基于同位素标记的堵截源后底板承压水量的测定方法

申请号 CN201510969435.1 申请日 2015-12-21 公开(公告)号 CN105527452A 公开(公告)日 2016-04-27
申请人 山东科技大学; 发明人 刘伟韬; 王东辉; 张勤; 宋文成; 王建宁; 范龙;
摘要 本 发明 公开了一种基于同位素标记的堵 水 截源后 底板 承压水量的测定方法,该方法首先通过对采 煤 工作面底板水文地质条件进行精细探测;然后在井下施工在 煤层 中布置帷幕截流巷,在帷幕截流巷处布置帷幕线,并依次对注浆孔进行帷幕注浆;利用工作面上下顺槽,每隔一定的距离向所述煤层中打向下的倾斜钻孔作为投放孔,相邻的投放孔之间打观测孔;最后通过公式计算得出底板承压水量和次要水源对底板承压水的补给速度。本发明对受承压水威胁的矿井采用堵水截源后人工排水时选用排水设备及所需 费用 具有重要指导意义,并且具有安全性高、可靠性好,施工方法简单、成本低等特点,具有较好的技术推广价值。
权利要求

1.一种堵截源后底板承压水量的测定方法,其特征在于,依次包括以下步骤:
a对采工作面底板水文地质条件进行精细探测;
b井下施工在煤层中布置帷幕截流巷,在所述帷幕截流巷处布置帷幕线,根据所述帷幕线确定注浆孔的位置,并依次对所述注浆孔进行帷幕注浆,其中,所述注浆孔依次穿过位于所述煤层下方的隔水层和承压水含水层,并伸入至所述承压水含水层下面的岩层;
c利用工作面上下顺槽,每隔一定的距离向所述煤层中打向下的倾斜钻孔作为投放孔,所述投放孔穿过所述隔水层,并伸入至所述承压水含水层,向每个投放孔中投放重水,并且每个投放孔中的重氧水密度相同且体积相同,记下每个投放孔中的重氧水密度δ;
d在相邻的投放孔之间打向下的倾斜钻孔作为观测孔,所述观测孔穿过所述隔水层,并伸入至所述承压水含水层,所述投放孔在所述承压水含水层中的深度与观测孔在承压水含水层中的深度相同;
e待重氧水与承压水含水层中的承压水混合均匀后,进行测量,测量次数从第一次、第二次…第n次,其中每隔1小时测量一次,每次测量的同位素密度作为δi,通过式(1)计算得出底板承压水量M,
式(1)中:m为投放同位素总量,m2;
δ为最初投放的同位素密度,g/m2;
2
δi为第i次测量样本中同位素密度,g/m;
f运用重氧水质量守恒原则,通过式(2)计算出次要水源对底板承压水的补给速度V,式(2)中:Mi为第i次测量所得承压水的总量,m2;
n为测量的次数,且n≥10。
2.根据权利要求1所述的堵水截源后底板承压水量的测定方法,其特征在于:步骤a中,精细探测包括对底板承压水主要的涌水通道位置、补给水源的流速、流量及流向进行测定。
3.根据权利要求1所述的堵水截源后底板承压水量的测定方法,其特征在于:步骤b中,所述帷幕线与地下水流方向垂直。
4.根据权利要求1所述的堵水截源后底板承压水量的测定方法,其特征在于:所述投放孔在所述承压水含水层中的深度为1~3m。

说明书全文

基于同位素标记的堵截源后底板承压水量的测定方法

技术领域

[0001] 本发明涉及矿井下承压水量的测定方法,具体涉及一种基于同位素标记的堵水截源后底板承压水量的测定方法。

背景技术

[0002] 随着煤矿开采深度的不断增加,开采条件、地质条件越来越复杂,工作面回采过程中,往往会遇到承压水的问题,这给安全生产带来很大困难,很容易出现底板突水事故。
[0003] 目前,本领域的研究者们通常是采用深降强排和带压开采的方式来解决上述问题,其中的深降强排过程中一般会采用堵水截源后将底板承压水排出,这样减少了承压水的排水量,然而在选择排水设备时,一般矿井选择大功率的排水设备,没有考虑到承压水总量和补给速度,势必会造成对设备的浪费,而且大功率的设备耗电也多。

发明内容

[0004] 本发明的目的在于提供一种基于同位素标记的堵水截源后底板承压水量的测定方法,该方法可以测出承压水的总量和次要水源对承压水的补给速度,具有一定的推广价值。
[0005] 其技术解决方案包括:
[0006] 一种堵水截源后底板承压水量的测定方法,依次包括以下步骤:
[0007] a对采煤工作面底板水文地质条件进行精细探测;
[0008] b井下施工在煤层中布置帷幕截流巷,在所述帷幕截流巷处布置帷幕线,根据所述帷幕线确定注浆孔的位置,并依次对所述注浆孔进行帷幕注浆,其中,所述注浆孔依次穿过位于所述煤层下方的隔水层和承压水含水层,并伸入至所述承压水含水层下面的岩层;
[0009] c利用工作面上下顺槽,每隔一定的距离向所述煤层中打向下的倾斜钻孔作为投放孔,所述投放孔穿过所述隔水层,并伸入至所述承压水含水层,向每个投放孔中投放重水,并且每个投放孔中的重氧水密度相同且体积相同,记下每个投放孔中的重氧水密度δ;
[0010] d在相邻的投放孔之间打向下的倾斜钻孔作为观测孔,所述观测孔穿过所述隔水层,并伸入至所述承压水含水层,所述投放孔在所述承压水含水层中的深度与观测孔在承压水含水层中的深度相同;
[0011] e待重氧水与承压水含水层中的承压水混合均匀后,进行测量,测量次数从第一次、第二次…第n次,其中每隔1小时测量一次,每次测量的同位素密度作为δi,通过式(1)计算得出底板承压水量M,
[0012]
[0013] 式(1)中:m为投放同位素总量,m2;
[0014] δ为最初投放的同位素密度,g/m2;
[0015] δi为第i次测量样本中同位素密度,g/m2;
[0016] f运用重氧水质量守恒原则,通过式(2)计算出次要水源对底板承压水的补给速度V,
[0017]
[0018] 式(2)中:Mi为第i次测量所得承压水的总量,m2;
[0019] n为测量的次数,且n≥10。
[0020] 作为本发明的一个优选方案,步骤a中,精细探测包括对底板承压水主要的涌水通道位置、补给水源的流速、流量及流向进行测定。
[0021] 作为本发明的另一个优选方案,步骤b中,所述帷幕线与地下水流方向垂直。
[0022] 优选的,所述投放孔在所述承压水含水层中的深度为1~3m。
[0023] 本发明所带来的有益技术效果是:
[0024] 与现有技术相比,本发明通过向投放孔中放置同位素,并且与观测孔配合,通过同位素重氧水的质量守恒原则,借助公式计算得到底板承压水量和次要水源对承压水的补给速度,该方法在帷幕注浆和投放孔、观测孔实施过程中操作简单,所需人员少,一般2~4人即可完成,节约人员成本,并且整个操作过程均在巷道中进行,可以保证工作人员的安全,投放孔和观测孔长度较长,在实验完毕后封堵方便;
[0025] 该方法借助公式计算得到底板承压水量和次要水源对承压水的补给速度,对受承压水威胁的矿井采用堵水截源后人工排水时选用排水设备及所需费用具有重要指导意义,根据此方法可以精确选取水的流量,避免盲目选取大排量的水泵,造成设备浪费,从而节约设备成本和降低水泵的能源消耗;并且在帷幕注浆和投放孔和观测孔实施过程中操作简单,所需人员少,一般2~4人即可完成,节约人员成本;
[0026] 本发明相对于现有技术具有安全性与可靠性好,施工方法简单、效率高、成本低等有益效果。附图说明
[0027] 下面结合附图对本发明做进一步说明:
[0028] 图1为本发明测定方法的流程图
[0029] 图2为帷幕注浆及钻孔布置平面图;
[0030] 图3为帷幕注浆及钻孔布置剖面图;
[0031] 图中,1-帷幕截流巷,2-承压水含水层,3-帷幕线,4-观测孔,5-投放孔,6-隔水层,7-岩层。

具体实施方式

[0032] 下面结合具体实施例对本发明做详细说明。
[0033] 如图1所示,本发明,基于同位素标记的堵水截源后底板承压水量的测定方法,依次包括以下步骤:
[0034] 步骤1、收集地质资料,对采煤工作面水文地质条件做精细探测,具体精细探测的内容包括有:是否符合帷幕注浆的要求,查明底板承压水主要的涌水通道位置,并测定补给水源的流速、流量和流向;
[0035] 步骤2、当上述精细探测达标后,帷幕注浆以实现堵水截源,具体的如图2所示,帷幕注浆切断地下水通道,包括以下子步骤:
[0036] 井下施工并在煤层开挖帷幕截流巷1,布置帷幕线3,帷幕的位置应该符合以下条件:
[0037] (1.1)帷幕线必须布置在主要进水口地段并与地下水流方向直交;
[0038] (1.2)要求主要过水断面封堵严密,不产生绕流;
[0039] (1.3)做到帷幕形成后不被采矿所破坏;
[0040] 为确保帷幕注浆达到堵水的效果,在注浆孔的布置上应该做到以下几点:
[0041] 注浆孔布置的两端应坐落在不透水体上;
[0042] (2.1)注浆孔的布置密度应当合理选取,保证注浆孔浆液扩散后可以相互连接;
[0043] (2.2)注浆孔的钻进深度以穿透承压水含水层2为原则,即注浆孔一定要伸入承压水含水层2下面的岩层7,注浆孔在岩层7内的最宜深度为3~5m;
[0044] (2.3)注浆孔的布置以垂直水流方向为宜;
[0045] 注浆钻孔完成后立即进行灌浆,形成完整的帷幕;
[0046] 步骤3、利用工作面上下顺槽,每隔一定的距离向煤层中打向下的倾斜钻孔作为投放孔5,投放孔5有14个,如图2所示,分别编号为T1、T2、T3、T4、T5、T6、T7、T8、T9、T10、T11、T12、T13、T14,这14个投放孔5均穿过隔水层6,并伸入至承压水含水层2,向每个投放孔中投放重氧水,并且每个投放孔中的重氧水密度相同且体积相同,记下每个投放孔中的重氧水密度δ,并且根据投放孔中重氧水的密度和体积可计算得到投放的同位素总量;
[0047] 步骤4、在相邻的投放孔之间打向下的倾斜钻孔作为观测孔4,分别编号G1、G2、G3、G4…G14,所有的观测孔4均穿过隔水层6,并伸入至承压水含水层2,投放孔5在承压水含水层2中的深度与观测孔在承压水含水层2中的深度相同;
[0048] 步骤5、提取样本进行计算,计算出堵水截源后底板承压水量,具体如下:
[0049] 提取承压水样本进行测量,测量分为两步:
[0050] (1)检验同位素与承压水是否混合均匀,
[0051] 首先用质谱仪测出所有观测孔承压水中重氧水的密度,如果密度相差太大,则证明同位素没有混合均匀,然后相隔12小时候再次测量,直到样本中重氧水密度相近为止;
[0052] (2)提取样本进行计算,计算出堵水截源后底板承压水量,
[0053] 证明同位素混合均匀后,第一次全面测量,以后每隔1小时测量一次,重复进行n次(n≥10);
[0054] 待重氧水与承压水含水层中的承压水混合均匀后,进行测量,测量次数从第一次、第二次…第n次,其中每隔1小时测量一次,每次测量的同位素密度作为δi,通过式(1)计算得出底板承压水量M,
[0055]
[0056] 式中:m为投放同位素总量,m2;
[0057] δ为最初投放的同位素密度,g/m2;
[0058] δi为第i次测量样本中同位素密度,g/m2;
[0059] 运用重氧水质量守恒原则,通过式(2)计算出次要水源对底板承压水的补给速度V,
[0060]
[0061] 式(2)中:Mi为第i次测量所得承压水的总量,m2;
[0062] n为测量的次数,且n≥10。
[0063] 实施例1:
[0064] 以某煤矿某一工作面为例,在治理工作面底板承压水过程中,对该煤矿工作面底板堵水截源后底板承压水量的测定方法进行举例说明:
[0065] 施工方法,包括以下步骤:
[0066] 步骤一、收集地质资料,对采煤工作面水文地质条件做精细探测,
[0067] 具体精细探测的内容包括有:
[0068] 1、勘测此工作面地质是否符合帷幕注浆的要求,勘测结果表明工作面底板承压水的主要水源较为集中;
[0069] 2、利用承压水示踪实验查明底板承压水主要的涌水通道位置,并测定补给水源的流速、流量和流向。
[0070] 步骤二、当上述精细探测达标后,帷幕注浆以实现堵水截源,帷幕注浆切断地下水通道,包括以下子步骤:
[0071] (1)井下施工并在煤层开挖帷幕截流巷,然后布置帷幕线,帷幕线布置在主要进水口地段并与地下水流方向直交,帷幕线距离工作面停采线5~10m,保证帷幕形成后不被采矿过程所破坏;
[0072] (2)为确保帷幕注浆达到堵水的效果,注浆孔布置的两端坐落在上、下顺槽的底板岩层中,注浆孔的布置间距为1.5m,保证注浆孔浆液扩散后相互连接;注浆孔伸入承压水含水层下面的岩层5m;
[0073] 注浆钻孔完成后立即进行灌浆,形成完整的帷幕;
[0074] 步骤三、利用工作面上下顺槽,每隔25m向煤层中打向下的倾斜钻孔作为投放孔,投放孔共设14个,分别编号为T1、T2、T3、T4、T5、T6、T7、T8、T9、T10、T11、T12、T13、T14,向每个投放孔中投放密度为21.6%重氧水2500mm;
[0075] 步骤四、在相邻的投放孔之间打向下的倾斜钻孔作为观测孔,共设14个,分别编号G1、G2、G3、G4…G14,投放孔在承压水含水层中的深度与观测孔在承压水含水层中的深度相同;
[0076] 步骤五、提取样本进行计算,计算出堵水截源后底板承压水量,具体如下:
[0077] 提取承压水样本进行测量,测量分为两步:
[0078] (1)检验同位素与承压水是否混合均匀,
[0079] 首先用质谱仪测出所有观测孔承压水中重氧水的密度,第一次测量时,样本密度相差太大,方差为4.51,证明同位素没有混合均匀,然后相隔12小时候进行第二次测量,样本方差为0.19,证明同位素混合均匀。
[0080] (2)提取样本进行计算,计算出堵水截源后底板承压水量,
[0081] 待重氧水与承压水含水层中的承压水混合均匀后,进行测量,测量次数从第1次、第2次…第15次,其中每隔1小时测量一次,每次测量的同位素密度作为δi,通过式(1)计算得出底板承压水量M,
[0082]
[0083] 式中:m为投放同位素总量,m2;
[0084] δ为最初投放的同位素密度,g/m2;
[0085] δi为第i次测量样本中同位素密度,g/m2;
[0086] 运用重氧水质量守恒原则,通过式(2)计算出次要水源对底板承压水的补给速度V,
[0087]
[0088] 式(2)中:Mi为第i次测量所得承压水的总量,m2;
[0089] n为测量的次数,且n=15。
[0090] 测量结果为:此工作面承压水总量为421.7万t,次要水源对底板承压水的补给速度为26m3/h。据此方法选取水泵,此工作面第一年即为矿务集团节约设备成本105万元,电费15万元。
[0091] 需要说明的是,在本说明书的教导下本领域技术人员所做出的任何等同方式,或明显变型方式均应在本发明的保护范围内。
QQ群二维码
意见反馈