高電圧発火ユニット、軍需品システム、およびその動作方法

申请号 JP2015531306 申请日 2013-09-10 公开(公告)号 JP2015531468A 公开(公告)日 2015-11-02
申请人 オーバイタル・エイティーケイ・インコーポレイテッド; 发明人 デヴリーズ,デレク・アール; マドセン,ブレント・ディー; ピーターソン,エルドン・シー; ジャクソン,ドナルド・エル; ソルプ,ウィリアム・ダブリュー; ラスク,スコット・ケイ;
摘要 高電圧発火ユニット(130)が高電圧変換器(140)と、容量放電ユニット(160)と、制御ユニット(170)とを備えることができる。高電圧変換器は、より低い電圧の入 力 信号 (122A)から高電圧出力信号(161)を発生するように構成することができる。容量放電ユニットは、高電圧出力信号からのエネルギーをエネルギー蓄積デバイス(162)の両端間に蓄積するように、および発火制御信号(163)に応答してエネルギー蓄積デバイスからのエネルギーを放出するように構成することができる。制御ユニットは外部軍需品制御器(110)と通信し、高電圧発火ユニットの内部動作を制御するように構成することができる。軍需品システム(100)は、高電圧発火ユニットと、データを制御ユニットに通信し、少なくとも1つの電力信号を高電圧変換器に通信するように構成された軍需品制御器とを備えることができる。高電圧発火ユニットを動作させるための方法も開示される。
权利要求

より低い電圧の入信号から高電圧出力信号を発生するように構成された高電圧変換器と、 前記高電圧変換器に動作可能に結合された容量放電ユニットであって、前記高電圧出力信号からのエネルギーをエネルギー蓄積デバイスの両端間に蓄積するように、および発火制御信号に応答して前記エネルギー蓄積デバイスからのエネルギーを放出するように構成された容量放電ユニットと、 前記高電圧変換器および前記容量放電ユニットに動作可能に結合された制御ユニットであって、外部軍需品(ordnance)制御器と通信し、高電圧発火ユニットの内部動作を制御するように構成された制御ユニットとを備える、高電圧発火ユニット。前記制御ユニットが、前記高電圧発火ユニットの内部の複数の監視された信号の内部試験を実行するように構成される、請求項1に記載の高電圧発火ユニット。前記制御ユニットが、前記内部試験からの状態を前記外部軍需品制御器に通信するようにさらに構成される、請求項2に記載の高電圧発火ユニット。前記容量放電ユニットに動作可能に結合された起爆装置(initiator)をさらに備え、前記エネルギー蓄積デバイスからの前記放出されたエネルギーが、前記起爆装置を付勢(energize)して、前記起爆装置に関連したエネルギー物質(energetic material)に点火する、請求項の1から3のいずれかに記載の高電圧発火ユニット。前記起爆装置を収納するための起爆デバイスと、 前記高電圧変換器、前記容量放電ユニット、および前記制御ユニットを収納するための電子装置組立品(assembly)とをさらに備え、前記起爆デバイスおよび前記電子装置組立品が、離脱可能に接続される、請求項4に記載の高電圧発火ユニット。前記起爆装置が、スラッパー起爆式雷管(slapper detonator)と、爆発箔起爆装置(EFI:exploding foil initiator)と、低エネルギー爆発箔起爆装置(LEEFI)と、爆発箔雷管(EFD:exploding foil detonator)と、信管(blasting cap)と、起爆電橋型雷管(EBW:exploding-bridgewire detonator)と、瞬発電気雷管(IED:instantaneous electrical detonator)と、短期遅発雷管(SPD:short period delay detonator)と、長期遅発雷管(LPD:long period delay detonator)とのうちの少なくとも1つを備える、請求項4または請求項5に記載の高電圧発火ユニット。前記高電圧変換器が、前記容量放電ユニットへの経路内で結合された複数の安全スイッチをさらに備え、前記複数の安全スイッチの各安全スイッチを、前記エネルギー蓄積デバイスの充電を防止するために安全モードの間無効にすることができ、前記エネルギー蓄積デバイスの充電を可能にするために作動可能モードの間有効にすることができる、請求項1から3のいずれかに記載の高電圧発火ユニット。前記複数の安全スイッチのうちの少なくとも1つの安全スイッチが、前記外部軍需品制御器によって発生された制御信号によって制御される、請求項7に記載の高電圧発火ユニット。前記複数の安全スイッチのうちの少なくとも1つの安全スイッチが、前記制御ユニットによって発生された制御信号によって制御される、請求項7に記載の高電圧発火ユニット。前記複数の安全スイッチのうちの少なくとも1つの安全スイッチが、前記高電圧変換器内の高電圧制御論理モジュールによって発生された制御信号によって制御される、請求項7に記載の高電圧発火ユニット。前記容量放電ユニットが、発火スイッチをさらに備え、前記発火スイッチが、1つまたは複数の放電制御信号に応答して前記エネルギー蓄積デバイスからの前記エネルギーを放出するように構成される、請求項1から3のいずれかに記載の高電圧発火ユニット。前記発火スイッチが、電子スイッチ、ギャップチューブ(gap tube)、およびトリガードギャップチューブからなる群から選択されたスイッチを含む、請求項11に記載の高電圧発火ユニット。前記エネルギー蓄積デバイスが、1つまたは複数のキャパシタを含む、請求項1から3のいずれかに記載の高電圧発火ユニット。前記エネルギー蓄積デバイスの両端間に放電のために蓄積された前記高電圧出力信号が、約500V超(greater than)である、請求項1から3のいずれかに記載の高電圧発火ユニット。高電圧発火ユニットであって、 低電圧信号を高電圧出力信号に変換するように構成された高電圧変換器、 前記高電圧出力信号からのエネルギーを1つまたは複数のエネルギー蓄積デバイスに蓄積するように、および発火制御信号に応答して前記エネルギーを放出するように構成された容量放電ユニット、ならびに 前記高電圧発火ユニットの内部動作を制御するように構成された制御ユニットを備える高電圧発火ユニットと、 前記高電圧発火ユニットに動作可能に結合された軍需品制御器とを備える軍需品システムであって、 前記軍需品制御器が、データを前記制御ユニットに通信し、少なくとも1つの電力信号を前記高電圧変換器に通信するように構成される、軍需品システム。前記少なくとも1つの電力信号が、 前記低電圧信号として第1の電力信号と、 前記容量放電ユニットへの経路内で結合された安全スイッチを制御するための第2の電力信号とを含む、請求項15に記載の軍需品システム。前記高電圧変換器が、前記制御ユニットからの制御信号に応答して前記低電圧信号を前記容量放電ユニットに選択的に結合するために前記容量放電ユニットへの前記経路内で結合された別の安全スイッチを含む、請求項16に記載の軍需品システム。前記高電圧変換器が、前記容量放電ユニットへの前記経路内で前記安全スイッチに直列に結合された動的安全スイッチを含み、前記動的安全スイッチが、前記高電圧変換器によって発生された別の制御信号に応答して前記高電圧出力信号により前記エネルギー蓄積デバイスの充電をパルスにするように構成される、請求項17に記載の軍需品システム。前記軍需品制御器が、前記高電圧充電ユニットを作動可能にする前に前記高電圧発火ユニットに関連したアドレスを用いてホスト制御器から受け取ったアドレスコマンドを確認するように構成される、請求項17または請求項18に記載の軍需品システム。複数の高電圧発火ユニットへの電力線および通信線を含む共通のケーブルを用いて前記軍需品制御器に動作可能に結合された前記複数の高電圧発火ユニットをさらに備える、請求項15から18のいずれかに記載の軍需品システム。高電圧発火ユニットを動作させるための方法であって、 高電圧発火ユニットの高電圧変換器を作動可能にするステップと、 低電圧入力信号を高電圧出力信号に変換することにより前記高電圧発火ユニットの容量放電ユニットを充電し、前記高電圧出力信号からのエネルギーをエネルギー蓄積デバイスに蓄積するステップと、 発火制御信号に応答して起爆装置を活性化させる(activate)ために前記エネルギー蓄積デバイスからの前記エネルギーを放出するステップとを含む方法。前記高電圧発火ユニットの少なくとも1つの内部ノードにおいて、測定された電圧および電流のうちの少なくとも1つを監視することにより前記高電圧発火ユニットの状態を判定するステップをさらに含む、請求項21に記載の方法。前記状態を判定するステップが、前記高電圧発火ユニットの制御および監視ユニットの電源投入時に起きる、請求項22に記載の方法。前記高電圧変換器を作動可能にする前に前記状態を外部軍需品制御器に伝送するステップをさらに含む、請求項22または請求項23に記載の方法。前記高電圧変換器を作動可能にするステップが、外部軍需品制御器からの第1の作動可能電力信号と第2の作動可能電力信号と受け取るステップを含む、請求項21から23のいずれかに記載の方法。前記第1の作動可能電力信号と前記第2の作動可能電力信号とを受け取るステップが、前記第1の作動可能電力信号を受け取る前に前記第2の作動可能電力信号が所望の電圧帯内にあることを確認するステップを含む、請求項25に記載の方法。前記容量放電ユニットの充電を有効にする前に前記第1の作動可能電力信号が所望の電圧帯(voltage band)内にあることを確認するステップをさらに含む、請求項26に記載の方法。前記第1の作動可能電力信号が、前記低電圧入力信号である、請求項25に記載の方法。

より低い電圧の入力信号から高電圧出力信号を発生するように構成された高電圧変換器と、 前記高電圧変換器に動作可能に結合された容量放電ユニットであって、前記高電圧出力信号からのエネルギーをエネルギー蓄積デバイスの両端間に蓄積するように、および発火制御信号に応答して前記エネルギー蓄積デバイスからのエネルギーを放出するように構成された容量放電ユニットと、 前記高電圧変換器および前記容量放電ユニットに動作可能に結合された制御ユニットであって、外部軍需品制御器と通信し、高電圧発火ユニットの内部動作を制御するように構成された制御ユニットと、 前記容量放電ユニットから電気的に絶縁された前記高電圧変換器のより低い電圧側に前記容量放電ユニットへの経路内で結合された複数の安全スイッチとを備える高電圧発火ユニットであって、前記複数の安全スイッチが、前記複数の安全スイッチのいずれか1つが安全モードの間無効にされた場合、前記エネルギー蓄積デバイスの充電を防止する、高電圧発火ユニット。前記制御ユニットが、前記高電圧発火ユニットの内部の複数の監視された信号の内部試験を実行するように構成される、請求項1に記載の高電圧発火ユニット。前記制御ユニットが、前記内部試験からの状態を前記外部軍需品制御器に通信するようにさらに構成される、請求項2に記載の高電圧発火ユニット。前記容量放電ユニットに動作可能に結合された起爆装置さらに備え、前記エネルギー蓄積デバイスからの前記放出されたエネルギーが、前記起爆装置を付勢して、前記起爆装置に関連したエネルギー物質に点火する、請求項の1から3のいずれかに記載の高電圧発火ユニット。前記起爆装置を収納するための起爆デバイスと、 前記高電圧変換器、前記容量放電ユニット、および前記制御ユニットを収納するための電子装置組立品とをさらに備え、前記起爆デバイスおよび前記電子装置組立品が、離脱可能に接続される、請求項4に記載の高電圧発火ユニット。前記起爆装置が、スラッパー起爆式雷管と、爆発箔起爆装置(EFI)と、低エネルギー爆発箔起爆装置(LEEFI)と、爆発箔雷管(EFD)と、信管と、起爆電橋型雷管(EBW)と、瞬発電気雷管(IED)と、短期遅発雷管(SPD)と、長期遅発雷管(LPD)とのうちの少なくとも1つを備える、請求項4または請求項5に記載の高電圧発火ユニット。前記複数の安全スイッチの各安全スイッチを、前記エネルギー蓄積デバイスの充電を防止するために安全モードの間無効にすることができ、前記エネルギー蓄積デバイスの充電を可能にするために作動可能モードの間有効にすることができる、請求項1から3のいずれかに記載の高電圧発火ユニット。前記複数の安全スイッチのうちの少なくとも1つの安全スイッチが、前記外部軍需品制御器によって発生された制御信号によって制御される、請求項7に記載の高電圧発火ユニット。前記複数の安全スイッチのうちの少なくとも1つの安全スイッチが、前記制御ユニットによって発生された制御信号によって制御される、請求項7に記載の高電圧発火ユニット。前記複数の安全スイッチのうちの少なくとも1つの安全スイッチが、前記高電圧変換器内の高電圧制御論理モジュールによって発生された制御信号によって制御される、請求項7に記載の高電圧発火ユニット。前記複数の安全スイッチが、 前記高電圧変換器の変圧器への前記より低電圧の入力信号の経路内で動作可能に結合された第1のスイッチであって、前記制御論理回路からの内部制御信号によって制御される静止スイッチである、第1のスイッチと、 前記高電圧変換器の前記変圧器への電力戻り信号の経路内で動作可能に結合された第2のスイッチと、 前記高電圧変換器の前記変圧器への前記電力戻り信号の前記経路内で動作可能に結合された第3のスイッチとを含む、請求項1または請求項2に記載の高電圧発火ユニット。前記高電圧変換器および前記制御ユニットが、前記高電圧変換器および前記制御ユニットが互いに電気的に絶縁されるように、別々の電力信号を受け取る、請求項1または請求項2に記載の高電圧発火ユニット。前記容量放電ユニットが、1つまたは複数の放電制御信号に応答して前記エネルギー蓄積デバイスからの前記エネルギーを放出するように構成された発火スイッチをさらに備える、請求項1または請求項2に記載の高電圧発火ユニット。前記発火スイッチが、電子スイッチ、ギャップチューブ、およびトリガードギャップチューブからなる群から選択されたスイッチを含む、請求項11に記載の高電圧発火ユニット。前記エネルギー蓄積デバイスが、1つまたは複数のキャパシタを含む、請求項1から3のいずれかに記載の高電圧発火ユニット。前記エネルギー蓄積デバイスの1つまたは複数のキャパシタの両端間に放電のために蓄積された前記高電圧出力信号が、約500V超である、請求項1から3のいずれかに記載の高電圧発火ユニット。高電圧発火ユニットであって、 低電圧信号を高電圧出力信号に変換するように構成された高電圧変換器、 前記高電圧出力信号からのエネルギーを1つまたは複数のエネルギー蓄積デバイスに蓄積するように、および発火制御信号に応答して前記エネルギーを放出するように構成された容量放電ユニット、 前記高電圧発火ユニットの内部動作を制御するように構成された制御ユニット、ならびに 前記容量放電ユニットから電気的に絶縁された前記高電圧変換器のより低い電圧側に動作可能に結合された複数のスイッチを備える高電圧発火ユニットと、 前記高電圧発火ユニットに動作可能に結合された軍需品制御器とを備える軍需品システムであって、 前記軍需品制御器が、データを前記制御ユニットに通信し、少なくとも1つの電力信号を前記高電圧変換器に通信するように構成され、前記複数のスイッチの各スイッチが、前記軍需品制御器および前記制御ユニットのうちの一方によって独立して制御される、軍需品システム。前記少なくとも1つの電力信号が、 前記制御ユニットからの制御信号に応答して前記低電圧信号を前記容量放電ユニットに選択的に結合するために前記容量放電ユニットへの前記経路内で結合された第1の安全スイッチに提供される前記低電圧信号としての第1の電力信号と、 前記容量放電ユニットへの経路内で結合された第2の安全スイッチを制御するための第2の電力信号とを含む、請求項17に記載の軍需品システム。前記高電圧変換器が、前記容量放電ユニットへの前記経路内で前記第2の安全スイッチに直列に結合された第3の安全スイッチを含み、前記第3の安全スイッチが、動的スイッチとして、前記高電圧変換器によって発生された別の制御信号に応答して前記高電圧出力信号により前記エネルギー蓄積デバイスの充電をパルスにするように構成される、請求項18に記載の軍需品システム。前記軍需品制御器が、前記高電圧充電ユニットを作動可能にする前に前記高電圧発火ユニットに関連したアドレスを用いてホスト制御器から受け取ったアドレスコマンドを確認するように構成される、請求項17から19のいずれかに記載の軍需品システム。複数の高電圧発火ユニットへの電力線および通信線を含む共通のケーブルを用いて前記軍需品制御器に動作可能に結合された前記複数の高電圧発火ユニットをさらに備える、請求項17から19のいずれかに記載の軍需品システム。高電圧発火ユニットを動作させるための方法であって、 高電圧発火ユニットの容量放電ユニットから電気的に絶縁された変圧器のより低い電圧側で複数の安全スイッチが有効にされるのに応答して前記高電圧発火ユニットの高電圧変換器を作動可能にするステップと、 低電圧入力信号を高電圧出力信号に変換することにより前記容量放電ユニットを充電し、前記高電圧出力信号からのエネルギーをエネルギー蓄積デバイスに蓄積するステップと、 発火制御信号に応答して起爆装置を活性化させるために前記エネルギー蓄積デバイスからの前記エネルギーを放出するステップとを含む方法。前記高電圧発火ユニットの少なくとも1つの内部ノードにおいて、測定された電圧および電流のうちの少なくとも1つを監視することにより前記高電圧発火ユニットの状態を判定するステップをさらに含む、請求項22に記載の方法。前記状態を判定するステップが、前記高電圧発火ユニットの制御および監視ユニットの電源投入時に起きる、請求項23に記載の方法。前記高電圧変換器を作動可能にする前に前記状態を外部軍需品制御器に伝送するステップをさらに含む、請求項23または請求項24に記載の方法。前記高電圧変換器を作動可能にするステップが、外部軍需品制御器からの第1の作動可能電力信号と第2の作動可能電力信号と受け取るステップを含む、請求項22から24のいずれかに記載の方法。前記第1の作動可能電力信号と前記第2の作動可能電力信号とを受け取るステップが、前記第1の作動可能電力信号を受け取る前に前記第2の作動可能電力信号が所望の電圧帯内にあることを確認するステップを含む、請求項26に記載の方法。前記容量放電ユニットの充電を有効にする前に前記第1の作動可能電力信号が所望の電圧帯内にあることを確認するステップをさらに含む、請求項27に記載の方法。

说明书全文

連邦政府支援の研究または開発に関する声明 米国政府は、本発明に一括払いライセンスを有し、空軍によって授与された契約第FA9300−06−D−0004号および海軍によって授与された契約第N00164−05−C−4502号の条件によって規定された妥当な条件により特許権者が他者にライセンス供与することを求める限定された状況における権限を有する。 優先権の主張 本出願は、2012年9月10日出願の「HIGH VOLTAGE FIRING UNIT, ORDNANCE SYSTEM, AND METHOD OF OPERATING SAME」の米国特許出願第13/608,571号の出願日の利益を主張するものである。本出願は、2012年9月10日出願の「DISTRIBUTED ORDNANCE SYSTEM, MULTIPLE−STAGE ORDNANCE SYSTEM, AND RELATED METHODS」という名称の米国特許出願第13/608,824号に関連する。

本開示は、一般に打上げ用ロケットおよび軍需システムに使用される発火ユニットに関する。より詳しくは、本開示は、エネルギー物質を起爆させるための高電圧発火ユニットに関する。

兵器システム、航空宇宙システム、および他のシステムに採用される発火ユニットは、しばしば、電子装置組立品と起爆デバイスとを含む。電子装置組立品と起爆装置/雷管とを内蔵する発火ユニットは、下流のエネルギー物質を起爆させるのに利用することができる。爆発物、火工品材料、推進剤および燃料などのエネルギー物質は、熱、化学薬品、機械、電気、または光学を含めて様々な異なる種類のエネルギーを用いて起爆させることができる。例えば、エネルギー物質は、火炎点火(例えば、導火線または起爆薬の点火)、衝撃(しばしば起爆薬を点火する)、化学的相互作用(例えば、反応性または活性化流体との接触)、または電気点火によって点火することができる。電気点火は、少なくとも2通りのうちの1つで起きることがある。例えば、隣接するエネルギー物質の自動点火が起きるまでブリッジ素子を加熱することができる、または隣接するエネルギー物質を直接起爆させることによりブリッジ素子を爆発させることができる。適正な信号構造を設けることにより、発火ユニットが火工剤または装薬を起爆させることができ、それにより、次いで、軍需品デバイスが活性化されて特定のモータ事象となる。これらのモータ事象は、モータ起動、段分離、推ベクトル制御活性化、弾頭爆発物運搬放出および分離などを含むことができる。

発火ユニットは、ハウジング内に固定されたエネルギー物質と、エネルギー物質を点火するように構成された起爆デバイスと、起爆デバイスに電気的に接続された電子装置組立品とを含むことができる。従来の発火ユニットは、一般に大量のエネルギーを消費し、したがって、動作させるために大型の電池を必要とする。さらに、従来の発火ユニットは、周囲環境の漂遊エネルギーにより不注意な活性化を受けやすいことがある。不注意な起爆の確率を最小限に抑えるために環境の影響を制御するために発火ユニットおよび統合起爆装置または雷管の実装においては特別な予防措置を講じなければならない。電子装置組立品は、作動可能になるまで起爆装置/雷管の発火を防止し、上流の電気システムと通信し、適正な発火信号を受け取り次第、正しい電流パルスを起爆装置のブリッジ素子に送出する。電気起爆装置/雷管は、密封されたハウジング内に、電子装置組立品との電気的接続、ブリッジ素子、およびエネルギー物質を組み込むことができる。発火ユニットは、ロケットモータ点火器、圧力カートリッジ、導爆線、自爆用爆薬、分離装薬、弾頭爆薬解除機構、電力システム、弾頭、ガス発生器などを起爆させるのに使用することができる。これらの発火ユニットは、兵器システム(地上および航空作戦の両方に対して戦術的および戦略的な)、航空宇宙システム(例えば、宇宙打上げ用ロケット、航空機緊急脱出)、自動車用エアバッグ配備システム、空中投下システム(例えば、パラシュート配備、切り離し)、採鉱および解体システムなどに採用することができる。

本願発明の一実施例は、例えば、高電圧発火ユニット、軍需品システム、およびその動作方法に関する。

一実施形態において、高電圧発火ユニットが開示される。高電圧発火ユニットは、高電圧変換器と、容量放電ユニットと、制御ユニットとを備える。高電圧変換器は、より低い電圧の入力信号から高電圧出力信号を発生するように構成される。容量放電ユニットは、高電圧変換器に動作可能に結合される。容量放電ユニットは、高電圧出力信号からのエネルギーをエネルギー蓄積デバイスの両端間に蓄積するように、および発火制御信号に応答してエネルギー蓄積デバイスからのエネルギーを放出するように構成される。制御ユニットは、高電圧変換器および容量放電ユニットに動作可能に結合される。制御ユニットは、外部軍需品制御器と通信し、高電圧発火ユニットの内部動作を制御するように構成される。

別の実施形態において、軍需品システムが開示される。軍需品システムは、高電圧発火ユニットと、高電圧発火ユニットに動作可能に結合された軍需品制御器とを備える。高電圧発火ユニットは、低電圧信号を高電圧出力信号に変換するように構成された高電圧変換器と、高電圧出力信号からのエネルギーを1つまたは複数のエネルギー蓄積デバイスに蓄積するように、および発火制御信号に応答してエネルギーを放出するように構成された容量放電ユニットと、高電圧発火ユニットの内部動作を制御するように構成された制御ユニットとを備える。軍需品制御器は、データを制御ユニットと通信し、少なくとも1つの電力信号を高電圧変換器に通信するように構成される。

別の実施形態において、高電圧発火ユニットを動作させるための方法が開示される。方法は、高電圧発火ユニットの高電圧変換器を作動可能にするステップと、低電圧入力信号を高電圧出力信号に変換し、高電圧出力信号からのエネルギーをエネルギー蓄積デバイスに蓄積することにより高電圧発火ユニットの容量放電ユニットを充電するステップと、発火制御信号に応答して起爆装置を活性化させるためにエネルギー蓄積デバイスからのエネルギーを放出するステップとを含む。

本開示の実施形態による軍需品システムの概略的構成図である。

本開示の実施形態による高電圧発火ユニット(HVFU)を動作させるための方法を示すフローチャートである。

本開示の実施形態による高電圧発火ユニット(HVFU)を動作させるための方法を示すフローチャートである。

本開示の実施形態によるHVFU組立品の側面図である。

本開示の実施形態による少なくとも1つのHVFUを含む軍需品システムを含むロケットモータの側断面図である。

以下の説明では、例示により、本開示の特定の実施形態を示す添付の図面を参照する。他の実施形態を利用することができ、本開示の範囲から逸脱することなく変更を加えることができる。以下の詳細な説明は、限定する意味でとらえるべきでなく、特許請求される本発明の範囲は、添付の特許請求の範囲およびそれらの法的同等物によってのみ定義される。

さらに、図示し説明する特定の実装は、例示に過ぎず、本明細書において他の指定がない限り、本開示を実装するまたは機能的要素に分割する唯一の方法として解釈すべきでない。本開示の様々な実施形態が数多くの他の分割による解決策によって実践できることが当業者には容易に明らかであろう。

以下の説明において、要素、回路、および機能は、本開示を不必要な詳細において不明瞭にしないようにするために、構成図の形で示すことがある。さらに、様々な構成間の論理回路の構成別の定義および分割は、特定の実装の例示である。本開示が数多くの他の分割による解決策によって実践できることが当業者には容易に明らかであろう。情報および信号は、様々な異なる技術および技法のうちのいずれかを使用して表すことができることを当業者は理解されよう。例えば、上記の説明全体を通して参照することができるデータ、命令、コマンド、情報、信号、ビット、記号、およびチップは、電圧、電流、電磁波、磁界もしくは磁粒、光場もしくは光学粒子、またはそれらの任意の組合せによって表すことができる。図面によっては、提示および説明を分かりやすくするためにいくつかの信号を単一の信号として示すことがある。信号は、信号のバスを表すことができ、バスは、様々なビット幅を有することができ、本開示は、単一のデータ信号を含む任意の数のデータ信号で実装できることが当業者には理解されよう。

本明細書に開示する実施形態に関連して説明する様々な例示的な論理ブロック、モジュール、および回路は、汎用プロセッサ、専用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)もしくは他のプログラマブル論理デバイス、制御器、個別ゲートもしくはトランジスタ論理回路、個別ハードウェア構成要素、もしくは本明細書に説明する機能を実行するように設計されたそれらの任意の組合せを用いて実装または実行することができる。汎用プロセッサは、マイクロプロセッサでよいが、代替の方法では、プロセッサは、任意の従来のプロセッサ、制御器、マイクロプロセッサ、または状態機械でもよい。汎用プロセッサは、専用プロセッサとみなすことができるが、汎用プロセッサは、コンピュータ可読媒体上に格納された命令(例えば、ソフトウェアコード)を実行する。プロセッサは、DSPとマイクロプロセッサとの組合せ、複数のマイクロプロセッサ、DSPコアと連動する1つまたは複数のマイクロプロセッサ、または任意の他のそのような構成など、コンピューティングデバイスの組合せとして実装することもできる。

また、実施形態は、フローチャート、フローダイアグラム、構造図、または構成図として示すことができるプロセスの観点から説明できることも留意される。プロセスは、シーケンシャルプロセスとして操作上の動作を説明することができるが、これらの動作の多くは、別のシーケンスで、並列で、または実質的に同時に実行することができる。加えて、動作の順序は、再配列することができる。プロセスは、方法、機能、手順、サブルーチン、サブプログラムなどに対応することができる。さらに、本明細書に説明する方法は、ハードウェア、ソフトウェア、または両方で実装することができる。ソフトウェアで実装した場合、機能は、コンピュータ可読媒体上の1つまたは複数の命令またはコードとして格納または伝送することができる。コンピュータ可読媒体は、1つの場所から別の場所へのコンピュータプログラムの転送を容易にする任意の媒体を含む、コンピュータ記憶媒体と通信媒体との両方を含む。

「第1の」、「第2の」などの指定を使用して本明細書における要素への任意の参照は、それらの要素の数量または順序を限定しないことを理解されたい。ただし、そのような限定が明示的に記述されていない場合に限る。むしろ、これらの指定は、2つ以上の要素または1つの要素の例を区別する好都合な方法として本明細書では使用することができる。したがって、第1および第2の要素への参照は、2つの要素だけを採用できることも、またはやり方によっては第1の要素が第2の要素に優先しなければならないことも意味しない。加えて、他の指定がない限り、1組の要素は1つまたは複数の要素を含むことができる。

図1は、本開示の実施形態による軍需品システム100の概略的な構成図である。軍需品システム100は、軍需品制御器110と高電圧発火ユニット(HVFU)130とを含み、それらはそれらの間の通信のために互いに結合することができる。軍需品システム100は、HVFU130に結合する起爆装置190をさらに含む。HVFU130は、起爆装置190が出力を生じて、軍需品デバイス(図示せず)内の下流のエネルギー物質を起爆するために起爆装置190を付勢するように構成することができる。このような軍需品デバイスは、限定はされないが、以下個別におよび集合的に「軍需品」と称する、点火デバイス、爆発ボルト、作動装置、ガス発生器、分離デバイス、均圧および通気デバイスを含む。

起爆装置190は、HVFU130と指定する四形内に配置されるものとして図1に示す。しかし、起爆装置190は、電子装置組立品(図3)とは別個に収納することができ、嵌め合わせコネクタ、ストリップラインケーブルなどのコネクタと離脱可能に接続することができる。起爆装置190は、爆発箔起爆装置または爆発箔雷管など、点火および/または雷管デバイスとして構成することができる。特定の非限定例として、起爆装置190は、スラッパー起爆式雷管、爆発箔起爆装置(EFI)、低エネルギー爆発箔起爆装置(LEEFI)、爆発箔雷管(EFD)、信管、起爆電橋型雷管(EBW)、瞬発電気雷管(IED)、短期遅発雷管(SPD)および長期遅発雷管(LPD)のうちの1つまたは複数を備えることができる。

軍需品制御器110は、HVFU130の様々な特徴を有する様々な信号を制御し通信するように構成された制御論理回路111を含むことができる。このような制御論理回路111は、1つまたは複数のプロセッサ内に具現化することができる。HVFU130および軍需品制御器110は、それらの間の通信データ124を通信バスを介して伝送するために互いに結合することができる。軍需品制御器110は、電子安全アーム(ESA)電力信号122A、122Bおよび論理電力信号125など、複数の追加の信号をHVFU130に伝送するように構成することができる。軍需品制御器110は、通信データ124ならびに電力戻り信号123、126などの信号をHVFU130から受け取ることもできる。電力戻り信号123、126は、適正な接地制御を有するためにHVFU130から戻ってくる基準線(例えば、接地線、バイアス基準など)であり得る。ESA電力信号122A、122Bは、論理電力信号125から分離することができ、電力戻り信号123、126も互いに分離することができる。この分離は、互いに電気的に絶縁されている制御および監視ユニット170とHV変換器140とを含む実施形態において助けとなり得る。その結果、HV変換器140と制御および監視ユニット170との間の過渡を低減させることができる。

軍需品制御器110の制御論理回路111は、アーム電力制御装置112、通信制御装置114、および論理電力制御装置116などの機能を実行するように構成することができる。アーム電力制御装置112は、入力信号102に応答してESA電力信号122A、122Bを発生することができる。ESA電力信号122A、122Bは、起爆装置190に提供されるHV出力信号161を発生するために変換される電力をHVFU130に提供することができる。ESA電力信号122A、122Bの電圧は、HVFU130によってより高い電圧(例えば500V超)に変換される前の比較的低い電圧(例えば、22Vから45Vまでの間)であり得る。通信制御装置114は、軍需品制御器110と1つまたは複数のHVFU130との間の通信バス上の通信データ124を制御するように構成することができる。論理電力制御装置116は、別の入力信号106に応答して論理電力信号125を発生するように構成することができる。論理電力信号125は、HVFU130の制御および監視ユニット170に電力を提供することができる。論理電力信号125は、HV変換器140の入力フィルタ171を通過するとき、ろ波され、監視され、電圧調整され、および/または過渡保護され得る。

アーム電力制御装置112は、電力を充電のためにHVFUに提供できないようにESA電力信号122A、122Bを物理的に切断するのに使用することができる安全プラグ118をさらに含むことができる。アーム電力制御装置112は、ESA電力信号122A、122Bを伝送する前に環境保全認識判断をさらに実行することができる。環境保全認識判断は、ESA電力信号122A、122Bを伝送する前に環境情報(例えば、加速、モータ圧力など)を感知することを含むことができる。その結果、HVFU130を作動可能にする前に加速が判定される追加の要件が、飛行のための戦術システム上の軍需品に対する別の望ましい安全措置であり得る。

HVFU130は、高電圧(HV)変換器140と、容量放電ユニット(CDU)160と、制御および監視ユニット170と、トリガーユニット180とを含むことができる。HV変換器140、CDU160、制御および監視ユニット170、およびトリガーユニット180は、様々な信号(例えば、制御信号、帰還信号、監視信号、電力信号など)を送り、受け取るために内部結合して、本明細書に説明する様々な機能および動作の性能を支援することができる。

HV変換器140は、1つまたは複数の低電圧信号に応答して高出力電圧を発生するように構成することができる。例えば、第1のESA電力信号122Aは、入力電圧をHV変換器140に提供することができる。第2のESA電力信号122Bは、以下に、より詳細に説明する第2の安全スイッチ146の制御信号として使用することができる。ESA電力信号122A、122Bも、HV変換器140の入力フィルタ141を通過するとき、ろ波され、監視され、電圧調整され、および/または過渡保護され得る。例えば、第1のESA電力信号122Aは、低DC電圧(例えば、22Vから45Vまでの間)をHV変換器140に提供することができる。HV変換器140は、変圧器150を通じて低DC電圧を高電圧(例えば、550V超)に変換することができる。変圧器150は、フライバック変圧器として構成することができる。

HV変圧器140は、変圧器150への経路内で動作可能に結合され、HV変換器140の電子安全インヒビットとして動作するように構成される複数の安全スイッチ144、146、148をさらに含むことができる。その結果、複数の安全スイッチ144、146、148の任意の1つを無効にすると、HV出力信号161によりCDU160のエネルギー蓄積デバイス162の充電を無効にすることができる。より多いまたはより少ない安全インヒビットが、安全インヒビット内の安全性および冗長性の所望のレベルにより存在することができる。安全インヒビット(例えば、複数の安全スイッチ144、146、148)を活性化させるための作動可能シーケンスの例は、図2Aに関して以下に説明する。

第1の安全スイッチ144および第2の安全スイッチ146は、静止スイッチでよい。言い換えれば、第1の安全スイッチ144および第2の安全スイッチ146は、ある一定の条件が満たされることに基づいて一度有効にすることができ、無効にされるまでオンのままであり得る。例えば、第1の安全スイッチ144は、変圧器150に第1のESA電力信号122Aの経路内で結合することができる。第1の安全スイッチ144は、制御および監視ユニット170によって発生された第1の制御信号143によって制御することができる。第2の安全スイッチ146は、変圧器150に電力戻り信号123の経路内(例えば、接地)で結合することができる。第2のスイッチは、第2の制御信号として働く第2のESA電力信号122Bによって制御することができる。第3の安全スイッチ148は、動的スイッチでよい。言い換えれば、第3の安全スイッチ148は、HV変換器制御装置142によって発生された第3の制御信号147の制御下でHVFU130の動作の間繰り返し有効および無効にすることができる。第3の安全スイッチ148は、HV出力信号161によりCDU160内のエネルギー蓄積デバイス162の充電をパルスにするように制御することができる。動作において、変圧器150は、第1のコイルを通過する電流に応答して、第1のコイルから第2のコイルにエネルギーを通過させる。その結果、HV変圧器140は、第1のESA電力信号122Aを受け取り、HV出力信号161をCDU160に対して発生するように構成される。加えて、変圧器150により、HV変換器140は、CDU160から電気的に絶縁されることが可能になる。

CDU160は、発火スイッチ164に動作可能に結合された1つまたは複数のエネルギー蓄積デバイス162(例えば、キャパシタ)を含むことができる。エネルギー蓄積デバイス162は、起爆装置190に提供されるHV出力信号161用のエネルギーを蓄積するように構成することができる。CDU160は、エネルギー蓄積デバイス162からの電流の逆流を低減できるように、変圧器150とエネルギー蓄積デバイス162との間の経路内で結合されたダイオード166をさらに含むことができる。HV変換器制御装置142への帰還信号により、HV変換器140は、所望の最大出力電圧に達した場合、エネルギー蓄積デバイス162への充電を停止する。少量の電流が時間と共に漏れることがあり、そのような場合、HV変換器140は、HV出力信号161を所望の電圧レベルに維持するために所定の閾値未満に低下するHV出力信号161に応答してエネルギー蓄積デバイス162を再充電することができる。HV出力信号161が十分なレベルに達する電圧をエネルギー蓄積デバイス162の両端間に有するとき、CDU160は、作動可能にされ、エネルギー蓄積デバイス162内に蓄積されたエネルギーを放出して起爆装置190を付勢する準備ができ得る。

発火スイッチ164は、トリガーユニット180からの発火制御信号163に応答して、エネルギー蓄積デバイス162を放電するように構成することができる。したがって、発火スイッチ164は、適正な時に適当なパルス放出エネルギーを提供して起爆装置190を活性化させる電子発火制御スイッチを含むことができる。例えば、発火スイッチ164は、電子スイッチ、ギャップチューブ、および/またはトリガードギャップチューブを含むことができる。このようなスイッチの特定の種類は、サイリスタ(例えば、nチャネルMOS制御サイリスタ(NMCT))、絶縁ゲートバイポーラトランジスタ(IGBT)、および他の同様の電子デバイスを含むことができる。

制御および監視ユニット170は、HV変換器140およびCDU160と通信する。制御および監視ユニット170は、制御信号143、145、および181を発生して、本明細書に説明する様々な機能を制御しおよび/または有効にすることができる。例えば、前に論じたように、制御および監視ユニット170は、第1の制御信号143を発生して、第1の安全スイッチ144を有効にすることができる。制御および監視ユニット170は、HV変換器制御装置142が動的な第3の安全スイッチ148を動作させる第3の制御信号147を送信し始め、HV出力信号161によりCDU160内のエネルギー蓄積デバイス162の充電をパルスにし始めることができることを示すHV変換器有効制御信号145も発生することができる。その結果、制御および監視ユニットと170は、HVFU130を作動可能にし、ならびにHVFU130を充電するためにHV変換器制御装置142を有効にするためのタイミングおよびシーケンシングを実行することができる。制御および監視ユニット170は、エネルギー蓄積デバイス162の放電を開始し、起爆装置190を付勢するために、トリガーユニット180に対して作動制御信号181をさらに発生することができる。その結果、制御および監視ユニット170は、HVFU130を発火させるためのタイミングを実行することができる。

制御および監視ユニット170は、アームおよび発火制御装置174と通信制御装置176とを含む制御論理回路172を含むことができる。通信制御装置176は、HVFU130と軍需品制御器110との間で伝送される通信データ124を制御するように構成することができる。アームおよび発火制御装置170は、HVFU130を作動可能にし発火させるためのタイミングおよびシーケンシングを制御するように構成することができる。アームおよび発火制御装置174は、HVFU130の様々な信号を監視するようにさらに構成することができる。このような信号は、HVFU130の組込み試験(BIT)の動作の一部として監視することができる。監視される信号(例えば、様々な電圧レベル、電流レベルなど)は図1に破線で示し、個々に論じない。BIT動作は、HVFU130の健全性および安全性を判定するためにHVFU130の電源投入時に実行することができる。BIT動作は、HVFU130の動作の間に実行し、軍需品制御器110に状態更新を提供することもできる(例えば、自動的にまたは要求あり次第のいずれかにより)。制御および監視ユニット170がシステム(例えば、HV変換器140、CDU160、制御および監視ユニット170、トリガーユニット180、起爆装置190)の1つまたは複数が重大な故障を受けていると判定した場合、制御および監視ユニット170および/または軍需品制御器110は、軍需品制御システム100を「安全」にすることができる(例えば、安全インヒビットを無効にすることにより、電力を切断することにより、など)。

トリガーユニット180は、作動論理回路182とエネルギー蓄積デバイス184とを含むことができる。作動論理回路182は、作動制御信号181を受け取り、それに応答して発火制御信号163を発生するように構成された1つまたは複数のスイッチを含むことができる。作動論理回路182は、作動論理回路182が単一の構成要素の故障により発火スイッチ164が活性化されないように複数の構成要素を含むことができるという点において、シングルフォールトトレラントであるように構成することができる。例えば、作動論理回路182は、2つのスイッチ(例えば、FET)を含むことができ、作動制御信号181は、作動論理回路182を活性化し、発火制御信号163を発生するのに使用される2つの制御信号(例えば、1つが高値および1つが低値)を含むことができる。トリガーユニット180のエネルギー蓄積デバイス184は、作動論理回路182と発火スイッチ164のゲートとの間の低インピーダンス経路を提供するための1つまたは複数のキャパシタを含むことができ、その結果、発火スイッチ164を活性化させるのに使用される発火制御信号163が比較的速い立ち上がりのパルスを示すことができる。

HVFU130は、HV出力監視信号192をさらに含むことができる。HV出力監視信号192は、CDU160のエネルギー状態の独立した測定を提供するためにCDU160の出力に結合することができる。例えば、外部監視装置(図示せず)をHVFU130に接続して、HV出力監視信号192を受け取り、それによってエネルギーが存在するかどうかを判定し、存在する場合は、エネルギー測定の値がどんな値なのかを判定することができる。このような情報は、HVFU130が蓄積されたエネルギーがわずかしか存在しなくて安全なのかから何も存在しないのかまで判定するために静止試験時に有用であり得る。このような情報は、制御および監視ユニット170によってすでに収集されている他の情報と共に情報の冗長性のためにHVFUの動作時にも有用であり得る。

図2Aおよび2Bは、本開示の実施形態によるHVFUを動作させるための方法を示すフローチャート200を示す。特に、フローチャート200は、HVFUを作動可能にし、充電し、発火させるための方法を示す。図2Aおよび2Bの様々な動作の説明全体を通して、図1の軍需品システム100の構成要素が参照される。

動作210において、制御および監視ユニット170に電力を提供することができる。例えば、軍需品制御器110は、論理電力信号125をHVFU130に提供することができる。電源投入において、制御および監視ユニット170が、漂遊電圧または電流がHVFU130全体を通して様々なノードに少しでも存在するかどうか判定するために監視信号(破線)で読み取ることによってHVFU130の自己診断(すなわち、BIT)を実行することができる。自己診断は、プロセッサなど、論理構成要素の試験をさらに含むことができる。例えば、制御および監視ユニット170は、プロセッサが読み取り、書き込み、演算などを適正に実行していることを試験することができる。

動作215において、HVFUの自己診断がうまくいったかどうかに関して判定を行うことができる。HVFUの自己診断がうまくいかなかった場合、HVFUは、動作220において安全モードに入る(またはとどまる)。すなわち、安全インヒビットとして働くHV変換器140の複数のスイッチが無効のままであり得るし、HVFU130への電力を切断することができ、または他の安全措置をとることができる。HVFUの自己診断がうまくいった場合は、制御および監視ユニット170は、HVFU130が初めは正しく動作していると判定されたことを軍需品制御器110に折り返し報告することができる。

動作225において、軍需品システム100は、作動可能シーケンスの追加の動作を開始するまでにアームコマンドを待つことができる。言い換えれば、軍需品制御器110および制御および監視ユニット170は、複数の安全スイッチ144、146、148がHVFU130を作動可能にするために有効にされるまでに軍需品システム100によって受け取るアームコマンドを待つことができる。アームコマンドが受け取られない場合、制御および監視ユニット170は、ある一定の監視信号を継続して監視して、HVFU130の継続する安全性を確実にする。アームコマンドが通信データ104を通じてホストから軍需品制御器110に受け取ることができる。システムは、個々にアドレス可能であり得る複数のHVFU130を含むことができる。その結果、アームコマンドは、どのHVFU130を作動可能にするのかを指示するアドレス含むことができる。このようなアームコマンドを受け取った(およびアドレスがHVFU130に一致した)場合、当該HVFU130の軍需品制御器110と制御および監視ユニット170とは、当該HVFU130の作動可能シーケンスを開始することができる。

例えば、動作230において、軍需品制御器110は、第2のESA電力信号122BをHVFU130に送ることができる。第2のESA電力信号122Bは、HV変換器140の第2の安全スイッチ146のゲートにおいて受け取ることができる。上に論じたように、第2の安全スイッチ146は、第2のESA電力信号122Bがアサートされている限り有効にされる静止スイッチであり得る。第2のESA電力信号122Bは、制御および監視ユニット170によっても受け取ることができる。

動作235において、制御および監視ユニット170は、第2のESA電力信号122Bが適正な電圧帯(例えば所望の電圧±ある一定の許容値)内にあるかどうかを確認することができる。第2のESA電力信号122Bが適正電圧帯外にある電圧レベルを有する場合、HVFU130は、動作240において安全モードに入る(またはとどまる)ことができる。すなわち、安全インヒビットとして働くHV変換器140の複数のスイッチを無効にすることができ(または場合により無効にしたままにすることができ)、HVFU130への電力は切断することができる、または他の安全措置をとることができる。第2のESA電力信号122Bが適正電圧帯内にある電圧レベルを有する場合、第1のESA電力信号122Aは、動作245において軍需品制御器110からHVFU130に送ることができる。第1のESA電力信号122Aは、制御および監視ユニット170によっても受け取ることができる。

動作250において、制御および監視ユニット170は、第1のESA電力信号122Aが適正電圧帯(例えば所望の電圧±ある一定の許容値)内にあるかどうかを確認することができる。第1のESA電力信号122Aが適正電圧帯外にある電圧レベルを有する場合、HVFU130は、動作255において安全モードに入る(またはとどまる)ことができる。すなわち、安全インヒビットとして働くHV変換器140の複数のスイッチを無効にすることができ(または場合により無効にしたままにすることができ)、HVFU130への電力は切断することができる、または他の安全措置をとることができる。第1のESA電力信号122Aが適正電圧帯内にある電圧レベルを有する場合、制御および監視ユニット170は、動作260において第1の制御信号143を第1の安全スイッチ144のゲートに送ることができる。上に論じたように、第1の安全スイッチ144は、第1の制御信号143がアサートされている限り有効にされる静止スイッチであり得る。動作265において、制御および監視ユニット170は、HV変換器制御装置142が動的な第3の安全スイッチ148を動作させ、HV出力信号161によりCDU160内のエネルギー蓄積デバイス162の充電をパルスにする第3の制御信号147を伝送し始めることができることを示すHV変換器有効制御信号145を送ることができる。言い換えれば、有効にされ動作している複数の安全スイッチ144、146、148の各スイッチにより、HVFU130は、作動可能状態にあり、エネルギー蓄積デバイス162を充電し始めて、発火する準備ができることになる。

図2Bは、本開示の実施形態によるHVFU130を動作させるための図2Aに説明するフローチャート200の続きである。特に、図2Bに示す動作は、HVFU130の充電および発火動作に関連した動作を含むことができる。したがって、例えば、動作210から265までなど、HVFU130が作動可能になっていると仮定する。

動作270において、HV変換器制御装置142は、第3の制御信号147を発生して、第3の安全スイッチ148を制御し、エネルギー蓄積デバイス162を充電するための充電モードを動作させる。上に論じたように、第3の安全スイッチ148は、動的スイッチである。動作275において、HV変換器制御装置142は、HV出力信号161が所望の電圧レベルに適正に達したかどうかを判定するためにHV出力信号161の電圧レベルを監視することができる。適正でない場合、充電モードを継続することができる。適正である場合、動作280において、HV変換器制御装置142は、第3の制御信号147を発生して、第3の安全スイッチ148を制御し、HV出力信号161の電圧レベルを所望の電圧レベルに維持するために電圧維持モードを動作させる。HV変換器制御装置142は、HV出力信号161が所望の電圧レベル未満に降下したかどうかを判定するためにHV出力信号161の電圧レベルを継続して監視し、それに応じて第3の制御信号を調整する。

この時点で、HVFU130は、作動可能になり、発火させる準備ができる。保守モードは、エネルギー蓄積デバイス162の放電まで、またはHVFU130が安全モードに入るまで(例えば、問題が検出された場合、手動安全コマンドが与えられた場合、電力が遮断された場合など)、発火させるためのほぼ所望のレベルに電圧を維持するように構成することができる。

動作285において、発火コマンドを受け取った場合、エネルギー蓄積デバイス162に蓄積されたエネルギーは、起爆装置190に対して放出することができる(動作290)。例えば、制御および監視ユニット170は、作動制御信号181をトリガーユニット180に送ることができ、それにより発火制御信号163をさらに発生して、発火スイッチ164を有効にすることができる。

図3は、本開示の実施形態によるHVFU組立品300の側面図である。HVFU組立品300は、起爆デバイス302と電子装置組立品304とを含むことができる。起爆デバイス302は、起爆装置190(図1)を収納することができ、電子装置組立品304は、HVFU130の電子装置(図1)を収納することができ、その各々は上に論じられている。いくつかの実施形態において、HVFU組立品300は、500V超など、いくつかの実施形態においては、さらに1000V超など、比較的大きい電圧レベルを有する出力電圧を発生する発火ユニットである。HVFU組立品300は、圧力が周囲圧力から真空圧力までの範囲内にあり得る、温度が−65℃から85℃までの範囲内にあり得る、ならびに極度の機械的振動および機械的衝撃が起こり得る用途に採用することができる。

起爆デバイス302および電子装置組立品304は、1つまたは複数の嵌め合わせコネクタ310A、310Bに互いに接続することができる。例えば、HVFU組立品300などの組立品は、起爆デバイス302の第1の嵌め合わせコネクタ310Aの一部分を電子装置組立品304の第2の嵌め合わせコネクタ310Bの別の一部分に少なくとも部分的に挿入するステップを含むことができる。その結果、第1の嵌め合わせコネクタ310Aの電気インターフェース(図示せず)を電子装置組立品304の第2の嵌め合わせコネクタ310Bの電気インターフェース(図示せず)に直接電気的に接続することができる。その結果、起爆デバイス302は、電子装置組立品304に取外し可能に接続することができる。起爆デバイス302が電子装置組立品304から離脱可能である場合、このような分離により、HVFU組立品300の構成要素の輸送または試験のためなど、分離された起爆デバイス302と電子装置組立品304との安全な取扱いが可能になることができる。電子装置組立品304を起爆デバイス302に接続するための追加の実施形態は、個別の嵌め合わせコネクタを使用するのではなく、2つの組立品の直接接続ならびにその間のより長い距離にケーブルを使用する接続を含むことができる。このような接続の例は、2012年1月11日出願の「Connectors for Separable Firing Unit Assemblies, Separable Firing Unit Assemblies, and Related Methods」という名称の米国特許出願第13/348,485号にさらに詳細に説明されている。

図4は、本開示の実施形態による少なくとも1つのHVFUを含む軍需品システムを含むロケットモータ400の側断面図である。特に、ロケットモータ400は、多段ロケットモータである。言い換えれば、ロケットモータ400は、複数の段410を含み、その各々は、それぞれの段410のモータ412として働く推進剤を含むことができる。各段410は、1つまたは複数のHVFU130を有することができ、HVFU130は、モータ412、飛行中に段410の使用後に段410を分離するための分離ジョイント414、エネルギーデバイス416(例えば、電池、ガス発生器など)など、それが関連するエネルギー物質を点火するのに、または他の用途(例えば、破壊用弾頭)に使用することができる。様々な段410のHVFUは、軍需品制御器110に結合することができる。軍需品制御器110は、ロケットモータ400の航空電子工学ユニット401の一部であり得る。航空電子工学ユニット401は、推力ベクトル制御(TVC)コマンド、計測データ収集など、ロケットモータ400の飛行制御を管理することができる。航空電子工学ユニット401は、HVFU130のどれをロケットモータ400内で発火させるのかを制御するための軍需品制御器110に制御を提供することができる。HVFU130は、航空電子工学ユニット401から軍需品制御器110まで個別にアドレス可能および制御可能であり得る。上に論じたように、軍需品制御器110は、作動可能シーケンスの間制御信号に応答してなど、ESA電力信号122A、122Bの発生を制御するように構成することができる。

軍需品制御器110は、複数の段410のためにHVFU130を制御することができ、一方で、いくつかの実施形態において、軍需品システムは、段410全体を通して配分される複数の軍需品制御器110を含むことができる。このような軍需品システムは、本出願と同じ日に出願された「Distributed Ordnance System, Multiple−Stage Ordnance System, and Related Methods」という名称の米国特許出願第13/608,824号に説明されている。ロケットモータ内に使用されるHVFUを参照するが、他の実施形態も企図されている。例えば、発火ユニットをエネルギー物質に結合された起爆装置に点火する、または他の方法で起爆させるのに使用できる、他の用途の中でも、採鉱、掘削、解体など、様々な用途に1つまたは複数のHVFUを採用することができる。

追加の非限定実施形態は以下のものを含む。

実施形態1:より低い電圧の入力信号から高電圧出力信号を発生するように構成された高電圧変換器と、高電圧変換器に動作可能に結合された容量放電ユニットであって、高電圧出力信号からのエネルギーをエネルギー蓄積デバイスの両端間に蓄積するように、および発火制御信号に応答してエネルギー蓄積デバイスからのエネルギーを放出するように構成された容量放電ユニットと、高電圧変換器および容量放電ユニットに動作可能に結合された制御ユニットであって、外部軍需品制御器と通信し、高電圧発火ユニットの内部動作を制御するように構成された制御ユニットとを備える、高電圧発火ユニット。

実施形態2:制御ユニットが、高電圧発火ユニットの内部の複数の監視された信号の内部試験を実行するように構成される、実施形態1の高電圧発火ユニット。

実施形態3:制御ユニットが、内部試験からの状態を外部軍需品制御器に通信するようにさらに構成される、実施形態2の高電圧発火ユニット。

実施形態4:容量放電ユニットに動作可能に結合された起爆装置をさらに備え、エネルギー蓄積デバイスからの放出されたエネルギーが、起爆装置を付勢して、起爆装置に関連したエネルギー物質に点火する、実施形態1から3のいずれかの高電圧発火ユニット。

実施形態5:起爆装置を収納するための起爆デバイスと、高電圧変換器、容量放電ユニット、および制御ユニットを収納するための電子装置組立品とをさらに備え、起爆デバイスおよび電子装置組立品が、離脱可能に接続される、実施形態4の高電圧発火ユニット。

実施形態6:起爆装置が、スラッパー起爆式雷管と、爆発箔起爆装置(EFI)と、低エネルギー爆発箔起爆装置(LEEFI)と、爆発箔雷管(EFD)と、信管と、起爆電橋型雷管(EBW)と、瞬発電気雷管(IED)と、短期遅発雷管(SPD)と、長期遅発雷管(LPD)のうちの少なくとも1つを備える、実施形態4または実施形態5の高電圧発火ユニット。

実施形態7:高電圧変換器が、容量放電ユニットへの経路内で結合された複数の安全スイッチをさらに備え、複数の安全スイッチの各安全スイッチを、エネルギー蓄積デバイスの充電を防止するために安全モードの間無効にすることができ、エネルギー蓄積デバイスの充電を可能にするために作動可能モードの間有効にすることができる、実施形態1から6のいずれかの高電圧発火ユニット。

実施形態8:複数の安全スイッチのうちの少なくとも1つの安全スイッチが、外部軍需品制御器によって発生された制御信号によって制御される、実施形態7の高電圧発火ユニット。

実施形態9:複数の安全スイッチのうちの少なくとも1つの安全スイッチが、制御ユニットによって発生された制御信号によって制御される、実施形態7の高電圧発火ユニット。

実施形態10:複数の安全スイッチのうちの少なくとも1つの安全スイッチが、高電圧変換器内の高電圧制御論理モジュールによって発生された制御信号によって制御される、実施形態7の高電圧発火ユニット。

実施形態11:容量放電ユニットが、発火スイッチをさらに備え、発火スイッチが、1つまたは複数の放電制御信号に応答してエネルギー蓄積デバイスからのエネルギーを放出するように構成される、実施形態1から10のいずれかの高電圧発火ユニット。

実施形態12:発火スイッチが、電子スイッチ、ギャップチューブ、およびトリガードギャップチューブからなる群から選択されたスイッチを含む、実施形態11の高電圧発火ユニット。

実施形態13:エネルギー蓄積デバイスが、1つまたは複数のキャパシタを含む、実施形態1から12のいずれかの高電圧発火ユニット。

実施形態14:エネルギー蓄積デバイスの両端間に放電のために蓄積された高電圧出力信号が、約500V超である、実施形態1から13のいずれかの高電圧発火ユニット。

実施形態15:高電圧発火ユニットであって、低電圧信号を高電圧出力信号に変換するように構成された高電圧変換器、高電圧出力信号からのエネルギーを1つまたは複数のエネルギー蓄積デバイスに蓄積するように、および発火制御信号に応答してエネルギーを放出するように構成された容量放電ユニット、ならびに高電圧発火ユニットの内部動作を制御するように構成された制御ユニットを備える高電圧発火ユニットと、高電圧発火ユニットに動作可能に結合された軍需品制御器とを備える軍需品システムであって、軍需品制御器が、データを制御ユニットに通信し、少なくとも1つの電力信号を高電圧変換器に通信するように構成される、軍需品システム。

実施形態16:少なくとも1つの電力信号が、低電圧信号として第1の電力信号と、容量放電ユニットへの経路内で結合された安全スイッチを制御するための第2の電力信号とを含む、実施形態15の軍需品システム。

実施形態17:高電圧変換器が、制御ユニットからの制御信号に応答して低電圧信号を容量放電ユニットに選択的に結合するために容量放電ユニットへの経路内で結合された別の安全スイッチを含む、実施形態16の軍需品システム。

実施形態18:高電圧変換器が、容量放電ユニットへの経路内の安全スイッチに直列に結合された動的安全スイッチを含み、動的安全スイッチが、高電圧変換器によって発生された別の制御信号に応答して高電圧出力信号によりエネルギー蓄積デバイスの充電をパルスにするように構成される、実施形態17の軍需品システム。

実施形態19:軍需品制御器が、高電圧充電ユニットを作動可能にする前に高電圧発火ユニットに関連したアドレスを用いてホスト制御器から受け取ったアドレスコマンドを確認するように構成される、実施形態17または実施形態18の軍需品システム。

実施形態20:複数の高電圧発火ユニットへの電力線および通信線を含む共通のケーブルを用いて軍需品制御器に動作可能に結合された複数の高電圧発火ユニットをさらに備える、実施形態15から19のいずれかの軍需品システム。

実施形態21:高電圧発火ユニットを動作させるための方法であって、高電圧発火ユニットの高電圧変換器を作動可能にするステップと、低電圧入力信号から高電圧出力信号に変換することにより高電圧発火ユニットの容量放電ユニットを充電し、高電圧出力信号からのエネルギーをエネルギー蓄積デバイスに蓄積するステップと、発火制御信号に応答して起爆装置を活性化させるためにエネルギー蓄積デバイスからエネルギーを放出するステップとを含む方法。

実施形態22:高電圧発火ユニットの少なくとも1つの内部ノードにおいて、測定された電圧および電流のうちの少なくとも1つを監視することにより高電圧発火ユニットの状態を判定するステップをさらに含む、実施形態21の方法。

実施形態23:状態を判定するステップが、高電圧発火ユニットの制御および監視ユニットの電源投入時に起きる、実施形態22の方法。

実施形態24:高電圧変換器を作動可能にする前に状態を外部軍需品制御器に伝送するステップをさらに含む、実施形態22または実施形態23の方法。

実施形態25:高電圧変換器を作動可能にするステップが、外部軍需品制御器からの第1の作動可能電力信号と第2の作動可能電力信号とを受け取るステップを含む、実施形態21から24のいずれかの方法。

実施形態26:第1の作動可能電力信号と第2の作動可能電力信号とを受け取るステップが、第1の作動可能電力信号を受け取る前に第2の作動可能電力信号が所望の電圧帯内にあることを確認するステップを含む、実施形態25の方法。

実施形態27:容量放電ユニットの充電を有効にする前に第1の作動可能電力信号が所望の電圧帯内にあることを確認するステップをさらに含む、実施形態26の方法。

実施形態28:第1の作動可能電力信号が、低電圧入力信号である、実施形態25から27のいずれかの方法。

本開示をある一定の図示する実施形態に関して本明細書に説明してきたが、本開示がそのように限定はされないことを当業者は認識し理解されよう。むしろ、図示し説明した実施形態に多くの追加、削除、および修正を本開示の範囲から逸脱することなく加えることができる。加えて、1つの実施形態からの特徴を別の実施形態の特徴に組み合わせることができるが、それでも発明者によって企図された本開示の範囲内に包含される。最後に、特許請求される発明の範囲は、添付の特許請求の範囲およびそれらの法的同等物によってのみ定義される。

QQ群二维码
意见反馈