一个与温度变化有关量的PN结传感器

申请号 CN86107738 申请日 1986-11-18 公开(公告)号 CN1009579B 公开(公告)日 1990-09-12
申请人 张开逊; 发明人 张开逊;
摘要 本 发明 提出了一种新的原理,用同一个 传感器 实现 温度 、 风 速、流量、浓度、 含 水 量 、振动、 真空 度和热导的快速高灵敏测量。它改变了传统的测量方法,利用同种物质发生在同一空间 位置 的不同物理过程同时获得多种参数,解决了传感技术领域中的一个古典难题。将以前所未有的简便方法制造出一代新型测量控制仪表和报警系统,广泛用于工业、农业、医学、和环境保护,并进入家庭用于保健和 防盗 。
权利要求

1.一种测量与PN结温度变化有关量的传感器,包括:一个放在被测介质中的交替工作在反向击穿和正向导通两种状态的PN结器件[1]该器件在反向供电时处于击穿状态产生热量,使PN结的温度高于被测介质的温度,向被测介质发散热量,该PN结在正向供电时,处在导通状态测量正向结电压,从而获得表示有关待测量的电信号;一个具有正反向供电分离电路的交流电源[7],该电源经过正反向供电分离电路[8]与PN结[1]相联,使PN结[1]交替工作在正向导通和反向击穿状态;一个显示电路,该电路通过测量PN结[1]处于正向导通状态时的温度或PN结[1]处于反向击穿状态时的加热功率变化量获得表示有关待测量的电信号
2.根据权利要求1所述的传感器,采用两个或两个以上各自分别处于上述正反向交替工作状态的P-N结,置于待测流场中不同空间位置,通过测量对应反向击穿加热功率或加热电流或正向电压之差获得反映被测介质流速、流量、导热系数、成分、真空度变化的电信号。
3.根据权利要求2所述的传感器,在进行上述测量时有一个交替双向导通的P-N结置于参考流场中。
4.根据权利要求2或3所述的传感器,分别保持上述P-N结反向击穿加热功率不变,以其对应正向电压之差为输出信号,或分别保持上述P-N结正向电压不变,以其对应加热功率或反向电流之差为输出信号。
5.根据权利要求4所述的传感器,交流电源〔7〕输出的电压信号经过正反向供电分离电路〔8〕分别向交替工作在反向击穿和正向导通状态置于被测流场中的P-N结〔9〕和置于参考流场中的P-N结〔10〕供电,〔9〕和〔10〕的正向电压分别输入差分放大器〔11〕的两个输入端,〔11〕输出的电压信号加在有源滤波器〔12〕的输入端上,〔12〕的输出电压(或电流)由指示仪表〔13〕显示。
6.根据权利要求6所述的传感器,〔7〕输出的电压信号是正弦波、方波或其他任何正负半周不对称或不规则的交流电压。
7.根据权利要求6所述的传感器,〔8〕的构成方式如下,交流电源输出端〔14〕与电阻〔15〕、〔16〕公共端相联,〔15〕的另一端与二极管〔17〕正端相联,〔16〕的另一端与二极管〔18〕负端相联,〔17〕的负端与〔18〕的正端相联,再与用于测量的P-N结〔1〕的一端相联结。
8.根据权利要求6所述的传感器,〔8〕的另一种构成方式如下,交流电源的输出端〔14〕与电阻〔21〕〔22〕的公共端相联,〔21〕另一端与N-P-N型晶体管〔23〕基极相联,〔23〕集电极与直流电源正极〔24〕相联,〔22〕另一端与二极管〔25〕负端相联,〔25〕正端与〔23〕发射极相联,再与用于测量的处于正反向交替工作状态的P-N结〔1〕负端相联。
9.根据权利要求6所述的传感器,〔8〕还有一种构成方式,交流电源的输出端〔14〕与电阻〔28〕、〔29〕公共端相联,〔28〕另一端与P-N-P型晶体管〔30〕基极相联,〔30〕集电极与直流电源负极〔31〕相联,〔29〕另一端与二极管〔32〕正端相联,〔32〕负端与〔30〕发射极相联,再与用于测量的处于正反向交替工作状态的P-N结〔1〕正端相联。

说明书全文

发明属于电子学测量技术,属于根据被测对象热交换特性变化取得电信号的方法和装置发明。

根据被测对象热交换性质变化取得电信号的方法已经成为无机械转动部件高响应速度测量流体流速流量的主要电子学手段,也是进行流体状态监测和成分分析的重要方法。目前根据被测对象热交换性质变化以半导体器件取得电信号的典型方案如US3988928和US3992940,前者加热体和测温元件不在同一空间位置,需通过介质热耦合,热惯性较大,同时因加热体和测温元件之间的热阻而引入热滞误差。后者由于加热参数与测温参数互相影响,为信号处理带来不便,影响测量精度。本发明目的在于克服上述两种方法的缺陷,为流体速度、流量、成份、导热系数及真空度的快速高精度动态测量提供一种新的方法和装置。

图1    一个交替工作在反向击穿和正向导通状态用于测量的P-N结供电方式示意图。1-用于测量的P-N结,2-反向击穿电流,3-反向击穿电流波形,4-正向电流,5-正向电流波形,6-交替接通正反向电流的开关

图2    保持P-N结反向击穿加热功率不变以其正向电压之差为输出信号的测量装置电路框图

图3    正反向供电分离电路的三种构成方式。

图4    一种应用本发明的具体电路。

采用交替工作在反向击穿和正向导通两种状态的P-N〔1〕,以其处于反向击穿状态时产生的热量使〔1〕的温度高于被测介质环境温度,向被测介质散发热量,以其处于正向导通状态时的结电压测量由于被测介质热交换性质变化而引起的〔1〕的温度变化。通过测量〔1〕处于反向击穿状态时的加热功率或加热电流变化量或通过测量〔1〕处于正向导通状态时的正向电压变化量,获得反映被测介质流速、流量、导热系数、成份、真空度变化的电信号。

由于采用同一个P-N结〔1〕兼做热源和感温元件,加热元件和感温元件之间热阻为零,正向导通和反向击穿状态交替的频率在0.1赫兹到10000赫兹之间,在状态交替的一个周期内,正向导通时间与反向击穿时间的比在10-3到103范围内。

为了消除环境因素造成的误差,采用两个或两个以上各自分别处于上述正反向交替工作状态的P-N结,置于待测流场中不同空间位置,其中一个用以感受被测量的变化,另一个提供环境参数补偿,消除温度等物理参数对测试结果的影响。通过测量对应反向击穿加热功率或加热电流或正向电压之差获得反映被测介质流速、流量、导热系数、成份、真空度变化的电信号。在进行上述测量时,有一个交替双向导通的P-N结置于参考流场中,指的是测量介质流速流量时,将上述交替处于正反向状态的一个P-N结置于流速不变的被测介质中;测量导热系数时,将上述交替处于正反向状态的一个P-N结置于已知导热系数的介质中;测量介质成份时,将上述交替处于正反向状态的一个P-N结置于已知导热系数的介质中;测量成份时,将上述交替处于正反向状态的一个P-N结置于已知成份的流体介质中;测量真空度时,将上述交替处于正反向状态的一个P-N结置于已知气压的被测介质中。另外的上述交替处于正反向状态的P-N结则置于被测流体介质中。

分别保持上述P-N结反向击穿加热功率不变,以其对应正向电压之差为输出信号。或分别保持上述P-N结正向电压不变,以其对应加热功率之差或反向电流之差为输出信号。

在分别保持上述P-N结反向击穿加热功率不变,以其对应正向电压之差为输出信号的情况下,测量电路框图如下:交流电源〔7〕输出的电压信号经过正反向供电分离电路〔8〕分别向交替工作在反向击穿和正向导通状态置于被测流场中的P-N结〔9〕和置于参考流场中的P-N结〔10〕供电,〔9〕和〔10〕的正向电压分别输入差分放大器〔11〕的两个输入端,〔11〕输出的电压信号加在有源滤波器〔12〕的输入端上,有源滤波器〔12〕的作用在于滤除〔9〕交替导通时产生的交流信号,而不妨碍被测信号通过。〔12〕的输出电压(或电流)由指示仪表〔13〕显示,指示出被测流场流速、流量、导热系数、成份、真空度的变化。

交流电源〔7〕输出的电压信号可以是正弦波、方波或其他任何正负半周不对称或不规则的交流电压。〔8〕的作用在于使交流电源〔7〕输出的电压信号在〔9〕和〔10〕上获得所需要的反向击穿电流和正向导通电流,其构成方式如下:交流电源输出端〔14〕与电阻〔15〕、〔16〕公共端相联,〔15〕的另一端与二极管〔17〕正端相联,〔16〕的另一端与二极管〔18〕负端相联,〔17〕的负端与〔18〕的正端相联,再与用于测量的、处于正反向交替工作状态的P-N结〔1〕的一端相联。或交流电源输出端〔14〕与电阻〔21〕〔22〕的公共端相联,〔21〕另一端与N-P-N型晶体管〔23〕基极相联,〔23〕集电极与直流电源正极〔24〕相联,〔22〕另一端与二极管〔25〕负端相联,〔25〕正端与〔23〕发射极相联,再与用于测量的处于正反向交替工作状态的P-N结〔1〕负端相联。

为了提高测量灵敏度和比功率密度,在利用上述方法进行测量时,采用M个同向串联的P-N结交替工作在正向导通和反向击穿状态(其中M是任何大于1的正整数)。

实现本发明的一个具体方案。以同向串联的双P-N结〔49〕和〔50〕作测量元件,〔49〕和〔50〕分别置于待测流场和参考流场中,测量电路构成如下:电容〔34〕一端接地,另一端与电阻〔36〕一端相联再与运算放大器〔35〕反相端相联,电阻〔38〕一端接地,另一端与电阻〔37〕一端相联再与〔35〕同相端相联,〔35〕的输出端与电阻〔36〕〔37〕〔39〕〔40〕〔41〕〔42〕的公共端相联,〔39〕另一端与N-P-N型晶体管〔44〕基极相联,〔41〕另一端与N-P-N型晶体管〔45〕基极相联,〔44〕〔45〕集电极同时与正电源〔48〕相联,〔44〕发射极与〔46〕正端相联再与〔49〕负端相联,〔45〕发射极与〔47〕正端相联再与〔50〕负端相联,〔46〕负端与电阻〔40〕另一端相联,〔47〕负端与电位器〔43〕一端相联,〔43〕另一端与电阻〔42〕另一端相联,〔49〕的负端与二极管〔51〕负端相联,〔50〕负端与二极管〔52〕负端相联,电阻〔53〕〔54〕〔55〕〔56〕电容〔58〕电位器〔57〕及运算放大器〔59〕构成低通差分放大器,〔59〕的输出端与电压表〔60〕输入端相联。〔42〕与〔47〕之间的电位器〔43〕用于调节差分放大器〔59〕平衡,〔49〕与〔53〕之间的二极管〔51〕及〔50〕与〔54〕之间的二极管〔52〕用于隔离〔49〕与〔50〕上的反向击穿电压,使其不进入差分放大器,与〔56〕串联的电位器〔57〕用以调节测量系统的灵敏度。流速、流量、导热系数、成份及真空度测量均可用以上装置进行测量。

本发明具有以下特点:1.测量时传感器的产热及感温过程均发生在同种材料的同一空间位置,即同一个P-N结的结区之内,热源与感温体之间热阻为零,消除了由于热传导引入的热耦合误差,从而实现了无热滞测量,适于测量热物理参数迅速变化的流场。

2.传感器与测量仪器相联的两根导线既传输加热功率又传输测量讯号,减少了连接传感器的导线数目,可以用简单的方式远距离传输流场测量讯号,尤其适用于矿、油井、深海及危险环境的远距离流场参数测量和流体成份分析。

3.由于传感元件交替工作在正反向状态,输出的测量信号是经过调制的脉冲序列,可以克服信号处理系统级间直流耦合造成的温度漂移和环境温度变化对传输系统的影响,获得高稳定性和测量精度,特别适于长期连续监测流场的细微变化。

4.由于测量过程所依据的物理效应是P-N结的正向导通和反向击穿,这两种物理过程可以在很宽的温度区段同时存在,因而适用于很宽的温度区段,广泛用于制冷工程、空调系统、气象观测、流体管道输运、高温高速气流速度场分析及发动机测试等。

5.由于以时间分割方式分别采用独立电源向传感元件提供加热功率和正向电流,加热参数与测温参数互不影响,对不同的散热环境均可获得很高的测量精度。

6.由于加热与测温元件合二为一,减少了对电源的消耗,适于用微型电源做成小型的便携式流场测量装置。

QQ群二维码
意见反馈