视野投影显示器

申请号 CN00805239.5 申请日 2000-03-31 公开(公告)号 CN1207695C 公开(公告)日 2005-06-22
申请人 剑桥三维显示器有限公司; 发明人 阿德里安·罗伯特·利·特拉维斯; 内森·斯图尔特·马斯顿;
摘要 一种宽 视野 投影显示器,包括一个圆形对称透镜(1)和光发射器(2)阵列,后者沿圆形对称透镜的圆周设置,使得从每个光发射器发出的光线基本由透镜在不同的方向 准直 。一个光转向装置(7;11;19),如一个板形波 导管 (10)或 反射器 ,将准直的光线从透镜的平面向观察者发射。平面圆形对称透镜不具有象差,使得相邻的视图无缝地连接,因为它们都能够以相同的 角 度漫射。
权利要求

1.一种宽视野投影显示器,包括:一个圆柱形透镜(1),它从围绕透镜轴线的不同的点准直光;一个光发射器(2;3;4)阵列,它围绕该透镜设置,使得从每个光发射器发出的光线在与它邻近的光发射器不同的方向由该透镜准直;和一个光调制器(4;15;20);其特征在于;该圆柱形透镜(1)是盘形的沿圆形对称的透镜,该光发射器位于围绕盘的该透镜的聚焦圆周上,并且该显示器还包括一个光线转向装置(7;11;19),用于将准直的光线从透镜的平面向观察者发射。
2.如权利要求1所述的投影显示器,其特征在于:光线转向装置包括一个旋转棱镜反射器(19),并且存在一个选择装置,用于将反射器的旋转位置与光调制同步。
3.如权利要求1所述的投影显示器,其特征在于:光线转向装置包括平行于透镜平面的一个实体平板。
4.如权利要求3所述的投影显示器,其特征在于:还包括与转向平板相关的行选择装置,一次选择从光发射器阵列发出的图象的一行,以显示那个行。
5.如权利要求4所述的投影显示器,其特征在于:通过将来自转向平板的光线反射来在所选图象行发射。
6.如权利要求5所述的投影显示器,其特征在于:转向平板包括一个反射箔(5),并且行选择装置是一个换能器(6),在箔中产生一个局部线性的声波或表面波,在给定的位置的波的存在引起光线的反射。
7.如权利要求5所述的投影显示器,其特征在于:转向平板是一个波导管(10),透镜出来的光入射到波导管(10)中。
8.如权利要求7所述的投影显示器,其特征在于:光线转向装置(11)是一个衍射光栅,后者使得准直的光在特定的方向传播。
9.如权利要求7或8所述的投影显示器,其特征在于:行选择装置包括在转向平板上或准直光束的其他位置上的一个层或带条,后者可转换地反射或透明;选择光线发射的位置的装置能够改变可转换层的状态。
10.如权利要求1-8中任一项所述的投影显示器,其特征在于:每个光发射器包括对应的光调制器以便形成微显示器(4)。
11.如权利要求10所述的投影显示器,其特征在于:每个光发射器包括一个微显示器和一个单个透镜(3),它们设置的使得微显示器向单个透镜发射光;每个单个透镜位于圆柱形透镜(1)的聚焦圆上。
12.如权利要求11所述的投影显示器,其特征在于:每个单个透镜是圆柱形的,并与微显示器离开焦距的距离。
13.如权利要求11-12中任一项所述的投影显示器,其特征在于:各邻近的微显示器投影一个完全的一维图象,后者仅在视图的度或相位不同。
14.如权利要求11-12中任一项所述的投影显示器,其特征在于:每个微显示器设置一个存储器来存储移动显示的连续图象。
15.如权利要求1-8、11-12中任一项所述的投影显示器,其特征在于:光发射器是点光源,用于显示一个全息图,或连接光源,用于显示一个自动立体视图。
16.如权利要求3-8中任一项所述的投影显示器,其特征在于:光源是未调制的,光调制器是可转换的带条(15)形式的,所述可转换带条设在圆形对称透镜和转向平板之间的准直光通路中,以调制准直光。
17.如权利要求1-8、11-12中任一项所述的投影显示器,其特征在于:还包括一个漫射器(8),后者在光线转向装置后,将相邻的光发射器发出的光束之间的间隙变窄。
18.如权利要求3-8、11-12中任一项所述的投影显示器,其特征在于:还包括一个反射器(9),设在转向平板(10)的至少一侧,向转向平板反射图象的偏离开转向平板的外缘部分。
19.如权利要求18所述的投影显示器,其特征在于:还包括图象处理装置,考虑到反射,能够确保反射的象素显示图象的正确部分。
20.如权利要求3所述的投影显示器,其特征在于:圆形对称透镜(1)和转向平板(5;10)设置在相同的平面中,该平面是从光反射器发射光的平面。
21.如权利要求3所述的投影显示器,其特征在于:设置有转向平板和透镜的各平面是相邻和平行的,设置交叠装置将光学系统交叠,使得从透镜的边发射的光线被引向转向平板。
22.如权利要求1-8、11-12和19-21中任一项所述的投影显示器,其特征在于:所述沿圆柱形透镜(1)包括圆形透明的盘,该盘的厚度或折射率沿半径方向改变。

说明书全文

视野投影显示器

技术领域

发明涉及的领域是三维显示器、头部安装的显示器和移动投影显示器,以及一种增加显示器视野的方法。

背景技术

投影显示器通常包括一个光发射器的二维阵列和一个投影透镜。这个透镜在空间的某个平面上形成阵列的图象,并且如果这个形成图象的平面离投影透镜远,那么投影透镜的作用是使二维阵列上的任何象素发出的光准直
如Travis,A.R.L的《自动立体成像三维显示器(Autostereoscopic3D Display)》(Applied Optics应用光学,29卷,29号,4341-4343页,1990年10月10日)所述,可以把大直径的投影显示器放置在一个液晶显示器或其他的空间调光器上,以将三维的图象同步。每次使光发射器的二维阵列的一个象素发光,并同时在液晶显示器上显示三维物体的一定视图,这样,如果从象素的经过投影透镜准直的光线的传播方向观察,仅可见到三维物体的视图。以比肉眼能够观测的闪烁更快的速度重复一视图序列,从而时分多路复用一个三维图象。而且,通过将一个点光源光发射器的二维阵列放置在投影透镜的聚焦平面,依序使每个点光源发光,并且在投影透镜顶上放置的液晶显示器上显示一定的全息图,所依序使得每个全息图相对于观察的不同的点成为可见的,这样基本上能够产生一个全息图的三维图象。
投影显示器的通常目标是,使得阵列的图象落在一个大的半透明的屏幕上,并且屏幕的观察者将见到一个在二维阵列上显示的图片的放大的图象。然而,越来越普遍的是,小的投影显示器被安装在观察者的头上,使得投影显示器向着观察者的眼睛,被投影透镜准直的光发射器的二维阵列上的单个象素的光随后由观察者的膜在视网膜上聚焦,使得观察者可以看见常称为虚拟图象的一个看上去远距离的图象。
头部安装的显示器体积很大,使用者希望它们是扁平的。如Amitai,Y.,Reinhorn,S.,和Friesem,A.A.的《根据平面全息图光学的遮光显示设计(Visor-display design based on planar holographic optics)》(应用光学,34卷,8号,1352-1356页,1999年3月10日)所述的,使用一个包括弱全息图象的板形的波导管,能够使得一个头部安装的显示器成为扁平的。阴极射线管和另一个全息图象的光能够耦合进入波导管,这个光由弱全息图像从波导管衍射出去,其方向由在辐射光线的阴极射线管内的象素确定。
如上所述的由时分多路复用液晶显示的照明合成的三维图象,要求液晶显示器具有薄膜晶体管的快速开关阵列,而这些是昂贵的。Trayer和Orr(美国专利5600454)披露了一个装置,通过将一个全息图照像放置在一个现有的液晶显示器后避免了这个问题,液晶显示器将交替排列的光线引向左眼或右眼。但是,这个装置和上述的切换照明方式体积都很大,而使用者希望三维显示器是扁平的。
另一种方式,如WO98/15128所述,通过将一个投影显示器与一个屏幕结合能够构成一个扁平三维显示器,所述屏幕上,平行于屏蔽表面照射的光投射在屏幕上一组可选的图像单条扫描线沿屏幕上一组可选择的行之一上。在屏幕上一次选择一个行,同时投影显示器与屏幕平行地投射一行象素,使得它们在所选择的行上发射。在屏幕上的行系列的每个依次选择,使得时分多路复用在屏幕上的一个完全的图象时,在投影显示器上的同一象素行反复变化。仅使用投影显示器的一条行,所以光发射器的阵列仅需要一行高,并且如果发射的光准直在屏幕的平面中,那么投影透镜仅需要一或二毫米高,使得相结合的投影器和屏幕是扁平的。
用这个结构,如果光线从一个三维显示器发出,并引向平行于可选择行的屏幕表面,虽然光发射器的阵列仅是一个象素高,在屏幕上形成的图象是三维的。如上所述,这个三维显示器可以包括在投影透镜后的一个光发射器阵列,所述投影透镜在其前面设有一个液晶显示器,但是为了在一个显示器的行扫描周期内建立几个视图,液晶显示器的切换速度要等于视图的数目与显示的行数的乘积,而几乎没有液晶显示器开关这么快。
存在很多其他类型的自动立体和全息图三维显示构思,任何都可以用于扁平系统。参见A.R.L.Travis,Proc.IEEE 85卷,11号,1997年11月,1817-1832页,一个老的方式是特别令人感兴趣的,它包括一组设置在向场透镜的聚焦平面中的小视频投影器。设置每个投影器是为了在向场透镜的平面形成一个视图,就好象透镜是一个半透明的屏幕,但是与半透明的屏幕不同的是,向场透镜将光准直,使得图片仅仅从单一方向可见。其他的投影器形成的视图,对于其他的方向利用向场透镜可见,以致观察者见到一个自动立体三维图象。
该方式的问题是,设计一个光瞳等于透镜的物理直径的投影透镜是困难的;其结果在视频投影器之间存在有间隙,从而在三维图象的相邻的视图之间形成暗区。使用一个轻度漫射的元件能够减少这些间隙,但是漫射的角度通常随光的入射角改变。在向场透镜中的象差意味着,透镜准直的单个点的射线在屏幕的直径上以稍稍不同的入射角击中漫射屏幕。这意味着漫射角的改变,并且即使这个改变很小,它也足以引起在近似正常的视图之间的可见的间隙(如果投影器的间隙设置为消除所有的重叠),或在视图之间的可见的重叠(如果投影器间隙设置为消除间隙)。
事实上,三维显示器和头部安装的显示器的另一个主要问题尤其在于,它们的视野被投影透镜的象差限制。在20度以外的视野透镜准直光线很差以致于在多数场合下图象非常失真。

发明内容

本发明的目的在于克服或至少是减少现有技术的投影显示器的一些问题。
本发明提供一种宽视野投影显示器,它采用有时称为单一中心透镜的圆形对称透镜和光发射器的一致弯曲阵列。阵列曲线的中心位于圆形对称透镜的中心,阵列设置在或接近于圆形对称透镜的聚焦平面。参见美国专利5132839(Travis),圆形对称透镜是以前使用过的,但是在大镜片制造上存在困难。
因此,根据本发明的第一方面,提供一种宽视野投影显示器,包括:一个圆柱形透镜,它从围绕透镜轴线的不同的点准直光;一个光发射器阵列,它围绕该透镜设置,使得从每个光发射器发出的光线在与它邻近的光发射器不同的方向由该透镜准直;和一个光调制器;其特征在于;该圆柱形透镜是盘形的沿圆形对称的透镜,该光发射器位于围绕盘的该透镜的聚焦圆周上,并且该显示器还包括一个光线转向装置,用于将准直的光线从透镜的平面向观察者发射。
射线转向装置一般是板形的,与透镜平面共面或平行,并优选地包括行选择装置,用于每次从光发射器的阵列选择变化的图像行以显示该行。此时,在所选择的行上由光线转向板光线的偏转可引起发射。例如,光线转向板可以包括:一个反射箔;和一个在箔中产生局部的线性的声波或表面波的换能器,在给定位置上的波的存在引起光线的反射并因此引起在那个位置的所述偏转。在这个结构中,换能器产生的波沿光线转向板传播并在它的路径中可连续使图像行投射。可选地,也能够使用一个旋转镜在屏幕的高度上扫描每个行。
可选地,转向装置可以是一个不透光材料的扁平板,它优选地平行于透镜并与光线透过的透镜边对齐,从而它起一个板形波导管的作用。
行选择装置可以由光线转向板上或准直光束任何其他位置的一个层或带条提供,它是可转换地反射或透明的,选择光线发射位置的装置能够改变可转换层的状态。这样的层可以是一个液晶显示器。
可转换层可以以透射方式工作(使得在所选择的行中的光线通过该层,其他的被反射)或以反射方式工作(仅反射所选择的行)。在后者方式中,可以设置光栅仅从光线转向板的一个表面在转换层的方向发射光。这样的光栅可以设置在光线转向板内。然后所选择的行由可转换层反射回来并通过光线转向板。在此方式中,选择装置设置在观察者观察方向的光线转向板后。关于上述问题可以参考WO95/15128,以获得更多信息。
在本发明中使用的每个光发射器可以包括一个微显示器,一般是一个带有准直光源的小型的LCD,如果是透射方式则准直光源在其后,如果是反射方式则在其前。光发射器可以就是一个在聚焦圆周设置的微显示器。可选地,每个光反射器可以包括一个微显示器和一个单个透镜,它们排列得使得微显示器发射光,然后所述光向单个的透镜聚焦。每个单个的透镜应位于圆形对称透镜的聚焦圆周上,本质上起一个能够产生准直光的点光源的作用。
一般,微显示器是一维的,包括一排柱状的象素,并且相应的透镜是圆柱的,并与微显示器离开焦距的距离。如果透镜是圆柱的,微显示器此时位于聚焦圆周上。各邻近的微显示器投影一个物体的单一的行的图象,图象仅在视角不同。
可选地,每个光发射器可以只包括一个位于圆形对称透镜聚焦圆周上的光源,在此结构中,一维的可转换带条设在准直光线的光程上。带条优选地在圆形对称透镜和光线转向板之间。如果光源是点光源,可以通过带条的适当定址用带条显示一个全息图。可选地,能够使用连接源显示一个自动立体视图。发射器依次起动,并且在带条上显示的图象与发射器的起动同步。
本发明所述显示器可以包括一个位于准直光中的漫射器,用于将在每个光发射器发出的光之间的光束中的间隙变窄。漫射器可以形成为一个衍射光栅,或小透镜屏幕,并优选地邻近扁平板设置。对于自动立体显示漫射器一般是必须的,以确保在视图之间没有间隙;全息显示一般不需要漫射器。
对于每个微显示器可以设置一个存储器,以使在移动显示的连续图象加到投影器前存储它们;这使得能够补偿任何的光学缺陷,或几何失真,如由于侧投影器的投影角度造成的切变。
在本发明的一个优选实施例中,一个反射器,如一个反光镜,设置在光线转向板的至少一侧,将转向板外附加的轴外投影器产生的图象的外部反射回到转向平板上。这样的反射器减少在阵列中的外微显示器的光线在图象的侧面上可能产生的间隙。一个直的反射器从图象的正确的位置到相反图象整个地反射图像外缘部。因此,优选地,设置图象处理装置,确保反射的象素被反射到图象的正确侧面。这些装置与帧存储器结合设置,起在帧存储器的外边上交换象素的作用。
本发明所述显示器可以与圆形对称透镜、光线转向板和微显示器(在可应用处)基本排列在相同的平面中。可选地,光线转向板和透镜的平面可以邻近和平行。此时,需要交叠装置交叠光学系统,以使透镜的边发出的光线被引到转向板上。交叠装置也可以实现将脱离光线转向板的光线回收的功能。交叠装置可以包括:一个回射器,优选地设置在发出光线的透镜的最近部分;以及与回射器的两侧成角度的反光镜。回射器优选地位于基本与侧面镜垂直的一个平面上,并且回射器的棱镜与它的纵轴垂直。
在另一个实施例中,为了虚拟显示,光线转向板上任何位置的光线都要被发射。为此,光线转向板可以包括一个弱衍射光栅,它使得准直光在垂直方向传播。光栅应设在光线发射通过的光线转向板的侧面上。
附图说明
现在参照附图说明本发明的特定的实施例,附图中:图1是本发明基本原理所述的单中心透镜的使用示意图;图2是本发明第一实施例所述宽视野多投影器自动立体三维显示器示意图,其中屏幕高仅为一个象素宽度;图3是利用图2的实施例的光线转向板的宽视野自动立体三维显示器图,示出一个屏幕,在其上与屏幕的表面平行照射的光在沿屏幕的一组可选择的行的一个上发射;图4是第一实施例所述如何使用漫射器消除在宽视野三维显示器上的相邻视图之间的间隙的示意图;图5是第一实施例所述宽视野三维显示器上轴外微显示器发射的光线在没有预先校正情况下如何产生切变失真的示意图;图6a和6b是示意一对镜如何将相反的轴外微显示器发出的光线交叠,使得从一个微显示器发出的交叠光线填充相反的微显示器的光线留下的视图的间隙;图7是本发明一个实施例所述采用衍射光栅的宽视野扁平板投影显示器示意图;图8是本实施例所述采用液晶板的全息宽视野扁平板显示器示意图;图9是第二实施例改进型所述的一个显示器示意图,示出一对镜和一个一维回射器即使在大的轴外角上如何保持照明的均匀;图10是第三实施例所述采用光的宽视野三维扁平显示器示意图;
图11是不需要薄膜晶体管的全息宽视野扁平显示器示意图;图12是头部安装的宽视野扁平显示器示意图;和图13是本发明所述第四实施例图。

具体实施方式

参照图示,图1的投影显示器包括一个圆形对称透镜1和光发射器2的阵列,阵列弯曲得使每个光发射器2处在圆形对称透镜1的聚焦平面或聚焦表面中。
圆形对称透镜1包括一系列的同心的共面的透明环,确定透明环的折射率,使得透镜1将聚焦平面上的任何点的光准直。在相邻的环的边之间可以施加常规的防反射的膜。例如,在内半径50毫米和外半经100毫米的聚酸酯环内的50毫米半径的聚甲基丙烯酸甲酯的盘将半径为172毫米的聚焦面或环上任何点的光线准直。可选地,圆形对称透镜1也可以包括一个缓变折射率的盘,它的折射率随半径变化,在中心最大。一个第二替换方案是圆形对称透镜1也可以包括一个厚度随半径变化的材料的盘。此时,光发射器2阵列发射的光以稍离开盘轴线的垂直线的单一的角度入射到盘的边;盘的平表面使得盘的性能象一个板形的波导管,通过从一个边到另一个边的全内反射导向光。盘向中心逐渐变厚,并且在光线被导向到盘的较厚部分时,在光线方向和盘轴线之间的角度变小。因此,光线的方向在盘的平面的分解部分变小,使得光线通过盘的中心比通过边传播的路线长。因此盘与缓变折射率透镜相同地准直光。
在图2的自动立体三维显示器中,在光发射器2的弯曲的阵列中的每个光发射器包括由激光源(未示出)的准直光照明的一个小的圆柱透镜3,所述准直光被微显示器4反射并由另外一个或多个未示出的透镜聚光到小透镜3上,从而透镜3起一个小的光源的作用。微显示器4也可以是透光的。每个微显示器包括一排竖直的象素。
在图3中,微显示器4调制后的小透镜3发射的光由圆形对称透镜1转换成平行的光束,并以与反射箔5的表面平行并稍稍高于其表面的方向照射。在箔5的一端上的换能器6设有一个单表面波7,后者在光传播的方向传播箔5的长度,并且在表面波7运行时反射沿箔5的不同的行上的入射光,因为它的高度足以截取透镜1的光。本发明人的较早专利WO98/15128说明了这类的设置。
如果考虑在单一的瞬间从单一的微显示器4发出的光,光由微显示器4调制,由小透镜3聚光然后扩张,由圆形对称透镜1准直,产生与箔5的平面平行的一系列的平行光线。在这个光碰撞表面波7时,光在含有波的平平面内(将箔视为竖直的)的特定的方向从屏幕放射,并且如果观察者从那个方向观察,他将看见在表面波7上的一行可见的象素。当表面波7沿箔5向下运动的连续的瞬间中,象素的行在箔5的其他位置能够可见,并且如果被足够快地重复,观察者将见到时分多路复用的二维图象。
将围绕透镜的轴线的不同角度上的其他的微显示器加入进来,以增加可能的观察角的范围,如此上述思路可以更进一步。在相似的方式中,这些其他的微显示器4能够被调制在箔5上产生其他二维图象,但是每个二维图象是从水平平面的不同方向,即方位可见。假设以三维的物体代替箔5,如果每个二维图象是观察者会见到的视图,那么观察者见到的图象会呈现为三维的。这里有一个重要的附带条件,即在观察者从一侧到另一侧移动头部时,他将见到三维图象的不同视图,但是在每个视图之间存在间隙,观察者不会看见间隙处的任何东西,因为每个图象起源于小透镜3的形式的有效点光源,在所述系统中各二维图象的视野是窄的。对此的一种解决方案是添加一个如图4所示的漫射器8,后者包括一个扩展每个二维图象的视野的小透镜的光栅或屏幕,使得在相邻的视图之间没有间隙。
与透镜相同,漫射器的缺点是,由于从相对漫射器平面成不同角度而来的光线被程度稍微不同地漫射而有像差。这就是说,由中心透镜在不同角度准直的光根据各个投影器离传播轴线的远近被发散不同的量。但是,因为圆形对称透镜不存在像差,每个视图的光正常地准直,所以包括视图的所有的光漫射相同的量。因此,即使在极端视角上,通过移动相关的微显示器4,能够没有任何重叠地闭合每对相邻视图间的间隙。
但是问题在于,在极端视角上,在一侧的光线,如从弯曲的微显示器行的端部发出的,在碰到表面波7前越过箔5的边,如图5所示,而另一侧的光线留下表面波7的一个格外大的部分未照明。图象被切变失真,并且一个暗三角形间隙呈现在每个轴外视图的顶上。在投影器显示前,通过在帧存储器中图象的数字预处理能够预处理和校正这个失真,并且如图6a和6b所示,如果将一对镜9添加到该系统还能够使用数字预处理来消除这个三角形间隙。
如图6a和6b所示,这对镜9位于箔的两侧,使得越过箔5因此“脱离”箔,以致箔不能够反射的光线被反射回来。这些反射的射线成为与未反射的射线形成的视图相反的视图的一部分,但是在此过程中,反射的射线充入在相反视图中射线留下的间隙,因为相反视图留下了表面波7的部分未照明。此时,确保正确的象素最后落在屏幕的正确位置仅是在帧存储器中的交换象素的问题。
现在说明采用衍射光栅的本发明的其他实施例。
如果准直的光入射到一个板形波导管,并且一个弱衍射光栅在该板形波导管的表面上凸起,此时光栅将从这个波导管衍射出一些光。衍射光离开波导管的方向将由入射光的原始方向确定,从而通过在波导管的输入时将准直光的强度调制到几个方向的每个中,能够控制被光栅衍射出的光的强度,并且这能够用作投影图象。
图7表示光是如何从一个宽视野投影显示器入射到一个板形波导管10,所述宽视野投影显示器包括一个圆形对称透镜1和一个光发射器2的阵列。从光发射器2的阵列的每个象素发出的光由圆形对称透镜1在特定方向准直,这个光束耦合到板形波导管10,并由弱衍射光删11从板形的波导管10的整个一个表面衍射出,以致引起准直光在特定方向的传播。光发射器2的阵列的其他的象素使得光被弱衍射光栅11在其他方向衍射,结果是从扁平板来的二维图象的投影。
一般来说,一个三维的显示器能够通过将一个快速开关的液晶显示器12放置在一个大投影显示器上形成,并且图8表示通过将一个快速开关液晶显示器12置于板形波导管10上,这显示出该原理是如何应用到一个宽视野扁平三维显示器上。图象或是自动立体的,此时,在光发射器2阵列中的象素应对接,或者图象是全息图的,此时光发射器2阵列的象素应是点源。在实施中的唯一不同是全息图系统需要象素小到足以引起衍射的效果。
如图5所示,来自图7所示宽视野投影显示器的极端角度的光会脱离板形波导管10。图9示出如何用一对反光镜9和一个一维的回射器13交叠这个光系统,使得板形波导管10能够在透镜1的顶上,即使在宽视野也确保光入射到整个的板形波导管10。否则,离开系统的光就由反光镜9之一反射到一维回射器13上,然后到角状镜14。一维回射器13和角状镜14的平面彼此成直角,与透镜平面成45度,以致光返回到板形波导管10,回射器的棱镜与回射器的长轴线垂直,以致光沿板形波导管10的平面中的路径返回,此路径与光在宽视野投影器的平面中所运行的路径相同。回射的光击中在它向外发射行程上击中的一对反射镜9的同一个,因此在它离开宽视野投影器的圆形对称透镜1的相同位置和方向被引向板形波导管10。
如果快速开关液晶显示器在反射中工作,而不是在透射中(如上述例子)则能够较方便地制造。例如这时允许在快速开关的显示器背面使用粗金属线,因为这种金属线是高导电的,但是不透明。这时也允许使用光阀,后者有时称为光学可寻址空间光调制器。
图10示出如何在光阀上合成一个宽视野三维图象。从宽视野投影显示器来的光入射到板形波导管10的侧面,板形波导管10包括一个弱光栅11,而光栅11是反光和立体的,以致仅向快速开关液晶显示器12的前表面发光。这样的光栅例如能够通过将两片3米的图象导向膜(Image Directing Film IDF II)面对面地用具有与所述膜稍不同的折射率的透明胶粘在一起做成。被快速开关液晶显示器12反射的光通过板形波导管10返回并回到观察者,仅极少的光从光栅11分离,因为光栅11是弱的。显示器12光学上由投影器20开关。
见图3,箔5和表面波7或其他的发射装置可以用来将任何一行高的三维显示器转换成一个完全的扁平三维显示器,并且能够用圆形对称透镜1扩张多数三维显示方法的视野。图11的例子示出,如何能够制成一个带有宽视野的全息图三维显示器,其中用一系列未调制的点源构成位于圆形对称透镜1聚焦平面中的光发射器2的阵列,并且用这个组合照明一个一维液晶显示器15。在这样的液晶显示器15上显示的全息图的视野由它的象素尺寸确定,但是宽视野的全息图,通过使每个在光发射器2阵列中的点源发光,并在表面波7移动一个单一行的宽度所用的时间内同时改变在一维液晶显示器15上的全息图,能够时分多路复用。用这样的显示器能够有宽视野是因为,圆形对称透镜的极小的象差使得全息图各构成部分能够无间隙或无重叠地时分多路复用。单一长度的液晶显示器(LCD)15比前述实施例的小的微显示器4较难制造,但是全息图必需的象素较易形成。
如相同的装置采用自动立体而不是全息象素化来显示三维图象,则在液晶显示器15上每次显示一个视图的一个行。其他视图的等效扫描线能够无间隙无重叠地时分多路复用;为此,光发射器2的阵列此时必须包括无间隙连接的光源。还应象前述实施例那样使用一个漫射器。
在上述的扁平板方法中使用圆形对称透镜1的一个重要优点是,通过正确的设计,在单一的快速动作中能够利用塑料材料将它冲压制造。但是,如果需要的话,也能够用大体积的镜头和延伸到大体积三维显示器的方法来加上圆形对称透镜。
对头部安装显示器的视野的扩展的需求是存在的,如图12所示,这也可以通过在大体积镜头圆形对称透镜的聚焦平面中设置一个弯曲的光发射器2阵列做到。
图13示出逐行输出图象的“机械”方法的一种变型。在此,透镜1的输出被引向一个旋转的正六棱镜,后者的轴线垂直主传播方向。棱镜的旋转的速度与在投影器4上的行显示同步,使得在投影器显示完图象所有水平单条扫描线时,棱镜旋转六分之一转,并准备再一次向屏幕的顶部反射下一个行。一个透镜的漫射器板18将图象在竖直方向分布,并设置一个精密的方位漫射器(未示出),将图象从不同的投影器移开。
一般情况以及在适当时候,上述实施例的所有的特征能够在任何希望的组合中使用。
QQ群二维码
意见反馈