系统200和 300。图4说明其中串联安置多个过滤器单元1的过滤器系统200,和图5显示其中并联安置多个过滤器单元1的过滤器系统300。图6说明通过将过滤器单元1螺旋卷绕制造的管状的过滤器系统400。流入水以箭头所示的方向引入,并且将经处理的水排放至该管的中空空间。使用堆叠的过滤器系统200和300或者管状的过滤器系统400以提高每单位小时的流入水的通过量。还应理解,过滤器系统200和300可卷绕成图6中所示的管状。 [0117] 图7为根据另一示例性实施方式的过滤器系统的示意图。 [0118] 参照图7,根据另一示例性实施方式的过滤器系统500包括过滤器单元501和电压施加器502。过滤器单元501包括由以如下顺序设置的阴极512、阳离子交换膜514、阴离子交换膜516和阳极518构成的电极结构510。电极结构510限定水净化流动通道520、pH调节室530和阳极室540。图7中所示的过滤器系统500的过滤器单元501与图1中所示的过滤器系统100的过滤器单元1的不同之处在于在阴极512中形成水净化流动通道520。 [0119] 阴极512可由多孔材料形成,流入水可通过所述多孔材料以提供水净化流动通道520。此外,阴极512和阳极518可由能够施加电流且促进水分解的材料形成。水净化流动通道520的吸附功能可通过阴极512自身的性质提供或者其可通过负载于阴极512的表面上或者孔中的吸附剂(未示出)提供。例如,如果阴极512由具有约0.1~50μm粒径的基于碳的材料颗粒构成,则吸附功能可通过阴极512自身的性质提供,并且同时可构成水净化流动通道520。在另一非限制性实施方式中,如果阴极512由其中吸附剂负载于具有约0.1~30μm的平均孔径的多孔电极的孔中的材料构成,则可提供吸附功能并且同时可构成水净化流动通道520。 [0120] 作为吸附剂,可使用在根据一个示例性实施方式的上述过滤器系统100中提及的任何吸附剂,只要其可负载于孔中。在图7中所示的过滤器单元501的情况下,由于可在整个阴极512形成水净化流动通道520,污染物吸附能力可得到最大利用。因此,如果可提高污染物除去率或者可保证相同的除去率,则可更薄地形成过滤器单元501。 [0121] 图8为根据另一示例性实施方式的过滤器系统600的示意图。过滤器系统600包括过滤器单元601和电压施加器602。过滤器单元601包括由以如下顺序设置的阴极612、阳离子交换膜614、阴离子交换膜616和阳极618构成的电极结构610。电极结构610限定阴极室620、pH调节室630、和水净化流动通道640。 [0122] 图8说明在酸性条件下的可再生过滤器系统600。因此,过滤器系统600的水净化流动通道640可形成于阴离子交换膜616和阳极618之间的具有酸性条件的空间中。水净化流动通道640包括吸附功能,使得其能够吸附水中存在的重金属。所述吸附功能可通过填充在水净化流动通道640中的吸附剂650提供。可填充在位于阴离子交换膜616和阳极618之间的水净化流动通道640中的吸附剂650可为能够在酸性条件下使吸附的污染物解吸的吸附剂。所述污染物的具体实例可包括金属例如铅(Pb)。因此,吸附剂650可包括活性炭、相对高比表面积石墨(HSAG)、碳纳米管(CNT)、中孔碳、活性碳纤维、离子交换树脂(例如,阳离子交换树脂)、沸石、蒙脱石、蛭石、以及其组合,尽管示例性实施方式不限于此。吸附剂650可在其表面上和/或在其孔中吸附污染物(例如,不需要的金属)。 [0123] 其它构成要素可基本上与参照图1说明的过滤器系统100的那些相同,并且因此,为了简洁,已省略说明。 [0124] 虽然在图8中未示出,但是在酸性条件下,可对可再生过滤器系统600改进,使得可在阳极618自身中形成水净化流动通道,与参照图7说明的过滤器系统500类似。 [0125] 图9为解释根据另一示例性实施方式的过滤器系统的再生机理的示意图。在图9中,铅作为污染物显示。 [0126] 如果在水净化步骤之后通过电压施加器602向阴极612和阳极618施加电压,则+在阴极612和阳极618中引起水分解反应。此时,在阳极618的表面上产生H 离子,从而将水净化流动通道640的环境变为酸性条件。如果水净化流动通道640的pH降低至约5或 2+ 更低,则吸附至表面官能团(L)的铅离子(Pb )可通过竞争反应解吸并且排放。 [0127] 图10为根据另一示例性实施方式的过滤器系统700的示意图。图10中所示的过滤器系统700将图1中所示的过滤器系统100和图8中所示的过滤器系统600组合,使得可在阴极室中形成第一水净化流动通道720和可在阳极室中形成第二水净化流动通道740以提高每单位小时的流入水的通过量和除去各种类型的污染物。 [0128] 此外,过滤器单元701可进一步在电极结构710的阳离子交换膜714和阴离子交换膜716之间包括子电极结构760。可安装至少一个子电极结构760。子电极结构760可包括以如下顺序设置的阴离子交换膜(子阴离子交换膜)763、双极性膜765、和阳离子交换膜(子阳离子交换膜)767。因此,可进一步在阳离子交换膜767和双极性膜765之间提供第一水净化流动通道(第一子流体净化流动通道)720,及可进一步在阴离子交换膜763和双极性膜765之间提供第二水净化流动通道740(第二子流体净化流动通道)。过滤器系统700可通过包括子电极结构760而包括两个或更多个pH调节室730。如所解释的那样,通过采取至少一个子电极结构760,可使每单位小时的通过量最大化并且可同时除去各种类型的污染物。 [0129] 第一水净化流动通道720以及其中填充的第一吸附剂750a可具有与参照图1说明的过滤器系统的水净化流动通道20和吸附剂50基本上相同的功能和构造,及第二水净化流动通道740以及其中填充的第二吸附剂750b可具有与参照图8说明的过滤器系统的水净化流动通道640和吸附剂650基本上相同的功能和构造。附图标记702表示电压施加器,770表示流入水(未处理的水)的入口,和780表示经处理的水的出口。 [0130] 图11和图12为解释根据另一示例性实施方式的过滤器系统700的操作方法的示意图。图11显示水净化步骤,和图12显示再生步骤。 [0131] 参照图11,在水净化步骤中,在不向过滤器系统700施加电压的情况下通过吸附除去流入水中的污染物。图11显示作为流入水中的污染物的有机物质、含氧阴离子形式的2- 2+ 砷离子(HxAsOy )、以及铅离子(Pb ),并且显示如何将它们除去以对水进行净化。具体地,如果经由流入水的入口770使流入水通过填充有第一吸附剂750a的第一水净化流动通道 720,则污染物例如有机物质和含氧阴离子形式的砷离子吸附至第一吸附剂750a。 [0132] 随后,如果使通过第一水净化流动通道720的流入水通过填充有第二吸附剂750b的第二水净化流动通道740,则污染物例如铅离子吸附至第二吸附剂750b,然后通过出口780排放已经历水净化的最终经处理的水。虽然在图中显示流入水首先通过第一水净化流动通道720,但是顺序不限于此。 [0133] 参照图12,一旦在水净化步骤已进行一段时间之后污染物除去速度降低,则可开始再生步骤。可类似于参照图2说明的方式进行再生步骤的开始的确定。在通过电压施加器702分别向阴极712和阳极718施加负(-)电压和正(+)电压的同时,供应水使得可发生电化学水分解反应。图12显示与水一起另外地将电解质(NaCl)供应至pH调节室730。在其中形成碱性条件的第一水净化流动通道720中,有机物质和含氧阴离子形式的砷离子解吸,然后与碱性水一起排放。在其中形成酸性条件的第二水净化流动通道740中,铅离子解吸,然后与酸性水一起排放。因此,可使第一和第二水净化流动通道720和740原位再生。 虽然图中未示出,可将与解吸的污染物一起排放的碱性水和酸性水混合并中和以减少环境问题。 [0134] 虽然图中未示出,但是可根据参照图4~图6说明的方法将根据另一示例性实施方式的过滤器单元701改变以具有堆叠或管形状。 [0135] 此外,与参照图7说明的过滤器系统500类似,可将过滤器单元701改进,使得水净化流动通道可形成于阴极712和/或阳极718中。 [0136] 根据参照图1~图12说明的示例性实施方式的过滤器系统可以各种方式组合并可改进为各种形状的过滤器系统。 [0137] 下文中,参照以下实施例更详细地公开各种实施方式。然而,应理解以下仅为示例性实施方式并且对公开内容的范围不是限制性的。 [0138] (实验实施例) [0139] 氯仿过滤器系统的制造 [0140] 将常用的活性炭布CH900、常用的阳离子交换膜ASTOM CMX、常用的阴离子交换膜2 ASTOM AMX、以及常用的活性炭布CH900切割为约15×9cm,然后依次安置并用螺杆接合以制造过滤器单元。然后连接电压施加器以制造过滤器系统。 [0141] 氯仿吸附和再生性能的评价 [0142] 在室温下进行系统的操作,和制备流入水使得在蒸馏水中氯仿的浓度为约300ppb。将所述流入水以约2.7mL/分钟的流量供应至所述过滤器系统的水净化流动通道(阴极室)。 [0143] 随着时间测量残留氯仿的浓度以确认氯仿除去能力的变化,并且当氯仿除去能力降低至约80%或更低时,进行第一次再生步骤。 [0144] 在第一次再生步骤中,将蒸馏水供应至水净化流动通道(阴极室)和阳极室,并将包括蒸馏水和NaCl的电解质溶液供应至pH调节室使得电导率可变成约19.5mS/cm。以约5mL/分钟的流量供应所述蒸馏水和所述电解质溶液。施加约7V的恒定电压约30分钟以进行再生。 [0145] 在再生之后,使约300ppb的氯仿流入水以相同的速度再次通过并且确认氯仿除去量以确认氯仿除去能力的恢复。 [0146] 当氯仿除去能力再次降低至约80%或更低时,进行第二次再生步骤。 [0147] 在第二次再生步骤中,将蒸馏水供应至水净化流动通道(阴极室)和阳极室,并将包括蒸馏水和NaCl的电解质溶液供应至pH调节室使得电导率可变成约19.5mS/cm。以约5mL/分钟的流量供应所述蒸馏水和所述电解质溶液。依次供应约7V、约8V、和约9V的恒定电压分别约27分钟、约12分钟和约1分钟以进行第二次再生。测量结果示于图13中。 [0148] 由图13可以看出,氯仿除去率通过原位再生而恢复。还可看出,即使重复再生循环,除去能力也持续地保持。 [0149] 砷离子过滤器系统的制造 [0150] 将包括负载于常用的活性炭布CH900上的TiO2的材料、常用的阳离子交换膜2 ASTOM CMX、常用的阴离子交换膜ASTOM AMX、和常用的活性炭布CH900切割为约15×9cm,然后依次安置并用螺杆接合以制造过滤器单元。然后,连接电压施加器以制造过滤器系统。 [0151] 砷离子吸附和再生性能的评价 [0152] 在室温下进行系统的操作,和制备流入水使得在蒸馏水中砷离子的浓度可为约3ppm。将所述流入水以约10mL/分钟的流量供应至所述过滤器系统的水净化流动通道(阴极室)。 [0153] 随着时间测量经处理的水中残留砷离子的浓度以确认砷离子除去能力的变化,并且如果砷离子除去能力降低至约20%,则进行再生步骤。 [0154] 在再生步骤中,将蒸馏水供应至水净化流动通道(阴极室)和阳极室,并将包括蒸馏水和NaCl的电解质溶液供应至pH调节室使得电导率可变成约19.5mS/cm。以约5mL/分钟的流量供应所述蒸馏水和所述电解质溶液。施加约7V的恒定电压约60分钟以进行再生。测量结果示于图14中。 [0155] 由图14可以看出,砷离子除去率通过原位再生而恢复。 [0156] 虽然已经结合当前认为是实践性的示例性实施方式的内容描述了本公开内容,然而将理解公开内容不限于所公开的实施方式,而是相反,意图涵盖包括在所附权利要求的精神和范围内的各种改进和等同布置。 |