TFT液晶显示面板

申请号 CN201310556548.X 申请日 2013-11-11 公开(公告)号 CN103558710A 公开(公告)日 2014-02-05
申请人 京东方科技集团股份有限公司; 发明人 杨亚锋; 铃木照晃; 柳在健;
摘要 本 发明 涉及一种TFT 液晶 显示面板 。本发明的TFT液晶显示面板,包括上偏光片、正双折射 聚合物 基板 、液晶层、负双折射聚合物基板和下偏光片,其中正负双折射聚合物基板分别位于所述液晶层的上下两侧,所述上偏光片位于所述正双折射聚合物基板上表面,所述下偏光片位于所述负双折射聚合物基板的下表面;所述正双折射聚合物基板和所述负双折射聚合物基板在初始双折射时对应的双折射延迟量大小相等,在光弹性双折射时对应的双折射延迟量大小也相等。本发明的TFT液晶显示面板可以避免暗态漏光现象的产生,提高了暗态均匀性。
权利要求

1.一种TFT液晶显示面板,其包括上偏光片、正双折射聚合物基板、液晶层、负双折射聚合物基板和下偏光片,其中正负双折射聚合物基板分别位于所述液晶层的上下两侧,所述上偏光片位于所述正双折射聚合物基板上表面,所述下偏光片位于所述负双折射聚合物基板的下表面;所述正双折射聚合物基板和所述负双折射聚合物基板在初始双折射时对应的双折射延迟量大小相等,在光弹性双折射时对应的双折射延迟量大小也相等。
2.根据权利要求1所述的TFT液晶显示面板,其特征在于,所述正双折射聚合物基板和所述负双折射聚合物基板在初始双折射时对应的双折射延迟量等于零,在光弹性双折射时对应的双折射延迟量也等于零。
3.根据权利要求1所述的TFT液晶显示面板,其特征在于,所述正双折射聚合物基板包括正双折射基板、着色层、遮光层和聚酰亚胺取向膜。
4.根据权利要求1所述的TFT液晶显示面板,其特征在于,所述负双折射聚合物基板包括负双折射基板、TFT阵列和聚酰亚胺取向膜。
5.根据权利要求3所述的TFT液晶显示面板,其特征在于,所述正双折射基板由正折射率聚合物单体聚合而成。
6.根据权利要求5所述的TFT液晶显示面板,其特征在于,所述正折射率聚合物单体为
4-肉桂酰苯基丙烯酸甲酯分子单体。
7.根据权利要求3所述的TFT液晶显示面板,其特征在于,所述负双折射基板由负折射率聚合物单体聚合而成。
8.根据权利要求7所述的TFT液晶显示面板,其特征在于,负折射率聚合物单体为甲基丙烯酸甲酯分子单体。
9.根据权利要求1所述的TFT液晶显示面板,其特征在于,其中,所述上偏光片和下偏光片的偏光方向互相垂直。
10.一种TFT液晶显示面板的制备方法,包括如下步骤:
S1:制备正双折射聚合物基板
由正折射率聚合物单体聚合形成正双折射基板;
在所述正双折射基板上制作遮光层和着色层,然后通过印刷取向制作聚酰亚胺取向膜,形成所述正双折射聚合物基板;
S2:制备负双折射聚合物基板
由负折射率聚合物单体聚合形成负双折射基板,使所述负双折射基板和所述正双折射基板在初始双折射状态和光弹性双折射状态时对应的双折射延迟量大小相等;
在所述负双折射基板上制作TFT阵列,然后通过印刷取向制作PI取向膜,形成所述负双折射聚合物基板;
S3:在所述正双折射聚合物基板和所述负双折射聚合物基板之间注入液晶,四周用封框胶密封;
S4:在S3的所述正双折射聚合物基板上表面贴敷上偏光片,在所述负双折射聚合物基板的下表面贴敷下偏光片,其中所述上偏光片和所述下偏光片的偏光方向互相垂直,从而形成TFT液晶显示面板。
11.一种TFT显示器件,其包括权利要求1-9中任一项所述的TFT液晶显示面板。

说明书全文

TFT液晶显示面板

技术领域

[0001] 本发明涉及一种TFT液晶显示面板。

背景技术

[0002] 薄膜晶体管显示器件(Thin Film Transistor Liquid Crystal Display,简称TFT-LCD)具有体积小、功耗低、无辐射等特点,近年来得到了迅速地发展。TFT-LCD包括:液晶显示面板、驱动电路以及背光源,其中液晶显示面板是TFT-LCD中最重要的部分,它是在两玻璃基板之间注入液晶,四周用封框胶封上,在两块玻璃基板上分别贴敷偏振方向相互垂直的偏振片构成。其中上面的玻璃基板是彩色滤光片,由红、绿、蓝三原色滤光片构成像素,并在彩色滤色片上上透明的共用电极,下面的玻璃基板为TFT阵列基板,上面镀有大量矩阵式排列的薄膜晶体管以及一些周边电路。
[0003] 然而,由于玻璃本身是各向同性媒质,在没有任何外的影响下,玻璃本身不会产生双折射现象,但是根据应力光学定律,当玻璃产生应力变化时,由于应力作用,使玻璃不同方向的折射率发生不同的变化,导致折射率变化,从而产生双折射,产生漏光(如图1所示)。在液晶显示领域,这种由于玻璃变形从而产生折射率变化而导致的漏光,对液晶显示屏的显示品质是非常不利的。

发明内容

[0004] 为了解决上述技术问题,本发明用正双折射聚合物基板和负双折射聚合物替代玻璃基板,避免了暗态漏光现象的产生,提高了暗态均匀性。
[0005] 本发明所提供的TFT液晶显示面板,包括上偏光片、正双折射聚合物基板、液晶层、负双折射聚合物基板和下偏光片,其中正负双折射聚合物基板分别位于所述液晶层的上下两侧,所述上偏光片位于所述正双折射聚合物基板上表面,所述下偏光片位于所述负双折射聚合物基板的下表面;所述正双折射聚合物基板和所述负双折射聚合物基板在初始双折射时对应的双折射延迟量大小相等,在光弹性双折射时对应的双折射延迟量大小也相等。
[0006] 在一个具体实施方式中,所述正双折射聚合物基板和所述负双折射聚合物基板在初始双折射时对应的双折射延迟量等于零,在光弹性双折射时对应的双折射延迟量也等于零。
[0007] 其中,正双折射聚合物基板包括正双折射基板、遮光层、着色层和聚酰亚胺(PI)取向膜。
[0008] 负双折射聚合物基板包括负双折射基板、TFT阵列和PI取向膜。
[0009] 其中,正双折射基板由正折射率聚合物单体聚合而成。
[0010] 正折射率聚合物单体可以为CPMA分子单体。
[0011] 其中,负双折射基板由负折射率聚合物单体聚合而成。
[0012] 负折射率聚合物单体可以为MMA分子单体。
[0013] 其中,上偏光片和下偏光片的偏光方向互相垂直。
[0014] 本发明还提供了一种TFT液晶显示面板的制备方法,包括如下步骤:
[0015] S1:制备正双折射聚合物基板
[0016] 由正折射率聚合物单体聚合形成正双折射基板;
[0017] 在正双折射基板上制作遮光层和着色层,然后通过印刷取向制作PI取向膜,形成正双折射聚合物基板3;
[0018] S2:制备负双折射聚合物基板
[0019] 由负折射率聚合物单体聚合形成负双折射基板,使负双折射基板和正双折射基板在OB状态和PB状态时对应的双折射延迟量大小相等;
[0020] 在负双折射基板上制作TFT阵列,然后通过印刷取向制作PI取向膜,形成负双折射聚合物基板;
[0021] S3:在正双折射聚合物基板和负双折射聚合物基板之间注入液晶,四周用封框胶密封;
[0022] S4:在S3的正双折射聚合物基板上表面贴敷上偏光片,在负双折射聚合物基板1的下表面贴敷下偏光片,其中上偏光片和下偏光片的偏光方向互相垂直,从而形成TFT液晶显示面板。
[0023] 本发明的还提供了一种TFT显示器件,其包括所述的TFT液晶显示面板。
[0024] 本发明的TFT液晶显示面板无变形时,正负双折射聚合物基板,由于光轴方向垂直,且延迟量相等,此时,在两者结合的情况下,延迟量相互抵消,无延迟量,所以不产生漏光。本发明的TFT液晶显示面板发生变形时,由于正负双折射聚合物基板本身都发生了变形,同时产生双折射,这时需满足正负双折射聚合物基板由于变形造成的光轴的方向相互垂直,且延迟量相当,所以无延迟,无漏光。附图说明
[0025] 图1表示现有技术中的液晶显示面板在应力变化时产生漏光现象;
[0026] 图2表示本发明实施例2的TFT液晶显示面板的结构示意图。

具体实施方式

[0027] 本发明的TFT液晶显示面板,包括上偏光片、正双折射聚合物基板、液晶层、负双折射聚合物基板和下偏光片,其中正负双折射聚合物基板分别位于所述液晶层的上下两侧,所述上偏光片位于所述正双折射聚合物基板上表面,所述下偏光片位于所述负双折射聚合物基板的下表面;所述正双折射聚合物基板和所述负双折射聚合物基板在初始双折射时对应的双折射延迟量大小相等,在光弹性双折射时对应的双折射延迟量大小也相等。
[0028] 其中,所述正双折射聚合物基板和所述负双折射聚合物基板在初始双折射时对应的双折射延迟量等于零,在光弹性双折射时对应的双折射延迟量也等于零。
[0029] 正双折射聚合物基板包括正双折射基板、遮光层、着色层和PI取向膜。
[0030] 负双折射聚合物基板包括负双折射基板、TFT阵列和PI取向膜。
[0031] 其中,正双折射基板由正折射率聚合物单体聚合而成。
[0032] 正折射率聚合物单体可以为4-肉桂酰苯基丙烯酸甲酯分子单体。
[0033] 其中,负双折射基板由负折射率聚合物单体聚合而成。
[0034] 负折射率聚合物单体可以为甲基丙烯酸甲酯分子单体。
[0035] 其中,上偏光片和下偏光片的偏光方向互相垂直。
[0036] 本发明的TFT液晶显示面板的制备方法,包括如下步骤:
[0037] S1:制备正双折射聚合物基板
[0038] 由正折射率聚合物单体聚合形成正双折射基板;
[0039] 在正双折射基板上制作遮光层和着色层,然后通过印刷取向制作PI取向膜,形成正双折射聚合物基板;
[0040] S2:制备负双折射聚合物基板
[0041] 由负折射率聚合物单体聚合形成负双折射基板,使负双折射基板和正双折射基板在初始双折射状态和光弹性双折射状态时对应的双折射延迟量大小相等;
[0042] 在负双折射基板上制作TFT阵列,然后通过印刷取向制作PI取向膜,形成负双折射聚合物基板;
[0043] S3:在正双折射聚合物基板和负双折射聚合物基板之间注入液晶,四周用封框胶密封;
[0044] S4:在S3的正双折射聚合物基板上表面贴敷上偏光片,在负双折射聚合物基板的下表面贴敷下偏光片,其中上偏光片和下偏光片的偏光方向互相垂直,从而形成TFT液晶显示面板。
[0045] 本发明的TFT液晶显示面板的制备方法中所采用的制作工艺均为现有的TFT液晶显示面板制备方法中常用的工艺,在此不再赘述。
[0046] 本发明的TFT液晶显示面板能减少暗态漏光的原理如下:
[0047] A,当液晶面板无变形时,正负双折射聚合物基板,由于光轴方向垂直,且延迟量相等(例如,延迟量等于零),此时,在两者结合的情况下,延迟量相互抵消,无延迟量,所以不产生漏光。
[0048] B,当液晶面板发生变形时,由于正负双折射聚合物基板本身都发生了变形,同时产生双折射,这时需满足正负双折射聚合物基板由于变形造成的光轴的方向相互垂直,且延迟量相当,所以无延迟,无漏光。
[0049] 以下结合具体实施例进一步说明本发明的TFT液晶显示面板。实施例1.[0050] 1.1TFT液晶显示面板
[0051] TFT液晶显示面板的结构如图2所示,包括上偏光片4、正双折射聚合物基板3、液晶层2、负双折射聚合物基板1和下偏光片5,其中正负双折射聚合物基板分别位于所述液晶层2的上下两侧,所述上偏光片4位于所述正双折射聚合物基板3上表面,所述下偏光片5位于所述负双折射聚合物基板1的下表面。
[0052] 其中,正双折射聚合物基板3和负双折射聚合物基板1在初始双折射OB(original birefringence)时对应的双折射延迟量大小相等(例如,延迟量等于零);正双折射聚合物基板3和负双折射聚合物基板1在光弹性双折射PB(photo-elasticity birefringence)时对应的双折射延迟量大小相等(例如,延迟量等于零)。
[0053] 如图2所示的TFT液晶显示面板按照如下方法制备:
[0054] S1:制备正双折射聚合物基板3
[0055] 由正折射率聚合物单体聚合形成正双折射基板;
[0056] 在正双折射基板上制作遮光层和着色层,然后通过印刷取向制作PI取向膜,形成正双折射聚合物基板3;
[0057] S2:制备负双折射聚合物基板1
[0058] 由负折射率聚合物单体聚合形成负双折射基板,使负双折射基板和正双折射基板在OB状态和PB状态时对应的双折射延迟量大小相等;
[0059] 在负双折射基板上制作TFT阵列,然后通过印刷取向制作PI取向膜,形成负双折射聚合物基板1;
[0060] S3:在正双折射聚合物基板3和负双折射聚合物基板1之间注入液晶,四周用封框胶封上;
[0061] S4:在S3的正双折射聚合物基板3上表面贴敷上偏光片4,在负双折射聚合物基板1的下表面贴敷下偏光片5,其中上偏光片4和下偏光片5的偏光方向互相垂直,从而形成TFT液晶显示面板。
[0062] 其中,正双折射基板由正折射率聚合物单体聚合而成,聚合后的基板的初始双折射OB(original birefringence)和光弹性双折射PB(photo-elasticity birefringence)均正性,即在初始状态下和弹性压力下,物质的双折射延迟量均是正的或者均为零。
[0063] 正折射率聚合物单体,可以为4-肉桂酰苯基丙烯酸甲酯(CPMA)分子单体,但不局限于所列举单体。
[0064]
[0065] 其中,负双折射基板由负折射率聚合物单体聚合而成,聚合后的基板的OB和PB均负性,即在初始状态下和弹性压力下,物质的双折射延迟量均是负的或者均为零。
[0066] 负折射率聚合物单体,可以为甲基丙烯酸甲酯(MMA)分子单体,但不局限于所列举单体。
[0067]
[0068] 可以控制两种物质的合成条件,使正双折射基板和负双折射基板在OB状态和PB状态时对应的双折射延迟量大小相等,性质相反,即ROB-MMA=ROB-CPMA;RPB-MMA=RPB-CPMA。
[0069] “双折射延迟量大小相等”是指正双折射基板与负双折射基板的延迟量很小(小于20nm)且相等,并且正双折射基板的光轴方向与负折射基板1的光轴的方向相互垂直。在不考虑聚合物本身双折射率的前提下,正双折射基板与负双折射基板在拉伸和压缩时折射率的变化相反以及变化时的光轴方向相互平行。
QQ群二维码
意见反馈