叶片或滚子叶片泵

申请号 CN200480018720.5 申请日 2004-06-19 公开(公告)号 CN101052806B 公开(公告)日 2010-12-08
申请人 卢克汽车-液压系统两合公司; 发明人 伊沃·阿格纳;
摘要 本 发明 涉及 泵 、例如 叶片 泵 或滚子叶片泵、尤其是 变速器 泵,具有双行程的输送轮廓,其中该输送轮廓具有至少一个上升区域、至少一个大圆区域、至少一个下降区域及至少一个小圆区域,并且该泵在输送轮廓内部具有一个带有一些可在径向的缝槽中径向移动的叶片或滚子的 转子 。
权利要求

1.,所述泵为叶片泵或滚子叶片泵,具有双行程的输送轮廓,其中该输送轮廓具有至少一个上升区域、至少一个大圆区域、至少一个下降区域及至少一个小圆区域,所述上升区域构成抽吸区域,所述下降区域构成压区域,并且该泵在输送轮廓内部具有一个带有一些可在径向的缝槽中径向移动的叶片或滚子的转子,该下降区域的度范围比上升区域小,其特征在于:
所述泵具有10个叶片,大圆区域基本上是49°,上升区域基本上是54°,下降区域基本上是47°,以及小圆区域基本上是30°;或
所述泵具有12个叶片,大圆区域基本上是52°,上升区域基本上是54°,下降区域基本上是50°,以及小圆区域基本上是24°。
2.根据权利要求1的泵,其特征在于:在12叶片泵中,行程轮廓函数的、从抽吸区域到压力区域的方向上的拐点间具有的距离大约为3.5个叶片分度,其中叶片分度为30°,而行程轮廓函数的、从压力区域到抽吸区域的方向上的拐点间具有的距离大约为2.5个叶片分度。
3.根据权利要求1的泵,其特征在于:在10叶片泵中,行程轮廓函数的拐点相对于一个10叶片标准输送轮廓在转动方向上移动了约3°。

说明书全文

技术领域

发明涉及、例如叶片泵或滚子叶片泵、尤其是变速器泵,它具有双行程的输送轮廓,其中该输送轮廓具有至少一个上升区域、至少一个大圆区域、至少一个下降区域及至少一个小圆区域,并且该泵在输送轮廓内部具有一个带有一些可在径向的转子缝槽中径向移动的叶片或滚子的转子。

背景技术

这种泵已被公开。其中的问题在于,变速器泵用起泡的变速器油工作。由于不同的起泡度得到极其不同的油弹性。如果在油中包含许多未溶解的空气,则油非常地软。因此在转换几何结构恒定的情况下,压平衡过程持续得比在硬的未起泡的油的情况下长,并且对于压力转换过程需要较长的转动度,以便响应强的弹性分散度。该转动角度最后通过大圆区域来实现,该大圆区域的角度仅稍微大于叶片分度。在该区域中,室容积几乎不变(除了下降,该下降是叶片行程与转动角度相关地径向向内稍微的减小),并且可通过压力平衡沟槽或中间容积(参见DE 10027990A1)以小的压力上升梯度软地实现压力转换。但对于使用起泡的变速器油,这些措施是不够的。

发明内容

因此本发明的任务在于,给出一种泵,它不具有这些问题。该泵为叶片泵或滚子叶片泵,具有双行程的输送轮廓,其中该输送轮廓具有至少一个上升区域、至少一个大圆区域、至少一个下降区域及至少一个小圆区域,所述上升区域构成抽吸区域,所述下降区域构成压力区域,并且该泵在输送轮廓内部具有一个带有一些可在径向的缝槽中径向移动的叶片或滚子的转子,该下降区域的角度范围比上升区域小,其特征在于:所述泵具有10个叶片,大圆区域基本上是49°,上升区域基本上是54°,下降区域基本上是47°,以及小圆区域基本上是30°;或所述泵具有12个叶片,大圆区域基本上是52°,上升区域基本上是54°,下降区域基本上是50°,以及小圆区域基本上是24°。该任务通过泵、例如叶片泵或滚子叶片泵、尤其是变速器泵来解决,该泵具有双行程的(doppelhubig)输送轮廓,其中该输送轮廓具有至少一个上升区域、至少一个大圆区域、至少一个下降区域及至少一个小圆区域,并且该泵在输送轮廓内部具有一个带有一些可在径向的转子缝槽中径向移动的叶片或滚子的转子,并且该输送轮廓的大圆区域的角度范围相对标准泵被加长。
一个根据本发明的泵的特征在于:在一个10叶片泵中,输送轮廓的大圆区域比一个10叶片标准泵的转子中的叶片位置的角度分度(36°)大至少10°至15°,优选大13°,及在一个12叶片泵中,输送轮廓的大圆区域比一个12叶片标准泵的转子中的叶片位置的角度分度(30°)大至少16°至25°,优选大22°。由此,压缩区域相对于标准泵缩短且供压力平衡过程使用的区域(压力平衡沟槽或中间容积)被有利地加长了该或这些相应的角度。
另一个根据本发明的泵的特征在于,抽吸区域的长度相对于一个标准泵基本上保持相同。这具有其优点,即通过相同大小的抽吸区域在达到最大转速方面无须承受任何损失。
另外优选这样一个泵,在该泵中,在12叶片泵的情况下,行程轮廓函数的、从抽吸区域到压力区域的方向上的拐点(Wendepunkt)间具有的距离大约为3.5×叶片分度(叶片分度=30°),而行程轮廓函数的、从压力区域到抽吸区域的方向上的拐点间具有的距离大约为2.5×叶片分度。这具有其优点,即这些拐点可最佳地大致位于输送轮廓的上升区域及下降区域的中间,这用于提供具有不太小的曲率半径的、可良好平滑的过渡函数。
此外还优选这样一个泵,在该泵中,在10叶片泵的情况下,行程轮廓函数的这些拐点相对于一个10叶片标准轮廓在转动方向上移动了约3°。这具有其优点,即上叶片泵及下叶片泵的运动学的容积流脉动的叠加可相互优化地补充。此外这些拐点具有的距离约为2.5×叶片分度(在10叶片泵的情况下叶片分度为36°)。
附图说明
现在借助附图来描述本发明。
图1表示一个10叶片标准泵的输送轮廓,
图2表示根据本发明的10叶片泵的输送轮廓,
图3表示根据本发明的12叶片泵的输送轮廓,
图4表示根据本发明的12叶片输送轮廓的行程相对转动角度的函数,
图5表示根据本发明的12叶片输送轮廓的行程对转动角度的导数相对转动角度的函数,
图6表示根据本发明的12叶片输送轮廓的室容积对转动角度的导数相对转动角度的函数。

具体实施方式

图1中示意出一个具有一些相应的转动角度点的10叶片标准泵的输送轮廓。该输送轮廓1原则上被表示在图的中央且现在示意性地借助角度点来说明,其中这些角度并未按角度精确地示出,而是仅示意性地说明它们的位置。在角度位置3上,输送轮廓的说明以角度0°开始,该角度位于小圆区域的中间。该小圆区域在角度点5上即在15°处过渡到上升区域(轮廓径向向外增大),在该上升区域中,在两个叶片之间的行程容积增大且由此构成抽吸区域。上升区域在45°处的角度点7上在行程轮廓函数(半径变化作为转动角度的函数)中具有一个拐点并且该上升区域结束在角度点9上的69°处。行程轮廓函数的拐点的位置可以通过行程轮廓函数对转动角度的一阶导数的最大值及最小值的位置来(精确地)确定。从角度点9即69°直到角度点11即111°延伸着所谓的大圆区域,不过后者通过所谓的下降——即行程径向向内与转动角度相关地稍微减小——来负责:叶片顶部总是保持压紧在该轮廓上。带有该下降的大圆区域也可这样地确定,使得其起点构成行程轮廓函数的最大值,并且一旦行程轮廓函数的一阶和/或二阶导数不再得到切线连续性(Tangentenstetigkeit)时则得到其终点。真正的下降区域从点11即111°处开始,该下降区域延伸直到165°处即直至角度点15,并且由此表示叶片泵的压力区域,因为行程容积现在减小。该下降区域在角度点13上即135°处也在行程轮廓函数中具有一个拐点。角度点7上的即上升区域中的拐点与角度点13上的即下降区域中的拐点彼此间隔开约90°。因为10叶片泵具有约36°的叶片分度,所以该间隔相应于该叶片分度的2.5倍。下降区域中的拐点与下个上升区域中的拐点因此也彼此间隔开该叶片分度的2.5倍。此外,这些拐点的位置对称于轮廓的主轴线。从165°即角度点15直到181°即角度点17延伸着下个小圆区域的一半。从180°起到360°,即从角度点17直到回到角度点3,输送轮廓与到目前为止已描述的半输送轮廓对称地重复。
图2中示出了根据本发明的、用于变速器泵应用的输送轮廓,它具有加长的大圆区域。输送轮廓1的说明也在小圆区域的中间的角度点3上即0°处开始。输送轮廓的上升在角度点5上即在15°处开始并且也在69°处在角度点9上结束。但在上升区域内的输送轮廓函数的拐点相对图1从45°偏移到47.7°,即偏移到约48°处或在转动方向上偏移了3°,因此位于新的角度点20上。新的轮廓的大圆区域现在从角度点9即从69°处延伸直到角度点22即118°处,这意味着,该大圆区域相对图1的大圆区域加长了约7°且该加长现在供较长的压力平衡过程使用,以便压缩在油中未溶解的空气。输送轮廓的下降区域在118°处在角度点22上开始并且也在165°处在角度点15上结束,这意味着,现在压力区域相对图1中的压力区域缩短了相应的7°。重要的是,抽吸区域的长度保持从角度点5直到角度点9,这对于达到最大转速是有利的。下降区域中的拐点24在137.7°处即约在138°处,该拐点24相对于图1的拐点在转动方向上向前移动了3°,这也意味着,两个拐点保持其距离为90°或2.5乘以叶片分度(10叶片泵的叶片分度36°)。在180°处在角度点17上,与上述半部分对称地重复该新的根据本发明的行程轮廓。
图3中示出了一个12叶片泵的根据本发明的输送轮廓。该输送轮廓1的描绘也在角度点3上在0°处开始。但因为12叶片泵具有30°而非36°的叶片分度,所以在10叶片泵上为30°的小圆区域减小了6°达到24°,由此,输送轮廓的上升区域在半个小圆区域后在角度点30上在12°处开始。输送轮廓的上升区域即抽吸区域如图1及图2中的轮廓那样保持为54°并且因此在角度点32上在66°处结束,即比10叶片泵的情况也早3°。通过相对于图1及图2的输送轮廓保持相同大小的抽吸区域,则对于达到最大转速仍可有利地利用抽吸区域的长度。上升区域中的行程轮廓函数的拐点将有利地位于该上升区域的中间并且由此被设置在约37.5°处的角度点34上。该输送区域的大圆区域现在从66°处的角度点32延伸直到118°处的角度点36并且由此相对图2的输送轮廓再次加长3°或相对图1的输送轮廓加长10°,这又体现为获得了带有起泡的变速器油的压力平衡过程的改善。下降区域即该输送轮廓的压力区域从118°处的角度点36延伸直到168°处的角度点38,在该角度点处,输送轮廓又过渡到下个小圆区域。该下降区域中的行程轮廓函数的拐点设置在141.7°的角度点40处且由此离角度点34上的拐点的间隔为104°,这意味着约为12叶片泵上的30°的叶片分度的3.5倍。在下降区域即在压力区域中的拐点40在转动方向上相对于角度点42上的下个拐点的间隔约为30°的叶片分度的2.5倍。
由于12叶片上较小的30°的叶片分度,现在大圆长度与叶片分度的差值例如为22°,对比来看,在标准10叶片轮廓上该差值为6°,在图2的改进的10叶片轮廓上该差值为13°。压缩区域相对图2的被缩短的压缩区域甚至加长了3°。行程轮廓的过渡函数中的这些拐点的间隔为一个叶片分度的x.5,这是下叶片及上叶片压力脉动良好地叠加的基础。本发明的目的在于,尽可能长地构造大圆区域中的可供利用的角度,因为在起泡的变速器油中的噪音主要由压力平衡过程而非由几何结构上引起的容积流脉动主宰。并且在该轮廓中,压缩区域稍短于抽吸区域,并且这些拐点作为对子最小化地再转动一些。
图4中表示图3的具有加长的所述下降的12叶片轮廓的行程相对转动角度的行程轮廓函数。在点50(相应于图3中的点30)上开始轮廓的上升,该轮廓上升延续直到点54。在约66°处的点54(图3中的点32)上开始大圆区域56。该大圆区域56以所谓“下降”恒定地减小叶片行程直到点58(图3中的点36),在该点58上则接着延伸出轮廓下降区域60直至点62(图3中的点38)。然后在点62上开始小圆区域64,该小圆区域延伸直到点66。接着又以与从点10开始时相同的方式开始了轮廓上升。在该行程轮廓的展开曲线图中可清楚地看到:大圆区域56可相对于小圆区域64显著地加长,该小圆区域在此情况下在12叶片泵上现在延伸在30°减6°的区域上。
图5中示出了图3的轮廓的叶片行程对转动角度的导数相对转动角度的函数。在点70(图3中的点30)上,以叶片行程对转动角度的导数的值的增长开始轮廓的上升并且在点72上具有其最大值(图3中的点34),接着,叶片行程对转动角度的导数的值再连续地下降直到点74(图3中的点32)。然后在点74上过渡到大圆区域,该大圆区域的导数由线76的延伸来表示。该大圆区域76在点78(图3中的点36)上在向小圆的方向上过渡到过渡函数,该过渡函数首先以叶片行程对转动角度的导数的值的减小来开始——由函数曲线80表示,直到从最小值82(图3中的点40)起叶片行程对转动角度的导数再增大,如由函数区域84所示。然后在点86(图3中的点38)上达到小圆区域90,该小圆区域延伸直到点92。从点92起,函数曲线又如从点70起那样重复进行。这里在最大值72与最小值82(行程轮廓函数的拐点)之间得到的距离为叶片分度的3.5倍,而从最小值82直到下个最大值94得到的距离为叶片分度的2.5倍。如前所述,该行程函数的这些拐点的距离是下叶片及上叶片压力脉动良好地叠加的基础。
在图6中示出了图3的轮廓的室容积对转动角度的导数相对转动角度的函数。室容积的增长渐增直到点100,及然后室容积的增长渐减直到点102,这表征了抽吸过程。然后在大圆区域中通过所述下降使容积连续地稍微减小,直到这时从点104起,真正的压缩过程以渐增的容积减小来进行到点106,及然后以渐减的容积减小来进行到点108。然后在通过小圆区域时容积增长又以渐增的方式直到点110,这时又第二次地重复开始所述的过程。并且在该室容积对角度的导数的函数中,行程轮廓函数的拐点的距离例如在点100与点106之间,也显示为叶片分度的3.5倍,并且从点106直到点110为叶片分度的2.5倍。
QQ群二维码
意见反馈