荷重計測装置の較正方法、風車翼の荷重計測システム及び風車

申请号 JP2015179016 申请日 2015-09-11 公开(公告)号 JP6351557B2 公开(公告)日 2018-07-04
申请人 三菱重工業株式会社; 发明人 馬場 満也; 有木 和歌子;
摘要
权利要求

風車翼の歪に基づく歪データに基づいて前記風車翼の荷重を計測する荷重計測装置の較正方法であって、 風車の起動中に、前記風車翼のアジマスまたはピッチ角の少なくとも一方が互いに異なる複数の条件のそれぞれについて複数の前記歪データを取得する歪データ取得ステップと、 前記複数の条件の各々における前記風車翼のアジマス角及びピッチ角に基づいて、前記複数の条件の各々について、前記風車翼の自重に起因して前記風車翼に作用する理論荷重値を取得する理論荷重値取得ステップと、 前記歪データの各々と前記理論荷重値との相関関係に基づいて、前記荷重計測装置により取得される前記歪データと前記風車翼の荷重との関係を表す較正パラメータを算出する較正パラメータ算出ステップと、 過去の複数回の前記風車の起動中に実行された前記歪データ取得ステップにてそれぞれ取得された複数組の前記歪データに基づき算出された複数の前記較正パラメータの少なくとも一つに基づいて、前記荷重計測装置の較正を行う較正ステップと、 を備えることを特徴とする荷重計測装置の較正方法。前記較正ステップでは、前記複数の較正パラメータのうち2以上の較正パラメータの統計値を用いて前記荷重計測装置の較正を行うことを特徴とする請求項1に記載の荷重計測装置の較正方法。前記較正ステップでは、 前記荷重計測装置において前記歪データを前記荷重に換算するために現在用いている換算用較正パラメータと、前記複数の較正パラメータのうち少なくとも一つとの乖離を示すパラメータ乖離指標を算出し、 前記パラメータ乖離指標が許容範囲を超えたとき、前記複数の較正パラメータのうち少なくとも一つに基づいて、前記換算用較正パラメータを更新する ことを特徴とする請求項1又は2に記載の荷重計測装置の較正方法。前記パラメータ乖離指標は、前記換算用較正パラメータを用いて前記歪データの基準値を換算して得られる第1荷重値と、前記複数の較正パラメータのうち少なくとも一つを用いて前記基準値を換算して得られる第2荷重値と、の差分であることを特徴とする請求項3に記載の荷重計測装置の較正方法。前記較正ステップでは、前記歪データ取得ステップにおいて風速が閾値以下のときまたは風車ロータの回転数が閾値以下のときに取得された前記歪データから算出した少なくとも一つの前記較正パラメータのみを用いて、前記荷重計測装置の較正を行うことを特徴とする請求項1乃至4の何れか一項に記載の荷重計測装置の較正方法。前記風速の閾値は定格風速の80%以下であること、又は、前記風車ロータの回転数の閾値は定格回転数の50%以下であることを特徴とする請求項5に記載の荷重計測装置の較正方法。風車翼の歪に基づく歪データに基づいて前記風車翼の荷重を計測する荷重計測装置の較正方法であって、 風車の起動中に、前記風車翼のアジマス角またはピッチ角の少なくとも一方が互いに異なる複数の条件のそれぞれについて複数の前記歪データを取得する歪データ取得ステップと、 前記複数の条件の各々における前記風車翼のアジマス角及びピッチ角に基づいて、前記複数の条件の各々について、前記風車翼の自重に起因して前記風車翼に作用する理論荷重値を取得する理論荷重値取得ステップと、 前記歪データの各々と前記理論荷重値との相関関係に基づいて、前記荷重計測装置により取得される前記歪データと前記風車翼の荷重との関係を表す較正パラメータを算出する較正パラメータ算出ステップと、を備え、 前記歪データ取得ステップでは、前記風車翼のピッチ角のフェザー角を0%とし、ファイン角を100%としたときに、前記風車翼のピッチ角が40〜60%の範囲内で前記歪データを取得することを特徴とする荷重計測装置の較正方法。風車の風車翼の歪に基づく歪データに基づいて前記風車翼の荷重を計測する荷重計測装置と、前記荷重計測装置を較正するための較正部と、を備える風車翼の荷重計測システムであって、 前記較正部は、 風車の起動中に、前記風車翼のアジマス角またはピッチ角の少なくとも一方が互いに異なる複数の条件のそれぞれについて複数の前記歪データを取得するように前記荷重計測装置に指令を与える歪データ取得指令部と、 前記複数の条件の各々における前記風車翼のアジマス角及びピッチ角に基づいて、前記複数の条件の各々について、前記風車翼の自重に起因して前記風車翼に作用する理論荷重値を取得するように構成された理論荷重値取得部と、 前記歪データの各々と前記理論荷重値との相関関係に基づいて、前記荷重計測装置により取得される前記歪データと前記風車翼の荷重との関係を表す較正パラメータを算出するように構成された較正パラメータ算出部と、 を含み、 前記較正部は、過去の複数回の前記風車の起動中に前記歪データ取得指令部の指令に基づいてそれぞれ取得された複数組の前記歪データに基づき算出された複数の前記較正パラメータの少なくとも一つに基づいて、前記荷重計測装置の較正を行うように構成された ことを特徴とする風車翼の荷重計測システム。前記較正パラメータ算出部は、前記歪データ取得指令部の指令に基づいて取得された前記複数の歪データのうち、風速が閾値以下のときまたは風車ロータの回転数が閾値以下のときに取得された前記歪データのみを用いて、前記較正パラメータを算出するように構成されたことを特徴とする請求項8に記載の風車翼の荷重計測システム。前記荷重計測装置は、互いに対向するように前記風車翼に設けられ、前記風車翼における取り付け位置のそれぞれにおいて前記風車翼の歪を検出するように構成された一対の歪センサを含み、前記一対の歪センサのそれぞれの検出結果の差分を前記歪データとして取得するように構成されたことを特徴とする請求項8又は9に記載の風車翼の荷重計測システム。前記歪センサは、長手方向において屈折率が周期的に変化する回折格子部を有する光ファイバセンサであり、 前記光ファイバセンサは、前記光ファイバセンサに入射された光の前記回折格子部における反射光の波長に基づいて前記風車翼の歪を検出するように構成された ことを特徴とする請求項10に記載の風車翼の荷重計測システム。風車翼を備える風車ロータと、 前記風車翼の歪に基づく歪データに基づいて前記風車翼の荷重を計測するように構成された、請求項8乃至11の何れか一項に記載された風車翼の荷重計測システムと、 を備えることを特徴とする風車。

说明书全文

本開示は風車翼の荷重を計測する荷重計測装置の較正方法、風車翼の荷重計測システム及び風車に関する。

風車翼の歪に基づいて風車翼にかかる荷重を計測することで、荷重抑制のための運転制御や風車翼の状態監視をすることが知られている。 例えば、特許文献1には、風車翼に取り付けられたセンサを用いて風車翼の歪を求め、該歪と風車翼の荷重との関係を表した関数に基づいて、風車翼の荷重を算出することが記載されている。 また、特許文献1には、予め既知の翼重量と風車翼のピッチ及びアジマス角(翼の回転位置)から算出される無風時における理論荷重値と、センサによって取得される歪の計測データに基づいて、風車翼の歪と荷重との関係を表した前述の関数を較正することが記載されている。

米国特許出願公開第2012/035865号明細書

通常、風車翼の荷重を計測するために用いられる風車翼の歪と荷重との相関関係を示す関数の較正は、風車の建設時にのみ1回だけ行われる。その後風車の運転が開始されると、建設時に較正された前述の関数に基づいて荷重の算出が行われる。 しかしながら、風車翼の歪を検出するための歪センサには、時間の経過に伴いセンサの出値がずれる現象、いわゆるドリフトが生じる場合がある。歪センサにドリフトが生じた場合、ドリフトの発生前と比べて、同一の大きさの荷重に対応する歪センサの出力値に変化が生じ、このため歪と荷重の相関関係にも変化が生じる。したがって、風車の建設時に較正された歪と荷重との相関関係を示す関数に基づいて荷重を算出すると、実際の荷重とは誤差が大きくなってしまう可能性がある。 この点、特許文献1では、風車翼の荷重の計測において、歪センサのドリフトを考慮することについては言及されていない。

上述の事情に鑑みて、本発明の少なくとも一実施形態は、歪センサのドリフトの影響を低減可能な荷重計測装置の較正方法を提供することを目的とする。

(1)本発明の少なくとも一実施形態に係る荷重計測装置の較正方法は、 風車翼の歪に基づく歪データに基づいて前記風車翼の荷重を計測する荷重計測装置の較正方法であって、 風車の起動中に、前記風車翼のアジマス角またはピッチ角の少なくとも一方が互いに異なる複数の条件のそれぞれについて複数の前記歪データを取得する歪データ取得ステップと、 前記複数の条件の各々における前記風車翼のアジマス角及びピッチ角に基づいて、前記複数の条件の各々について、前記風車翼の自重に起因して前記風車翼に作用する理論荷重値を取得する理論荷重値取得ステップと、 前記歪データの各々と前記理論荷重値との相関関係に基づいて、前記荷重計測装置により取得される前記歪データと前記風車翼の荷重との関係を表す較正パラメータを算出する較正パラメータ算出ステップと、 を備える。

上記(1)の方法では、風車の起動中に取得した歪データに基づいて、歪データと風車翼の荷重との関係を表す較正パラメータを算出する。これにより、風車の建設後の時間経過とともに歪センサにドリフトが生じる場合であっても、歪センサのドリフトの影響を低減しながら荷重計測装置の較正を精度良く行うことができる。 また、較正パラメータは、風車翼の自重に起因して風車翼に作用する理論荷重値に基づいて算出されるため、較正するための歪データを取得する際には、空力荷重がなるべく小さい方が望ましい。この点、風車の起動中は、風車ロータの回転数が比較的低いため、空力荷重は比較的小さい。また、風速低下に起因した風車停止後に風速が再び上昇し始める際に風車を起動する場合、そもそも風速が比較的低いために空力荷重はさらに小さい。よって、風車起動中に取得した歪データに基づいて較正パラメータを算出することで、空力荷重の影響を抑制し、荷重計測装置の較正を精度良く行うことができる。

(2)幾つかの実施形態では、上記(1)の方法において、 過去の複数回の前記風車の起動中に実行された前記歪データ取得ステップにてそれぞれ取得された複数組の前記歪データに基づき算出された複数の前記較正パラメータの少なくとも一つに基づいて、前記荷重計測装置の較正を行う較正ステップをさらに備える。 通常、風車起動時の風速は風車の起動ごとに異なるため、風車の起動中に取得される歪データも、風車の起動ごとに異なる空力荷重の影響を受ける可能性がある。この点、上記(2)の方法によれば、過去の複数回の風車の起動中に取得された複数組の歪データに基づき算出された複数の較正パラメータのうち、少なくとも一つに基づいて荷重計測装置の較正を行うことができるので、精度良く風車翼の荷重計測を行うことができる。

(3)幾つかの実施形態では、上記(2)の構成において、 前記較正ステップでは、前記複数の較正パラメータのうち2以上の較正パラメータの統計値を用いて前記荷重計測装置の較正を行う。 上記(3)の方法によれば、複数の較正パラメータのうち2以上の較正パラメータの統計値を用いて荷重計測装置の較正を行うので、風車翼の荷重計測の精度がより良好となる。

(4)幾つかの実施形態では、上記(2)又は(3)の方法において、 前記較正ステップでは、 前記荷重計測装置において前記歪データを前記荷重に換算するために現在用いている換算用較正パラメータと、前記複数の較正パラメータのうち少なくとも一つとの乖離を示すパラメータ乖離指標を算出し、 前記パラメータ乖離指標が許容範囲を超えたとき、前記複数の較正パラメータのうち少なくとも一つに基づいて、前記換算用較正パラメータを更新する。 上記(4)の方法によれば、パラメータ乖離指標を算出して許容範囲と比較するので、現在用いている換算用較正パラメータの算出時点から、パラメータ乖離指標の算出に用いた較正パラメータの算出時点までにおける歪センサのドリフトの発生を判定できる。また、パラメータ乖離指標が許容範囲を超えた場合には、算出した較正パラメータに基づいて換算用較正パラメータを更新するので、歪センサのドリフトに起因する歪データの変動を考慮した較正ができ、ドリフトによる荷重の計測誤差を低減することができる。

(5)幾つかの実施形態では、上記(4)の方法において、 前記パラメータ乖離指標は、前記換算用較正パラメータを用いて前記歪データの基準値を換算して得られる第1荷重値と、前記複数の較正パラメータのうち少なくとも一つを用いて前記基準値を換算して得られる第2荷重値と、の差分である。 このように、第1荷重値と第2荷重値との差分をパラメータ乖離指標として用いることで、歪センサのドリフトに起因した換算用較正パラメータの誤差の大きさが荷重計測装置の計測結果に与える影響を直接的に評価することができる。よって、歪センサのドリフトが荷重計測装置の計測結果に与える影響を無視できなくなったときに、換算用較正パラメータを適切に更新することができる。

(6)幾つかの実施形態では、上記(2)〜(5)の何れかの方法において、 前記較正ステップでは、前記歪データ取得ステップにおいて風速が閾値以下のときまたは風車ロータの回転数が閾値以下のときに取得された前記歪データから算出した少なくとも一つの前記較正パラメータのみを用いて、前記荷重計測装置の較正を行う。 上記(6)の方法によれば、風速が閾値以下のとき又は風車ロータの回転数が閾値以下の時に取得された歪データから算出した較正パラメータを用いて荷重計測装置の較正を行う。すなわち、風車翼に作用する空力荷重の影響が低減された較正パラメータを用いて荷重計測装置の較正を行うので、風車翼の荷重計測の精度がより良好となる。

(7)幾つかの実施形態では、上記(6)の方法において、 前記風速の閾値は定格風速の80%以下であること、又は、前記風車ロータの回転数の閾値は定格回転数の50%以下である。 本発明者らの知見によれば、風速が定格風速の80%以下であるときまたは風車ロータの定格回転数の50%以下であれば、風車翼に作用する空力荷重が較正パラメータの算出に与える影響が小さい。よって、上記(7)の方法によれば、空力荷重の影響がある程度低減された較正パラメータのみを用いて荷重計測装置の較正を行うので、風車翼の荷重計測の精度がより良好となる。

(8)幾つかの実施形態では、上記(1)〜(7)の何れかの方法において、 前記歪データ取得ステップでは、前記風車翼のピッチ角のフェザー角を0%とし、ファイン角を100%としたときに、前記風車翼のピッチ角が40〜60%の範囲内で前記歪データを取得する。 風車の起動中には、風車翼が風を受けて風車ロータが回転するように、風車翼のピッチ角をフェザー側からファイン側に移行させる。上記(8)の方法によれば、風車起動中に風車翼のピッチ角をフェザー側からファイン側に移行させる機会を利用して、較正パラメータを取得するための歪データを取得することができる。 また、風車翼の荷重は、風車翼のフラップ方向及びエッジ方向において計測する場合がある。ここで、風車翼のエッジ方向とは風車翼の長手方向に直交する断面において前縁と後縁を結ぶコード方向であり、フラップ方向とは、同断面において前記コード方向に直交する方向である。上記(8)の方法によれば、風車翼のピッチ角が40〜60%の範囲内で歪データを取得するので、風車翼のフラップ方向及びエッジ方向の両方において風車翼の自重に起因する荷重がある程度作用した状態で歪データを取得することができる。よって、荷重計測装置が風車翼のフラップ方向及びエッジ方向の荷重を計測可能な構成を有する場合であっても、フラップ方向及びエッジ方向の両方について荷重計測装置の較正を効率的に行うことができる。

(9)本発明の少なくとも一実施形態に係る風車翼の荷重計測システムは、 風車の風車翼の歪に基づく歪データに基づいて前記風車翼の荷重を計測する荷重計測装置と、前記荷重計測装置を較正するための較正部と、を備える風車翼の荷重計測システムであって、 前記較正部は、 風車の起動中に、前記風車翼のアジマス角またはピッチ角の少なくとも一方が互いに異なる複数の条件のそれぞれについて複数の前記歪データを取得するように前記荷重計測装置に指令を与える歪データ取得指令部と、 前記複数の条件の各々における前記風車翼のアジマス角及びピッチ角に基づいて、前記複数の条件の各々について、前記風車翼の自重に起因して前記風車翼に作用する理論荷重値を取得するように構成された理論荷重値取得部と、 前記歪データの各々と前記理論荷重値との相関関係に基づいて、前記荷重計測装置により取得される前記歪データと前記風車翼の荷重との関係を表す較正パラメータを算出するように構成された較正パラメータ算出部と、 を含む。

上記(9)の構成では、風車の起動中に取得した歪データに基づいて、歪データと風車翼の荷重との関係を表す較正パラメータを算出する。これにより、風車の建設後の時間経過とともに歪センサにドリフトが生じる場合であっても、歪センサのドリフトの影響を低減しながら荷重計測装置の較正を精度良く行うことができる。 また、較正パラメータは、風車翼の自重に起因して風車翼に作用する理論荷重値に基づいて算出されるため、較正するための歪データを取得する際には、空力荷重がなるべく小さい方が望ましい。この点、風車の起動中は、風車ロータの回転数が比較的低いため、空力荷重は比較的小さい。また、風速低下に起因した風車停止後に風速が再び上昇し始める際に風車を起動する場合、そもそも風速が比較的低いために空力荷重は小さい。よって、風車起動中に取得した歪データに基づいて較正パラメータを算出することで、空力荷重の影響を抑制し、荷重計測装置の較正を精度良く行うことができる。

(10)幾つかの実施形態では、上記(9)の構成において、 前記較正部は、過去の複数回の前記風車の起動中に前記歪データ取得指令部の指令に基づいてそれぞれ取得された複数組の前記歪データに基づき算出された複数の前記較正パラメータの少なくとも一つに基づいて、前記荷重計測装置の較正を行うように構成される。 通常、風車起動時の風速は風車の起動ごとに異なるため、風車の起動中に取得される歪データも、風車の起動ごとに異なる空力荷重の影響を受ける可能性がある。この点、上記(10)の構成によれば、過去の複数回の風車の起動中に取得された複数組の歪データに基づき算出された複数の較正パラメータのうち、少なくとも一つに基づいて荷重計測装置の較正を行うことができるので、精度良く風車翼の荷重計測を行うことができる。

(11)幾つかの実施形態では、上記(9)又は(10)の構成において、 前記較正パラメータ算出部は、前記歪データ取得指令部の指令に基づいて取得された前記複数の歪データのうち、風速が閾値以下のときまたは前記風車ロータの回転数が閾値以下のときに取得された前記歪データのみを用いて、前記較正パラメータを算出するように構成される。 上記(11)の構成によれば、風速が閾値以下のとき又は風車ロータの回転数が閾値以下の時に取得された歪データから算出した較正パラメータを用いて荷重計測装置の較正を行う。すなわち、風車翼に作用する空力荷重の影響が低減された較正パラメータを用いて荷重計測装置の較正を行うので、風車翼の荷重計測の精度がより良好となる。

(12)幾つかの実施形態では、上記(9)〜(11)の何れかの構成において、 前記荷重計測装置は、互いに対向するように前記風車翼に取り付けられ、前記風車翼における取り付け位置のそれぞれにおいて前記風車翼の歪を検出するように構成された一対の歪センサを含み、前記一対の歪センサのそれぞれの検出結果の差分を前記歪データとして取得するように構成される。 上記(12)の構成によれば、互いに対向するように風車翼に取り付けられた一対の歪センサを用いて風車翼の歪データを取得することができる。

(13)幾つかの実施形態では、上記(12)の構成において、 前記歪センサは、長手方向において屈折率が周期的に変化する回折格子部を有する光ファイバセンサであり、 前記光ファイバセンサは、前記光ファイバセンサに入射された光の前記回折格子部における反射光の波長に基づいて前記風車翼の歪を検出するように構成される。 一般的に、光ファイバセンサは、歪ゲージに比べてドリフトの影響が小さく、ドリフトの影響を無視できるといわれている。しかしながら、本発明者らは、光ファイバセンサを用いる場合であっても、時間の経過とともにドリフト現象が起こり、荷重計測結果に少なからず影響を与え得ることを見出した。この点、上記(13)の構成によれば、歪センサとして光ファイバセンサを用いる場合において、上記(12)の構成によって荷重計測装置の較正を適切に行うことで、光ファイバセンサのドリフトに起因した荷重計測結果の誤差を低減することができる。

(14)本発明の少なくとも一実施形態に係る風車は、 風車翼を備える風車ロータと、 前記風車翼の歪に基づく歪データに基づいて前記風車翼の荷重を計測するように構成された、上記(9)〜(13)の何れかの構成を有する荷重計測システムと、 を備える。

上記(14)の構成では、風車の起動中に取得した歪データに基づいて、歪データと風車翼の荷重との関係を表す較正パラメータを算出する。これにより、風車の建設後の時間経過とともに歪センサにドリフトが生じる場合であっても、歪センサのドリフトの影響を低減しながら荷重計測装置の較正を精度良く行うことができる。 また、較正パラメータは、風車翼の自重に起因して風車翼に作用する理論荷重値に基づいて算出されるため、較正するための歪データを取得する際には、空力荷重がなるべく小さい方が望ましい。この点、風車の起動中は、風車ロータの回転数が比較的低いため、空力荷重は比較的小さい。また、風速低下に起因した風車停止後に風速が再び上昇し始める際に風車を起動する場合、そもそも風速が比較的低いために空力荷重はさらに小さい。よって、風車起動中に取得した歪データに基づいて較正パラメータを算出することで、空力荷重の影響を抑制し、荷重計測装置の較正を精度良く行うことができる。

本発明の少なくとも一実施形態によれば、歪センサのドリフトの影響を低減可能な荷重計測装置の較正方法が提供される。

一実施形態に係る風車の全体構成を示す概略図である。

一実施形態に係る荷重計測システムの概略構成を示すブロック図である。

図1に示す風車翼の翼根部において、風車翼の長手方向に直交する断面図である。

一実施形態に係る荷重計測装置の較正方法の概要を示すフローチャートである。

一実施形態に係る較正ステップの詳細を示すフローチャートである。

一実施形態に係る風車翼のアジマス角を説明するための図である。

一実施形態に係る風車のステートの遷移に対する風車翼のピッチ角の変化の仕方の一例を示す図である。

フラップ方向歪とフラップ方向荷重の相関関係の一例を示す図である。

パラメータ乖離指標の算出方法を説明するための図である。

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。

まず、本発明において荷重計測の対象とする風車翼を備える風車の構成について説明する。 図1は、本発明の一実施形態に係る風車1の全体構成を示す概略図である。同図に示すように、風車1は、複数の風車翼2と、該複数の風車翼2が取り付けられるハブ4とを備える風車ロータ6と、ナセル8と、ナセル8を支持するタワー10とを含む。なお、図1に示す風車1では、3枚の風車翼2がハブ4に取り付けられている。この風車1では、風車翼2が風を受けると、風車翼2及びハブ4を含む風車ロータ6が回転軸の周りを回転する。また、風車1は、風車翼2の荷重を計測するための荷重計測システム20(図1には示されない)を含む。

風車1は風力発電装置であってもよい。この場合、ナセル8には、発電機及び風車ロータ6の回転を発電機に伝達するための動力伝達機構が収容されていてもよい。風車1は、風車ロータ6の回転エネルギーが動力伝達機構により発電機に伝達されて、発電機によって電気エネルギーに変換されるように構成されていてもよい。

次に、図1〜図3を用いて、一実施形態に係る荷重計測システム20の構成について説明する。図2は、一実施形態に係る荷重計測システムの概略構成を示すブロック図であり、図3は、図1に示す風車翼の翼根部において、風車翼の長手方向に直交する断面図である。 図2に示すように、荷重計測システム20は、風車翼2の歪に基づく歪データに基づいて風車翼2の荷重を計測する荷重計測装置30と、荷重計測装置30を較正するための較正部40と、を含む。

荷重計測装置30は、風車翼2に取り付けられて風車翼2の歪を検出するように構成された歪センサ32と、歪センサ32を用いて取得される歪データに基づいて風車翼2の荷重を算出するための荷重算出部34を含む。

図1に示す風車1において、歪センサ32は、風車翼2の各々の翼根部12(図1参照)に設けられている。なお、図1に示す風車1において、翼根部12とは、風車翼2のハブ4側の端部を構成している構造部分のことである。翼根部12は、円筒状の形状を有し、風車翼2からハブ4へ伝達される曲げモーメントを負担する。 なお、図1では全て(3枚)の風車翼の各々の翼根部12に歪センサ32が設けられているが、歪センサ32は必ずしも全ての風車翼2に取り付けられている必要はなく、荷重計測の対象とする風車翼2の各々に取り付けられていればよい。

ここで、図3を用いて、歪センサ32の配置及び歪センサ32によって取得される歪データについて説明する。図3は、図1に示す風車翼2の翼根部12において、風車翼の長手方向に直交する断面図である。図3において、エッジ方向とは、風車翼2の長手方向に直交する断面において前縁26と後縁28を結ぶコード方向であり、フラップ方向とは、同断面において前記コード方向に直交する方向である。 図1及び図3に示す風車翼2の翼根部12には、風車翼2を挟んで、フラップ方向に沿って対向して配置される1対の歪センサ32A,32Bと、エッジ方向に沿って対向して配置される1対の歪センサ32C,32Dが取り付けられる。すなわち、歪センサ32A〜32Dは、風車翼2の翼根部12の、背側22、腹側24、前縁26側、及び後縁28側にそれぞれ取り付けられる。これらの歪センサ32A〜32Dでの計測データに基づいて、歪センサ32A〜32Dの各取付箇所における歪を求めることができる。

歪データは、歪センサ32によって検出される歪に基づく値である。 例えば、風車翼2の翼根部12の背側22及び腹側24に取り付けられた歪センサ32A,32Bから得られた歪の差分を算出することにより、風車翼2のフラップ方向における歪Xflapを算出することができる。また、風車翼2の翼根部12の前縁26側及び後縁28側に取り付けられた歪センサ32C,32Dから得られた歪の差分を算出することにより、風車翼2のエッジ方向における歪Xedgeを算出することができる。これらのフラップ方向における歪Xflapやエッジ方向における歪Xedgeを歪データとすることができる。

風車翼2のフラップ方向における歪とフラップ方向の荷重は相関関係を有するので、風車翼2のフラップ方向における歪Xflapに基づいて風車翼2のフラップ方向における荷重を算出することができる。また、風車翼2のエッジ方向における歪とエッジ方向の荷重は相関関係を有するので、風車翼2のエッジ方向における歪Xedgeに基づいて風車翼2のエッジ方向における荷重を算出することができる。

なお、荷重計測対象の風車翼2において、フラップ方向の荷重を計測する場合には、該風車翼2には、少なくとも、フラップ方向の歪Xflapを取得するための歪センサ32、すなわち風車翼2の背側22及び腹側24に一対の歪センサ32A,32Bが取り付けられていればよい。また、荷重計測対象の風車翼2において、エッジ方向の荷重を計測する場合には、該風車翼2には、少なくとも、エッジ方向の歪Xedgeを取得するための歪センサ32、すなわち風車翼2の前縁26側及び後縁28側に一対の歪センサ32C,32Dが取り付けられていればよい。

一実施形態では、歪センサ32は、長手方向において屈折率が周期的に変化する回折格子部を有する光ファイバセンサである。この光ファイバセンサは、該光ファイバセンサに入射された光の回折格子部における反射光の波長に基づいて風車翼2の歪を検出するように構成される。 光ファイバセンサに加わる歪が変化すると、回折格子部の格子間隔が変化する。このため、光ファイバに入射された光が回折格子部で反射される反射光の波長は、この格子間隔の変化に応じて変化する。よって、回折格子部における反射光の波長に基づいて歪を検出することができる。 このような光ファイバセンサとして、例えば、FBG(Fiber Bragg Grating)センサを用いることができる。

一実施形態では、歪センサ32は、金属歪ゲージ又は半導体歪ゲージ等の歪ゲージである。

図1及び図3に示す実施形態では、歪センサ32は風車翼2の翼根部12に取り付けられているが、一実施形態では、歪センサ32は風車翼2の先端部(ハブから遠い方の端部)に取り付けられていてもよい。一実施形態では、歪センサ32は風車翼2の翼根部12と先端部との間の領域に取り付けられていてもよい。 また、一実施形態では、歪センサ32は、図1及び図3に示すように、風車翼2の背側22、腹側24、前縁26側、及び後縁28側にそれぞれ取り付けられていてもよい。一実施形態では、複数の歪センサ32が風車翼2の長さ方向にわたって取り付けられていてもよい。

荷重算出部34は、歪センサ32が取り付けられた風車翼の各々について、風車翼2に作用する荷重を算出するように構成される。 風車翼2の歪と風車翼2に作用する荷重とは相関関係を有するので、風車翼2に取り付けられた歪センサ32により取得される歪データに基づいて風車翼2の荷重を算出することができる。 荷重算出部34では、風車翼2の歪と風車翼2の荷重との相関関係を示すパラメータに基づいて、歪センサ32により取得される歪データから風車翼2の荷重を算出する。 一実施形態では、風車翼2の歪と風車翼2の荷重との相関関係を示すパラメータとして、後で説明する換算用較正パラメータを用いる。

較正部40は、荷重計測装置30を較正するように構成される。較正部40で荷重計測装置30を較正することにより、歪センサ32にドリフトが生じた場合であっても、歪センサのドリフトの影響を低減して、精度良く風車翼の荷重計測を行うことができる。 図2に示すように、較正部40は、歪データ取得指令部42と、荷重値参照テーブル44と、理論荷重値取得部46と、較正パラメータ算出部48と、較正パラメータ蓄積部50と、換算用パラメータ決定部52と、を含む。

一実施形態に係る荷重計測装置30の較正方法は、上述の構成を有する較正部40により実行される。上述の構成を有する較正部40による荷重計測装置30の較正方法について、図4〜図9を参照して以下に説明する。 なお、以下の説明においては、風車ロータ6が備える風車翼2のうち1枚に着目してその荷重を計測する方法について説明するが、他の風車翼2についても、同様の方法で荷重を計測することが可能である。

図4は、一実施形態に係る荷重計測装置の較正方法の概要を示すフローチャートである。図4のフローチャートに示すように、一実施形態に係る荷重計測装置30の較正方法では、まず、風車1の起動中に、風車翼2のアジマス角またはピッチ角の少なくとも一方が互いに異なる複数の条件のそれぞれについて複数の歪データを取得する(歪データ取得ステップ;S100)。 次に、S100で歪データを取得した複数の条件の各々における風車翼2のアジマス角及びピッチ角に基づいて、該複数の条件の各々について、風車翼2の自重に起因して風車翼2に作用する理論荷重値を取得する(理論荷重値取得ステップ;S200)。 次に、S100で取得した歪データの各々とS200で取得した理論荷重値との相関関係に基づいて、荷重計測装置30により取得される歪データと風車翼2の荷重との関係を表す較正パラメータを算出する(較正パラメータ算出ステップ;S300)。 これらのS100、S200及びS300の手順を複数回の風車1の起動中に行うことにより、複数回それぞれの風車1の起動中の歪データに基づく較正パラメータを複数取得する。 そして、過去の複数回の風車1の起動中に実行された歪データ取得ステップ(S100)にてそれぞれ取得された複数組の歪データに基づき較正パラメータ算出ステップ(S300)にて算出された複数の較正パラメータの少なくとも一つに基づいて、荷重計測装置30の較正を行う(較正ステップ;S400)。

以下に、上述したS100〜S400の各ステップについて詳細に説明する。なお、以下においては、風車翼2のフラップ方向の荷重計測について荷重計測装置30を較正する方法について説明するが、風車翼2のエッジ方向の荷重計測についても同様の方法で荷重計測装置30を較正することができる。

歪データ取得ステップ(S100)において、歪データ取得指令部42は、風車1の起動中に、風車翼2のアジマス角またはピッチ角の少なくとも一方が互いに異なる複数の条件のそれぞれについて複数の歪データを取得するように、荷重計測装置30に指令を与える。本実施形態では、歪データ取得指令部42は、風車1の起動中に、風車翼2のピッチ角θがフルフェザー位置とフルファイン位置との間におけるピッチ角θ1であるときに、風車翼2のアジマス角が0°、90°、180°及び270°である4条件のそれぞれについて歪データを取得するように、荷重計測装置30に指令を与える。 なお、アジマス角とは、図6に示すように、風車翼2の回転面において、所定の基準と風車翼2の軸線とのなす角をいい、本明細書においては、風車翼2が最上部に位置したときを基準とする。この場合、風車翼2が風車1の最上部に位置したときのアジマス角は0°であり、最下部に位置したときのアジマス角は180°である。なお、図6は風車翼のアジマス角を説明するための図である。

歪データ取得指令部42からの指令を受け取った荷重計測装置30は、風車翼2の翼根部12の背側22及び腹側24に取り付けられた歪センサ32A,32Bにより検出される歪の差分を算出することにより、風車翼2のフラップ方向における歪Xflapを歪データとして算出する。これにより、風車翼2のピッチ角がθ1であり、かつ風車翼2のアジマス角が0°、90°、180°及び270°である4条件のそれぞれについてフラップ方向歪(歪データ)Xflap_0、Xflap_90、Xflap_180、Xflap_270を取得する。

風車1の起動中とは、風車1が停止・待機ステートから運転ステートに移行する際に経由する起動ステートにある状態のことを言う。ここで、図7は、風車ステートの遷移に応じた風車翼のピッチ角の変化の仕方の一例を示す図である。 停止・待機ステート(図7の時刻t1までの期間)では、風車1の各風車翼2のピッチ角はフェザー位置となっており、風車ロータ6の回転数はほぼゼロである。起動ステート(図7のt1〜t4の期間)では、風車翼2が風を受けて風車ロータ6が回転するように、風車翼2のピッチ角をフェザー側からファイン側に移行させて、風車ロータ6の回転数を上昇させる。起動ステートにおいて風車ロータ6の回転数が十分に上昇すれば、風車1は運転ステート(図7の時刻t4以降の期間)に移行する。風車1が風力発電装置である場合には、運転ステートとは、風車ロータ6の回転数及び発電機の回転数が十分に上昇し、該風力発電装置がグリッドに併入された状態のことである。

例えば、図7に示すように、風車1の起動時(すなわち起動ステートであるとき)に、風車翼2のピッチ角をフェザー位置からファイン位置に移行させる際に、フルフェザーとフルファインとの間における一定のピッチ角θwで待機する待機期間(図7のt2〜t3の期間)が設けられる場合には、歪データ取得ステップ(S100)では、該待機期間中に風車翼2の歪データを取得してもよい。 あるいは、風車1の起動時に、風車翼2のピッチ角をフェザー位置からファイン位置に移行させる前の段階において、風車翼2の各々のピッチ角を操作して、風車翼2のうち1本のみを歪データを取得するピッチ角にして、この風車翼2の歪データを取得するようにしてもよい。この際、他の2本の風車翼2のピッチ角をフルフェザー位置にして風車ロータ6の回転数をなるべく上昇させないようにして、歪データの取得対象の風車翼2に作用する空力荷重をできるだけ低減させるようにしてもよい。

理論荷重値取得ステップ(S200)において、理論荷重値取得部46は、歪データ取得ステップ(S100)にて風車翼2の歪データを取得した複数の条件について、風車翼2の自重に起因して風車翼2に作用する理論荷重値を荷重値参照テーブル44から取得する。 ここで、荷重値参照テーブル44は、風車翼2のピッチ角及びアジマス角と、風車翼2の自重に起因して風車翼に作用する理論荷重値とが関連付けられたテーブルであり、風車翼2のアジマス角とピッチ角との組み合わせに対応付けられた理論荷重値が格納されている。 具体的には、理論荷重値取得部46は、歪データ取得ステップ(S100)にてフラップ方向歪(歪データ)が取得された4条件、すなわち風車翼2のピッチ角がθ1であり、かつ風車翼2のアジマス角が0°、90°、180°及び270°である4条件について荷重値参照テーブル44を参照し、該4条件の各々に対応するフラップ方向の理論荷重値Mflap_ex_0、Mflap_ex_90、Mflap_ex_180及びMflap_ex_270を取得する。

較正パラメータ算出ステップ(S300)において、較正パラメータ算出部48は、歪データ取得ステップ(S100)で取得したフラップ方向歪(歪データ)の各々(即ち、Xflap_0、Xflap_90、Xflap_180、Xflap_270)と理論荷重値取得ステップ(S200)で取得したフラップ方向の理論荷重値(即ち、Mflap_ex_0、Mflap_ex_90、Mflap_ex_180及びMflap_ex_270)との相関関係に基づいて、荷重計測装置30により取得される歪データと風車翼2の荷重との関係を表す較正パラメータを算出する。

ここで、風車翼2におけるフラップ方向歪Xflapとフラップ方向荷重Mflapとの相関関係は、Mflap=aXflap+bの一次式で近似的に表すことができることが知られている。そこで、フラップ方向歪Xflapとフラップ方向荷重Mflapとの相関関係を表す較正パラメータとして、上記式の傾きa及び/又は切片bを用いることができる。

図8は、フラップ方向歪とフラップ方向荷重の相関関係の一例を示す図である。図8において、横軸はフラップ方向歪Xflapを表し、縦軸はフラップ方向荷重Mflapを表す。この座標において、風車翼2のピッチ角がθ1であるときのフラップ方向歪と理論荷重値との相関関係は、歪データ取得ステップ(S100)で取得したフラップ方向歪(歪データ)の各々(即ち、Xflap_0、Xflap_90、Xflap_180、Xflap_270)に対応して、理論荷重値取得ステップ(S200)で取得したフラップ方向の理論荷重値(即ち、Mflap_ex_0、Mflap_ex_90、Mflap_ex_180及びMflap_ex_270)をプロットした4点に関する近似直線Mflap=af1Xflap+bf1によって表される。 較正パラメータ算出部48は、この直線の方程式を、例えば最小二乗法により算出し、これにより、風車翼2のフラップ方向に関する較正パラメータである該直線の傾きaf1及び切片bf1を取得する。

上記に説明した歪データ取得ステップ(S100)、理論荷重値取得ステップ(S200)及び較正パラメータ算出ステップ(S300)は、複数回の風車1の起動中に実行される。 例えば、風車1のある起動回において、1回目の歪データ取得ステップ(S100)が行われ、これにより風車翼2のピッチ角θ1かつアジマス角0°、90°、180°及び270°においてそれぞれフラップ方向歪を取得する。そして、理論荷重値取得ステップ(S200)において、それぞれのフラップ方向歪が取得されたピッチ角(θ1)及びアジマス角に対応するフラップ方向の理論荷重値を取得し、較正パラメータ算出ステップ(S300)では、各フラップ方向歪及びフラップ方向理論荷重値に基づいて、風車翼2のフラップ方向に関する較正パラメータ、すなわち、Mflap=af1Xflap+bf1における傾きaf1及び切片bf1を算出する。 また、風車1の別の起動回において、2回目の歪データ取得ステップ(S100)、理論荷重値取得ステップ(S200)及び較正パラメータ算出ステップ(S300)が行われ、風車翼2のフラップ方向に関する較正パラメータ、すなわち、Mflap=af2Xflap+bf2における傾きaf2及び切片bf2が算出される。 同様に、風車1のさらに別の起動回において、n回目の歪データ取得ステップ(S100)、理論荷重値取得ステップ(S200)及び較正パラメータ算出ステップ(S300)が行われ、風車翼2のフラップ方向に関する較正パラメータ、すなわち、Mflap=afnXflap+bfnにおける傾きafn及び切片bfnが算出される。

このようにして算出された較正パラメータ(af1、af2、…afn、及び/又は、bf1、bf2、…bfn)は、較正パラメータ蓄積部50に蓄積されるようになっていてもよい。較正パラメータ蓄積部50には、所定件数(例えば100件)の較正パラメータ(af1〜af100、及び/又は、bf1〜bf100)が蓄積されるようになっていてもよい。そして、算出された較正パラメータの数が該所定件数を超えた場合、較正パラメータ蓄積部50において、先入れ先出し(FIFO)方式にて、最も先に算出された較正パラメータが削除されるとともに、最も新しく算出された較正パラメータが保存されるようになっていてもよい。

以下に説明する較正ステップ(S400)では、このようにして、過去の複数回(n回)の風車1の起動中に実行された歪データ取得ステップ(S100)にてそれぞれ取得された複数組のフラップ方向歪(歪データ)に基づき算出された複数の較正パラメータ(af1、af2、…afn、及び/又は、bf1、bf2、…bfn)の少なくとも一つに基づいて、荷重計測装置30の較正を行う。 この手順により、歪データ取得ステップ(S100)が実行される回数(例えばn回)と同数(n個)の構成パラメータ(af1〜afn及び/又はbf1〜bfn)が算出される。 ここで、歪データが取得される「過去の複数回の風車1の起動」は、任意の2回以上の風車1の起動であり、かならずしも連続した起動回でなくてもよい。

一実施形態では、歪データ取得ステップ(S100)において、風車翼2のピッチ角のフェザー角を0%とし、ファイン角を100%としたときに、歪データ取得対象とする風車翼2の歪データ取得条件としてのピッチ角は40〜60%の範囲内である。 上述したように、風車1の起動中には、風車翼2が風を受けて風車ロータ6が回転するように、風車翼2のピッチ角をフェザー側からファイン側に移行させる。よって、ピッチ角を40〜60%の範囲内とすることで、風車1の起動中に風車翼2のピッチ角をフェザー側からファイン側に移行させる機会を利用して、較正パラメータを取得するための歪データを取得することができる。

また、風車翼2のピッチ角が40〜60%の範囲内で歪データを取得する場合、風車翼2のフラップ方向及びエッジ方向の両方において風車翼2の自重に起因する荷重がある程度作用した状態で歪データを取得することができる。よって、荷重計測装置30が風車翼2のフラップ方向及びエッジ方向の荷重を計測可能な構成を有する場合であっても、フラップ方向及びエッジ方向の両方について荷重計測装置30の較正を効率的に行うことができる。

なお、上述の説明において、歪データ取得ステップ(S100)では、風車翼2のピッチ角が一定であり、風車翼2のアジマス角が0°、90°、180°及び270°である4条件においてそれぞれ歪データを取得している。しかしながら、歪データ取得ステップでは、風車翼2のアジマス角またはピッチ角の少なくとも一方が互いに異なる少なくとも2つの条件のそれぞれについて歪データを取得すればよい。これは、このように少なくとも2つの条件下で歪データを取得すれば、これらの歪データ及びこれらに対応する理論荷重値に基づいて歪データ−荷重の相関関係を示す近似直線を得ることができ、較正パラメータ(該近似直線の傾き及び/又は切片)を算出することができるためである。

歪データ取得ステップ(S100)において、風車翼2のアジマス角またはピッチ角の少なくとも一方が互いに異なる2つの条件のそれぞれについて歪データを取得する場合、アジマス角が90°及び270°である2条件に関する歪データを取得することが好ましい。 アジマス角が90°又は270°であるときには、風車翼2の自重による荷重の絶対値が最も大きくなるとともに、アジマス角90°と270°とでは、風車翼2の自重による荷重の向きが反対になる(即ち、例えば、アジマス角90°では風車翼2の重心から腹側24に向かう方向に荷重が作用し、アジマス角270°では風車翼2の重心から背側22に向かう方向に荷重が作用する等)。このため、得られる2つの歪データの差を大きくすることができ、2点のデータ(歪データとこれに対応する理論荷重値)に基づいて算出される歪データ−荷重の相関関係を示す近似直線の精度を高めることができる。

また、風車翼2のピッチ角がフルフェザーに近い位置では、風車翼2の自重による荷重がフラップ方向に大きく作用するので、フラップ方向(すなわち、風車翼2の背側22及び腹側24)に設けられた歪センサ32で検出される歪の変動が大きくなるため、較正パラメータ算出ステップ(S300)にて得られる歪データ−荷重の相関関係を示す近似直線及び較正パラメータの精度が良くなる。よって、風車翼2のフラップ方向に関して荷重計測装置30の較正を行うときには風車翼2のピッチ角をフルフェザー付近の位置にしてもよい。

風車翼2のピッチ角がフルファインに近い位置では、風車翼2の自重による荷重がエッジ方向に大きく作用するので、エッジ方向(すなわち、風車翼2の前縁26側及び後縁28側)に設けられた歪センサ32で検出される歪の変動が大きくなるため、較正パラメータ算出ステップ(S300)にて得られる歪データ−荷重の相関関係を示す近似直線及び較正パラメータの精度が良くなる。よって、風車翼2のエッジ方向に関して荷重計測装置30の較正を行うときには風車翼2のピッチ角をフルファイン付近の位置にしてもよい。

風車翼2のピッチ角をフルフェザー位置とフルファイン位置との中間付近のピッチ角とすれば、風車翼2の自重による荷重は、フラップ方向とエッジ方向の両方においてある程度作用するので、フラップ方向(すなわち、風車翼2の背側22及び腹側24)に設けられた歪センサ32及びエッジ方向(すなわち、風車翼2の前縁26側及び後縁28側)に設けられた歪センサ32の双方において検出される歪の変動がある程度大きくなる。このため、風車翼2のフラップ方向とエッジ方向の両方について、較正パラメータ算出ステップ(S300)にて得られる歪データ−荷重の相関関係を示す近似直線及び較正パラメータの精度が良くなる。よって、1回(風車ロータ6が1周する期間)の歪計測で、フラップ方向とエッジ方向の両方において精度の良い較正パラメータを取得することができる。

なお、風車翼2のエッジ方向においても、上述においてフラップ方向について説明した方法と同様に、歪データ取得ステップ(S100)、理論荷重値取得ステップ(S200)及び較正パラメータ算出ステップ(S300)を行うことによって、風車翼2のエッジ方向に関する較正パラメータを算出することができる。すなわち、エッジ方向(風車翼2の前縁26側及び後縁28側)に設けられた歪センサ32で取得されるエッジ方向の歪を示す歪データに基づいて、エッジ方向荷重Medgeとエッジ方向歪データXedgeとの相関関係を表す近似直線の式Medge=aeXedge+beにおける傾きae及び切片be1を算出することができる。

較正ステップ(S400)において、較正部40は、過去の複数回(n回)の風車1の起動中に実行された歪データ取得ステップ(S100)にてそれぞれ取得された複数組のフラップ方向歪(歪データ)に基づき算出された複数の較正パラメータ(af1、af2、…afn、及び/又は、bf1、bf2、…bfn)の少なくとも一つに基づいて、荷重計測装置30の較正を行う。

ここで、図5は、一実施形態に係る較正ステップ(S400)の詳細を示すフローチャートである。 図5に示すように、較正ステップ(S400)では、まず、複数回の歪データ取得ステップ(S100)の実行により取得された複数のフラップ方向歪(歪データ)のうち、風速が閾値以下のときまたは風車ロータの回転数が閾値以下のときに歪センサ32により取得された歪に基づく歪データを抽出する(S402)。 つぎに、荷重計測装置30において歪データを荷重に換算するために現在用いている換算用較正パラメータと、S402で抽出された歪データに基づく較正パラメータのうち少なくとも一つとの乖離を示すパラメータ乖離指標を算出する(S404)。 そして、S404で算出されたパラメータ乖離指標が所定の許容範囲を超えているか否かを判定し(S406)、パラメータ乖離指標が許容範囲を超えたときには、S402で抽出された歪データに基づく較正パラメータのうち少なくとも一つに基づいて、荷重計測装置30で用いる換算用較正パラメータを更新する(S408)。

S402では、複数回の歪データ取得ステップ(S100)の実行により取得された複数のフラップ方向歪(歪データ)のうち、風速が閾値以下のときまたは風車ロータ6の回転数が閾値以下のときに歪センサ32により取得された歪に基づく歪データを抽出する。 このようにして風速又は風車ロータ6の回転数が比較的低い時に取得された歪データのみを抽出して用いることで、風車翼2に作用する空力荷重の影響が低減された較正パラメータを算出することができる。よって、このような較正パラメータを用いて荷重計測装置30の較正を行うことにより、風車翼2の荷重計測の精度がより良好となる。 「風速が閾値以下のとき」とは、必ずしも歪センサ32により歪を検出した時点における瞬時的な風速が閾値以下であるときとは限らず、例えば、風速の時間平均値(例えば10分平均)が閾値以下であるときであってもよい。また、「風車ロータの回転数が閾値以下のとき」とは、必ずしも歪センサ32により歪を検出した時点における瞬時的な回転数が閾値以下であるときとは限らず、例えば、回転数の時間平均値(例えば10分平均)が閾値以下であるときであってもよい。

前記風速の閾値は定格風速の80%以下または60%以下であってもよい。また、前記風車ロータ6の回転数の閾値は定格回転数の50%以下または35%以下であってもよい。 風速が定格風速の80%以下または60%以下であるとき、または、風車ロータ6の定格回転数の50%以下または35%以下であれば、風車翼2に作用する空力荷重が較正パラメータの算出に与える影響が小さい。このように、空力荷重の影響がある程度低減された較正パラメータのみを用いて荷重計測装置30の較正を行うので、風車翼2の荷重計測の精度がより良好となる。

S404では、荷重計測装置30において歪データを荷重に換算するために現在用いている換算用較正パラメータと、S402で抽出された歪データに基づく較正パラメータのうち少なくとも一つとの乖離を示すパラメータ乖離指標を算出する(S404)。 S404にて算出されるパラメータ乖離指標は、荷重計測装置30において現在用いている換算用較正パラメータを用いて歪データの基準値を換算して得られる第1荷重値と、 S402で抽出された歪データに基づいて算出された較正パラメータのうち少なくとも一つを用いて前記基準値を換算して得られる第2荷重値と、の差分である。

ここで、パラメータ乖離指標の算出例について説明する。図9は、パラメータ乖離指標の算出方法を説明するための図である。 図9において、F0:Mflap=af0Xflap+bf0は、荷重計測装置30において歪データを荷重に換算するために現在用いている換算用較正パラメータ(af0,bf0)に基づくフラップ方向の歪データ−荷重の相関関係を示す式である。荷重計測装置30では、上述のF0の式を用いて、歪センサ32により取得されたフラップ方向の歪データXflapをフラップ方向の荷重Mflapに換算している。 また、図9において、F1:Mflap=af1Xflap+bf1は、S402で抽出された歪データに基づく較正パラメータのうちの1つ(af1,bf1)によるフラップ方向の歪データ−荷重の相関関係を示す式である。

ここで、フラップ方向歪データXflapの基準値をXflap _refとする。フラップ方向歪データ基準値Xflap _refは、ここでは、所定の大きさのフラップ方向荷重Mflap_ref(例えば5000kNm)に対して、現在用いている換算用較正パラメータ(af0,bf0)に基づく換算式F0を用いて得られるフラップ方向歪である。すなわち、ここでは、荷重計測装置30において現在用いている換算用較正パラメータ(af0,bf0)に基づく換算式F0を用いてフラップ方向歪データ基準値Xflap _refを換算して得られるフラップ方向荷重Mflap_refが第1荷重値である。また、S402で抽出された歪データに基づいて算出された較正パラメータ(af1,bf1)に基づく換算式F1を用いてフラップ方向歪データ基準値Xflap _refを換算して得られるフラップ方向荷重Mflap_Xrefが第2荷重値である。 そして、このようにして得られた第1荷重値と第2荷重値との差分ΔM=|Mflap_ref−Mflap_Xref|がパラメータ乖離指標I1である。

S402で抽出された歪データに基づく較正パラメータが複数ある場合には、そのすべての較正パラメータについてパラメータ乖離指標Iを求めてもよいし、その一部についてパラメータ乖離指標Iを求めてもよい。

S406では、S404で算出されたパラメータ乖離指標Iを許容範囲と比較する。そして、パラメータ乖離指標Iが許容範囲を超えている場合には(S406のNO)、次のステップS408にて、荷重計測装置30において歪データを荷重に換算するため換算用較正パラメータを更新する。一方、パラメータ乖離指標Iが許容範囲内である場合には(S406のYES)、換算用較正パラメータは更新しない。

パラメータ乖離指標Iとして、フラップ方向歪データ基準値Xflap _refを換算して得られる第1荷重値と第2荷重値との差分ΔM=|Mflap_ref−Mflap_Xref|を用いる場合、フラップ方向歪データ基準値Xflap _refに対応する所定の大きさのフラップ方向荷重Mflap_refに対して所定の割合を乗算して得られる荷重値の範囲を、パラメータ乖離指標Iと比較する許容範囲としてもよい。 例えば、フラップ方向荷重Mflap_refを5000kNmとしたとき、5000kNmに−10%〜10%を乗じて得られる−500kNm〜500kNmを上記許容範囲としてもよい。

S406では、S404で算出された複数のパラメータ乖離指標Iのそれぞれを許容範囲と比較して、所定数のパラメータ乖離指標Iが許容範囲を超えている場合に、次のステップS408にて換算用較正パラメータを更新するようにしてもよい。例えば、直近に算出された3つのパラメータ乖離指標Iが連続して許容範囲を超えている場合に、次のステップS408にて換算用較正パラメータを更新するようにしてもよい。

なお、S406において、パラメータ乖離指標Iが許容範囲を超えている場合には、該パラメータ乖離指標Iの算出元である歪データを取得した歪センサ32においてドリフトが発生したと判定することができる。そこで、パラメータ乖離指標Iが許容範囲を超えている場合には、歪センサ32におけるドリフトの発生に対して注意を促すための注意警報が発されるようになっていてもよい。

S408では、荷重計測装置30において歪データを荷重に換算するため現在用いている換算用較正パラメータを、換算用パラメータ決定部52によって決定された新しい換算用較正パラメータに更新する。 ここで、「現在用いている換算用較正パラメータ」は、風車設置時に1回だけ行う初期較正で取得したものであってもよい。あるいは、「現在用いている換算用較正パラメータ」は、上述した歪データ取得ステップ(S100)、理論荷重値取得ステップ(S200)及び較正パラメータ算出ステップ(S300)を実行することによって得られる少なくとも1つの較正パラメータに基づいて決定されたものであってもよい。

換算用パラメータ決定部52は、S402で抽出された歪データに基づく複数の較正パラメータのうち2以上の較正パラメータの統計値を用いて、新しい換算用較正パラメータを算出してもよい。例えば、S402で抽出された歪データに基づく複数の較正パラメータの平均値を新しい換算用較正パラメータとして算出してもよい。

S408にて換算用較正パラメータが更新された荷重計測装置30では、更新後の(新しい)換算用較正パラメータを用いて、歪センサ32により得られるフラップ方向歪データをフラップ方向の荷重値に換算する。

このように、風車1の起動中に取得した歪データに基づいて、歪データと風車翼2の荷重との関係を表す較正パラメータを算出することにより、風車1の建設後の時間経過とともに歪センサ32にドリフトが生じる場合であっても、歪センサ32のドリフトの影響を低減しながら荷重計測装置30の較正を精度良く行うことができる。 また、過去の複数回の風車1の起動中に取得された複数組の歪データに基づき算出された複数の較正パラメータの少なくとも一つに基づいて荷重計測装置30の較正を行うことで、精度良く風車翼2の荷重計測を行うことができる。

以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。

本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。

1 風車 2 風車翼 4 ハブ 6 風車ロータ 8 ナセル 10 タワー 12 翼根部 20 荷重計測システム 22 背側 24 腹側 26 前縁 28 後縁 30 荷重計測装置 32,32A〜32D 歪センサ 34 荷重算出部 40 較正部 42 歪データ取得指令部 44 荷重値参照テーブル 46 理論荷重値取得部 48 較正パラメータ算出部 50 較正パラメータ蓄積部 52 換算用パラメータ決定部

QQ群二维码
意见反馈