显示装置、液晶显示光栅及制备方法

申请号 CN201710208855.7 申请日 2017-03-31 公开(公告)号 CN106959531A 公开(公告)日 2017-07-18
申请人 深圳市华星光电技术有限公司; 发明人 蒙艳红; 江志雄;
摘要 本 发明 公开了一种 液晶 显示光栅的制作方法,其中,方法包括:准备一 基板 ;在基板上沉积一透明膜层;对透明膜层进行 图案化 处理以制备出多个容置槽;在容置槽内沉积液晶取向膜;向容置槽内注入液晶分子;对液晶分子进行取向处理并封装。通过上述方式,本发明能够实现3D显示。
权利要求

1.一种液晶显示光栅的制作方法,其特征在于,所述方法包括:
准备一基板
在所述基板上沉积一透明膜层;
对所述透明膜层进行图案化处理以制备出多个容置槽;
在所述容置槽内沉积液晶取向膜;
向所述容置槽内注入液晶分子;
对所述液晶分子进行取向处理并封装。
2.根据权利要求1所述的制作方法,其特征在于,所述透明膜层至少包括氮化化硅及SU-8的一种。
3.根据权利要求2所述的制作方法,其特征在于,所述透明膜层的厚度为40nm~
4000nm。
4.根据权利要求1所述的制作方法,其特征在于,所述液晶取向膜为聚苯乙烯及其衍生物、聚乙烯醇、聚酯、环氧树脂、聚酯、聚硅烷以及聚酰亚胺中的任意一种。
5.一种液晶显示光栅,其特征在于,所述液晶光栅包括:
基板;
透明膜层,沉积于所述基板上,所述透明膜层包括多个容置槽,所述容置槽用于存放液晶分子;
液晶取向膜,所述液晶取向膜沉积于所述容置槽内;
液晶分子,所述液晶分子存放于所述容置槽中;
封装基板,与所述基板对立设置,用于封装所述液晶分子。
6.根据权利要求5所述的液晶显示光栅,其特征在于,所述透明膜层至少包括氮化硅、氧化硅及SU8的一种。
7.根据权利要求6所述的液晶显示光栅,其特征在于,所述透明膜层的厚度为40nm~
4000nm。
8.根据权利要求5所述的液晶显示光栅,其特征在于,所述液晶取向膜为聚苯乙烯及其衍生物、聚乙烯醇、聚酯、环氧树脂、聚氨酯、聚硅烷以及聚酰亚胺中的任意一种。
9.一种显示装置,其特征在于,所述显示装置包括如权利要求5-8所述的液晶显示光栅及液晶显示面板,其中,所述液晶显示光栅与所述液晶显示面板的可视区域对应设置。
10.根据权利要求9所述的显示装置,其特征在于,所述液晶显示面板的可视区域包括多个阵列排布的像素单元,每一所述容置槽与至少一行/一列所述像素单元对应,且每两个相邻的所述容置槽之间间隔至少一行/一列所述像素单元。

说明书全文

显示装置、液晶显示光栅及制备方法

技术领域

[0001] 本发明涉及显示技术领域,特别是涉及一种显示装置、液晶显示光栅及制备方法。

背景技术

[0002] 3D显示技术中3D指的就是三维空间,与普通2D画面显示相比,3D技术可以使画面变得立体逼真,图像不再局限于屏幕的平面上,仿佛能够走出屏幕外面,让观众有身临其境的感觉。3D显示技术分类繁多,其最基本的原理是相似的,就是利用人眼左右分别接收不同画面,然后大脑经过对图像信息进行叠加重生,构成一个具有前-后、上-下、左-右、远-近等立体方向效果的影像。
[0003] 其中,主动快式3D通过进步画面的刷新率来实现3D效果的,通过把图像按一分为二,形成对应左眼和右眼的两组画面,持续交织显示出来,同时红外信号发射器将同步把持快门式3D眼镜的左右镜片开关,使左、右双眼能够在准确的时刻看到相应画面,但是长时间使用容易引起眼睛疲劳甚至头晕现象、配套的主动快门式3D眼镜的价格比较昂贵眼镜需要充电并且较厚重。

发明内容

[0004] 本发明提供一种显示装置、液晶显示光栅及制备方法,配合偏光3D眼镜能够实现3D显示。
[0005] 本发明采用的一个技术方案是:提供一种液晶显示光栅的制作方法,其中,所述方法包括:准备一基板;在所述基板上沉积一透明膜层;对所述透明膜层进行图案化处理以制备出多个容置槽;在所述容置槽内沉积液晶取向膜;向所述容置槽内注入液晶分子;对所述液晶分子进行取向处理并封装。
[0006] 为解决上述技术问题,本发明采用的又一个技术方案是:提供一种液晶显示光栅,其中,所述液晶光栅包括:基板;透明膜层,沉积于所述基板上,所述透明膜层包括多个容置槽,所述容置槽用于存放液晶分子;液晶取向膜,所述液晶取向膜沉积于所述容置槽内;液晶分子,所述液晶分子存放于所述容置槽中;封装基板,与所述基板对立设置,用于封装所述液晶分子。
[0007] 为解决上述技术问题,本发明采用的又一个技术方案是:提供一种显示装置,所述显示装置包括上述所述的液晶显示光栅及液晶显示面板,其中,所述液晶显示光栅与所述液晶显示面板的可视区域对应设置。
[0008] 本发明的有益效果是:提供一种显示装置、液晶显示光栅及制备方法,通过制造一种液晶显示光栅,且该液晶显示光栅容置槽中的液晶可以改变光线的偏振状态,放置于液晶显示面板前并配合偏光3D眼镜,能够实现3D显示。附图说明
[0009] 图1是本发明液晶显示光栅的制作方法一实施方式的流程示意图;
[0010] 图2是本发明液晶显示光栅一实施方式的结构示意图;
[0011] 图3是本发明显示装置一实施方式的结构示意图;
[0012] 图4是本发明显示面板一实施方式的工作原理示意图;
[0013] 图5是本发明显示装置另一实施方式的结构示意图。

具体实施方式

[0014] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0015] 请参阅图1,图1是本发明液晶显示光栅的制作方法一实施方式的流程示意图。
[0016] S110,准备一基板。
[0017] 其中,该基板可以为透明材质,具体可以是玻璃或者透明塑料等。
[0018] S120,在基板上沉积一透明膜层。
[0019] 其中,该透明膜层可以是无机物,例如氮化(SiNx)、化硅(SiO2)等。在其它实施例中,也可以是有机物,例如SU-8,且该透明膜层的厚度可以为40nm~4000nm。
[0020] S130,对透明膜层进行图案化处理以制备出多个容置槽。
[0021] 步骤S130中,采用光刻法对上述透明膜层进行图案化处理,其中,光刻法是指在通过一系列生产步骤,将基板表面的透明膜层的特定部分除去的工艺,在此之后基板表面会留下带有微图形结构的透明膜层。通过光刻工艺过程,最终在基板表面上保留的是具有容置槽结构的透明膜层。且光刻法的三基本要素为控制光照(主要为紫外光)、掩模板以及光刻胶。在本实施例中,通过光刻工艺在该透明膜层上制备出多个用以存放液晶分子的容置槽。
[0022] S140,在容置槽内沉积液晶取向膜。
[0023] 其中,取向膜是指能够使液晶分子产生定向移动的高分子聚合物膜。且用于液晶分子取向膜的高分子材料包括:聚苯乙烯(PS)及其衍生物、聚乙烯醇(PVA)、聚酯(PE)、环氧树脂(ER)、聚酯(PU)、聚硅烷以及聚酰亚胺(PI)等。本实施例中,采用PI作为液晶分子的取向膜沉积于上述容置槽中,用于液晶分子的预取向。PI是指主链上含有酰亚胺环的一类聚合物,因其具有优异的热稳定性和化学稳定性、可耐350-450度的高温、优异的绝缘性、优良的介电性能、良好的学特性、易成膜、制作成本低等优良特性,能很好地满足业界对取向层材料物理特性的要求。PI膜层本身就有使液晶分子取向的功能,它对所有的液晶材料都显示了良好的取向效果。
[0024] S150,向容置槽内注入液晶分子。
[0025] S160,对液晶分子进行取向处理并封装。
[0026] 液晶分子的取向技术可以实现整个基板表面液晶分子相对于基板形成整齐的排列并具有最佳的夹,且具有足够的稳定性。只有这样,液晶分子才会在宏观上表现出其长程有序性,即液晶分子的取向技术是液晶器件正常工作的必要条件。且液晶分子的取向技术涉及到取向膜材料的性质、取向膜层表面的处理方法、界面处的相互作用,是一个综合的处理过程。目前工业上采用的取向技术有两大类,一类是传统的摩擦取向技术,另一类是非摩擦取向技术。
[0027] 其中,摩擦取向技术指利用尼龙、纤维绒等材料按一定方向摩擦液晶分子的取向膜,使得膜层表面状况改变,对液晶分子产生均一的锚定作用,从而使液晶分子在某一区域内以一定的预倾角呈现均匀、一致的排列。即摩擦取向的实质是摩擦导致取向膜表面的各向异性,而液晶分子在这种表面上与取向膜分子间相互作用,由于各个方向上受力不同,为了达到能量最小的稳定态,液晶分子沿受力最大的方向排列。
[0028] 其中,非摩擦取向技术主要有光控取向技术、倾斜蒸法、LB膜技术等。光控取向技术,利用紫外光敏聚合物单体材料光化学反应产生的各向异性,使液晶分子定向排列。倾斜蒸镀法,将金属、氧化物、氟化物等无机材料在与基板的法线方向成某个角度的方向上进行蒸镀的工艺。LB膜技术指在适当的条件下,不溶物单分子层可以通过特定的方法转移到基板上,并且基本保持其定向排列的分子层结构。
[0029] 这两类技术各有优缺点,也各有应用的范围,不同的液晶分子基板生产线可以采用的技术也不同,且本实施例中,即可以采用摩擦取向技术也可以采用非摩擦取向技术,本发明不做具体限定,且在对液晶分子取向处理后进行封装。
[0030] 请参阅图2,图2为本发明液晶显示光栅一实施方式的结构示意图。如图2,该液晶显示光栅10包括:基板11、透明膜层12、液晶取向膜13、液晶分子14以及封装基板15。
[0031] 其中,基板11可以为透明材质,具体可以是玻璃或者透明塑料等。
[0032] 透明膜层12,该透明膜层12沉积于基板11上,包括多个容置槽121,且容置槽121用于存放液晶分子14。其中,该透明膜层12可以是无机物,例如氮化硅(SiNx)、氧化硅(SiO2)等。在其它实施例中,也可以是有机物,例如SU-8,且该透明膜层12的厚度可以为40nm~4000nm。
[0033] 液晶取向膜13,沉积于容置槽内121内。其中,液晶取向膜13是指能够使液晶分子产生定向移动的高分子聚合物膜。且用于液晶分子取向膜的高分子材料包括:聚苯乙烯(PS)及其衍生物、聚乙烯醇(PVA)、聚酯(PE)、环氧树脂(ER)、聚氨酯(PU)、聚硅烷以及聚酰亚胺(PI)等。本实施例中,采用PI作为液晶分子的取向膜沉积于上述容置槽121中,用于液晶分子14的预取向。PI是指主链上含有酰亚胺环的一类聚合物,因其具有优异的热稳定性和化学稳定性、可耐350-450度的高温、优异的绝缘性、优良的介电性能、良好的力学特性、易成膜、制作成本低等优良特性,能很好地满足业界对取向层材料物理特性的要求。PI膜层本身就有使液晶分子取向的功能,它对所有的液晶材料都显示了良好的取向效果。
[0034] 液晶分子14,存放于容置槽121中。
[0035] 封装基板15,与基板11对立设置,用于封装液晶分子14。其中,该封装基板15可以为透明材质,具体可以是玻璃或者透明塑料等。
[0036] 请参阅图3,图3是本发明显示装置一实施方式的结构示意图。如图,该显示装置20包括上述任一一实施方式中的液晶显示光栅10,以及液晶显示面板21。其中,该液晶显示光栅10与液晶显示面板21的可视区域对应设置。
[0037] 其中,该液晶显示面板21的可视区域211包括多个阵列排布的像素单元211,每个容置槽121与至少一行像素单元211对应,且每一像素单元211至少包括红绿蓝三个子像素,且每两个相邻的容置槽121之间间隔至少一行像素单元211,且容置槽121的长宽与该行像素单元211的长宽相等。具体地,液晶显示光栅10以隔行设置的方式来改变通过液晶显示面板21出射光的偏振状态。
[0038] 简单来说,可参照图4,图4为本发明显示面板一实施方式的工作原理示意图。其中,液晶显示面板21包括两基板A、B,夹持于两基板间的液晶分子C以及设置于两基板A、B中远离液晶分子C的表面上的偏振片(起偏器P1和检偏器P2),且起偏器P1能够将背光源发出的白光变成线偏振光,在具体的实施例中,通过起偏器P1的白光光线变成平行于显示面板方向的平行偏振光,进入液晶分子C后,且满足检偏器P2偏振方向的光才能出射,即显示面板方向的平行偏振光(需要说明是本实例中的平行和垂直只是相对而言,并不做具体地的限定)。当然在其它实施例中,该检偏器P2也可以和起偏器P1正交设置,若检偏器P2与起偏器P1正交设置时,此时经过液晶分子C后的出射光的偏振方向应与显示面板方向垂直。回到图4,当满足检偏器P2方向的平行偏振光出射后,进一步进入液晶显示光栅10,由图可知,显示面板中与容置槽121对应设置的像素单元行,其出射光由原来的平行偏振光变为垂直偏振光,未与容置槽121对应设置的像素单元行保持原偏振状态,即平行偏振光。偏光3D眼镜D的左眼镜片为平行偏振光,右眼镜片为垂直偏振光,以使得左眼接收未与容置槽121对应设置的像素单元行发出的平行偏振光,右眼接收与容置槽121对应设置的像素单元行发出的垂直偏振光,在未与容置槽121对应设置的像素单元行显示左眼图像,与容置槽121对应设置的像素单元行显示右眼图像,以此实现3D显示。当然也可以是偏光3D眼镜D的左眼镜片为垂直平行偏振光,右眼镜片为平行偏振光,相应的未与容置槽121对应设置的像素单元行显示右眼图像,与容置槽121对应设置的像素单元行显示左眼图像。
[0039] 请参阅图5,图5是本发明显示装置另一实施方式的结构示意图。如图,该显示装置30包括上述任一一实施方式中的液晶显示光栅10,以及液晶显示面板31。其中,该液晶显示光栅10与液晶显示面板31的可视区域对应设置。
[0040] 其中,该液晶显示面板31的可视区域311包括多个阵列排布的像素单元311,每个容置槽121与至少一列像素单元311对应,且每两个相邻的容置槽121之间间隔至少一列像素单元311,且每一像素单元311至少包括红绿蓝三个子像素,且容置槽121的长宽与该列像素单元311的长宽相等。具体地,液晶显示光栅10以隔列设置的方式来改变通过液晶显示面板31出射光的偏振状态,且具体的工作原理参见上述描述,此处不再赘述。
[0041] 上述实施方式中,通过将上述液晶显示光栅隔行/列放置于显示面板的可显示区域的像素单元,以此来改变从液晶显示面板中出射光的偏振状态,并配合偏光3D眼镜,可以实现3D显示。
[0042] 综上所述,本领域技术人员容易理解,本发明提供一种显示装置、液晶显示光栅及制备方法,通过将上述液晶显示光栅隔行/列放置于显示面板的可显示区域的像素单元,以此来改变从液晶显示面板中出射光的偏振状态,并配合偏光3D眼镜,可以实现3D显示。
[0043] 以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
QQ群二维码
意见反馈