在地下井中使用的可变流动限制器

申请号 CN201180041339.0 申请日 2011-08-16 公开(公告)号 CN103080467A 公开(公告)日 2013-05-01
申请人 哈利伯顿能源服务公司; 发明人 贾森·D·戴克斯特拉; M·L·夫瑞普; 卢克·W·霍尔德曼;
摘要 一种在地下井中使用的可变流阻系统,可包括 流体 成分流经的流室,该室具有至少一个入口、出口、以及相对于该出口被螺旋式地定向的至少一个结构,由此该结构引发流体成分的围绕该出口的螺旋式流动。在地下井中使用的另一种可变流阻系统可包括流室,该流室包括:出口;至少一个结构,其引发流体成分的围绕该出口的螺旋式流动;以及至少一个其他结构,其阻碍沿流体成分的流动方向径向地朝向出口改变。
权利要求

1.一种在地下井中使用的可变流阻系统,所述系统包括:
流体成分流经的流室,所述室具有至少一个入口、出口、以及相对于所述出口被螺旋式地定向的至少一个结构,由此所述结构引发流体成分的围绕所述出口的螺旋式流动。
2.根据权利要求1所述的系统,其中,所述流体成分在所述井中流经所述流室。
3.根据权利要求1所述的系统,其中,所述结构阻碍所述流体成分的流动方向径向地朝向所述出口改变。
4.根据权利要求3所述的系统,其中,所述结构渐增地阻碍方向径向地朝向所述出口改变,以响应以下至少之一:a)所述流体成分的增大的速度;b)所述流体成分的减小的粘度;以及c)所述流体成分中期望流体对不期望流体的减小的比值。
5.根据权利要求1所述的系统,其中,所述结构包括叶片和凹部中的至少一种。
6.根据权利要求1所述的系统,其中,所述结构相对于所述室的壁以向内和向外至少一种方式突出。
7.根据权利要求1所述的系统,其中,所述至少一个结构包括间隔开的多个结构。
8.根据权利要求7所述的系统,其中,相邻的所述多个结构之间的间隔沿流体成分的螺旋式流动的方向减小。
9.根据权利要求1所述的系统,其中,随着流体成分的粘度增大,流体成分更直接地从所述入口流到所述出口。
10.根据权利要求1所述的系统,其中,随着流体成分的速度减小,流体成分更直接地从所述入口流到所述出口。
11.根据权利要求1所述的系统,其中,随着流体成分中期望流体对不期望流体的比值增大,流体成分更直接地从所述入口流到所述出口。
12.一种在地下井中使用的可变流阻系统,所述系统包括:
流室,包括:出口;至少一个第一结构,引发流体成分的围绕所述出口的螺旋式流动;
以及至少一个第二结构,阻碍流体成分的流动方向径向地朝向所述出口改变。
13.根据权利要求12所述的系统,其中,流体成分在所述井中流经所述流室。
14.根据权利要求12所述的系统,其中,所述第二结构渐增地阻碍方向径向地朝向所述出口改变,以响应以下至少之一:a)流体成分的增大的速度;b)流体成分的减小的粘度;
以及c)流体成分中期望流体对不期望流体的减小的比值。
15.根据权利要求12所述的系统,其中,所述第一结构包括叶片和凹部中的至少一种。
16.根据权利要求12所述的系统,其中,所述第二结构包括叶片和凹部中的至少一种。
17.根据权利要求12所述的系统,其中,所述第一结构相对于所述室的壁以向内和向外至少一种方式突出。
18.根据权利要求12所述的系统,其中,所述第二结构相对于所述室的壁以向内和向外至少一种方式突出。
19.根据权利要求12所述的系统,其中,所述至少一个第二结构包括间隔开的多个第二结构。
20.根据权利要求12所述的系统,其中,所述至少一个第一结构包括间隔开的多个第一结构。
21.根据权利要求20所述的系统,其中,相邻的所述多个第一结构之间的间隔沿流体成分的螺旋式流动的方向减小。
22.根据权利要求12所述的系统,其中,随着流体成分的粘度增大,流体成分更直接地流到所述出口。
23.根据权利要求12所述的系统,其中,随着流体成分的速度减小,流体成分更直接地流到所述出口。
24.根据权利要求12所述的系统,其中,随着流体成分中期望流体对不期望流体的比值增大,流体成分更直接地从所述入口流到所述出口。

说明书全文

在地下井中使用的可变流动限制器

技术领域

[0001] 本发明大体涉及一种与地下井结合而利用的设备和执行的操作,并且在以下描述的示例中,更具体地提供一种可变流动限制器。

背景技术

[0002] 在产井(hydrocarbon production well)中,能够调节从地层进入井眼内的流体流动是非常有益的。这种调节可服务于多种目的,包括防止或气锥、最小化产砂量、最小化产水量和/或产气量、最大化产油量、在多个带(zone)之间平衡产量,等等。
[0003] 因此应理解,在上述情况下,在井中可变地限制流体流动的领域中的进步是符合期望的,并且这类进步在大量的其他情况下也将是有益的。

发明内容

[0004] 在以下的公开内容中,提供一种可变流阻系统,其为可变地限制井中流体流动的技术领域带来改进。以下描述了一个示例,其中,提供一种设有多个结构的流室,这些结构引起对通过室的流动的限制,以增加流体成分中不期望流体对期望流体的比值。
[0005] 在一个方案中,本发明向本技术领域提供了一种在地下井中使用的可变流阻系统。该系统可包括流体成分流经的流室。该室具有至少一个入口、出口、以及相对于该出口被螺旋式地定向的至少一个结构。该结构引发流体成分的围绕该出口的螺旋式流动。
[0006] 在另一方案中,在地下井中使用的可变流阻系统可包括流室,该流室包括:出口;至少一个结构,其引发流体成分的围绕该出口的螺旋式流动;以及至少一个其他结构,其阻碍沿流体成分的流动方向径向地朝向出口改变。
[0007] 一旦仔细考虑以下对代表性示例的详细描述和附图,这些和其他的特征、优势和益处对于本领域技术人员而言就将是显而易见的,其中,在多个附图中利用相同的附图标记来指代相似的元件。

附图说明

[0008] 图1是能够体现本发明的原理的井系统的示意性的局部剖视图;
[0009] 图2是井系统的一部分的放大比例的剖视图;
[0010] 图3A和图3B是沿图2中的线3-3截取的可变流阻系统的进一步放大比例的剖视图,其中图3A示出经过该系统的相对高速、低密度的流动,而图3B示出经过该系统的相对低速、高密度的流动;
[0011] 图4是该可变流阻系统的另一构造的剖视图。

具体实施方式

[0012] 图1代表性地示出了能够体现本发明的原理的井系统10。如图1所示,井眼12具有从套管16向下延伸的大体竖直的未设套管区段14,以及通过地层20延伸的大体水平的未设套管区段18。
[0013] 管柱22(tubular string)例如为生产管柱(production tubing string),被安装在井眼12中。多个井筛24、可变流阻系统25和封隔器26在管柱22中互连。
[0014] 封隔器26将在管柱22与井眼区段18之间径向地形成的环空28封堵起来。以这种方式,流体30可经由环空28(这些环空位于相邻的成对的封隔器26之间)的隔离部分从地层20的多个间隔区或带产出。
[0015] 位于每对相邻的封隔器26之间的井筛24和可变流阻系统25在管柱22中互连。井筛24过滤从环空28流入管柱22内的流体30。可变流阻系统25基于流体的某些特性,可变地限制流体30进入管柱22内的流量。
[0016] 在此请注意,图中示出的以及本说明书在此描述的井系统10只不过是能够利用本发明的原理的多种井系统中的一个示例。应清楚地理解,本发明的原理绝不限于图中示出的或者本说明书描述的井系统10或其部件的任何细节。
[0017] 例如,井眼12并非必须包括大体竖直的井眼区段14或大体水平的井眼区段18才算符合本发明的原理。流体30并非必须仅从地层20产出,在其他示例中,流体可被注入地层,流体可既被注入地层又从地层产出等。
[0018] 井筛24和可变流阻系统25中的每一个并非必须位于一对相邻的封隔器26之间。单个可变流阻系统25并非必须与单个井筛24结合使用。可使用任意数量、设置方式和/或组合的这些部件。
[0019] 并非任何可变流阻系统25都必须与井筛24一起使用。例如,在注入操作中,注入的流体可流经可变流阻系统25,而不流经井筛24。
[0020] 井筛24、可变流阻系统25、封隔器26或者管柱22的任何其他部件并非必须被置于井眼12的未设套管区段14、18中。根据本发明的原理,井眼12中的任何区段可设有套管或不设有套管,并且管柱22的任何部分可位于井眼的未设套管区段或设有套管的区段中。
[0021] 因此,应清楚地理解,本发明描述了如何形成和使用某些示例,但本发明的原理不限于那些示例的任何细节。而是,利用从本发明获得的知识,能够将那些原理应用于许多其他示例。
[0022] 本领域技术人员应理解,能够调节从地层20的每个带进入管柱22内的流体30的流量是有益的,例如用以防止在地层中的水锥32或者气锥34。井中的流量调节的其他用途包括但不限于:平衡来自多个带的产出(或对多个带的注入)、最小化不期望流体的产出或注入、最大化期望流体的产出或注入,等等。
[0023] 以下更充分地描述的可变流阻系统25的示例可通过以下方式来提供这些益处:如果流体速度增加到超过选定水平,则增大流阻(例如由此平衡多个带间的流量、防止水锥或气锥等等);或者如果流体粘度降低到选定水平以下,则增大流阻(例如由此限制产油井中诸如水或气体之类的不期望流体的流量)。
[0024] 流体是否是期望流体或不期望流体取决于正在进行的生产或注入操作的目的。例如,如果期望从井中产出油,但不产出水或气,则油是期望流体,而水和气是不期望流体。
[0025] 请注意,在井下的温度和压条件下,烃气体实际上能够完全地或者部分地处于液相。因此,应理解,当本说明书中使用术语“气体”时,超临界相、液相和/或气相均被包括在该术语的范围内。
[0026] 现在再参考图2,其代表性地示出了可变流阻系统25之一和井筛24之一的一部分的放大比例的剖视图。在该示例中,流体成分36(可包括一种或多种流体,如油和水、液态水和蒸汽、油和气、气和水、油、水和气,等等)流入井筛24内,因此被过滤,然后流入可变流阻系统25的入口38内。
[0027] 流体成分可包括一种或多种不期望流体或期望流体。流体成分中可组合有蒸汽和水两者。作为另一示例,流体成分中可组合有油、水和/或气。
[0028] 基于流体成分的一个或多个特性(如粘度、速度、密度等),流体成分36通过可变流阻系统25的流量受到限制。流体成分36然后从可变流阻系统25经由出口40被排放到管柱22的内部。
[0029] 在另一示例中,井筛24可不与可变流阻系统25结合使用(例如在注入操作中),流体成分36可沿反方向流经井系统10的多个元件(例如在注入操作中),单个可变流阻系统可与多个井筛结合使用,多个可变流阻系统可与一个或多个井筛一起使用,流体成分可从井中的不同于环空或管柱的多个区域中被接收、或被排放到井中的不同于环空或管柱的多个区域内,流体成分可在流经井筛之前流经可变流阻系统,任何其他部件可与井筛和/或可变流阻系统在上游或下游互连,等等。因此应理解,本发明的原理并不限于图2中示出的和在本说明书中描述的示例的细节。
[0030] 虽然图2中示出的井筛24属于本领域技术人员所知晓的绕丝井筛(wire-wrapped well screen)类型,但在其他示例中可使用任何其他类型的井筛或者多种井筛的组合(如烧结式的、膨胀式的、预填充式的、金属丝网等)。如果期望的话,也可使用额外的部件(如护罩、分流管、线路、仪器、传感器、流入控制装置,等等)。
[0031] 图2示出了可变流阻系统25的简化形式,但在优选示例中,如以下更充分地描述的,该系统可包括用于执行多种功能的多个通道和装置。另外,系统25优选至少部分地围绕管柱22沿周向延伸,或者该系统可在管式结构的壁中形成,作为管柱22的一部分而互连。
[0032] 在其他示例中,系统25可不围绕管柱沿周向延伸或形成于管式结构的壁中。例如,系统25可在平面结构中形成,等等。系统25可处于被附接到管柱22的单独壳体中,或可被定向为使得出口40的轴线平行于管柱的轴线。系统25可以处于测井管柱(logging string)上,或被附接到形状不是管状的装置上。根据本发明的原理可使用任何方向或构造的系统25。
[0033] 现在再参考图3A和图3B,其代表性地示出了系统25的一个示例的更详细的剖视图。系统25在图3A和图3B中被示出为其构造上似乎属于平面式的,但是如果期望的话,系统也可代之以(例如在管状构件的侧壁中)沿周向延伸。
[0034] 图3A示出可变流阻系统25,其中流体成分36流经位于入口38与出口40之间的流室(flow chamber)42。在图3A中,流体成分36具有相对较低的粘度和/或相对较高的速度。例如,如果气体或水是不期望流体而油是期望流体,则图3A中的流体成分36具有相对较高的不期望流体对期望流体的比值。
[0035] 请注意,流室42设有结构44,这些结构引起流体成分36的围绕出口40的螺旋式流动。即,使得流体成分36稍微环形地围绕出口40、并且稍微径向地朝向出口40流动。
[0036] 优选地,结构44还阻碍流体成分36的流动方向径向地朝向出口40改变。因此,虽然由结构44引发的流体成分36的螺旋式流动确实具有环向分量和径向分量两者,但这些结构优选地阻碍径向分量增大。
[0037] 在图3A的示例中,结构44沿流体成分36的流动方向彼此间隔开。这些结构44之间的间隔优选沿流体成分36的流动方向递增地减小。
[0038] 图3A示出了至室42的两个进口46,其中每个进口具有一系列与其关联的间隔开的结构44。然而,应理解,根据本发明的原理,可设置任意数量的进口46和结构44。
[0039] 在室42中有设置额外的结构48,用于阻碍流体成分36朝向径向流动的改变。如图3A所示,这些结构48沿周向和径向彼此间隔开。
[0040] 结构44、48之间的间隔确实最终让流体成分36能够流到出口40,但是能量因流体成分围绕出口的螺旋式和环形的流动而消散,因此流体成分受到了相对较大的流阻。当流体成分36的粘度降低和/或当流体成分的速度增加(例如,由于流体成分中期望流体对不期望流体的比值降低)时,对流动的这种阻力(流阻)将增大。相反地,当流体成分36的粘度增大和/或当流体成分的速度减小(例如,由于流体成分中期望流体对不期望流体的比值增大)时,对流动的这种阻力将减小。
[0041] 在图3B中,示出的是在上述的流体成分36中期望流体对不期望流体的比值增大的情况下的系统25。由于具有较高的粘度和/或较低的速度,流体成分36能够更容易地流过结构44、48之间的间隔。
[0042] 以这种方式,与图3A的示例相比,流体成分36在图3B的示例中更加直接地流到出口40。这就是说,图3B的示例中的流体成分存在一些螺旋式流动,但这远少于图3A的示例中流体成分的螺旋式流动。因此,与图3A的示例相比,图3B的示例中的能耗和流阻大幅减少。
[0043] 现在再参照图4,其代表性地示出可变流阻系统25的另一构造。在此构造中,与图3A和图3B的构造相比,具有多得多的至室42的进口46,并且具有沿径向间隔开的两组螺旋式流动引发结构44。因此,应理解,可构造许多种不同结构的可变流阻系统,而不背离本发明的原理。
[0044] 请注意,进口46沿流体成分36的流动方向逐渐地狭窄。流动面积这样变窄稍微增大了流体成分36的速度。
[0045] 如同图3A和图3B的构造,通过图4的系统25的流阻将随着流体成分36的粘度降低和/或随着流体成分的速度增大而增大。相反地,通过图4的系统25的流阻将随着流体成分36的粘度增大和/或随着流体成分的速度减小而减小。
[0046] 在以上描述的每种构造中,结构44和/或结构48可在室42的一个或多个壁上形成为叶片或凹部。如果形成为叶片,结构44和/或结构48可从室42的壁(多个)向外延伸。如果形成为凹部,结构44和/或结构48可从室42的壁(多个)向内延伸。引发流体成分36的期望流动方向的功能,或者抵抗流体成分的流动方向改变的功能可借助任何类型、任何数量、任何间隔或任何构造的结构来执行。
[0047] 现在可完全地理解,以上公开的内容对于可变地限制井中流体流量的技术提供了多种重大改进。优选地,上述的可变流阻系统25的多个示例自主地且自动地操作,并且不需要任何移动部件以可靠地调节地层20与管柱22的内部之间的流动。
[0048] 一方面,以上公开的内容描述了一种在地下井中使用的可变流阻系统25。系统25可包括流体成分36流经的流室42。流室42具有至少一个入口38、出口40、以及至少一个结构44,上述至少一个结构相对于出口40被螺旋式地定向,由此结构44引发流体成分36的围绕出口40的螺旋式流动。
[0049] 另一方面,上述的可变流阻系统25包括流室42,流室42包括:出口40;至少一个结构44,其引发流体成分36的围绕出口40的螺旋式流动;以及至少一个其他结构48,其阻碍流体成分36的流动方向径向地朝向出口40的改变。
[0050] 流体成分36优选在井中流经流室42。
[0051] 结构48渐增地阻碍方向径向地朝向出口40改变,以响应以下至少之一:a)流体成分36的增大的速度;b)流体成分36的减小的粘度;以及c)流体成分36中期望流体对不期望流体的减小的比值。
[0052] 结构44和/或结构48可包括叶片和凹部中的至少一种。结构44和/或结构48可相对于室42的壁而以向内和向外至少一种方式突出。
[0053] 结构44和/或结构48可包括间隔开的多个结构。相邻的多个结构44之间的间隔可沿流体成分36的螺旋式流动的方向减小。
[0054] 随着流体成分36的粘度增大、随着流体成分36的速度减小、和/或随着流体成分36中的期望流体对不期望流体的比值增大,流体成分36优选更直接地流到出口40。
[0055] 应理解,上述的多种示例可用于多种方向(如倾斜的、颠倒的、水平的、竖直的等)和多种结构,而不背离本发明的原理。图中示出的实施例仅作为本发明的原理的有效应用的示例来示出和描述,本发明不限于这些实施例的任何具体细节。
[0056] 在以上对本发明的代表性示例的描述中,方向术语如“上方”、“下方”、“上部”、“下部”等等是参照附图为了方便而使用的。通常,“上方”、“上部”、“向上”以及相似的术语涉及沿着井眼朝向地球表面的方向,而“下方”、“下部”、“向下”以及相似的术语涉及沿着井眼远离地球表面的方向。
[0057] 当然,一旦仔细考虑以上对代表性实施例的描述,本领域技术人员将易于理解,对这些具体实施例可进行许多更改、添加、替换、删减以及其他改变,并且这些改变处于本发明的原理的范围内。因此,前述详细的描述应被清楚地理解为仅作为说明和示例给出,本发明的精神和范围仅由所附权利要求书及其等价物进行限定。
QQ群二维码
意见反馈