滑板弦线转子

申请号 CN201610232241.8 申请日 2016-04-14 公开(公告)号 CN105840496A 公开(公告)日 2016-08-10
申请人 常州大学; 发明人 邹旻; 朱英杰; 吴良才; 孔德昂; 陈文杰; 王志洋;
摘要 本 发明 公开了一种 滑板 弦线 转子 泵 ,主要包括泵体、弦线转子、 配流盘 、滑板、滑板槽、圆柱滚子、 弹簧 、转子轴、键等。滑板数量与弦线转子的齿数相同,在弹簧 力 作用下,滑板底部的滚子始终与转子表面保持 接触 ,滑板对转子的作用力可相互抵消;吸液腔和排液腔相对于转子中心呈中心对称布置,转子所受径向力平衡;不存在脱离吸液口或排液口的封闭容腔,可避免困油现象;滑板 加速 度按正弦规律变化,运动平稳,没有冲击;滑板槽对滑板、滑板对弦线转子还有刮下表面附着的物的功能;圆柱滚子与弦线转子之间为 滚动摩擦 ,可减小转子表面的磨损。所以适用于高 粘度 、甚至有 吸附 性 流体 的输送。
权利要求

1.一种滑板弦线转子,主要由轴向开有滑板槽的泵体(2),弦线转子(8),配油盘(6)、轴(9),键(10),滑板(4),圆柱滚子(3)、弹簧(5)组成,其特征在于:弦线转子(8)、滑板(4)、圆柱滚子(3)、配油盘(6)、泵体(2)之间形成相互隔开的吸液腔(Q1)和排液腔(Q7),吸液腔(Q1)与吸液口(1)通过吸液沟(G1)连通,排液腔(Q7)与排液口(7)通过排液沟(G7)连通。
2.根据权利要求1所述的滑板弦线转子泵,其特征在于:弦线转子的理论轮廓向径按正弦规律变化,极坐标方程为:
ρ=r+hsin(zθ)
式中:ρ--极径,θ--极,r--分度圆半径,h--齿顶高,z--齿数
实际轮廓是理论轮廓的等距曲线,直角坐标方程为:
式中:r0--滚子半径。
3.根据权利要求1所述的滑板弦线转子泵,其特征在于:滑板槽沿周向均布于泵体内壁上,数量与弦线转子的齿数相同。
4.根据权利要求1所述的滑板弦线转子泵,其特征在于:两个吸液口和排液口对称布置。

说明书全文

滑板弦线转子

技术领域

[0001] 本发明涉及一种滑板弦线转子泵,尤其涉及一种利用滑板隔离吸、排液区的流体输送泵,属于流体输送设备技术领域,特别适用于高粘度、甚至有吸附性的流体输送。

背景技术

[0002] 叶片泵是一种应用广泛的流体输送机械,它主要包括泵体、泵盖、转子、叶片、配流盘、泵轴等。工作时,利用离心使叶片沿转子槽向外与泵体内表面内表面保持接触,从而形成一个密封的容腔,随着转子的旋转,容腔容积跟着变化,从而连续不断地吸入和排出流体。
[0003] 单作用叶片泵转子旋转一周,容腔内的体积循环变化一次,由于泵体只有一个进口和一个出口,转子径向受力不平衡,径向力大,影响轴承及密封材料的使用寿命。双作用叶片泵转子旋转一周,容腔内的体积循环变化两次,由于泵体有两个进口和两个出口,转子径向受力平衡。但叶片泵叶片数量较多,且当相邻两叶片同时位于吸排口之间时,会形成封油区因而可能出现困油现象。

发明内容

[0004] 为了改善单作用叶片泵中转子径向力不平衡,和叶片泵叶片数量多及可能引发困油现象的状况,本发明采用的技术方案是:一种滑板弦线转子泵,主要包括泵体、弦线转子、配流盘、滑板、滑板槽、圆柱滚子、弹簧、转子轴、键等。弦线转子的形状类似于弦线齿轮,其理论齿廓与弦线齿轮相同,即向径按正弦规律变化,其实际齿廓为理论齿廓的等距曲线,转子的齿数z≥2,一般z=2~6。
[0005] 泵体中心装有弦线转子,滑板槽沿周向均布于泵体内壁上,滑板数量与弦线转子的齿数相同,滑板安装于滑板槽内,在弹簧力作用下,滑板底部的滚子始终与转子表面保持接触,弦线转子、滑板、圆柱滚子、配流盘、泵体之间形成相互隔开的吸液腔和排液腔。圆柱滚子使本来滑板与弦线转子之间的滑动摩擦转变为滚子与弦线转子之间的滚动摩擦。工作时,弦线转子由转子轴驱动,在泵体横截面内,因排液区的面积逐渐变小,吸液区的面积逐渐增大,因而使排液腔容积变小,挤出流体;吸液腔容积也变大,吸进流体。
[0006] 上述方案中,所述弦线转子的齿数大于等于2。
[0007] 上述方案中,所述滑板槽数量与弦线转子的齿数相同。
[0008] 上述方案中,所述各滑板槽均布于泵体内壁的周向。
[0009] 上述方案中,所述的配流盘上开有彼此隔开的进液沟和排液沟,进液沟与进液口相通,排液沟和排液口相通。
[0010] 上述方案中,所述的滑板的截面为矩形,并在底部装有一个圆柱滚子,滚子的长度、滑板的宽度、弦线转子的厚度均相同。
[0011] 上述方案中,所述弦线转子理论轮廓的极坐标方程为:
[0012] ρ=r+hsin(zθ)
[0013] 式中:ρ--极径,θ--极,r--分度圆半径,h--齿顶高,z--齿数。
[0014] 实际轮廓是理论轮廓的等距曲线,直角坐标方程为:
[0015]
[0016] 式中:r0--滚子半径。
[0017] 本发明的有益效果是:滑板对转子的作用力可相互抵消;吸液区和排液区相对于转子中心呈中心对称布置,转子所受径向力平衡,所以与单作用叶片泵相比,改善了转子轴的受力状况,可延长轴承和密封材料的使用寿命;不存在脱离吸液口或排液口的封闭容腔,所以可避免困油现象;滑板槽开在固定的泵体上,滑板是在固定的泵体中移动,且加速度按正弦规律变化(因为位移按正弦规律变化),运动平稳,没有冲击;相比现有叶片泵(叶片多,且叶片是在转子中移动)滑板与滑板槽之间的摩擦与磨损不会影响到泵的周向密封,所以实现周向密封的难度较小;当所输送介质粘度较大时,滑板槽对滑板、滑板对弦线转子还有刮下表面附着的物的功能;圆柱滚子使本来滑板与弦线转子之间的滑动摩擦转变为滚子与弦线转子之间的滚动摩擦,可减小转子表面的磨损。所以滑板弦线转子泵尤其适用于高粘度、甚至有吸附性流体的输送。附图说明
[0018] 图1以齿数为2的弦线转子为例的滑板弦线转子泵结构示意图。
[0019] 图2以齿数为3的弦线转子为例的滑板弦线转子泵结构示意图。
[0020] 图中:1—吸液口,2—泵体,3—圆柱滚子,4--滑板,5--弹簧,6—配流盘,7—吸液口,8--弦线转子,9—转子轴,10—键,G1—吸液沟,Q1—吸液腔,G7—排液沟,Q7—排液腔。

具体实施方式

[0021] 参照附图1,以齿数为2的滑板弦线转子泵为例,主要包括沿轴向开有两个滑板槽的泵体2,弦线转子8,转子轴9,键10,配流盘6,滑板4,圆柱滚子3,弹簧5。工作时,弦线转子8在键10的带动下,随转子轴9一起转动,弦线转子8、滑板4、圆柱滚子3、配流盘6、泵体2之间形成四个封闭的容腔,即两个吸液腔Q1和两个排液腔Q7,随着弦线转子的转动,两排液腔Q7容积越来越小,致使流体从由两个排液口7排出,同时两吸液腔Q1容积越来越大,致使流体从由两个吸液口1排出吸入。
[0022] 滑板4底部装有圆柱滚子3,它使圆柱滚子3与弦线转子8之间的摩擦为滚动摩擦,大为减小摩擦和磨损。滑板4在顶部弹簧5压力的作用下,通过底部的滚子3与弦线转子8始终保持接触,同时弦线转子8通过滚子3推动滑板4在槽内按正弦规律移动。
[0023] 如图1所示,上、下两个滑板4对弧面转子8的作用力大小相等、方向相反,可相互抵消;左上角和右下角两个吸液腔Q1和右上角和左下角两个排液腔Q7相对于转子中心呈中心对称布置,使得转子所受径向力平衡,这改善了转子轴9的受力状况,并可延长其上轴承和密封材料的使用寿命;不存在脱离吸液口1或排液口7的封闭容腔,所以可避免困油现象。
[0024] 如图2所示为齿数为3的滑板弦线转子泵,它有3个吸液腔和3个排液腔,工作原理与图1所示的齿数为2的滑板弦线转子泵情况类似,主要区别是:转子转动一周,流体吸、排次数由2变为3。
QQ群二维码
意见反馈