基于纳米线太阳能电池结构

申请号 CN201610640931.7 申请日 2008-06-19 公开(公告)号 CN106206780B 公开(公告)日 2017-12-05
申请人 昆南诺股份有限公司; 发明人 L.萨穆尔森; M.马格努森; F.卡帕索;
摘要 根据本 发明 的 太阳能 电池 结构包含构成该 太阳能电池 结构的光吸收部分的 纳米线 (205)以及包围该纳米线(205)的至少一部分的 钝化 壳(209)。在本发明的第一方面,该钝化壳(209)包含光导壳(210),其优选地具有高的且间接的带隙以提供光导特性。在本发明的第二方面,太阳能电池结构包含多根纳米线,以相邻纳米线之间的最大间距 定位 所述多根纳米线,该最大间距比所述太阳能电池结构打算要吸收的光的 波长 短,以便为光吸收提供有效介质。归功于本发明,有可能提供高效率的太阳能电池结构。
权利要求

1.位于衬底(220)上的太阳能电池结构,包括包含多个纳米线(205)的层,该多个纳米线(205)构成所述太阳能电池结构的光吸收部分,该多个纳米线(205)垂直于所述衬底(220)的表面定向并且包括在纳米线(205)中的至少一个PN结
其中,所述衬底(220)包括光电二极管结构,所述光电二极管结构由衬底(220)中位于所述纳米线(205)下方的反向掺杂区域(222,223)形成,并且至少一部分的入射的光被引导至所述光电二极管结构并被所述光电二极管结构吸收。
2.权利要求1所述的太阳能电池结构,其中纳米线(205)中的至少一个PN结与由衬底(220)中的反向掺杂区域形成的光电二极管结构串联连接。
3.权利要求1所述的太阳能电池结构,进一步包括光导壳(210),所述光导壳(210)包围所述多个纳米线(205)的每一个的至少一部分并且适于沿着纳米线(205)引导入射的光并穿透所述太阳能电池结构的光吸收部分,其中所述光导壳(210)具有比纳米线(205)更高的带隙或者所述光导壳(210)包括介电层。

说明书全文

基于纳米线太阳能电池结构

[0001] 本申请是申请日为2008年6月19日、申请号为200880103566.X(PCT/SE2008/050734)、发明名称为“基于纳米线的太阳能电池结构”的专利申请的分案申请。

技术领域

[0002] 本发明涉及太阳能电池结构。具体而言,本发明涉及包含纳米线作为有源部件的太阳能电池结构。

背景技术

[0003] 对于太阳能电池技术的兴趣在最近几年中日益增加。持续增长的能源成本以及对环境的考虑是这种兴趣背后的因素。表示高效率太阳能电池大规模生产的可能性的技术突破也是重要的因素。
[0004] 最高效的现有太阳能电池由诸如GaInP或者GaInAs的III-V族半导体以具有若干层的多结电池的形式制成,其中每层吸收太阳光谱的不同部分。这种概念的优点由图1示出,图1显示了对比于GaInP/GaInAs/Ge叠层结构(tandem structure)典型的光伏(PV)电池可以转换成电能的太阳AM1.5光谱的部分。
[0005] 基于单个半导体材料的太阳能电池的能量转换效率的理论极限为31%。对于双结太阳能电池,多结光伏电池(MJPV)可以将该极限提升到43%以及对于三结太阳能电池,多结光伏电池(MJPV)可以将其提升到49%。然而,所有的必须的不同材料组合(material combination)的制备是有挑战性的并且晶体的高材料质量对于实现高效率是必需的。
[0006] 许多进步已经出现并且2006年12月Boeing/Spectrolab宣布(http://www.spectrolab.com/com/news/news-detail.asp?id=172)他们已经证明在400倍的聚集阳光(400x concentrated sunlight)下使用三结MJPV GaInP/GaInAs/Ge电池的40.7%的创记录的转换效率。如在Phys.Sat.Sol(c)3,373(2006)中F.Dimroth的“High-efficiency solar cells from III-V compound semiconductors(由III-V族化合物半导体制成的高效率太阳能电池)”中所提到的,该技术最初被开发用于空间应用,其中锗(Ge)是合适的衬底材料。地壳中的Ge的可获量是有限的并且其很昂贵,如果这种高效率叠层太阳能电池在世界上大量被使用,这可能是个限制。由于这个原因,利用与Ge相比Si衬底的更高的多结效率、更低的成本以及更高的可获量,基于晶体Si或者甚至基于更普通的衬底的多结太阳能电池的发展将为地面应用敞开新的机会。现有技术的包含生长在Ge衬底上的晶格匹配层的多结光伏电池在J Electr Spectr Rel Phen 150,105(2006)中L.L.Kazmerski的
“Solarphotovoltaics R&D atthe tipping point:A 2005technology overview(处于转折点的太阳能光伏研发:2005技术综述)”中被论述。在使用聚光器(concentrator)的情况下,这种MJPV电池达到超过40%的效率。
[0007] 然而,可以确定平面型III-V族多结太阳能电池的技术障碍。由于物理限制,高于50%的效率将非常难以达到。用于多结太阳能电池的常规III-V族材料要求在大的衬底面积上完美的晶格匹配以避免位错。良好的设备功能性也将要求整个晶圆(wafer)上非常高程度的组成均匀性(compositional homogeneity)。这使得对大面积的衬底的按比例放大(up-scaling)非常有挑战性,即使这样的衬底可以合理的价钱获得。即使可以克服这些问题,既具有合适的带隙又或多或少晶格匹配的材料的有限数量使在平面型太阳能电池中生产多于三个结非常困难,而这对于达到非常高的效率是必须的。
[0008] 除了上述与现有技术的多结电池相关联的技术挑战,成本和按比例缩放(scaling)两者都提出难题。举例来说,由于高的衬底成本以及小的晶圆尺寸,生长在Ge或III-V族衬底上的多结电池非常昂贵。另外,III-V族材料如今在高级的MOCVD中或者甚至MBE反应器中外延地(epitaxially)生长而具有低生产率并且珍贵的原始材料的高成本使得必须使用聚光器以提高系统层面上的性价比。即使成本可以被减少,甚至在全日光强(full sunlight)下聚光器对于得到饱和电压仍然是必须的。

发明内容

[0009] 现有技术的太阳能电池设备需要被改进以得到所期望的或者“理论上的”关于效率和生产成本的优点。
[0010] 本发明的目的是克服现有技术的缺陷。通过如独立权利要求所定义的太阳能电池结构和太阳能电池模来实现该目的。
[0011] 根据本发明的太阳能电池结构包含构成该太阳能电池结构的光吸收部分的纳米线以及包围该纳米线的至少一部分的钝化壳。优选地,该纳米线从衬底突出。
[0012] 在本发明的第一方面,太阳能电池结构的钝化壳包含与纳米线相邻的光导壳。优选地,该光导壳由具有比纳米线高的带隙的材料制成并且优选地该光导壳也具有间接带隙。
[0013] 在本发明的第二方面,太阳能电池结构包含多根纳米线,以相邻纳米线之间的最大间距定位该多根纳米线,该最大间距比该太阳能电池结构打算要吸收的光的波长短。因此,入射的光将经历由该多根纳米线定义的所谓“有效介质”。
[0014] 在本发明的一个实施例中,纳米线包含形成适用于吸收太阳光谱的波长范围中的光的带隙的至少一个段。太阳能电池结构也可以被装备有多个段,其中每个段适用于吸收太阳光谱的不同波长范围中的光。多个段优选地被布置为使得每个段的带隙在远离预计入射的光并且沿所述纳米线(205)的纵轴的方向上降低。
[0015] 该多个段可以通过江崎二极管(Esaki diode)或者金属段串联连接。
[0016] 归功于本发明,有可能以可接受的成本生产高效率的太阳能电池。
[0017] 本发明的一个优点是该太阳能电池允许异质结构而不需要晶格匹配,从而允许在材料组合的选择方面大的自由度。原则上,对于不同带隙,即纳米线中的段的数量没有限制,从而给予吸收太阳光谱的所有的有用部分或者所选择的部分的可能性。
[0018] 由于用于每根单独的线的小的生长面积,不需要在整个晶圆上极端均匀的生长,这放松了对于生长系统的要求。同样地,由于小面积,衬底可以是多晶或者薄膜硅,等等。
[0019] 根据本发明第一方面的太阳能电池结构的一个优点是光导壳以有序的方式指引光通过由递减的带隙构成的区域,从而允许顺序的光采集。
[0020] 另外,光导结构提供光子到纳米线的本征集中(intrinsic concentration),从而甚至在漫射光的条件下也给予饱和电压。
[0021] 本发明提供的更进一步的优点是使用金属段来连接纳米线的段的可能性。由于金属层是不透明的,这在现有技术的平面型设备中是不可能的。然而,在本发明中,由于被光导壳包围的窄的光吸收纳米线,不透明性将具有有限的负面影响。
[0022] 根据本发明的第二方面通过将纳米线足够靠近地放置在衬底上,由于入射的光将密集组装的(closely packed)纳米线“看作”连续的有效介质,使用纳米线的优点被与光的有效吸收相结合。
[0023] 在从属权利要求中定义本发明的实施例。在结合附图和权利要求考虑时,本发明的其他目的、优点以及新颖的特征将从下面对本发明的详细描述中变得显而易见。

附图说明

[0024] 现在将参考附图来描述本发明的优选实施例,其中:
[0025] 图1示意性地示出理论上可以分别被基于硅的太阳能电池和基于GaInP/GaInAs/Ge的太阳能电池使用的AM1.5太阳光谱的部分,其中黑色区域表示由于载流子(charge carrier)热能化(thermalisation)或者光子传输的效率损耗;
[0026] 图2a示意性地示出根据本发明的一个实施例的太阳能电池结构;
[0027] 图2b示意性地示出根据本发明的一个实施例的包含具有多个段的纳米线的太阳能电池结构;
[0028] 图3示意性地示出根据本发明的太阳能电池结构,其中纳米线的顶部从光导壳向外突出;
[0029] 图4a-b示意性地示出本发明的实施例,其中在4a中,衬底被装备有二极管,而在4b中,纳米线在光导壳的顶端终止。
[0030] 图5a-b示意性地示出本发明的实施例,其中在5a中江崎二极管以及在5b中金属段被用来使纳米线的各段相互连接。
[0031] 图6示意性地示出根据本发明的一个实施例的包含多根纳米线的太阳能结构,每根纳米线包含多个pn结;
[0032] 图7示意性地示出根据本发明的具有紧密间隔(with closely spaced)的纳米线的太阳能电池结构,其适用于以有效介质的方式吸收光;
[0033] 图8示意性地示出根据本发明的一个实施例的包含单个pn结的太阳能电池结构;
[0034] 图9示意性地示出根据本发明的另一个实施例的包含多个pn结的太阳能电池结构,以及
[0035] 图10示意性地示出包含被紧密地放置在一起的多根纳米线的太阳能电池结构,其中以高的且间接的带隙的材料包围每根纳米线。

具体实施方式

[0036] 图2a示意性地示出根据本发明的太阳能电池结构的一个实施例。纳米线205构成太阳能电池结构的光吸收部分并且钝化壳209包围纳米线205的至少一部分。优选地,纳米线从衬底220突出。纳米线可以基本上垂直于衬底220或者成度地突出。
[0037] 入射的(太阳)光201被耦合进入太阳能电池结构的纳米线205。入射的光生成电子空穴对并且优选地太阳能电池结构的光吸收部分,即纳米线205,被配置为pn结以建立电场,该电场推动(promote)电流仅在一个方向上流过前端接触部203和后端接触部202之间的纳米线205。举例来说,前端接触部203和后端接触部202,如图2a示意性地所示,分别电连接到纳米线205的顶部和底部,并且光201被耦合进入纳米线205的顶部。
[0038] 根据本发明钝化壳209的一个目的是要减少纳米线205的圆周表面上的中间间隙表面状态(mid-gap surface state)的数量。通过使用钝化壳,可以将表面状态从导电的纳米线上除去。另一个目的是要使纳米线205与周围绝缘。另外,在一些结构中钝化壳可以在太阳能电池结构中起更积极的作用。由于压缩应变或者拉伸应变,带隙可以被提高或者降低或者带可以被弯曲以将空穴与电子径向地分开。钝化壳209的功能以及上述目的在太阳能电池结构的各种结构中或多或少是重要的或者相关的。
[0039] 在本发明的一个实施例中,钝化壳209包含与纳米线205的圆周表面相邻的光导壳。优选地,纳米线205由直接带隙材料制成并且光导壳210由具有高的且间接的带隙的材料制成。光导壳可以构成整个的钝化壳210或者可以是以被外部壳围绕的内部壳的形式,该外部壳具有上文所描述的特性。由于光导壳由间接的高带隙材料制成,没有光将在该壳中被吸收并且光导壳指引光沿着纳米线205。
[0040] 参考图2b,在包含半导体材料的纳米线205中,具有比半导体材料的带隙大的能量的光子可以被吸收。然而,具有基本上超过带隙的能量的光子不但将生成电子空穴对而且将生成热量,这引起热能化损耗并且因而对太阳能电池的效率有负面影响。在本发明的一个实施例中,根据本发明的太阳能电池的纳米线205的内部结构可以包含一个或多个段215,其每个形成适用于吸收太阳光谱的预先确定的波长范围中的光的带隙。光的高能量部分则将在段215中被吸收,该段215形成适用于吸收包括该高能量部分的预先确定的波长范围中的光的带隙,而具有比那个段的带隙低的能量的光子将如经历透明波导那样经历那个段。
[0041] 在本发明的一个实施例中,太阳能电池结构包含吸收光的纳米线205,该纳米线205具有沿纳米线205分布的多个段215,其中每个段215适用于吸收太阳光谱的不同波长范围中的光。入射的光被用于被耦合进入纳米线205的顶部。多个段215被布置为使得每个段
215的带隙在从纳米线205的顶部朝纳米线205的底部的方向上降低。以这种方式实现光的阶梯式选择性吸收和传输,其中具有比多个段215中的一个的带隙高的能量的光被吸收并且具有较低能量的光被传送到下一个段215。然后下一个段将以其较低带隙来提供相同的选择性吸收和传输,等等。因此,太阳能电池谱的大部分可以被有效地利用,具有有限的热能化损耗,这给予了高效率。
[0042] 图2b示意性地示出本发明的太阳能电池结构的一个实施例,该太阳能电池结构包含构成太阳能电池结构的光吸收部分的纳米线205以及包围该纳米线205的至少一部分的光导壳210。优选地,纳米线205从衬底220突出。可选地,纳米线205从衬底220突出并且包含沿纳米线205分布的多个段215,其中每个段215适用于吸收太阳光谱的不同波长范围中的光。前端接触部224和后端接触部分别被电连接到纳米线的顶部和底部。如图2b所示,前端接触部224可以包围纳米线205的顶部并且后端接触部225可以被布置于在纳米线205的相对侧的衬底220上。为了有效地吸收在顶部处被耦合进入太阳能电池结构的光,多个段215被布置为使得每个段215的带隙在从纳米线205的顶部朝纳米线205的底部的方向上降低。光导壳210由具有比纳米线205的光吸收部分高的带隙的材料制成,并且优选地该带隙是间接的。因而,光导壳210以从纳米线205的顶部到底部的方向引导入射的光而不在其中吸收。
因此,具有越来越长的波长的入射的光相继在每个段215中被吸收。可选地,太阳能电池结构包含以围绕纳米线205的底部的卷绕结构覆盖衬底表面的介电层。此外,在图2b中示出的太阳能电池结构可以包含具有钝化和绝缘特性的外部壳层,如上文所述,该外部壳层包围光导壳210。因而,光导壳和该外部壳层一起构成太阳能电池结构的钝化壳。
[0043] 图3示意性地示出本发明的太阳能电池结构的一个实施例,其中光吸收部分为纳米线205,该纳米线205从衬底220突出并且被光导壳210部分地包围。纳米线205的顶部240从光导壳209向外延伸。前端接触部224和后端接触部225分别被电连接到纳米线205的顶部240和底部。如图3所示,后端接触部225可以被布置于在纳米线205的相对侧的衬底220上并且前端接触部224包围顶部240。前端接触部224可以是接触纳米线205的顶部240的金属网格(metal grid)或者覆盖整个太阳能电池结构的透明接触部。另外,在光导壳210上延伸的纳米线205的顶部240可以被掺杂以进一步增强接触特性。优选地,纳米线205包含直接带隙材料并且光导壳210由具有比纳米线205的直接带隙材料高的带隙的至少一个间接带隙材料制成以从光导壳210获得光导功能。纳米线205包含多个段215,每个段形成适用于吸收太阳光谱的预先确定的波长范围中的光的带隙。优选地,多个段215被布置为使得由段215形成的带隙在从衬底220的顶部240并且沿纳米线205朝底部的方向上相继降低。在使用中,入射的光被耦合进入太阳能电池结构并且首先高能量光子被吸收,接着具有相继更低能量的光子在它们朝纳米线205的底部传播时在段215中被相继吸收。由于光被光导壳210引导,纳米线可以部分不透明。段215可以通过例如江崎二极管216或者短的金属段被串联连接。
[0044] 纳米线技术允许异质结构的形成,诸如由多个段215形成的纳米线205的内部结构,不需要晶格匹配,这给予材料组合方面大的自由度。因而可以在纳米线205中实现几乎吸收太阳光谱的任何波长范围的带隙(这不能通过使用现有技术的平面技术容易地获得)。原则上,对于根据本发明的纳米线205的段215的不同带隙的数量没有限制并且因而来自大部分的太阳能电池光谱的光可以被吸收。
[0045] 优选地,通过光导壳到纳米线205上的径向生长,光导壳210外延地连接到纳米线205。
[0046] 在本发明的一个实施例中,太阳能电池结构包含纳米线205,其优选地在光导壳210的中心。光导壳210由间接高带隙材料制成并且足够窄以仅允许单模的光传播,并且比较起来纳米线小。根据该实施例的太阳能电池结构的功能如下:在纳米线205的顶部240处光被耦合进入太阳能电池结构。由于光导壳210是间接高带隙材料,在此将没有光被吸收,并且由于光导壳是单模的,场在核心处最强,即在纳米线205的位置处。当光向下传播时,更高的能量被有效地吸收,而具有比带隙低的能量的光子将仅仅经历透明的波导。由于能量带在纳米线205中被顺序地去掉,光子在每个段215中产生光电压,该光电压等于那个段中的带隙。理想地,该结构将如此有效以至于只有低能量的光穿透到衬底。然而,衬底也可以包含标准的光电二极管以收集零散的较高能量的光子并且生成光电压。
[0047] 本发明的太阳能电池结构的衬底220可以仅起机械支承和电接触部的作用,如图3所示,或者其也可以含有一个或多个电性有源部件,例如标准的光电二极管结构。具有光电二极管的这种太阳能电池结构的一个实施例在图4a中示意性地示出,该光电二极管由衬底220中的反向掺杂区域222、223来实现,例如p掺杂区域222和随后的n掺杂区域。
[0048] 图4b示出根据本发明的太阳能电池结构的另一个实施例,其中纳米线205在光导壳210的顶端处或者接近光导壳210的顶端处结束。可能地,但不是必须地,纳米线210以由催化粒子(catalytic particle)构成的罩250结束,这对于一些纳米线生长方法是典型的。这种布局最适合用在平的,优选地为透明的前端接触部上。
[0049] 光导壳210可以看作波导,尽管其不被限于作为单模波导操作。光导壳210以有序的方式指引或者引导光通过由递减的带隙构成的区域,这实现了顺序的光采集。而且,光导壳210防止由在纳米线205的圆周表面处的吸收以及由从太阳能电池结构中出来的光引起的损耗。
[0050] 图5a示意性地示出纳米线205的放大,显示段215和江崎二极管216,在段内有p型和n型区域。图5b示意性地示出本发明的实施例,其中通常被用在现有技术的平面型串联电池中的江崎二极管被换为金属段217。由于在根据本发明的太阳能电池结构中减少了对纳米线205的透明性的需要,这是有可能的。
[0051] 根据本发明的太阳能电池模块或者太阳能电池板典型地包含多个上述太阳能电池结构,其优选地被密集地组装在衬底或者晶圆上,以覆盖衬底或者晶圆表面的实质部分(substantial part)。太阳能电池模块可以包含一个晶圆,但是多个晶圆相互连接以给予所要求的电能产量也是有可能的。
[0052] 根据本发明的太阳能电池结构与使用平面技术制备的现有技术的太阳能电池相比的一个优点为这些结构可以在比通常的MOCVD简单得多的系统中生长。此外,原则上具有遍及全部太阳光谱的带隙的材料可以被并入纳米线。因而,衬底可以被仅用作支承结构。由于每个纳米线205要求小的生长面积,不需要整个晶圆上极端均匀的生长,这放松了对于生长系统的要求。同样地,由于小面积,衬底可以是多晶或者薄膜硅,或者更简单的一些材料。
[0053] 光导壳布局提供光子到核心中的本征集中,甚至在漫射光的条件下其也可以给予饱和电压。
[0054] 参考图6,根据本发明的实施例,提供包含具有多个垂直pn结的纳米线205的太阳能电池结构,其中上面的pn结形成高带隙部分而下面的pn结形成较低带隙部分。优选地用江崎隧道二极管将这些部分分开。光导壳210包围纳米线205并且钝化和绝缘材料优选地填满纳米线之间的体积(volumn)。举例来说,隧道二极管层可以是重掺杂AlGaAs、GaAsP或者GaInP。
[0055] 使用平面技术很难实现具有不同晶格常数的材料组合,在平面技术中要求晶格匹配。由于在本发明中,晶格匹配无关紧要(由于否则在使用常规的平面外延生长方法时其将妨碍这种类型的发展),该方法在将来可以被拓展到更多的结。对于双结太阳能电池,顶端段的带隙(子电池)理想地应当在1.6-1.8eV的范围中并且底端段的带隙(子电池)在0.9-1.1eV的范围中。可以通过将GaAsP或者GaInP用于顶端段以及将GaInAs或者InAsP用于底端段而达到这些带隙能量。用于能量采集的这些材料组合所跨越的整个能量范围覆盖0.4eV(InAs)到2.24eV(GaInP)。
[0056] 在根据本发明的光导布局中,光导壳的宽度d,如图6所示,大于波长λ除以其折射率n。优选地,宽度d大于500nm。光导壳209通过反射指引光沿着纳米线。如图所示,钝化壳209可以是填满纳米线之间的体积的基质(matrix)。
[0057] 根据本发明的太阳能电池结构的特定实施例的一个例子具有光子光导设计,经完全透明的高折射率壳(如A1N)的径向生长而产生,其起具有大约0.5微米的直径的完全光导结构的作用,具有大约100纳米的光导结构是多带隙核心结构。由于延长的纳米线的密集布局,纳米线205的顶部(大约0.5微米)将捕获入射的光通量,接着以使得高能量部分将在顶端段中被捕获的方式被向下传输该光通量,该顶端段对于低于其带隙的所有光子能而言看起来就像是完全透明的波导。相同的选择性吸收和传输则将由下一个段用其较低的带隙来提供,等等。在顶端以上,所选择的带隙段是被用于接触的、长的n型重掺杂GaN段。底端段可以由InN制成并且中间段包含逐渐增长的Ga份额直到具有大约Ga0.7In0.3N的组合物(composition)的顶端段。在这种情况下,由于最低的带隙将位于纳米线的底端,衬底将提供支承和后端接触部。可能的其他材料组合是AlGaInAsP。在这个材料系统中,存在具有在0.4eV直到2.25eV之间的值的直接带隙材料,因而完全比得上多结电池的技术发展平。在这种情况下,下面的段可以在沿用已久的InAs1-xPx系统中形成,并且上面的段例如可以在GaxIn1-xP系统中形成,由富含Ga(70%)的GaInP构成的顶端段具有2.25eV的直接带隙。这些是使用在其中要求晶格匹配的常规平面技术还无法得到的材料组合。
[0058] 使用根据本发明的基于纳米线的太阳能电池结构控制(太阳)光的吸收也可以用其他方式获得,该其他方式可以是被称为类似于“有效介质”的概念。“有效介质”通常被描述为含有在长度尺度(length-scale)上大大地小于入射光的波长的不同材料的结构。这个概念可以被看作通过吸收的光学效应用以基本上小于入射光(打算要将其吸收)的波长的距离间隔的、优选地为平行的纳米线的密集布局替代通常的在连续膜中所使用的吸收(this concept can be seen as a replacement of the commonly used absorption in continuous films by the optical effects of absorption by a dense arrangement of preferably parallel nanowires,spaced by distances substantially smaller than the wavelength of the incident light(that is intendedto be absorbed))。
[0059] 根据本发明的太阳能电池结构的一个实施例包含构成太阳能电池结构的光吸收部分的多根纳米线。纳米线可选地从衬底突出并且被以相邻纳米线之间的最大间距来提供,该最大间距小于太阳能电池结构打算要吸收的光的波长,以获得“有效介质”效果。优选地,由具有高的且间接的带隙的材料构成的钝化壳包含该纳米线的至少一部分。钝化壳可以完全填满纳米线之间的间距。
[0060] 纳米线的内部结构可以包含一个或多个段,每个段形成适用于吸收太阳光谱的预先确定的波长范围中的光的带隙。通过提供具有不同带隙的段,每个段适用于吸收太阳光谱的不同波长范围中的光。
[0061] 在本发明的一个实施例中,太阳能电池结构包含多根纳米线,在衬底上以相邻纳米线之间的比所述不同波长范围的最短波长短的最大间距提供该多根纳米线。
[0062] 图7示意性地示出“有效介质”概念,其中a)示意性地示出通过使用平面技术制备的常规多结光伏设备,其中多个层741、742、743、744、745、746形成吸收入射的光的不同部分的段,用粗箭头指示。如在背景技术中所描述的,用合适的材料组合形成这种多层结构是相当困难的并且要求使用昂贵的III-V族衬底720。图7示意性地示出根据本发明的一个实施例的太阳能电池结构,其包含由密集组装的纳米线705构成的矩阵(matrix),具有最大纳米线间距D,即中心到中心距离,其比设备设计用来吸收的最短波长小。入射的光子将把密集的阵列“看作”拟连续(quasi-continuous)的吸收层的序列,而生成的电子和空穴将通过垂直的纳米线结构被精确地收集。这种方式允许用于PV电池光照(illumination)的标准几何构造,确保最高PV效率所要求的顺序吸收特征。
[0063] 相邻的纳米线之间的最大间距D小于400纳米,优选地小于200纳米以及甚至更优选地小于150纳米。在该实施例中的纳米线宽度典型地为大约100纳米。最大间距D也可以与光的波长λ和纳米线材料的有效折射率neff相关。优选地,最大间距D小于λ/neff。衬底720优选地为硅衬底,并且纳米线705优选地从衬底生长。
[0064] 参考图8,根据本发明的一个实施例,包含具有垂直单个pn结的纳米线705的太阳能电池结构被提供。衬底720可以是诸如InP或者GaAs衬底的p型III-V族晶圆,如图中示意性地所示,但是硅衬底在许多情况中是优先的选择。为了接触上方顶端的n导电(n-conducting)区域,导电的透明膜可以被沉积在整个结构上,由于n掺杂纳米线区域之间的区域被绝缘和表面钝化介电掩膜(例如SiO2)覆盖,其构成包围纳米线705的钝化壳709。
[0065] 参考图9,根据本发明的一个实施例,以有效介质构架的形式提供形成段715的多个pn结。该图示意性地示出具有嵌入的江崎隧道二极管716和包围的钝化壳709的串联光伏电池。通过将纳米线705的长度、宽度(直径)和密度选择为足够高,该几何构造将保证基本上所有入射的辐射将被纳米线705吸收。在双结的顶端,可以生长间接带隙材料构成的段以增强光导方法的光吸收效率。具有超过所选择的材料的带隙的能量的光子的纳米线吸收可以是高的并且可以预期取决于波长的穿透深度。
[0066] 基于有效介质概念的实施例中钝化壳709主要用于钝化和绝缘。然而,该钝化壳709可以包含光导壳,如在本说明书的其他实施例中所描述的那样。图10示意性地示出根据本发明的太阳能电池结构的一个实施例,该太阳能电池结构包含从衬底720突出的多根纳米线705。纳米线705包含被江崎隧道二极管716分开的多个pn结形成段715。纳米线705被密集地组装,即以纳米线之间比该太阳能电池结构打算要吸收的光的波长短的的最大间距D来组装。优选地,纳米线的顶部740包含高度掺杂段以便对于于前端接触部来说获得低接触部电阻。如上所述,完全填满纳米线之间的体积的钝化壳709包含光导壳709。
[0067] 为了基于纳米线的高效率多结光伏电池的实现,提供光吸收以恰当的顺序发生,因而应当避免在不同材料部分中的随机吸收。在上文所描述的实施例中,该顺序吸收通过使用核心-壳结构来实现,通过该核心-壳结构将光从纳米线的顶端引导到纳米线的底端。
[0068] 尽管本发明的太阳能电池结构已经被描述为适用于光通过前端接触部或者顶部耦合进入纳米线,本发明并不局限于此。入射光也可以通过衬底被传送进入纳米线。在这种情况下,应当以将段布置为吸收最高能量的段最接近衬底。此外,可以做薄或者甚至去除衬底。
[0069] 包含多个段215、715的实施例不限于段215、715,其中每个适用于吸收太阳光谱的不同波长范围中的光。太阳能电池结构的纳米线205、705可以包含两个或者更多的段215、715,其适用于吸收太阳光谱的相同的预先确定的波长范围中的光。这可以被用于逐步增加太阳能电池结构的电压输出。
[0070] 虽然在多结PV应用的背景下描述本发明,所期望的是发现在其他光电子领域中的应用,诸如用于光检测器。如本领域的技术人员所理解的那样,在本文中描述的本发明的实施例可以各种方式组合。
[0071] 用于衬底的合适的材料包括,但不限于:Si、GaAs、GaP、GaP:Zn、InAs、InP、GaN、Al2O3、SiC、Ge、GaSb、ZnO、InSb、SOI(绝缘体上硅,silicon-on-insulator)、CdS、ZnSe、CdTe。用于纳米线和纳米线的段的材料包括,但不限于:GaAs、InAs、Ge、ZnO、InN、GaInN、GaN AlGaInN、BN、InP、InAsP、GaP、GaAsP、GaInP、GaInAs、AlInP、GaAlInP、GaAlInAsP、GaInSb、InSb、Si。可能的施主掺杂物为Si、Sn、Te、Se、S等等,并且受主掺杂物为Zn、Fe、Mg、Be、Cd等等。用于钝化和光导的壳的合适的材料包括,但不限于:AlN、GaN、InN、AlGaInN、BN、SiC、GaP、GaAsP、AlAs、AlP、AlSb、AlAsP、GaAlAs、GaAlAsP、AlInP、SiO2、Al2O3、ZnO、SiN、HfO2、ZrO2、ZnCdTeSeS、玻璃、有机聚合物等等。应当注意到的是使用在本文中所描述的纳米线技术使得使用诸如GaN、InN和AlN的氮化物成为可能。
[0072] 虽然已经结合那些当前被认为是最实际的并且优选的实施例描述了本发明,应当理解的是本发明不限于所公开的实施例,相反地,其旨在于覆盖随附的权利要求的范围内各种变形和等效布局。
QQ群二维码
意见反馈