完善固结差的地层的方法

申请号 CN201210396716.9 申请日 2004-11-09 公开(公告)号 CN103015944A 公开(公告)日 2013-04-03
申请人 施蓝姆伯格技术公司; 发明人 塞缪尔.达尼坎; 戈尔切里.萨拉马特; 亚历詹德罗.佩纳; 埃里克.尼尔森;
摘要 一种完善地下 地层 中未固结区域的方法,该方法包括固结步骤。该固结步骤通过注入含有pH调节剂和/或离子强度调节剂的胶体颗粒 水 溶液来实现。形成的硬凝胶将颗结合在一起。固结后紧接着进行水 力 压裂。流向低渗透率区域的导向性可以通过微米颗粒的使用来改善。
权利要求

1.一种完善地下地层中未固结区域的方法,包括注入胶体颗粒溶液和至少一种选自pH调节剂和/或离子强度调节剂的成分,用以形成将颗粒结合在一起的硬凝胶从而固结所述区域的步骤,和随后的水压裂所述固结区域的步骤。
2.如权利要求1所述方法,所述胶体颗粒平均直径为4到100nm。
3.如权利要求1或2所述方法,所述胶体颗粒是颗粒。
4.如权利要求3所述方法,所述胶体二氧化硅颗粒以二氧化硅浓度为2到50wt%的溶液形式存在,且所述溶液可以含有浓度为0.1到10wt%的乙二醇、丙二醇或甲醇。
5.如上述权利要求任一项的方法,所述固结区域抗压强度大于1.72MPa,待固结区域的深度为约15到90cm。
6.如上述权利要求任一项的方法,所述离子强度调节剂为盐水,pH调节剂是酸或,且pH调节剂和/或离子强度调节剂的浓度为0.1到5wt%。
7.如上述权利要求任一项的方法,在水力压裂步骤中,裂缝的长度要大于固结区域深度的2倍,注入的固结液的体积为待固结地层孔体积的约2到10倍。
8.如上述权利要求任一项的方法,还包括使用暂停方案(hesitation scheme)注入固结处理物。
9.如上述权利要求任一项的方法,所述胶体颗粒是带电的。
10.一种完善地下地层中未固结区域的方法,包括向所述区域注入胶体二氧化硅、微米颗粒、pH调节剂和/或离子强度调节剂的水溶液来形成将颗粒结合在一起的硬凝胶从而固结所述区域的步骤,和随后的水力压裂所述固结区域的步骤。
11.如权利要求10所述方法,所述微米颗粒选自下组,该组包括母、沉淀二氧化硅、热解二氧化硅、非膨胀粘土和淀粉,所述微米颗粒的80%粒度为约1到60μm。

说明书全文

完善固结差的地层的方法

[0001] 本发明申请是基于申请日为2004年11月09日,申请号为200480033270.7(国际申请号为PCT/IB2004/052360),发明名称为“完善固结差的地层的方法”的专利申请的分案申请。

技术领域

[0002] 本发明涉及地下井的完善方法,具体地涉及完善固结差的地层(porly consolidated formation),由此消除或减少出砂(sand production)的方法和装置。

背景技术

[0003] 如石油和天然气等油气流体(hydrocarbon fluid)是通过钻井穿透含油气层段,从地下地质层,即油藏(reservoir)获得的。一旦井筒已经被钻探,就必须完井;完井包括设计、选择和安装井筒内或周围的设备和材料,以于输送、送或控制流体的生产或注入。在完井后,就可以开始石油和天然气的开采。
[0004] 压裂法是通过从井筒到油藏设置或延伸通道来提高井产量的主要方法。该作业主要如下进行:用将压裂液水力注入到穿透地下地层的井筒中,通过压力迫使压裂液紧压地层。地层或岩石被压裂并破碎。将支撑剂填充到裂缝中,以防止裂缝闭合,并因此增加可采流体(即石油,天然气或水)的流量。
[0005] 在地层是“松软”或固结差的情形下,地层中存在的微粒,通常是砂的细小颗粒,会随油气移动。这种出砂是非常不受欢迎的,因为它侵蚀表面和地下设备,因此在可以对油气进行加工之前需要除沙步骤,最终这将抵消增产技术(例如酸增产)的所需效果。
[0006] 将细小颗粒的流动减到最小的最常用手段,是使采出液过滤通过保留在筛板(screen)上的砾石充填物。在进入井筒之前,采出液经过砾石充填物和筛板,而没有显著减少产量,同时更小的颗粒被阻止。然而,该方法相当复杂并费时,沙砾和筛板也会被积垢堵塞或被砂子侵蚀。
[0007] 这解释了所谓的无筛完井工艺(screenless completion techniques)的发展。典型地,这些技术包括固结液(consolidating fluid)的注入,所述固结液包括树脂,硬化剂,催化剂和油湿润剂。树脂在地层中凝固,从而使地层固结,并减少了游离的细小颗粒的浓度。固结液和其使用方法的实例,例如报道于美国专利US5806593、US5199492、US4669543、US4427069和US4291766中。
[0008] 传统固结液的凝固时间往往相对长。因此,流体往往会持续流进阻力最小的区域,而导致其它区域未被处理。这严格限制了井筒的长度,单次操作中能够处理的长度不超过大约6米(20英尺)。此外,由于由例如具有不同渗透性的层构成的不均匀地层的原因,获得了较差的结果。已经知道基于树脂的固结系统使用时十分复杂,例如要求高达五个处理步骤,而且还经常产生环境问题。
[0009] 为了避免常规流体的这种缺陷,已经提出了多步井处理法。它们中的大多数要么包括乳液,要么包括泡沫。美国专利US5363917教导了一种发泡的固结液,其能够支持油气在地层中的燃烧。油气燃烧的产物使地层固结。美国专利US5010953和US5567088公开了一种固结液,其为蒸汽中的气溶胶。前一专利的教导是:在可聚合化合物(例如糠醇)的凝固期间,蒸汽维持地层中的空隙空间。美国专利6364020教导了包含至少两个非连续相的乳液,其中一相包括胶凝聚合物,例如多糖,其它相包括无机或有机交联剂。
[0010] 其它采用或不采用固结处理来完善未固结地层的方法是已知的。美国专利US5551514提出了多步固结处理,然后进行水力压裂处理,其中采用了支撑剂回流控制技术。美国专利US6450260描述了采用挠性凝胶系统而完成美国专利US5551514中的专利技术的技术的方法。
[0011] 其它使出砂最少化的方法包括确定裂缝延伸的方向,以及取向或定型穿孔(orienting or shaping perforations)(见美国专利US5386875和US6283214)。美国专利US6431278限定了使流经不同相位穿孔(out-of-phase perforations)的流量百分比和裂缝导流能力(fracture conductivity)对地层渗透率的比率相关的曲线。给定所需的产品流量,便可以限定地层传导率(formation conductivity)。这就允许井操作人员去设计并执行压裂操作,以获得在低于出砂的临界生产压降(critical drawdown pressure)的条件下开采油井所必须的传导率。
[0012] 尽管前面提及工艺的多数已经获得一定成功,但是没有一个已经获得了大规模商业认可,特别是从技术和成本限制上看。
[0013] 因此本发明的一个目的是提供一种完善未固结区域的改进方法。

发明内容

[0014] 一方面,本发明涉及完善地下地层中易于产生细粒(例如砂)的未固结区域的方法,该方法包括向所述区域注入水溶液,以形成将微粒结合在一起(hold together)的硬凝胶,从而固结所述区域的步骤,所述水溶液含有胶体微粒和pH调节剂和/或离子强度调节剂,以及水压压裂该固结区域的步骤。
[0015] 另一方面,本发明涉及完善地下地层中易于产生细粒(例如砂)的未固结区域的方法,该方法包括向所述区域注入水溶液和导向剂(diverting agent),以形成将颗粒结合在一起的硬凝胶,从而固结所述区域的步骤,所述水溶液为胶体微粒、pH调节剂和/或离子强度调节剂的混合物,所述导向剂用来提高水溶液流向渗透率不同区域的均匀流率,以及水力压裂该固结区域的步骤。
[0016] 本发明包括以下项:
[0017] 项1.一种完善地下地层中未固结区域的方法,包括注入胶体颗粒水溶液和至少一种选自pH调节剂和/或离子强度调节剂的成分,用以形成将颗粒结合在一起的硬凝胶从而固结所述区域的步骤,和随后的水力压裂所述固结区域的步骤。
[0018] 项2.如项1所述方法,所述胶体颗粒平均直径为4到100nm。
[0019] 项3.如项1或2所述方法,所述胶体颗粒是颗粒。
[0020] 项4.如项3所述方法,所述胶体二氧化硅颗粒以二氧化硅浓度为2到50wt%的溶液形式存在,且所述溶液可以含有浓度为0.1到10wt%的乙二醇、丙二醇或甲醇。
[0021] 项5.如上述项中任一项的方法,所述固结区域抗压强度大于1.72MPa,待固结区域的深度为约15到90cm。
[0022] 项6.如上述项中任一项的方法,所述离子强度调节剂为盐水,pH调节剂是酸或,且pH调节剂和/或离子强度调节剂的浓度为0.1到5wt%。
[0023] 项7.如上述项中任一项的方法,在水力压裂步骤中,裂缝的长度要大于固结区域深度的2倍,注入的固结液的体积为待固结地层孔体积的约2到10倍。
[0024] 项8.如上述项中任一项的方法,还包括使用暂停方案(hesitation scheme)注入固结处理物。
[0025] 项9.如上述项中任一项的方法,所述胶体颗粒是带电的。
[0026] 项10.一种完善地下地层中未固结区域的方法,包括向所述区域注入胶体二氧化硅、微米颗粒、pH调节剂和/或离子强度调节剂的水溶液来形成将颗粒结合在一起的硬凝胶从而固结所述区域的步骤,和随后的水力压裂所述固结区域的步骤。
[0027] 项11.如项10所述方法,所述微米颗粒选自下组,该组包括母、沉淀二氧化硅、热解二氧化硅、非膨胀粘土和淀粉,所述微米颗粒的80%粒度为约1到60μm。附图说明
[0028] 参考以下的详细描述和附图,将会更好地理解本发明上述和其它目的,特征和优点。其中:
[0029] 图1是室温下胶体二氧化硅溶液的胶凝时间随盐酸浓度的变化。
[0030] 图2是用于评价胶体二氧化硅进入渗透率不同的沙粒充填物(sand pack)的注入能力(injectivity)的设备的示意图。
[0031] 图3显示了对通过形成胶体二氧化硅颗粒的凝胶,对渗透率不同的砂粒充填物的无侧限抗压强度(unconfined compressive strength,UCS)的测量结果。
[0032] 图4显示了用于完成渗透率不同的砂粒充填物的固砂(sand consolidation)测试,以模拟渗透率不同区域的同时固结操作的装置的基本配置。
[0033] 图5显示了在使用如图4描述的装置进行的实验中,液体流经低渗透率(50-70mD)和高渗透率(750mD)砂粒充填物后,所收集的液体体积,和砂粒充填物的入口压力(inlet pressure)。在实验中,观察到低渗透率砂粒充填物被堵塞,接下来高渗透率砂粒充填物被择优流过。
[0034] 图6显示了在使用如图4描述的设备进行的实验中,在将微米颗粒组合物添加到胶体二氧化硅溶液中以提高流体流向低渗透率砂粒充填物的导向性时,流体的平均流速(6-A)和容器出口处所收集的液体体积(6-B)。
[0035] 图7-A和图7-B显示了类似于图6中显示的结果,但使用另一微米颗粒组合物。
[0036] 图8-A和图8-B显示了类似于图6中显示的结果,其时将沉淀二氧化硅颗粒添加至胶体二氧化硅溶液中,以提高流体流向低渗透率的砂粒充填物的导向性。
[0037] 图9-A和图9-B显示了类似于图6中显示的结果,其时将云母颗粒和图6所示实验的淀粉添加至胶体二氧化硅溶液中,以提高流体流向低渗透率砂粒充填物的导向性,并且该系统用缓冲液来预冲洗以预调节砂粒充填物的pH。

具体实施方式

[0038] 根据本发明,完善固结差的地层的方法的第一步是:注入包括胶态悬浮液的液体,从而固结所述地层。
[0039] 胶态悬浮液是离散的微细颗粒(球状或细长形状,带电的)的典型分散体,因而类似带电的颗粒之间的排斥力使分散体变稳定。例如,除去水、改变pH或添加盐或水混溶性有机溶剂而引起的电荷平衡紊乱,使得胶体颗粒聚集,从而最终形成凝胶。
[0040] 预先充填液体形式的分散体,在颗粒浓度相对较低时是透明的,而在更高的颗粒浓度时变成乳白色或乳状。无论如何,分散体能够以液体形式处理,这样使配料大大简化。
[0041] 商业化的胶体颗粒溶液一般包括二氧化硅(也称作硅胶)和、锑、、铈、钇和锆的氧化物。这些颗粒主要为球状,其粒度(particle size)通常为约4nm到约250nm,但是长度高达300nm的细长颗粒(elongated particle)也是可用的,并且相信对于本发明也是可接受的。这些颗粒可以带正电荷或负电荷。已经发现胶体二氧化硅颗粒的粒度在约4nm到约100nm的水溶液在渗透率低至50mD的砂粒充填物中具有优异的注入能力。优选的胶体颗粒的尺寸在4到22nm之间。这种独特的性质使得能够对深达数英尺的基岩(matrix)进行完整处理。不拘泥于理论,但认为当添加pH调节剂和/或离子强度调节剂时,颗粒间碰撞得以增加,并且形成了硅氧烷键(Si-O-Si)。这导致形成硬凝胶(hard gel),硬凝胶将未固结地层中的松散颗粒(沙粒)结合在一起。实际上,在进行本发明的固结处理之后,处理前绝对不具备结合力的砂粒充填物(沙子象在沙漏中那样流动),呈现出不小于1.72MPa的耐压强度,而且变得象坚硬的岩石。
[0042] 浓度在15到50wt%的商业硅溶胶也是适用的。这些商业溶液可以原样使用或者稀释至较低二氧化硅含量。例如,含25到50wt%二氧化硅的溶胶通常用于本发明的目的,但也可以稀释降低到2wt%。需要注意的是,当使用稀释的溶液时,注入的溶液的体积一般保持不变,但形成的凝胶耐压强度变低。
[0043] 冷凝温度会在胶体二氧化硅溶液中导致晶的出现,这会在未冻部分中导致二氧化硅浓度的增加,并加速富硅部分的凝胶化。在解冻时,胶凝的二氧化硅不会重新分散,而是保留在融化的冰中成为沉淀。结果,融化材料中二氧化硅分散颗粒的浓度也降低,并且该材料一般不再适合使用。通过将所述胶体二氧化硅溶液与浓度为0.1到10wt%,优选0.1到5wt%的乙二醇、丙二醇或甲醇混合,可以防止胶体二氧化硅在低于0℃时的不可逆凝胶化。
[0044] 凝胶的形成由pH调节剂和/或离子强度调节剂引发。根据本发明的一个实施方式,所述离子强度调节剂可以是盐。在本例中,胶体二氧化硅悬浮液(例如 )与盐水(盐水含有的盐优选是氯化氯化钠,或氯化,但也可以是任何矿物盐或有机盐或适合调节胶体溶液离子强度的化合物)混合。当加入盐以后,反离子(在无盐溶胶中,平衡正/负表面电荷的正/负反离子在颗粒周围扩散定向)更加向颗粒表面靠近,从而导致排斥力作用的距离缩短。通过增加颗粒间碰撞概率,引起溶胶稳定性降低,并且这导致硬凝胶的形成。胶凝期可以通过盐水浓度或温度来调整。粒度分布和颗粒浓度也会影响胶凝期。
[0045] 根据本发明的另一实施方案,所述pH调节剂是酸或碱。用于固砂的胶态二氧化硅分散体的pH通常在8到11之间,但也可以呈酸性(pH大约为4)。通过加入酸性溶液/碱性溶液,胶态分散体的pH可以降低/增加。这样,二氧化硅颗粒表面上的电荷得以降低,并且颗粒可以得到接触并形成硅氧烷键。在pH为5-6时,多数二氧化硅胶体形成凝胶的趋势最明显。对于给定的二氧化硅粒度和浓度,胶凝期可以通过溶液的pH和/或温度来调整。
[0046] pH调节剂的浓度和离子强度调节剂的浓度在0.1到5wt%之间,优选在0.1到1.5wt%之间。
[0047] 注入的固结液的体积优选等于待固结地层区域中孔体积至少的两倍。所述地层区域一般不超过待固结区域孔体积的10倍。通常,待固结区域的深度在约15和约90cm之间,一般为约30cm。
[0048] 在待固结地层为非均质的地方,固结步骤可以通过暂停技术(hesitation technique)来完成,由此泵送部分固结液,接着停止泵送一段时间,从而高渗透率区域-也就是高注入能力区域-被固结。重复该分段工序直至所有的固结液都被泵送。
[0049] 根据本发明的另一实施方案,固结液不仅包括胶体颗粒,还包括微米颗粒,例如沉淀二氧化硅颗粒。微米颗粒是指约0.5到约100μm的颗粒,更优选为至少80%的颗粒具有约1到约60μm的粒度的系统。微米颗粒易于进入高渗透率区域,并在油藏壁上形成低渗透率滤饼,从而将固结液导向到低渗透率区域,并且促进流体以均匀速率流过渗透率不同的固结区域。所述微米颗粒例如可以是云母,沉淀二氧化硅,热解二氧化硅,非膨胀粘土或淀粉。
[0050] 实施例1:悬浮液的选择
[0051] 对10种含水胶体二氧化硅的商业悬浮液进行测试。悬浮液的一些特征列于下表1,包括电荷(N:负,P:正),平均粒度,二氧化硅含量,比表面(Ssp)和pH。悬浮液的凝胶化通过添加盐(2ml的4M NaCl添加到14ml胶体悬浮液中,结果见表2)来实现,或者通过添加盐酸(15wt%的酸水溶液添加到15ml胶体悬浮液中,结果见表3)来实现。在66℃下经过
2天之后,通过施加低应力(凝胶耐力1)或高应力(凝胶耐力5),用刮板来估算凝胶耐力(gel resistance)。根据凝胶耐力(1为非常低的凝胶强度,5为高凝胶强度),估计值在1到5之间。
[0052] 表1
[0053]# 电荷 平均粒度(nm) 二氧化硅(wt%) 比表面(m2/g) pH
1 N 7 30 345 10
2 N 12 30 220 8.9
3 N 12 40 220 9.7
4 N 22 50 140 9
5 N 4 15 未知 11
6 N 100 50 未知 9
7 N 40 50 80 9.5
8 N 12 30 215 8.2
9 N 13-14 30 210-230 9.6
10 P 12 30 230 4.5
[0054] 表2
[0055]# 凝胶耐力
1 4.5
2 3
3 4.5
4 4.5
5 2.5
6 3
7 4
8 1
9 1
10 1
[0056] 表3
[0057]
[0058] 上述初步测试表明,胶体颗粒粒度最小(低于10纳米)的悬浮液具有较高的凝胶强度。颗粒的浓度越高,凝胶强度越大。该测试还发现,较小的颗粒和较高的浓度在实验室中均导致更快速的凝胶生成。
[0059] 实施例2:最优pH
[0060] 选择实施例1中的悬浮液#3。向15ml的悬浮液中,加入不同量的盐酸。附图1给出了室温下悬浮液中的总HCl浓度和胶凝时间(单位为小时)的关系。当酸浓度为0.32wt%时,相当于pH在大约6到大约7之间,胶凝时间最短。
[0061] 使用实施例1中的悬浮液#1进行相同的测试时,发现在pH为大约5到大约6时,胶凝时间最短。这表明当用酸来引起胶凝作用时,浓度优选调整到悬浮液的pH刚刚呈现弱酸性(pH在约5到约7之间),以此来获得最短胶凝时间。
[0062] 实施例3:注入测试
[0063] 附图2是用于评价胶体二氧化硅进入渗透率不同的沙粒充填物的注入能力的设备示意图。该设备包括管状容器(tabular cell)1,其一端用上端盖2封闭,另一端用下端盖3封闭。砂粒充填物4放置在容器1内,位于两个网筛5之间。活塞6包括流体入口7,其用于注入处理流体和预处理流体。容器还连接有气源8,例如氮气,这样通过推动活塞,可以压紧砂粒充填物。下端盖包括流体出口9,其用于收集流过砂粒充填物4的流体。
[0064] 在注入实施例1中的胶体二氧化硅悬浮液#1前,用2wt%的KCl盐水预冲洗渗透率为750mD的砂粒充填物,其中盐酸浓度约为0.45wt%(pH在6和7之间)。在环境温度下,注入压力仅为0.04MPa。容器在93℃下在烘箱中放置一夜。返回的渗透率小于1mD。
[0065] 用pH为4的HCl溶液预冲洗50mD的砂粒充填物。实验在82℃下进行。在约0.34MPa的注入压力下,注入与高渗透率充填物相同的处理流体。砂粒充填物在93℃下于烘箱中处理3天。返回的渗透率小于1mD。
[0066] 实施例4:抗压测试
[0067] 在65℃下固化几周以后,测量固结充填物的无侧限抗压强度。初始渗透率为约50-70mD、约750mD和约3mD的三个砂粒充填物被检测(每个砂粒充填物测试2次)。上述砂粒充填物用实施例1中的胶体二氧化硅#3固结,其中使用KCl作为离子强度调节剂。实验结果如附图3所示。在所有的实施例中,凝胶的形成导致固结充填物的抗压强度达到1.72至3.45MPa。
[0068] 实施例5:无导向剂条件下的注入能力和导向性
[0069] 待固结地层通常是不均匀的,其包含低渗透率区域和高渗透率区域。当向所述地层注入固结液时,流体优先流入高渗透率区域。如果固结液的胶凝时间大于注入时间,那么低渗透率区域很可能没被固结。
[0070] 为了评价对沿着待固结的整个区域进行处理的可行性,使用附图4所描述的实验装置。该装置包括平行连接的两个Hassler容器(11和12),其中固载有渗透率不同的砂粒充填物(13和14)。使用容积式泵(positive displacement pump)A和B泵送流体,并在容器的出口(15和16)收集流体。用泵C液压设定侧限压力,并用电加热系统与容器结合从而获得预期的测试温度。
[0071] 容器11充满渗透率为约50mD的砂粒充填物13。容器12充满渗透率为约750mD的砂粒充填物14。每个砂粒充填物的直径为2.5cm,长度为30cm。在93℃和6.9MPa的侧限压力下进行处理。用2倍于孔体积的2wt%KCl和2倍于孔体积的pH为4的HCl预冲洗砂粒充填物。固结处理步骤包括使用实施例1的胶体二氧化硅#3,并将pH调整到8。附图5给出了在容器11和12的出口15和16处,分别收集的液体体积,以及注入压力。在大约
25分钟内,出口15处未收集到流体;只有高渗透率的砂粒充填物被固结。在第一阶段的后期,开始导向并在出口16处收集到液体。大约103分钟以后,低渗透率充填物13被堵塞。
并观察到低渗透率充填物的堵塞和随后的高渗透率充填物的优先流过。
[0072] 实施例6:导向剂条件下的注入能力和导向性
[0073] 实施例5证明不均匀区域的完全处理可以用仅基于胶体二氧化硅的固结液来实现;添加粒度为约0.5到约100μm的较大微米颗粒,可以显著的降低处理步骤的持续时间,以及减少所需泵送的容积。对三种较大颗粒进行测试。这些颗粒的粒度分布列于下表4中。粒度分布就是,例如,80%的类型A的颗粒具有约4.7到约51.8μm的粒度。
[0074] 表4
[0075]A B C
d0.5 14.5μm 23.2μm 3.4μm
d0.1 4.7μm 6.7μm 1.7μm
d0.9 51.8μm 58.1μm 7.0μm
[0076] 使用附图4所示的实验装置。在93℃和6.9MPa的侧限压力下注入固结液。固结液的pH用15wt%的HCl溶液调整到7到8。向例5的固结液中,加入浓度为0.1wt%到0.5wt%的微米颗粒A、B和C的溶液。
[0077] 图6给出了实验中的平均流速(6-A)和容器出口处收集的液体体积(6-B),该实验使用附图4所示的装备进行,其时将云母颗粒和淀粉的组合物(颗粒粒度为0.5μm到100μm,平均直径为14.5μm)加入胶体二氧化硅溶液中,以为提高当第二充填物为高渗透率充填物(750mD)时流向低渗透率砂粒充填物(50-70mD)的导向性。
[0078] 当类型A颗粒占0.25wt%时,在仅仅10分钟以后,就观察到低渗透率充填物开始出现固结,并且流速比(高渗透率:低渗透率)变为4:1。未添加导向剂时,该比值预期为10:1到15:1。因此,较大的微米颗粒的添加,导致低渗透率充填物相关流速的增加。在大约40分钟之后,两砂粒充填物都被堵塞。
[0079] 图7给出了随时间函数变化的平均流速(附图7-A),该平均流速为含有类型B颗粒(在该实施例中为0.5wt%)的固结液流过高渗透率充填物(750mD)和低渗透率充填物(50mD)时的平均流速。附图7-B给出了每个砂粒充填物出口处收集的液体体积。类型B颗粒的效果要比类型A颗粒的效果略差,其在20分钟之后开始出现低渗透率充填物的固结,而且高渗透率充填物和低渗透率充填物的流速的平均比变为约6:1。
[0080] 图8显示类似于图6中所示的结果,其时将沉淀二氧化硅颗粒(粒度为0.5μm到100μm,平均直径为3.4μm)组合物添加至胶体二氧化硅溶液中,以提高流向低渗透率砂粒充填物(50-70mD)的导向性。使用该导向剂后,流速比(高渗透率:低渗透率)变为接近
1:1。
[0081] 图8-A给出了随时间函数变化的平均流速(附图7-A),该平均流速为含有类型C颗粒(在该实施例中为0.1wt%)的固结液流过高渗透率充填物(750mD)和低渗透率充填物(50mD)时的平均流速。附图8-B给出了每个砂粒充填物出口处收集的液体体积。两个砂粒充填物几乎同时被固结,高渗透率充填物和低渗透率充填物的流速的平均比约为1:1,这表明胶体颗粒和与类型C颗粒类似的微米颗粒的结合,导致非均匀地层的均匀化处理。
[0082] 图9给出了类似于图6所示的结果,其时将图6所述云母颗粒和淀粉的组合物添加至胶体二氧化硅溶液中,以提高流向低渗透率砂粒充填物(50-70mD)的导向性,并且测试系统用缓冲液预冲洗以预处理砂粒充填物的pH值。该测试使用类型A颗粒(在该实施例中为0.5wt%),并在注入胶体二氧化硅溶液前,用pH值为9.3的缓冲液进行预冲洗,这也包含用缓冲剂将其pH值调整至9.3。附图9-B给出了每个砂粒充填物出口处收集的液体体积。两个砂粒充填物几乎同时被固结,高渗透率充填物和低渗透率充填物的平均流速比约为3:1,这表明更多的液体被注入,并且通过控制系统的pH值导流效果得到提高。
QQ群二维码
意见反馈