波长转换激光器以及图像显示装置

申请号 CN200980000183.4 申请日 2009-01-19 公开(公告)号 CN101681080B 公开(公告)日 2012-03-21
申请人 松下电器产业株式会社; 发明人 水岛哲郎; 古屋博之; 式井慎一; 楠龟弘一; 堀川信之; 水内公典; 山本和久;
摘要 本 发明 提供一种 波长 转换 激光器 及图像显示装置。波长转换激光器包括:射出基波的基波激光 光源 (1)、以及将从基波激光光源(1)射出的基波转换为波长与基波不同的转换波的波长转换元件(10),其中,位于波长转换元件(10)的光轴方向的两端侧,且通过反射基波使基波在波长转换元件(10)内多次通过的一对基波反射面(12、13)中的至少其中之一基波反射面透过转换波,一对基波反射面(12、13)使基波在波长转换元件(10)内交叉,在与基波的交叉点不同处形成多个聚光点。据此,能够具有高转换效率,并且实现小型化。
权利要求

1.一种波长转换激光器,其特征在于包括:
射出基波的光源;以及
将从所述光源射出的所述基波转换为波长与所述基波不同的转换波的波长转换元件,其中,
位于所述波长转换元件的光轴方向的两端侧、通过反射所述基波使所述基波在所述波长转换元件内多次通过的一对基波反射面中的至少其中之一的基波反射面,让所述转换波透过,
所述一对基波反射面,使所述基波在所述波长转换元件内交叉,并在与所述基波的交叉点不同处形成多个聚光点。
2.根据权利要求1所述的波长转换激光器,其特征在于:所述波长转换元件的侧面,将所述基波反射到所述波长转换元件的内部。
3.根据权利要求2所述的波长转换激光器,其特征在于还包括:用折射率低于所述波长转换元件的材料形成、包覆所述波长转换元件的侧面的反射部。
4.根据权利要求3所述的波长转换激光器,其特征在于还包括:经由所述反射部调整所述波长转换元件的温度的温度调整设备。
5.根据权利要求2至4中任一项所述的波长转换激光器,其特征在于:
所述波长转换元件的与光轴相交的截面的形状为矩形形状,
所述基波的偏振方向与所述截面的其中之一边平行。
6.根据权利要求1至4中任一项所述的波长转换激光器,其特征在于:
所述一对基波反射面,被形成在所述波长转换元件的光轴方向的两端面,所述波长转换元件的两端面中的至少其中之一为凸型形状。
7.根据权利要求6所述的波长转换激光器,其特征在于:所述波长转换元件的两端面中的至少其中之一为凸型柱面形状。
8.根据权利要求1至4中任一项所述的波长转换激光器,其特征在于:所述一对基波反射面中的其中之一基波反射面包含柱面,另一基波反射面包含球面。
9.根据权利要求1至4中任一项所述的波长转换激光器,其特征在于:
所述一对基波反射面,被形成在所述波长转换元件的光轴方向的两端面,在所述波长转换元件的两端面中,反射所述基波并透过所述转换波的那个端面的面积小于另一端面的面积。
10.根据权利要求1至4中任一项所述的波长转换激光器,其特征在于:所述波长转换元件的厚度及宽度为1mm以下。
11.根据权利要求3或4所述的波长转换激光器,其特征在于:
所述波长转换元件呈具有指定厚度的平板形状,
所述反射部,被形成在平板形状的所述波长转换元件的彼此相对的两个最大面积的面上。
12.根据权利要求1至4中任一项所述的波长转换激光器,其特征在于:
所述一对基波反射面,被形成在所述波长转换元件的光轴方向的两端面,所述波长转换元件的两端面中的其中之一端面,反射基波并透过转换波,并与传播所述转换波的多模光纤连接。
13.根据权利要求12所述的波长转换激光器,其特征在于:所述多模光纤的与所述波长转换元件连接的端面,反射基波并透过转换波。
14.根据权利要求1至4中任一项所述的波长转换激光器,其特征在于:透过所述转换波的基波反射面包含透过所述转换波的透过区域和一并反射所述基波以及所述转换波的反射区域。
15.根据权利要求1至4中任一项所述的波长转换激光器,其特征在于还包括:在所述转换波的射出过程中使所述波长转换元件振动的振动机构。
16.根据权利要求1至4中任一项所述的波长转换激光器,其特征在于:所述波长转换元件的两端面中透过所述转换波的端面的图像,被投影到调制所述转换波的调制元件。
17.根据权利要求1至4中任一项所述的波长转换激光器,其特征在于:
所述一对基波反射面中的至少其中之一具有反射所述基波以及所述转换波的反射膜,所述多个聚光点被形成在所述反射膜的附近,
所述反射膜包含100nm以上厚度的金属膜。
18.一种图像显示装置,其特征在于包括:
如权利要求1至17中任一项所述的波长转换激光器,以及
调制从所述波长转换激光器射出的转换波的调制元件。

说明书全文

波长转换激光器以及图像显示装置

技术领域

[0001] 本发明涉及一种进行基波的波长转换并输出波长与基波不同的转换波的波长转换激光器以及具备该波长转换激光器的图像显示装置。

背景技术

[0002] 以往,存在利用波长转换元件的非线性光学现象,将基波波长转换为二次谐波(SecondHarmonic)、和频(sum frequency)或差频(difference frequency)等转换波的波长转换激光器。
[0003] 图17是表示现有的波长转换激光器的结构的概要图。现有的波长转换激光器例如图17所示,具备:基波激光光源301、对从基波激光光源301射出的基波激光进行聚光的透镜302、使聚光的基波激光的二次谐波生成的波长转换元件303、和将基波激光和谐波激光分离的分色镜(dichroic mirror)304。
[0004] 波长转换元件303采用非线性光学晶体,通过适当调节晶体的方位、极化反转结构等,以使基波与转换波的相位匹配,从而进行基波的波长转换。特别是,利用极化反转结构的波长转换元件,通过准相位匹配(quasi phase matching)在低功率下也能进行高效率的波长转换,根据设计能够进行各种波长转换。所谓极化反转结构,采用设置了使非线性光学晶体的自发极化(spontaneous polarization)周期性地反转的区域的结构。
[0005] 设波长转换元件的相互作用长度为L,基波的功率为P,波长转换元件中的光束截面面积为A,与相位匹配条件的偏差为Δk时,将基波转换为二次谐波的转换效率η用下述的式(1)表示。
[0006] η∝L2P/A×sinc2(ΔkL/2) ……(1)
[0007] 此外,在对于相互作用长度设定适当的聚光条件的情况下,转换效率η用下述的式(2)表示。
[0008] η∝LP×sinc2(ΔkL/2) ……(2)
[0009] 根据上述的式(2),为提高转换效率,只要加长相互作用长度或者增加基波的功率即可。但是,由于对于距相位匹配条件的偏差的允许幅度与相互作用长度成反比例的关系,所以若加长相互作用长度,则温度调整以及基波的条件会变得严格。此外,基波的功率的增加会导致波长转换元件的端面破坏、因光吸收产生的发热造成的转换效率的下降。
[0010] 例如,在日本专利公开公报特开2004-125943号(以下称作“专利文献1”)中,提出了具备将入射的激光导光至彼此不在同一直线上的多个光路的导光装置、设置在多个光路的波长转换装置、以及取出由波长转换装置转换了波长的激光的激光取出装置,由此在不产生光损伤的情况下高效率地进行波长转换的波长转换装置。
[0011] 此外,例如在日本专利公开公报特开平11-44897号(以下称作“专利文献2”)中,提出了具备在入射基波激光光束路径上依次设置的多个波长转换元件、使通过多个波长转换元件的激光光束收敛的多个聚光装置、以及变更在多个波长转换元件中被进行波长转换的激光光束的路径的分束器(beam splitter),由此能够进行高效率的波长转换的波长转换激光装置。
[0012] 还有,例如在日本专利公开公报特开2006-208629号(以下称作“专利文献3”)中,提出了将从极化反转元件的入射端入射并被实施波长转换后到达另一端的光,用配置在极化反转元件的另一端的反射体反射,改变光路后再次入射到该极化反转元件,并再次在极化反转元件内行进从而进行波长转换,由此提高波长转换效率的波长转换元件。
[0013] 在上述的现有的提案中,即使波长转换元件的相互作用长度较短,也能得到高转换效率。但是,由于输出的光束为多个光束,所以汇聚上述多个光束需要多个光学部件。此外,在上述的以现有的提案中,转换波的实际光源面积变大,对转换波进行聚光变得困难。除此之外,在上述的现有的提案中,波长转换元件的必要面积变大,存在导致成本增加的问题。另外,在波长转换激光器中由于使用多个光学部件,因此其产品化要求放宽对部件的调整。

发明内容

[0014] 本发明为了解决上述问题,其目的在于提供一种能够稳定地得到高转换效率,并且能够小型化的波长转换激光器以及图像显示装置。
[0015] 本发明所涉及的波长转换激光器包括:射出基波的光源;以及将从上述光源射出的上述基波转换为波长与上述基波不同的转换波的波长转换元件,其中,位于上述波长转换元件的光轴方向的两端侧、通过反射上述基波使上述基波在上述波长转换元件内多次通过的一对基波反射面中的至少其中之一的基波反射面让上述转换波透过,上述一对基波反射面,使上述基波在上述波长转换元件内交叉,并在与上述基波的交叉点不同处形成多个聚光点。
[0016] 根据此结构,通过一对基波反射面,基波在波长转换元件内多次通过,基波在波长转换元件内交叉,在与基波的交叉点不同处形成多个聚光点。
[0017] 根据本发明,基波在波长转换元件内多次通过,并且在与基波的交叉点不同处形成多个聚光点,因此能够稳定地得到高转换效率,能够减小成为多个光束而射出的转换波的光源面积,其结果能够使装置整体小型化。附图说明
[0018] 图1是表示本发明的第一实施例中的波长转换元件的外观形状的概要图。
[0019] 图2(A)是表示本发明的第一实施例中的波长转换激光器的结构的概要俯视图,图2(B)是表示本发明的第一实施例中的波长转换激光器的结构的概要侧视图。
[0020] 图3是表示第一实施例中的温度调整设备的结构的图。
[0021] 图4是表示本发明的第二实施例中的波长转换元件的外观形状的概要图。
[0022] 图5(A)是表示本发明的第二实施例中的波长转换激光器的结构的概要俯视图,图5(B)是表示本发明的第二实施例中的波长转换激光器的结构的概要侧视图。
[0023] 图6是表示与图5(A)以及图5(B)所示的波长转换激光器连接的多模光纤的结构的图。
[0024] 图7是表示本发明的第三实施例中的波长转换激光器的结构的概要图。
[0025] 图8是表示本发明的第四实施例中的波长转换激光器的结构的概要俯视图。
[0026] 图9是表示本发明的第五实施例中的波长转换激光器的结构的概要俯视图。
[0027] 图10(A)是表示本发明的第六实施例中的波长转换激光器的结构的概要俯视图,图10(B)是表示本发明的第六实施例中的波长转换激光器的结构的概要侧视图。
[0028] 图11(A)是表示本发明的第七实施例中的波长转换激光器的结构的概要俯视图,图11(B)是表示本发明的第七实施例中的波长转换激光器的结构的概要侧视图。
[0029] 图12(A)是表示本发明的第八实施例中的波长转换激光器的结构的概要俯视图,图12(B)是表示本发明的第八实施例中的波长转换激光器的结构的概要侧视图。
[0030] 图13是表示采用图12(A)以及图12(B)所示的波长转换激光器的图像显示装置的结构的概要图。
[0031] 图14是表示本发明的第九实施例中的波长转换激光器的结构的概要图。
[0032] 图15是表示本发明的第十实施例中的波长转换元件的外观形状的概要图。
[0033] 图16(A)是表示本发明的第十实施例中的波长转换激光器的结构的概要俯视图,图16(B)是表示本发明的第十实施例中的波长转换激光器的结构的概要侧视图。
[0034] 图17是表示现有的波长转换激光器的结构的概要图。

具体实施方式

[0035] 以下参照附图对本发明的实施例进行说明。此外,以下的实施例是将本发明具体化的一例,并不限定本发明的技术范围。
[0036] (第一实施例)
[0037] 图1是表示本发明的第一实施例中的波长转换元件10的外观形状的概要图。波长转换元件10采用具有极化反转周期结构的MgO:LiNbO3晶体。波长转换元件10的形状,例如可以是长度为10mm,宽度和厚度分别为1mm的杆(rod)型。波长转换元件10将基波转换为波长与基波不同的转换波。在波长转换元件10的长度方向的其中之一端面12上形成有入射基波的基波入射口11。在杆型的波长转换元件10的长度方向的两个端面,除了基波入射口11以外,形成有反射基波的基波反射膜。
[0038] 此外,未形成有基波入射口11的长度方向的另一端面13除了反射基波的基波反射膜以外还形成有透过转换波的转换波透过膜,构成转换波的输出面。此外,在端面12上形成有反射转换波的转换波反射膜,在波长转换元件10中,转换波的输出面仅为长度方向的端面13。
[0039] 基波入射口11形成在从端面12的中心起偏向横向的端部的位置处,直径的尺寸例如为100μm,并形成有针对基波的AR膜(Anti-Reflective coat,抗反射膜)。具有基波入射口11的端面12呈沿图1的纵向弯曲的凸型柱面形状(convex cylindrical shape)。另一端面13呈沿图1的横向弯曲的凸型柱面形状。两个端面12、13的曲率半径例如为
13mm。
[0040] 波长转换元件10的侧面被由折射率低于波长转换元件10的树脂包层(resin clad)14包覆,波长转换元件10经由树脂包层14进行对固定器(holder)的固定和温度调整。树脂包层14包覆除波长转换元件10的端面12、13以外的面。
[0041] 图2(A)是表示本发明的第一实施例中的波长转换激光器的结构的概要俯视图,图2(B)是表示本发明的第一实施例中的波长转换激光器的结构的概要侧视图。在图2(A)以及图2(B)中示出了基波与转换波的光路。图2(A)以及图2(B)是杆形状的波长转换元件10的俯视图以及侧视图。
[0042] 波长转换激光器100包括基波激光光源1、聚光透镜2、波长转换元件10以及树脂包层14。
[0043] 从基波激光光源1射出的基波被聚光透镜2聚光容纳到基波入射口11内,并入射波长转换元件10。入射的基波沿波长转换元件10的长度方向行进,并被进行波长转换。基波被端面13反射,再次在波长转换元件10内行进。所得到的转换波从端面13射出。基波入射口11形成在偏离杆中心轴的位置处,端面13在基波入射口11相对于杆中心轴偏离的方向具有曲率。因此,基波向从上方观察的横向倾斜而反射,不会返回到基波入射口11。
[0044] 在端面13和端面12形成有反射膜,此外,波长转换元件10的侧面被由树脂包层14包覆。因此,基波在端面13和端面12处反射,且还在侧面的树脂包层14处全反射,所以,沿长度方向在波长转换元件10内反复往返。在该往返时,端面12和端面13作为凹面(柱面)镜发挥作用,从而形成基波的聚光点。
[0045] 在波长转换元件10内往返的基波在波长转换元件10内交叉,除了由聚光透镜2产生的聚光点之外,形成由端面12和端面13的曲率产生的聚光点Pb。此时,在与基波的交叉点Pa不同处形成多个聚光点Pb。在第一实施例中,端面12和端面13采用柱面,因此在光束的直径方向上形成不同的聚光点Pb。
[0046] 转换波被端面12和波长转换元件10的侧面反射,并被引导至端面13。转换波从端面13以多束光束射出。端面13,例如呈边长为1mm的矩形形状,为非常小的射出口。此外,端面13的柱面形状(cylindrical shape)作为凸透镜对转换波发挥作用,抑制从上方观察到的沿横向扩张的光束的扩张并射出。
[0047] 另外,在本第一实施例中,波长转换元件10的端面12、13相当于一对基波反射面的一个例子,树脂层14相当于反射部的一个例子。
[0048] 在本第一实施例中,波长转换元件10在长度方向的两侧具有基波反射面,至少其中之一基波反射面透过转换波,基波在波长转换元件10内交叉,在与交叉点不同处形成聚光点。据此,能够提高转换效率,并且能够将成为多个光束射出的转换波的光源面积汇聚为一处而使之减小,此外,能够减小波长转换元件10的必要面积。在一对基波反射面间往返的基波在波长转换元件10内多次通过,并且往返的基波具有多个聚光点,因此与基波在波长转换元件内只通过一次的结构相比,转换效率成为数倍的值。
[0049] 在此,在基波只是在波长转换元件10内多次通过而不聚光的情况下,由于衍射的效果,基波的光束直径扩大,功率密度降低,因此转换效率的上升非常少。但是,在本第一实施例中,在波长转换元件10内通过的光束具有聚光点,因此基波的功率密度不会下降,能够大幅增加转换效率。此外,基波在基波反射面之间往返时,转换波从至少其中之一基波反射面输出。因此,波长转换的相互作用长度为波长转换元件10的一次往返以下,也不会产生相互作用长度变长的问题。
[0050] 在本第一实施例中,使在波长转换元件10内沿长度方向往返的基波交叉,将基波通过的波长转换元件10的宽度和厚度方向的面积设得较小。基波通过的波长转换元件10的部位成为转换波的产生源,但是通过将波长转换元件10的宽度和厚度方向的截面积设得较小,能够减小光源面积。转换波的射出的截面积也汇聚得较小,因此能够用简单的光学部件控制多个光束。
[0051] 在本第一实施例中,波长转换元件10内具有基波的交叉点和聚光点,此时,在基波的交叉点和聚光点集中的结构中,基波的功率密度变得过高,产生对波长转换元件10的损伤或光吸收,产生交叉点以及聚光点处的波长转换出现障碍的问题。在本第一实施例中,通过在与基波的交叉点不同处具有多个聚光点,能够分散功率密度高、且波长转换剧烈进行的地方,能够稳定地得到高转换效率。另外,本第一实施例的基波的交叉点不包括反射造成的交点,而是指基波的光路在空间中具有重叠之处的点。
[0052] 在第一实施例中,入射到波长转换元件10内的基波的一部分从基波入射口11射出,为了不让基波返回到基波激光光源1,较为理想的是采用光隔离器(optical isolator)等。此外,最好在基波入射口11的周围采用吸收从波长转换元件10射出的基波的遮光罩(shielding cover)。
[0053] 在第一实施例中,较为理想的是,除了波长转换元件10的长度方向的一对基波反射面之外,还利用波长转换元件10的侧面反射基波,从而使基波在波长转换元件10内折回。通常,基波通过的波长转换元件10的宽度和厚度方向的面积,随着基波的往返次数的增加而变大,而与面积的变大相对应的基波却不能作为输出而获取。
[0054] 但是,在本第一实施例中,在波长转换元件10的侧面形成树脂包层(反射部)14,通过将基波反射到波长转换元件10的内部,能够将基波在波长转换元件10内通过的面积持续保持在一定范围。此外,通过在波长转换元件10的侧面反射基波,限制基波通过的面积,并规定转换波的光源面积,由此能够容易地控制射出的转换波。此外,通过在波长转换元件10的侧面反射基波,能够使通过波长转换元件10的基波的强度分布平均化,分散基波的功率密度较高的地方。波长转换元件10的侧面一并反射基波和转换波为宜。据此,能够将转换波引导至一定面积的输出侧的端面13,并且能够使转换波的强度均匀化。
[0055] 在本第一实施例中,较为理想的是,波长转换元件10的侧面被由折射率低于波长转换元件10的材料包覆。通过用折射率低于波长转换元件10的材料包覆,能够在波长转换元件10的侧面使基波以及转换波全反射,使基波以及转换波折回波长转换元件10内。此外,作为波长转换元件10的保护层以及保温层能够利用包覆部(反射部)。尤其理想的是,包覆部采用能够变形及加工的树脂材料。虽然作为波长转换元件10的非线性晶体硬而且脆,有时由于冲击等破损,但通过用树脂材料包覆,对振动或变形有较强的抵抗能。此外,利用树脂材料的加工,与保持波长转换元件10的保持部的接合变得容易。树脂材料能够采用例如UV固化树脂、热固树脂以及热塑树脂等。
[0056] 树脂包层14与将波长转换元件10的温度调整为恒定的温度调整设备接合。图3是表示第一实施例中的温度调整设备的结构的图。温度调整设备15包括金属固定器(metalholder)16、帖元件(Peltier element)17以及散热片(radiation fin)18。
[0057] 金属固定器16例如由矩形的金属材料形成,用于保持波长转换元件10以及树脂包层14。金属固定器16包覆树脂包层14的整个侧面。珀耳帖元件17的冷却面与金属固定器16的其中之一侧面接合,从金属固定器16吸收热。散热片18设置在珀耳帖元件17的发热面一侧,从珀耳帖元件17放出热。从波长转换元件10产生的热传递到树脂包层14以及金属固定器16,金属固定器16通过珀耳帖元件17冷却。进一步,通过散热片18放出由珀耳帖元件17产生的热。
[0058] 在本第一实施例中,较为理想的是,温度调整设备15与包覆波长转换元件10的反射部(树脂包层14)连接。在温度调整设备15与波长转换元件10直接连接的情况下,有时在波长转换元件10与温度调整设备15的连接部处吸收在反射面之间往返的基波,温度调整功能无法精确动作。另一方面,在本第一实施例中,通过连接将基波以及转换波全反射的反射部(树脂包层14)与温度调整设备15,能够消除温度调整设备15对基波以及转换波的吸收,进行精确的温度控制。此外,反射部(树脂包层14)包覆波长转换元件10的整个侧面,还起到将波长转换元件10整体保持为一定温度的作用。
[0059] 基波激光光源1采用振荡1064nm的波长、具有直线偏振性的光纤激光器。在波长转换激光器100中,入射到波长转换元件10的基波的偏振方向PD为图2(B)的侧视图的上下方向。基波的偏振方向PD与形成极化反转的MgO:LiNbO3晶体的z轴方向一致,能够有效地进行波长转换。
[0060] 与波长转换元件10的光轴垂直的面的截面形状是具有与上述偏振方向PD平行的边和垂直的边的矩形形状。在本第一实施例中,较为理想的是,与波长转换元件10的光轴垂直的面的截面形状为矩形形状,至少一边与入射到波长转换元件10的基波的偏振方向PD平行,在波长转换元件10的侧面反射基波。
[0061] 在本第一实施例中,利用波长转换元件10的侧面的反射,使基波折回到波长转换元件10内,但是此时,存在若偏振方向变化,转换效率就降低的问题。在本第一实施例中,由于反射的侧面与偏振方向平行或垂直,因此消除了偏振方向的变化,即使利用侧面的反射,也能够进行效率较好的波长转换。由于非线性光学晶体具有光学轴,因此为了进行波长转换,必须使偏振方向与光学轴对准。
[0062] 在第一实施例中,较为理想的是,波长转换元件10的端面为基波反射面,且端面为凸型形状。此外,在第一实施例中,较为理想的是,一对基波反射面形成在波长转换元件10的光轴方向的两个端面,波长转换元件10的两个端面中的至少其中之一为凸型形状。
[0063] 波长转换元件10在长度方向的两个端面具有基波反射面,两个端面为轴相互垂直的凸型柱面形状。通过使波长转换元件10的端面兼作基波反射面,能够省去波长转换元件10与基波反射面的调整工序。以往,在基波多次通过非线性光学晶体的情况下,有时出现调整轴变多的问题。但是,在本第一实施例中,减少调整轴数目,能够紧凑地实现在波长转换元件10内聚光的基波多次通过的结构。
[0064] 此外,由于基波在波长转换元件10内往返,所以基波通过波长转换元件10时不存在透过的面,能够消除光学损失。波长转换元件10的凸型形状的端面对于反射的基波作为凹面镜发挥作用,能够在波长转换元件10内形成聚光点。此外,反射基波并透过转换波的波长转换元件10的凸型形状的端面对转换波作为凸透镜发挥作用,能够抑制射出的转换波的扩张角。另外,也可以采用只在波长转换元件10的两个端面中的其中之一形成凸型的基波反射面的结构。此外,凸型形状也可以不是球面形状,而是非球面形状。
[0065] 在本第一实施例中,较为理想的是,具有基波反射面的波长转换元件10的两个端面中的至少其中之一为凸型柱面形状。通过使基波反射面采用柱面,使得在波长转换元件10内形成的聚光点处于光束直径方向上的不同处,能够避免基波的功率密度的集中。此外,通过使凸面采用柱面形状,与采用球面形状的情况相比,能够减少一个调整轴,能够使调整工序更容易。波长转换元件10的端面的加工也采用1轴加工便可,因此能够降低制造成本。
[0066] 特别是,在截面为矩形形状的波长转换元件10的情况下,较为理想的是,柱面的轴方向与矩形形状的截面的边一致。通过使柱面的轴方向与矩形形状的截面的边一致,能够消除基波在波长转换元件10的侧面反射时的偏振方向的旋转。
[0067] 波长转换元件10以波长转换元件10的两个端面为凸型柱面形状的基波反射面、且柱面形状的轴相互垂直为宜。通过使具有聚光力的两个反射面的轴相互垂直,使在波长转换元件10内形成的聚光点处于在相互垂直的方向上的不同处。此外,通过使柱面形状的轴相互垂直,能够以两轴独立的方式分别操作波长转换元件10的调整轴,使调整更加容易。此外,对每个轴分别加工便可,因此能够降低包含调整在内的制造成本。
[0068] 尤其理想的是,将柱面的曲率半径设定为两个面均为波长转换元件长度以上。通过使曲率半径采用上述条件,能够确保光束的聚光特性并使光束往返。特别是,如图2(B)的波长转换激光器100的侧视图所示,光轴与基波入射口11的位置偏差较小的直径方向的光路达到稳定共振条件,即使往返次数增加,也能将光束直径控制在一定范围。
[0069] 波长转换元件10的厚度以及宽度分别在1mm以下为宜。波长转换元件10的厚度以及宽度相当于转换波的光源面积,通过使光源面积为1mm×1mm的范围内,能够将转换波汇聚在充分小的范围。在本第一实施例中,虽然输出多个转换波光束,但通过将多个转换波光束汇聚在小范围,能够不用考虑转换波光束为多个的情况下,在各个光学部件中进行光束整形以及传播等控制。
[0070] 除了光纤激光器以外,基波激光光源1能够采用半导体激光器以及固体激光器等各种激光光源。聚光透镜2用于使基波激光从基波入射口11入射到基波反射面。为了使基波激光入射到一对基波反射面,在本第一实施例中能够使用各种光学部件。此外,波长转换元件10能够采用各种非线性材料。例如,波长转换元件10采用LBO、KTP、或者具有极化反转周期结构的LiNbO3或LiTaO3。
[0071] 在本第一实施例中,基波反射面采用具有聚光力的曲面,使得基波在波长转换元件10内交叉,并且在与交叉点不同处形成多个聚光点。此外,通过使入射到基波反射面的光束聚光,也能形成如第一实施例的聚光点。在第一实施例中,基波反射面采用凸型柱面,在与交叉点不同处形成多个聚光点,利用波长转换元件10的侧面的反射和柱面的反射使基波交叉。
[0072] 基波入射口11只要能使基波入射到一对基波反射面之间便可,对形状没有特别限定。在本第一实施例中,在端面12形成反射膜时,通过圆形地掩膜(masking),只让基波入射口11成为基波透过面。此外,也能够加工基波反射面的一部分来形成基波入射口11。在第一实施例中,基波入射口11在从波长转换元件10的端面12的中心沿横向较大地偏离、并沿纵向稍微偏离的位置处形成,但对基波入射口11形成的位置没有特别限定。
[0073] 另外,在本第一实施例中,转换波的输出面仅为波长转换元件10的其中之一端面,但也可以在端面12制作转换波的透过膜,以从两个端面输出转换波。
[0074] 此外,较为理想的是,波长转换元件10内基波初次聚光的聚光点的光束形状为椭圆形状。在本第一实施例中,利用聚光透镜2的透镜光学能力(lens power),使基波在波长转换元件10内初次聚光。此时,通过聚光透镜2,使基波的NA(数值孔径)在两个轴方向上实际上不同,并作为椭圆光束入射到波长转换元件10。特别是,初次的聚光点未进行转换,基波的功率较高,因此功率密度容易变得较高。为此,通过使波长转换元件10内基波初次聚光的聚光点的光束形状为椭圆形状,能够避免在初次的聚光点处的功率密度的集中。
[0075] (第二实施例)
[0076] 图4是表示本发明的第二实施例中的波长转换元件20的外观形状的概要图。图5(A)是表示本发明的第二实施例中的波长转换激光器的结构的概要俯视图,图5(B)是表示本发明的第二实施例中的波长转换激光器的结构的概要侧视图。另外,在第二实施例中,对于与第一实施例相同的结构标注相同的符号,并省略其说明。
[0077] 波长转换激光器101包括基波激光光源1、聚光透镜2、波长转换元件20以及树脂包层14。
[0078] 波长转换元件20采用具有极化反转周期结构的LiTa03晶体。波长转换元件20的形状是长度例如为10mm,宽度和厚度分别例如为0.8mm的杆型。波长转换元件20将基波转换为波长与基波不同的转换波。在波长转换元件20的长度方向的其中之一端面22上,形成有入射基波的基波入射口21。在杆型的波长转换元件20的长度方向的两个端面上,除了基波入射口21以外,形成有反射基波的基波反射膜。
[0079] 此外,未形成有基波入射口21的长度方向的另一端面23除了反射基波的基波反射膜以外还形成有透过转换波的转换波透过膜,构成转换波的输出面。此外,在端面22上形成有反射转换波的转换波反射膜,在波长转换元件20中,转换波的输出面仅为长度方向的端面23。
[0080] 基波入射口21形成在从端面22的中心起偏向横向的端部的位置处,直径的大小例如为90μm,形成针对基波的AR膜。具有基波入射口21的端面22呈沿图4的横向弯曲的凸型柱面形状。另一端面23呈凸型的球面形状。端面22的曲率半径例如为8mm,端面23的曲率半径例如为12mm。
[0081] 另外,在本第二实施例中,波长转换元件20的端面22、23相当于一对基波反射面的一个例子,树脂包层14相当于反射部的一个例子。
[0082] 从基波激光光源1射出的基波被聚光透镜2聚光容纳到基波入射口21内,并入射到波长转换元件20。入射的基波沿波长转换元件20的长度方向行进,并被进行波长转换。基波被由端面23反射,再次在波长转换元件20内行进。所得到的转换波从端面23射出。
端面22与端面23作为凹面镜对基波发挥作用,基波在端面22与端面23之间形成多个聚光点并往返。往返的基波在波长转换元件20内交叉,而在与交叉点不同处形成多个聚光点。
[0083] 此外,利用柱面在光束的直径方向形成不同的聚光点,且波长转换元件20的厚度方向的聚光点在端面22附近形成。此外,还通过聚光透镜2在与交叉点不同处形成聚光点。转换波从端面23成为多个光束射出,但能够作为汇聚在端面23的范围内的光束操作。此外,端面23作为凸透镜对转换波发挥作用,抑制转换波的扩张角。
[0084] 在本第二实施例中,波长转换元件20在长度方向的两侧具有基波反射面,至少其中之一基波反射面透过转换波,且基波在波长转换元件20内交叉,并在与交叉点不同处形成聚光点。据此,能够提高转换效率,并且能够将成为多个光束射出的转换波的光源面积汇聚为一处而使之减小,此外,能够减小波长转换元件20的必要面积。
[0085] 在本第二实施例中,较为理想的是,波长转换元件20的端面具有基波反射面,且波长转换元件20的端面为凸型形状。通过使波长转换元件20的端面具有凸型形状的基波反射面,能够使在波长转换元件20内往返的基波交叉,在波长转换元件20内形成基波的聚光点。在本第二实施例中,通过使波长转换元件20的端面作为针对基波的凹面镜,能够使基波交叉并聚光。
[0086] 波长转换激光器101的一对基波反射面中的其中之一为柱面,另一个为球面为宜。此时,较为理想的是,柱面的曲率的方向与基波入射口21相对于面中心而形成的方向一致。在第二实施例中,在相对于端面22的中心向横向偏离的位置处形成有基波入射口21,端面22为沿横向具有曲率的柱面。利用两个端面具有的横向的曲率,基波在波长转换元件20内多次通过,而且,基波在波长转换元件20内交叉。
[0087] 此外,通过只让波长转换元件20的两个端面中的其中之一端面为柱面,消除在与从端面22的曲率中心向基波入射口21形成的位置的方向垂直的方向上的光束衍射,能够防止基波在一对基波反射面间往返期间光束直径扩大。特别是,通过使球面的曲率半径大于波长转换元件长度,能够在柱面透镜没有透镜能力的方向上处于稳定共振条件(stableresonance condition),即使往返次数增加,也能保持光束直径恒定,从而提高转换效率。
[0088] 此外,通过将波长转换元件20的两个端面中的其中之一端面设计成柱面来代替球面,能够减少调整以及加工的轴,降低激光器的制造成本。特别是,较为理想的是,柱面与球面的曲率半径的总和为基波反射面间的距离的1.8至2.2倍。在此条件下,即使没有波长转换元件20的侧面的反射,基波能在基波反射面之间往返5次以上。当柱面与球面的曲率半径不满足上述条件时,有时基波在基波反射面之间往返在数次后便停止。
[0089] 图6是表示与图5(A)以及图5(B)所示的波长转换激光器101连接的多模光纤(Multimodeopticalfiber)210的结构的图。多模光纤210包括:采用直径例如为0.8mm的纯石英的纤芯211,和采用掺F石英的包层212。多模光纤210用于传播从波长转换激光器101取得的光。纤芯211传播来自波长转换激光器101的转换波。包层212包覆纤芯211,使转换波反射到纤芯211的内部。
[0090] 波长转换元件20与纤芯211直接连接,从波长转换元件20的端面23射出的转换波被传播到纤芯211。从波长转换元件20射出的转换波被包层212反射并由纤芯211传播。多模光纤210的与纤芯211的连接面形成有反射基波并透过转换波的涂层(coating)。
[0091] 波长转换元件20是厚度以及宽度分别例如为0.8mm的矩形形状,包括多个光束的转换波从端面23容纳在小的面积内并射出。波长转换元件20的端面的直径与光纤的纤芯直径大致相同。因此,虽然转换波由多个光束构成,但波长转换激光器101与多模光纤210能够直接连接。此外,端面23具有凸型形状,因此转换波被聚光,能够提高对多模光纤210的耦合效率(coupling efficiency)。
[0092] 在本第二实施例中,较为理想的是,反射基波并透过转换波的基波反射面形成在波长转换元件20的端面23,且波长转换元件20的端面23与多模光纤210连接。由于本第二实施例的波长转换激光器101输出多个转换波光束,因此有时其操作成为问题。但是,通过将多个转换波作为一个光束直接射出到多模光纤210,能够将转换波容易地传播到各处。此外,波长转换元件20的厚度以及宽度为1mm以下,因此,能够使多个转换波光束直接接合到具有可弯曲的纤芯直径的多模光纤210。
[0093] 较为理想的是,波长转换元件20的端面23反射基波并透过转换波,且具有凸型形状。通过采用这样的波长转换元件20的端面23,在本第二实施例的波长转换激光器101中,在波长转换元件20内,能够使基波往返并交叉,且在多个地方设置基波的聚光点。此外,波长转换元件20的端面23作为聚光输出的多个转换波光束的透镜发挥作用,能够提高对光纤等光学部件的耦合效率。特别是,在将波长转换激光器101与多模光纤210直接接合的情况下,通过使波长转换元件20的端面23为凸型形状,即使存在偏芯,也能提高耦合效率。
[0094] 在本第二实施例中,较为理想的是,在多模光纤210的端面实施有反射来自波长转换激光器101的基波并透过转换波的涂层。在将波长转换激光器101与多模光纤210直接接合的情况下,有时将转换波与从波长转换元件20的端面23泄漏的基波分离成为问题。对此,通过纤芯211的端面的涂层,分离来自波长转换激光器101的基波和转换波,并只传播转换波。此外,包层212起到遮断从波长转换激光器101泄漏的基波向外部输出的作用。
[0095] 另外,作为多模光纤210的纤芯211以及包层212,除了石英类型之外,也能采用柔软性高的有机树脂材料。此外,纤芯211的截面形状不仅为圆形,也可以为矩形形状。
[0096] (第三实施例)
[0097] 图7是表示本发明的第三实施例中的波长转换激光器102的结构的概要图。另外,在第三实施例中,对于与第一、二实施例相同的结构标注相同的符号,并省略其说明。
[0098] 波长转换激光器102包括随机偏振基波激光光源39、聚光透镜2、波长转换元件30以及树脂包层14。
[0099] 波长转换元件30采用具有极化反转周期结构的MgO:LiNbO3晶体(PPMgLN),包含结晶轴相互垂直的第一波长转换元件35和第二波长转换元件36。第一波长转换元件35与第二波长转换元件36接合。在图7中,位于左侧的第一波长转换元件35采用晶体的z轴为图7的向上方向的PPMgLN↑,位于右侧的第二波长转换元件36采用晶体的z轴为图7的纵深方向(depth direction)的PPMgLN←。第一波长转换元件35与第二波长转换元件36光学接触(optical contact)。
[0100] 波长转换元件30的形状是长度例如为16mm,直径例如为1mm的圆筒型。波长转换元件30将基波转换为波长与基波不同的转换波。在波长转换元件30的长度方向的其中之一端面32形成有基波入射的基波入射口31。在圆筒型的波长转换元件30的两个端面32、33,除了基波入射口31以外,形成有反射基波的基波反射膜。
[0101] 在端面33除了基波反射膜以外还形成有透过转换波的转换波透过膜,端面33为转换波的输出面。基波入射口31位于圆筒状的端面32的圆弧附近,直径的大小例如为100μm,且形成有针对基波的AR膜。具有基波入射口31的端面32呈平面形状。长度方向的另一个端面33呈凸型的球面形状。球面形状的端面33的曲率半径例如为10mm。
[0102] 另外,在本第三实施例中,波长转换元件30的端面32、33相当于一对基波反射面的一个例子,树脂包层14相当于反射部的一个例子。
[0103] 随机偏振基波激光光源39射出随机偏振的基波。从随机偏振基波激光光源39射出的基波被聚光透镜2聚光容纳到基波入射口31内,并入射到波长转换元件30。基波相对于波长转换元件30的圆筒的轴倾斜入射。入射的基波沿波长转换元件30的长度方向行进,对于与PPMgLN的z轴方向一致的偏振成分,在第一波长转换元件35与第二波长转换元件36分别进行波长转换。
[0104] 基波被球面形状的端面33反射后,被平面状端面32、端面33以及波长转换元件30的侧面反射,并沿长度方向在波长转换元件30间往返。通过基波在球面形状端面33和波长转换元件30的侧面反射,基波在波长转换元件30内交叉。球面形状端面33作为凹面镜对基波发挥作用,除了往返的基波交叉的交叉点之外,还形成多个聚光点。
[0105] 端面32与波长转换元件30的侧面也反射转换波。经波长转换后的转换波从端面33射出。基波的偏振方向通过波长转换元件30的圆筒侧面以及端面33的反射而变化。由于波长转换元件30采用结晶轴相互垂直的两个非线性材料(第一波长转换元件35以及第二波长转换元件36),因此,与偏振方向无关地进行波长转换。此外,即使基波在基波反射面间往返期间偏振方向发生变化,波长转换元件30也能进行波长转换。
[0106] 在本第三实施例中,较为理想的是,波长转换元件30采用具有结晶轴相互垂直的两个部位(第一波长转换元件35以及第二波长转换元件36)的结构。波长转换元件具有一对基波反射面,基波多次通过波长转换元件,在反复通过时,有时基波的偏振方向会发生变化。但是,在本第三实施例中,即使基波的偏振方向在往返于基波反射面间的期间发生变化,也能始终进行波长转换。
[0107] 特别是,在利用曲面上的反射的本第三实施例的结构中,由于有时偏振发生变化,所以是有效的。此外,在利用射出随机偏振的基波激光光源的情况下,结晶轴相互垂直的第一波长转换元件35以及第二波长转换元件36是提高转换效率的必需结构。
[0108] (第四实施例)
[0109] 图8是表示本发明的第四实施例中的波长转换激光器103的结构的概要俯视图。另外,在第四实施例中,对于与第一至三实施例相同的结构标注相同的符号,并省略其说明。
[0110] 波长转换激光器103包括基波激光光源1、聚光透镜2以及波长转换元件40。
[0111] 波长转换元件40采用具有极化反转周期结构的MgO:LiNbO3晶体。波长转换元件40的形状是长度例如为10mm,宽度和厚度分别例如为0.8mm的杆型。波长转换元件40包含极化反转周期不同的两种波长转换元件(第一波长转换元件45以及第二波长转换元件
46)。具有端面42的第一波长转换元件45的极化反转周期是产生2倍波(double wave)的2倍波产生周期,具有端面43的第二波长转换元件46的极化反转周期是产生3倍波(triple wave)的3倍波产生周期。第一波长转换元件45的极化反转周期被设计成达到产生基波的
2倍波的准相位匹配(quasi phase matching)条件。第二波长转换元件46的极化反转周期被设计成达到产生作为基波与2倍波的和频的3倍波的准相位匹配条件。
[0112] 波长转换元件40将基波转换为波长与基波不同的转换波(2倍波以及3倍波)。在波长转换元件40的长度方向的其中之一端面42形成有基波入射的基波入射口21。
[0113] 在杆型的波长转换元件40的长度方向的端面42形成有反射基波和2倍波的反射膜。端面43形成有反射基波的反射膜和透过2倍波与3倍波的透过膜。作为转换波的2倍波与3倍波从端面43输出。基波入射口21形成在从端面42的中心起沿横向偏离的位置处,直径的大小例如为90μm,形成有针对基波的AR膜。端面42以及端面43的形状与第二实施例的端面22以及端面23相同,基波与第二实施例相同地在波长转换元件40内往返。并且,波长转换元件40在内部使基波交叉,在与基波的交叉点不同的地方形成多个聚光点。
[0114] 波长转换激光器103是输出2倍波和3倍波的波长转换激光器。从基波入射口21入射的基波沿波长转换元件40的长度方向行进。在第一波长转换元件45内行进的基波转换为2倍波。通过第一波长转换元件45得到的2倍波与基波一并在第一波长转换元件45内行进,并入射到第二波长转换元件46。入射到第二波长转换元件46的基波和2倍波被转换为3倍波。所得到的2倍波和3倍波从端面43输出。基波由球面形状的端面43反射,再次在波长转换元件40内行进。
[0115] 端面42与端面43作为凹面镜对基波发挥作用,基波在端面42与端面43之间形成多个聚光点并往返。往返的基波在波长转换元件40内交叉,在与交叉点不同处还形成多个聚光点。基波在第一波长转换元件45内行进时产生2倍波,基波与产生的2倍波一并在第二波长转换元件46内行进时产生3倍波。基波多次通过波长转换元件40,反复产生2倍波和3倍波。
[0116] 另外,在本第四实施例中,波长转换元件40的端面42、43相当于一对基波反射面的一个例子。此外,在本第四实施例中,波长转换元件40的侧面也可以用树脂包层包覆。
[0117] 在本第四实施例中,较为理想的是,在基波在一对基波反射面之间往返的期间,利用相位匹配周期不同的多个波长转换元件产生高次转换波(higher-order converted waves)。以往,向高次转换波(3~5倍波等)的波长转换效率非常低,需要复杂的结构。与此相对,在本第四实施例中,波长转换元件40在使基波以及转换波多次通过,并利用准相位匹配周期产生高次转换波,由此,能够产生效率良好的高次转换波。特别是,在本第四实施例中,波长转换元件40通过使多个聚光点分散,使产生高次转换波的场所分散,能够降低由高次转换波带来的光吸收造成的转换效率劣化以及对波长转换元件40的损伤。
[0118] 在本第四实施例中,球面形状的端面43透过2倍波和3倍波,但也可以采用形成反射2倍波的反射膜、仅透过3倍波的结构。波长转换元件40通过使2倍波在一对反射面间反复往返,能够增大2倍波的功率,进一步提高向3倍波的转换效率。
[0119] (第五实施例)
[0120] 图9是表示本发明的第五实施例中的波长转换激光器104的结构的概要俯视图。另外,在第五实施例中,对于与第一至四实施例相同的结构标注相同的符号,并省略其说明。
[0121] 波长转换激光器104包括基波激光光源1、波长转换元件50、凹面镜53以及准直透镜(Collimating lens)54。
[0122] 波长转换元件50采用具有极化反转周期结构的MgO:LiNbO3晶体。波长转换元件50的形状是长度例如为10mm、宽度例如为2mm、厚度例如为1mm的长方体形状。波长转换元件50的其中之一端面52形成有反射基波和转换波的反射膜,波长转换元件50的长度方向的另一端面51形成有透过基波和转换波的透过膜。凹面镜53是曲率半径为10mm的球面镜,且形成有反射基波的反射膜和透过转换波的透过膜。凹面镜53为输出转换波的输出镜。端面52与凹面镜53构成位于波长转换元件50的长度方向的一对基波反射面。
[0123] 从基波激光光源1射出的基波由准直透镜54准直后,被凹面镜53反射,入射到波长转换元件50。入射到波长转换元件50的基波被端面52、波长转换元件50的侧面以及凹面镜53反射,多次通过波长转换元件50。通过波长转换元件50的基波被转换为转换波,所得到的转换波从凹面镜53输出。凹面镜53利用曲率使往返于反射面的基波聚光,形成聚光点。此外,基波通过在波长转换元件50的宽度方向的侧面反射,在波长转换元件50内交叉。
[0124] 另外,在本第五实施例中,波长转换元件50的端面52以及凹面镜53相当于一对基波反射面的一个例子。此外,在本第五实施例中,波长转换元件50的侧面也可以用树脂包层包覆。
[0125] 在本第五实施例中,利用凹面镜53的反射和波长转换元件50的侧面的反射,基波在波长转换元件50内交叉,并在与交叉点不同处形成多个聚光点。因此,能够使基波以及转换波的功率密度高的地方分散,能够取得高转换效率,并且将多个光束射出的地方汇聚为一处而使之减小。
[0126] 在波长转换元件50中,在无曲率的反射面、即端面52附近形成多个聚光点。端面52的反射基波以及转换波的反射膜从波长转换元件50侧起采用MgF2和TiO2的9层层积介质膜(laminated dielectric film),并在层积介质膜的上面蒸厚度200nm的Al金属膜而形成。
[0127] 在本第五实施例中,较为理想的是,一对基波反射面中的至少其中之一具有反射基波以及转换波的反射膜,多个聚光点在反射膜的附近形成,反射膜包含100nm以上厚度的金属膜。波长转换元件50在端面52的附近形成多个聚光点,端面52具有反射基波以及转换波的包含100nm以上厚度的金属膜的反射膜。在聚光点处产生较强的光吸收,波长转换元件50中局部发热。在聚光点附近形成的金属膜作为热的传递路径发挥作用,降低局部的波长转换元件50的温度上升。波长转换元件50的温度上升有时会带来元件的破坏以及转换效率的降低,但利用包含金属膜的反射膜能够避免这种情况。
[0128] 为了作为热的传递路径发挥作用,金属膜的厚度必须为100nm以上。此外,较为理想的是,金属膜与采用金属的散热片(heat sink)直接连接。通过与散热片直接连接,能够确保热的传递路径。
[0129] (第六实施例)
[0130] 图10(A)是表示本发明的第六实施例中的波长转换激光器105的结构的概要俯视图,图10(B)是表示本发明的第六实施例中的波长转换激光器105的结构的概要侧视图。另外,在第六实施例中,对于与第一至五实施例相同的结构标注相同的符号,并省略其说明。
[0131] 波长转换激光器105包括基波激光光源1、聚光透镜2、波长转换元件60、柱面镜(cylindrical mirror)62以及凹面镜63。
[0132] 波长转换元件60采用具有极化反转周期结构的MgO:LiNbO3晶体。波长转换元件60的形状是长度例如为25mm、宽度例如为4mm、厚度例如为1mm的长方体形状。波长转换元件60的长度方向的两个端面形成有针对基波与转换波的AR膜。
[0133] 波长转换元件60将基波转换为波长与基波不同的转换波。在波长转换元件60的长度方向的其中之一端面上,形成有入射基波的基波入射口61。
[0134] 在波长转换元件60的长度方向的基波激光光源1侧的端面附近,设置有根据波长转换元件60的基波入射口61的位置而切去了一部分的柱面镜62。柱面镜62具有反射基波和转换波的反射膜。柱面镜62沿波长转换元件60的宽度方向具有曲率,曲率半径例如为20mm。柱面镜62的成为基波入射光路的部分被切去,以便使基波入射到形成在波长转换元件60的宽度方向的端部的基波入射口61。
[0135] 在波长转换元件60的长度方向的另一端面附近,设置有球面的凹面镜63。凹面镜63的曲率半径例如为22mm,具有反射基波的反射膜和透过转换波的透过膜。凹面镜63为输出转换波的输出镜。由柱面镜62和凹面镜63构成一对基波反射面。基波反射面间的距离的空气换算长度约为21mm。
[0136] 从基波激光光源1射出的基波由聚光透镜2聚光,从基波入射口61入射到波长转换元件60。入射到波长转换元件60的基波在波长转换元件60内聚光后,被凹面镜63反射,再次入射到波长转换元件60。通过波长转换元件60的基波由柱面镜62反射,再次入射到波长转换元件60。基波在柱面镜62与凹面镜63之间多次往返,在通过波长转换元件60时转换为转换波。转换波从凹面镜63输出。
[0137] 利用凹面镜63以及柱面镜62的折射,基波在波长转换元件60内交叉。利用聚光透镜2、凹面镜63以及柱面镜62形成多个聚光点。利用柱面镜62,沿光束的直径方向形成不同的聚光点。此时,波长转换元件60的厚度方向的光束直径达到稳定谐振条件,即使反复往返,也为一定的光束直径。利用聚光透镜2、凹面镜63以及柱面镜62,在与基波的交叉点不同处形成多个聚光点。
[0138] 另外,在本第六实施例中,柱面镜62以及凹面镜63相当于一对基波反射面的一个例子。此外,在本第六实施例中,波长转换元件60的侧面也可以用树脂包层包覆。
[0139] 在本第六实施例中,基波多次通过波长转换元件60,基波在波长转换元件60内交叉,在与交叉点不同的地方形成多个聚光点。因此,能够使基波以及转换波的功率密度高的地方分散,能够取得高的转换效率,并且将多个光束射出的地方汇聚为一处而使之减小。
[0140] 此外,在本第六实施例中,较为理想的是,一对基波反射面中的其中之一为柱面,另一个为球面。通过其中之一基波反射面采用柱面,能够使基波反射面的两个面具有聚光力,并且能在光束的直径方向形成不同的聚光点。通过在光束的直径方向形成不同的聚光点,能够使基波与转换波的功率密度高的点分散。此外,通过利用柱面,关于光束直径的一方向处于稳定谐振条件,即使基波往返,也能够防止光束直径由于衍射而扩大。据此,抑制光束直径的扩大,能够抑制往返次数增加时的转换效率的降低。
[0141] (第七实施例)
[0142] 图11(A)是表示本发明的第七实施例中的波长转换激光器106的结构的概要俯视图,图11(B)是表示本发明的第七实施例中的波长转换激光器106的结构的概要侧视图。另外,在第七实施例中,对于与第一至六实施例相同的结构标注相同的符号,并省略其说明。
[0143] 波长转换激光器106包括基波激光光源1、聚光透镜2、波长转换元件60、柱面镜62以及凹面镜73。
[0144] 波长转换激光器106除了凹面镜73以外,采用与第六实施例的波长转换激光器105相同的结构要素。凹面镜73包括仅在镜片中央的直径1mm的范围内形成、且具有反射基波并透过转换波的膜的转换波透过部(透过区域)74,和形成在转换波透过部74的外周部、且具有一并反射基波和转换波的膜的转换波反射部(反射区域)75。基波在波长转换元件60内通过而产生的转换波仅从转换波透过部74输出到外部。
[0145] 另外,在本第七实施例中,柱面镜62以及凹面镜73相当于一对基波反射面的一个例子。此外,在本第七实施例中,波长转换元件60的侧面也可以用树脂包层包覆。
[0146] 在本第七实施例中,较为理想的是,基波反射面的透过转换波的部位仅是基波反射面的部分区域,在其他区域反射基波以及转换波。在本第七实施例中,在基波反射面反射转换波的情况下,基波反射面使转换波的光路倾斜,转换波每当反射时改变光路。通过使透过转换波的透过部分仅为基波反射面的部分区域,仅在到达透过转换波的部位时才会输出。由于转换波仅从透过区域射出,因此多个转换波光束从透过区域限定的区域射出。通过限定转换波的射出区域,使转换波的射出区域面积非常小,能够将多个转换波光束作为较细的一束光束来操作。
[0147] (第八实施例)
[0148] 图12(A)是表示本发明的第八实施例中的波长转换激光器107的结构的概要俯视图,图12(B)是表示本发明的第八实施例中的波长转换激光器107的结构的概要侧视图。另外,在第八实施例中,对于与第一至七实施例相同的结构标注相同的符号,并省略其说明。
[0149] 波长转换激光器107包括基波激光光源1、聚光透镜2以及波长转换元件80。
[0150] 波长转换元件80采用具有极化反转周期结构的MgO:LiTaO3晶体。波长转换元件80的形状为:转换波射出的相反侧的端面83的面积小于基波入射的端面82的面积,且侧面的截面形状采用梯形形状的柱状。波长转换元件80的长度例如为10mm,端面82是宽度例如为4mm、厚度例如为2mm的矩形形状,端面83是宽度例如为1mm、厚度例如为0.75mm的矩形形状。
[0151] 端面82是凸型球面,曲率半径例如为24mm,除了基波入射口81以外,形成有反射基波和转换波的反射膜。端面83是平面,形成有反射基波的反射膜和透过转换波的透过膜。波长转换元件80的侧面全反射基波以及转换波。基波入射口81形成有透过基波的透过膜,直径的大小例如为200μm,形成在从端面82的中央起沿宽度方向偏离例如1.2mm的位置处。球面形状的端面82和平面形状的端面83为波长转换元件80的长度方向的一对基波反射面。转换波从端面83以多个光束重叠的状态射出。
[0152] 从基波激光光源1射出的基波被聚光透镜2聚光容纳到基波入射口81内,并入射到波长转换元件80。入射的基波沿波长转换元件80的长度方向行进,通过在波长转换元件80的侧面、端面83以及端面82反射,在端面82与端面83之间往返。往返的基波在多处交叉。此外,往返的基波利用聚光透镜2和球面形状的端面82的聚光力,形成多个聚光点。
[0153] 此时,波长转换元件80在与基波的交叉点不同处形成多个聚光点。波长转换元件80由在内部行进的基波产生转换波。多个转换波光束从平面形状的端面83重叠输出。输出一侧的端面83的面积小于另一个端面82,因此许多转换波在波长转换元件80的侧面反射后从端面83射出。这样,重叠输出的转换波在强度分布平均化后输出。
[0154] 另外,在本第八实施例中,波长转换元件80的端面82、83相当于一对基波反射面的一个例子。此外,在本第八实施例中,波长转换元件80的侧面也可以用树脂包层包覆。
[0155] 在本第八实施例中,较为理想的是,在波长转换元件80的其中之一端面83形成有反射基波并透过转换波的膜,且该端面83的面积小于另一个端面82。由于射出转换波的端面83的面积小于入射基波的端面82,所以多个转换波在射出时重叠输出。输出的转换波光束通过重叠其强度分布平均化。由于输出的光束的强度分布已被平均化,所以波长转换激光器107在加工和照明等领域中能够直接使用。此外,由于转换波的射出面积小,因此能够实现用于转换波的光学部件的小型化。
[0156] 图13是表示采用图12(A)以及图12(B)所示的波长转换激光器107的图像显示装置200的结构的概要图。图像显示装置200包括波长转换激光器107、投影光学系统85、空间调制元件86、投射光学系统87以及显示面88。
[0157] 从波长转换激光器107的端面83输出的转换波为矩形形状,具有平均化的强度分布。投影光学系统85将从端面83射出的转换波放大投影到空间调制元件86。空间调制元件86具有与端面83相似的形状,是横纵比为4∶3的矩形形状。空间调制元件86例如采用透过型液晶和偏振片,调制各种颜色的激光,射出二维调制的激光。投射光学系统87将空间调制元件86调制的激光投射到显示面88。
[0158] 在本第八实施例中,较为理想的是,波长转换激光器107的波长转换元件80的两个端面中透过转换波的端面83的图像被投影到调制转换波的空间调制元件86。本第八实施例根据波长转换激光器107的波长转换元件80的端面83的形状,对由多个光束构成的转换波进行整形,此外,通过重叠多个转换波能够使强度分布平均化。充分利用这样的波长转换激光器107的特征,将波长转换元件80的端面83的图像投影到空间调制元件86,由此能够有效率地使用转换波。由于不需要用于光束整形的光学部件,所以能够抑制光束整形造成的损失,减少必需的光学部件数目。另外,在投影光学系统85中,除了透镜之外,还可以设置调整强度分布的漫散板等。
[0159] 较为理想的是,图像显示装置200具有波长转换激光器和调制从波长转换激光器射出的转换波的调制元件。波长转换激光器射出多个波长转换光,并从小面积的端面在一定角度内射出,因此能够将转换波有效率地引导至调制元件。因此,能够实现光利用效率高的图像显示装置。通过提高光利用效率,能够降低图像显示装置200整体的耗电量。特别是,对于光源的耗电量占大部分的进行对角30英寸以上的显示的图像显示装置有效。另外,调制元件,除了透过型或反射型的液晶元件等空间光调制元件之外,还包含扫描光并调制光束的显示场所的诸如扫描镜那样的元件。
[0160] 作为图像显示装置200的应用例子,可以举出投影仪、液晶显示器以及平视显示器(Head-Up Display)等。
[0161] 此外,图像显示装置200使用第八实施例中的波长转换激光器107,但本发明并不特别限定于此,也可以代替波长转换激光器107,使用第一至七实施例所示的波长转换激光器100至106以及后述的第九、十实施例所示的波长转换激光器108、109。
[0162] (第九实施例)
[0163] 图14是表示本发明的第九实施例中的波长转换激光器108的结构的概要图。另外,在第九实施例中,对于与第一至八实施例相同的结构标注相同的符号,并省略其说明。
[0164] 波长转换激光器108包括基波激光光源1、聚光透镜2、波长转换元件10、树脂包层14以及振动机构91。
[0165] 波长转换激光器108采用在第一实施例说明的波长转换激光器100安装使波长转换元件10在激光射出过程中运动的振动机构91的结构。振动机构91以与基波向基波入射口11的入射方向相交的旋转轴R1为中心,使波长转换元件10沿横向Y1旋转振动。振动机构91安装在树脂包层14。振动机构91例如采用电磁线圈,使射出转换波的端面13以振幅0.2mm以及频率200Hz往复运动。
[0166] 波长转换元件10由在内部行进的基波产生转换波,而基波反射面间的单程的光路中产生的转换波的量基于光束强度和距相位匹配条件的偏差来决定。通过使波长转换元件10轻微运动,基波的各个光路的角度随时间变化,距相位匹配条件的偏差量发生变化。从各个光路产生的转换波的多个光束从射出端面13重叠输出。
[0167] 由于在各个光路产生的转换波的量发生变化,所以射出的转换波的强度分布随时间发生变化。通过使射出的转换波的强度分布随时间发生变化,射出的转换波的干涉条件也随时间发生变化。这意味着干涉图案随时间变化,通过时间积分使干涉噪声平均化,从而能够降低干涉噪声。特别是,能够降低在显示器以及照明领域中成为问题的斑点噪声。此外,转换波的强度分布虽然发生变化,但是因为由各个光路补偿转换效率,所以转换波的总输出不会大幅度变化。
[0168] 在本第九实施例中,较为理想的是,在转换波的射出过程中使波长转换元件10振动。通过在转换波的射出过程中使波长转换元件10轻微振动,能够降低输出的转换波的干涉噪声。在本第九实施例中,重叠输出包括多个光束的转换波,但通过使该转换波的强度分布随时间变化,能够降低干涉噪声。在本第九实施例中,由于补偿各个基波光路的转换效率的降低,所以转换波的强度分布虽然发生变化,但总输出不会大幅变化。
[0169] (第十实施例)
[0170] 图15是表示本发明的第十实施例中的波长转换元件110的外观形状的概要图。图16(A)是表示本发明的第十实施例中的波长转换激光器109的结构的概要俯视图,图16(B)是表示本发明的第十实施例中的波长转换激光器109的结构的概要侧视图。另外,在第十实施例中,对于与第一至九实施例相同的结构标注相同的符号,并省略其说明。
[0171] 波长转换激光器109包括基波激光光源1、波长转换元件110、树脂包层114、金属固定器115以及聚光透镜117。波长转换元件110将基波转换为波长与基波不同的转换波。在波长转换元件110的长度方向的其中之一端面112形成有入射基波的基波入射口111。
[0172] 波长转换元件110采用具有极化反转周期结构的MgO:LiNbO3晶体。波长转换元件110的形状是长度例如为10mm、宽度例如为5mm、厚度例如为20μm的平板形状。波长转换元件110的厚度方向被树脂包层114覆盖,波长转换元件110作为多模的厚板型光波导(slab optical waveguide)发挥作用。在波长转换元件110的长度方向的两个端面的除了基波入射口111以外的部分,形成有反射基波的反射膜。
[0173] 此外,未形成有基波入射口111的端面113除了反射基波的反射膜以外还形成有透过转换波的透过膜,构成转换波的输出面。此外,在基波入射的端面112形成有反射转换波的反射膜,在波长转换激光器109中,输出面仅为端面13。基波入射口111形成在从平面形状的端面112的中心起沿横向偏离的位置处。基波入射口111的大小例如为100μm×20μm。在基波入射口111形成有针对基波的AR膜。
[0174] 具有基波入射口111的端面112呈平面形状。另一端面113呈沿图15的横向弯曲的凸型柱面形状。端面113的曲率半径例如为200mm。波长转换元件110介由树脂包层114固定在金属固定器115上,通过金属固定器115进行散热。聚光透镜117进行聚光以使基波进入基波入射口111。
[0175] 波长转换元件110作为厚板型的光波导对基波进行波导,通过使其在端面112和端面113反射,使其反复往返并使光路发生变化,形成基波的聚光点并使基波交叉。在波长转换元件110内由基波转换的转换波从端面113射出。
[0176] 另外,在本第十实施例中,波长转换元件110的端面112、113相当于一对基波反射面的一个例子。
[0177] 较为理想的是,波长转换激光器109的波长转换元件110为在侧面使基波以及转换波全反射的厚板型光波导。即,在本第十实施例中,较为理想的是,波长转换元件110为具有指定厚度的平板形状,树脂包层114形成在平板形状的波长转换元件110的相互对置的两个最大面积面上。通过使波长转换元件110为厚板型光波导,抑制厚度方向的基波的光束扩大,即使基波在波长转换元件110内反复反射,也能维持高的光强度。
[0178] 据此,在基波的所有光路中均能提高波长转换效率。尤其理想的是,在本第十实施例中,波长转换元件110具有多模的厚板型光波导的功能。在本第十实施例中,入射到波长转换元件110的许多基波在反复反射期间被转换,因此提高波长转换元件110的光束耦合效率是很重要的。因此,波长转换元件110具有易于提高光束耦合效率的多模的光导波的功能为佳。此外,通过具有多模的光波导的功能,根据基于模式(mode)的相位匹配条件的不同,能够扩大波长转换元件110的温度允许幅度。
[0179] 波长转换元件110与金属固定器115之间的树脂包层114的厚度例如为5μm。较为理想的是,金属固定器115与波长转换元件110之间形成的树脂包层114为10μm以下。通过使树脂包层114变薄,减少热阻,能够将从波长转换元件110产生的热利用金属固定器115散热。特别是,在使用高功率的基波以及转换波时,能够更有效地释放波长转换元件
110的热。在波长转换元件110的温度允许幅度较宽的情况下,无须特别使用珀耳帖元件等进行温度控制,只要有金属固定器115的散热机构便可。
[0180] 另外,本发明不限定于上述第一至十实施例,在不脱离本发明主旨的范围内能进行适当变更。当然,也能组合本发明的第一至十的各个实施例使用。
[0181] 另外,在本发明的第一至十实施例中,波长转换元件内形成的基波的多个聚光点中的一部分也可以与基波的交叉点具有重合。只要大部分的基波的多个聚光点与基波的交叉点不一致便可。
[0182] 另外,上述的具体实施例中主要包含具有以下结构的发明。
[0183] 本发明所涉及的波长转换激光器包括:射出基波的光源;以及将从上述光源射出的上述基波转换为波长与上述基波不同的转换波的波长转换元件,其中,位于上述波长转换元件的光轴方向的两端侧、通过反射上述基波使上述基波在上述波长转换元件内多次通过的一对基波反射面中的至少其中之一的基波反射面,让上述转换波透过,上述一对基波反射面,使上述基波在上述波长转换元件内交叉,并在与上述基波的交叉点不同处形成多个聚光点。
[0184] 根据此结构,通过一对基波反射面,基波在波长转换元件内多次通过,基波在波长转换元件内交叉,在与基波的交叉点不同处形成多个聚光点。
[0185] 因此,基波在波长转换元件内多次通过,并且在与基波的交叉点不同处形成多个聚光点,因此能够稳定地得到高转换效率,能够减小成为多个光束并射出的转换波的光源面积,其结果能够使装置整体小型化。
[0186] 此外,较为理想的是,在上述波长转换激光器中,上述波长转换元件的侧面,将上述基波反射到上述波长转换元件的内部。
[0187] 根据此结构,通过波长转换元件的侧面将基波反射到波长转换元件的内部,因此能够将基波在波长转换元件内通过的面积持续保持在一定范围内。此外,能够使通过波长转换元件的基波的强度分布平均化,分散基波的功率密度较高处。
[0188] 此外,较为理想的是,在上述波长转换激光器中,还包括用折射率低于上述波长转换元件的材料形成、包覆上述波长转换元件的侧面的反射部。
[0189] 根据此结构,由折射率低于波长转换元件的材料形成的反射部包覆波长转换元件的侧面,因此能够在波长转换元件的侧面使基波以及转换波全反射,使基波以及转换波折回波长转换元件内。
[0190] 此外,较为理想的是,在上述波长转换激光器中,还包括经由上述反射部调整上述波长转换元件的温度的温度调整设备。
[0191] 根据此结构,经由反射部调整波长转换元件的温度,因此能够消除温度调整设备对基波以及转换波的吸收,进行精确的温度控制。
[0192] 此外,较为理想的是,在上述波长转换激光器中,上述波长转换元件的与光轴相交的截面的形状为矩形形状,上述基波的偏振方向与上述截面的其中之一边平行。
[0193] 根据此结构,相对于偏振方向,反射基波的波长转换元件的侧面是平行或垂直的,因此消除了反射造成的偏振方向的变化,能够进行效率较好的波长转换。
[0194] 此外,较为理想的是,在上述波长转换激光器中,上述一对基波反射面,被形成在上述波长转换元件的光轴方向的两端面,上述波长转换元件的两个端面中的至少其中之一为凸型形状。
[0195] 根据此结构,波长转换元件的凸型形状的端面对于反射的基波作为凹面镜起作用,能够在波长转换元件内形成聚光点。此外,反射基波并透过转换波的波长转换元件的凸型形状的端面对转换波作为凸透镜发挥作用,能够抑制射出的转换波的扩张角。
[0196] 此外,较为理想的是,在上述波长转换激光器中,上述波长转换元件的两个端面中的至少其中之一为凸型柱面形状。
[0197] 根据此结构,使得在波长转换元件内形成的聚光点沿光束直径方向不同,能够避免基波的功率密度的集中。
[0198] 此外,较为理想的是,在上述波长转换激光器中,上述一对基波反射面中的其中之一基波反射面包含柱面,另一基波反射面包含球面。
[0199] 根据此结构,通过使波长转换元件的两个端面中的其中之一采用柱面,能够消除光束的衍射,防止基波在一对基波反射面间往返期间光束直径扩大。
[0200] 此外,较为理想的是,在上述波长转换激光器中,上述一对基波反射面,被形成在上述波长转换元件的光轴方向的两端面,在上述波长转换元件的两端面中,反射上述基波并透过上述转换波的那个端面的面积小于另一端面的面积。
[0201] 根据此结构,波长转换元件的两个端面中,反射基波并透过转换波的其中之一端面的面积小于另一个端面,因此多个转换波重叠输出,能使强度分布平均化。
[0202] 此外,较为理想的是,在上述波长转换激光器中,上述波长转换元件的厚度及宽度为1mm以下。
[0203] 根据此结构,通过使波长转换元件的厚度以及宽度为1mm以下,使转换波的光源面积为1mm×1mm的范围内,能够将转换波汇聚在非常小的范围。
[0204] 此外,较为理想的是,在上述波长转换激光器中,上述波长转换元件呈指定厚度的平板形状,上述反射部,被形成在平板形状的上述波长转换元件的彼此相对的两个最大面积的面上。
[0205] 根据此结构,抑制厚度方向的基波的光束扩大,即使基波在波长转换元件内反复反射,也能维持高的光强度。
[0206] 此外,较为理想的是,在上述波长转换激光器中,上述一对基波反射面被形成在上述波长转换元件的光轴方向的两端面,上述波长转换元件的两端面中的其中之一端面反射基波并透过转换波,并与传播上述转换波的多模光纤连接。
[0207] 根据此结构,虽然从波长转换元件射出多个转换波,但通过使多个转换波作为一个光束直接入射到多模光纤,能够将转换波容易地传播到各处。
[0208] 此外,较为理想的是,在上述波长转换激光器中,上述多模光纤的与上述波长转换元件连接的端面,反射基波并透过转换波。
[0209] 根据此结构,能够将从波长转换元件的端面泄漏的基波与转换波分离,能够仅传播转换波。
[0210] 此外,较为理想的是,在上述波长转换激光器中,透过上述转换波的基波反射面包含透过上述转换波的透过区域和一并反射上述基波及上述转换波的反射区域。
[0211] 根据此结构,转换波仅从透过区域射出,因此多个转换波光束从透过区域限定的区域射出。通过限定转换波的射出区域,使转换波的射出区域面积非常小,能够将多个转换波光束作为较细的一个光束来操作。
[0212] 此外,较为理想的是,在上述波长转换激光器中,还包括在上述转换波的射出过程中使上述波长转换元件振动的振动机构。
[0213] 根据此结构,在转换波的射出过程中使波长转换元件振动,因此能够降低输出的转换波的干涉噪声。
[0214] 此外,较为理想的是,在上述波长转换激光器中,上述波长转换元件的两端面中透过上述转换波的端面的图像,被投影到调制上述转换波的调制元件。
[0215] 根据此结构,根据波长转换元件的端面的形状整形多个转换波,通过重叠多个转换波能够使强度分布平均化。此外,由于不需要用于光束整形的光学部件,所以能够抑制光束整形造成的损失,减少必需的光学部件数目。
[0216] 此外,较为理想的是,在上述波长转换激光器中,上述一对基波反射面中的至少其中之一具有反射上述基波以及上述转换波的反射膜,上述多个聚光点被形成在上述反射膜的附近,上述反射膜包含100nm以上厚度的金属膜。
[0217] 根据此结构,100nm以上厚度的金属膜作为热的传递路径发挥作用,能够降低基波聚光造成的局部性的波长转换元件的温度上升。
[0218] 本发明所涉及的图像显示装置包括上述任一个所述的波长转换激光器,和调制从上述波长转换激光器射出的转换波的调制元件。
[0219] 在该图像显示装置中,基波在波长转换元件内多次通过,并且在与基波的交叉点不同处形成多个聚光点,因此能够稳定地得到高转换效率,能够减小成为多个光束并射出的转换波的光源面积,其结果能够使装置整体小型化。
[0220] 另外,在发明的详细说明部分中说明的具体实施方式或实施例始终用于明确本发明的技术内容,不应仅限定于这样的具体例子进行狭义的解释,在本发明的精神和权利要求的范围内,能够实施各种变更。
[0221] 产业上的可利用性
[0222] 本发明涉及的波长转换激光器以及图像显示装置能够稳定地得到高转换效率,并且能够实现小型化,作为进行基波的波长转换、并输出波长与基波不同的转换波的波长转换激光器以及具备波长转换激光器的图像显示装置而有用。
QQ群二维码
意见反馈