用于牙科应用的、CeO2稳定的ZrO2陶瓷

申请号 CN201380031475.0 申请日 2013-06-20 公开(公告)号 CN104470871A 公开(公告)日 2015-03-25
申请人 义获嘉伟瓦登特公司; 发明人 C·里茨伯格; F·罗斯布鲁斯特; M·施魏格尔; N·科托伊斯; J·希瓦利埃; H·雷韦罗恩; W·霍兰德; V·莱因伯格尔;
摘要 本 发明 涉及多孔预致密化的、CeO2稳定的ZrO2陶瓷,其 密度 相对于 氧 化锆的理论密度为50.0至95.0%,开口孔隙率为5至50%,并且涉及致密化的、CeO2稳定的ZrO2陶瓷,其密度相对于氧化锆的理论密度为97.0至100.0%,并且其中所述陶瓷的晶粒的平均晶粒尺寸为50至1000nm,涉及制备预致密化的和致密化的陶瓷的方法以及它们用于制造牙科修复物的用途。
权利要求

1.多孔的、CeO2稳定的ZrO2陶瓷,其密度相对于化锆的理论密度为50.0至95.0%,并且开口孔隙率为5至50%。
2.根据权利要求1所述的多孔陶瓷,其密度为60.0至90.0%,优选地70.0至85.0%。
3.根据权利要求1或2所述的多孔陶瓷,其开口孔隙率为10至30%,优选地14至
25%,更优选地15至23%。
4.根据权利要求1至3中任一项所述的多孔陶瓷,其闭口孔隙率小于5%,优选地小于
2%,更优选地小于1%。
5.根据权利要求1至4中任一项所述的多孔陶瓷,其中所述陶瓷的孔的平均孔径为10至500nm,优选地25至300nm,更优选地50至200nm。
6.根据权利要求1至5中任一项所述的多孔陶瓷,其中所述陶瓷的晶粒的平均晶粒尺寸为10至500nm,优选地25至300nm,更优选地50至200nm。
7.根据权利要求1至6中任一项所述的多孔陶瓷,其包含四方ZrO2,所述四方ZrO2的量为基于所述陶瓷晶体的总体积计50至100vol.-%,优选地70至100vol.-%,更优选地
90至100vol.-%。
8.制备根据权利要求1至7中任一项所述的多孔的、CeO2稳定的ZrO2陶瓷的方法,该方法包括:
(a)将包含CeO2的ZrO2起始材料预致密化,以提供所述多孔陶瓷。
9.根据权利要求8所述的方法,其中步骤(a)中的预致密化通过火花等离子体烧结来进行,所述火花等离子体烧结优选地包括将所述包含CeO2的ZrO2起始材料加热至约950至
1350℃,优选地约1050至1250℃的烧结温度,和/或以1至400℃/min,优选地5至100℃/min,更优选地50至100℃/min的加热速率加热所述包含CeO2的ZrO2起始材料。
10.根据权利要求8至9中任一项所述的方法,该方法包括:
(b)将步骤(a)中获得的多孔陶瓷再氧化。
11.致密化的、CeO2稳定的ZrO2陶瓷,其密度相对于氧化锆的理论密度为97.0至
100.0%,和其中所述陶瓷的晶粒的平均晶粒尺寸为50至1000nm。
12.根据权利要求11所述的致密化的陶瓷,其密度为98.0至100.0%,优选地99.5至
100.0%,更优选地约100.0%。
13.根据权利要求11或12所述的致密化的陶瓷,其中所述陶瓷的晶粒的平均晶粒尺寸为100至800nm,优选地400至700nm。
14.根据权利要求11至13中任一项所述的致密化的陶瓷,其包含四方ZrO2,所述四方ZrO2的量为基于所述致密化的陶瓷晶体的总体积计90至100vol.-%,优选地95至
100vol.-%,更优选地约100vol.-%。
15.根据权利要求11至14中任一项所述的致密化的陶瓷,其中所述陶瓷的孔的平均孔径小于150nm,优选地小于100nm,更优选地小于80nm或小于20nm,和最优选地约10nm。
16.根据权利要求11至15中任一项所述的致密化的陶瓷,其开口孔隙率小于1%和/或闭口孔隙率小于1%。
17.制备根据权利要求11至16中任一项所述的致密化的、CeO2稳定的ZrO2陶瓷的方法,该方法包括:
(a')提供根据权利要求1至7中任一项所述的多孔的、CeO2稳定的ZrO2陶瓷,其中所述提供步骤优选地包括根据权利要求8至10中任一项所述的制备多孔的、CeO2稳定的ZrO2陶瓷的方法,
(c)任选地使步骤(a’)中提供的多孔陶瓷成型,和
(d)使步骤(a)中提供的或步骤(c)中获得的多孔陶瓷致密化,以获得所述致密化的、CeO2稳定的ZrO2陶瓷。
18.根据权利要求17所述的方法,其中步骤(d)中的致密化在含氧气氛中进行,优选地通过在空气中烧结来进行。
19.根据权利要求1至7中任一项所述的多孔的、CeO2稳定的ZrO2陶瓷或根据权利要求11至16中任一项所述的致密化的、CeO2稳定的ZrO2陶瓷用于制备牙科修复物,优选地牙科框架牙齿支座和牙科植入体的用途。

说明书全文

用于牙科应用的、CeO2稳定的ZrO2陶瓷

[0001] 本发明涉及多孔的、预致密化的、CeO2稳定的ZrO2陶瓷和致密化的、CeO2稳定的ZrO2陶瓷,涉及它们的制备方法以及它们用于制造牙科修复物的用途。
[0002] 使用玻璃陶瓷和/或多晶烧结陶瓷如Al2O3或ZrO2作为用于整形外科或牙科应用如牙科修复物的生物材料,是众所周知的。尤其地,化锆(ZrO2)由于其卓越的机械性能,在氧化物陶瓷中是独特的,并且自从1980年以来已经建立了关于ZrO2陶瓷的广泛的科学背景。
[0003] 纯氧化锆引起的兴趣非常有限,这是因为烧结之后冷却时发生的四方至单斜的相变伴随着剪切应变和体积膨胀。在转变体积时的该形状改变可导致所制组件的断裂并且因此导致结构不可靠性。因此,在陶瓷领域中卓越的发现是,向氧化锆添加氧化物如Y2O3、CeO2、MgO、CaO等等,尤其是4f-元素氧化物,降低了四方至单斜的相变温度并且因此一定程度上使四方相稳定(参见Hannink等人,J.Am.Ceram.Soc.,83[3]461(2000))。该四方相保持亚稳定并且能够在机械应下转变(应力诱发的相变)。因此,部分或完全稳定化的氧化锆展示出起抵抗裂缝扩展作用的转变增韧机制。尤其地,所述应力诱发的相变伴随着在裂缝尖端处包含压缩应力的体积膨胀。因此,所述应力诱发的相变提高了强度和断裂韧性,并且所述转变增韧机制,结合氧化锆的生物惰性,导致了稳定化的四方氧化锆多晶(TZP)在整形外科和牙科修复物中的应用。
[0004] 在四方氧化锆陶瓷中,掺杂Y2O3的氧化锆多晶(Y-TZP)作为全陶瓷牙科材料如今占据了突出的位置。其通常包含3mol%作为稳定剂的氧化钇(3Y-TZP)(参见Denry等人,Dental Materials 24(2008),299-307)。此外,已经显示少量如0.25wt.-%的氧化充当烧结助剂。
[0005] 而且,Chevalier等人(Annu.Rev.Mater.Res.2007(37),1-32)发现,少量氧化铝(0.15至3wt.-%)的存在使氧化锆的低温劣化(LTD)放缓,所述低温劣化被认为是由向ZrO2结构中添加作为三价离子氧化物的Y2O3所形成的氧空位造成的。所描述的另一有希望减轻低温劣化的方式是向Y-TZP添加其他氧化物如CeO2,以提供Ce-Y-TZP。
[0006] Hannink等人(参见上文)描述了掺杂二氧化铈的氧化锆多晶(Ce-TZP)中四方ZrO2的稳定化可在宽范围的组成内存在,如12-20mol%的CeO2,优选12mol%的Ce-TZP。所描述的Ce-TZP的制备包括在约1500℃下烧(firing)1h,并且制造之后的晶粒尺寸被报导为在2至3μm的范围。
[0007] 例如,Tsukuma等人(Journal of Materials Science 20(1985)1178-1184)和Attaoui等人(Journal of the European Ceramic Society 27(2007)483-486)描述了单的、CeO2稳定的四方氧化锆多晶。根据这些文件,Ce-TZP是通过常规的压制和烧结技术制备的,即通过单轴压实CeO2稳定的氧化锆粉末,随后等压压制,以获得生压坯,然后将其在1400至1600℃下的空气中烧结2h。获得的Ce-TZP样品的平均晶粒尺寸被报导为0.5至2.5μm,一般为约1.5μm。
[0008] US 2008/0303181教导了着色成匹配天然齿系颜色的牙科材料,其包含Ce-TZP和着色剂。同样地,Ce-TZP是通过压制和常规的烧结技术制备的,比如压实成型体,将该成型体在约800至1300℃的温度下预烧结,软机械加工该预烧结体,和然后在1200至1600℃的温度下致密烧结。
[0009] 尽管通过压制和常规的烧结技术制备的单块Ce-TZP陶瓷实际上显示出非常高的断裂韧性,但是该材料的主要缺点是其硬度和强度相对低。
[0010] Xu等人(Journal of the European Ceramic Society 25(2005)3437-3442)论述了通过火花等离子体烧结(SPS)制备的掺杂CeO2的ZrO2陶瓷与通过热压制备的陶瓷的微结构的比较。尽管热压的样品被报导为根本不出现四方ZrO2相,通过SPS烧结的样品却被发现包含体积比为2:1的单斜和四方ZrO2相,并且因此导致就期望的应力诱发的相变而言,尤其是对于牙科应用而言,令人不满意的低四方相含量。限制上述方法应用的另一问题是Ce-TZP对还原的敏感性。因为在热压工艺以及在SPS工艺中,石墨模具填充有原料粉4+
末,所以具有强的还原气氛并且可通过伴随的变成褐色的颜色变化而容易地观察到Ce 还
3+
原成Ce ,该颜色变化是另一主要缺点。
[0011] Cruz等人(J.Am.Ceram.Soc.(2012),第95卷,第3期,901-906,DOI:10.111/j.1551-2916.2011.04978.x)描述了经在1200℃下SPS,保持时间为5min或不用保持时间来制备10mol%CeO2掺杂的ZrO2陶瓷。不用保持时间而制备的样品的相对密度被描述为仅仅97.9%,而烧结5min的样品被报导为更致密,但是特征在于除了期望的四方相以外,还存在大量的单斜相和烧绿石I相。
[0012] 因此,本发明的目的在于避免上述现有技术的一个或多个缺点,并且在于提供高度四方的CeO2-ZrO2陶瓷,其具有可接受的颜色和改善的密度以及机械性能,尤其是改善的硬度和强度,使得该材料可用于牙科应用。
[0013] 该目的是通过根据权利要求11至16的致密化的、CeO2稳定的ZrO2陶瓷,以及根据权利要求17或18的用于其制备的方法来实现的。本发明进一步涉及根据权利要求1至7的多孔的、预致密化的、CeO2稳定的ZrO2陶瓷和根据权利要求8至10的用于其制备的方法。本发明也涉及根据权利要求19的多孔CeO2-ZrO2陶瓷以及致密化的CeO2-ZrO2陶瓷的用途。
[0014] 在第一方面中,本发明涉及预致密化的CeO2-ZrO2陶瓷,即多孔的、CeO2稳定的ZrO2陶瓷,其密度相对于氧化锆的理论密度为50.0至95.0%,优选地60.0至90.0%,更优选地70.0至85.0%,并且开口孔隙率为5至50%,优选地10至30%,更优选地14至25%和最优选地15至23%。
[0015] 优选地,根据本发明的多孔陶瓷的闭口孔隙率小于5%,更优选地小于2%和最优选地小于1%。
[0016] 还优选地,根据本发明的多孔陶瓷的开孔的特征在于,平均孔径为10至500nm,更优选地25至300nm和最优选地50至200nm。
[0017] 而且,优选地,根据本发明的多孔陶瓷为等轴、细粒的多晶聚集体形式。尤其地,多孔陶瓷的晶粒的平均晶粒尺寸为10至500nm,优选地20至400nm或25至300nm,更优选地50至200nm,如60至200nm或80至180nm。
[0018] 此外,优选地,四方ZrO2是多孔陶瓷的主晶相。优选地,多孔陶瓷包含四方ZrO2,其量为基于陶瓷晶体的总体积计50至100vol.-%,优选地70至100vol.-%,更优选地90至100vol.-%和最优选地95至100vol.-%,如97至100vol.-%。
[0019] 已经令人吃惊地发现,根据本发明的预致密化的多孔陶瓷的密度和开口孔隙率的特定组合使得多孔陶瓷非常适于制备致密的、CeO2稳定的ZrO2陶瓷,其具有改善的性能,比如改善的微结构和机械性能,并且尤其满足对于牙科修复物的半透明性的需要。
[0020] 优选地,多孔的、CeO2稳定的ZrO2陶瓷是以预致密化的坯料或体的形式。多孔、预致密化的Ce-TZP可通过例如铣削或磨削,优选地通过使用CAD/CAM技术机械加工而成型为2 2
牙科修复物,尤其是如果维氏硬度HV5低于800daN/mm ,优选地低于500daN/mm。
[0021] 本发明还涉及制备根据本发明的多孔的、CeO2稳定的ZrO2陶瓷的方法,其包括(a)使包含CeO2的ZrO2起始材料预致密化,以提供多孔陶瓷。
[0022] 典型地,包含ZrO2和CeO2的粉末原料或生压坯用作包含CeO2的ZrO2起始材料。优选地,起始材料包含约6至18mol%的CeO2,更优选地10至14mol%的CeO2,比如约12mol%的CeO2。起始材料被预致密化,即其密度通过压力、加热、辐射或其组合而增加。根据本发明,步骤(a)以这样的方式进行,使得在预致密化结束时,陶瓷不是完全或几乎完全致密的CeO2-ZrO2陶瓷的形式。事实上,在步骤(a)结束时,陶瓷的特征在于,上述密度相对于氧化锆的理论密度为50至95%,优选地60至90%,更优选地70至85%。
[0023] 在优选的实施方案中,预致密化步骤(a)通过火花等离子体烧结(SPS)进行。
[0024] 一般而言,火花等离子体烧结是相当快的烧结技术,其中脉冲直流电流穿过容纳起始材料的石墨模具,从而在内部产热并且可获得高的加热和冷却速率。根据步骤(a)的SPS方法的优选实施方案,将包含CeO2的ZrO2起始材料加热至约950至1350℃,优选地约1050至1250℃的烧结温度。而且,以1至400℃/min,优选地5至100℃/min,更优选地20至100℃/min或50至100℃/min的加热速率加热起始材料是优选的。此外,优选地,步骤(a)的预致密化在不用任何保持时间的情况下进行,即一达到最高预致密化温度就降低温度。
[0025] 除了加热以外,步骤(a)的SPS方法优选地还包括在0至500MPa,如20至300MPa,尤其50至250MPa的压力下压制包含CeO2的ZrO2起始材料。
[0026] SPS方法的脉冲直流电流的特征可以是1至20V的电压和/或可以是0.1至10kA的安培数。而且,施加至起始材料的脉冲的次序可为任何适当的次序,比如1至30ms有电流(开)和1至30ms无电流(关),例如5至15ms有电流(开)和1至10ms无电流(关),比如10ms有电流(开)和5ms无电流(关)。
[0027] 因为根据本发明的适当的预致密化方法,比如火花等离子体烧结,通常在非氧化4+ 3+
气氛或甚至还原环境下进行,所以在步骤(a)期间可发生Ce 还原成Ce 。这样的还原可
4+
在预致密化的陶瓷中通过伴随的样品颜色变化而容易地观察到。除了颜色以外,Ce 还原
3+
成Ce 也可影响ZrO2四方相在室温下的低温劣化性能和稳定性。因此,在一个实施方案中,制备多孔陶瓷的方法包括:(b)使步骤(a)中获得的多孔陶瓷再氧化。
[0028] 这样的再氧化可通过在氧化气氛,尤其是空气中加热在步骤(a)中获得的预致密化的陶瓷进行。优选地,将步骤(a)中获得的陶瓷加热至400至1200℃,更优选地600至1000℃,如约800℃的温度。尤其地,应这样进行再氧化,使得在步骤(b)期间不发生进一步的致密化。如果步骤(a)通过火花等离子体烧结在相对低温,比如1100℃或1150℃下进行,则获得的预致密化的多孔陶瓷通常具有相当浅的颜色,例如浅灰色,并且然后一般不需要再氧化步骤(b)。
[0029] 在另一方面中,本发明涉及可由根据第一方面的多孔陶瓷制备的致密化的、CeO2稳定的ZrO2陶瓷。致密化的、CeO2稳定的ZrO2陶瓷的密度相对于氧化锆理论密度为97.0至100.0%,如98.0至100.0%,优选地99.0至100.0%,如99.5至100.0%,更优选地约100.0%。致密化的、CeO2稳定的ZrO2陶瓷的特征还在于,其包含平均晶粒尺寸为50至1000nm,如600至1000nm,优选地100至800nm,更优选地400至700nm的晶粒。
[0030] 优选地,四方ZrO2基本上是所述致密化陶瓷的唯一结晶ZrO2相。因此,所述致密化的陶瓷优选地包含四方ZrO2,其量为基于所述致密化的陶瓷晶体的总体积计90至100vol.-%,优选地95至100vol.-%,优选地97至100vol.-%,如98.0至100vol.-%或
99.0至100.0vol.-%,比如约100vol.-%。
[0031] 在一个实施方案中,所述致密化的陶瓷的微结构的进一步特征可以是,残留孔的平均直径小于150nm,如5至小于150nm或10至小于150nm,优选地小于100nm,更优选地小于80nm,和最优选地小于20nm,比如约10nm。此外,还优选地,根据本发明的致密化的陶瓷的开口孔隙率和闭口孔隙率各小于1%。
[0032] 不希望束缚于任何具体理论,所认为的是,由于非常低的孔隙率含量和非常小的晶粒尺寸的组合,根据本发明的致密化的陶瓷具有改善的机械和光学性能,比如半透明性。
[0033] 尤其地,根据本发明的致密化的陶瓷的维氏硬度大于8,000MPa,如8,500至12,000MPa,优选地8,500至11,000MPa和更优选地8,800至9,500MPa。
[0034] 还优选地,根据本发明的致密化的陶瓷的双轴挠曲强度(flexuralstrength)大于700MPa,比如700MPa至约900MPa,如700MPa至约800MPa。
[0035] 而且,所述致密化的陶瓷的特征在于,其具有适于牙科应用的浅色,尽管其可通过还原烧结技术制备,但是该还原烧结技术通常报道为产生不期望的颜色变化。优选地,本发明的致密化的陶瓷的颜色的特征在于,L*值为80至95,a*值为-4至0和b*值为14至25。
[0036] 优选地,根据本发明的多孔陶瓷以及根据本发明的致密化的陶瓷基于总的陶瓷组合物计包含6至18mol%,更优选地8至16mol%,如9.0至15.0mol%或10至14mol%,如11.0至14.0mol%,比如约12mol%的CeO2。此外,优选地,根据本发明的多孔陶瓷以及根据本发明的致密化的陶瓷包含基于总的陶瓷组合物计82至94mol%,更优选地86至90mol%,比如约88mol.%的ZrO2或ZrO2与少量HfO2的混合物。除了CeO2以外,所述陶瓷还可包含0至0.50wt.-%,优选地0.10至0.40wt.-%,比如0.30至0.40wt.-%的Al2O3,和/或0至0.50wt.-%,优选地0.10至0.20wt.-%的SiO2。而且,所述陶瓷可包括少量的另外组分、添加剂或杂质,如独立地选自Fe2O3、TiO2、Na2O、CaO、La2O3和其混合物的金属氧化物。
[0037] 根据本发明的致密化的、CeO2稳定的ZrO2陶瓷可通过下述方法制备,所述方法包括:
[0038] (a')提供根据本发明第一方面的或通过上述用于制备多孔的、CeO2稳定的ZrO2陶瓷的方法可获得的多孔的、CeO2稳定的ZrO2陶瓷,
[0039] (c)任选地使步骤(a')中提供的多孔陶瓷成型,和
[0040] (d)使步骤(a')中提供的或步骤(c)中获得的多孔陶瓷致密化,以获得致密化的、CeO2稳定的ZrO2陶瓷。
[0041] 在步骤(a')中提供根据本发明第一方面的多孔的、CeO2-稳定的ZrO2陶瓷,优选地通过使用上述预致密化(a)和任选的再氧化(b)步骤制备它来提供。
[0042] 在任选的步骤(c)中,可以使多孔CeO2-ZrO2陶瓷成型,优选地通过机械加工,如直接陶瓷机械加工。简言之,扫描期望的牙科修复物的模具或蜡模,通过计算机软件(CAD)来设计放大的修复物,和通过计算机辅助机械加工(CAM)来铣削在步骤(a')中提供的预致密化的多孔陶瓷。
[0043] 在步骤(d)中,使预致密化的多孔陶瓷进一步致密化,以达到终密度。根据一个优选实施方案,步骤(d)中的致密化在含氧气氛中,优选地通过在氧分压大于5kPa,比如大于10或大于15kPa的气氛中烧结,更优选地通过在空气中烧结来进行。尤其优选地,步骤(a')中提供的或步骤(c)中获得的多孔陶瓷通过将其加热到约1100至约1550℃,优选地1200至1500℃的温度来烧结。优选地,步骤(d)中施加的加热速率是1至100K/min、2至50K/min或5至20K/min。而且,优选地,保持最高烧结温度约0至5h,优选地0至3h。尤其优选地,步骤(d)在没有给多孔陶瓷施加任何周期性电流脉冲的情况下进行。
[0044] 因此,本发明尤其涉及制备致密化的、CeO2稳定的ZrO2陶瓷的方法,其包括:
[0045] (a)使包含CeO2的ZrO2起始材料预致密化,以提供预致密化的、多孔的、CeO2稳定的ZrO2陶瓷体,该陶瓷体的密度相对于氧化锆理论密度为50至95%,优选地60至85%,和开口孔隙率为5至50%,优选地10至30%,更优选地14至25%,最优选地15至23%;
[0046] (b)任选地使步骤(a)中获得的预致密化的、多孔陶瓷体再氧化;
[0047] (c)任选地使步骤(a)或(b)中获得的预致密化的、多孔陶瓷体成型,优选地通过机械加工来成型;和
[0048] (d)使步骤(a)、(b)或(c)中获得的预致密化的、多孔陶瓷体致密化,以获得致密化的、CeO2稳定的ZrO2陶瓷,优选地通过在含氧气氛中烧结来致密化。
[0049] 已令人吃惊地发现,所述控制孔隙率的预致密化步骤(a)和所述致密化步骤(d)的组合提供了高度致密的CeO2-ZrO2陶瓷,其具有亚微米晶粒尺寸和改善的机械性能。尤其地,根据本发明的致密化的陶瓷的特征在于硬度大于9GPa和避免橙色至暗褐色的可接受的颜色。
[0050] 因此,本发明也涉及根据本发明第一方面的多孔的、CeO2稳定的ZrO2陶瓷或根据本发明第二方面的致密化的、CeO2稳定的ZrO2陶瓷用于制备牙科修复物,优选地牙科框架牙齿支座(abutments)和牙科植入体的用途,以及用于制造精密装置如手表或医学装置的用途。
[0051] 如下测定根据本发明的预致密化的多孔陶瓷和根据本发明的致密化的陶瓷的上述性能。
[0052] 如本文所使用,术语“密度”是指根据ASTM C373的陶瓷的堆密度。因此,所述密度是通过使用基于阿基米德原理的ASTM方法C373测定的。除非另外指出,本文中所说明3
的密度是相对于氧化锆的理论密度,氧化锆的理论密度为6.23g/cm。
[0053] 所述陶瓷的开口孔隙率和闭口孔隙率分别使用ASTM方法C373测定。
[0054] 对于微结构分析,记录X射线衍射图(Bruker D8Advance,具有Cu Kα辐射)。通过如Cruz等人(参见上文)描述的Retvield分析来测定四方ZrO2的量。
[0055] 所观察到的、总结于表2和3中的晶相用不同的字母表示:T表示四方相,M表示单斜相和C表示富含Ce的立方相,该富含Ce的立方相看起来接近Xu等人(参见上文)描述的Zr-Ce-O立方固溶体
[0056] 陶瓷的平均晶粒尺寸和平均孔径是通过SEM成像(Zeiss Supra 40VP)测定的。
[0057] 平均晶粒尺寸是使用SEM和图像处理软件(ImageJ),通过图像分析来测定的。具体地,平均晶粒尺寸是30个晶粒的直径的算数平均数,所述30个晶粒在统计学上选自样品的三个不同断裂面的SEM图,并考虑了对于获得自2D SEM图形分析的直径的Lince程序校正因子1.2。
[0058] 平均孔径是使用SEM和图像处理软件(ImageJ),通过图像分析来测定的。具体地,平均孔径是30个孔的直径的算术平均值,所述30个孔在统计学上选自样品的三个不同断裂面的SEM图,并考虑了对于获得自2DSEM图形分析的直径的Lince程序校正因子1.2。
[0059] 样品的维氏硬度是使用Test-well FV-700压头,载荷为30kg和停留时间为10s来测定的。实现每个样品至少5个压痕。
[0060] 陶瓷的双轴挠曲强度是根据ISO6872-2008,通过三球上活塞试验(piston-on-three-ball test)测定的。以1mm/min进行加载直到失效。
[0061] 用CM-3700d分光计(Company Konica-Minolta)完成颜色值的测定。根据DIN5033和DIN6174标准来测量值L*、a*、b*。
[0062] 用于颜色测量的具体设置如下:
[0063]
[0064]
[0065] 用于颜色测量的样品尺寸如下:
[0066]
[0067] 通过下述实施例进一步阐释本发明。实施例
[0068] 实施例1
[0069] i)原料
[0070] 日本Daiichi生产的包含约88mol%的氧化锆和约12mol%的氧化铈的非喷雾干燥的亚微米粉末用作起始原料(Daiichi CEZ-12-1)。该原料的精确组成在表1中给出。
[0071] 表1:Daiichi CEZ-12-1原料的组成,按wt.-%计
[0072]
[0073] ii)预致密化
[0074] 在第一步中,通过使用火花等离子体烧结(SPS)技术使12Ce-TZP粉末预致密化。使用内径为20mm的石墨圆柱形模具。将石墨箔卷起并且滑入模具,以覆盖其内表面。然后,将由石墨箔圆形片覆盖的冲杆引入模具。接下来,将6g的12Ce-TZP粉末用抹刀(spatula)引入模具并且最后将由石墨箔覆盖的第二冲杆放置在粉末上方。将该组装件放入介于推进电极(pushing electrodes)之间的SPS装置(来自德国FCT GmbH的HP D25)。关闭真空-2
腔并且设置参数。选择的气氛是10 巴的真空,并且以如下次序设置脉冲直流电流:开10ms的时间,然后关5ms的时间。以50℃/min的加热速率进行烧结。在加热之前施加76MPa的压力并且在烧结期间保持。用高温计测量,达到的烧结温度是1150℃。一旦达到该温度,就在13分钟内使温度下降至室温。烧结之后,从模具中移出样品并且去除裂开的石墨箔片。
[0075] iii)致密化
[0076] 在第二步中,将火花等离子体烧结的样品放入与样品具有相同化学组成的陶瓷粉末(12CeO2-ZrO2)床上的坩埚中。然后,将坩埚与样品一起放入具有空气循环的熔炉中,以5℃/min加热到1300℃并且在该温度下保持2小时。最后,停止加热并且将熔炉冷却至室温。
[0077] 比较实施例1
[0078] 作为实施例1的粉末的修饰,本比较实施例中使用商用粉末Daiichi CEZ-12-2而不是Daiichi CEZ-12-1。Daiichi CEZ-12-2的组成与Daiichi CEZ-12-1的组成类似,但是该粉末另外包含4,5wt.-%的增强其压制行为的有机分子。以50MPa的压力,将该粉末单轴模压成圆盘。然后,以280MPa的压力进行冷等压压制。根据下述方法进行烧结:以l℃/min加热至600℃,驻留2小时,以5℃/min加热至1430℃,驻留2小时和最后以8℃/min冷却至室温。
[0079] 实施例2
[0080] 通过压力为200MPa的单轴模压,制备Daiichi CEZ-12-2粉末的压制小片(pressed pellet)。根据下述方法进行脱粘:以l℃/min加热至600℃,驻留2小时和然后以5℃/min冷却。然后,使用如实施例1中描述的通过SPS预致密化和随后致密化的步骤,将脱粘的小片加工成致密化的、CeO2稳定的ZrO2陶瓷样品。
[0081] 实施例3
[0082] 如实施例2中描述,制备致密化的、CeO2稳定的ZrO2陶瓷样品,不同之处是SPS处理步骤中使用1150℃的峰值温度和20℃/min的加热速率。
[0083] 实施例4
[0084] 如实施例2中描述,制备一系列10个致密化的、CeO2稳定的ZrO2陶瓷样品,其厚度为1.2mm且直径为13mm。烧结之后,如ISO6872-2008中描述,制备双轴测试样品。
[0085] 比较实施例2
[0086] 如实施例1中描述,制备致密化的、CeO2稳定的ZrO2陶瓷样品,不同之处是SPS工艺中使用1250℃的峰值温度和20℃/min的加热速率。
[0087] 比较实施例3
[0088] 通过CAD-CAM机械加工(Cerec 3铣削单元,Sirona,奥地利)预烧结块来制备Daiichi CEZ-12-2的一系列10个小片。所述预烧结块通过经以250MPa下的单轴压制而成型并且在1000℃下预烧结2小时来获得。在预烧结和CAD-CAM机械加工之后,将圆盘在1400℃下烧结2小时,并且最后如ISO6872-2008中描述地制备,用于双轴挠曲测试。
[0089] 性能
[0090] 以预致密化状态的陶瓷样品的一些性能总结在表2中。
[0091] 表2:预致密化之后样品的性能
[0092]密度 开口孔隙率 闭口孔隙率 晶相
实施例1 79.4% 20.2% 0.4% T
实施例2 84% 21.8% 0.2% T
实施例3 81.6% 17.75% 0.65% T+M
实施例4 80.0% 19.5% 0.5% T
比较实施例2 96.7% 0.7% 2.6% T+M+C
[0093] 从表2可见,在SPS处理之后,实施例1至4的样品的密度为理论密度的约75至85%并且闭口孔隙率小于1%。
[0094] 表3总结了在完全致密化状态下的样品的性能。
[0095] 表3:致密化之后样品的性能
[0096]密度 开口孔隙率 闭口孔隙率 晶相
实施例1 100% 0% 0% T
实施例2 100% 0% 0% T
实施例3 100% 0% 0% T
实施例4 >99.5% 0% 0% T
比较实施例1 98.5% 0.3% 1.2% T
比较实施例2 95.6% 0.4% 4% T
比较实施例3* >99.5% 0% 4.0% T
[0097] *致密化的陶瓷的平均晶粒尺寸是1.1μm。
[0098] 在第二热处理之后,实施例1至5的样品是完全致密的(100%的理论密度)。而且,在第二热处理之后,所有样品中都是仅观察到了四方相。
[0099] 图1显示了实施例1中获得的预致密化的CeO2-ZrO2陶瓷的SEM图。可见,该样品的微结构的特征在于直径为约100nm的非常细小、球形的Ce-TZP纳米颗粒。
[0100] 图2显示了实施例1中获得的致密化的CeO2-ZrO2陶瓷的SEM图(左图)和比较实施例1中获得的CeO2-ZrO2陶瓷的SEM图(右图)。可见,根据本发明所制备的样品(实施例1)中几乎完全致密化(接近100%的理论密度),并且仅能看到一些非常小的、在它们的最大维度上小于80纳米的孔。而且,在实施例1的样品中获得的晶粒尺寸是比较实施例1的样品中获得的晶粒尺寸的约一半。根据实施例1的致密化的陶瓷的平均晶粒尺寸是0.6±0.1μm。
[0101] 图3显示了比较实施例2中获得的致密化的CeO2-ZrO2陶瓷的SEM图。与实施例1完全致密化的样品相反,比较实施例2的陶瓷的特征在于数个清晰可见的约200nm的孔。
[0102] 实施例中获得的样品的机械性能在表4中给出。
[0103] 表4:致密化之后样品的机械性能
[0104]
[0105]
QQ群二维码
意见反馈