Heating and cooling wheel

申请号 US37193973 申请日 1973-06-20 公开(公告)号 US3828573A 公开(公告)日 1974-08-13
申请人 ESKELI M; 发明人 ESKELI M;
摘要 A method and apparatus for producing heating or cooling by passing two fluids in heat exchange relationship with each other within a rotating rotor wherein said fluids are compressed to a higher pressure. The first fluid is a compressible fluid, such as air, which when compressed will also have a temperature increase; the second fluid may be either a compressible fluid or may be a non-compressible fluid, which when compressed may not have a temperature raise or the temperature raise for said second fluid will be less than for said first fluid. Heat then will be transferred from said first fluid to said second fluid, so that when said fluids are discharged from said rotor, said first fluid will be at lower temperature at exit than it was at entry; also, said second fluid will leave said rotor at higher temperature than said fluid entered. For the first fluid, air or other compressible gases may be used; said air may be at ambient temperature. For said second fluid, air, water or other fluids may be used; said water or air may be at ambient or natural temperature. Said apparatus may be used for air conditioning where both fluid streams are air; also, it may be used to heat water.
权利要求
1. A rotary heat exchanger comprising: a. structural support for supporting rotating shafts; b. a power input shaft journalled in bearings in said structure for rotation; c. a rotating rotor mounted on said power input shaft so as to rotate in unison therewith, said rotor having an axis of rotation, structural walls, a radial center, and a periphery said rotor having: i. first fluid passageway comprising: I. first entry port having a first area of opening and disposed near the center of said rotor so as to have a small first diameter and a first radius with respect to a central longitudinal axis of said power input shaft and said rotor; II. at least one first radially extending passageway having first means for ensuring that a first fluid therewithin rotates at substantially the same rotational speed as said rotor for effecting centrifugal compression and effecting a high pressure, compressed fluid at elevated temperature at the outermost periphery of said rotor; said first means serving as cooling means and being heat conductive for cooling said first fluid during centrifugal compression thereof; said first means being disposed adjacent a second fluid passageway for conducting heat to a second fluid in said second fluid passageway; III. a first peripheral portion communicating with said first radially extending passageway and peripherally disposed in said rotor for collecting said high pressure compressed fluid; IV. at least one second radially extending passageway communicating with said first peripheral portion and extending inwardly toward the center of said rotor; said second radially extending passageway having second means for recovering the work associated with deceleration of a compressed first fluid; and V. a first discharge port having a second area of opening that is operably sufficient for automatic flow of a first fluid and having a second diameter and a second radius with respect to said central longitudinal axis that are greater, respectively, than said first diameter and said first radius for effecting automatic flow of said first fluid and less than the respective diameter and radius of said peripheral portion for consuming less power and for effecting greater efficiency in operation; said first discharge port communicating with said second radially extending passageway for discharge of a first fluid therefrom; ii. second fluid passageway comprising: I. a second entry port having a third area of opening and disposed near the center of said rotor so as to have a small third diameter and third radius with respect to a central longitudinal axis of said power input shaft and said rotor; II. at least one third radially extending passageway having third means foR ensuring that a second fluid therewithin rotates at substantially the same rotational speed as said rotor; said third means serving as heating means and being heat conductive for heating said second fluid by heat conducted from said first fluid both during compression of said first fluid and at said first peripheral portion; III. a second peripheral portion communicating with said third radially extending passageway and peripherally disposed in said rotor for collecting said second fluid; IV. at least one fourth radially extending passageway communicating with said second peripheral portion and extending radially inwardly toward the center of said rotor; said fourth radially extending passageway having fourth means for recovering the work associated with deceleration of a second fluid; and V. a second discharge port having a fourth area of opening and having a fourth diameter and a fourth radius with respect to said central longitudinal axis that are less than the respective diameter and radius of said second peripheral portion for consuming less power and effecting greater efficiency of operation; said second discharge port communicating with said fourth radially extending passageway for discharge of said second fluid therefrom; and iii. heat conductive walls intermediate said first and second peripheral portions of, respectively, said first and second fluid passageways and said first and third means for conducting heat from said high pressure, compressed fluid at elevated temperature to said second fluid; d. a compressible first fluid being automatically passed through said first fluid passageway in said rotor without requiring energy exteriorly of said rotor; said first fluid being heated by centrifugal compression and transferring heat to said second fluid through at least said heat conductive wall intermediate said first and second peripheral portions and said first and third means such that said compressible first fluid is at a lower temperature at its outlet from said rotary heat exchanger than it was at its inlet thereto; and e. a second fluid being flowed through said second fluid passageway and being heated in at least its said peripheral portion by heat transferred from said first fluid such that said second fluid is at a higher temperature at its outlet from said rotary heat exchanger than it was at its inlet thereto.
2. The rotary heat exchanger of claim 1 wherein said second peripheral portion has a radius that is less than is the radius of said first peripheral portion; and said heat conductive wall extends intermediate said first and third radially extending passageways for transferring heat from said first fluid during centrifugal compression thereof and into said second fluid.
3. The rotary heat exchanger of claim 2 wherein said first fluid is flowed through the outermost first peripheral portion such that it is subjected to a greater centrifugal force field than is said second fluid which flows through the interiorly disposed second peripheral portion of the second fluid passageway and heat is transferred from said first fluid to said second fluid.
4. The rotary heat exchanger of claim 1 wherein said first fluid is a gas and said second fluid is a gas and said fourth diameter and said fourth radius of said second discharge port are greater, respectively, than said third diameter and said third radius of said second entry port for effecting automatic flow of said second fluid also.
5. The rotary heat exchanger of claim 1 wherein said second fluid is a liquid when entering said rotary heat exchanger and wherein said second fluid passageway includes sufficient restriction that said second fluid is heated sufficiently within said rotary heat exchanger to at least partially vaporize it.
6. The rotary heat exchanger of claim 1 wherein said structure includes a casing that encloses said rotor.
7. The rotary heat exchanger of claim 1 wherein said second entry port and said second discharge port have substantiAlly the same third and fourth diameters and the same third and fourth radii; and said first and second fluids are flowed countercurrently to each other; and wherein a heat conductive wall is provided intermediate the heated said second fluid and said first fluid downstream of said second peripheral portion with respect to said second fluid such that said second fluid is heated downstream of said second peripheral portion for effecting automatic flow of said second fluid.
8. The rotary heat exchanger of claim 1 wherein said second fluid passageway comprises a finned tube heat exchanger disposed within said first fluid passageway; said finned tube heat exchanger being connected in fluid communication with said second entry port and said second discharge port.
9. The rotary heat exchanger of claim 1 wherein said first and second fluid passageways include restrictive passages to regulate the respective radial velocities of said fluids when passing through said rotor and said rotating rotor is of circular configuration in cross section taken transversely to said axis of rotation with its structural walls being thicker near the center than at the periphery and decreasing monotonically toward the periphery.
说明书全文
QQ群二维码
意见反馈