包括锥形流动通路的流量传感设备

申请号 CN200911000172.4 申请日 2009-12-18 公开(公告)号 CN101900588B 公开(公告)日 2014-01-15
申请人 霍尼韦尔国际公司; 发明人 J·W·斯佩尔德里奇;
摘要 本 发明 涉及包括锥形流动通路的流量传感设备。 流体 流动传感设备包括锥形流体流动通路,其形成在主通路内用于限定流体流动管作为可替换流体流程。锥形流体流动通路能够从主流体流动通路中旁路一些流体流进入所述可替换流体流程以及置于所述可替换流体流程内的流量 传感器 中。锥形流动通路在向着所述流量传感器的流体流动方向上呈锥形,从而减少 涡流 并且使得流体流量传感器的传感性能优化。上游流体流动通路和下游流体流动通路可以模制到主流体流动通路中,尤其在主流体流动通路的流体流程中被旁路。流体流量传感器可以置于上游流体流动通路和下游流体流动通路之间用于测量通路内的流体流速。
权利要求

1.一种流体流量传感设备,用于感测通过主通路的流体的流动,流体流量传感设备包括:
外壳,该外壳限定:
输入端口,该输入端口构造成与主通路流体连通;
输出端口,该输出端口构造成与输入端口下游的主通路流体连通;
流动通路,该流动通路在输入端口和输出端口之间延伸,其中流动通路包括连接到输入端口的上游流体流动通路、连接到输出端口的下游流体流动通路以及在上游流体流动通路和下游流体流动通路之间延伸的互连流体流动通路,其中,互连流体流动通路包括第一锥形区域和第二锥形区域,其中第一和第二锥形区域在通过流动通路的流体流动方向上从较大的内尺寸向较小的内尺寸呈锥形,并且其中,第一锥形区域以第一锥率呈锥形并且第二锥形区域以第二锥率呈锥形,其中,第二锥率在大小上大于第一锥率;以及流体流量传感器,该流体流量传感器在互连流体流动通路中位于第一和第二锥形区域的下游并且暴露于外壳的流动通路,用于测量流过外壳的流动通路的流体的流量。
2.根据权利要求1所述的流量传感设备,进一步包括:
至少一个流体限流器,布置在外壳的输入端口上游的所述主通路内,所述至少一个流体限流器限制所述主通路和外壳的所述流动通路内的流体流速。
3.根据权利要求1所述的流量传感设备,其中所述第一锥形区域通过在所述第一锥形区域接近流体流量传感器时减少第一锥形区域的横截面尺寸而形成锥形。
4.根据权利要求3所述的流量传感设备,其中所述第一锥形区域的尺寸沿着第一锥形区域的至少一部分持续减少。
5.根据权利要求1所述的流体流量传感设备,其中所述主通路具有的横截面形状从一组形状中选择,包括三形、正方形、矩形、半圆形和半椭圆形。
6.根据权利要求1所述的流量传感设备,其中流体包括气体或者液体。
7.根据权利要求1所述的流量传感设备,其中互连流体流动通路包括第三锥形区域和第四锥形区域,其中第三锥形区域和第四锥形区域在流过流动通路的流体流动方向上从较小的内尺寸到较大的内尺寸呈锥形,并且其中,第三锥形区域以第三锥率呈锥形并且第四锥形区域以第四锥率呈锥形,其中,第三锥率在大小上大于第四锥率。

说明书全文

包括锥形流动通路的流量传感设备

技术领域

[0001] 本实施例总体涉及流量传感设备及其方法。本实施例还涉及气体流量传感器。另外,实施例涉及用于控制涡流的改进的流动通路。

背景技术

[0002] 多种流量系统利用流体流速控制机构来控制流体量,流体可能是以气体(例如,空气)或者液体的形式流过流动通路。流量控制机构也可以用于调节系统(例如通器和呼吸器)内的流速,从而保持充足的透气流量或者为病人提供充足的用于准备外科手术的麻醉气。通常,流速控制会发生在响应从流体流量传感器所获得测量值的控制电路使用过程中。显然这样的流量传感器能够通过采样沿着流动通路的壁的流体来测量流体的流速。
[0003] 一种实现方式中,流量传感器放置在流动通路相对待测流体流动方向的上游侧和下游侧之间。气体流量传感设备通常含有上游通路高度和下游通路高度恒定的流动通路。流动通路的这些上游侧和下游侧能够产生压差和流过各流量传感器的流体流速,从而导致流动通路内的湍流效应和涡流。涡流可以产生流体流量的不稳定性,从而导致流量传感器的不稳定输出。更进一步,流量传感器要求流动通路的流程内有附加的限流,尤其是流动通路的旁路内,从而限制流过传感器的流体流量并且避免输出饱和。
[0004] 现有技术中大部分流量传感器要求穿过流量传感器的传感元件的流体流程精确和准确的对准,从而避免流动通路内产生涡流。对流体流程的精准和准确的对准能够增强流量传感器的优化性能。这样的方法要求额外的精度,从而导致流量传感器的制造过程中额外的设计或者安装时间,因此非常昂贵。另外,由于截面区域和流体通路内的上游以及下游通路位置的非一致性,流动通路可能不会产生统一的层化流体流动。
[0005] 为了解决前述困难,需要改进的和廉价的流体通路以便能够减少涡流以及稳定传感器的输出信号。这里公开的改进型流体通路能够解决这些以及其他持续的需求。发明内容
[0006] 提供下述发明内容从而有助于理解公开的实施例独有的一些创新性特征,并不是为了作一个全面的描述。实施例的不同方面的全面理解可以通过将整个说明书权利要求附图摘要作为一个整体来获得。
[0007] 因此,本发明的一个方面是提供改进的流体流量传感设备。
[0008] 本发明的另一个方面是提供带有改进的流动通路的流体流量传感器,从而能够减少或者避免流过通向传感器的流程的流体内不必要的涡流。
[0009] 如这里所述的目前可以获得前述方面以及其他目标和优点。流量传感设备包括限定流体(例如,气体或者液体)流程的主流动通路,流体流动通过该流程。上游流动通路和下游流动通路可以模制到主流动通路中,传感器区域旁通主流动通路的流程。流体流量传感器可以置于上游流动通路和下游流动通路之间,用于测量流动通路内的流体流速。本发明中,上游流动通路在朝向气体流量传感器的方向上呈锥形。下游流动通路也可以是锥形的。锥形的上游和下游流动通路减少了流量传感器内的涡流,因此增强了流动稳定性并稳定了传感器输出信号,从而使得流量传感器的传感性能优化。
[0010] 根据本发明的另一个特征,形成到主流动通路内的至少一个锥形流动通路限定作为可替换流体流程的流动管,其中所述至少一个锥形流动通路将来自主流动通路的一些流体流旁路到所述可替换流体流程内。流量传感器置于所述可替换流体流程内,其中所述锥形流动通路在朝向所述流量传感器的流体流动方向上呈锥形,从而减少涡流并且使得所述流量传感器获得优化的传感性能。
[0011] 另外,传感设备还可以包括一套精密限流器,该限流器可以放置在主流动通路内从而通过限制主流动通路内以及流动管和/或可替换流程内的流量来限制流过流量传感器的流体的流速。主流动通路优选的可以展现有与流体系统配套的横截面形状和尺寸。上游和下游流动通路或者可替换流程可以在上游和下游流动通路接近气体流量传感器的时候通过增加流动入口处的高度和减少该高度来形成锥形。因此,当流体流从主流动通路改变方向进入上游流动通路的时候,流体的流动速度会更加稳定。从而传感设备可以产生一致的流过气体流量传感器的流体流动,从而获得更准确的流体测量。

附图说明

[0012] 附图中相同的或者功能类似的元件在整个独立的视图中采用相同的附图标记,并且附图并入到说明书中形成说明书的一部分,附图进一步说明实施例并且与具体实施方式一起用于解释这里公开的实施例。
[0013] 附图1表示流量传感设备的总透视图,适用于实施优选实施例;
[0014] 附图2表示根据本发明特征的流量传感设备的横截面示意图;
[0015] 附图3表示根据本发明特征的流量传感设备的横截面示意图;以及[0016] 附图4表示根据本发明的特征,如图3所示的含有锥形上游和下游流动通路的气体流量传感器的另一个横截面示意图。

具体实施方式

[0017] 这些非限制性实例中所讨论的特定数值和构造可以改变以及仅仅被引用来说明至少一个实施例,因此并不是为了用于限制保护范围。注意到附图1-5中相同的部分或者元件通常采用相同的附图标记表示。
[0018] 参考附图1,表示传感设备100的总透视图,能够适用于实施一个优选实施例。流量传感设备100可以置于由主流动通路120限定的流程121内,这样流体150,如图2所示,能够流入和流出主流动通路120。注意到这里所使用到的术语“流体”可以指气体或者液体。因此,这里公开的流量传感设备100可用于流体系统(没有示出)内的流体(例如,空气或者气体)流150的流速测量。注意到这里所讨论的实施例通常涉及气体流量传感系统或者装置。然而,应当理解这样的实施例也可以在其他传感系统和设计的背景下应用,并且不限于气体流量传感技术。气体流量传感系统的讨论,如这里所使用的,是用于示例性目的。
[0019] 参考附图2,表示根据优选实施例的流量传感设备100的横截面示意图。主流动通路120可以与上游流动通路130和下游流动通路140整体设置在一起从而将主流动通路120连接到流动管210,流动管210被流量传感设备100的主体110全部覆盖。上游流动通路130和下游流动通路140也可以形成进入塑料流动管210的通道,如图3-4中所示。塑料流动管210包括流量传感器230。上游和下游流动通路130和140相互平行。主流动通路120能够如图2所示,通过将流体150旁路流过上游流动通路和下游流动通路130和140从而引导流体150流过流量传感器230。因此,流体150的流动是从主流动通路120中的上游流动通路130流到下游流动通路140。
[0020] 流量传感设备100的主体110通常包括带有上游和下游流动通路130和140的圆柱形。传感设备100的流量传感器230可以通过半导体和集成电路制造技术实施。主流动通路120以及上游和下游流动通路130和140可以优选展现有与包括进入流动管210的锥形入口的流量系统相配套的截面形状和尺寸。这种传感设备100能够以较大的信噪比来量化流体150的质量流速,从而获得流体流速测量准确性和分辨率的改善。
[0021] 流量传感设备100可用于大量的流动系统,例如反应堆、通风器和呼吸器,用于准确测量流体150沿着主流动通路120的流程121的流速。主流动通路120和塑料流动管210中的流体150的方向在图2中被清晰地示出。
[0022] 流量传感设备100还可以包括置于主流动通路120内的限流器220。尤其,这些限流器220可以分别放置在与上游和下游流动通路130和140邻近的位置。限流器220可以包括在其中形成的一套断流孔221从而控制流过主流动通路120的流体150的流动。限流器220尤其可以控制沿着上游和下游流动通路130和140的流体150的流动。至少上游流动通路130在朝向流量传感器230的方向上是锥形的。上游和下游流动通路130和140都可以为锥形,如图3和图4所示。锥形的流动通路130和140都可以使得接收和控制流过传感器100的主流动通路121的双向流成为可能,从而能够对进入流动管210和流过传感器230的流动进行管理。可以容易并且廉价地提供这样的锥形上游以及下游流动通路130和140,因为它可以被模制到主流动通路120中。
[0023] 操作过程中,当流体150以流量传感器的截面视图中更清晰表示的方向流过主流动通路120的时候,流体150的一部分也能够流过锥形上游流动通路130。锥形上游流动通路130可以限制流体150的流速,从而提供流过气体流量传感器230的流体150的均匀流。因此,气体流量传感器230可以以准确的方式测量流体150的流速。气体流量传感器230可以放置在带有盖250的基底240上。盖250可以抵靠基底240的后侧放置从而保护气体流量传感器230不受到环境的影响。之后,当测量流体150的流速后,流动管210内的流体150可再次通过锥形下游流动通路140流过主流动通路120。
[0024] 参考附图3-4,表示流量传感器200,300的横截面视图。流动通路可以包括尖锐的标准310,流体可流动通过所述标准角。尖锐边缘会导致对流体流动的限制,因此在如图5中的流量传感器300中示出了圆角410。流程内的圆角使得流体能够比图4中所示的流动的更加流畅。
[0025] 本发明的特征能以简单的方式来提供,其中至少一个锥形流动通路形成在主流动通路内从而限定流动管作为可替换流体流程,其中所述至少一个锥形流动通路将来自主流动通路的某些流体流旁路到所述可替换流体流程内。流量传感器置于所述可替换流体流程内,其中所述锥形流动通路在朝向所述流量传感器的流体流动方向上呈锥形,从而减少涡流并且使得所述液流传感器的传感性能优化。这种配置下,传感设备可包括至少一个精密限流器,所述限流器放置在主流动通路内从而通过限制主流动通路以及流动管和/或可替换流程内的流动来限制流体的流速。
[0026] 应当理解上述公开的以及其他特征和功能的变形,或者关于它们的可替换形式,可以期望地被并入许多其他不同的系统或者应用中。而且随后本领域技术人员可以对此进行各种目前无法预知或者没有预料到的可替换形式、修改、变形或者改进,这些也包括在所附权利要求中。
QQ群二维码
意见反馈