점증 치아 이동방법 및 시스템

申请号 KR1020057007272 申请日 1998-06-19 公开(公告)号 KR1020050053789A 公开(公告)日 2005-06-08
申请人 얼라인 테크놀러지 인코포레이티드; 发明人 치쉬티무하마드; 레리오스아포스토로스; 프레이버거브라이언; 위쓰켈세이; 리지레이리차드;
摘要 A system for repositioning teeth comprises a plurality of individual appliances. The appliances are configured to be placed successively on the patient's teeth and to incrementally reposition the teeth from an initial tooth arrangement, through a plurality of intermediate tooth arrangements, and to a final tooth arrangement. The system of appliances is usually configured at the outset of treatment so that the patient may progress through treatment without the need to have the treating professional perform each successive step in the procedure.
权利要求
  • 초기 치아배열을 나타내는 초기 디지털 데이터 세트를 제공하는 단계와;
    이 초기 데이터 세트에 근거한 영상 이미지를 나타내는 단계와;
    영상 이미지에 개개의 치아를 재배치하기 위해 영상 이미지를 처리하는 단계와;
    최종 치아배열을 이미지에서 관찰된 바에 따라 재배열된 치아로 표현하는 최종 디지털 데이터 세트를 만드는 단계를 포함하는 방법.
  • 제 1항에 있어서,
    초기 치아배열을 표현하는 디지털 데이터 세트를 제공하는 단계는 환자 치아의 3-차원 모델을 스캐닝하는 단계를 포함하는 방법.
  • 제 2항에 있어서,
    상기 처리단계는 적어도 몇개의 개별 치아에 대한 경계를 규정하는 단계와;
    디지털 데이터 세트에 근거한 이미지 내의 다른 치아와 관련되는 적어도 몇개의 치아 경계를 이동시키는 단계를 포함하는 방법.
  • 초기 치아배열을 표현하는 디지털 데이터 세트를 제공하는 단계와;
    최종 치아배열을 표현하는 디지털 데이터 세트를 제공하는 단계와;
    제공된 디지털 데이터 세트에 근거하여, 초기 치아배열로부터 최종 치아배열까지 진행되는 일련의 연속 치아배열을 표현하는 연속되는 다수의 디지털 데이터 세트를 만드는 단계를 포함하는 초기 배열로부터 최종 배열까지 진행되는 일련의 개별 치아배열을 표현하는 다수의 디지털 데이터 세트를 만드는 방법.
  • 제 4항에 있어서,
    초기 치아배열을 표현하는 디지털 데이터 세트를 제공하는 단계는 환자 치아의 3-차원 모델을 스캐닝하는 단계를 포함하는 방법.
  • 제 4항에 있어서,
    최종 치아배열을 표현하는 디지털 데이터 세트를 제공하는 단계는 적어도 몇개의 개별 치아에 대한 경계를 규정하는 단계와;
    최종 데이터 세트를 만들기 위해 디지털 데이터 세트에 근거한 이미지 내의 다른 치아와 관련되는 적어도 몇개의 치아 경계를 이동시키는 단계를 포함하는 방법.
  • 제 4항에 있어서,
    다수의 연속 디지털 데이터 세트를 만드는 단계는 초기 데이터 세트와 최종 데이터 세트 간의 위치차이를 결정하고 상기 차이를 보간하는 단계를 포함하는 방법.
  • 제 7항에 있어서,
    상기 보간단계는 선형 보간을 포함하는 방법.
  • 제 7항에 있어서,
    상기 보간단계는 비선형 보간을 포함하는 방법.
  • 제 7항에 있어서,
    초기 치아배열과 최종 치아배열 사이에 하나 또는 그 이상의 키 프레임을 규정하고 이들 키 프레임 사이를 보간하는 단계를 추가로 포함하는 방법.
  • 초기 치아배열을 표현하는 디지털 데이터 세트를 제공하는 단계와;
    최종 치아배열을 표현하는 디지털 데이터 세트를 제공하는 단계와;
    제공된 디지털 데이터 세트에 근거하여, 초기 치아배열로부터 최종 치아배열까지 진행되는 일련의 연속 치아배열을 표현하는 연속되는 다수의 디지털 데이터 세트를 만드는 단계와;
    만들어진 적어도 몇개의 디지털 데이터 세트에 근거하여 기구를 제조하는 단게를 포함하는 다수의 치과용 점증 위치 교정기구를 제조하는 방법.
  • 제 11항에 있어서,
    초기 치아배열을 표현하는 디지털 세트를 제공하는 단계는 환자 치아의 3-차원 모델을 스캐닝하는 단계를 포함하는 방법.
  • 제 11항에 있어서,
    최종 치아배열을 표현하는 디지털 데이터 세트를 제공하는 단계는 적어도 몇개의 개별 치아에 대한 경계를 규정하는 단계와;
    최종 데이터 세트를 만들기 위해 디지털 데이터 세트에 근거한 이미지 내의 다른 치아와 관련하여 적어도 몇개의 치아 경계를 이동시키는 단계를 포함하는 방법.
  • 제 11항에 있어서,
    다수의 연속 디지털 데이터 세트를 만드는 단계는 초기 데이터 세트와 최종 데이터 세트 간의 위치차이를 결정하고 상기 차이를 보간하는 단계를 포함하는 방법.
  • 제 14항에 있어서,
    상기 보간단계는 선형 보간을 포함하는 방법.
  • 제 14항에 있어서,
    상기 보간단계는 비선형 보간을 포함하는 방법.
  • 제 14항에 있어서,
    초기 치아배열과 최종 치아배열 사이에 하나 또는 그 이상의 키 프레임을 규정하고 이들 키 프레임 사이를 보간하는 단계를 추가로 포함하는 방법.
  • 제 11항에 있어서,
    상기 제조단계는 연속되는 치아배열의 연속된 정(+)의 모델을 만들기 위해 연속되는 디지털 데이터 세트에 근거한 제조장비를 제어하는 단계와;
    정의 모델에 대한 반대쪽 부(-)로서 치과용 기구를 만드는 단계를 포함하는 방법.
  • 제 18항에 있어서,
    상기 제어단계는 비경화 중합체 수지의 체적을 제공하는 단계와;
    정의 모델을 만들기 위해 디지털 데이터 세트에 근거한 형상으로 수지를 선택적으로 경화하기 위해서 레이저를 스캐닝하는 단계를 포함하는 방법.
  • 제 18항에 있어서,
    상기 기구를 만드는 단계는 정의 모델 위에 기구를 성형하는 단계를 포함하는 방법.
  • 수정된 환자용 치아배열을 표현하는 디지털 데이터 세트를 제공하는 단계와;
    수정된 치아배열에 대한 정의 모델을 만들기 위해 디지털 데이터 세트에 근거하여 제조장비를 제어하는 단계와;
    정의 모델에 대한 부로서 치과용 기구를 만드는 단계를 포함하는 방법.
  • 제 21항에 있어서,
    상기 제어단계는 비경화 중합체 수지의 체적을 제공하는 단계와;
    정의 모델을 만들기 위해 디지털 데이터 세트에 근거한 형상으로 수지를 선택적으로 경화하기 위해서 레이저 스캐닝하는 단계를 포함하는 방법.
  • 제 21항에 있어서,
    상기 기구를 만드는 단계는 정의 모델 위에 기구를 성형하는 단계를 포함하는 방법.
  • 수정된 환자용 치아배열을 표현하는 제 1디지털 데이터 세트를 제공하는 단계와;
    상기 제 1데이터 세트로부터 수정된 치아 배열의 부의 모델을 표현하는 제 2디지털 데이터 세트를 만드는 단계와;
    치과용 기구를 만들기 위해서 제 2디지털 데이터 세트에 근거한 제조장비를 제어하는 단계를 포함하는 방법.
  • 제 24항에 있어서,
    상기 제어단계는 상기 기구를 만들기 위해 비경화 수지를 선택적으로 경화시키고 잔여 액체수지로부터 이 기구를 분리시키는 단계를 포함하는 방법.
  • 제 24항에 있어서,
    상기 기구는 초기 치아배열로부터 수정된 치아배열까지 수용 및 탄력적으로 재배열하도록 형상된 공동을 갖는 중합체 셀을 포함하는 방법.
  • 说明书全文

    점증 치아 이동방법 및 시스템 {METHOD AND SYSTEM FOR INCREMENTALLY MOVING TEETH}

    본 발명은 치아 교정술에 관한 것으로, 보다 상세하게는 초기 치아배열로부터 최종 치아배열까지의 점증 치아 이동방법 및 시스템에 관한 것이다.

    통상, 성형목적이나 그 밖의 다른 이유로 인해 치아를 재배열하는 경우에는 일반적으로 "치열 교정기"라고 부르는 것을 치아에 끼워 교정한다. 치열 교정기는 브라켓, 아크와이어(archwire), 결찰사(結紮絲), 및 오-링과 같은 다양한 기구를 포함한다. 이 기구들을 환자의 치아에 부착하는 것은 지루하고, 담당 치열 교정의와 많은 미팅을 요하는 등 시간을 소비하게 된다. 그러므로, 통상적인 치아 교정 치료는 치아 교정의가 담당할 수 있는 환자수에 제한을 가져오며, 치아 교정 치료가 상당히 비싸지는 원인이 된다.

    치열 교정기를 환자의 치아에 부착하기 전에는 전형적으로 치열 교정의, 치과의사 및/또는 X-레이 촬영실측과의 약속이 적어도 한번은 계획됨으로써, 환자 치아 및 턱의 구조에 대한 X-레이 사진을 얻을 수 있다. 이 예비미팅 중이나, 어쩌면 미팅 후에 주로 환자치아의 알지네이트 형틀(alginate mold)이 만들어진다. 이 형틀은 치열 교정의 X-레이 사진 사용과 함께 환자 치아의 모델을 제공함으로써, 처방전대로 치료할 수 있도록 한다. 일반적으로, 치열 교정의는 환자의 치아에 치열 교정기가 부착되어 있는 동안에 한번 또는 그 이상의 약속을 잡아야 한다.

    치열 교정기가 처음 부착되어 있는 동안의 미팅에서, 치아 표면은 약산으로 우선 치료한다. 산은 브라켓과 그들을 결합시키는 밴드에 대한 치아 표면의 접착성을 최적화한다. 브라켓과 밴드는 나중에 추가될 다른 기구용 앵커로서 사용된다. 약산 치료단계 후에, 브라켓과 밴드는 적절한 접합재를 사용하여 환자의 치아에 접합된다. 완전히 접합될 때까지는 아무런 가압기구도 추가되지 않는다. 왜냐하면, 치열 교정의가 브라켓과 밴드가 치아에 잘 접합되었는지 확인하기 위한 이후의 약속이 통상적으로 잡혀져 있기 때문이다.

    통상적인 치열 교정기 세트에서 초기 가압기구로는 아크와이어를 사용한다. 이 아크와이어는 탄력이 있으며 브라켓에 형성된 슬롯에 의해서 브라켓에 부착된다. 이 아크와이어는 브라켓에 연결되어 이를 가압함으로써, 시간을 끌면서 치아를 이동시킨다. 꼬여진 와이어나 탄성 오-링은 통상적으로 브라켓에 대한 아크와이어의 접착력을 보강하기 위해 사용하게 된다. 브라켓에 아크와이어를 부착하는 것은 치열 교정술 분야에서 "결찰술"로 알려져 있으며, 이 과정에서 사용되는 와이어는 "결찰사"로 부른다. 탄성 오-링은 "플라스틱"으로 부른다.

    아크와이어를 부착한 후에, 서로 다른 가압력을 갖는 다른 아크와이어를 설치하거나 끼워진 결찰사를 교체하거나 죔으로써 환자의 치열 교정기가 조정되는 동안에는 치열 교정의와의 주기적인 미팅을 필요로 한다. 특히, 이때의 미팅은 매주 3번 내지 6번 계획되어 있다.

    상술한 바와 같이, 통상적인 치열 교정기를 사용하는 것은 지루하고 시간을 소비하는 절차로서, 치열 교정의 병원에 여러번 방문해야 한다. 더구나, 환자의 관점에서 보면, 치열교정의 사용으로 보기에도 않좋으며, 불편하고, 감염의 위험이 존재하며, 칫솔질 하거나 치아 청소 및 치아 위생을 위한 다른 절차를 수행하기에 많은 어려움이 따른다.

    이러한 이유로 인해서, 다른 치아 재배열방법 및 시스템을 제공하는 것이 바람직하다. 그러한 방법과 시스템은 경제적이며, 특히 계획하고 각 개인의 환자들을 돌보는데 있어서, 치열 교정의 에게 필요로 하는 전체 시간이 줄어든다. 이 방법과 시스템은 환자에게도 더욱 받아들이기 쉬우며 특히 덜 보기싫고, 덜 불편하며, 덜 감염되기 쉬울 뿐만 아니라, 일상의 치아위생관리가 보다 용이해진다. 이들 목적 중 적어도 일부는 이후에 설명될 본 발명의 방법과 시스템에 의해서 달성될 수 있다.

    치열 교정술 치료를 위한 치아 배열기는 케슬링(Kesling)에 의해서 Am. J. Orthod. Oral. Surg. 21:297-304(1945) 및 32:285-293(1946)에 기재되어 있다. 환자 치아의 종합적인 치열교정 재정렬을 위한 실리콘 배열기의 사용은 와루넥(1989)등에 의해서 J. Clin. Orthod. 23:694-700에 기재되어 있다. 치아의 배열을 마무리 하고 유지보수하기 위한 투명 플라스틱 리테이너는 미국 70125 루지아나주 뉴 올린스 소재의 레인트리 데식스사(Raintree Essix, Inc.) 및 미국 55902 미네소타주 로체스터 소재의 트루-테인 플라스틱(Tru-Tain Plastics)으로부터 상업적으로 구득할 수 있다. 치열 교정 배열기의 제조는 미국특허 5,186,623; 5,059,118; 5,055,039; 5,035,613; 4,856,991; 4,798,534; 및 4,755139호에 개시되어 있다.

    교정 배열기의 제조 및 사용을 기술하는 다른 공보로서는 클리만과 장센(1996)의 J. Clin. Orthodon.30:673-680; 크레톤(1996)의 J. Clin. Orthodon. 30:390-395; 치아퐁(1980)의 J. Clin. Othodon. 14:121-133; 실리데이(1971)의 Am. J. Orthodontics 59:596-599; 웰스(1970) Am. J. Orthodontics 58:351-366; 및 코팅햄(1969)의 Am. J. Orthodontics 55:23-32이 있다.

    크로다(1996)등의 Am. J. Orthodontics 110:365-369에는 치아 석고상을 레이저 스캐닝하여 석고상의 디지털 이미지를 생성하는 방법이 개시되어 있다. 또한, 미국특허 5,605,459호에도 개시되어 있다.

    옴코 코오포레이션사(Ormco Corpotation)에게 양도된 미국특허 5,533,895: 5,474,448; 5,454,717; 5,447,432; 5,431,562; 5,395,238; 5,368,478; 및 5,139,419호에는 치과용 치열기구를 설계하기 위해서 치아의 디지털 이미지를 조작하는 방법이 개시되어 있다.

    미국특허 5,011,405호에는 치아를 디지털적으로 영상화하고 치과 기구용 최적의 브라켓 배열을 결정하는 방법이 개시되어 있다. 치아 석고상을 레이저 스캐닝하여 3-차원 모델을 만드는 것인 미국특허 5,338,198호에 개시되어 있다. 미국특허 5,452,219호에는 치아 모델을 레이저 스캐닝하고 치아 형틀을 밀링하는 방법이 개시되어 있다. 치아 윤곽의 디지털 컴퓨터 조작이 미국특허 5,607,305호 및 5,587,912호에 개시되어 있다. 컴퓨터를 이용한 턱의 디지털 영상화는 미국특허 5,342,202호 및 5,340,309호에 개시되어 있다. 흥미있는 다른 특허로는 미국특허 5,549,476; 5,382,164; 5,273,429; 4,936,862; 3,860,803; 3,660,900; 5,645,421; 5,055,039; 4,798,534; 4,856,991; 5,035,613; 5,059,118; 5,186,623; 및 4,755,139호가 있다.

    본 발명은, 상술한 종래기술의 문제점을 해결하기 위해 이루어진 것으로, 초기 치아배열로부터 최종 치아배열까지의 점증 치아 이동방법 및 시스템을 제공하는 것을 목적으로 한다.

    본 발명은 초기 치아배열로부터 최종 치아배열로의 치아 재배열 방법 및 시스템을 제공한다. 이 재배열은 적어도 3연속단계, 대개 적어도 4연속단계를 포함하며, 가끔은 적어도 10단계, 때때로 적어도 35단계 및 경우에 따라서는 40 또는 그 이상의 단계에 의해서 연속으로 점차 재배열되는 개개의 치아 및 공동(空洞)내의 치아를 수용할 수 있도록 형상된 일련의 기구를 포함하는 시스템에 의해서 달성된다. 흔히, 이 방법과 시스템은 10내지 25 연속단계로, 환자의 치아와 연루되어 복잡한 경우에는 40내지 그 이상의 단계로 재배열 될 것이다. 그러한 다수의 기구들을 연속으로 사용함으로써, 작은 증분, 대표적으로 2㎜이하, 바람직하게는 1㎜이하, 더욱 바람직하게는 0.5㎜이하로 개개의 치아를 이동시킬 수 있는 형상으로 각 기구를 형상화하는 것이 가능하게 된다. 이들 제한은 하나의 기구를 사용한 결과로서 치아 상의 어떤 점의 최대 선형 이동이라 언급한다. 일련의 기구에 의해서 제공된 이동은 물론, 어떤 특정한 치아에 대해서 통상 동일하게 되지는 않을 것이다. 그러므로, 치아 상의 하나의 점은 하나의 기구를 사용한 결과로서의 특정한 거리에 의해 이동되고 난 후에, 나머지 기구에 의한 다른 거리 및/또는 다른 방향에 의해 될 수도 있다.

    개개의 기구들은 특히, 이하에서 설명하는 바와 같이 주조에 의해서 그 내에 형성된 치아-수용 공동을 갖는 중합체 셀을 포함하는 것이 바람직하다. 각 개개의 기구는 형상화됨으로써 그의 치아-수용 공동은 그들 기구용으로 의도된 중간 또는 끝단 치아배열에 상응하는 기하학적 형상을 갖는다. 즉, 하나의 기구가 환자에 의해서 처음으로 착용될 때에, 어떤 치아는 기구 공동의 변형되지 않는 기하학적 형상에 대해서 오정렬될 것이다. 그러나, 이 기구는 오정렬된 치아에 정응하거나 이를 조정하기에 충분한 탄성을 지니고 있으며, 이 치아를 그러한 치료단계를 위해 요구되는 중간 또는 끝단 배열로 재배열하기 위하여 그같은 오정렬 치아에 대한 충분한 탄성력을 가할 수 있다.

    본 발명에 따른 시스템은 개개의 치아가 점진적으로 재배치되는 초기 치아배열로부터 제 1중간배열까지 환자의 치아를 재배열하기 위해 선택한 기하학적 형상을 갖는 적어도 하나의 제 1기구를 구비할 수 있다. 이 시스템은 또한 제 1중간배열로부터 하나 또는 그 이상의 연속 중간배열까지의 치아를 점진적으로 재배열하기 위한 선택적인 기하학적 형상을 갖는 적어도 하나의 중간기구를 포함할 수 있다. 이 시스템은 적어도 중간배열로부터 원하는 최종 치아배열까지 치아를 점진적으로 재배열하기 위해 선택한 기하학적 형상을 추가로 가질 수도 있다. 어떤 경우에는 이하에 보다 상세하게 설명되는 바와 같이, 최종 치아배열을 "과교정"하기 위한 죄종기구 또는 몇개의 기구를 형성하는 것이 바람직할 것이다.

    이하에 보다 상세하게 설명하는 바와 같이, 본 발명의 방법과 연결하여, 치료 초기에 이 시스템을 계획하고 모든 기구들을 제조할 수 있으며, 따라서 이 기구들은 단일 패키지나 시스템으로 환자에게 제공하는 것이 가능하다. 기구들을 사용하게 되는 순서는 (가령, 일련의 번호표기에 의해서)분명하게 표시됨으로써, 환자는 치열 교정의나 다른 치료 전문의에 의해서 자주 지시되는 곳의 그 또는 그녀의 치아 위에 기구를 배치할 수 있다. 치열 교정기와는 달리, 환자는 치료시에 조정이 이루어지면 매번 치료 전문의를 방문할 필요가 없다. 환자들은 대개, 치료가 원래의 계획대로 진행하는지를 확인하기 위해 주기적으로 그들의 치료 전문의를 방문하고 싶어하는 반면에, 개개의 환자와 치료 전문의가 소비하는 시간을 더욱 줄이면서도 더욱 작은 연속단계로 실행되는 치료를 가능케 하며 조정이 이루어지는 각 시간마다 치료 전문의를 방문할 필요성을 없앤다. 더구나, 중합체 셀 기구의 사용으로 더욱 편안하며, 덜 보기싫고, 환자가 제거할 수 있으며, 환자의 불평을 크게 개선한 안락하고 만족스럽다.

    본 발명의 방법에 따르면, 환자의 치아는 환자의 입에 치과용 점증 배열기구을 연속으로 끼움으로써 초기 치아배열로부터 최종 치아배열에 이르기까지 재배열된다. 이 기구들은 고정되어 있지 않으며, 환자는 교정기간 중에 언제라도 끼우거나 빼낼 수 있어 편리하다. 제 1기구는 초기 치아배열로부터 제 1중간 배열에 이르기까지 치아를 재배열하기 위해 선택한 기하학적 형상을 가질 수 있다. 제 1중간 배열에 도달하거나 달성된 후에, 일련의 중간 배열을 통해서 제 1중간배열로부터 치아를 점진적으로 재배열하기 위해 선택한 기하학적 형상을 갖는 하나 또는 그 이상의 추가적인(중간)기구가 치아 위에 연속으로 놓여질 수 있다. 치료는 최종 중간배열로부터 최종 치아배열에 이르기까지 치아를 점진적으로 재배열하기 위해 선택한 기하학적 형상을 갖는 최종 기구를 환자의 입속에 설치함으로써 종료될 것이다. 이 최종기구 또는 몇개의 기구들은 연속으로 치아 배열을 과교정하기 위해 선택한 기하학적 형상이나 기하학적 형상들을 갖는, 즉 "최종"으로 선택된 치아 배열을 지나서 개개의 치아를 (만일 충분히 달성되면)이동시키는 기하학적 형상을 가질 수 있다. 그러한 과교정은 재배열 방법이 종료된 후에 잠재적인 재발을 보상, 즉 개개의 치아가 그들의 예비-교정 위치쪽으로 후퇴하는 약간의 이동을 허용하는 것이 바람직할 것이다. 과교정은 또한, 원하는 중간 또는 최종위치를 지나서 위치하는 기하학적 형상을 갖는 기구를 구비함으로써 교정속도를 빠르게 하는 것이 바람직하며, 개개의 치아는 더 빠른 속도로 배열을 향해 이동될 것이다. 그러한 경우에, 치료는 치아가 최종 기구 또는 기구들에 의해 규정된 위치에 도달하기 전에 종료될 수 있다. 이 방법은 통상 적어도 2개의 추가적인 기구 배열을 포함할 것이며, 종종 적어도 10개의 추가적인 기구 배열을 포함하고, 때때로 적어도 25개의 추가적인 기구 배열 및 경우에 따라서는 적어도 40개 또는 그 이상의 추가적인 기구 배열을 포함하게 된다. 치아가 (미리 선택된 허용오차 내에)도달되거나 치료 단계용 최종 목표배열에 도달되면 특히 2일부터 20일까지 범위, 통상 5일부터 10일까지 범위의 간격으로 연속적으로 기구가 교체될 것이다.

    가끔, 치료단계가 실제로 완성되는 "종료" 치아 배열 이전의 어느 시점에서 기구들을 교체하는 것이 바람직할 수도 있다. 치아가 점차로 재배열되어 특정한 기구에 의해 규정된 기하학적 형상에 접근함에 따라서, 개개의 치아에 가해지는 재배열 힘은 크게 감소된다는 것을 이해할 것이다. 그러므로, 초기의 기구에 의해서 치아가 부분적으로 재배열된 시점에서, 초기의 기구를 일련의 기구로 대체함으로써 전체적인 치료시간을 줄일 수도 있다. 따라서, FDDS는 실제로 최종 치아위치의 전체적인 교정을 나타낸다. 이것은 모두 치료를 빨리 진행할 수 있으며 병의 재발을 상쇄시킬 수 있다.

    일반적으로, 다음 기구로의 이동은 다수의 요인에 의해 결정될 수 있다. 기구를 소정의 스케즐이나 예상되는 또는 대표적인 환자의 응답성에 근거한 초기에 결정된 고정 시간간격(즉, 각 기구에 대해 수일간)으로 교체하는 것이 가장 간단하다. 또한, 실제로 환자의 응답성은 가령, 환자가 현재의 기구를 갖고 그들의 치아에서 더 이상 압력을 느낄 수 없을 때, 즉 기구가 닳아서 환자의 치아 위에 쉽게 끼워지고 환자가 그의 또는 그녀의 치아에 미세하거나 전혀 압력 또는 불편을 느끼지 못할 때, 다음 기구로 진행할 수 있는 점을 고려할 수 있다. 어떤 경우에는 치아가 매우 빨리 응답하는 환자를 위해서, 치료 전문의에게는 하나 또는 그 이상의 중간 기구를 건너뛰는, 즉 초기에 결정된 수 이하에서 사용되는 기구의 전체 수를 줄이도록 결정하는 것이 가능할 수도 있다. 이 경우에, 특수 환자에 대한 전체 치료시간을 줄일 수도 있다.

    다른 실시예에 있어서, 본 발명의 방법은 수용 가능하게 형상된 공동 및 최종 치아배열을 만들기 위한 탄성 재배열 치아를 갖는 중합체 셀을 포함하는 기구를 사용하는 재배열 치아를 포함한다. 본 발명은 초기 치아배열로부터 죄종 치아배열에 이르기까지 환자에 의해서 성공적으로 재배열 치아로 되는 적어도 3개의 기구에 대한 치료 기하학적 형상의 초기에 결정하는 것을 포함하는 바와 같은 방법을 개선된 방법을 제공한다. 초기에는 적어도 4개의 기하학적 형상, 종종 적어도 10개의 기하학적 형상, 흔히 적어도 25개의 기하학적 형상 및 때때로 40개나 그 이상의 기하학적 형상이 결정되는 것이 바람직하다. 상술한 바와 같이, 대개 치아의 배열은 이전의 기하학적 형상에 의해서 단지 2㎜, 바람직하게는 1㎜, 더욱 바람직하게는 0.5㎜로 규정되는 것과 다른 각각의 연속 기하학적 형상으로 공동에 의해서 규정된다.

    또 다른 실시예에 있어서, 최종 치아배열을 나타내는 디지털 데이터 세트를 만들기 위한 방법이 제공된다. 이 방법은 초기 치아배열을 나타내는 초기 데이터 세트를 제공하고, 초기 데이터 세트에 근거한 영상 이미지를 나타내는 것을 포함한다. 이 영상 이미지는 다음에 영상 이미지로서 초기 치아를 재배열하기 위해 처리된다. 최종 디지털 데이터 세트는 다음에, 영상 이미지에서 관찰된 바대로 최종 치아배열을 나타내는 재배열 치아로 만들어진다. 통상적으로, 초기 디지털 데이터 세트는, X-레이 이미지, 컴퓨터 단층촬영법(CAT 스캔)에 의해 만들어진 이미지, 자기공명 단층촬영(MRI)에 의해 만들어진 이미지 등을 디지털화 하는 통상적인 기술에 의해서 제공되어진다. 이들 이미지는 3-차원 이미지인 것이 바람직하며, 디지털화는 통상적인 기술을 사용함으로써 이루어질 수 있다. 대체로, 초기 디지털 데이터 세트는 통상의 기술에 의한 (처리에 앞서서)환자 치아의 치아 석고상을 만드는 것에 의해서 제공된다. 그렇게 만들어진 치아 석고상은 다음에, 환자의 치아 석고상에 대한 고해상 디지털 표현을 만들기 위해서 레이저나 그 밖의 다른 장비를 사용하여 스캔할 수도 있다. 석고상의 경우, 환자가 X-레이에 노출되거나 불편한 MRI촬영을 받지 않아도 되므로 석고상을 사용하는 것은 바람직하다.

    바람직한 실시예에 있어서, 표준 방법을 사용하여 환자로부터 확스 바이트(wax bite)가 얻어진다. 왁스 바이트는 중앙 교합위치에서 서로 상대적으로 배치되는 환자의 상부 및 하부치열의 치아 석고상을 가능케 한다. 석고상은 다음에, 스캔되어 이 위치에서의 턱의 상대위치에 대한 정보를 제공한다. 이 정보는 다음에, 2개의 아크용 IDDS로 컴퓨터에 기입된다.

    일단 디지털 데이터 세트가 얻어지면, 이미지는 컴퓨터 디자인 소프트 웨어가 구비된 적절한 컴퓨터 시스템 상에 표현되어 처리될 수 있다. 이미지 처리는 통상, 적어도 몇개의 각 치아에 대해 규정하는 것과, 컴퓨터에 의한 이미지 처리에 의해서 치아의 이미지가 턱과 다른 치아에 대해서 이동되도록 하는 것을 포함한다. 이 방법들은 또한 치아에 대한 첨두정보를 검출하기 위해 제공된다. 이미지 처리는 완전히 주관적으로, 즉 이미지 하나만의 관찰을 바탕으로 미적으로 및/또는 최적 치료적으로 원하는 방법에 의해 사용자가 단순히 치아를 재배열하여 실행할 수 있다. 또, 컴퓨터 시스템은 사용자의 치아 재배열을 돕는 알고리즘이나 방법을 구비할 수도 있다. 경우에 따라서는 치아를 배열하는 알고리즘이나 방법을 완전 자동방식, 즉 사용자의 개재없이도 제공하는 것이 가능하다. 일단, 각각의 치아가 재배열되면, 원하는 최종 치아배열을 나타내는 최종 데이터 세트가 생성되어 저장된다.

    치료 전문의에게 있어서, 최종 치아배열을 결정하기 위한 바람직한 방법은 가령, 처방을 기재하는 등의 방법으로 최종 치아 배열을 규정하는 것이다. 치열 교정과정의 원하는 결과를 규정하기 위해서 처방을 사용하는 것은 본 기술분야에 잘 알려져 있다. 처방이나 다른 최종 지시가 제공되면, 이미지는 다음에 처방과 일치되도록 처리될 수 있다. 경우에 따라서는 최종 이미지를 만들어 최종 치아배열을 나타내는 디지털 데이터 세트를 만들기 위해서 처방을 해석하는 소프트 웨어를 제공하는 것도 가능하다.

    다른 실시예에 있어서, 본 발명은 초기 치아배열로부터 최종 치아배열에 이르기까지 점증하는 일련의 각 치아배열을 나타내는 다수의 디지털 데이터 세트를 만드는 방법을 제공한다. 그같은 방법은 (상술한 기술 중의 어느 것에 따라 달성될 수 있는)초기 치아배열을 나타내는 디지털 데이터 세트를 제공하는 것을 포함한다. 최종 치아배열을 나타내는 디지털 데이터 세트도 제공된다. 그같은 최종 디지털 데이터 세트는 상술한 방법에 의해서 결정될 수도 있다. 다수의 연속 디지털 데이터 세트는 다음에, 초기 디지털 데이터 세트로부터 최종 디지털 데이터 세트까지를 근거로하여 만들어진다. 통상, 일련의 디지털 데이터는 초기 데이터 세트와 최종 데이터 세트에서 선택된 개별 치아 간의 배열차이를 결정하는 것과 상기 차이를 보간하는 것에 의해서 만들어진다. 그러한 보간은 바람직하게 적어도 10단계, 때대로 적어도 25단계, 흔히 적어도 40단계, 더욱 종종 적어도 50단계 또는 그 이상의 단계와 같은 많은 개별 단계를 거쳐 실행된다. 많은 경우에, 이 보간은 일부 또는 모든 배열차이에 대한 선형 보간이 될 것이다. 또한, 이 보간은 비선형이 될 수도 있다. 바람직한 실시예에 있어서, 비선형 보간은 초기 치아들 간의 간섭을 피하기 위해 컴퓨터를 이용하여 경로 스케즐화 및 충돌 검출기술을 사용함으로써 자동으로 계산된다. 이 배열의 차이는 치아상의 어떤 점에서의 최대 선형이동이 2㎜ 또는 그 이하, 통상은 대개 1㎜ 또는 그 이하, 및 종종 0.5㎜ 또는 그 이하인 치아이동과 상응할 것이다.

    사용자는 종종, 중간 디지털 데이터 세트에 직접적으로 기재하는 "키 프레임"으로 부르는 어떤 특정한 타겟 중간 치아배열을 기입할 것이다. 본 발명의 방법은 다음에, 상술한 방법, 가령, 키 프레임 간의 선형 또는 비선형 보간에 의해 키 프레임 간에 연속으로 디지털 데이터 세트를 결정한다. 키 프레임은 사용자에 의해서 가령, 디지털 데이터 세트를 만들기 위해 사용된 컴퓨터에서 영상 이미지를 개별 처리함으로써 결정되거나, 또는 최종 치아배열에 대해 상술한 바와 같은 동일 방법으로 언급한 바와 같이 치료 전문의에 의해서 제공될 수도 있다.

    또한, 다른 실시예에 있어서, 본 발명은 다수의 점증식 위치 조정기구를 제조하는 방법을 제공한다. 상기 방법은 초기 디지털 데이터 세트, 최종 디지털 데이터 세트를 제공하고, 타겟 연속 치아배열을 나타내는 다수의 연속 디지털 데이터 세트를 만드는 것을 포함한다. 치과용 기구는 다음에, 일련의 치아배열을 나타내는 적어도 몇개의 디지털 데이터 세트에 근거하여 제조된다. 이 제조단계는 원하는 치아배열의 연속적인 정(+)의 모델을 만들기 위해 일련의 디지털 데이터 세트에 근거한 제조장비를 제어하는 것을 포함하는 것이 바람직하다. 교정 기구는 다음에 통상의 정압이나 진공 제조기술을 사용하는 정의 모델에 대한 반대쪽 부(-)로서 제조된다. 이 제조장비는 디지털 데이터 세트에 근거한 형상으로 수지를 선택적으로 경화시키기 위해서 레이저를 스캐닝하는 것에 의해서 비경화 중합체 수지의 체적을 선택적으로 경화시키는 것에 좌우되는 입체 석판인쇄기나 다른 유사한 장비를 포함할 수 있다. 본 발명의 방법에서 사용될 수 있는 다른 제조장비는 양산장비와 왁스 배치기를 포함한다.

    또 다른 실시예에 있어서, 치과용 기구를 제조하기 위한 본 발명의 방법은 환자용 수정 치아배열을 나타내는 디지털 데이터 세트를 제공하는 것을 포함한다. 제조장비는 다음에, 디지털 데이터 세트에 근거한 수정 치아배열의 정의 모델을 만드는데 이용된다. 치과용 기구는 다음에, 정의 모델의 반대측인 부(-)로서 만들어진다. 이 제조장비는 상술한 입체 석판인쇄기나 다른 기계일 수도 있으며, 이 정의 모델은 통상의 압력이나 진공 주형기술에 의해서 제조된다.

    또 다른 실시예에 있어서, 본 발명에 따른 교정 기구 제조방법은 환자용 수정 치아배열을 나타내는 제 1디지털 데이터 세트를 제공하는 것을 포함한다. 제 2디지털 데이터 세트는 다음에, 제 1디지털 데이터 세트로부터 만들어지며, 여기에서 제 2데이터 세트는 수정 치아배열의 부를 나타낸다. 이 제조장비는 다음에, 치과용 기구를 만들기 위해 제 2디지털 데이터 세트에 근거하여 제어된다. 이 제조장비는 통상 기구를 만들기 위해 비경화 수지를 선택적으로 경화시키게 된다. 이 기구는 전형적으로 초기 치아배열로부터 수정 치아배열까지 수용 및 탄력있게 재배치 하기 위한 공동형상을 갖는 중합체 셀을 포함한다.

    본 발명에 따르면 다수의 개별 기구를 사용하여 치아를 점진적으로 이동하기 위한 시스템과 방법이 제공되며, 각 기구들은 상대적으로 작은 양으로 하나 또는 그 이상 환자의 치아를 연속으로 이동시킨다. 이 치아 이동은 일반적으로 수직 중심선에 대해 모든 3개의 직각방향으로의 이동과, 2개의 수직방향("뿌리 각도" 및 "토오크")에서의 치아 중심선의 회전뿐만 아니라, 중심선에 대한 회전을 포함하는 치아교정 치료와 연관된다.

    도 1a를 참조하면, 대표적으로 표시한 턱(100)은 16개의 치아(102)를 포함한다. 본 발명은 이들 치아중 적어도 일부의 치아를 초기 치아배열로부터 최종 치아배열까지 이동시키도록 고안되었다. 이들 이빨이 어떻게 이동될 수 있는지에 대한 이해를 돕기 위해, 임의의 중심선(CL)이 하나의 치아(102)를 통해 그려져 있다. 이 중심선(CL)을 기준으로, 치아들은 축(104, 106 및 106; 이중에서 104는 중심선)으로 표시한 수직방향으로 이동될 수 있다. 이 중심선은 각각 화살표 (110 및 113)로 나타낸 바와 같이 축(108;뿌리각도 및 104;토오크)에 대해 회전될 수 있다. 또한, 치아는 화살표(114)로 나타낸 바와 같이 중심선에 대해서 회전될 수 있다. 그러므로, 치아의 모든 가능한 자유-형태의 운동이 실행될 수 있다. 도 1B를 참조하면, 본 발명의 방법과 장치에 의해서 달성된 어떤 치아운동의 크기는 치아(102)상의 어떤 점(P)의 최대 선형이동크기에 의해 규정될 것이다. 각 점(P i )은 치아가 도 1A에 규정된 어떤 수직 또는 회전방향으로 이동됨에 따라 누적이동이 진행될 것이다. 즉, 그 점이 통상 비선형 경로를 따르는 반면에, 치료 동안에 어떤 2개의 시점에서 결정되면, 치아의 어떤 점 사이의 선형거리가 될 것이다. 그러므로, 제 2임의의 점(P 2 )이 원호경로를 따라 이동되는 동안에, 최종 이동(d 2 )으로 되는 임의의 점(P 1 )이 정의 차례대로 이동이 진행될 수 있다. 본 발명의 많은 실시예는 어떤 특정한 치아에서의 방법에 의해 유도된 점(P i )의 최대 허용이동에 의해서 규정된다. 그같은 최대 치아이동은 차례대로, 어떤 치료단계에서 그 치아에 대한 최대이동이 진행되는 치아 상의 점(P i )에 대한 최대 선형이동으로 규정된다.

    다음에 도 1c를 참조하면, 본 발명에 따르는 시스템은 다수의 점증 위치 교정기구를 포함하게 된다. 이 기구들은 위에서 대략적으로 설명한 바와 같이 턱에 있는 각 치아의 점증 재배열이 효과적으로 진행되도록 고안되었다. 폭넓은 의미에서, 본 발명의 방법은 어떠한 알려진 배열기, 리테이너 또는, 통상의 치열 교정치료와 연관하여 치아위치를 마무리하고 유지하도록 알려진 다른 제거 가능한 기구를 채용할 수 있다. 종래의 장치와 시스템과 대비하여 볼 때, 본 발명의 시스템은 여기에 도시한 바와 같이 점증적인 치아 재배열을 달성하기 위해서 지속적으로 환자가 착용하게 되는 그같은 다수의 기구를 제공하게 된다. 바람직한 기구(100)는 하나의 치아배열로부터 연속되는 치아배열까지 수용 및 탄력있게 재배치될 수 있도록 형상된 공동을 갖는 중합체 셀을 포함하게 된다. 이 중합체 셀은, 반드시 필요한 것은 아니지만 상부 및 하부턱에 존재하는 모든 치아에 걸쳐 끼워지는 것이 바람직하다. 종종, 다른 치아들은 고정을 위한 베이스나 앵커를 제공하는 반면에, 어떤 하나만의 치아가 재배치된다. 그러나, 복잡한 경우에, 많은 대부분의 치아는 치료 도중에 어떤 점에 재배치 될 것이다. 그같은 경우에, 재배치되는 기구를 고정하기 위해 베이스나 앵커영역으로서 사용되는 치아도 이동될 수 있다. 또한, 앵커영역으로서 치은 및/또는 팔레트를 사용할 수 있으므로, 거의 또는 모든 치아 전체가 동시에 재배치된다.

    도 1c의 중합체 기구(100)는 미국 55902 미네소타주 로체스터 소재의 트루-테인(Tru-Tain) 플라스틱사의 0.03in 트르-테인 열 성형 의치재료와 같은 적절한 탄성 중합체의 박막시트로 만들어지는 것이 바람직하다. 통상, 치아 위에 적소에 있는 기구를 고정하기 위한 아무런 와이어나 다른 수단도 제공되지 않을 것이다. 그러나, 어떤 경우에는 기구(100)에 수납부나 구멍에 상응하는 치아 상에 개별 앵커를 제공함으로써, 이 기구는 그같은 앵커의 부재시에 존재할 가능성이 없는 치아 상에 상방향력으로 가해질 수 있다. 기구(100)를 만들기 위한 특별한 방법은 이후에 기술된다.

    도 2를 참조하면, 환자의 치아를 재배치하기 위해 환자가 사용한 후에 점증 위치 교정기구를 만들기 위한 본 발명의 전체적인 방법에 대해 기술한다. 제 1스텝으로서, 이하에서는 IDDS라 부르는, 초기 치아배열을 나타내는 디지털 데이터 세트가 얻어진다. 이 IDDS는 다양한 방법을 얻을 수 있다. 예를 들면, 환자의 치아는 X-레이, 3-차원 X레이, 컴퓨터 단층촬영법 또는 데이터 세트, 자기공명 단층촬영 등과 같은 잘 알려진 방법을 사용하여 스캔하거나 영상화될 수 있다. 본 발명에서 사용할 수 있는 데이터 세트를 만들기 위해 그러한 통상의 이미지를 디지털화하는 방법은 잘 알려져 있으며 특허 명세서 및 치과 문헌에0 기재되어 있다. 그러나, 통상적으로, 본 발명은 그라버(Graber)에 의해 1969년 미국 필라델피아주 사운더스의 치열 교정술:원리 및 실행 제 2판의 pp. 401-415에 기재되어 있는 그러한 주지의 기술에 의해서 먼저 얻어지는 환자의 치아 석고형틀에 의존한다. 치아 형틀이 얻어진 후에, 이것은 IDDS를 만들기 위해 통상의 레이저 스캐너나 다른 범위 포착시스템을 사용하여 디지털적으로 스캔할 수 있다. 범위 포착시스템에 의해 만들어진 데이터 세트는 물론, 다른 형태로 전환되어 이하에 상세히 설명하는 바와 같이, 데이터 세트 내에서 이미지를 처리하기 위해 사용되는 소프트웨어에 적합하게 된다. 레이저 스캐닝 기술을 사용하여 치아 석고형틀을 만들고 디지털 모델을 생성하기 위한 일반적인 기술은 가령, 미국특허 5,605,459호에 기재되어 있으며 여기에 참고로 인용한다.

    범위 포착시스템에는 포착 공정에서 3차원 대상물과 접촉하는 것을 필요로 하는지의 여부에 따라 크게 분류되는 여러 가지의 것이 있다. 접촉식 범위 포착시스템은 다양한 이동 및/또는 회전 자유도를 갖는 탐색침을 사용한다. 샘플의 표면을 가로질러 그려짐에 따라 탐색침의 물리적인 변위가 기록됨으로써, 샘풀 대상물의 컴퓨터 판독 가능한 재현이 만들어진다. 비접촉식 범위 포착시스템은 반사형이나 선송형 시스템 중 어느 것에도 사용이 가능하다. 여러 가지의 반사형 시스템이 사용된다. 이들 반사형 시스템 중 일부는 마이크로파 레이더나 음파탐지기와 같은 비광학 투사 에너지원을 이용한다. 다른 것들은 광학에너지를 이용한다. 반사도니 광학에너지에 의해 작동되는 그러한 비접촉식 시스템은 어떤 실행될 측정기술(가령, 영상 레이더, 3각 측량 및 간섭)을 가능케 하기 위해서 특수한 계측기 형상을 갖는다.

    바람직한 범위 포착시스템은 광학, 반사, 비접촉식 스캐너이다. 본래 비파괴적(즉, 샘풀 대상물을 손상시키지 않는)이므로 바람직하게 사용되는 비접촉식 스캐너는 일반적으로 보다 높은 포착 해상도를 특징으로 하며, 비교적 짧은 시간 동안에 샘플을 스캔한다. 그러한 스캐너의 하나가 미국 캘리포니아주 몬테레이 소재의 사이버웨어사(Cyberware, Inc.)에 의해 제조된 사이버웨어 모델 15가 있다.

    비접촉식이나 접촉식 스캐너는 모두 스캐닝 출력이 동시에 이루어짐으로써 샘플 목적물의 칼라를 재현하고 디지털 형식으로 포착하기 위한 수단으로 제공되는 칼라 카메라를 포함할 수 있다. 포착능력에 대한 이것의 중요성은 단지 샘플 대상물의 형상이 아니라 이것의 칼라이며 이하에서 설명한다.

    바람직한 실시예에 있어서, 왁스 교정기도 환자로부터 얻을 수 있다. 왁스 교정기는 중앙 교합에서 상부 및 하부 치열의 상대적인 위치의 스캐닝을 가능케 한다. 이것은 통상, 상방으로 향하는 치아와 함께 스캐너의 정면에 하부 형틀을 먼저 놓은 다음, 왁스 교정기를 하부 형틀의 상부에 올려놓고, 마지막으로 치아 하방을 향하는 치아와 함께 상부 형틀을 왁스 교정기 상의 하부 형틀 위에 올려놓는 것에 의해서 달성된다. 원통형 스캔은 다음에 그들의 상대 위치에서 하부 및 상부 형틀에 대해서 포착된다. 스캔된 데이터는 입안의 상대적인 형상과 동일한 위치의 환자의 원호의 조합인 대상물을 나타내는 중간 해상도의 디지털 모델을 제공한다.

    이 디지털 모델은 2개의 개별 디지털 모델(원호당 1개)의 변위를 안내하는 템플릿으로서 작용한다. 보다 정확하게는, 가령, 사이버웨어 정렬 소프트웨어와 같은 소프트웨어를 사용하면, 각 디지털 원호는 차례로 스캔 쌍으로 정렬된다. 개개의 모델은 다음에 서로에 대해서 환자 입안의 원호에 일치되도록 위치된다.

    본 발명의 방법은 이미지를 보고 수정하기 위해 적절한 그래픽 사용자 인터페이스(GUI)와 소프트웨어를 갖는 컴퓨터나 워크스테이션에서 IDDS를 처리하는 것에 좌우된다. 이후에는 소프트웨어의 특정한 실시예를 상세하게 설명한다. 이 방법이 디지털 데이터의 컴퓨터 처리에 좌우되는 반면에, 본 발명의 시스템은 비-컴퓨터-보조기술에 의해서 만들어질 수 있는 점진적으로 상이한 기하학적형상을 갖는 다중 치과용 기구를 포함한다. 가령, 상술한 바와 같이 얻은 석고 형틀은 형틀 내에 각 치아의 재배열을 가능케 하기 위해서 칼, 톱 또는 다른 절단공구를 사용할 수도 있다. 분리된 치아는 다음에 소프트 왁스나 다른 유연재에 의해 적소에 고정되며, 다수의 중간 치아배열은 다음에 환자 치아의 수정된 석고형틀 등을 사용하여 준비할 수 있다. 이하에 일반적으로 설명하는 바와 같이, 이 다른 배열은 정압 및 진공주형기술을 이용하는 다중 기구 세트를 준비하는데 사용할 수 있다. 본 발명의 기구 시스템의 그같은 수동제작은 통상적으로 그다지 바람직하지 않으며, 그렇게 만들어진 시스템은 본 발명의 범위 내에 있게 된다.

    도 2를 다시 참조하면, IDDS가 얻어진 후에, 디지털 정보는 처리를 위해서 컴퓨터나 다른 워크스테이션으로 보내지게 된다. 개개의 치아와 다른 요소들은 디지털 데이터로부터 그들 개개의 재배열이나 제거를 가능케 하기 위해 "절단"하는 것이 바람직하다. 그러므로, 요소들이 "분리된" 후에, 사용자는 종종, 치료 전문가 제공한 설명서나 명세서를 보게 된다. 또한, 사용자는 영상 모습에 따라서 또는 컴퓨터 프로그램된 방법이나 알고리즘의 사용을 통해서 그것들을 재배치한다. 일단 사용자가 최종 배열에 만족하면, 최종 치아배열은 최종 디지털 데이터 세트(FDDS)로 기입된다.

    IDDS와 FDDS 모두에 근거하여, 다수의 중간 디지털 데이터 세트(INTDDS)가 상응하여 생성된다.

    도 3에는 컴퓨터 상에 FDDS를 생성하기 위한 대표적인 IDDS 처리용 기술이 도시되어 있다. 일반적으로 디지털 스캐너에서 얻은 데이터는 고해상 형태이다. 화상을 생성하는데 필요한 컴퓨터 시간을 줄이기 위해서 저해상도로 IDDS를 나타낸 디지털 데이터 세트의 병렬세트가 만들어지게 된다. 컴퓨터는 필요에 따라 고해상 데이터를 갱신하지만 사용자는 저해상 화상을 처리하게 된다. 사용자는 또한 그 모델에 제공된 특별한 상세가 유용하다면 고해상 모델을 관찰/처리할 수도 있다. IDDS는 이미 그러한 형태로 표시되어 있지 않다면 쿼드 에지(quad edge)데이터구조로 변환될 수 있다. 쿼드 에지 데이터구조는 1985년 4월의 ACM 그래픽 취급 제4권 번호 2의 74-123페이지에 기재된 보로노이 다이어그램(Voronoi Diagrams)의 계산 및 일반적인 세분을 위해 초기에 규정된 표준 위상 데이터구조이다. 윙드-에지(winged-edge)데이터 구조와 같은 다른 위상 데이터구조도 사용할 수 있다.

    초기단계에서 치아, 잇몸, 및 다른 구강조직을 포함하는 환자의 턱의 3차원 화상을 관찰하면서 사용자는 일반적으로 기구의 최종제품 및/또는 화상처리를 위해 불필요한 구조를 삭제할 수 있다. 이들 모델의 원치않는 부분은 고체 모델링 빼기를 수행하기 위한 지움도구를 사용해서 제거할 수 있다. 이 기구는 그래픽 박스로 표시된다. 삭제될 체적(박스의 치수, 위치 및 배향)은 사용자가 GUI를 채용함으로써 설정된다. 특히, 원치않는 부분은 외래의 잇몸영역과 본래 스캐닝한 형틀의 기초를 포함한다. 이 도구의 다른 용도로서는 치아의 발치를 자극하고 치아의 표면을 "깎아내리는" 데 사용하는 것도 있다. 이동될 치아의 최종위치를 위한 턱의 추가적인 공간을 요구할 때 이것은 필요하다. 치료 전문의는 어느 치아를 깎아내고 및/또는 어느 치아를 빼내야 할지를 결정하기 위해 선택될 수도 있다. 단지 작은 공간이 요구될 때에만 환자의 치아를 유지하기 위해서 깎아냄이 허용된다. 특히, 본 발명의 방법에 따라 초기 재배열에 앞서서 실제로 환자의 치아를 빼내거나/또는 깎아내야만할 때에만 빼냄과 깎아냄을 처방계획에서 이용될 수 있다.

    모델의 원치않는 및/또는 불필요한 부분을 제거함으로써 데이터의 처리속도를 증가시키고, 영상 디시플레이를 강화시킨다. 불필요한 부분은 치아 재배열기구를 제조하는데 요구되지 것까지도 포함된다. 이들 원치않는 부분을 제거함으로써 디지털 데이터 세트의 크기 및 복잡성을 감소시키고, 데이터 세트의 처리와 기타 작동을 가속화시킨다.

    사용자가 지움도구를 위치시키고 크기를 정한후 소프트웨어에 원치않는 부분을 삭제하도록 지시하면, 사용자에 의해 설정된 박스내의 모든 삼각부는 제거될 것이며, 경계 삼각부는 원활하고 성형 경계를 남기도록 변형된다. 소프트웨어는 박스내의 모든 삼각부를 삭제하고, 박스의 경계를 가로지르는 모든 삼각부를 깍아낸다. 이것은 박스 경계의 새로운 정점을 발생시키는데 필요하다. 박스의 표면에서 모델에 생성된 구멍은 재차 삼각형으로 되고, 새로 생성된 정점을 사용하여 폐쇄된다.

    이동되어야 할 개개의 치아(또는 치아의군)의 경계를 규정하기 위해 톱도구가 사용된다. 소프트웨어가 모델의 남은 부분의 독립적인 다른 요소화상이나 치아의 이동을 가능하게 하는 이 도구는 스캔닝한 화상을 개개의 그래픽요소로 분할한다. 일 실시예에서 톱도구는 아마도 평행면과 강제적이고 또한 개방되거나 폐쇄된 공간에 놓여있는 2개의 입방체의 B-스플라인을 사용해서 그래픽화상을 절단하기 위한 경로를 한정한다. 라인 세트는 두 곡선을 연결하고 사용자에게 일반적인 절단경로를 보여준다. 사용자는 입방체의 B-스플라인 상의 제어점과, 톱절단의 두께 및 사용된 지움수단의 수를 다음에 기술하는 바와 같이 교정한다.

    또 다른 실시예에서는 "뽑아내는" 장치로서 톱을 사용함으로써 치아를 분리하고, 수직 톱절단기로 상기로부터 치아를 절단해 낸다. 치아의 치관과 치관 바로 아래인 잇몸 조직은 나머지 기하학적 형상으로부터 분리되고, 치아와 관련해서 개개의 유닛으로 처리된다. 이 모델이 이동되면, 잇몸 조직은 치관과 관련해서 이동되고, 잇몸이 환자의 구강내에서 재형성되는 바와 유사한 방법으로 제 1열을 생성한다.

    각 치아는 본래의 정돈된 모델로부터 분리할 수도 있다. 또한, 치아의 치관을 절단함으로써 본래의 정돈된 모델로부터 기초를 생성할 수도 있다. 결과로 나온 모델은 치아를 이동시키기 위한 기초로 사용된다. 이것은 다음에 기술하는 바와 같이 기하학적 형상 모델로부터 물리적 금형의 최종적인 제조를 용이하게 한다.

    두께: 치아를 분리하기위해 절단이 사용된다면, 사용자는 대개 가능한 한 얇게 절단되는 것을 원한다. 그러나 사용자는 예를들면 상술한 바와 같이 치아의 주위를 깎아내릴 때 보다 두꺼운 절단을 원할 수도 있다. 그래픽에서 이 절단은 곡선의 일측 절단의 두께에 의해 경계된 곡선으로 보인다.

    지우개의 수: 절단은 톱 도구의 곡선경로의 구분적 선형 근사값으로 서로 이웃하게 배열된 복수의 다중 지우개박스로 구성된다. 사용자는 다수의 지우개를 선택하며, 이것은 생성된 곡선의 왜곡을 결정하고, 세그먼트의 수가 많으면 많을수록 절단은 보다 정밀하게 곡선을 따르게 될 것이다. 지우개의 수는 두개의 입방체 B-스플라인 곡선을 연결하는 평행선의 수에 의해 도식적으로 나타내었다. 일단 톱 절단이 완전히 지정되면 모델에 그 절단을 적용한다. 이 절단은 지우는 순서대로 실행된다.

    바람직한 알고리즘이 도 4A에 도시되어 있다. 도 4B는 개방 종단형 B-스플라인 곡선에 대한 알고리즘에 표시된 바아 같이 절단 단일지움의 반복을 나타내고 있다. 수직절단을 위해서 곡선은 P A [O] 및 P A [S]와 같은 점과 P B [O] 및 P B [S]와 같은점에서 닫혀있다.

    일 실시예에서 소프트웨어는 사용자에 의한 평탄도 측정 입력값에 기초하여 톱 공구를 지우개 세트 내로 자동 분할할 수 있다. 오차미터법이 평탄도 설정에 의해 지정된 임계값보다도 작게되도록 근접표시에 대한 이상적인 표시로부터의 편차를 측정할 때까지 순차적으로 세분된다. 사용된 바람직한 오차미터법은 세분된 곡선의 직선길이를 이상적인 스플라인곡선의 아크길이와 비교한다. 그 차이가 평탄도 설정으로부터 산출된 임계값보다도 클 경우에, 그 세분점은 스플라인곡선에 더해진다.

    예비조사 특징이 또한 소프트웨어에서 제공된다. 예비조사의 특징은 두개의 표면이 절단 반대면을 표시함에 따라 톱 절단을 가시적으로 표시한다. 이것은 사용자에게 그것을 모델 데이터 세트에 적용하기 전에 최종절단을 고려하는 것을 허용한다.

    사용자가 톱공구로 모든 소요의 절단동작을 완료한 후에 다중 그래픽 입방체가 생성된다. 그러나 이 시점에서 소프트웨어는 쿼드 에지 데이터구조의 어떤 삼각부가 어떤 요소에 속하는지를 결정하지 않았다. 소프트웨어는 데이터구조에서 랜덤 개시점을 선택하고, 개개의 요소를 식별하면서 서로 부착된 모든 삼각부를 찾아내기 위해 인접정보를 사용하는 데이터구조를 통과한다. 이 공정은 그 요소가 아직 결정되지 않은 삼각부로부터 시작하여 반복된다. 일단 전체 데이터 구조가 통과되면 모든 요소는 식별된다.

    사용자에게 있어서, 모든 변화는 고해상 모델로 만들어지고 역으로 저해상모델에서 동시에 발생되는 것으로 보여진다. 그러나 다른 해상 모델간에는 일대일의 대응관계가 아니다. 그러므로 컴퓨터는 한정된 한계를 최대로 받아들일 수 있도록 고해상과 저해상요소를 "일치"시킨다. 그 알고리즘을 도 5에 나타내었다.

    첨두검출: 바람직한 실시예에서 소프트웨어는 치아용 첨두를 검출할 수 있는 능력을 제공한다. 첨두는 치아의 씹는 표면상의 융기를 가리킨다. 첨두검출은 절단경로가 수행되기전이나 후에 수행된다. 첨두검출을 위해 사용되는 알고리즘은 두 단계로 구성되어 있다. (1) 치아상의 지시세트가 후보 첨두위치로 결정되는 "검출" 단계와, (2) 만일 첨두와 결합된 기준세트가 만족스럽지 않으면 지시세트로부터 후보가 거절되는 "거절"단계이다.

    "검출"단계의 바람직한 알고리즘이 도 6에 도시되어 있다. 검출단계에서 가능한 첨두는 독립된 객체 상의 최고점에 있는 후보첨두와 함께 치아표면 상에 "객체"로서 관찰된다. "최상위"는 모델의 동등한 시스템과 관련해서 측정나, 만일 검출이 치료의 절단경로 이후에 수행되면 각 치아의 국부 좌표 시스템에 관련해서 용이하게 측정될 수 있다.

    모든 가능한 첨두 세트는 모델 진동박스 꼭대기의 지정 거리 내에 있는 치아모델 상의 모든 국부 최대값에 대한 관찰을 통해서 결정된다. 첫째, 모델상의 최고점은 제 1후보의 첨두로 표시된다. 측정된 점의 높이에 따른 방향과 수직으로, 평면은 이점을 통과한다. 평면은 Z축을 따라 작은 소정의 거리만틈 낮아진다. 다음에, 치아와 연결되고 평면 위에 및 일부 연결요소 상에 있는 모든 정점은 첨두로서 후보 첨두와 연관된다. 이 단계는 "과충진"단계라 부른다. 각 후보첨두점으로부터 외부 "범람"이 실행되고, 대응하는 후보첨두의 "일부"로서 이 문제에 참여한 모델 상의 각 정점이 만들어진다. 과충진 단계가 완성된후 모델 상의 모든 정점이 시험된다. 평면상에 있고, 하나의 과충진도 참여하지 않은 어떤 정점은 후보첨두 리스트에 더해진다. 이들 단계는 평면이 지정된 거리로 이동할 때까지 반복된다.

    이 반복적인 접근이 국부 최대 탐색보다 더 많은 시간을 소비할 수 있는 반면에, 상술한 접근은 보다 짧은 후보첨두 리스트를 유도한다. 각 단계에서 평면은 한정된 거리만큼 낮아졌기 때문에, 잡음 데이터에 의해서 발생될 수 있는 매우 작은 국부 최대값은 건너뛰게 된다.

    "검출"단계 후 첨두 검출 알고리즘은 "거절"단계로 진행한다. "거절"단계의 바람직한 알고리즘이 도 6B에 도시되어 있다. 이 단계에서 각 첨두 후보 둘레의 국부 기하학적 형상은 만일 그들이 "비첨두와 같은 특징"을 소유하고 있는가를 결정하기 위해 분석된다. "비첨두와 같은 특징"을 보이는 첨두후보는 첨두후보 리스트로부터 제거된다.

    "비첨두와 같은 특징"을 확인하기 위해 여러 가지 기준들일 사용할 수도 있다. 하나의 시험에 따라 첨두후보 둘레 표면의 국부곡선은 후보가 비첨두와 같은 특징을 지니고 있는지를 결정하기 위해 사용된다. 도 6B에 나타낸 바와 같이 첨두 후보 둘레 표면의 국부곡선은 근접되고, 만일 그것이 지나치게 큰지(매우 뾰족한 표면) 또는 지나치게 작은지(매우 평탄한 표면)를 결정하기 위해 분석되며, 이 경우 후보는 첨두후보 리스트로부터 제거된다. 실수로 참 첨두가 거절되지 않게 되는 것을 보증하기 위해 최대와 최소의 곡선값에 대한 보수적인 값이 사용된다.

    또 다른 시험에 따라 후보첨두 둘레 영역의 평균 정상에 기초해서 평탄도 측정이 계산된다. 만일 평균 정상이 첨두에서 지정된 양보다 많게 정상으로부터 편향된다면, 후보첨두는 거절된다. 바람직한 실시예에서, 첨두정상(CN)으로부터 정상벡터(N)의 편향은 수학식 1에 의해 근접된다.

    [수학식 1]

    1-Abs(N*CN)

    여기에서, 무편차에서는 영이고 N과 CN이 직각이면 1이다.

    일단 치아가 분리되면, IDDS로부터 FDDS가 만들어질 수 있다. FDDS는 그들의 최종 처방으로 치아를 이동시키는 치열교정 의사의 처방에 따라 만들어진다. 일 실시예에서, 처방은 컴퓨터에 기입되고, 이것은 치아의 최종위치를 알고리즘적으로 계산된다. 다른 실시예에서는 처방의 제한을 만족시키면서 하나 또는 그 이상의 치아를 독립적으로 조작함으로써 사용자는 치아를 그들의 최종 위치로 이동시킬 수가 있다. 상술한 기술의 각종 조합은 최종 치아 위치에 도달하기 위해 사용될 수 있는 것이 바람직하다.

    FDDS를 생성하기 위한 바람직한 방법은 지정된 순서로 치아를 이동시키는 것을 포함한다. 첫째, 각 치아의 중심은 표준 아크로 배열된다. 그러면 치아는 그들의 뿌리가 적당한 수직위치로 될 때까지 회전한다. 다음에 치아는 적당한 방향으로 그들의 수직축 주위를 회전한다. 치아는 측면으로부터 관찰되고, 그들의 적당한 수직위치로 수직 변환된다. 최종적으로 두개의 아크가 함께 배치되고, 상부와 하부아크가 함께 적당히 맞물리는지를 보증하기 위해 치아를 약간 이동시킨다. 상부와 하부의 아크가 함께 맞물리는 것은 치아의 접촉점을 적색으로 두드러지게 하기 위한 충돌 검출 알고리즘을 사용함으로써 눈에 보이게 된다.

    치아 및 다른 요소가 배치되거나 제거되어 최종 치아 배열이 생성된 후, 도 7에 나타낸 바와 같이 치료계획을 세우는 것이 필요하다. 치료계획은 상술한 바와 같이 최종적으로 일련의 INTDDS 와 FDDS를 생성하게 된다. 이들 데이터 세트를 생성하기 위해서는 일련의 연속적인 단계를 넘어 최초위치로부터 최종위치로 선택된 개개의 치아의 이동을 한정하거나 배치할 필요가 있다. 또한, 치료 기구에 원하는 특징을 생성하기 위해 데이터 세트에 다른 특징들을 추가할 필요가 있다. 예를들면, 특별한 목적을 위해 충치의 구멍이나 오목한 곳을 규정하기 위해 화상에 왁스패치를 추가하는 것이 바람직할 수도 있다. 가령, 잇몸의 아픔을 감소시키고, 치주의 문제를 피하면서 캡과 같은 것을 허용하기 위해 치아 또는 턱의 특정 영역과 기구 간에 공간을 유지시키는 것이 바람직하다. 덧붙여서, 상승된 턱 관련 앵커를 필요로하는 방법으로 처리되어야 할 치아를 허용하기 위해 치아 상에 배치될 앵커를 조정하도록 의도된 수용부나 구멍을 구비하는 것이 때로는 필요하다.

    치아 재배열기구를 제조하기 위한 어떤 방법은 분리가 요구되고, 재배열 치아와 다른 요소들은 제조가 가능하도록 단일의 연속적인 구조로 일체화 된다. 이 경우 INTDDS의 다른 불연속 요소를 부착시키는데 사용되는 "왁스 패치(wax patches)"들이 사용된다. 이들 조각은 치아의 아래와 잇몸 위에 데이터 세트에 추가됨으로써, 그들은 치아 재배열기구의 기하학적 형상에 영향을 주지 않는다. 다양한 왁스 패치를 조정가능한 치수를 갖는 구면체 및 박스를 포함하는 모델에 추가하기 위한 응용 소프트웨어를 제공한다. 추가된 왁스 패치는 추가적인 기하학적 형상의 조각으로 모든 다른 기하학적 형상과 동일한 소프트웨어에 의해 처리된다. 그러므로, 왁스패치는 치아 및 다른 요소와 함께, 치료경로 동안에 재배치될 수 있다. 상술한 바와 같이 수직의 코어를 사용하여 치아를 분리시키는 바람직한 방법에 의해 이들 왁스패치의 대부분이 필요 없게 된다.

    재배치기구를 생산하기 위한 정의 모델의 생성에 의존하는 제조공정에 있어서, 그래픽 모델에 왁스패치를 추가함으로써, 왁스패치와 같은 기하학적 형상이 추가된 정의 형틀을 생성하게 될 것이다. 형틀이 치아의 정(+)이고 기구는 치아에 부(-)이므로, 형틀에 의해서 기구가 성형되면, 이 기구 역시 형틀에 추가된 왁스패치 둘레에 성형될 것이다. 환자의 구강에 배치될 때, 기구는 따라서 이 기구의 내부공동면과 환자의 치아나 잇몸 간의 공간을 허용하게 된다. 또한, 다른 완성되지 않은 방향으로 치아를 이동시키기 위해 치아 상에 배치된 앵커와 결합되는 기구 내에 오목부나 구멍을 형성하기 위해 왁스 패치를 사용할 수 있다.

    그러한 왁스패치에 덧붙여서, 통상 치아의 각 요소는 각기, 죄는 기구나 푸는 기구를 갖는 기구로 제조될 더 작은 크기나 더 큰 크기의 치수로 만들어질 수 있다.

    치료 계획은 치아와 다른 요소의 이동을 규정하는데 극히 유연하다. 사용자는 치료 단계 뿐만 아니라, 경로와 요소들의 속도를 개별적으로 제어하면서 처리단계의 수를 변경할 수 있다.

    처리 단계의 수: 사용자는 치아의 초기상태로부터 목표상태로 필요로 하는 처리단계의 수를 변경할 수 있다. 이동되지 않은 어떤 요소가 정지된 상태로 남아 있다고 가정되면, 그에 따라 그의 최종위치가 초기위치와 동일하다고 가정된다(그 요소를 위해 하나 또는 그 이상의 키 프레임이 그 요소를 위해 규정되지 않았다면 모든 중간 위치는 이같이 된다).

    키 프레임: 사용자는 중간상태를 선택하고 요소위치를 변경함으로써 "키 프레임"을 지정할 수 있다. 다른 명령이 없으면 스프트웨어는 자동으로 사용자-지정위치(초기위치, 모든 키 프레임 위치 및, 목표위치를 포함하는)사이를 선형적으로 보간한다. 가령, 최종위치가 특정 요소를 위해 한정되었다면, 초기단계 이후의 각 후속단계는 단순히 동일 선형길이를 갖는 요소를 나타내며, 최종위치에 더 근접해서 (4쌍으로 지정된)회전을 하게한다. 만일 사용자가 그 요소를 위해 두개의 키 프레임을 지정하면, 다른 단계를 통해서 초기위치로부터 제 1키 프레임에 의해 규정된 위치로 선형적으로 "이동"할 것이다. 그러면 제 2키 프레임에 의해서 규정된 위치로 선형적으로 다른 방향을 따라 이동할 것이다. 결국, 이것은 목표위치에 선형적으로 다른 방향을 따라 아직도 이동할 수 있다.

    사용자는 또한 키 프레임 간의 비선형 보간을 지정할 수가 있다. 종래의 방법에서 스플라인 곡선은 보간기능을 지정하는데 사용된다.

    이들 동작이 각 요소에 독립적으로 행해짐으로써, 사용자에 의해 키 프레임내로 이동된 다른 요소를 제외하고, 하나의 요소에 대한 키 프레임이 다른 요소에 영향을 주지 않을 수도 있다. 하나의 요소는 단계 3과 8 사이의 곡선을 따라 가속될 수 있으며, 다른 요소는 단계 1로부터 단계 5까지 선형적으로 이동한 다음에, 갑자기 방향을 바꿔서 선형 경로를 따라 단계 10으로 서서히 내려간다. 이 유연성은 환자의 치료 계획에 커다란 자유도를 허용한다.

    일 실시예에 있어서, 소프트웨어는 IDDS와 FDDS에 기초한 치료경로를 자동으로 결정한다. 이것은 대개, 각요소 즉 치아가 초기위치로부터 최종위치까지 직선경로를 따라 이동하는 비율을 결정하는 경로 스케즐 알고리즘을 사용해서 달성된다. 본 발명에서 사용되는 경로 스케즐 알고리즘은 치아를 직선화 하는데 꼭 필요한 것보다도 더 큰거리를 따라 치아를 이동시키는 것과 관련해서 치열교정의사들 간에 통용되는 용어인 "라운드-트리핑(round-tripping)"을 피하면서 치료경로를 결정한다. 그러한 동작은 매우 바람직하지 않으며 환자에게 부정적인 영향을 준다. 라운드 트리핑을 피하기 위해서, 경로 스케즐 알고리즘은 분리된 치아 간의 모든 간섭을 피하면서 초기위치와 최종위치 간의 가장 짧은 직선경로에 그들을 구속함으로써 모든 치아의 이동을 스케즐을 작성하거나 단계화한다.

    경로 스케즐 알고리즘은 가능한 치료계획을 설명하는 형상공간을 통해서 장애물이 없는 경로를 찾기 위한 랜덤 탐색기술을 이용한다. 전체 키 프레임을 규정한 두 사용자 간의 스케즐화 동작에 대한 알고리즘의 바람직한 실시예는 다음에 설명한다. 중간 키 프레임을 포함하는 시간 간격을 통한 스케즐은 이들 간격들의 각각을 독립적으로 스케즐을 작성하고, 결과 스케즐을 연결하고, 중간 키 프레임을 포함하지 않는 보조간격의 시간 간격을 분할함으로써 달성된다.

    도 8A의 플로차트(120)은 본 발명의 실시예에 따른 단순화된 경로 스케즐 알고리즘을 나타낸다. 도 8A에 나타낸 바와 같이 제 1단계 122는 "형상공간" 사항을 구축한다. 이 명세서에서 "형상"은 모든 치아의 이동이 고려된 주어진 세트의 위치라 언급한다. 이들 각각의 위치는 다양한 방법으로 설명될 것이다. 본 발명의 바람직한 실시예에서, 그 위치는 그 초기위치로부터 최종위치로 치아 방향의 변경을 지정하기 위한 하나의 회전변형과, 위치의 변경을 지정하기 위한 하나의 결합된 변형으로써 설명되어 있다. 각 치아의 중간위치는 두 종점의 위치와 방향을 보간하기 위해 얼마나 멀리 지정해야하는지를 한쌍의 수로써 설명되어 있다. "형상"은 따라서 이동되어야할 각 치아에 대한 두개의 수로 구성되고, "형상공간"은 그러한 모든 한쌍의 수의 공간이라고 언급한다. 그러므로, 형상공간은 데칼트의 공간이며, 어떤 위치라도 모든 치아의 위치를 지정함으로써 해석될 수 있다.

    출발위치로부터 그 최종위치로의 각 치아의 이동의 결합된 변형의 설명은 병진운동과 회전요소로 분해된다. 이들 변형은 형상공간의 2차원으로 생각되는 스칼라의 매개변수로 독립적으로 보간된다. 전체 형상공간은 이동된 치아에 대해 2차원으로 구성되고, 모든 것은 그후의 탐색 중에 동등하게 처리된다.

    형상공간은 "자유공간"과 "방해공간"으로 구성된다. "자유"형상은 그들을 유효하게 물리적으로 인식할 수 있는 치아의 위치를 나타낸 한편, "방해"형상은 그렇지 않은 것을 나타낸다. 형상이 자유인가 방해인가를 결정하기 위해서는 형상이 기술된 치아의 위치에 대한 모델이 생성되어야 한다. 어떤 기하학적 형상이 치아표면 교차를 기술하고 있는가를 결정하기 위해 충돌검출 알고리즘이 적용된다. 만일 방해가 없는 경우, 그 공간은 자유라고 생각되고, 아니면 방해되었다고 생각된다. 충돌검출 알고리즘을 다음에 다시 상세히 설명한다.

    단계 124에서 "시인성"기능 V(S 1 ,S 2 )이 한정되고, 형상공간에서 입력으로서 "S 1 " 과 "S 2 "의 두개의 벡터를 취하고, 참과 거짓의 부울식 값(boolean value)으로 복귀한다. 시인성 기능은 만일 직선경로 S 1 과 S 2 를 연결하고 형상공간의 자유와 장애영역을 완전히 통과하면 참값으로 복귀한다. 시인성 기능의 바람직한 알고리즘을 도 8B에 나타낸다. 시인성 기능은 선 S 1 -S 2 에 따라서 분리적으로 샘플한 점에서의 간섭을 위한 치아모델을 시험함으로써 근접하게 계산된다. 시험해야 할 간격을 반복적으로 세분함으로써 샘플점을 선택하거나 실패 상의 초기 종료와 같은 기술은 시인성의 효율을 증가시키기 위해 사용된다.

    *도 8A의 단계 126에서 "어린이"기능이 규정되고, 이것의 입력매개변수 "S"는 형상공간에 있어서의 벡터이고, 이것은 형상공간에서의 벡터"S C "세트로 복귀한다. 도 8C는 산물인 어린이 기능을 계산하기 위해 계속되는 단계를 나타낸 간략화한 플로차트이다. 세트 S C 내의 각 벡터는 참 V(S, S C )의 특성을 만족시키고, 각각의 그들 요소는 대응하는 요소 "S"와 동등하거나 크다. 이것은 그러한 벡터에 의해 표시된 어떤 상태도 어떠한 간섭에도 직면하는 일이 없이, 또한 처리에 의해 규정된 방향이 아닌 어떤 운동도 수행하는 일이 없이 "S"로부터 도달할 수 있는 것을 뜻한다. 세트 "S C "의 각 벡터는 어떤 랜덤으로 정의 양에 의해 각 "S"의 요소를 혼란시킴으로써 생성된다. 시인성 기능V(S, S C )이 계산되고, 만일 시인성 기능이 참 부울식 값으로 복귀하면 "S"는 세트 "S C "에 더해진다. 추가적으로 생성된 각 벡터에 대해 그의 모체인 지침 "S"가 후의 사용을 위해 기록된다.

    형상공간이 규정된 후, 단계 128에서 초기상태 "S init "와 최종상태 "S final " 사이에 스케즐된 경로를 실행한다. 도 8D는 도 8A에 나타낸 단계 128을 실행하기 위한 바람직한 플로차트를 나타내고 있다. 도 8D에 나타낸 바와 같이 단계 128a에서 초기상태 "S init "만을 최초에 포함하도록 상태 "W"세트가 규정된다. 다음에 단계 128b에서 적어도 W내의 하나의 상태 S 1 에서 만일 V(S, S final )가 참인가를 결정하기 위해 시인성 기능이 이용된다. 단계 128c에서 만일 시인성기능이 거짓 부울식 값으로 복귀하면 상태 "W"세트는 모든 W내의 S 1 에 대한 C(S i )의 결합으로 대체된다. 단계 128b와 단계 128c는 V(S i , S final )가 W에 속하는 어떤 S i 에 대해 참 부울식 값으로 복귀하기까지 반복된다.

    단계 128d에서 각 S i 에 대해 V(S i , S final )가 참이면 모체 지침이 S init 로 복귀됨으로써, 방해되지 않는 경로 P i 가 S i 로부터 S init 까지 구축된다. 단계 128e에서는 경로 P i 를 최종단계 S i 로부터 S final 까지 연결함으로써 S init 로부터 S final 의 경로가 구축된다. 만일 S init 로부터 S final 의 다중경로가 있다면, 단계 128f에서 각 경로의 전체길이가 계산된다. 최종적으로 단계 128g에서 최단길이의 경로가 최종경로로서 선택된다. 전체시간과 단계에 대응하는 선택된 경로의 길이가 치료계획을 위해 필요하게 된다.

    결과의 최종경로는 벡터계로 구성되고, 각각은 이동치아 변형의 병진운동이나 회전요소의 변화 매개변수 값의 군을 나타낸다. 치아 이동 스케즐을 구성하는 이들을 함께 취함으로써 치아와 치아 간의 간섭을 회피한다.

    충돌검출 알고리즘: 본 발명에서 채용한 충돌 또는 간섭검출 알고리즘은 1996년의 스테판 고트초크 등의 SIGGRAPH에 기재된 바에 기초한다 : "OBBTree : 신속간섭 검출을 위한 조직적 구조". SIGGRAPH 의 문장 내용을 참고로 여기에 인용한다.

    알고리즘은 물체에 의해 점유된 공간의 반복적인 미세분류 둘레에 집중되어 있으며, 이것은 2진-트리형 형태로 조직되어 있다. DDS내에 치아를 표시하기 위해 삼각형이 사용된다. 트리의 각 노드는 배향된 진동박스(OBB)라 부르며, 노드의 모체에 나타나는 삼각형의 부분집합을 포함한다. 모체 노드의 어린이는 모체 노드에 저장된 모든 삼각형 데이터간에 수용된다.

    그 노드의 모든 삼각형 둘레에 단단히 고정되도록 노드의 진동박스가 배향되어 있다. 트리의 리프노드는 이상적으로 단일 삼각형을 수용하나, 하나 이상의 삼각형을 수용할 수도 있다. 두 물체간의 충돌검출은 물체의 OBB 트리가 교차하는지를 결정하는 것이 포함된다. 도 9A에는 제 1물체로부터의 노드 "N1"이 제 2물체의 노드 "N2"와 교차하는지를 검출하기 위해 반복적인 충돌시험의 간략화된 변형을 나타낸 플로우차트가 도시되어 있다. 트리의 뿌리노드의 OBB가 중첩되면 산물인 뿌리의 어린이는 중첩을 검출한다. 알고리즘은 리프노드가 도달할 때까지 반복형상을 진행한다. 이점에서 리프에서의 삼각형이 충돌에 포함되어있는지를 결정하기 위해 랜덤한 삼각교차점 루틴이 사용된다.

    본 발명은 SIGGRAPH 항목에 기술된 충돌 검출 알고리즘에 대한 몇가지 강화를 제공한다. 일 실시예에 있어서, 본 발명은 메모리와 시간을 절약하기 위해 느린 모양의 OBB트리를 구축하는 유일한 방법을 제공한다. 이 접근은 결코 충돌에 포함되지 않는 모델부분이 있는지를 관찰함으로써 일어나며, 결과적으로 그러한 모델 부분에 대한 OBB트리는 계산할 필요가 없다. 도 9B에 나타낸 바와 같이 반복적인 충돌결정 알고리즘 동안에 필요하다면 트리의 내부노드를 분할함으로써 OBB트리가 확장된다.

    본 발명의 다른 실시예에서는 충돌데이터가 필요하지 않은 모델에 있어서의 삼각형은 OBB트리를 구축할 때 특히 고려대상에서 제외할 수 있다. 도 9C에 나타낸 바와 같이 물체의 동작을 지정하기 위한 충돌 알고리즘에 대한 추가적인 정보를 제공한다. 동작은 두개의 레벨로 관찰된다. 물체는 포괄적인 의미에서 "이동"으로 개념화되거나, 다른 물체와 관련해서 "이동"으로 개념화된다. 그러한 물체간의 충돌상태는 변화되지 않으므로, 상호 관련이 적은 물체간 충돌정보의 재계산을 회피함으로써 이 추가적인 정보는 충돌검출을 위해 취해지는 시간을 개선한다.

    본 발명의 소프트웨어는 협동이 가능하며 사용자는 초기에서 목표상태의 이동을 자동적으로 동화하기 위해 어느 지점에서나 "영화" 특징을 사용한다. 이것은 처리공정을 통해서 전체적인 요소의 이동을 눈에 보이게하는데 유용하다.

    요소확인을 위한 바람직한 사용자 인터페이스는 삼차원 상호작용 GUI를 상술하였다. 삼차원 GUI는 요소처리에도 바람직하다. 그러한 인터페이스는 전문적으로 처리하거나, 사용자에게 디지털모델 요소의 순간의 가시적 상호작용을 제공한다. 이 인터페이스는 특별한 세그먼트를 처리하기 위해 컴퓨터에 지시하기 위한 간단하고 저레벨의 명령을 허용하는 것이 바람직하다. 다시말하면, 처리를 위해 채용된 GUI는 가령, 종류만의 지시를 수용하는 인터페이스가 바람직하다. "이 요소를 우측으로 0.1mm이동"과 같은 저레벨의 명령은 미세조정에 유용하나, 만일 그들이 유일한 인터페이스라면 요소처리의 공정은 귀찮고 시간이 소비되는 복잡한 작용이 될 것이다. 처리공정 이전이나 공정 중에 하나 또는 그 이상의 치아요소는 치아뿌리의 모형모델과 같이 증가될 것이다. 뿌리모형과 같이 증가된 치아모델의 처리는 유용하며, 가령, 잇몸선 아래의 치아의 충격상황을 고려할 수 있다. 이들 모형모델은 가령, 환자 치아의 X선사진을 디지털화한 표시로 구성할 수 있다.

    소프트웨어는 장치의 순서번호 및/또는 제목으로 구성되는 데이터 세트에 주석을 추가하는 것을 허용한다. 인쇄된 정의 모델이 나타나도록 주석은 오목한 제목(즉 3차원의 기하학적 형상)으로 추가될 수 있다. 만일 주석이 구강의 일부에 배치되면, 재배열 기구에 의해 덮일 것이지만, 이것은 치아운동에 중요하지 않으며, 주석은 제공된 재배열 기구상에 나타나게 된다.

    상기한 요소확인과 요소처리 소프트웨어는 조작자의 훈련레벨이 정교하고 적당하게 조작되도록 설계되어 있다. 예를들면, 요소처리 소프트웨어는 허용할 수 있는 귀환과 치아의 금지된 처리를 제공함으로써 컴퓨터 조작자와 치열교정술의 훈련부족을 조력할 수 있다. 다른 한편, 구강내의 생리현상과 치아이동 역학에 매우 숙련된 치열교정의사는 요소확인과 처리 소프트웨어를 도구로서 간단히 사용할 수 있고, 그렇지 않으면 충고를 무시할 수 없는 것을 무력하게 한다.

    일단 중간과 최종 데이터세트가 생성되면 도 10에 나타낸 바와 같이 도구는 제조된다. 제조방법은 입체 석판 인쇄기와 같은 신속원형장치를 채용하는 것이 바람직하다. 특히 적당한 신속 원형기계로는 캘리포니아 소재의 바렌시아사의 3-D시스템으로부터 입수할 수 있는 모델 SLA-250/50이 있다. 신속 원형기계(200)는 액체 혹은 다른 비경화 수지를 삼차원의 구조로 선택적으로 경화시키고, 잔존하는 비경화수지로부터 분리할 수 있으며, 세정되고, 직접적으로 도구로서 사용되거나 도구를 생산하기 위한 금형으로서 간접적으로 사용될 수 있다. 원형기계(200)는 개개의 디지털 데이터 세트를 포함하며, 각 소요의 도구에 대응하는 하나의 구조를 생산한다. 일반적으로 신속한 원형기계(200)는 부적합한 기계적 특성을 지니며, 일반적으로 환자에개 사용할 수 없는 수지를 이용하기 때문에, 실제적으로 각 연속 단계의 처리에 대한 정의 치아모델을 위한 금형을 생산하기 위해 원형기계가 사용되는 것이 바람직하다. 정의 모델이 준비된 후 미네소타의 로체스터 소재의 트루타인 프라스틱스사로부터 입수가능한 0.03인치의 열성형 치과재료와 같은 보다 적합한 재료로부터 기구를 생산하기 위해 종래의 압력 또는 진공성형기가 사용된다. 적당한 압력성형기는 뉴욕 토나와다 그레이트레이크에 있는 오소돈틱스사의 상표명 BIOSTAR 로부터 입수가능하다. 성형기(250)는 직접 정의 치아모델과 소요의 재료로부터 각 기구를 생산한다. 적당한 진공성형기는 레인트리 에식스사로부터 입수가능하다.

    생산후 본 발명의 시스템을 구성하는 복수의 기구는 치료 전문가에게 동시에 모두 공급되는 것이 바람직하다. 그들의 사용순서를 표시하기 위해 기구는 특히, 순서번호를 직접 기구 또는 태그로 각 기구에 부착되거나 구비되는 다른 물품에 어떤 방법으로 표지를 하게 된다. 환자가 개개의 기구를 기구에 표시된 순서대로 또는 포장내에 있는 순서대로 사용하도록 기술된 임의 기록안내서를 시스템에 동반시킬 수가 있다. 그러한 방법의 기구의 사용은 환자의 치아를 점진적으로 최종 치아배열로 재배열하게 될 것이다.

    도 11은 본 발명을 실시하는 데이터 처리시스템(300)의 간략 블록도이다. 데이터 처리시스템(300)은 특히 버스 서브시스템(304)을 통해서 몇개의 주변장치와 통신하는 적어도 하나의 프로세서(302)를 포함한다. 이들 주변장치는 특히 저장서브시스템(306)(메모리 서브시스템(308), 파일저장 서브시스템(314)), 사용자 입출력 장치세트(318), 외부 네트워크의 인터페이스(316), 및 공중 교환전화망을 포함한다. 이 인터페이스는 개략적으로 "모뎀과 네트워크 인터페이스" 블록(316)으로 표시되고, 그리고 통신망 인터페이스(324)를 거쳐서 다른 데이터 처리시스템의 대응하는 인터페이스 장치에 결합된다. 데이터 처리시스템(300)은 단말기나 저급 퍼스널컴퓨터, 고급 퍼스널컴퓨터, 워크스테이션, 또는 메인 프레임이다.

    사용자 인터페이스 입력장치는 특히 키보드와 지시장치와 스캐너를 포함한다. 지시장치는 마우스, 트랙볼, 터치패드, 그래픽 타블레트와 같은 간접 지시장치이고, 직접 지시장치는 디스플레이에 결합된 터치스크린 같은 것이다. 다른 형태의 사용자 인터페이스 입력장치로는 음성인식시스템과 같은 것도 가능하다.

    사용자 인터페이스 출력장치는 특히 프린터와 디스플레이 서브시스템을 포함하고, 디스플레이 제어기와 제어기에 결합된 디스플레이 장치를 포함한다. 디스플레이 장치는 CRT와 액정 디스플레이와 같은 평판장치 또는 사출장치를 포함한다. 디스플레이 서브시스템은 음성출력과 같은 비가시 디스플레이를 제공한다.

    저장서브시스템(306)은 기본 프로그램과 데이터 콘스트럭을 유지하고 본 발명의 기능을 제공한다. 상기한 소프트웨어 모듈은 특히 저장 서브시스템(306)에 저장되어 있다. 저장 서브시스템(306)은 특히 메모리 서브시스템(308)과 파일저장 서브시스템(314)으로 구성된다.

    메모리 서브시스템(308)은 특히 프로그램 실행중에 명령과 데이터를 저장하기위한 RAM을 포함하는 몇개의 메모리를 포함하며, 고정된 명령이 저장된 ROM을 포함한다. 매킨토시 겸용식 퍼스널 컴퓨터에서 ROM은 동작시스템의 일부를 포함하고, IBM 겸용식 퍼스널컴퓨터의 경우에는 BIOS(기초 입출력 시스템)을 포함한다.

    파일저장 서브시스템(314)은 프로그램과 데이터파일의 끊임없는(비휘발성의)저장을 제공하고, 특히 적어도 하나의 하드디스크 드라이브와 적어도 하나의 플로피디스크 드라이브를 포함한다. 또한 CD-ROM드라이브와 옵티컬 드라이브와 같은 다른 장치들을 포함한다. 추가적으로 이 시스템은 분리가능한 중간 카트리지의 형태의 드라이브를 포함한다. 분리가능한 중간카트리지는 가령, 시퀘스트(Syquest) 또는 다른 것이 표시된 하드디스크 카트리지와, 이오메가(Iomega)가 표시된 플렉시블디스크 카트리지와 같은 하드디스크 카트리지이다. 하나 또는 그 이상의 드라이브는 로컬지역 네트워크 상의 서버 또는 인터넷 월드 와이드 웹 사이트와 같은 원격지에 위치되어 있다.

    이 명세서에서 "버스 서브 시스템"이란 말은 일반적으로, 각종 요소와 서브시스템이 서로 의도한대로 통신을 할 수 있는 기구를 포함하는 것을 의미한다. 입력장치와 디스플레이를 제외하고 다른 요소들은 동일한 물리적인 위치에 있을 필요가 없다. 그러므로 예를들어 파일저장시스템 부분은 전화선을 포함하는 각종 로컬지역 및 광역 네트워크를 통해서 연결될 수 있다. 마찬가지로, 프로세서로서 입력장치와 디스플레이는 같은 위치에 있을 필요가 없으며, 프로세서로서의 디스플레이도 동일한 위치에 있을 필요가 없다. 또한 본 발명에서는 PC와 워크스테이션의 분야에서 자주 실행되는 것으로 간주한다.

    버스 서브시스템(304)를 단일버스로서 개략적으로 나타내었으나, 특수한 버스는 로컬버스와 하나 또는 그 이상의 확장버스(즉, ADB, SCSI, ISA, EISA, MCA, NuBus, 또는 PCI)와 직렬 또는 병렬 포트와 같은 버스를 갖고 있다. 네트워크접속은 일반적으로 하나의 이들 확장버스 또는 직렬포트의 모뎀에 네트워크 어댑터와 같은 장치를 통해서 실행된다. 고객의 컴퓨터는 탁상용 시스템이나 휴대용 시스템이다.

    스캐너(320)는 환자로부터 치열 교정의사에 의해 얻어진 환자치아 형틀을 스캐닝하는 역할을 하며, 그후의 처리를 위해 스캐닝된 디지털 데이터세트 정보를 데이터 처리시스템(300)에 제공한다. 분포된 환경하에서 스캐너(320)는 원격지에 위치하고, 스캐닝된 디지털 데이터세트 정보를 네트워크 인터페이스(324)를 경유하여 데이터 처리시스템(300)과 통신한다.

    제조기계(322)는 데이터 처리시스템(300)으로부터 수신한 중간 및 최종 데이터세트 정보에 기초해서 치과기구를 제조한다. 분포된 환경에서는 제조기계(322)는 원격지에 위치할 수 있고, 네트워크 인터페이스(324)를 경유하여 데이터 처리시스템(300)으로부터 데이터세트 정보를 수신한다.

    이상은 본 발명의 실시예를 충분히 설명하였으나, 각종 변경과 변형 등이 사용될 수 있다. 그러므로 상술한 설명은 본 발명의 범위를 한정하는 것이 아니라 첨부한 청구항에 의해 한정된다.

    본 발명에 의하면, 치열 교정 환자는 치료시에 조정이 이루어질 때마다 매번 치료 전문의를 방문할 필요가 없게 된다. 이로써, 개개의 환자와 치료 전문의가 소비하는 시간을 더욱 줄이면서도 더욱 작은 연속단계로 실행되는 치료를 가능케 하며 조정이 이루어지는 각 시간마다 치료 전문의를 방문할 필요성을 없앤다. 더구나, 중합체 셀 기구의 사용으로 더욱 편안하며 덜 보기 싫은 치료 방법을 구현할 수 있다.

    도 1a는 본 발명의 방법 및 장치에 의해 치아가 어떻게 이동될 수 있는지를 대략적으로 지시하기 위한 환자의 턱을 나타낸 사시도.

    도 1b는 어떻게 치아의 이동거리가 규정되는지가 결정되는지를 보이기 위해 도 1A에서 하나의 치아를 분리해 도시한 나타낸 사시도.

    도 1c는 본 발명의 방법에 따라 형상된 점증 위치조정 기구와 함께 사용되는 턱을 나타낸 사시도.

    도 2는 점증 위치조정기구 시스템을 만들기 위한 본 발명의 단계를 나타내는 블록도.

    도 3은 원하는 최종 치아배열과 일치하는 최종 디지털 데이터 세트를 만들기 위한 초기 치아배열을 나타내는 초기 디지털 데이터를 처리하기 위한 단계 이후를 설정하는 블록도.

    도 4a는 본 발명의 방법에 대한 지움공구를 보인 플로우차트.

    도 4b는 도 4a의 프로그램에 의해서 지워지는 부피를 나타내는 도면.

    도 5는 도 3의 데이터 설정의 처리과정에서 고-해상요소와 저-해상요소를 조화시키기 위한 프로그램을 나타내는 플로우차트.

    도 6a는 첨두 검출 알고리즘의 "검출"단계를 실행하기 위한 프로그램을 나타내는 플로우차트.

    도 6b는 첨두 검출 알고리즘의 "거절"단계를 실행하기 위한 프로그램을 나타내는 플로우차트.

    도 7은 본 발명의 교정기구를 만들기 위해 사용되는 다중 중간 디지털 데이터 세트를 생성하기 위한 방법을 나타낸 블록도.

    도 8a는 경로 스케즐링 알고리즘에 의해서 실행된 단계를 나타내는 플로우차트.

    도 8b는 본 발명의 일실시예에 따라 "시인성"기능을 실행하기 위한 단계를 나타내는 플로우차트.

    도 8c는 본 발명의 일실시예에 따른 "어린이"기능을 실행하기 위한 단계를 나타내는 플로우차트.

    도 8d는 도 8a의 경로 스케즐링 단계(128)를 실행하기 위한 단계를 나타내는 플로우차트.

    도 9a는 충돌 검출 동안에 반복 충돌시험을 실행하기 위한 단계를 나타내는 플로우차트.

    도 9b는 본 발명의 실시예에 따른 충돌 검출 동안에 실행된 마디 분열을 나타내는 플로우차트.

    도 9c는 추가 운동정보에 충돌검출 공정을 제공하기 위한 단계를 나타내는 플로우차트.

    도 10은 중간 및 최종 기구설계를 나타내는 디지털 데이터 세트를 이용한 본 발명의 방법에 따른 다수의 기수를 제조하기 위한 다른 공정을 나타내는 블록도.

    도 11은 본 발명의 일 실시예에 포함되는 데이터 처리시스템을 간단하게 나타낸 블록도.

    QQ群二维码
    意见反馈