用于监视工业过程的质量的方法及其系统

申请号 CN201210510711.4 申请日 2012-12-04 公开(公告)号 CN103246241B 公开(公告)日 2016-04-13
申请人 C.R.F.阿西安尼顾问公司; 发明人 G.丹格洛; G.帕斯奎塔茨;
摘要 本 发明 涉及用于监视工业过程的 质量 的方法及其系统。一种用于监视工业工作过程质量的方法,包括步骤:从工业工作过程(10)获取(100)具有多个 频率 分量的至少一个 信号 (x(t)),该方法还包括操作:将所述至少一个信号(x(t))分解(200)为具有单个频率分量的信号,计算(300)针对具有单个频率分量的每个信号的信息量,分析(400)针对具有单个频率分量的每个信号的信息量,以及如果最低单个频率分量处的信号的信息量的值不表示整个获取信号(x(t))的信息量的主百分比,则将所述获取信号(x(t))评估为指示具有 缺陷 的工作过程,并且对所述信号(x(t))执行缺陷分析步骤(500)。
权利要求

1.一种用于监视工业工作过程的质量的方法,其包括标识所述工作过程的缺陷,其类型,包括以下步骤:
从所述工业工作过程(10)获取(100)具有多个频率分量的信号(x(t)),评估(200、300、400)从所述工业工作过程(10)获取的具有多个频率分量的所述信号(x(t))以指示是否有所述缺陷和对具有多个频率分量的所述信号(x(t))执行缺陷分析步骤(500),所述评估是在不将从所述工业工作过程获取的具有多个频率分量的所述信号(x(t))与存储的基准信号相比较的情况下执行的,
其特征在于其还包括操作:
将具有多个频率分量的所述至少一个信号(x(t))分解(200)为具有单个频率分量(IMF1...IMFn-1, OIMF1...OIMFn-1)的信号,
计算(300)针对具有单个频率分量(IMF1...IMFn-1, OIMF1...OIMFn-1)的每个信号的信息量(var1...varn-1),
分析(400)针对具有单个频率分量(IMF1...IMFn-1, OIMF1...OIMFn-1)的每个信号的信息量(var1...varn-1),以及
如果最低单个频率分量(IMFn-1, OIMFn-1)处的信号的信息量(varn-1)的值不表示整个获取信号(x(t))的信息量的主百分比(K,K1,K2),则具有多个频率分量的所述获取信号(x(t))被评估为指示包括缺陷的工作过程,并且对具有多个频率分量的所述信号(x(t))执行缺陷分析步骤(500)。
2.如权利要求1所述的方法,其特征在于所述分析(400)针对具有单个频率分量(IMF1...IMFn-1, OIMF1...OIMFn-1)的每个信号的信息量(var1...varn-1)包括如果所述最低单个频率分量(IMFn-1, OIMFn-1)处的信号的信息量(varn-1)的值不表示所述整个获取信号的信息量的给定主百分比(K1),则将具有多个频率分量的所获取信号(x(t))评估为指示具有缺陷的工作过程,以及
如果所述最低单个频率分量(IMFn-1, OIMFn-1)处的信号具有最高信息量值以及其他频率分量(IMF1...IMFn-2,OIMF1...OIMFn-2)中单独地没有一个具有表示多于第二给定百分比(K2)、低于信息量的所述主百分比的值。
3.如权利要求1或2所述的方法,其特征在于由具有单个频率分量(IMF1...IMFn-1, OIMF1...OIMFn-1)的所述信号的方差来表示所述信息量。
4.如权利要求1或2所述的方法,其特征在于由熵或由具有单个频率分量
(IMF1...IMFn-1, OIMF1...OIMFn-1)的所述信号的自相关来表示所述信息量。
5.如权利要求1或2所述的方法,其特征在于将具有多个频率分量的所述至少一个信号(x(t))分解(200)为具有单个频率分量(IMF1...IMFn-1, OIMF1...OIMFn-1)的信号包括执行经验模态分解EMD。
6.如权利要求1或2所述的方法,其特征在于所述分解(200)具有多个频率分量的所述至少一个信号(x(t))为具有单个频率分量(IMF1...IMFn-1, OIMF1...OIMFn-1)的信号包括执行正交化步骤(250)以计算正交化单个频率分量(OIMF1...OIMFn-1)。
7.如权利要求6所述的方法,其特征在于包括计算(255)正交化单个频率分量(OIMF1...OIMFn-1)组中的分量之间的正交性的指数(IOjk),并且控制(260)指数的绝对值的最大值低于给定值。
8.如权利要求1或2所述的方法,其特征在于所述从所述工业工作过程(10)获取(100)具有多个频率分量的至少一个信号(x(t))包括感测由所述工作过程生成的信号。
9.如权利要求1或2所述的方法,其特征在于所述工业工作过程是激光焊接过程或激光切割过程。
10.如权利要求8所述的方法,其特征在于所述感测由所述工作过程生成的信号包括通过温度传感器来感测温度或者通过光电传感器来感测辐射
11.如权利要求10所述的方法,其特征在于所述温度传感器是高温计并且所述光电传感器是光电二极管
12.如权利要求8所述的方法,其特征在于对具有多个频率分量的所述信号(x(t))执行的所述缺陷分析步骤(500)包括
执行(510)所获取信号(x(t))的Hilbert-Huang变换以获得Hilbert谱(HS),以2D或3D图像示出(520)所述Hilbert谱(HS),
2 2
根据所述Hilbert谱(HS)来计算(530)其二阶时间矩(B(t))及其标准偏差(std_B),
2 2
将超过其标准偏差(std_B)的二阶矩(B(k))的样本标识并分类(540)为缺陷,
2 2
将其二阶矩(B(k))超过其标准偏差(std_B)的所获取信号(x(k))的样本标记为缺陷(550)。
13.一种用于监视工业工作过程的质量的系统,包括:
用于测量一个或多个过程参数的传感器装置(14),以及
电子控制和处理单元(8,9),用于处理由所述传感器装置(14)发射的信号,其特征在于:
所述电子控制和处理单元(8,9)被配置成处理由所述传感器装置(14)发射的信号并执行如权利要求1至11中的任一项所述的用于监视工业工作工程的质量的方法。
14.一种用于监视工业工作过程的质量的设备,其包括用于标识所述工作过程的缺陷的装置,装置的类型包括:
用于从所述工业工作过程(10)获取(100)具有多个频率分量的信号(x(t))的装置,用于评估(200、300、400)从所述工业工作过程(10)获取的具有多个频率分量的所述信号(x(t))以指示是否有所述缺陷和对具有多个频率分量的所述信号(x(t))执行缺陷分析步骤(500)的装置,所述评估是在不将从所述工业工作过程获取的具有多个频率分量的所述信号(x(t))与存储的基准信号相比较的情况下执行的,
其特征在于其还包括:
用于将具有多个频率分量的所述至少一个信号(x(t))分解(200)为具有单个频率分量(IMF1...IMFn-1, OIMF1...OIMFn-1)的信号的装置,
用于计算(300)针对具有单个频率分量(IMF1...IMFn-1, OIMF1...OIMFn-1)的每个信号的信息量(var1...varn-1)的装置,
用于分析(400)针对具有单个频率分量(IMF1...IMFn-1, OIMF1...OIMFn-1)的每个信号的信息量(var1...varn-1)的装置,以及
如果最低单个频率分量(IMFn-1, OIMFn-1)处的信号的信息量(varn-1)的值不表示整个获取信号(x(t))的信息量的主百分比(K,K1,K2),则具有多个频率分量的所述获取信号(x(t))被评估为指示包括缺陷的工作过程,并且对具有多个频率分量的所述信号(x(t))执行缺陷分析步骤(500)。
15.如权利要求14所述的设备,其特征在于用于分析(400)针对具有单个频率分量(IMF1...IMFn-1, OIMF1...OIMFn-1)的每个信号的信息量(var1...varn-1)的装置包括用于如果所述最低单个频率分量(IMFn-1, OIMFn-1)处的信号的信息量(varn-1)的值不表示所述整个获取信号的信息量的给定主百分比(K1),则将具有多个频率分量的所获取信号(x(t))评估为指示具有缺陷的工作过程,以及
如果所述最低单个频率分量(IMFn-1, OIMFn-1)处的信号具有最高信息量值以及其他频率分量(IMF1...IMFn-2,OIMF1...OIMFn-2)中单独地没有一个具有表示多于第二给定百分比(K2)、低于信息量的所述主百分比的值的装置。
16.如权利要求14或15所述的设备,其特征在于由具有单个频率分量(IMF1...IMFn-1, OIMF1...OIMFn-1)的所述信号的方差来表示所述信息量。
17.如权利要求14或15所述的设备,其特征在于由熵或由具有单个频率分量
(IMF1...IMFn-1, OIMF1...OIMFn-1)的所述信号的自相关来表示所述信息量。
18.如权利要求14或15所述的设备,其特征在于用于将具有多个频率分量的所述至少一个信号(x(t))分解(200)为具有单个频率分量(IMF1...IMFn-1, OIMF1...OIMFn-1)的信号的装置包括用于执行经验模态分解EMD的装置。
19.如权利要求14或15所述的设备,其特征在于用于分解(200)具有多个频率分量的所述至少一个信号(x(t))为具有单个频率分量(IMF1...IMFn-1, OIMF1...OIMFn-1)的信号的所述装置包括用于执行正交化步骤(250)以计算正交化单个频率分量(OIMF1...OIMFn-1)的装置。
20.如权利要求19所述的设备,其特征在于包括用于计算(255)正交化单个频率分量(OIMF1...OIMFn-1)组中的分量之间的正交性的指数(IOjk)的装置,以及用于控制(260)指数的绝对值的最大值低于给定值的装置。
21.如权利要求14或15所述的设备,其特征在于所述用于从所述工业工作过程(10)获取(100)具有多个频率分量的至少一个信号(x(t))的装置包括用于感测由所述工作过程生成的信号的装置。
22.如权利要求14或15所述的设备,其特征在于所述工业工作过程是激光焊接过程或激光切割过程。
23.如权利要求21所述的设备,其特征在于所述用于感测由所述工作过程生成的信号的装置包括用于通过温度传感器来感测温度或者通过光电传感器来感测辐射的装置。
24.如权利要求23所述的设备,其特征在于所述温度传感器是高温计并且所述光电传感器是光电二极管
25.如权利要求21所述的设备,其特征在于用于对具有多个频率分量的所述信号(x(t))执行的所述缺陷分析步骤(500)的装置包括
用于执行(510)所获取信号(x(t))的Hilbert-Huang变换以获得Hilbert谱(HS)的装置,
用于以2D或3D图像示出(520)所述Hilbert谱(HS)的装置,
2
用于根据所述Hilbert谱(HS)来计算(530)其二阶时间矩(B(t))及其标准偏差(std_
2
B)的装置,
2 2
用于将超过其标准偏差(std_B)的二阶矩(B(k))的样本标识并分类(540)为缺陷的装置,
2 2
用于将其二阶矩(B(k))超过其标准偏差(std_B)的所获取信号(x(k))的样本标记为缺陷(550)的装置。

说明书全文

用于监视工业过程的质量的方法及其系统

技术领域

[0001] 本发明涉及用于监视工业工作过程的质量的方法,其包括标识工作过程的缺陷,缺陷的类型,包括以下步骤:
[0002] 从工业工作过程获取具有多个频率分量的信号
[0003] 评估从工业工作过程获取的具有多个频率分量的所述信号以指示是否有所述缺陷和对具有多个频率分量的所述信号执行缺陷分析步骤,所述评估是在不将从工业工作过程获取的具有多个频率分量的所述信号与存储的基准信号相比较的情况下执行的。

背景技术

[0004] 监视工业过程中的缺陷由于其在工业产品的质量分析中的影响而正在呈现出增长的经济重要性。在线并自动地获得对工业过程质量的评价的能在经济方面和在加工速度方面的两个方面都具有许多优点。因此,系统的期望特性是:
[0005] —在线处理;
[0006] —准确地识别主要生产缺陷的能力。
[0007] 当前,识别工业过程的质量并因此标识任何缺陷的问题通过由专家执行的离线检查或者用自动方法发生,自动方法以不令人满意且还对机器的不同设置敏感的方式通过传感器来标识前述缺陷中的仅某些。
[0008] 用于监视工业过程质量的方法和系统是已知的,例如它们应用于激光焊接过程的在线监视,特别是在金属板焊接的情况下。监视系统能够评价被焊接区域中的孔隙的存在,或者在对头焊接(butt-welded)薄金属板的情况下,评价由于金属板的叠加或分裂而引起的缺陷的存在。
[0009] 此类系统在使用中使质量监视基于在过程期间获得的信号与指示高质量焊接的一个或多个预定基准信号之间的比较。通常采取在二和十之间的可变数量的此类基准信号是从高质量焊接的多个样本开始预定的。这种行动方式意味着能够在基准信号产生的时刻证实(certify)焊接质量的有经验操作员的存在,该方式伴随时间浪费,并且有时还伴随着材料浪费(其用来获得要获得基准信号所需的样本)。因此,给定类似的程序,其本身在时间和成本方面是难以负担的,与基准信号比较的后续程序能够快速地、实时地且以低成本进行操作将是必要的,这在当前已知的系统中并未发生。
[0010] 本发明的目的是克服所有前述缺点。

发明内容

[0011] 为了实现所述目的,本发明涉及一种用于监视工业过程质量的方法,其具有在前文中阐述的特性,并且此外其特征在于以下事实,即其还包括操作:
[0012] 将具有多个频率分量的所述至少一个信号分解为具有单个频率分量的信号,[0013] 计算针对具有单个频率分量的每个信号的信息量,
[0014] 分析针对具有单个频率分量的每个信号的信息量,以及
[0015] 如果最低单频率分量下的信号的信息量的值不表示整个获取信号的信息量的主要百分比,则具有多个频率分量的所述获取信号被评估为指示具有缺陷的工作过程,并且对具有多个频率分量的所述信号执行缺陷分析步骤。
[0016] 在优选实施例中,通过计算具有单个频率分量的信号的方差来评估所述信息量。该方法优选地应用于获取由过程发射的辐射作为从过程获取的信号的激光工作过程。
[0017] 自然地,本发明还涉及用于监视工业过程质量的系统,其实现了上述方法,以及可直接加载到数字计算机(诸如处理器)的存储器中的相应计算机产品,并且包括用以当产品在计算机上运行时执行根据本发明的方法的软件代码部分。附图说明
[0018] 根据纯粹以说明性且非限制性示例的方式提供的参考附图的以下描述,本发明的附加特性和优点将变得容易明白,在附图中:
[0019] —图1是示出了实现根据本发明的方法的系统的框图
[0020] —图2示出了根据本发明的方法的基本流程图
[0021] —图3是表示根据本发明的方法的实施例的流程图;
[0022] —图4示出了由根据本发明的方法的步骤处理的信号;
[0023] —图5和图6表示分别指示有缺陷过程信号和具有由根据本发明的方法标记的缺陷的有缺陷过程信号的图。

具体实施方式

[0024] 为了更好地理解根据本发明的方法,在这里首先简要地介绍某些数学概念。
[0025] 本方法目标在于将此类数学仪器应用于用于监视工业工作过程的质量的方法,其包括标识工作过程的缺陷以对由工作过程获取的信号进行缺陷分析。在以下出版物中可以找到此类数学概念的更完整描述:
[0026] —N. E. Huang、Z. Shen 和 S. R. Long 等 人 的“The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time Series Analysis”Proc. Royal Society, vol. 454, pp. 903-905, London, 1998年,以及
[0027] —Tian-li Huand, Wei-xinRen和Meng-lin Lou的“The orthogonal Hilbert–Huang Transform and its application in earthquake motion recordings analysis”。中国北京第14届World Conference on Earthquake Engineering,2008年10月12-17日。
[0028] 相对于本发明的上下文,从以下考虑开始选择Hilbert-Huang变换,即从过程获取的信号x(t)通常是多分量非平稳信号,即其频率随时间改变的信号。对于这些信号而言,瞬时频率ω是重要特性:其为时变参数,该参数定义信号的谱峰值在其随着时间变化时的位置。后者可以粗略地视为正弦波,其频率随时间而扫过。相反,平稳信号是其频率不随时间改变的信号。
[0029] 在大多数情况下,不能通过傅立叶变换来分析从工作过程获取的信号x(t),因为可以将任何非线性失真波形视为谐波失真,其是在非线性系统上施加线性结构的数学人为后果。它们可以具有数学意义,但不是物理的。因此,在这里选择它以通过瞬时频率的方式来描述非线性系统。
[0030] Hilbert变换是计算瞬时频率的最容易方式,由此,可以用下式来确定任何实值函数的复共轭y(t):
[0031]
[0032] PV指示奇异积分的主值(principal value)。换言之,Hilbert变换由使从工作过程获取的信号x(t)通过使量值不改变、但将所有频率分量的相位改变π/2的系统组成。
[0033] 分析信号z(t)被定义为:
[0034]
[0035] 其中
[0036]
[0037] 直接使用Hilbert变换将引起问题,并且不能正确地评估瞬时频率。事实上,如果施加于窄带通信号,则Hilber变换工作良好。
[0038] 遗憾的是,大多数信号不是限带的。
[0039] 在 N. E. Huand、Z. Shen 和 S. R. Long 等 人 的“The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time Series Analysis”Proc. Royal Society, vol. 454, pp. 903-905, London, 1998年中,示出了一种方法,称为过滤(sifting)过程,其将广泛类的信号分解成一组限带函数(固有模态函数(Intrinsic Mode Function),IMF)。通过提出的分解,从信号提取瞬时信息是可能的。
[0040] 具体地关于EMD(经验模态分解(Empirical Mode Decomposition)),此类分解包括以下假设:任何数据由振荡的不同简单固有模型组成。每个固有模态,无论是否是线性的,都表示振荡,其将具有相同数量的极值和零点交叉,并且然后,振荡相对于局部平均值将是对称的。通常,数据可以具有许多不同的振荡,其可以由具有以下定义的固有模态函数(IMF)来表示:
[0041] —在整个数据集中,极值的数量和零点交叉的数量必须是相等的或者至多相差一;以及
[0042] —在任何点处,由局部最大值定义的包络和由局部最小值定义的包络的平均值是零。
[0043] 固有模态函数IMF比振荡模态普遍得多,因为其具有作为时间的函数的可变幅度和频率。
[0044] 根据用于固有模态函数IMF的定义,可以由以下操作来分解任何函数:
[0045] —首先,找到信号x(t)的所有局部最大极值,
[0046] —在以某个上包络emax(t)结束的所有最大极值之间进行内插(优选地通过三次样条拟合);
[0047] —找到所有局部最小极值;
[0048] —在以某个下包络emin(t)结束的所有最小极值之间进行内插(三次样条拟合);
[0049] —计算上包络emax(t)和下包络emin(t)之间的平均包络m1:
[0050]
[0051] —计算残数(residue)h1:
[0052]
[0053] —然后必须通过评估停止准则来进行临界判定。给定:
[0054]
[0055] 如果此平方差SDk小于预定阈值,则将停止过滤过程。
[0056] 理想地,残数h1应满足固有模态函数IMF的定义,因此其应是对称的,并且使所有最大值为正且所有最小值为负。然而,斜率上的驼峰可以在第一轮过滤之后变成局部最大值,并且然后残数可能不满足固有模态函数IMF的定义。
[0057] 此类过滤过程具有两个目的,消除骑乘波(riding wave),并使波轮廓更加对称。
[0058] 第一目的针对Hilbert变换设计以给出有意义的瞬时频率,设计第二目以防相邻波幅度具有过大差异。出于这两个目的,应重复过滤过程,直至提取满足固有模态函数IMF的定义的残数。
[0059] 在下一步骤中,将残数h1视为新数据;然后:
[0060]
[0061] 在重复过滤过程多达kk次之后,残数h1k变成IMF函数;亦即:
[0062]
[0063] 然后,将其指定为:
[0064]
[0065] 来自数据的第一固有模态函数IMF。一旦已经找到第一IMF分量c1,则其应包含信号的最细标度或最短周期分量。数据的其余部分是:
[0066]
[0067] 由于参数r1仍包含数据中的较长周期变化,所以将其视为新数据,并且对其重复关于它的相同过滤过程。结果是:
[0068]
[0069] 无论分量cn或残数rn有多小,或者不能再提取IMF,最终残数仍可以不同于零。
[0070] 图4是示出了IMF分量、或更具体地是从工作过程获取的信号x(t)的分量cj和最终残数中的EMD分解的图,所述信号是在由在下文参考图1所述的系统10在聚合物激光焊接期间检测的温度信号,还在图4中示出。通过将先前等式加和,获得的是从工作过程获取的信号x(t)是分量cj和残数rn的和:
[0071]
[0072] 因此,实现了n经验模态分解,并且获得残数rn。
[0073] 对于由物理数据定义的特性标度而言,EMD分解的分量通常是在物理上有意义的。
[0074] 在经验模态分解之后,将Hilbert变换应用于每个IMF分量并计算瞬时频率是可能的。
[0075] 还可以执行IMF函数的正交化。进行这一点是为了保证由EMD分解获得的IMF函数可以重新组成原始信号,并且在IMF分量之间存在正交性。在上文引用的出版物Tian-li Huand, Wei-xinRen和Meng-lin Lou的“The orthogonal Hilbert–Huang Transform and its application in earthquake motion recordings analysis”中国北京第14届World Conference on Earthquake Engineering,2008年10月12-17日中描述了IMF函数的正交化。
[0076] 为了检查从EMD分解获得的函数IMF的正交性,还已知定义用于任何两个分量的正交性的总指数IOT和正交性的部分指数IOjk,如下:
[0077]
[0078] (III.3)
[0079]
[0080] 如果来自EMD的IMF分量严密地相互正交,则IOT的值应是零,已分解信号的总能量Etot应是不变的,并且任何两个IMF分量之间的能量泄露Ejk应是零。一般地,由于来自-2 -3EMD分解的函数IMF在理论上不是正交的,所以正交性指数的值约为从10 至10 。
[0081] 现在参考激光焊接方法来举例说明根据本发明的方法。然而,所述激光焊接仅组成可以应用于根据本发明的用于监视工业过程质量的方法的工业过程的非限制性示例。
[0082] 参考图1,参考标号10指示用于监视激光焊接过程的质量的系统。本示例参考借助于激光束20焊接在一起的两个聚合物工件2、3的情况。标号11指示由激光二极管表示的激光源,经由光纤12耦合至焊接镜(optic)13。特别地,这是由激光线(Laserline)LDF400-200光纤耦合二极管激光器的头获得的,该激光束20经由Ø400 μm光纤12被引导至焊接光学镜13。激光激光器11以940±10 nm波长操作,并且所使用的焦距是100 mm,在工件上得到Ø0.6 mm焦点。
[0083] 焊接光学镜13被示意性地示为包括镜子13a,其还可以是分束器或半反射镜,在该分束器或半反射镜之上可以布置传感器以检测来自焊接过程的量,诸如辐射,以及聚焦透镜13a,由激光二极管11所表示的激光源发出的激光束到达那里。
[0084] 焊接光学镜13被表示为还包括照相机15和高温计14。照相机15获取焊接点的图像,而高温计14通过发射的辐射来测量此类焊接点的温度。照相机14a和高温计14b的输出信号被发送到获取板8,其获取信号并对信号执行必要的转换,并将它们提供给个人计算机9以用于分析和处理。
[0085] 在这里请注意,根据本发明的方法优选地获取由工作过程生成的信号,即由于工作过程的发展而由该过程发射的辐射,不是来自执行过程的工具的信号。
[0086] 图1的示例性实施例中的高温计14在焊接光学镜13中在轴上。例如,使用具有Lascon控制器的Dr Mergenthaler GmbH红外高温计。高温计型号是EP100P/PCI且最大采样速率是10kHz。在实验中,所使用的采样速率是5 kHz。为了限制数据点的量,以500Hz保存数据。高温计14仅被用于焊接温度的观察以查看缺陷如何影响温度。
[0087] 工件2、3被配备有压力控制的气动夹紧设备(未示出)夹紧,以在焊接期间在工件2、3上提供所需压力。在焊接期间,将激光头11和焊接光学镜13保持固定,并且通过XY单元以10mm/s的恒定速度来移动具有工件2、3的夹具(clamping jig)。
[0088] 特别地,在这里讨论的示例中所使用的材料是具有1mm的厚度的聚丙烯Sabic579S。
[0089] 在聚合物焊接中,必须在焊接期间将被焊接部分保持在一起以能够使热量从下部传导至上部。
[0090] 在下文用x(t)来指示在时间期间由高温计获取的温度信号,并且其是从工业工作过程获取的具有多个频率分量的信号,这将在下文以示例的方式来讨论以举例说明根据本发明的方法。
[0091] 参考图2的基本流程图,根据本发明的方法设想以下操作:
[0092] —获取步骤100,从例如高温计14的传感器生成的从工业工作过程获取的具有多个频率分量的信号x(t);
[0093] —信号x(t)的滤波200,将信号x(t)分解指示为固有模态函数IMF1…IMFn-1的多个单分量信号;
[0094] —步骤300,分析和计算由固有模态函数IMF1…IMFn-1表示的每个单分量信号的信息量、例如它们的方差var1…varn-1;
[0095] —步骤400,将最低单频率分量的信息量的值或函数IMFn-1相比较以便验证其是否大于给定K值,使得表示整个获取信号x(t)的信息量的主百分比;
[0096] —如果比较步骤400的结果指示最低单频率分量的信息量或函数IMFn-1不是整个获取信号x(t)的信息量的较大百分比,则此类信号x(t)被视为有缺陷,并且可选地,执行缺陷分析程序500,这可以导致标识一个或多个缺陷D及可能标识它们的类型。
[0097] 在图3中,详细描述图2的方法的实施例。
[0098] 示出了来自获取操作100的所获取信号x(t)。
[0099] 在步骤110中,评估从过程获取的信号x(t)是否在允许范围、具体地为允许的最小温度Tmin与最大温度Tmax之间的温度范围TR内振荡。如果获取的信号x(t)在此类范围TR内,则通过转到分解步骤200来执行分析,否则方法停止120。
[0100] 用以将信号x(t)分解为被指示为固有模态函数IMF1…IMFn-1的多个单分量信号的信号x(t)的滤波步骤200使用经验模态分解程序来分解信号x(t)并获得固有模态函数IMF1…IMFn-1。
[0101] 然后,执行固有模态函数IMF1…IMFn-1的正交化的步骤250,获得正交化固有模态函数OIMF1…OIMFn-1。
[0102] 然后,在步骤255中,在不考虑残数的情况下,计算所有分量之间的正交化固有模态函数OIMF1…OIMFn-1组中的两个分量j和k之间的正交性的部分指数,IOjk。这还产生指数的矩阵IO。Tian-li Huang, Wei-xinRen和Meng-lin Lou的出版物“The orthogonal Hilbert–Huang Transform and its application in earthquake motion recordings analysis”中国北京第14届World Conference on Earthquake Engineering,2008年10月12-17日中定义了此类指数IO。
[0103] 此外,在步骤260中,执行矩阵IO的值的评估以控制矩阵中的指数的绝对值的最-12大值(max(abs(IO))低于给定值,例如1×10 。这保证当将EMD应用于时间信号的分解时不存在实际上严重的能量泄露。如果未满足步骤260的条件,则通过步骤265,执行正交化的细化(refinement),返回至步骤250、255。
[0104] 然后,执行分析和计算每个单分量信号IMF1…IMFn-1的信息量的步骤300,在本实施例中对正交化分量OIMF1…OIMFn-1执行该步骤。
[0105] 在这方面,应注意的是一旦已使固有模态函数IMF1…IMFn-1正交化,则来自IMF分量的某些参数可以帮助分析信号:
[0106] 能量含量的百分比表示每个分量或函数IMF1包含多少能量;
[0107] 方差vari指示每个IMFi的信息的量;
[0108] 迭代指示每个分量IMF1的计算成本。
[0109] 根据本发明的一方面,已经具体地选择要在步骤300中计算的方差值vari以在不使用任何信号作为基准的情况下分析焊接质量。
[0110] 下面,解释相对于其他分量IMF1…IMFn-1比较给定分量IMFn-1的信息量的步骤400如何具体操作。IMFn分量对应于残数rn。
[0111] 一般而言,提及没有缺陷的聚合物材料的焊接的温度信号x(t)在固定温度范围内呈现出缓慢震荡。在存在缺陷的情况下,由于不同的原因,信号x(t)或多或少地突然变化。由于EMD分解步骤200一般地目标在于将信号x分解成分量或模态h1、…、hN与残数r的有限和,在模态在具有增加的模态指数的情况下较少振荡的情况下,考虑到方差指示每个分量IMFi的信息的量,认为如果作为较少振荡模态的最后正交分量OIMF(hN-1)包含最高方差值(最高信息的量),则过程信号不能呈现出任何缺陷。
[0112] 在图4中,为了更好的理解,示出了温度信号x(t)的正交化分量OIMF1…OIMFn-1和残数rn。
[0113] 另外,由于可能碰巧最后分量IMFn-1包含最大能量且还有最高方差值,但是信号包含缺陷,所以为了克服此问题,优选地设想利用:
[0114] 1)最后分量IMFn-1必须包含最高方差值;
[0115] 2)最后分量IMFn-1必须包含至少信息的主百分比K1,以优选示例的方式为信息的80%;
[0116] 3)其余分量IMF1…IMFn-2中没有一个必须单独地包含超过信息的第二百分比K2,即10%。
[0117] 80和20%的百分比K1和K2的值是用于激光焊接的优选值,当然,针对不同的过程可以选择其他值,条件是主百分比K1基本上大于第二百分比K2。
[0118] 因此,加和,步骤400包括优选地评估是否满足了上述三个条件。肯定地,认为信号未呈现出相关缺陷(框600),并且方法停止(框120)。
[0119] 否则,可以开始缺陷分析程序500以检测信号x(t)的缺陷。
[0120] 因此,在步骤510中,在不考虑残数的情况下,评估信号x(t)的Hilbert-Huang变换。输出是将在步骤520中以2D或3D图像中示出的Hilbert谱HS。
[0121] 一旦已经获得了Hilbert谱HS,则在步骤530中计算其二阶矩(second order moment):
[0122]
[0123] fm(t)指示一阶时间矩(first order moment in time),并且描述信号的平均位2
置。二阶矩B(t)指示瞬时带宽,f指示频率。二阶矩描述信号的时间的展开。步骤530还
2
包括计算二阶矩的标准偏差std_B。
[0124] 通过步骤540来识别,针对从1至矢量B2的长度(例如矢量B2的样本的数量)变化2 2
的指数k,超过标准偏差std_B的二阶矩B (k)的样本被分类为缺陷。
[0125] 在步骤550中,然后用验证步骤540的条件的样本x(k)来构建表示缺陷位置的新信号sig(k)。如果没有样本x(k)验证该条件,则通过步骤560,将信号sig(k)置为等于空(null),并且控制转到步骤570以组成最终信号sig(k),并且然后产生具有标记的缺陷D的所检测信号。
[0126] 在图5中,用于在要焊接部分之间具有空气隙的焊接的信号x(t)连同最大温度Tmax和最小温度Tmin。在图6中,然后示出了相应的质量评估,其中通过将表示缺陷位置的信号sig(k)叠加,示出了具有标记缺陷D的所检测信号(用十字来指示单个缺陷)。
[0127] 当然,可以使用其他已知程序来代替所描述的步骤510-570来执行缺陷分析程序500,诸如在EP-A-1767308中或在EP-A-1275464中描述的方法。
[0128] 因此,上述方法允许评估通过工作过程获取的、具有多个频率分量的信号,其通过分解为单个分量和分析而允许检测是否存在缺陷。
[0129] 该方法因此允许以快速的方式且在不使用与基准信号的比较的情况下确定由过程生成的哪些信号指示缺陷,并且可以详细地分析以确定缺陷的位置和/或类型。很明显,这允许节省时间和计算能力,避免深入地评估所有获取的信号且仅集中于有缺陷信号。
[0130] 快速操作和基准的缺乏确定了非常快速地操作的方法和系统,相当大地降低了所涉及的成本。
[0131] 自然地,在不改变本发明的原理的情况下,构造细节和实施例可以与在此纯粹以示例的方式描述和举例说明的大大不同,而不会从而脱离本发明的范围。
[0132] 给定分量IMFn-1的信息分量相对于其他分量IMF1…IMFn-1的和的比较的步骤使用可调谐阈值,其可以在具体过程的知识的基础上建立。还可能通过学习过程来获得阈值。
[0133] 该方法涉及激光焊接过程,但是还涉及其他工作过程,特别是涉及激光器,诸如激光切割过程。
[0134] 优选地选择信息量以通过方差来表示,特别是对于焊接过程而言,但是其还可以通过信号的熵或通过自相关来表示。
[0135] 用来从过程获取信号的传感器可以是在产生非平稳信号的工业工作过程的质量监视的已知技术中所使用的任何传感器。举例来说,参考激光焊接或切割,传感器可以是获取被激光所操作的点反射的辐射的光电二极管
QQ群二维码
意见反馈