각막을 특성화하고 안과용 렌즈를 획득하기 위한 시스템

申请号 KR1020157005682 申请日 2010-03-04 公开(公告)号 KR1020150038595A 公开(公告)日 2015-04-08
申请人 퍼펙트 아이피, 엘엘씨; 发明人 빌레요셉에프;
摘要 눈의각막의형상을결정하기위한시스템으로서, 조사된각막부분으로부터형광성빛을생성할수 있는파장의적외선광으로눈의전방표면, 후방표면및 내부영역중 하나이상이조사된다. 발생된형광성빛이탐지된다. 조사단계는눈의광학적축선에대해서실질적으로수직인복수의여러평면들에서적외선광을포커싱하는단계를포함한다. 탐지된광으로부터, 각막의내부표면의적어도일부, 후방표면의적어도일부, 및/또는내부영역의일부의맵을생성할수 있다. 망막의색소상피세포내의단백질로부터형광을생성함으로써, 시야의선명도가결정될수 있다.
权利要求
  • 환자의 시야 선명도를 결정하고 교정 렌즈를 위한 처방을 유도하는 방법으로서,
    a)비선형 광학 프로세스에 의해 망막의 색소 상피 세포(pigment epithelial cells) 내의 단백질로부터 형광성 빛을 생성하는 파장의 스캐닝 적외선 광을 이용하여 환자의 눈을 조사함으로써 환자의 눈의 망막 이미지를 형성하는 단계로서, 상기 스캐닝 적외선 광은 방출된 형광성 빛으로부터 망막 이미지를 형성하도록 망막 상에 포커싱되는 복수 개의 비임을 포함하는 것인 형성 단계;
    b)상기 망막 이미지의 선명도를 탐지하는 탐지 단계;
    c)상기 스캐닝 적외선 광의 비임 중 적어도 일부의 경로 길이를 조절하여 망막 이미지의 선명도를 조절하는 단계로서, 그러한 경로 길이 조절은 망막 상에 광을 포커싱할 때에 교정 렌즈의 효과를 분석하기 위하여 광학 교정의 효과를 시뮬레이팅하는 것인 조절 단계; 및
    d)상기 경로 길이 조절을 기초로 하여 교정 렌즈를 위한 처방을 유도하는 단계
    를 포함하는 방법.
  • 제1항에 있어서, 상기 스캐닝 적외선 광의 파장은 약 750 내지 약 800 nm인 것인 방법.
  • 제2항에 있어서, 상기 스캐닝 적외선 광은 약 780 nm의 파장을 갖는 것인 방법.
  • 제1항에 있어서, 상기 눈은 IOL을 포함하고, 방법은 망막 상에 광을 포커싱할 때에 IOL의 효과를 분석하는 것인 방법.
  • 제1항에 있어서, 상기 형성 단계는 망막의 광수용체를 조사하고 이 광수용체로부터 형광성 빛을 생성하는 것을 포함하는 것인 방법.
  • 제1항에 있어서, 상기 조절 단계는 페이즈 플레이트 보상장치(phase plate compensator)를 이용하여 경로 길이를 조절하는 것을 포함하는 것인 방법.
  • 제1항에 있어서, 상기 조절 단계는 능동 거울을 이용하여 경로 길이를 조절하는 것을 포함하는 것인 방법.
  • 제1항에 있어서, 상기 탐지 단계는 망막 이미지를 형성하는 방출된 형광성 빛의 세기를 탐지하는 것을 포함하고, 상기 조절 단계는 망막 이미지를 형성하는 방출된 형광성 빛의 세기를 증가시키도록 스캐닝 적외선 광의 비임 중 적어도 일부의 경로 길이를 조절하는 것을 포함하는 것인 방법.
  • 제10항에 있어서, 상기 스캐닝 적외선 광은 약 50 내지 100 펨토초(femtosecond)의 기간과 적어도 0.2 nJ의 에너지 레벨을 갖는 펄스로 조사되는 것인 방법.
  • 제9항에 있어서, 상기 스캐닝 적외선 광은 50 MHz에서 발생되는 펄스로 방출되는 것인 방법.
  • 제1항에 있어서, 상기 스캐닝 적외선 광은 일련의 펨토초 레이저 펄스를 포함하는 것인 방법.
  • 제1항에 있어서, 상기 방출된 형광성 빛은 약 530 nm 내지 약 550 nm의 파장을 갖는 것인 방법.
  • 제1항에 있어서, 상기 비선형 광학 프로세스는 2 광자 여기 형광 이미지(two photon excited fluorescence imaging; TPEFi) 프로세스를 포함하는 것인 방법.
  • 제1항에 있어서, 상기 교정 렌즈는 IOL, 각막 렌즈, 또는 콘택트 렌즈인 것인 방법.
  • 제1항에 있어서, 상기 교정 렌즈는 신체내(in situ) 렌즈인 것인 방법.
  • 제15항에 있어서, 상기 신체내 렌즈는 각막 렌즈, IOL 또는 자연 수정체 렌즈인 것인 방법.
  • 제1항에 있어서, 상기 조절 단계는 스캐닝 적외선 광의 비임의 적어도 일부를 미리 보정함으로써 굴절 교정의 효과를 시뮬레이팅하도록 어댑티브-옵틱스 모듈(adaptive-optics module)을 이용하는 것을 더 포함하는 것인 방법.
  • 제17항에 있어서, 상기 조절 단계는 상기 어댑티브-옵틱스 모듈의 능동 거울에 의해 스캐닝 적외선 광의 경로 길이를 조절하는 것을 포함하는 것인 방법.
  • 说明书全文

    각막을 특성화하고 안과용 렌즈를 획득하기 위한 시스템{SYSTEM FOR CHARACTERIZING A CORNEA AND OBTAINING AN OPHTHALMIC LENS}

    교차 참조

    본원은 미국 가명세서 특허출원으로서 2009년 3월 4일자로 출원된 제 61/209,362 호; 2009년 3월 4일자로 출원된 제 61/209,363 호; 2009년 5월 27일자로 출원된 제 61/181,420 호; 2009년 5월 27일자로 출원된 제 61/181,519 호; 그리고 2009년 5월 27일자로 출원된 제 61/181,525 호를 기초로 우선권을 주장한다. 이러한 미국 가명세서 특허출원들은 본원에서 참조로 포함된다. 본원의 이하의 기재 내용이 상기 가명세서 특허출원의 기재 내용과 일치하지 않는 경우에는, 이하의 기재 내용이 우선한다.

    각막을 특성화하기 위한 그리고 안과용 렌즈를 모델링하기 위해서 특성화로부터의 정보를 이용하기 위한 다양한 시스템이 공지되어 있다. 예를 들어, 미국 특허 6,413,276; 6,511,180; 6,626,535; 및 7,241,311가 있다.

    공지된 시스템으로 각막을 특성화할 때의 난점은 인간의 각막의 성질이 측정 시점에 존재하는 물의 양에 의해서 영향을 받을 수 있다는 것이다. 그에 따라, 예를 들어, 환자 눈의 상태가 건조할 때 환자의 각막이 특성화되는 경우에, 환자를 위해서 디자인된 안과용 렌즈는 환자의 눈이 충분히 수화(hydrate)되었을 때의 환자에는 적합하지 않을 것이다.

    종래 시스템의 다른 문제점은, 각막의 내부 구조가 일반적으로 고려되지 않는다는 것이다. 각막의 포커싱 효과는 각막의 전방(anterior) 표면, 각막의 후방 표면, 그리고 각막의 내부 구조에 의해서 얻어지는 것으로 믿어지며, 이때 기여분은 각각 약 80%, 10%, 10%가 될 것이다. 각막의 내부 구조를 고려하지 않음으로써, 그리고 일부 경우에 각막의 후방 표면의 형상을 고려하지 않음으로써, 만족스럽지 못한 시야를 제공하는 렌즈를 초래할 수 있을 것이다.

    따라서, 인간의 눈 내에 배치되는 안과용 렌즈를 획득하기 위해서 각막을 특성화하기 위한 개선된 시스템이 요구되고 있다 할 것이다. 또한, 망막에 빛을 포커싱하는 것과 관련된 배치 렌즈의 효과를 시스템이 분석할 수 있는 것이 바람직할 것이다.

    본원 발명은 또한 이식된 렌즈의 효과 또는 환자에게 제공된 다른 안과적 변경(modification)의 효과를 확인하기 위해서 환자의 시야 선명도를 결정하기 위한 시스템을 포함한다. 이러한 방법에 따라서, 망막에서 형광성 빛을 발생시키는 파장의 스캐닝 빛을 이용하여 환자의 눈을 조사(照射)하고, 그리고 형광성 빛에 의해서 생성된 이미지의 선명도를 예를 들어 광탐지기(photodetector)로 탐지한다. 형광성 빛은 망막의 광수용체(photoreceptor) 및 망막의 색소 상피 세포(pigment epithelial cells) 내의 단백질에 의해서 발생된다. 이어서, 스캐닝 빛의 경로 길이를 조정하여 형광성 빛에 의해서 생성되는 이미지의 선명도를 높인다. 통상적으로, 스캐닝 빛은 750 내지 약 800 nm, 바람직하게는 약 780 nm의 파장을 가진다.

    본 발명은 종래의 문제점을 개선하기 위한 것이다.

    본원 발명은 이러한 요구를 충족시킨다. 시스템은 눈의 각막의 형상을 결정하기 위한 방법 및 장치를 포함하고, 이때 상기 각막은 전방 표면, 후방 표면, 그리고 상기 전방 표면과 후방 표면 사이의 내부 영역을 가진다. 그러한 방법은, 종래 기술과 달리, 각막에 의한 형광성 빛의 발생에 의존하며, 이때 입사광의 반사율을 이용하여 각막 형상을 결정한다. 이러한 방법에 따라서, 조사된 각막 부분으로부터 형광성 빛을 생성할 수 있는 파장의 적외선 광으로 눈의 전방 표면, 후방 표면 및 내부 영역 중 하나 이상이 조사(照射)된다. 발생된 형광성 빛이 탐지된다. 탐지된 형광을 이용하여, 각막의 전방 표면, 후방 표면 및/또는 내부 영역의 맵(map)을 생성한다. "전방 표면"은 눈의 외측을 향하는 표면을 의미한다. "후방 표면"은 망막을 향해서 뒤쪽으로 지향된다.

    예를 들어, 각막의 전방 영역의 경우에, 내부 영역 내의 복수의 위치에서의 광학적 경로 길이가 결정된다. 내부 영역으로부터의 발생된 청색광의 존재는 각막 내의 콜라겐 라멜라(lamellae)의 존재를 나타낸다.

    바람직하게, 조사 단계는 눈의 광학적 축선에 대해서 실질적으로 수직한 복수의 서로 다른 평면들 내에서 적외선 광을 포커싱하는 것을 포함한다. 상기 평면들은 각막의 전방 표면, 각막의 후방 표면, 및/또는 각막의 내부 영역과 교차할 수 있다.

    본원 발명은 또한 이러한 방법을 실행하기 위한 장치를 포함한다. 바람직한 장치는 조사된 각막의 일부로부터 형광성 빛을 생성할 수 있는 파장의 적외선 광으로 각막의 선택된 부분을 조사하기 위한 레이저; 각막의 선택된 부분 내에서 빛을 포커싱하기 위한 포커싱 렌즈와 같은 포커싱 수단; 그리고 생성된 형광성 빛을 탐지하기 위한, 광다이오드 탐지기와 같은, 탐지기를 포함한다.

    본원 발명은 또한 환자의 시야의 선명도를 결정하여 이식된 렌즈의 효과 또는 환자에게 제공된 다른 안과적인 변경을 확인하기 위한 시스템을 포함한다. 이러한 방법에 따라서, 망막에서 형광성 빛을 생성하는 파장의 스캐닝 빛으로 환자의 눈이 조사되고, 그리고 형광성 빛에 의해서 생성된 이미지의 선명도가 예를 들어 광 탐지기로 탐지된다. 형광성 빛은 망막의 광수용체 및 색소 상피 세포 내의 단백질에 의해서 발생된다. 이어서, 스캐닝 빛의 경로 길이를 조정하여 형광성 빛에 의해서 생성되는 이미지의 선명도를 높인다. 통상적으로, 스캐닝 빛은 750 내지 약 800 nm의 그리고 바람직하게 약 780 nm의 파장을 가진다. "시야의 선명도(clarity of vision)"는 휘도(백색은 100% 밝기(bright)이고 검은색은 0% 밝기이다)가 상이한 2개의 이미지를 구별할 수 있는 대상의 능력을 나타낸다. 대상이 차이를 인식할 수 있는 두 이미지 간의 콘트라스트(상대적인 휘도) 차이가 적을 수록, 대상의 시야 선명도가 높아진다.

    이하의 설명, 특허청구범위, 및 첨부 도면을 참조할 때, 본원 발명의 이러한 그리고 기타의 특징, 측면 및 이점들이 보다 잘 이해될 수 있을 것이다.
    도 1은 의사팩킥(pseudophakic) 눈에서 사용되는 본원 발명의 방법을 도시한 도면이다.
    도 2는 라식-후(post-LASIK)의 눈에서의, 그리고 인간 눈의 수정체의 구면 수차의 존재를 나타내는 도면이다.
    도 3은 망막 이미지의 선명도를 결정하기 위한 계산 루트(route)를 도시한 도면이다.
    도 4는 시야의 선명도를 결정하기 위한 컴퓨팅 방법에서 채용될 수 있는 회선(convolution)의 수학적 과정을 가시적으로 도시한 도면이다.
    도 5는 유한 요소 모델링(finite element modeling; FEM)의 결과로서 로딩된 각막 내의 응력 변형(stress strain) 분포를 도시한 단면도이다.
    도 6은 이차 하모닉 제너레이션 이미징(second harmonic generation imaging ;SHGi) 및 2 광자 여기 형광 이미지(two photon excited fluorescence imaging ;TPEFi)의 물리적 프로세스를 도시한 도면이다.
    도 7은 본원 발명에서 채용될 수 있는 2-광자 현미경/검안경(ophthalmoscope)의 주요 성분들을 도시한 도면이다.
    도 8은 콜라겐 조직 구조의 SHG-이미징을 도시한 도면이다.
    도 9는 각막의 미세형태계측(micromorphometry)을 스케치한 도면이다.
    도 10은 맞춤형 안구내 렌즈(customized intraocular lens; C-IPSM)의 크기와 유사한 시계(field of view)에 걸친 복합 각막 맵을 생성하기 위한 구성체를 도시한 도면이다.
    도 11은 이식된 안구내 렌즈로 얻어지는 이미지의 선명도를 탐지하기 위한 시스템을 도시한 도면이다.

    개요

    각막의 전방 표면 및 후방 표면 그리고 내부 영역의 형태도(topography)를 포함하는 각막의 형태도를 결정하기 위한 시스템은 각막 내부의 굴절률 분포에 대한 값을 제공하는 측정 및 시뮬레이션 과정을 포함한다. 각막 내의 응력/변형 관계에 대한 통계학적인 분포 및 유한 요소 모델링의 결과가 채용될 수 있다.

    이용되는 장치는 공간 해상도가 높은 복수의 측정값을 획득할 수 있는 2-광자 현미경이 될 수 있을 것이다. 이러한 장치에서 사용되는 각각의 개별적인 비임은 특유의 광학적 경로 길이를 가진다. 이차 하모닉 제너레이션 이미징(SHGi) 및 2 광자 여기 형광 이미지(TPEFi)의 프로세스가 채용된다. 이러한 측정으로부터 생성된 복수의 픽셀화된 데이터를 이용함으로써, 탐지된 수차를 정밀하게 보정할 수 있는 안구내 렌즈를 제조하기 위한 목적을 위해서, 각막의 굴절 성질의 구체적인 공간 분포가 평가될 수 있을 것이다.

    시스템은 또한 눈 내의 렌즈의 효과를 결정하기 위한 기술 즉, 품질 제어 기술을 포함한다.

    각막의 특성화

    도 1을 참조하면, 맞춤형 안구내 렌즈와 같은 이식된 렌즈의 굴절 성질을 결정하기 위한 시스템이 도시되어 있으며, 그리고 그러한 시스템이 전체적으로 도면부호 '10'으로 도시되어 있다. 복수의 광학적 광선(40)이 맞춤형 안구내 렌즈(20)가 이식된 의사패킥 눈을 통해서 전달되어, 높은 공간 해상도의 개별적인 광학적 광선의 광학적 경로 길이에 대한 국부적인 교정을 제공한다. 이러한 광학적 광선들은 망막(30) 상에서 이미지를 형성하기 위해서 의사패킥 눈을 통해서 지향된다. 각각의 비임이 특유의 광학적 경로 길이를 가진다는 사실에 의해서, 복수의 개별적인 비임(40)이 특성화된다. 구체적으로, 각각의 광학적 경로 길이는 눈을 통한 개별적인 비임의 전달 중에 각각의 개별적인 비임이 겪게 되는 굴절을 나타낸다. 다음에, 개별적인 비임들의 광학적 경로 길이가 컴퓨터에 의해서 집합적으로 이용되어 눈의 망막 상의 디지털화된 이미지를 생성한다. 복수의 광학적 광선(40)이 각막(14)의 전방 표면(12), 각막(14)의 내부 영역(13), 각막(14)의 후방 표면(16), 그리고 전방 표면 층(22)을 가지는 맞춤형 안구내 렌즈(20)를 순차적으로 통과하여 전달되고, 그리고 망막(30) 상의 포커싱된 이미지가 된다. 렌즈(20)를 형성하기 위한 방법이 본 출원인 명의의 계류중인 "System for Forming and Modifying Lenses and Lenses Formed Thereby"(Docket 19780-1)라는 명칭의 미국 특허출원 12/717,886에 기재되어 있으며, 그러한 출원은 본원 명세서에서 참조로서 포함된다.

    복수의 광학적 광선(40)의 위쪽 부분에는, 3개의 이웃하는 광선(42, 44 및 46)이 도시되어 있으며, 구역적인(zonal) 해결방식에서의 국부적인 구역을 나타낸다. 통상적으로, 가장 높은 공간 해상도의 광선-트레이싱(tracing) 계산에서, 수천만의 광선들이 인간의 눈에서의 광학적 경로 길이와 관련하여 평가된다. 계산 목적을 위해서, 의사패킥 눈의 자연 동공에 근접한 기준 평면(18)이 선택되고, 이를 향해서 개별적인 비임들의 광학적 경로 길이가 노멀라이징된다(normalized). 특히, 동공 평면(18)으로부터 맞춤형 안구내 렌즈(20)의 전방 표면(22)까지의 개별적인 광학적 광선의 전파(propagation)가 exp(ix (2π/λ) xn(x,y) xz(x,y))로서 평가될 수 있고, 이때 exp는 지수함수와 유사하고(resemble), i 는 가상 유닛 수를 나타내고, π는 약 3.14에 상당하고, λ 는 광학적 광선의 파장을 나타내며, n(x,y) 는 국부적인 굴절률을 나타내고, 그리고 z(x,y)는 동공 평면(18)으로부터 좌표 x 및 y를 가지는 횡방향 위치에서의 물리적 거리를 나타낸다. 축방향 또는 측방향 위치 또는 틸팅(tilt)과 관련한 렌즈 이식 중의 맞춤형 안구내 렌즈(C-IPSM; 20) 배치의 부정확성이 물리적 길이 z(x,y)의 프로파일로 표현될 수 있을 것이고, 그리고 본원과 동일자로 출원되고 "System for Forming and Modifying Lenses and Lenses Formed Thereby"라는 발명의 명칭을 가지며 본원에서 참조로 포함되는 본 출원인 명의의 미국 특허출원 12/717,886 (Docket 19780-1)에 기재된 바와 같은 광학적 기술을 이용하는 표면 층(22)의 생체내 미세 조정에 의해서 보정될 수 있을 것이다.

    도 2는 정상적인 눈(예를 들어, 수정체)에서의 그리고 라식-후 눈(예를 들어 재성형된 각막)에서의 인간의 눈의 하나의 특별한 광학적 수차, 예를 들어 구면 수차를 도시한 도면으로서, 라식-후 눈(60)에서의 구면 수차의 도입을 보여준다. 도 2의 상부 부분에서, 정상적인 눈(50)에서의 상황이 예시되어 있다. 안구(52)는 각막(56), 렌즈(54) 및 망막(58)을 포함한다. 통상적으로, 6 mm의 동공 직경의 경우에, 주로 수정체(crystalline lens; 또는 '렌즈'라고도 함)의 주위 형상과 관련하여, 0.5 ㎛에 상응하는 대략적으로 하나의 파장(λ)의 구면 수차의 양(59)이 도입된다. 도 2의 하부에서, 근시 교정 시술을 받은 라식-후 눈(60)의 경우에 대해서, 상당한 양의 구면 수차의 도입이 도시되어 있다. 안구(62)는 각막(66), 렌즈(64), 및 망막(68)을 나타낸다. 통상적으로, 주로 중앙의 편평화된 각막의 엣지와 관련하여, 대략 10개의 파장(10λ) 즉, 5㎛에 상당하는 구면 수차의 양이 발생된다.

    도 3은 이식된 렌즈의 필수적인 굴절 효과를 결정하기 위한 계산 루트(70)를 도시한다. 광학적 광선(72)의 매니폴드(manifold)가 동공 함수(74)로 변환되고, 그러한 동공 함수는 경로 길이(76)의 공간 분포로서 가시화될 수 있고 그리고 수학적 함수(78): P(x,y) = P(x,y)exp(ikW(x,y))로서 표현될 수 있으며, 이때 P(x,y)는 진폭이고 그리고 exp(ikW(x,y))는 복소수(complex) 동공 함수의 페이즈(phase; 위상)이다. 페이즈는 파동 벡터 k=2π/λ에 의존하고, 이때 λ는 개별적인 광학적 광선의 파장이고, W(x,y) 는 경로 길이이며, 그리고 i 는 가상의 유닛 수를 나타낸다. 동공 함수(74)로부터 점 확산 함수(point spread function; PSF; 80)가 유도될 수 있고, 이는 푸리에 변환(82)으로서 수학적으로 표현될 수 있고: PSF(x,y) = |FT(P(x,y))| 2 , 이는 의사-3차원 함수(84)로서 그래프적으로 표시되어, 거의 회절-제한(nearly diffraction-limited) 경우를 도시하고, 마이너 광학적 수차만을 가지는 의사패킥 눈을 나타낸다. 계산(70)으로부터, Strehl Ratio i(86)이 유도될 수 있고, 이는 88: i = (max(PSF(x,y))/max(PSF diff (x,y))로서 규정되며, 이때 PSF(x,y)는 수차형(aberrated) 광학 시스템의 점 확산 함수를 나타내고, 그리고 PSF diff (x,y)는 이상적인 확산-제한 광학 시스템과 유사하다. 점 확산 함수(PSF; 80) 및 Strehl Ratio i(86)는 눈의 광학적 품질 및 망막 이미지의 선명도를 가시화하는데 유용하다.

    도 4는 망막 이미지의 선명도를 평가하기 위해서 채용될 수 있는 회선(convolution)의 수학적 과정을 그래프적으로 가시화한 것이다. 이미지 형성 프로세스(90)는 수학적 작업(회선(94)으로 지칭됨)으로서 생각될 수 있을 것이고, 여기에서 광학 시스템의 점 확산 함수(PSF(96))로 각 이미지 지점을 회선함으로써 물체(92)의 이상적인 이미지가 흐려지고, 그에 따라 이미지(100)를 초래한다. 동공 지름이 6 mm인 인간의 눈의 경우에, PSF(96)이 의사-3차원 그래프(98)로서 도시된다. 그에 따라, 망막 이미지(100)의 선명도가 점 확산 함수(PSF(96))에 의해서 확인될 수 있다.

    도 5는 유한 요소 모델링(FEM)의 결과로서의 로딩된 각막에서의 응력 및 변형 분포를 도시한 단면도이다. 로딩된 각막 전체의 응력(104) 및 변형(106) 분포를 시뮬레이팅하기 위한 유한 요소 모델링(FEM) 알고리즘(102)을 채용함으로써, 각막 내부의 기질조직(stromal tissue)의 국부적인 밀도가 결정될 수 있으며, 그로부터 굴절률의 공간 분포(n(x,y))가 유도되며, 그에 따라 각막 내부의 광학적 광선의 매니폴드의 광학적 경로 길이의 가변성(variability)의 측정치를 얻을 수 있다. 초기에, 유한 요소 모델링(FEM)은 부피 요소 내의 스티프니스 파라미터(stiffness parameters)의 분포를 제공하고, 이는 국부적인 조직 밀도에 비례한다. FEM-모델링을 각막 생체 역학에 적용한 것이 예를 들어, A. Pandolfi 등의, Biomechan. Model Mechanobiology 5237-246, 2006에 설명되어 있다. 2 kiloPascal (kPA) (15mm Hg)의 안구내 압력이 후방 표면에 균일하게 인가된다. Bowman 층(108)만이 가장자리에서 완전히 고정된다. 도 5의 좌측 부분에서, 방사상 방향을 따른 코우시(Cauchy) 응력 분포가 도시되어 있으며; 절대값은 -2.5 kPa 내지 +2.5 kPa이다. 도 5의 우측 부분에서, 최대 원칙적(principle) 변형 분포가 가시화되어 있으며; 기질조직의 상대적인 압축 및(resp.) 팽창이 -0.07 내지 +0.07이 된다.

    각막을 특성화하기 위한 형광 방출의 이용

    도 6은 이차 하모닉 제너레이션 이미징(SHGi) 및 2 광자 여기 형광 이미지(TPEFi)의 물리적 프로세스를 도시한 도면이다. 도 6의 상부 좌측에서, 이차 하모닉 제너레이션 이미징(SHGi)(140)의 원리가 도시되어 있다. 주파수(ω p )를 가지는 2개의 광자(146 및 148)가 간섭적으로(coherently add) 합쳐져서 레벨(144)로부터 레벨(142)까지 즉각적으로 재복사되는(instantaneously reradiated) 주파수(2ω p )를 가지는 광자를 생성한다. 도 6의 상부 우측 부분에서, 2 광자 여기 형광 이미지(TPEFi) 프로세스가 가시화된다. 주파수(ω p )를 가지는 2개의 광자(156 및 158)가 분자를 기저(ground) 레벨(152)로부터 여기된 레벨(154)로 여기시킨다. 약 1 피코초에서 레벨(160)로의 열적인 완화(thermal relaxation) 후에, 분자가 약 1 나노초에서 레벨(162)로 하방-천이(de-excite)됨에 따라, 형광 광자(ω F )가 재복사된다. 도 6의 하부 부분에서, 이차 하모닉 제너레이션(SHGi)-및 2 광자 여기 형광(TPEFi)-이미징 프로세스의 파장 의존성이 도시되어 있다. 일반적으로, 주파수(ω p )를 가지는 조사 펨토초 레이저 비임의 파장이 166으로부터 168을 경유하여 170까지 감소됨에 따라, 주파수(2ω p )를 가지는 SHGi-신호(174, 176 및 178)의 세기가 증대되고 주파수(ω F )를 가지는 TPEFi 신호(182, 184 및 186)의 세기도 증대된다. 2 광자 각막 현미경/검안경(Two Photon Cornea Microscope/Ophthalmoscope)에서, 도 7과 관련하여 도시된 바와 같이, 각막 내부의 콜라겐 소섬유(fibrils) 및 세포 프로세스의 이미징의 최적화된 콘트라스트를 위해서, 파장이 780 nm인 조사 펨토초 레이저가 사용된다.

    도 7은 맞춤형 안구내 렌즈를 설계하기 위해서 각막을 특성화하기 위한 바람직한 장치(702)를 도시한다. 장치(702)는 레이저(704), 바람직하게는 2-광자 레이저, 제어 유닛(706), 및 스캐닝 유닛(708)을 포함한다. 2-광자 여기 현미경은 1 밀리미터의 깊이까지 살아 있는 조직을 이미징할 수 있게 허용하는 형광 이미징 기술이다. 2-광자 여기 현미경은 다중광자(multiphoton) 형광 현미경의 특별한 변형이다. 보다 깊은 침투 깊이, 효율적인 광 탐지 및 감소된 광독성(phototoxicity)으로 인해서, 2-광자 여기는 공초점(confocal) 현미경에 대한 우수한 대안이 될 수 있을 것이다. 2-광자 여기의 개념은, 낮은 에너지의 2 광자가 광자 이벤트(quantum event)에서 형광단(fluorophore)을 여기시킬 수 있고, 그에 따라 통상적으로 2개의 여기성(excitatory) 광자 중 어느 하나 보다 더 높은 에너지에서, 형광 광자의 방출을 초래할 수 있다는 아이디어를 기본으로 한다. 2개 광자의 거의-동시적인 흡수 가능성은 극히 낮다. 그에 따라, 여기 광자의 높은 플럭스가 통상적으로 요구되고, 이는 일반적으로 펨토초 레이저이다.

    적합한 레이저를 미국 캘리포니아 써니베일에 소재하는 Calmar Laser, Inc.로부터 이용할 수 있을 것이다. 레이저에 의해서 방출된 각각의 펄스는 약 50 내지 약 100 펨토초의 지속시간 및 적어도 약 0.2 nJ의 에너지 레벨을 가질 수 있다. 바람직하게, 레이저(704)는 780 nm의 파장에서 초당 약 5천만번의 펄스를 생성하고, 즉 펄스의 길이는 약 50 fs이며, 각 펄스는 약 10 nJ의 펄스 에너지를 가지고, 그리고 레이저는 500 mW 레이저이다. 방출된 레이저 비임(720)는 펄스 에너지 선택을 위해서 전환 거울(722)에 의해서 중간 밀도 필터(724)를 통해서 지향된다. 통상적으로, 레이저 비임(720)은 레이저에 의해서 방출될 때 약 2 mm의 직경을 가진다. 이어서, 레이저 비임(720)은 이색성(dichroic) 거울(728)을 통해서 이동하고 이어서 펄스들을 비임의 매니폴드로 공간적으로 분배하는 스캐닝 유닛(708)으로 진행된다. 스캐닝 유닛(708)은 컴퓨터 제어 시스템(730)에 의해서 제어되어 눈의 각막(732)을 스캐닝한다.

    레이저로부터 방출된 비임(720)은 약 2 내지 약 2.5 mm의 직경을 가진다. 비임(720)은, 스캐너(708)를 빠져나온 후에, 포커싱 수단에 의해서 각막(732)을 스캐닝하기에 적합한 크기로 포커싱되며, 통상적으로 비임의 직경은 약 1 내지 약 2 ㎛ 이다. 포커싱 수단은 레이저 비임을 원하는 크기로 줄이기 위해서 사용될 수 있는 프리즘과 같은 임의의 일련의 렌즈 및 광학 장치일 수 있을 것이다. 포커싱 수단은 망원경식 렌즈 쌍(742 및 744) 그리고 현미경 대물렌즈(746)일 수 있고, 이때 제 2 전환 거울(748)이 비임을 렌즈 쌍으로부터 현미경 대물렌즈로 지향시킨다. 포커싱 현미경 대물렌즈는 작동 거리가 3.3. mm인 40x/0.8 대물렌즈일 수 있다. 바람직하게, 스캐닝 및 제어 유닛은 독일 하이델베르그에 소재하는 Heidelberg Engineering 으로부터 입수가 가능한 Heidelberg Spectralis HRA 스캐닝 유닛이다.

    스캐닝 유닛 내의 광학장치들은 각막(732) 또는 광학장치의 이동이 없이도 약 150 내지 약 450 ㎛ 직경의 영역을 스캐닝할 수 있게 허용한다. 각막의 다른 영역을 스캐닝하기 위해서는, 각막을 x-, y- 평면 내에서 이동시켜야 할 것이다. 또한, 각막의 다양한 깊이를 스캐닝하기 위해서, z-방향을 따라 레이저 스캐너의 포커싱 평면을 이동시킬 필요가 있을 것이다.

    제어 유닛(706)은 저장 메모리, 프로세서, 디스플레이, 및 마우스 및/또는 키보드와 같은 입력 수단을 포함하는 모든 컴퓨터도 될 수 있을 것이다. 제어 유닛은 스캐닝 유닛(708)으로부터 원하는 패턴의 레이저 비임을 제공하도록 프로그램된다.

    각막(732)의 전방 표면 상의 세포들은, 780 nm 파장의 레이저 비임에 의해서 여기될 때, 형광을 발하게 되며, 그에 따라 파장이 약 530 nm인 녹색광을 생성한다. 방출된 빛은 입사 레이저 빛의 경로를 추종하고(track), 즉 방출된 빛은 현미경 대물렌즈(746)를 통과하고, 전환 거울(748)에 의해서 반사되며, 렌즈(744, 742)를 통과하고, 스캐닝 유닛(708)을 통과하여 이색성 거울(728)로 전달되며, 상기 이색성 거울은 그 이색성 거울(728)을 통과하는 입사 레이저 빛의 경로에 대해서 일반적으로 직각이 되게, 경로(780)로 형광 빛을 반사한다. 경로(780)에서, 방출된 빛이 필터(782)를 통과하여 원치않는 주파수의 빛을 제거하고, 이어서 포커싱 렌즈(784)를 통해서 광 탐지기(786)로 진행한다. 광 탐지기는 전자사태(avalanche) 포토다이오드일 수 있다. 광 탐지기로부터의 데이터가 컴퓨터 제어 유닛(730)의 메모리 내에 또는 다른 메모리에 저장될 수 있다.

    그에 따라, 각막의 전방 표면이 형광 빛을 생성하는 파장의 적외선 광으로 조사되고, 그리고 상기 발생된 형광 빛이 탐지된다. 전방 표면의 경우에, 입사 적외선 빛이 눈의 광학적 축선에 대해서 실질적으로 수직인 복수의 여러 평면들 내에서 포커싱되고, 상기 평면들은 각막의 전방 표면과 교차한다.

    적외선 광을 눈의 광학적 축선에 대해서 실질적으로 수직인 복수의 여러 평면들에서 포커싱함으로써, 동일한 과정을 이용하여 후방 표면을 특성화할 수 있으며, 이때 그러한 평면들은 후방 표면과 교차한다. 스캐닝은 64개의 독립적인 평면들에서 이루어질 수 있고, 이때 스캐닝은 약 3 미크론 이격된 비임들로 이루어진다.

    각막의 내부를 스캐닝하는 것에 대한 차이점은 내부 영역 내의 콜라겐 라멜라가 녹색광 대신에 청색광을 생성한다는 것이다. 청색광은 약 390 nm의 파장을 가진다. 각막의 내부를 스캐닝할 때, 청색광이 필터를 통해서 광 탐지기(786)로 진행하도록 다른 필터(732)를 사용할 필요가 있을 것이다.

    도 8은 콜라겐 조직 구조의 SHG-이미징을 도시한 도면이다. 콜라겐 삼중 나선(188)이 도 8의 상부 우측에 가시적으로 도시되어 있으며, 이는 통상적인 콜라겐 소섬유의 구조를 나타낸다. 콜라겐 소섬유는 각막 기질 내부에서 복잡한 3차원적인 층상 구조로 구성된다. 도 8의 하부 좌측에는, 이차 하모닉 제너레이션(SHG) 레이저/콜라겐 소섬유 상호작용 프로세스가 도시되어 있다. 주파수(ω)를 가지는 광자(194)가 콜라겐 소섬유를 중간 레벨(196)로 극성화하는(polarize) 한편, 동일한 주파수(ω)의 제 2 광자(198)는 순간적인(instantaneous) 전자 레벨(192)을 추가로 생성한다. 전자 여기는 더블 에너지의 즉, 주파수(2ω)를 나타내는 광자(200)로서 즉시 재방사된다. 이러한 프로세스는 높은 수율(yield)로 이루어지는데, 이는 콜라겐 소섬유의 일방향성(unidirectional) 형상 때문이다. 각막 조직의 이차 하모닉 제너레이션 이미징(SHGi)이 최근에 보고되었다(M.Han, G.Giese, 및 JFBille, "Second harmonic generation imaging of collagen fibrils in cornea and sclera", OptExpress 13, 5791 - 5795(2005)). 측정은 도 7의 장치를 이용하여 실시되었다. SHGi 신호가 콜라겐 소섬유의 비선형적 광학 극성화(226)로부터 식(224)에 따라 결정된다. 신호 강도(228)는 2차 극성화 항(term) [χ (2) ] 2 에 직접적으로 비례하고 그리고 펨토초 레이저 펄스의 펄스 길이(τ)에 반비례한다. 그에 따라, 높은 콘트라스트의 SHGi-이미지가 각막 기질의 3차원적인 층 구조를 가시화하는데, 이는 콜라겐 소섬유의 강한 일방향성 및, 도 7과 관련하여 설명한 바와 같은, 생체내 2 광자 각막 현미경/검안경(Two Photon Cornea Microscope/Ophthalmoscope)에서 채용된 펨토초 레이저의 극히 짧은 레이저 펄스 길이 때문이다.

    해부학적으로, 도 9에 도시된 눈의 각막(14)은, 전방 표면(12)으로부터 후방 표면(16)까지 순차적으로, 상피(epithelium; 230), 보우만 격막(Bowman's membrane; 244), 기질(stroma; 246), 데스메 격막(Descemet's membrane; 248), 그리고 내피(endothelium; 250)를 포함한다. 상피(230)는 몇 개의 세포 층, 예를 들어 '232', '234', '236', '238' 및 '240'를 포함하고, 기저 세포 층(242)으로 통합된다. 기저 세포 층(242) 및 전방 표면(12)은 2-광자 각막 현미경의 2-광자 여기 자발형광 모드(two-photon excited autofluorescence mode ;TPEF)에 의해서 명료하게 이미지화될 수 있고, 그에 따라 상피(230)의 공간적으로 분해된(resolved) 두께 측정치를 제공한다. 내피도 또한 2-광자 각막 현미경의 2-광자 여기 자발형광 모드에 의해서 명료하게 이미지화될 수 있고, 그에 따라 각막(14)의 공간적으로 분해된 두께 측정치를 제공한다. 기질(246)은 약 200 개의 콜라겐 라멜라로, 예를 들어, 복잡한 3차원적 구조를 나타내는 252, 254, 256, 258, 260, 262, 및 264로 이루어지고, 이는 2-광자 각막 현미경의 이차 하모닉 제너레이션 이미징(SHGi) 모드를 이용하여 평가될 수 있을 것이다. 이러한 측정을 기초로, (도 5에 예시된 바와 같은) 콜라겐 구조의 스티프니스의 유한 요소 모델링(FEM)의 지원을 받아, 각막 내부의 굴절률의 3차원적인 분포를 재구성할 수 있다. 그에 따라, 광선-트레이싱 계산에서의 복수의 광학적 광선의 (각막 내부의) 광학적 경로 길이가 높은 공간 해상도로 결정될 수 있다. 그에 따라, 각막의 전방 표면, 후방 표면 및/또는 내부 구조가 맵핑될 수 있다.

    도 10에서, 개별적인 이미징 필드로부터 복합 각막 맵(270)을 형성하는 것이 도시되어 있다. 통상적으로, 중앙 이미징 필드(280)는 약 2000 x 2000 이미징 픽셀을 포함하는 약 2 mm의 직경에 걸쳐 연장하고, 이는 약 1 ㎛의 해상도를 제공(예를 들어, Nikon 50x/0.45 현미경 대물렌즈를 이용)하는 4백만 이미징 포인트 또는 픽셀에 상당한다. 복합 각막 맵(270)은 2-광자 여기 형광 이미지(TPEFi) 또는 이차 하모닉 제너레이션 이미징(SHGi) 모드로 구성되는 2-광자 현미경 이미지의 3차원적인 스택(stack)을 포함한다. 직경이 약 6 mm인 맞춤형 안구내 렌즈의 크기와 매칭시키기 위해서, 6개의 주변 이미징 필드(peripheral imaging fields; 290, 292, 294, 296, 298, 및 300)가 채용된다. 중첩 구역(310, 312, 314, 316, 318, 및 320) 내에서 런-타임 그레이 밸류 픽셀 크로스 코릴레이션 알고리즘(run-time grey value pixel cross correlation algorithm)을 이용함으로써, 개별적인 필드의 정렬이 이루어진다. 그에 따라, 복합 각막 맵은 각막을 통해서 하나의 횡방향 슬라이스의 공간 분해 복합 이미지를 제공하는 약 2천8백만 데이터를 나타낸다. 통상적으로, 광학적 광선들이 의사패킥 눈의 각막을 통해서 전달될 때, 복수의 광학적 광선의 광학적 경로 길이를 재구성하기 위해서, 각막을 통한 100개의 횡방향 슬라이스가 채용된다.

    렌즈 디자인 및 형성

    도 7의 장치에 의해서 생성된 데이터로부터 렌즈를 디자인하는 기술이 소위 당업계에 공지되어 있고 그리고 그러한 기술에는 본원 명세서에서 참조하고 있는 Roffman의 미국 특허 5,050,981 에 기재되어 있는 방법이 포함될 것이다. 렌즈를 제조 또는 변경하기 위한 기술은 전술한 본 출원인 명의의 미국 특허출원 12/717,886 (Docket 19780-1)에 설명되어 있다.

    시야 선명도 결정(Clarity of Vision Determination)

    도 11에는 환자가 경험하는 시야의 선명도를 결정하기 위한 시스템이 도시되어 있으며, 그리고 도 11의 경우에, 이식된 안구내 렌즈(1102)의 경우가 될 것이다. 이를 위해서 이용되는 시스템은 동일한 도 7에 도시된 장치와 실질적으로 동일하고, 동일한 레이저(704) 및 스캐너(708)를 이용한다. 선택적으로, 이미지 선명도 및 포커싱 깊이와 관련한 굴절 교정의 효과를 시뮬레이팅하기 위해서, 어댑티브-옵틱스 모듈(adaptive-optics module; AO-module; 1104)이 이용될 수 있을 것이다. AO-모듈(1104)은 레이저(704)에 의해서 생성된 개별적인 광선을 미리-보상하기 위한 능동 거울 및 페이즈-플레이트 보상장치(phase-plate compensator)로 구성될 수 있을 것이다. 본원 발명에서 유용한 광선에서의 비대칭적인 수차를 보상하기 위한 어댑티브-옵틱스 장치가 미국 특허 7,611,244 에 기재되어 있다. 어댑티브-옵틱스 피드백 제어를 이용하여 인간의 굴절 특성을 미리-보상하기 위한 방법 및 장치가 미국 특허 6,155,684 에 설명되어 있다. 능동 거울의 이용이 본 출원인 명의의 미국 특허 6,220,707 에 기재되어 있다. 개별적인 광선(1112)이 각막(1114) 및 안구내 렌즈(1102)를 통과하여 망막에 포커싱됨으로써 '1120' 에서 망막 이미지를 형성한다. 입사광이 약 750 내지 약 800 nm, 바람직하게 약 780 nm의 파장을 가질 때, 색소 상피 세포 내의 형광 단백질 및 광수용체는 주파수가 약 530 내지 약 550 nm인 형광 빛을 방출한다. 방출된 빛이 도 11에서 라인(1122)으로 표시되어 있다. 방출된 형광 빛의 세기는 각막(1114) 및 안구내 렌즈(1102)가 입사광을 얼마나 잘 포커싱하였는지를 나타내고 또 관련되며, 이때 세기가 강할수록 포커싱이 양호하다는 것을 나타낸다. 개선된 포커싱이 얻어질 수 있는지를 결정하여 형광 빛에 의해서 생성되는 이미지의 선명도를 높이기 위해서, 예를 들어 어댑티브-옵틱스 모듈(1104) 내에서 페이즈 플레이트 또는 능동 거울을 조정함으로써, 입사 스캐닝 빛의 경로 길이를 변화시킬 수 있다.

    선택적으로, 시야의 선명도와 관련하여 환자로부터 주관적인 피드백을 제공받기 위해서, Snellen 차트(chart)와 같은 시야 자극(vision stimulae; 1124)이 제공될 수 있을 것이다.

    이러한 방법을 이용하여, IOL, 각막 렌즈, 또는 콘택트 렌즈와 같은 이식형 렌즈를 처방할 수 있고, 그리고 신체내(in situ) 렌즈(각막, IOL, 자연 수정체)에 대한 변경도 결정할 수 있을 것이다.

    본원 발명의 바람직한 버전을 참조하여 본원 발명을 구체적으로 설명하였지만, 다른 버전도 가능할 것이다. 예를 들어, 안구내 렌즈와 관련하여 본원 발명을 설명하였지만, 각막의 특성화에서 생성된 데이터를 이용하여 콘택트 렌즈 또는 기타 눈에 이식된 렌즈들을 형성할 수 있을 것이다. 그에 따라, 특허청구범위는 본원 명세서에 포함된 바람직한 버전의 설명으로 제한되지 않아야 할 것이다.

    QQ群二维码
    意见反馈