测量在膝置换手术期间使用的膝的临床参数的系统

申请号 CN200710165884.6 申请日 2007-11-07 公开(公告)号 CN101254103B 公开(公告)日 2012-11-14
申请人 通用电气公司; 发明人 L·J·N·朗日瓦;
摘要 本 发明 公开了一种测量在膝置换手术期间使用的膝的临床参数的系统和方法。一种用于在全 膝关节 置换(TKR)手术前测量膝关节(10)的 生物 力 学参数的系统(30)和方法(40,70)包括:可除去地附着到股骨(18)、胫骨(20)和髌骨(22)的多个微型 传感器 (12,14,16,32);与所述多个微型传感器(32)通信的至少一个传感器(34);耦合到所述至少一个传感器(34)的 导航系统 (36);耦合到所述导航系统(36)以用于执行关节的成像的成像系统(38);以及用于显示成像和 跟踪 数据的至少一个显示器(35)。
权利要求

1.一种用于测量关节的生物学参数的系统(30),包括:
可除去地附着到关节的骨的多个微型传感器(32);
与所述多个微型传感器(32)通信的至少一个传感器(34);
耦合到所述至少一个传感器(34)的导航系统(36);
耦合到所述导航系统(36)以用于执行关节的成像的成像系统(38);以及耦合到所述成像系统(38)和所述导航系统(36)以用于显示成像和跟踪数据的至少一个显示器(35);
其中所述成像和跟踪数据包括:在手术期间在关节上制造切口之前在关节的骨的第一动态分析期间采集的关节的骨的第一组运动学参数,以及在手术期间在将至少一个植入物放置在关节的骨上的过程中在关节的骨的第二动态分析期间采集的关节的骨的第二组运动学参数;以及
其中比较所述第一和第二运动学参数以确保所述至少一个骨植入物正确放置在关节的骨上。
2.根据权利要求1所述的系统,其中所述关节是膝关节(10)。
3.根据权利要求1所述的系统,其中所述骨是股骨(18)、胫骨(20)和髌骨(22)。
4.根据权利要求3所述的系统,其中所述多个微型传感器(32)被可除去地附着到股骨(18)、胫骨(20)和髌骨(22)。
5.根据权利要求1所述的系统,其中所述多个微型传感器(32)是电磁(EM)场发生器。
6.根据权利要求1所述的系统,其中所述至少一个传感器(34)是电磁(EM)场接收器。
7.根据权利要求1所述的系统,其中所述至少一个传感器(34)接收来自所述多个微型传感器(32)的数据。
8.根据权利要求1所述的系统,其中所述导航系统(36)接收来自所述至少一个传感器(34)的数据。
9.根据权利要求1所述的系统,其中所述至少一个显示器(35)接收来自所述成像系统(38)的成像数据并且接收来自所述导航系统(36)的跟踪数据。

说明书全文

测量在膝置换手术期间使用的膝的临床参数的系统

技术领域

[0001] 本发明一般而言涉及一种用于测量膝关节的参数的系统和方法,更特别地涉及一种用于对在全膝关节置换(TKR)手术期间使用的膝关节的生物学参数进行切开前测量的手术中系统和方法。
[0002] 背景技术
[0003] 相关申请的相互参考
[0004] 本申请要求(基于并要求权益)2006年11月7日提交的美国临时专利申请No.60/864,748的优先权,该申请的公开被结合于此以作参考。
[0005] 发明背景
[0006] TKR手术除去股骨(大腿骨)、胫骨(小腿骨)和髌骨(膝盖)的受损和疼痛区域。这些区域然后用专设计的金属和聚乙烯假体部件来置换。
[0007] 在TKR手术期间,股骨和软骨的受损部分被切除。股骨的末端被整形以允许金属股骨部件安装在股骨的整形末端上。金属股骨部件利用骨粘固粉被附着到股骨的整形末端。
[0008] 而且,在TKR手术期间,胫骨和软骨的受损部分被切除。胫骨的末端被整形以接纳金属胫骨部件。金属胫骨部件利用骨粘固粉被固定到胫骨的整形末端。聚乙烯插入件被附着到金属胫骨部件的暴露端的顶部。插入件将支撑身体的重量,并且允许股骨在胫骨上平稳地滑动,就象胫骨的原始软骨过去常常做的那样。将带有其新聚乙烯表面的胫骨和带有其新金属部件的股骨放置在一起以形成新的膝关节。
[0009] 为了确保髌骨在新胫骨部件上平稳地滑动,髌骨的后表面被切除,并且准备接纳聚乙烯髌骨部件,所述髌骨部件利用骨粘固粉被粘合到髌骨的新准备的后表面上的适当位置。然后通过屈曲和伸展膝关节来测试膝关节的新的部分。
[0010] 如上所述,在TKR手术期间,外科医生使用假体部件置换胫骨和股骨的末端、髌骨的下侧,并且补偿软骨和一些韧带。外科医生通过使用机械跳汰机(jig)内的锯引导切割来重修髌骨的表面。将聚乙烯假体髌骨部件植入到该平滑表面上。在手术后,在每次膝关节活动期间髌骨部件与股骨部件接触。髌骨部件的错位会增加聚乙烯髌骨部件的磨损,并且可能导致髌骨的骨折。
[0011] 为了假体部件的正确对准和无疼痛机能,非常重要的是知道膝关节的原始部件的尺寸、形状、位置和方向。在膝关节内有两个主要关节,即股胫关节和髌股关节。目前,外科医生没有任何工具允许在TKR过程期间精确对准假体部件和关节。
[0012] 非常重要的是在外科切开(incision)之前测量膝关节的临床参数,其中包括股骨、胫骨和髌骨的尺寸、形状和运动学(kinematics)。知道股胫和髌股关节的尺寸、形状和运动学也是重要的。在手术前知道该信息将允许外科医生在手术期间选择适当的植入物并且正确地定位和对准植入物。知道髌骨的准确形状将允许外科医生根据髌骨的厚度和股骨部件的位置来实现完美的重修表面。该信息将影响远侧股骨切割,而不忽略前侧和后侧切割。最后的这些切割限定股骨部件的轴向旋转。而且,知道髌骨沿着股骨的准确轨迹将允许外科医生通过使用股骨部件的轴向旋转(前侧和后侧切割)和膝关节中线(远侧股骨切割的高度加上近侧胫骨切割的高度)来恢复该轨迹。
[0013] 要解决的问题包括在TKR手术前不能测量股骨、胫骨和髌骨的尺寸、形状和运动学,在TKR手术前不能测量股胫和髌股关节的尺寸、形状和运动学。这部分地是由于缺少用于测量这些临床参数的可用医学导航传感器和缺少用于所述传感器的适当安装技术。通常,现有技术跟踪传感器太大,以及安装技术无效并且可能产生损坏。 [0014] 所以,需要一种在TKR手术前测量和分析膝关节部件的尺寸、形状、位置、方向和运动学的系统和方法,以便减小所植入的假体部件的手术后脱臼、骨折和磨损的数量。 发明内容
[0015] 在一个实施例中,一种用于测量关节的生物力学参数的系统包括:可除去地附着到关节的骨的多个微型传感器;与所述多个微型传感器通信的至少一个传感器;耦合到所述至少一个传感器的导航系统;耦合到所述导航系统以用于执行关节的成像的成像系统;以及用于显示成像和 跟踪数据的至少一个显示器。
[0016] 在另一实施例中,一种用于测量感兴趣解剖区域的生物力学参数的系统包括:可除去地附着到感兴趣解剖区域的多个微型传感器;与所述多个微型传感器通信的至少一个传感器;耦合到所述至少一个传感器的集成式成像和导航系统;以及耦合到所述集成式成像和导航系统以用于显示成像和跟踪数据的至少一个显示器。
[0017] 在又一实施例中,一种用于测量关节的生物力学参数的方法包括:使用微创过程将多个微型传感器附着到关节的骨;利用成像系统对关节进行成像;执行关节的第一系列屈曲和伸展;在第一系列屈曲和伸展期间跟踪微型传感器的位置和方向;在显示器上显示成像数据和跟踪数据;识别为了植入物的最佳放置而需要切割的关节的区域;执行外科切开、关节的切割和植入物放置;确认原始关节部件与植入物的对准;执行关节的第二系列屈曲和伸展;在第二系列屈曲和伸展期间跟踪微型传感器的位置和方向;在第二系列屈曲和伸展期间确认原始髌骨的轨迹与髌骨植入物的轨迹;并且从关节除去所述多个微型传感器。
[0018] 在再一实施例中,一种用于对经历全膝关节置换手术(TKR)的膝关节的髌骨的生物力学参数进行切开前测量的手术中方法包括:将多个微型传感器附着到股骨、胫骨和髌骨;利用成像系统对膝关节进行成像;执行膝关节的第一系列屈曲和伸展;在第一系列屈曲和伸展期间记录和存储股骨、胫骨和髌骨的位置和方向数据;在显示器上显示膝关节的成像数据、以及股骨、胫骨和髌骨的位置和方向数据;利用股骨、胫骨和髌骨参数、以及股骨、胫骨和髌骨部件参数来检查股骨、胫骨和髌骨的位置和方向数据,以确定股骨、胫骨和髌骨部件放置的最佳位置;识别为了股骨、胫骨和髌骨部件的最佳放置而需要切割的股骨、胫骨和髌骨的区域;执行外科切开,股骨、胫骨和髌骨的切割,以及股骨、胫骨和髌骨部件放置;在显示器上确认股骨、胫骨和髌骨与股骨、胫骨和髌骨部件的位置和方向;执行膝关节的第二系列屈曲和伸展;在第二系列屈曲和伸展期间确认髌骨的轨迹与髌骨部件的轨迹;并且从股骨、胫骨和髌骨除去所述多个微型传感器。
[0019] 本领域的技术人员将从附图及其详细描述中显而易见本发明的各种其他特征、目的和优点。

附图说明

[0020] 图1是说明根据用于在全膝关节置换(TKR)手术前测量膝关节的临床参数的一个示例性实施例的带有附着到膝关节的骨的多个微型传感器的膝关节的图; [0021] 图2是说明用于在TKR手术期间测量膝关节的临床参数的系统的一个示例性实施例的图;
[0022] 图3是说明用于在TKR手术期间测量膝关节的临床参数的方法的一个示例性实施例的流程图
[0023] 图4是说明用于在TKR手术期间测量膝关节的临床参数的方法的另一示例性实施例的流程图;以及
[0024] 图5是说明根据用于在TKR手术期间附着植入物之后测量膝关节的临床参数的一个示例性实施例的带有附着到膝关节的骨的多个微型传感器的膝关节的图。 具体实施方式
[0025] 参考附图,图1说明带有附着到股骨18、胫骨20和髌骨22的三个微型传感器12、14、16的手术前膝关节10。这些微型传感器12、14、16是用于在TKR手术前跟踪股骨18、胫骨20和髌骨22的运动并测量膝关节10的生物力学参数的导航系统36的一部分。生物力学参数允许外科医生通过考虑股骨18、胫骨20和髌骨22的尺寸、形状和运动并且考虑股胫和髌股运动学来植入膝关节假体。
[0026] 微型传感器12、14、16是包括用于生成磁场的微型线圈的电磁(EM)场发生器。至少一个EM场传感器34被带到邻近微型传感器12、14、16以接收来自微型传感器12、14、16的磁场测量值,以用于计算微型传感器12、14、16的位置和方向。微型传感器12、14、16可以被无源地供电,由外部电源供电,或者由内部电池供电。
[0027] 将微型传感器12、14、16附着到股骨18、胫骨20和髌骨22的一种示例性方法是通过使用骨活检针(BBN)和刚性导丝的微创过程。在TKR手术前对躺在手术台上的患者执行该过程。该示例性方法包括:利用BBN在患者的皮肤中制造孔;除去BBN(针)的内部部分;将微型传感器附着到刚性导丝的尖端;并且通过插管通道插入刚性导丝以将微型传感器附着到骨。微型传感器12、14、16被刚性地固定到股骨18、 胫骨20和髌骨22。微型传感器
12、14、16将随着股骨18、胫骨20和髌骨22移动,以提供关于这些骨和它们相应的股胫和髌股关节的运动学信息。微型传感器12、14、16的尺寸足够小以使它们不影响股骨18、胫骨
20或髌骨22的运动,并且在膝关节的屈曲和伸展期间不改变髌骨20的轨迹。为了避免髌骨骨折或影响股骨18、胫骨20或髌骨22的运动的危险,微型传感器12、14、16在直径上大约为3.5mm或更小。在执行TKR手术后,从股骨18、胫骨20和髌骨22除去微型传感器12、
14、16。
[0028] 图2是说明用于在TKR手术期间测量膝关节的生物力学参数的系统30的一个示例性实施例的图。这些参数允许外科医生在手术期间更精确地放置假体。系统30包括:可除去地附着到要被动手术的患者的膝关节的骨的多个微型传感器32,在患者外部以用于与多个微型传感器32通信和从其接收数据的至少一个传感器34,耦合到至少一个传感器34和从其接收数据的导航系统36,耦合到导航系统36以用于执行膝关节的成像的成像系统38,耦合到成像系统38的第一用户接口39,耦合到导航系统36的第二用户接口37,以及用于显示成像和跟踪数据的显示器35。在另一示例性实施例中,系统30可以仅仅具有耦合到成像系统38和导航系统36二者的一个用户接口。在又一示例性实施例中,成像系统38和导航系统36可以利用集成装置和软件被集成为单个系统。
[0029] 微型传感器32使外科医生能够在手术期间连续地跟踪膝关节的位置和方向。在多个微型传感器32被附着到膝关节的骨之后,在微型传感器32周围生成EM场。至少一个传感器34从附着到膝关节的多个微型传感器32接收跟踪数据,所述多个微型传感器在膝关节的屈曲和伸展期间实时地测量膝关节的被动运动。多个微型传感器32优选是EM场发生器,并且至少一个传感器34优选是EM场接收器。EM场接收器可以是接收器阵列,其包括至少一个线圈或至少一个线圈对以及用于对接收器阵列检测到的磁场测量值进行数字化的电子设备。然而应当认识到,根据可选实施例,微型传感器32可以是EM场接收器,而传感器34可以是EM场发生器。
[0030] 磁场测量值可以被用来根据任何合适的方法或系统计算微型传感器32的位置和方向。在使用传感器34上的电子设备对磁场测量值进行数字化之后,数字化信号从传感器34被传送到导航系统36。数字化信 号可以使用有线或无线通信协议和接口从传感器34被传送到导航系统36。由导航系统36接收的数字化信号表示由传感器34检测到的磁场信息。数字化信号被用来计算微型传感器32的位置和方向信息,其中包括微型传感器32的定位(location)。位置和方向信息被用来将微型传感器32的定位配准到来自成像系统38的采集的成像数据。位置和方向数据在显示器38上被可视化,从而在来自成像系统38的预采集或实时图像上实时地显示微型传感器32的定位。来自成像系统38的采集的成像数据可以包括CT成像数据、MR成像数据、PET成像数据、超声成像数据、X射线成像数据、或任何其他合适的成像数据、以及它们的任何组合。除了来自各种模式的采集的成像数据之外,来自各种实时成像模式的实时成像数据也会是可用的。
[0031] 导航系统36被配置成基于接收的数字化信号来计算微型传感器的相对定位。导航系统进一步将微型传感器的定位配准到采集的成像数据,并且生成适合于可视化图像数据的成像数据以及微型传感器的表示。
[0032] 导航系统36被示意性地说明,并且可以使用专用硬件板、数字信号处理器、现场可编程门阵列、以及处理器的任何组合来实施。可选择地,导航系统36可以使用带有单处理器或多处理器、带有分布于处理器之间的功能操作的现成计算机来实施。作为例子,可能期望具有用于位置和方向计算的专用处理器以及用于可视化操作的处理器。导航系统36优选是利用EM导航技术的EM导航系统。然而,可以使用其他跟踪或导航技术。 [0033] 图3是说明用于在TKR手术期间测量膝关节的临床参数的方法40的一个示例性实施例的流程图。该方法包括将微型传感器可除去地附着到股骨、胫骨和髌骨42。使用成像系统执行膝关节的3D成像44。在膝关节的第一系列被动屈曲和伸展期间跟踪微型传感器46,以确定髌骨相对于胫骨和股骨的位置和方向。在该过程期间膝关节的被动屈曲和伸展应当被执行几次,以便实现关于膝关节部件的定位和轨迹的可重现结果。在膝关节的每次屈曲和伸展期间每个微型传感器的x、y、z坐标被记录并且存储在存储器中。该方法进一步包括在屈曲和伸展期间显示每个骨(股骨、胫骨和髌骨)的图像表示,并且在关节的3D配准图像上叠加所述表示。物理标志(微型传感器)和运动学的使用提供关于执行 股骨和胫骨切割的实时数据(定位、斜度、深度、度)。该过程中的另一步骤包括识别需要切割以实现植入物或假体的最佳放置的膝关节的骨区域50。为了确保正确的髌骨部件放置和对准,考虑髌骨的尺寸、形状和运动学以及髌骨植入物的尺寸和形状。另一步骤包括执行切开,股骨、胫骨和髌骨的受损区域的切割,以及附着植入物52。导航系统允许外科医生导航近侧胫骨切割(内侧切除和外侧切除)和远侧股骨切割(内侧切除和外侧切除)。该方法进一步包括显示在第一系列屈曲和伸展期间获得的髌骨的第一图像表示(该定位基于股骨和胫骨微型传感器的相对位置而被选择),并且与第一图像表示一起显示带有髌骨植入物的髌骨的第二图像表示,从而表示带有髌骨植入物的髌骨相对于原始髌骨的第一图像表示的当前位置。外科医生然后确认在显示图像上叠加的第一和第二图像表示的对准54。另一步骤包括在膝关节的第二系列被动屈曲和伸展期间跟踪微型传感器56,以确定髌骨植入物相对于胫骨和股骨植入物的位置和方向。显示来自第一系列屈曲和伸展的髌骨的轨迹和来自第二系列屈曲和伸展的髌骨植入物的轨迹。外科医生然后可以确认在显示图像上叠加的原始髌骨的轨迹与髌骨植入物的轨迹58。髌骨和髌骨植入物的x、y和z坐标应当是相同的,并且髌骨和髌骨植入物在髌股关节内的运动也应当是相同的。最后的步骤是从股骨、胫骨和髌骨除去微型传感器60。
[0034] 图4是说明用于在TKR手术期间测量膝关节的临床参数的方法70的另一示例性实施例的流程图。该方法包括将微型传感器可除去地附着到股骨、胫骨和髌骨72。使用3D成像系统执行膝关节的3D成像74。执行膝关节的3D重建以获得膝关节的虚拟表示。在显示屏上显示膝关节的虚拟表示。该方法进一步包括执行腿的第一系列被动屈曲和伸展76以模拟膝关节运动。在该过程期间膝关节的该被动屈曲和伸展应当被执行几次,以便实现关于膝关节部件的定位和轨迹的可重现结果。另一步骤是在膝关节的屈曲和伸展期间实时地记录和存储股骨、胫骨和髌骨的位置和方向78。在膝关节的每次屈曲和伸展期间每个微型传感器的x、y、z坐标被记录并且存储在存储器中。在另一步骤中,在显示器上显示膝关节的3D重建图像以及股骨、胫骨和髌骨的位置和方向80。外科医生可以通过使用股骨、胫骨和髌骨的虚拟表示,并且把在膝关节的屈曲和伸展期间接收的运动学数据与当前参数(正向和矢状成角)和植入物 制造商的植入物参数进行组合来在显示屏上跟踪髌骨的轨迹,以确定股骨、胫骨和髌骨植入物部件的最佳位置82。该方法进一步包括识别需要切割以实现股骨、胫骨和髌骨部件的最佳放置的股骨、胫骨和髌骨的骨区域84。为了确保正确的髌骨部件放置和对准,考虑髌骨的尺寸、形状和运动学以及髌骨植入物的尺寸和形状。另一步骤包括执行切开,股骨、胫骨和髌骨的受损区域的切割,以及附着股骨、胫骨和髌骨部件86。
导航系统允许外科医生导航近侧胫骨切割(内侧切除和外侧切除)和远侧股骨切割(内侧切除和外侧切除)。该方法进一步包括基于在第一系列屈曲和伸展期间获得的髌骨的位置信息来显示髌骨的第一虚拟表示(这是基于股骨和胫骨微型传感器的相对位置而被确定的),并且与第一虚拟表示一起显示髌骨植入物相对于第一虚拟表示的当前位置的第二虚拟表示。外科医生然后确认在显示图像上叠加的第一和第二虚拟表示的对准88。另一步骤包括在膝关节的第二系列被动屈曲和伸展90期间跟踪微型传感器,以确定髌骨植入物相对于胫骨和股骨植入物的位置。该方法进一步包括显示来自第一系列屈曲和伸展的髌骨的第一轨迹和来自第二系列屈曲和伸展的髌骨植入物的轨迹。外科医生然后可以确认在显示图像上叠加的原始髌骨的轨迹与髌骨植入物的轨迹92。髌骨和髌骨植入物的x、y和z坐标应当是相同的,并且髌骨和髌骨植入物在髌股关节内的运动也应当是相同的。最后的步骤是从股骨、胫骨和髌骨除去微型传感器94。
[0035] 图5说明带有附着到股骨18、胫骨20和髌骨22的三个微型传感器12、14、16的手术后膝关节100。微型传感器12、14、16是用于在TKR手术期间跟踪股骨18、胫骨20和髌骨22的运动并测量膝关节10的生物力学参数的导航系统36的一部分。在该图中,外科医生已用股骨、胫骨和髌骨部件置换了胫骨和股骨的末端以及髌骨的下侧。股骨部件24被附着到股骨18的整形末端。胫骨部件26被固定到胫骨20的整形末端。插入件28被附着到胫骨部件26的暴露端的顶部。插入件支撑身体的重量,并且允许股骨在胫骨上平稳地滑动。髌骨部件23被附着到髌骨22的准备好的后表面。在膝关节的每次活动期间髌骨部件23与股骨部件24接触。在外科医生确认股骨和胫骨部件的正确放置以及髌骨植入物的正确放置和轨迹之后,从股骨、胫骨和髌骨除去微型传感器。
[0036] 尽管所提出的发明集中在对于膝关节置换过程应用将提供简单的 工作流程和高精度的成像和跟踪的益处,但是也将有可能将该解决方案扩展到其他医学过程。 [0037] 以上参考附图描述了几个实施例。这些图说明了实施本发明的系统和方法以及程序的特定实施例的某些细节。然而,利用附图描述本发明不应当被解释为将附图中所示的特征相关的任何限制强加于本发明。本发明设想了用于实现其操作的方法、系统和任何机器可读介质上的程序产品。如上所述,可以使用现有的计算机处理器、或者通过为了这个或另一目的而结合的专用计算机处理器、或者通过硬连线系统来实施本发明的实施例。 [0038] 如上所述,本发明的范围内的实施例包括程序产品,所述程序产品包括用于携带或具有存储于其上的机器可执行指令或数据结构的机器可读介质。这样的机器可读介质可以是可以由通用或专用计算机或带有处理器的其他机器访问的任何可用的介质。作为例子,这样的机器可读介质可以包括RAM、ROM、PROM、EPROM、EEPROM、Flash、CD-ROM或其他光盘存储、磁盘存储或其他磁存储设备、或任何其他介质,所述任何其他介质可以被用来携带或存储采用机器可执行指令或数据结构的形式的期望的程序代码,并且可以由通用或专用计算机或带有处理器的其他机器访问。当信息在网络或另一通信连接(硬连线、无线、或者硬连线或无线的组合)上被传送或提供给机器时,机器适当地将所述连接看作机器可读介质。因而,任何这样的连接被适当地称为机器可读介质。以上的组合也被包括在机器可读介质的范围内。机器可执行指令例如包括导致通用计算机、专用计算机、或专用处理机器执行某个功能或某组功能的指令和数据。
[0039] 在方法步骤的一般上下文中描述了本发明的实施例,所述方法步骤可以在一个实施例中通过程序产品来实施,所述程序产品包括机器可执行指令,例如程序代码,例如采用由连网环境中的机器执行的程序模的形式。通常,程序模块包括执行特定任务或实施特定抽象数据类型的例程、程序、对象、组件、数据结构等。机器可执行指令、相关数据结构和程序模块表示用于执行在此公开的方法的步骤的程序代码的例子。这样的可执行指令或相关数据结构的特定序列表示用于实施在这样的步骤中描述的功能的相应动作的例子。 [0040] 可以在连网环境中使用与带有处理器的一个或多个远程计算机的 逻辑连接来实行本发明的实施例。逻辑连接可以包括这里作为例子而不是限制给出的局域网(LAN)和广域网(WAN)。这样的连网环境在办公室范围或企业范围计算机网络、内联网和因特网中是普遍的,并且可以使用多种多样的不同通信协议。本领域技术人员将认识到,这样的网络计算环境将通常包括许多类型的计算机系统配置,其中包括个人计算机、手持设备、多处理器系统、基于微处理器或可编程消费电子设备、网络PC、小型计算机、大型计算机等等。也可以在由通过通信网络链接(通过硬连线链接、无线链接、或者通过硬连线或无线链接的组合)的本地和远程处理设备执行任务的分布式计算环境中实行本发明的实施例。在分布式计算环境下,程序模块可以同时位于本地和远程存储器存储设备中。
[0041] 用于实施本发明的整个系统或部分的一个示例性系统可以包括采用计算机的形式的通用计算设备,所述计算机包括处理单元、系统存储器和把包括系统存储器的各种系统部件耦合到处理单元的系统总线。系统存储器可以包括只读存储器(ROM)和随机存取存储器(RAM)。该计算机也可以包括用于从硬磁盘进行读取以及对硬磁盘进行写入的硬磁盘驱动器、用于从移动磁盘进行读取或对移动磁盘进行写入的磁盘驱动器、以及用于从移动光盘(例如CD ROM或其他光学介质)进行读取或对移动光盘(例如CD ROM或其他光学介质)进行写入的光盘驱动器。驱动器和它们的相关机器可读介质提供机器可执行指令、数据结构、程序模块和计算机的其他数据的非易失性存储。
[0042] 为了说明和描述的目的,已经给出了本发明的实施例的以上描述。以上描述并不打算是穷举的或者将本发明限制于所公开的确切形式,并且根据以上教导的修改和变化都是可能的或者可以从本发明的实行中获得。选择并描述各实施例是为了解释本发明的原理及其实际应用,以使本领域技术人员能够在各种实施例中以及在具有适合于设想的特定用途的各种修改的各种实施例中利用本发明。
[0043] 尽管已经参考各种实施例描述了本发明,但是本领域技术人员将会认识到,可以在不脱离本发明的精神的情况下对本发明进行某些替换、修改和省略。因此,以上描述打算仅仅是示例性的,并且不应当限制如后面的权利要求书中所述的本发明的范围。 [0044] 附图标记列表
[0045] 10 手术前膝关节
[0046] 12 微型传感器
[0047] 14 微型传感器
[0048] 16 微型传感器
[0049] 18 股骨
[0050] 20 胫骨
[0051] 22 髌骨
[0052] 23 髌骨部件
[0053] 24 股骨部件
[0054] 26 胫骨部件
[0055] 28 插入件
[0056] 30 系统
[0057] 32 微型传感器
[0058] 34 传感器
[0059] 35 显示器
[0060] 36 导航系统
[0061] 37 用户接口
[0062] 38 成像系统
[0063] 39 用户接口
[0064] 40 方法
[0065] 42 方法步骤
[0066] 44 方法步骤
[0067] 45 方法步骤
[0068] 46 方法步骤
[0069] 47 方法步骤
[0070] 48 方法步骤
[0071] 50 方法步骤
[0072] 52 方法步骤
[0073] 54 方法步骤
[0074] 56 方法步骤
[0075] 58 方法步骤
[0076] 60 方法步骤
[0077] 70 方法
[0078] 72 方法步骤
[0079] 74 方法步骤
[0080] 76 方法步骤
[0081] 78 方法步骤
[0082] 80 方法步骤
[0083] 82 方法步骤
[0084] 84 方法步骤
[0085] 86 方法步骤
[0086] 88 方法步骤
[0087] 90 方法步骤
[0088] 92 方法步骤
[0089] 94 方法步骤
[0090] 100 手术后膝关节
QQ群二维码
意见反馈