基于绝热燃烧条件的生物质微米燃料高温清洁燃烧方法

申请号 CN201410665874.9 申请日 2014-11-19 公开(公告)号 CN104501200A 公开(公告)日 2015-04-08
申请人 华中科技大学; 发明人 肖波; 胡智泉; 刘石明; 靳世平; 杨家宽; 管延文; 舒朝辉; 刘文斌;
摘要 本 发明 公开了一种基于绝热燃烧条件的 生物 质 微米 燃料 高温清洁燃烧方法,包括:(a)将生物质微米燃料以全密封的形式予以灌装装卸和运输,并管路输送至 工业窑炉 ;(b)将生物质微米燃料与空气进行预混以形成粉尘 云 的流态形式;(c)将预混后的流态粉尘云向经由燃料喷管喷入设置在窑炉中的绝热 燃烧室 ,由此在此相对封闭的储热空间将 能量 密度 相对低的生物质燃料的能量聚积在其中,并执行超高温燃烧;(d)在燃烧过程中,向绝热燃烧室补 水 蒸汽 。通过本发明,能够获得高达1500℃以上的燃烧 温度 ,满足多种工业或民用窑炉的加热要求,同时与 现有技术 相比产物中基本无焦油、无残留 碳 和灰分,因而尤其适用于工业生产的清洁和高温应用环境。
权利要求

1.一种基于绝热燃烧条件的生物质微米燃料高温清洁燃烧方法,其特征在于,该方法包括下列步骤:
(a)将主要组分为植物纤维的生物质原料粉碎为平均粒径为400微米以下的固体粉体,将其作为生物质微米燃料并以全密封的形式予以灌装装卸和运输,并采用管道输送至工业窑炉燃用;
(b)在输送进入工业窑炉之前,将上述生物质微米燃料与空气进行预混以形成粉尘的流态形式,并且在此操作中,过剩空气系数被设定为0.98~1.25;
(c)将通过步骤(b)执行预混后的流态粉尘云沿着切向方向经由燃料喷管喷入设置在工业窑炉中的绝热燃烧室,其中绝热燃烧室是侧壁由保温材料层所构成的相对封闭的储热
3 3
空间,并且其容积燃烧强度被设定为150kg/m~350kg/m ;所述侧壁被窑炉的受热体所包围,并使得流经侧壁的热量不超过燃料燃烧能量的10%;所述燃料喷管的数量为一个或多个,并以1m/秒~10m/秒的流速执行喷射;以此方式,将燃烧速度控制为流态粉尘云在离开喷管喷口0.5倍~2.5倍管径的距离内即完成气化,与预混的空气执行原位燃烧,并获得高达1500℃~1600℃的燃烧温度,此高温火焰从绝热燃烧室喷出对受热体进行加热利用;
(d)在燃烧过程中,向绝热燃烧室补充适量的蒸汽,所述水蒸汽的加入量与生物质微米燃料之间的质量比被设定为1:30~150,由此促进燃烧过程中残留的焦油和的完全气化,并在离开上述高温火焰之前完全燃烧;此外,生物质微米燃料燃烧完毕后所残留的灰分被熔化与高温火焰分离,并沉降于绝热燃烧室底部以玻璃液态体的形式排出。
2.如权利要求1所述的方法,其特征在于,对于所述生物质微米燃料而言,其粉体粒径小于50微米的占总重量的35%以上,粉体粒径小于100微米的占总重量的75%以上,粉体粒径小于250微米的占总重量的90%以上。
3 3
3.如权利要求1所述的方法,其特征在于,在步骤(a)中,优选采用1.5m ~90m 容积的刚性或柔性密封的方式执行所述灌装装卸和运输。
4.如权利要求1或2所述的方法,其特征在于,在步骤(b)中,所述过剩空气系数优选被设定为1.0~1.15。
5.如权利要求1-3任意一项所述的方法,其特征在于,在步骤(c)中,所述绝热燃烧室
3 3
的容积燃烧强度优选被设定为200kg/cm~300kg/cm ,并且其侧壁流经的热量不超过燃料燃烧能量的3%~6%。
6.如权利要求5所述的方法,其特征在于,在步骤(c)中,所述绝热燃烧室优选是侧壁由无机纤维保温材料层和耐火材料构成的相对封闭储热空间,并且其侧壁壁厚为80mm~
320mm,绝热燃烧室的高度是与其截直径的0.8倍~4倍。
7.如权利要求5所述的方法,在步骤(d)中,所述水蒸汽的加入量与所述生物质微米燃料之间的质量比优选被设定为1:60~120。
8.如权利要求1-7任意一项所述的方法,其特征在于,所述工业窑炉优选为锅炉水泥、玻璃、陶瓷等窑炉。

说明书全文

基于绝热燃烧条件的生物质微米燃料高温清洁燃烧方法

技术领域

[0001] 本发明属于可再生清洁能源技术领域,更具体地,涉及一种基于绝热燃烧条件的生物质微米燃料的使用和高温清洁燃烧方法。

背景技术

[0002] 随着石化能源的日益枯竭和环境问题的日益严重,开发洁净可再生能源、废物和资源化处理已经成为紧迫的研究领域。生物质燃料是指将农林废弃物如秸秆、锯末、甘蔗渣、稻糠等,经过粉碎、混合、挤压、烘干等工艺,制成各种成型燃料后直接执行燃烧的一种新型清洁燃料。开发生物质燃料不仅能合理利用农林废弃物,防止能源浪费,而且能够减少如CO2、SO2、NOx和烟尘等排放,避免雾霾现象的产生,因而在国内外具备广阔的应用前景。
[0003] 本申请发明人曾在2010年提交了有关高温生物质微米燃料的专利申请(CN101935568A),其中披露了采用平均粒径为微米级的植物纤维粉体与添加剂组合形成的生物质燃料,并在多个实施例中测试表明,其平均可达到1300℃左右的燃烧温度(最高为1370℃的燃烧峰值),燃烧效率为96%以上,且能够比较有效地降低燃烧尾气中的有害成分含量。
[0004] 然而,经过后续数年的进一步研究表明,上述现有技术仍然具有以下的不足或缺陷:首先,对于目前大多数的工业应用譬如高效率的锅炉蒸汽发电系统而言,燃料的燃烧温度要求能够达到1500℃以上,这主要是由于卡诺循环原理决定的,只有当锅炉燃料达到足够高的燃烧温度后,才能产生高压高温蒸汽,再利用转化后的机械能实现有经济价值的发电。同时,一些高耗能高排放的高温工业窑炉也要求燃烧的燃烧温度达到1500度以上,如耐火材料和泥、玻璃生产等。而这是现有的生物质微米燃料通过常规燃烧方式所无法达到的燃烧温度;其次,高温属于工业生产过程中最为敏感重要的条件之一,工业领域的数据表明,燃料的燃烧温度每升高50℃,就能覆盖更多的工业生产需求,而且由于辐射换热效率与温度的4次方成正比。比如,燃料的燃烧温度从1400℃升高到1450℃,被辐射加热受热体获得的热能提高12%。同时,燃烧温度提高又导致燃料燃烧速度和燃烧效率的增加,在此情况下,如何能够继续提高生物质微米燃料的燃烧温度和燃烧效率并将其稳定予以保持,相应扩大生物质微米燃料的适用面以满足更多工业应用环境的要求,正成为一个亟需解决的技术问题;最后,根据化学组成分析可知,生物质微米燃料是一种复杂的高分子氢化合物固体材料,属于难以快速燃烧的燃料,而且由于组分中碳多氢少,含氢气的小分子先燃烧后,必然分离出难以和接触反应的焦油、残留碳以及呈现固体状态的灰分,与此同时,它们在工业锅炉炉膛停留时间是有限的,如果不能及时与氧气充分接触燃烧,就会脱离燃烧环境,成为浪费能源和污染环境的焦油和碳粒,进而形成气溶胶和雾霾污染源。

发明内容

[0005] 针对现有技术的以上缺陷或改进需求,本发明提供了一种基于绝热燃烧条件的生物质微米燃料高温清洁燃烧方法,其中通过结合生物质微米燃料自身的特性以及工业窑炉的构造特点,对其燃烧过程的操作工序、关键工艺参数以及燃烧机理等多个方面进行研究和设计,相应能够获得高达1500℃以上的燃烧温度,满足更多工业高温锅炉的加热要求,同时与现有技术相比产物中基本无焦油、无残留碳和灰分,因而尤其适用于工业生产的清洁和高温加热的应用环境。
[0006] 为实现上述目的,按照本发明,提供了一种基于绝热燃烧条件的生物质微米燃料高温清洁燃烧方法,其特征在于,该方法包括下列步骤:
[0007] (a)将主要组分为植物纤维的生物质原料粉碎为平均粒径为400微米以下的固体粉体,将其作为生物质微米燃料并以全密封的形式予以灌装装卸和运输,并采用管路输送至工业窑炉燃用;
[0008] (b)在输送进入工业窑炉之前,将上述生物质微米燃料与空气进行预混以形成粉尘的流态形式,并且在此操作中,过剩空气系数被设定为0.98~1.25;
[0009] (c)将通过步骤(b)执行预混后的流态粉尘云沿着切向方向经由燃料喷管喷入设置在工业窑炉中的绝热燃烧室,其中绝热燃烧室是侧壁由保温材料层所构成的相对封闭的3 3
储热空间,并且其容积燃烧强度被设定为150kg/m~400kg/m ,;所述侧壁被窑炉的受热体所包围,并使得流经侧壁的热量不超过燃料燃烧能量的10%;所述燃料喷管的数量为一个或多个,并以1m/秒~10m/秒的流速执行喷射;以此方式,将燃烧速度控制为流态粉尘云在离开喷管喷口0.5倍~2.5倍管径的距离内即完成气化,与预混的空气执行原位燃烧,并获得高达1500℃~1600℃的燃烧温度,此高温火焰从绝热燃烧室喷出对受热体进行加热利用;
[0010] (d)在燃烧过程中,向绝热燃烧室补充适量的水蒸汽,所述生物质微米燃料与水蒸汽的加入量之间的质量比被设定为1:30~150,由此使得燃烧过程中所产生的包含焦油和碳粒子的中间产物加速气化,并在离开上述高温火焰之前完全分解;此外,生物质微米燃料燃烧完毕后所残留的灰分被熔化与高温火焰分离,并沉降于绝热燃烧室底部以玻璃液态体的形式排出。
[0011] 作为进一步优选地,在步骤(a)中,所述生物质微米燃料中粉体粒径小于50微米的占总重量的35%以上,粉体粒径小于100微米的占总重量的75%以上,粉体粒径小于250微米的占总重量的90%以上。
[0012] 作为进一步优选地,在步骤(a)中,优选采用1.5m3~90m3容积的刚性或柔性密封的方式执行所述灌装装卸和运输。
[0013] 作为进一步优选地,在步骤(b)中,所述过剩空气系数优选被设定为1.0~1.15。
[0014] 作为进一步优选地,在步骤(c)中,在步骤(c)中,所述绝热燃烧室的容积燃烧强3 3
度优选被设定为200kg/cm~300kg/cm ,并且其侧壁流经的热量不超过燃料燃烧能量的
3%~6%。
[0015] 作为进一步优选地,在步骤(c)中,所述绝热燃烧室优选是侧壁由氧化纤维保温材料层构成的相对封闭储热空间,并且其侧壁壁厚为80mm~320mm,绝热燃烧室的高度是与其截直径的0.8-4倍。
[0016] 作为进一步优选地,在步骤(d)中,所述水蒸汽的加入量与所述生物质微米燃料之间的质量比优选被设定为1:60~120。
[0017] 作为进一步优选地,所述工业窑炉优选为譬如锅炉蒸汽发电系统用的锅炉,以及水泥、玻璃、陶瓷等各种窑炉。
[0018] 总体而言,按照本发明的以上技术方案与现有技术相比,主要具备以下的技术优点:
[0019] 1、通过为生物质微米燃料的燃烧过程设置绝热燃烧室并对其关键条件参数如容积燃烧强度、接触温度等进行设定,可形成一个相对封闭的储热空间将能量密度相对低的生物质燃料的能量聚积在其中,形成高温燃烧条件,与此同时,还使得微粉的气化和燃烧在同一空间内同时刻瞬间完成产生生物质超高温度的燃烧。高的燃烧温度又促进生物质微米燃料的燃烧速度和燃烧效率,由此达到与现有技术相比显著提高的平均燃烧温度,燃烧效率可达到98%以上;生物质微米燃料的超高温燃烧不仅使得中间产物如焦油、碳粒等完全分解,尤其特别的是还可使得所含的不可燃烧的无机物组分也获得熔化,并在绝热燃烧室内转化成液体作为液态炉渣从炉底排出,形成生物质固体燃料无焦油、无碳灰、无灰分的清洁燃烧利用。
[0020] 2、通过采用固体方式执行燃料的全封闭灌装装卸和运输,能够对具备大体积、易燃烧和能量密度偏低等特性的微米燃料实现低成本、高效率和安全的输送,以满足大工业能源规模化供给和使用要求;
[0021] 3、通过在进入工业锅炉之前采用特定过剩空气系数的空气执行预混,测试表明该操作能够有效增加流态粉尘云中空气中的氧向生物颗粒表面扩散的几率,确保氧气与生物颗粒之间的完全燃烧,并与绝热燃烧的条件相配合共同提高燃烧温度的峰值;
[0022] 4、通过对绝热燃烧室的规格尺寸及其喷射速度等参数进行设计,能够使得生物质微米燃料在有充足的停留时间,同时确保在整个燃烧过程中燃烧参与物始终全部处于悬浮雾状而不会沉积燃烧室底部,相应有助于充分燃烧和燃烧温度的提高;
[0023] 5、通过在燃烧过程中添加适当比例的水蒸汽,在整个燃烧过程中水蒸汽可作为气化剂与燃烧中间产物发生反应,进而将其分解为氢气和一氧化碳等,其中的氢气又能够在相对有限的燃烧空间内加快燃烧扩散速度,并且确保在极短时间内即达到期望的燃烧温度峰值和效率;
[0024] 6、按照本发明的燃烧方法能够将生物质微米燃料的燃烧温度进一步提高到1500以上,相应能够有效满足大多数工业生产的高温加热要求;因而尤其适用于各类工业窑炉应用环境下的清洁和高效要求。附图说明
[0025] 图1是按照本发明的生物质微米燃料高温清洁燃烧方法的工艺流程图
[0026] 图2是用于示范性显示包括有绝热燃烧室的燃烧工艺应用环境示意图。

具体实施方式

[0027] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
[0028] 生物质传统的燃烧方法的温度只有700-1000℃,因此仅限于一些日常取暖和烹饪之类的应用。但是自工业革命以后,工业生产过程的工况温度越来越高,对燃料品质要求越来越高,例如,陶瓷的烧成反应温度大多在1300℃左右,燃料的加热温度要在1500℃,;水泥烧制的化学转变温度在1400℃以上,燃料的加热温度要在1500℃以上,以保证生产效率。在高效率的锅炉蒸汽发电系统中,燃料的燃烧温度要求在1500℃以上,因此,生物质燃烧温度直接影响到是否能够符合现代工业生产的应用要求;另一方面,生物质碳氢燃料燃烧温度低,燃烧不尽所产生的焦油、残留碳,产生气溶胶并形成雾霾,不仅能源利用效率低,未燃尽的碳氢化合物还形成了环境污染源,这同样直接影响到在大规模工业化生产的应用。
[0029] 现有技术中的生物质燃烧方式通常为层燃方式,燃料在炉膛内不能与空气在短时间内充分接触反应,燃烧温度低,产生的焦油形成烟雾,同时,层燃产生的灰分将燃料覆盖,阻碍与氧气接触反应,相当一部分残留碳不能燃烧而被排出燃烧炉膛成为炉渣,浪费了能源。针对此现状,虽然可以通过如本发明人前期所公开的高温生物质微米燃料,相应获得相对高的燃烧温度,并有效减少污染物的排放,但经过大量的实际测试表明,其燃烧温度只能局限于1350度左右,而且事实上并不能完全避免焦油、碳粒尤其是灰分的残留。因此,有必要对上述生物质微米燃料的燃料过程及其影响其燃烧温度、效率以及燃烧产物的燃烧机理进行更深入的研究,以期获得更高的燃烧温度来满足大工业高温锅炉的加热要求,同时确保无焦油、无残留碳和无灰分,为工业生产提供低成本的清洁高温燃料。
[0030] 具体而言,按照本发明的高温清洁燃烧方法主要包括以下步骤,下面将逐一进行说明,并重点关注其关键燃烧条件的设计及其原理:
[0031] 首先,将主要组分为植物纤维的生物质燃料粉碎为平均粒径为400微米以下的固体粉体,将其作为生物质微米原料并以全密封的形式予以灌装装卸、运输和采用密封管路输送至窑炉;例如,该生物质燃料可以由植物纤维和添加剂共同组成,其中该添加剂为粉、石灰粉和赤泥中的至少一种,该植物纤维中粉体粒径小于50微米的占总重量的35%以上,粉体粒径小于100微米的占总重量的75%以上,粉体粒径小于250微米的占总重量的90%以上。考虑到生物质微米燃料像煤一样用量大质量轻,如果像面粉一样的小袋袋装,人工成本高而且在使用时燃料开袋出料容易粉尘飞扬,造成恶劣工作环境,不仅浪费能源,而且还容易造成起火的危险;同时,易受潮,流动性严重变差,一旦被打湿,干燥的成本比燃料本身的成本还高。因此在本步骤中,由于通过采用固体粉体形式的燃料执行全封闭灌装装卸和运输,能够对具备大体积、易燃烧和能量密度偏低等特性的微米燃料实现低成本、高效率、清洁和安全的输送,因而得以满足大规模化的工业能源供给和使用要求。
[0032] 接着,在输送进入工业锅炉之前,将上述生物质微米燃料与空气进行预混以形成粉尘云的流态形式,并且在此操作中,过剩空气系数被设定为0.98~1.25,进一步优选为1.0~1.15。之所以采用上述特定系数的空气执行预混并形成流态的粉尘云,首先是因为生物质燃烧需要空气,但实际上只是需要空气中的氧气,空气中氧气占21%,其余基本上全是惰性气体氮气,氧气和氮气分子量接近,分离十分困难,富氧空气和纯氧成本高,现实中绝大多数只能采用空气与燃料燃烧;而当一个立方米的氧气进入后续将要说明的绝热燃烧室时,同时会带入4个立方米的吸热并降低炉膛温度的氮气,因此首先应尽量减少过多的空气进入,将其过剩空气系数设定为1.3以下;与此同时,大量的对比测试表明,生物质微米化之后,在不用压缩的情况下组织结构为多孔网状,氧气可以渗透到其微孔结构之中,并且生物质的挥发分含量高,500度时固体结构即可分解70%左右,同时氢含量高,因此控制过剩空气系数在0.98以上,实践表明能够有效增加流态粉尘云中空气中的氧向生物颗粒表面扩散的几率,确保氧气与生物颗粒之间的完全燃烧,减少过剩空气量并提高燃烧效率,也就是说,上述过剩空气系数的工艺条件是保证生物质高温燃烧的重要特点之一。
[0033] 接着,将执行预混后的流态粉尘云沿着切向方向经由燃料喷管11喷入设置在工业锅炉下部的绝热燃烧室,作为本发明的另一关键性改进,其中绝热燃烧室1是侧壁2由保3
温材料层所构成的相对封闭的储热空间,并且其容积燃烧强度被设定为150kg/m~350kg/
3
m;所述侧壁被窑炉的受热体所包围,并使得流经侧壁的热量不超过燃料燃烧能量的10%;
此外,所述燃料喷管的数量为一个或多个,以1m/秒~10m/秒的执行喷射。以此方式,通过对绝热燃烧条件以及燃烧速度方面的控制,流态粉尘云在离开喷嘴喷口的瞬间(在离开喷管喷口0.5倍~2.5倍管径的距离内)即气化形成悬浮雾状而未沉积到燃烧室底部,并立即与预混的空气执行原位燃烧,同时获得平均高达1500℃~1600℃的燃烧温度。
[0034] 参见图2,下面将具体解释以上设计的原理和相应带来的技术效果。首先,通过为生物质微米燃料的燃烧过程设置绝热燃烧室1并对其关键条件参数如容积燃烧强度、接触温度等进行设定,可形成一个相对封闭的储热空间将能量密度相对低的生物质燃料的能量聚积在其中,形成高温燃烧条件,与此同时,还使得微粉的气化和燃烧在同一空间内同时刻瞬间完成,反过来继续促进燃烧效率和燃烧温度的持续上升,由此达到与现有技术相比显著提高的燃烧温度,燃烧效率可达到98%以上。从反应机理进行分析的话,是因为燃烧并不是燃料在炉膛中的简单堆积,而是大量的燃料分子能够与氧气分子执行一对一的分子高效碰撞反应,并在炉膛中尽快将能量释放出来,贡献于温度的积累,然后尽快消失腾出空间让新的燃料进入炉膛;换而言之,在单位炉膛空间和单位燃烧时间内,燃料释放的能量越大,热量在一定燃烧空间内聚集的越多,温度就越高。因此按照本发明的上述设计,大量的对比测试表明能够获得平均高达1500℃~1600℃的燃烧温度。
[0035] 此外,按照热辐射理论,辐射为发射物体每单位表面积在单位时间内向半球空2
间所发射的全波长能量,单位为W/m,辐射力与温度的关系如下:
[0036]
[0037] 由此可见,当燃烧温度譬如由1300℃辐射力提高到1450℃与时,则辐射力相应提高了:
[0038]
[0039] 焦油和残留碳在900℃的高温条件下,就能高速分解后与氧气瞬间燃烧。本发明的燃烧温度为1500度,焦油和残留碳在此超高温的条件下0.2秒就能完全分解。以4t/h的工业锅炉为例,绝热燃烧室的容积1.8立方米,可以根据下式求出燃烧产物在炉膛中停留的时间τ:
[0040]
[0041] 式中:Bj为燃料消耗量(kg/s),Vg为燃料烟气体积(Nm3/kg),V为炉膛体积(m3),tav为平均烟温(℃)。由此计算得到烟气在绝热燃烧室的停留时间为τ=0.26秒。可见,本申请中的上述高温条件和烟气停留时间能够有效的使焦油和残留碳分解。比与碳氢原位燃尽,实现生物质无焦油无碳粒的烟气排放。以下给出了几个实施例予以更为具体的说明。
[0042] 实施例1
[0043] 生物质微米燃料进料量700kg/h,燃料热值4100Kcal/kg,绝热燃烧室内腔尺寸直径1400mm,高1800mm,微米燃料与一定量的空气混合均匀后,以5米/秒的速从底部切线送入炉腔。炉腔采用耐火砖砌成内衬,内衬厚度114mm,内衬砖外采用一定厚度的高纯氧化铝纤维保温。
[0044] 以下为采用不同内衬外耐热保温棉厚度和不同过剩空气系数燃烧情况下的燃烧温度测试结果见表1:
[0045]
[0046] 表1
[0047] 实施例2
[0048] 生物质微米燃料进料量705kg/h,燃料热值4100Kcal/kg。绝热燃烧室内腔尺寸直径1400mm,微米燃料与1.05的过剩空气混合均匀后,以5米/秒的风速从底部切线送入炉腔。炉腔采用耐火砖砌成内衬,内衬厚度114mm,内衬砖外采用150mm厚的高纯氧化铝纤维棉保温。采用不同绝热燃烧室高度情况下的燃烧温度测试结果可参见下面的表2,以及采用不同绝热燃烧室温度与水蒸汽条件下的烟气黑度测试结果可参见下面的表3。
[0049]
[0050] 表2
[0051]
[0052] 表3
[0053] 因此,按照本发明的燃烧温度与现有技术相比提高150度的情况,相应也能在燃烧室内的辐射力比对比材料提高43%以上,并且焦油和残留碳的分解气化速率如上所计算地同样发生极大的提高,因此更有利形成无焦油、无残留碳和无灰分的清洁燃烧。
[0054] 最后,在燃烧过程中,还可以向绝热燃烧室补充适量的水蒸汽,其中水蒸汽的加入量与所述生物质微米燃料之间的质量比被设定为1:30~150,由此使得燃烧过程中所产生的包含焦油和碳粒子的中间产物加速气化,并在离开上述高温火焰之前完全分解;此外,生物质微米燃料燃烧完毕后所残留的灰分被熔化与高温火焰分离,并沉降于绝热燃烧室底部经由设置在检修人孔61一侧、且带有液态排渣活塞的流态排渣机构4以玻璃液态体的形式排出。
[0055] 之所以进行以上设定,是因为在整个燃烧过程中水蒸汽可作为气化剂与燃烧中间产物发生反应,进而将其分解为氢气和一氧化碳等,其中的氢气又能够加快燃烧速度,并且确保在极短时间内即达到期望的燃烧温度峰值和效率。譬如,测试表明,通过按照本发明所设定的水蒸汽比例并与其他燃烧条件相配合,粉尘云在离开燃料喷管喷口的0.5-2.5倍管径距离后即可完全气化,并原位完成燃烧反应。
[0056] 本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
QQ群二维码
意见反馈