地层处理系统和方法

申请号 CN201280024861.2 申请日 2012-05-18 公开(公告)号 CN103547769B 公开(公告)日 2016-09-07
申请人 贝克休斯公司; 发明人 R·应清·许; M·H·约翰逊;
摘要 一种 地层 处理系统,包括:其中具有一个或多个开口的环空跨越构件,所述一个或多个开口组合有可降解材料。其中具有与所述一个或多个开口 流体 连通的一个或多个端口的管件。能够将所述一个或多个端口与所述管件的内尺寸部隔离或连通的 套管 。包括一种用于实现精确地层处理的方法。
权利要求

1.一种地层处理系统,包括:
布置成沿径向方向延伸的环空跨越构件,所述环空跨越构件具有一个或多个开口以及与地层接触的一个或多个尖突部,所述一个或多个开口起初结合有可降解材料;
其中具有与所述一个或多个开口流体连通的一个或多个端口的管件;
能够将所述一个或多个端口与所述管件的内尺寸部隔离或连通的套管
2.根据权利要求1所述的地层处理系统,其中所述可降解材料能够借助流体腐蚀或溶解。
3.根据权利要求1所述的地层处理系统,其中所述套管包括能够与所述一个或多个端口对准或错开的一个或多个通道。
4.根据权利要求1所述的地层处理系统,其中所述套管还包括堵塞构件支座。
5.根据权利要求1所述的地层处理系统,其中所述环空跨越构件和所述管件限定了腔室。
6.根据权利要求5所述的地层处理系统,其中所述腔室与所述管件的内尺寸部流体连通。
7.根据权利要求4所述的地层处理系统,其中所述套管通过释放构件固定到所述管件。
8.根据权利要求7所述的地层处理系统,其中所述释放构件是一个或多个剪切螺钉。
9.根据权利要求1所述的地层处理系统,其中所述管件包括配置成阻挡所述套管运动的肩部。
10.根据权利要求1所述的地层处理系统,其中所述系统包括单向运动结构。
11.根据权利要求1所述的地层处理系统,其中所述系统是压裂系统。
12.根据权利要求1所述的地层处理系统,其中所述系统是酸化系统。
13.一种用于实现精确地层处理的方法,包括:
在井眼中安放环空跨越构件并使环空跨越构件沿径向方向延伸,以使所述环空跨越构件中的一个或多个开口靠近地层壁,所述一个或多个开口起初结合有可降解材料;
露出管件中的一个或多个端口;
将管件内尺寸部与所述环空跨越构件中的所述一个或多个开口连通;
通过所述管件内尺寸部施加流体,所述流体将所述可降解材料降解并将所述可降解材料从所述一个或多个开口移除;以及
通过所述一个或多个开口将所述流体引向地层。
14.根据权利要求13所述的方法,其中安放环空跨越构件的步骤是通过对一腔室施压以迫使环空跨越构件的本体径向向外变形来实现的。
15.根据权利要求13所述的方法,其中露出管件中的一个或多个端口的步骤包括将堵塞构件传送到套管构件中的堵塞构件支座并使套管构件运动。
16.根据权利要求13所述的方法,其中使套管构件运动的步骤包括使一释放构件松脱。
17.根据权利要求13所述的方法,其中安放环空跨越构件的步骤包括致动一单向运动结构。
18.根据权利要求13所述的方法,其中该方法是压裂方法。
19.根据权利要求13所述的方法,其中该方法是酸化方法。
20.根据权利要求13所述的方法,其中所述可降解材料能够借助流体而腐蚀或溶解。
21.一种用于实现精确地层处理的方法,包括:
将堵塞构件布置到根据权利要求1所述的地层处理系统;
通过对由所述环空跨越构件和所述管件限定的腔室进行加压将所述环空跨越构件安放到井眼中并使环空跨越构件沿径向方向延伸,以使所述环空跨越构件中的一个或多个开口靠近地层壁;
通过利用作用于位于套管中的支座上的所述堵塞构件上的压而使所述套管移动从而露出管件中的一个或多个端口;
将管件内尺寸部与所述环空跨越构件中的所述一个或多个开口连通;
通过所述管件内尺寸部施加流体,所述流体将所述可降解材料降解并将所述可降解材料从所述一个或多个开口移除;以及
通过所述一个或多个开口将所述流体引向地层。
22.根据权利要求21所述的方法,其中所述可降解材料能够借助流体腐蚀或溶解。

说明书全文

地层处理系统和方法

[0001] 相关申请的交叉引用
[0002] 本申请要求于2011年5月24日申请的美国CIP申请号13/114548的优先权,通过引用将其全文并入于此,美国CIP申请号13/114548要求于2010年8月9日申请的美国申请号12/852882的优先权。

背景技术

[0003] 在诸如氢化合物回收和二化碳封存之类的井下工业中,例如诸如“压裂”和“酸化”之类的地层处理是井下工艺的公知的部分,其设计成增加地层渗透性或者使油层增产。一般地,压裂工艺包括使用从地表位置施加的通过油管柱中端口被引导的高压。实际上导致地层破裂的增加的压并非一定是在最佳的或者甚至非常受控的位置上压裂地层。酸化类似地达不到最佳目标。因为破裂和酸化点能够显著提高完井效率,本领域将乐意接受替代的地层处理系统和方法。发明内容
[0004] 一种地层处理系统,包括:其中具有一个或多个开口的环空跨越构件,所述一个或多个开口一开始结合有可降解材料;其中具有与所述一个或多个开口流体连通的一个或多个端口的管件;以及能够将所述一个或多个端口与所述管件的内尺寸部隔离或连通的套管
[0005] 一种用于实现精确地层处理的方法,包括在地层中安放环空跨越构件以使所述环空跨越构件中的一个或多个开口靠近地层壁,所述一个或多个开口开始结合有可降解材料;露出管构件中的一个或多个端口;将管件内尺寸部与所述环空跨越构件中的所述一个或多个开口连通;通过所述管件内尺寸部施加流体,所述流体将所述可降解材料降解并从所述一个或多个开口移除所述可降解材料;以及通过所述一个或多个开口将所述流体引向地层。
[0006] 一种用于实现精确地层处理的方法,包括:将堵塞构件布置到地层处理系统,该地层处理系统包括其中具有一个或多个开口的环空跨越构件,所述一个或多个开口开始结合有可降解材料;其中具有与所述一个或多个开口流体连通的一个或多个端口的管件;以及能够将所述一个或多个端口与所述管件的内尺寸部隔离或连通的套管;通过对由所述环空跨越构件和所述管件限定的腔室进行加压将所述环空跨越构件安放到地层中以使所述环空跨越构件中的一个或多个开口靠近地层壁;通过借助作用于套管中支座上的所述堵塞构件上而使套管移动从而露出管构件中的一个或多个端口;将管件内尺寸部与所述环空跨越构件中的所述一个或多个开口连通;通过所述管件内尺寸部施加流体,所述流体将所述可降解材料降解并从所述一个或多个开口移除所述可降解材料;以及通过所述一个或多个开口将所述流体引向地层。附图说明
[0007] 现在参照附图,其中在多幅图中类似的元件类似地进行标号:
[0008] 图1是正如这里披露的处于下送位置上的地层处理系统的第一实施方式的横截面视图;
[0009] 图2是处于地层处理位置上的图1的地层处理系统;
[0010] 图3是处于下送位置上的地层处理系统的另一个实施方式;
[0011] 图4是处于安放位置上的图3的地层处理系统;
[0012] 图5是处于地层处理位置上的图3的地层处理系统;
[0013] 图6是具有喷嘴开口的环空跨越构件的一部分的放大示意图;
[0014] 图6A是具有结合有可降解材料的喷嘴开口的环空跨越构件的一部分的放大示意图;
[0015] 图6B是具有结合有可降解材料的开口的环空跨越构件的一部分的放大示意图;
[0016] 图7是正如这里披露的嵌入灌封材料中并剖开的粉末210的显微照片;
[0017] 图8是正如在由图7的截面5-5表示的示例性截面视图中显现的粉末颗粒212的示例性实施方式的示意图;
[0018] 图9是正如这里披露的粉末压实物的示例性实施方式的显微照片;
[0019] 图10是正如沿着截面7-7显现的使用具有单层粉末颗粒的粉末制造的图9的粉末压实物的示例性实施方式的示意图;
[0020] 图11是正如沿着截面7-7显现的使用具有多层粉末颗粒的粉末制造的图9的粉末压实物的另一个示例性实施方式的示意图;以及
[0021] 图12是正如这里披露的粉末压实物的特性随着时间的变化以及在粉末压实物环境中的变化的示意图。

具体实施方式

[0022] 参见图1和2,示出了正如这里披露的地层处理系统10的第一实施方式。该系统10包括环空跨越构件12(在下送位置或非工作位置上),其可以是可变形元件并且在一些实施方式还可以作为密封件。该构件12包括一个或多个开口14,至少压力可以在选定的时间通过所述开口传递。然而,在该系统的寿命周期中,可能需要一次或多次堵塞所述一个或多个开口。在后文中将提供关于这一点的更多的信息。在一个实施方式中,该构件12将包括不管构件12的位置如何均从构件12的本体18径向向外延伸的尖突部(pips)16。构件12定位在包括一个或多个端口22的管件20的径向外侧。还包括套管24,其与管件20组合用作。所述套管包括一个或多个通过其径向延伸的通道26。套管24可平移地支撑在所述管件20内,使得所述一个或多个通道26可以与所述一个或多个端口22对准和错开。
[0023] 在使用中,第一动作是使所述环空跨越构件12跨越该系统10与该系统10布置于其中的地层30之间的环空28。这可以用多种方式实现,其中一些使得在构件12上轴向施加压缩载荷,导致其径向向外变形,正如在图2中示出的。在图2中还可以注意到的是,图示出的该实施方式包括尖突部16并且这些尖突部16嵌入地层中。这用于隔离与所述一个或多个开口14、所述一个或多个端口22和所述一个或多个通道26流体连通以提供从地层30到系统10的内尺寸部(“ID”)的流体管道的环形空间32。然后所述尖突部辅助用于将流体压力引至目标区域。该区域的隔离对于比如基体材料酸化的目的也是有用的,这是因为:由于受限的应用特性,例如实现地层增产这样所需的结果不需要太多的酸。
[0024] 本领域技术人员将会认识到该系统将是管柱34的一部分,地表可将流体送入“ID”,以用于增压。如图2中所示,所述套管24已经移位到将通道26与端口22和开口14对准。假设在系统10的井下某个位置将ID堵塞,以便于从系统10的井上端施加的压力仅在所述开口14处或至少主要在所述开口14处找到离开管柱的出口。由于这种条件,将施加的压力或酸导向地层的非常小的部分并且在这里非常可能开始压裂,当然将直接在这里实施酸处理。因此,通过该系统及其方法的使用,实现了高精度的压裂开始或酸化。
[0025] 在另一个实施方式中,参见图3-5,示出了类似于图1和2的系统的系统110,但是其配置成用在其中计划一个或多个压裂或者计划沿着井眼进行多个酸处理区域的情况下。更具体地,该系统110使用球,或者,可以使用其他可掉落或可送的堵塞构件140来堵塞特定系统110以处理某个目标地点,然后使用另一堵塞构件140来用于下一个目标地点,等等,因为在特定井眼中使用尽可能多的系统110。
[0026] 该系统110包括与图1和2的构件12类似的构件112,但是致动方式不同。构件112配置成利用管件120形成腔室142,该构件112可以在管件120上滑动。该构件112和管件120通过O形环144或等同部件彼此密封。通过所述管件120定位致动端口146,以允许腔室142中的压力增加,从而致动该构件112。
[0027] 该系统110在一个实施方式中还包括单向运动结构148,其在一个实施方式中可以是本体定环或者其他棘轮式结构。该结构148在所述构件112与管件120之间起作用,以使所述构件112相对于所述管件120向井下移动(如图所示,但是应该理解的是,这可以相反配置)。结构148的目的和功能是接收由腔室142施加的运动,然后在由腔室148施加的力撤销之后拒绝构件112朝向放松位置的运动。
[0028] 系统110还包括一个或多个开口114和一个或多个端口122。所述端口122和开口114起初通过套管150与系统110的ID流体隔离。在一个实施方式中,套管150包括能接纳堵塞构件140的可选的堵塞支座152,如图所示。所述套管包括多个密封件154,该多个密封件
154在系统110的非操作位置期间位于所述端口122两侧。最后该系统110包括释放机构156,该释放机构在一些实施方式中可以是诸如一个或多个剪切螺钉之类的剪切装置。
[0029] 应该意识到环空跨越构件12和112中的一个或多个开口12和114可以形成通过其中的流体射流,只因为这些开口在尺寸上相对较小。如果各个开口配置成以圆锥的方式通过环空跨越构件的材料厚度,那可以形成甚至更有效的射流。如此配置的这些开口然后某种程度上用作喷嘴。该结构的放大示意图在图6中示出。这种流体射流将辅助通过依靠流体侵蚀来破坏地层表面的压裂的开始。
[0030] 在该系统110使用期间,将该系统下送到井眼中的目标位置,然后将堵塞构件140掉落到或泵送到该系统110的所述位置。在坐放在支座152中之后,堵塞构件140防止管柱的ID中的流体流过支座152。参见图3和4,因此流体压力在堵塞构件140的朝向井口的一侧上积聚(如果需要的话可以反过来用于朝向井下的方向,但是必须是流体流的上游)。增加的压力作用在腔室142上以增加其在系统110纵向上的尺寸。增加腔室142的该尺寸使所述构件112朝向地层30径向向外膨胀并最终在一些实施方式中与所述地层30接触。参见图5,一旦达到使所述构件112完全布置好的阈值压力,所述释放构件156松脱,套管150朝向井下运动(下游)从而打开所述一个或多个端口122以使施加的压力到达所述开口114和所述地层30。需要注意的是,设置肩部160来在露出所述一个或多个端口122之后停止所述套管150的运动。在该点上,可以将压力增加到压裂压力,压裂往往将在尖突部116之间开始,正如在图
1和2的实施方式中那样(或者正如上面指出的,可以将酸施加到所述尖突部之间的地层)。
该系统110可以与位于进一步的上游位置处的其他系统110一起工作,因为在如上面所述进行处理之后,液流足以恢复以使另一个堵塞构件140坐放到更靠近井口的套管150上,并再次重复所述的过程。
[0031] 图6A和6B的实施方式示出了结合有可降解材料200的环空跨越构件中的开口14和114,所述可降解材料200是至少部分地阻挡或阻塞所述开口14和/或114的挡板或层的形式。材料200一开始至少部分地阻挡/阻塞所述开口14和114。然后材料200将基于与流体的接触而腐蚀、溶解、降解或以其他方式被移除。一般地,正如这里使用的,术语“可降解”用来表示能够腐蚀、溶解、降解、散布或以其他方式被移除或消除的意思,而“正在降解”或“使降解”将同样描述该材料正在腐蚀、溶解、散布或正在以其他方式被移除或消除。任何其他形式的“降解”都将有这种意思。所述流体可以是天然井眼流体,比如、石油等等,或者可以是添加到井眼以用于降解材料200的特殊目的的流体。材料200可以由许多种正如上面指出的可降解材料构成,但是一个实施方式尤其使用高度可降解的基于镁的材料,其具有可选择性定制的降解速率和/或屈服强度。该材料本身将在本说明书后面详细讨论。该材料在不被破坏时具有优越的强度,并且将能以受控的方式和选择性的短时间内容易降解。该材料可在水、水基泥浆、井下盐水或酸中例如根据需要以选定的速率(正如上面指出的)降解。
此外,表面不规则性增加了材料200接触降解流体的表面积,比如可以使用凹槽、褶皱、凹陷等等。在材料200降解期间,可以打开、疏通、形成和/或放大所述开口14或114。因为上面披露的材料可以被定制成在大约4到10分钟内完全降解所述材料,所以在必要的情况下实质上可以立即打开、疏通、形成和/或放大这些开口14或114。这些开口14和114尽管开始由可降解材料200完全阻塞,但是仍然将它们考虑并称作“开口”,这是因为可降解材料是要被移除的。
[0032] 正如这里描述的开口14和114中的材料200是轻质、高强度的金属材料,其可以用在多种设备和应用环境中,包括用在各种井眼环境中来制造各种可选择性地和可控地移除的或可降解的轻质、高强度的井下工具或者其他井下元件,以及用在耐用的可移除的或可降解的物品中的许多其他的应用。这些轻质的高强度的并且可选择性地且可控地可降解材料包括由带涂层粉末材料形成的全致密的烧结粉末压实物,包括各种轻质的颗粒芯和具有各种单层和多层纳米级涂层的芯材料。这些粉末压实物是由带涂层金属粉末制造的,包括各种电化学活性(例如具有相对较高标准的氧化电势)的轻质的高强度颗粒芯和芯材料,比如电化学活性金属,它们散布在由金属涂层材料的各种纳米级金属涂层构成的蜂窝状纳米基体材料内,并且在井眼应用中尤其有用。这些粉末压实物提供了独特并有利的机械强度特性组合,比如压缩和剪切强度、低密度和可选择的且可控的腐蚀特性——尤其在各种井眼流体中的快速并受控的溶解。例如,颗粒芯和这些粉末的涂层可以选择成提供适合于用作高强度工程材料的烧结粉末压实物,其具有与各种其他工程材料——包括碳不锈钢合金钢——相当的抗压强度和剪切强度,但是具有与各种聚合物、弹性体、低密度多孔陶瓷和复合材料相当的低的密度。作为另一个示例,这些粉末和粉末压实材料可以配置成响应于环境条件的变化而提供可选择的且可控的降解或者移除,比如响应于靠近由该压实物形成的物品的井眼的性质或条件的变化(包括与粉末压实物接触的井眼流体的性质变化)而从非常低的溶解速率到非常快的溶解速率的转变。所述的可选择的且可控降解或移除特性还允许由这些材料制成的比如井眼工具或其他元件之类的物品的尺寸稳定性和强度得以保持,直到不再需要它们为止,在该时间可以改变预定的环境条件,比如井眼条件,包括井眼流体温度、压力或pH值,以通过快速溶解而促进它们的移除。下面进一步描述这些带涂层粉末材料和粉末压实物以及由它们形成的工程材料以及制造它们的方法。
[0033] 参见图7-12,可以了解材料200的进一步细节。在图7中,金属粉末210包括多个金属涂层粉末颗粒212。粉末颗粒212可以形成为提供粉末210——包括自由流动的粉末,其可以被灌入或者以其他方式装入具有所有形状和尺寸的所有模具中,并且其可以被用于形成正如这里描述的前体粉末压实物和粉末压实物400(图9和10),所述前体粉末压实物和粉末压实物400可以用作各种制造物品或者用于制造各种制造物品,包括各种井眼工具和元件。
[0034] 粉末210的每个金属涂层粉末颗粒212包括颗粒芯214和布置在颗粒芯214上的金属涂层216。颗粒芯214包括芯材料218。芯材料218可以包括用于形成颗粒芯212的、提供能被烧结以形成具有可选择的且可控的溶解特性的轻质高强度粉末压实物400的粉末颗粒212的任何合适的材料。合适的芯材料包括标准氧化电势高于或等于Zn的标准氧化电势的电化学活性金属,包括Mg、Al、Mn或Zn或者它们的组合。这些电化学活性金属非常容易与各种常见井眼流体反应,包括任何数量的离子流体或高极性流体,比如那些含有各种卤化物的流体。示例包括含有氯化(KCl)、盐酸(HCl)、氯化(CaCl2)、溴化钙(CaBr2)或溴化锌(ZnBr2)的流体。芯材料218还可以包括比Zn具有更低电化学活性的其他金属或非金属材料或者它们的组合物。合适的非金属材料包括陶瓷、复合物、玻璃或碳或者它们的组合。芯材料218可以进行选择,以在预定的井眼流体中提供高的溶解速率,但是也可以进行选择以提供相对低的溶解速率,包括零溶解,其中纳米基体材料的溶解造成颗粒芯214在与井眼流体的交界面处被快速破坏并从颗粒压实物释放,使得使用这些芯材料218的颗粒芯214制造的颗粒压实物的有效溶解速率较高——尽管芯材料218本身可能具有低的溶解速率,包括在井眼流体中基本不可溶解的芯材料220。
[0035] 关于作为芯材料218的电化学活性金属,包括Mg、Al、Mn或Zn,这些金属可以作为纯金属使用或者以彼此任意组合的方式使用,包括这些材料的各种合金组合物,包括这些材料的二元、三元或四元合金。这些组合物还可以包括这些材料的复合物。此外,除了彼此的组合之外,Mg、Al、Mn或Zn芯材料218还可以包括其他组分,包括各种合金添加剂,以改变颗粒芯214的一个或多个特性,比如通过提高芯材料218的强度、降低芯材料218的密度或者改变芯材料218的溶解特性。
[0036] 在电化学活性金属中,Mg无论作为纯金属或者合金还是作为复合材料是尤其有用的,这是由于其低密度和形成高强度合金的能力以及其高度的电化学活性——其具有高于Al、Mn或Zn的标准氧化电势。Mg合金包括Mg作为合金组分的所有合金。正如这里描述的组合了其他电化学活性金属作为合金组分的Mg合金是尤其有用的,包括二元的Mg-Zn、Mg-Al和Mg-Mn合金,以及三元的Mg-Zn-Y和Mg-Al-X合金,其中X包括Zn、Mn、Si、Ca或Y或者它们的组合。这些Mg-Al-X合金可以包括按重量计高达大约85%的Mg、高达大约15%的Al和高达大约5%的X。颗粒芯214和芯材料218以及尤其是包括Mg、Al、Mn或Zn或者它们的组合的电化学活性金属还可以包括稀土元素或稀土元素的组合。正如这里使用的,稀土元素包括Sc、Y、La、Ce、Pr、Nd或Er或者稀土元素的组合。在存在的情况下,稀土元素或者稀土元素的组合可以具有按重量大约5%或更少的量。
[0037] 颗粒芯214和芯材料218具有熔化温度(TP)。正如这里使用的,TP包括如下的最低温度:在该温度下,在芯材料218内发生初始的熔化或熔融或者其他形式的部分熔化——不管芯材料218是否包括纯金属、是否包含具有不同的熔化温度的具有多相的合金或者是否包含具有不同熔化温度的材料复合物。
[0038] 颗粒芯214可以具有任何合适的颗粒尺寸或者颗粒尺寸范围或者颗粒尺寸分布。例如,颗粒芯214可以选择成提供如下的平均颗粒尺寸:该平均颗粒尺寸由平均值或平均数附近的正常的或高斯型单峰分布表示,正如在图7中总体表示的。在另一个示例中,颗粒芯
214可以选择或混合成提供颗粒尺寸的多峰分布,包括多个平均颗粒芯尺寸,比如平均颗粒尺寸的均匀的双峰分布。颗粒芯尺寸的分布的选择可以用于确定例如粉末210的颗粒212的颗粒尺寸和颗粒间隙215。在示例性实施方式中,颗粒芯214可以具有单峰分布以及大约5μm到大约300μm的、更特别地大约80μm到大约120μm、甚至更特别地大约100μm的平均颗粒直径。
[0039] 颗粒芯214可以具有任何合适的颗粒形状,包括任何规则或不规则的几何形状,或者它们的组合。在示例性实施方式中,颗粒芯214基本是球状电化学活性金属颗粒。在另一个示例性实施方式中,颗粒芯214基本是不规则形状的陶瓷颗粒。在另一个示例性实施方式中,颗粒芯214可以是碳或者其他纳米管结构或者空心玻璃微球体。
[0040] 粉末210的每个金属涂层粉末颗粒212还包括布置在颗粒芯214上的金属涂层216。金属涂层216包括金属涂层材料220。金属涂层材料220使粉末颗粒212和粉末210具有其金属特性。金属涂层材料216是纳米级涂层。在示例性实施方式中,金属涂层216可以具有大约
25nm到大约2500nm的厚度。金属涂层216的厚度可以在颗粒芯214的表面上变化,但是将优选地在颗粒芯214的表面上具有基本均匀的均匀的厚度。金属涂层216可以包括单层,如图7中所示,或者包括作为多层涂层结构的多层。在单层涂层中或者在多层涂层的每层中,金属涂层216可以包括单组分化学元素或者复合物,或者可以包括多个化学元素或复合物。在层包括多个化学组分或复合物的情况下,它们可以具有所有的均匀的或不均匀分布的形式,包括金相的均匀或不均匀分布。这可以包括分级分布,其中化学组分和复合物的相对量根据在层厚度上的相应的组分构成模式来改变。在单层和多层涂层216中,每个相应的层或者它们的组合可以用于向粉末颗粒212或者由其形成的烧结粉末压实物提供预定特性。例如,预定特性可以包括颗粒芯214与涂层材料220之间的冶金结合的结合强度;颗粒芯214与金属涂层216之间的相互扩散特性,包括多层涂层216的层之间的任何相互扩散;多层涂层216的各层之间的相互扩散特性;单个粉末颗粒的金属涂层216与临近粉末颗粒212的金属涂层之间的相互扩散特性;临近的烧结粉末颗粒212的金属涂层之间的冶金结合的结合强度,包括多层涂层的最外层;以及涂层216的电化学活性。
[0041] 金属涂层216和涂层材料220具有熔化温度(TC)。正如这里使用的,TC包括包括如下所述的最低温度:在该温度下在涂层材料220内发生初始熔化或熔融或者其他形式的部分熔化——不管涂层材料220是否包括纯金属,也不管是否包括具有不同的熔化温度的具有多相的合金或者复合物,所述复合物包括具有不同熔化温度的包括多个涂层材料层的复合物。
[0042] 金属涂层材料220可以包括提供烧结外表面221的任何合适的金属涂层材料220,其配置成被烧结到临近的粉末颗粒212,该粉末颗粒也具有金属涂层216和烧结的外表面221。在也包括第二或另外(带涂层或无涂层)颗粒232的粉末210中,正如这里描述的,金属涂层216的烧结外表面221也配置成烧结到第二颗粒232的烧结外表面221。在示例性实施方式中,粉末颗粒212是在预定烧结温度(TS)下可烧结的,该温度取决于芯材料218和涂层材料220,使得粉末压实物400的烧结完全在固态中完成,其中TS小于TP和TC。在固态中的烧结将颗粒芯214/金属涂层216相互作用限制到固态扩散过程和冶金输送现象并且限制其生长并在它们之间获得的界面上提供控制。相反,例如液相烧结的引入将提供颗粒芯214/金属涂层216材料的快速的相互扩散并难于限制其生长以及在它们之间获得的界面上难于提供控制,因此与正如这里描述的颗粒压实物400的所需的微观结构的形成干涉。
[0043] 在示例性实施方式中,芯材料218将选择成提供芯化学成分,涂层材料220将选择成提供涂层化学成分,这些化学成分还将选择成彼此不同。在另一个示例性实施方式中,芯材料218将选择成提供芯化学成分,涂层材料220将选择成提供涂层化学成分,这些化学成分还将选择成在它们的界面处彼此不同。涂层材料220和芯材料218的化学成分的不同可以进行选择,使得结合了两者的粉末压实物400具有不同的溶解速率,以及可选择的且可控的溶解,使它们能够可选择且可控地溶解。这包括响应于井眼中变化的条件而不同的溶解速率,包括井眼流体中间接或直接的变化。在示例性实施方式中,由具有制造压实物400的芯材料218和涂层材料220的化学成分的粉末210形成的粉末压实物400可响应于井眼条件的变化而在井眼流体中选择性地溶解,所述变化包括温度的变化、压力的变化、流速的变化、pH值的变化或者井眼流体的化学成分的变化或者它们的组合。响应于变化的条件的可选择的溶解可以由促进不同溶解速率的实际的化学反应或者过程导致,但是还包括溶解响应中与物理反应或过程相关的变化,比如井眼流体压力或流速的变化。
[0044] 如图7和8中所示,颗粒芯214和芯材料218以及金属涂层216和涂层材料220可以选择成提供如下的粉末颗粒212和粉末210,所述粉末210配置成用于压实并烧结以提供轻质(即具有相对低的密度)的高强度的并且响应于井眼特性的变化而可选择地且可控地从井眼移除的粉末压实物400——包括在合适的井眼流体(包括正如这里所披露的各种井眼流体)中的可选择地且可控地溶解。粉末压实物400包括基本连续的蜂窝状纳米基体材料416,其具有纳米基体材料420,该材料具有在整个蜂窝状纳米基体材料416中散布的多个散布颗粒414。基本连续的蜂窝状纳米基体材料416和由烧结金属涂层216构成的纳米基体材料420是通过多个粉末颗粒212的多个金属涂层216的压实和烧结形成的。纳米基体材料420的化学成分由于与正如这里描述的烧结相关的扩散效果而可以不同于涂层材料220的化学成分。粉末金属压实物400还包括含有颗粒芯材料418的多个散布颗粒414。当金属涂层216烧结到一起形成纳米基体材料418时,散布的颗粒芯414和芯材料418对应于多个粉末颗粒212的颗粒芯214和芯材料218并由它们形成。芯材料418的化学成分由于与正如这里所述的烧结相关的扩散效果而可以不同于芯材料218的化学成分。
[0045] 正如这里使用,术语“基本连续的蜂窝状纳米基体材料”416的使用并不意味着粉末压实物的大部分组分,而是指的少部分组分,无论是按重量还是按体积计均是如此。这区别于其中基体材料无论是按重量计还是按体积计都构成了大部分组分的大多数基体复合材料。术语“基本连续的蜂窝状纳米基体材料”的使用旨在描述纳米基体材料420在粉末压实物400内的分布的广泛的、规则的、连续的、相互连接的分布特性。正如这里使用的,“基本连续”描述了纳米基体材料在整个粉末压实物400中的分布范围,使得其在基本所有的散布颗粒414之间延伸并包络。“基本连续”并不要求每个散布颗粒414周围的纳米基体材料的绝对连续性和规则顺序。例如,一些粉末颗粒212上的颗粒芯214上的涂层216中的缺陷可以在粉末压实物400烧结期间造成颗粒芯214的桥接,从而在蜂窝状基体材料416内造成局部不连续,不过在粉末压实物的其他部分中纳米基体材料是基本连续的并呈现出这里所述的结构。正如这里使用,“蜂窝状”用来表明纳米基体材料限定了纳米基体材料420的基本重复、相互连接的隔室的网格,其围绕散布颗粒414并且也将散布颗粒414相互连接。正如这里使用的,“纳米基体材料”用于描述基体材料的尺寸或级别,尤其是相邻的散布颗粒414之间的基体材料的厚度。烧结在一起以形成纳米基体材料的金属涂层本身是纳米级厚度的涂层。因为纳米基体材料在大多数位置上——除了多于两个的散布颗粒414的交叉之外——一般包括相邻粉末颗粒212的具有纳米级厚度的两个涂层216的相互扩散和结合,形成的基体材料也具有纳米级厚度(例如大致是正如这里所述的涂层厚度的两倍)并且因此作为“纳米基体材料”描述。此外,术语“散布颗粒”414的使用并不意味着粉末压实物400的少数组分,而是指的是大多数组分,无论是按重量还是按体积计。术语“散布颗粒”的使用旨在表示颗粒芯材料418在粉末压实物400内的不连续的散布的离散的分布。
[0046] 粉末压实物400可以具有任何所需的形状或尺寸,包括可以加工或用于形成有用的制造物品包括各种井下工具和元件的圆柱块或条。施压用来形成前体粉末压实物,烧结和施压过程用于形成粉末压实物400并使包括颗粒芯214和涂层216的粉末颗粒212变形,以提供粉末压实物400的全密度和所需的宏观形状和尺寸及其微观结构。粉末压实物400的微观结构包括散布颗粒414的各方等大结构,这些散布颗粒414散布在烧结涂层的基本连续的蜂窝状纳米基体材料416中并嵌入其中。该微观结构与具有连续晶粒边界相的各方等大晶粒微观结构有点类似,除了其不需要使用具有能够产生这种结构的热力相均衡特性的合金组分之外。然而,该各方等大的散布颗粒结构和烧结金属涂层216的蜂窝状纳米基体材料416可以使用其中热力相均衡条件不产生各方等大结构的组分来产生。散布颗粒414的各方等大的形态以及颗粒层的蜂窝状网416是由粉末颗粒212的烧结和变形导致的,因为它们被压实和相互扩散并且变形以填充颗粒间距215(图7)。烧结温度和压力可以选择成确保粉末压实物400的密度获得基本完全的理论密度。
[0047] 在如图7和8中示出的示例性实施方式中,散布颗粒414是由散布在烧结金属涂层216的蜂窝状纳米基体材料416中的颗粒芯214构成的,所述纳米基体材料416包括固态冶金结合剂417或结合层419,正如在图9中示意性示出的,其在散布于以烧结温度(TS)形成的蜂窝状纳米基体材料416中的颗粒414之间延伸,其中TS小于TC和TP。正如所表示的,固态冶金结合剂417通过在正如这里所述的用于形成粉末压实物400的压实和烧结过程中压入接触的相邻粉末颗粒212的涂层216之间的固态相互扩散而以固态形成。因此,蜂窝状纳米基体材料416的烧结涂层216包括固态结合层419,该结合层419具有由涂层216的涂层材料220的相互扩散范围限定的厚度(t),而该相互扩散范围由涂层216的性质限定——包括它们是单层涂层还是多层涂层、它们是被选择成促进还是限制这样的相互扩散以及其他因素,正如这里描述的,以及烧结和压实条件,包括用于形成粉末压实物400的烧结时间、温度和压力。
[0048] 当形成包括结合剂417和结合层419的纳米基体材料416时,可以改变金属涂层216的化学成分或相分布或者二者均改变。纳米基体材料416还具有熔化温度(TM)。正如这里使用的,TM包括最低温度,在该温度下初始熔化或熔融或者其他形式的部分熔化在纳米基体材料416内发生——不管纳米基体材料420是否包括纯金属、是否包括具有多相的合金(每相具有不同的熔化温度)或复合物(包括含有多层各种涂层材料的复合物,各层具有不同的熔化温度)或者它们的组合或者另外的因素。当散布颗粒414和颗粒芯材料418与纳米基体材料416相结合地形成时,金属涂层216的组分向颗粒芯214中的扩散也是可行的,这可以导致颗粒芯214的化学成分或相分布的改变,或者二者均改变。结果,散布颗粒414和颗粒芯材料418可以具有不同于TP的熔化温度(TDP)。正如这里使用的,TDP包括最低温度,在该温度下初始熔化或熔融或者其他形式的部分熔化在散布颗粒414内发生——不管颗粒芯418是否包括纯金属、是否包括具有多相的合金(每相具有不同的熔化温度)或复合物或者另外的因素。粉末压实物400在烧结温度(TS)处形成,其中TS小于TC、TP、TM和TDP。
[0049] 散布颗粒414可以包括本文描述的用于颗粒芯214的任何材料,不过由于这里所述的扩散效果,散布颗粒414的化学成分可以不同。在示例性实施方式中,散布颗粒414由颗粒芯214形成,其包括标准氧化电势大于或等于Zn的材料,包括Mg、Al、Zn或Mn,或者它们的组合,可以包括各种二元、三元和四元合金或正如这里结合颗粒芯214所描述的这些组分的其他组合。在这些材料中,具有含有Mg和由这里所述的金属涂层材料216形成的纳米基体材料416的散布颗粒414的这些材料尤其有用。Mg、Al、Zn或Mn或者它们的组合的散布颗粒414和颗粒芯材料418还可以包括稀土元素或者稀土元素的组合,正如这里结合颗粒芯214披露的。
[0050] 在另一个示例性实施方式中,散布颗粒414由包括电化学活性比Zn低的金属或非金属材料的颗粒芯214形成。合适的非金属材料包括陶瓷、玻璃(例如空心玻璃微球体)或碳,或者它们的组合,正如这里所述的。
[0051] 粉末压实物400的散布颗粒414可以具有任何合适的颗粒尺寸,包括这里描述的用于颗粒芯214的平均颗粒尺寸。
[0052] 散布颗粒214根据为颗粒芯214和粉末颗粒212选择的形状以及用于烧结和压实粉末210的方法可以具有任何合适的形状。在示例性实施方式中,粉末颗粒212可以是类球体的或者基本是球体的,散布颗粒414可以包括正如这里所述的各方等大颗粒结构。
[0053] 散布颗粒414的散布性质可以被用于制造颗粒压实物400的粉末210的选择而影响。在一个示例性实施方式中,具有粉末颗粒212尺寸单峰分布的粉末210可以选择成形成粉末压实物400并将在蜂窝状纳米基体材料416内产生散布颗粒414的颗粒尺寸的基本均匀的单峰散布,正如总体在图8中示出的。在另一个示例性实施方式中,可以选择具有多个粉末颗粒的多种粉末210,所述粉末颗粒带有颗粒芯214,所述颗粒芯214具有相同的芯材料218和不同的芯尺寸和相同的涂层材料220,这些粉末象这里描述的那样均匀混合以提供具有均匀的粉末颗粒212尺寸的多峰分布,并且可以用于在蜂窝状纳米基体材料416内形成具有均匀的散布颗粒414颗粒尺寸的多峰散布的粉末压实物400。类似地,在另一个示例性实施方式中,可以选择具有多个颗粒芯214的多种粉末210,所述颗粒芯可以具有相同的芯材料218和不同的芯尺寸和相同的涂层材料220,将所述粉末以非均匀的方式分布以提供非均匀的粉末颗粒尺寸的多峰分布,并且可以用于在蜂窝状纳米基体材料416内形成具有非均匀的散布颗粒414的颗粒尺寸的多峰散布。颗粒芯尺寸分布的选择可以用于确定例如由粉末210制造的粉末压实物400的蜂窝状纳米基体材料416内的散布颗粒414的颗粒尺寸和颗粒间距。
[0054] 纳米基体材料416是彼此烧结的基本连续的金属涂层216的蜂窝网。纳米基体材料416的厚度将取决于用于形成粉末压实物400的粉末210的性质,以及任何第二粉末230的结合,尤其是与这些颗粒关联的涂层的厚度。在示例性实施方式中,纳米基体材料416的厚度在粉末压实物400的整个微观结构中是基本均匀的并且是粉末颗粒212的涂层216厚度的大约两倍。在另一个示例性实施方式中,蜂窝状网416在散布颗粒414之间具有大约50nm到大约5000nm的平均厚度。
[0055] 纳米基体材料416通过依靠正如这里所述的相互扩散和结合层419的形成而将相邻的颗粒的金属涂层216彼此烧结而形成。金属涂层216可以是单层或多层结构,它们可以选择成在所述层内或金属涂层216的层之间、或者在金属涂层216与颗粒芯214之间、或者在金属涂层216与临近粉末颗粒的金属涂层216之间促进或阻止扩散或者既能促进又能阻止,可以根据涂层厚度、选择的涂层材料、烧结条件和其他因素限制或扩大烧结期间金属涂层216的相互扩散范围。如果组分的相互扩散和相互作用存在潜在的复杂性,那对得到的纳米基体材料416和纳米基体材料420的化学成分的描述可以简单的理解成是还可以包括散布颗粒414的一个或多个组分的涂层216的组分的组合,这取决于相互扩散的范围,如果如此,这发生在散布颗粒414与纳米基体材料416之间。类似地,散布颗粒416和颗粒芯418的化学成分可以简单地理解成是还可以包括纳米基体材料416和纳米基体材料420的一个或多个组分的颗粒芯214的组分的组合,这取决于相互扩散的范围,如果如此,这发生在散布颗粒
414与纳米基体材料416之间。
[0056] 在示例性实施方式中,纳米基体材料420具有化学成分,颗粒芯418具有不同于纳米基体材料420的化学成分的化学成分,化学成分的不同可以配置成提供可选择的且可控的溶解速率,包括响应于靠近压实物400的井眼特性或条件的受控变化从非常低的溶解速率向非常快的溶解速率的可选过渡,其中包括正如这里所述的与粉末压实物400接触的井眼流体的特性变化。纳米基体材料416可以由具有单层和多层涂层216的粉末颗粒212形成。这种设计灵活性提供了大量的材料组合,尤其在多层涂层216的情况下,可以通过控制涂层组分的相互作用用来在给定层以及在涂层216与颗粒芯214之间调节蜂窝状纳米基体材料
416和纳米基体材料420的成分,其与颗粒芯214关联或者是临近粉末颗粒212的涂层216。下面提供表明这种灵活性的多个示例性实施方式。
[0057] 如图9中所示,在示例性实施方式中,粉末压实物400由粉末颗粒212形成,其中涂层216包括单层,在多个散布颗粒414的相邻的散布颗粒之间得到的纳米基体材料416包括一个粉末颗粒212的单金属涂层216、结合层和相邻粉末颗粒212的另一个粉末颗粒的单涂层216。结合层419的厚度(t)由单金属涂层216之间的相互扩散范围确定,并且可以包括纳米基体材料416的整个厚度或者仅是其一部分。在使用单层粉末210形成的粉末压实物400的一个示例性实施方式中,粉末压实物400可以包括散布颗粒414,该散布颗粒正如这里所述的包括Mg、Al、Zn或Mn或者它们的组合,纳米基体材料216可以包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或者其氧化物、碳化物或氮化物,或者任何前面提到的材料的组合,包括其中含有结合层419的蜂窝状纳米基体材料416的纳米基体材料420具有不同于纳米基体材料416的化学成分的化学成分的情况下的组合。纳米基体材料420和芯材料418的化学成分的不同可以用于响应于井眼特性的变化提供可选择的且可控的溶解,包括正如这里所述的井眼流体的变化。在由具有单涂层结构的粉末210形成的粉末压实物400的另一个示例性实施方式中,散布颗粒414包括Mg、Al、Zn或Mn,或者它们的组合,蜂窝状纳米基体材料416包括Al或Ni或者它们的组合。
[0058] 如图10中所示,在另一个示例性实施方式中,粉末压实物400由粉末颗粒212形成,其中涂层216包括具有多个涂层的多层涂层216,在多个散布颗粒414的相邻的颗粒之间获得纳米基体材料416包括多层(t),该多层包括一种颗粒212的涂层216、结合层419和包括粉末颗粒212的另一种颗粒的涂层216的多个层。在图10中,这是用两层金属涂层216示出的,但是将会理解的是多层金属涂层216的多个层可以包括任何所需数量的层。结合层419的厚度(t)再次由相应涂层216的多个层之间的相互扩散范围确定,并且可以包括纳米基体材料416的整个厚度或者仅其一部分。在该实施方式中,包括每个涂层216的多个层可以用于控制相互扩散和结合层419的形成以及厚度(t)。
[0059] 包括散布颗粒414的烧结的和锻造的粉末压实物400已经显示出了机械强度和低密度的完美组合,是这里所披露的轻质高强度材料的典型,所述散布颗粒414包括Mg和含有正如这里描述的各种纳米基体材料的纳米基体材料416。粉末压实物400的示例具有纯Mg散布颗粒414和由具有纯Mg颗粒芯214和各种单层和多层金属涂层216的粉末210形成的各种纳米基体材料416,所述涂层216包括Al、Ni、W或Al2O3或者它们的组合。已经对这些粉末压实物400进行了各种机械和其他测试,包括密度测试,正如这里披露的已经描述了它们的溶解和机械特性退化行为。结果表明这些材料可以配置成提供从非常低的腐蚀速率到极度高的腐蚀速率的宽范围的可选择的且可控腐蚀或溶解行为,尤其是低于和高于没有结合蜂窝状纳米基体材料的粉末压实物的腐蚀速率的腐蚀速率,比如由纯Mg粉末通过与在这里描述的各种蜂窝状纳米基体材料中包括纯Mg散布颗粒的那些相同的压实和烧结过程形成的压实物。这些粉末压实物400还可以配置成相比于由不包括这里描述的纳米级涂层的纯Mg颗粒形成的粉末压实物提供基本增强的特性。包括含有Mg和纳米基体材料416的散布颗粒414的粉末压实物400已经表明至少大约37ksi的室温抗压强度并且进一步表明超出大约50ksi的室温抗压强度,二者均是在200°F下3%的KCl溶液中干燥并浸入,所述纳米基体材料416包括这里描述的各种纳米基体材料420。相反,由纯Mg粉末形成的粉末压实物具有大约20ksi或更少的抗压强度。纳米基体材料粉末金属压实物400的强度可以通过优化粉末210进一步提高,尤其是用于形成蜂窝状纳米基体材料416的纳米级金属涂层216的重量百分比。纳米基体材料粉末金属压实物400可以通过优化粉末210进一步提高,尤其是用于形成蜂窝状纳米基体材料416的纳米级金属涂层216的重量百分比。例如,改变重量百分比(wt.%),即由包括在纯Mg颗粒芯上的多层(Al/Al2O3/Al)金属涂层216的涂层粉末颗粒212形成的蜂窝状纳米基体材料16内氧化涂层的厚度,相比于0wt%的氧化铝提供21%的增加。
[0060] 包括散布颗粒414的粉末压实物400也已经表明至少大约20ksi的室温剪切强度,所述散布颗粒414包括Mg和含有正如这里描述的各种纳米基体材料的纳米基体材料416。这与由具有大约8ksi的室温剪切强度的纯Mg粉末形成的粉末压实物相反。
[0061] 这里披露的这种粉末压实物400能够获得基本等于基于粉末210的成分的压实物材料的预定理论密度的实际密度,包括颗粒芯214和金属涂层216的相对组分量,并且还在这里描述为全致密粉末压实物。包括散布颗粒的粉末压实物400已经表明大约1.738g/cm3到大约2.50g/cm3的实际密度,该散布颗粒包括Mg和含有正如这里描述的各种纳米基体材料的纳米基体材料416,所述实际密度基本等于预定理论密度,与预定理论密度差至多4%。
[0062] 正如这里披露的粉末压实物400可以配置成响应于井眼中变化的条件在井眼流体中是能够可选择地且可控地溶解的。可以用来提供可选择的且可控溶解性的变化条件的示例包括温度的变化、压力的变化、流速的变化、pH值的变化或者井眼流体化学成分的变化或者它们的组合。包括温度变化的变化条件的示例包括井眼流体温度的变化。例如,包括散布颗粒414的粉末压实物400根据不同的纳米级涂层216相比于在200°F下从大约1到大约2
246mg/cm /hr的相对高的腐蚀速率在3%的KCl溶液中具有在室温下从大约0到大约11mg/cm2/hr的相对低的腐蚀速率,所述散布颗粒包括Mg和含有正如这里所述的各种纳米基体材料的蜂窝状纳米基体材料416。包括化学成分变化的变化条件的示例包括井眼流体的氯离子浓度或pH值的变化或者这二者均变化。例如,包括散布颗粒414的粉末压实物400表明在
2 2
15%的HCl中从大约4750mg/cm/hr到大约7432mg/cm/hr的腐蚀速率,所述散布颗粒包括Mg和含有这里描述的各种纳米级涂层的纳米基体材料416。因此,响应于井眼中变化条件的可选择的且可控溶解性,即井眼流体化学成分从KCl到HCl的变化,可以用于获得正如图11中以图表示出的特性响应,其示出了在选定的预定关键维护时间(CST),变化的条件可以赋予在应用在给定应用中时的粉末压实物400上,比如井眼环境,这造成响应于所应用的环境中的变化的条件而导致的粉末压实物400的特性的可控变化。例如,在预定CST,将与粉末压实物400杰出的井眼流体从根据时间提供第一腐蚀速率和相关重量损失或强度的第一流体(例如KCl)变化到根据时间提供第二腐蚀速率和相关重量损失和强度的第二流体,其中与第一流体相关的腐蚀速率显著低于与第二流体相关的腐蚀速率。例如可以使用响应于井眼流体条件的变化的这种特性来将关键维护时间与尺寸损失限值或特殊应用所诉的最小强度关联,使得当由正如这里披露的粉末压实物400形成的井眼工具或元件在井眼中的维护中(例如CST)不再需要时,可以改变井眼中的条件(例如井眼流体的氯离子浓度)来造成粉末压实物400的快速溶解及其从井眼的移除。在上面所述的示例中,粉末压实物400可选地可以从大约0到大约7000mg/cm2/hr的速率溶解。该响应范围通过在少于一小时内改变井眼流体提供了例如从井眼移除由该材料形成的3英寸直径的球。结合有这里所述的完美强度和低密度特性的上述可选择的且可控溶解行为限定了新的工程散布颗粒纳米基体材料,该材料配置成与流体接触并且配置成根据与流体接触的时间提供从其中一个第一强度条件到低于功能强度阈值的第二强度条件的可选择的且可控过渡,或者提供从第一重量损失量到高于重量损失限值的第二重量损失量的可选择的且可控过渡。散布颗粒纳米基体材料复合物以这里描述的粉末压实物400为特征,并且包括具有纳米基体材料420的蜂窝状纳米基体材料416、包括散布在基体材料内的颗粒芯418的多个散布颗粒414。纳米基体材料416的特征在于固态结合层419,其在整个纳米基体材料范围内延伸。上述的与流体接触的时间可以包括正如上面所述的CST。CST可以包括溶解与流体接触的粉末压实物200的预定部分所需或需求的预定时间。CST还可以包括对应于工程材料或流体或者它们的组合的特性变化的时间。在工程材料特性变化的情况下,该变化可以包括工程材料温度的变化。在流体特性存在变化的情况下,该变化可以包括流体温度、压力、流速、化学成分或pH值或者它们的组合的变化。可以调整工程材料和工程材料或流体的特性的变化或者它们的组合以提供所需的CST响应特性,包括在CST之前(例如阶段1)和CST之后(例如阶段2)的特殊性能(例如重量损失、强度损失)的变化速率,如图11中所示。
[0063] 不受理论限制,粉末压实物400由包括颗粒芯214和相关芯材料218以及金属涂层216和相关金属涂层材料220的涂层粉末颗粒212形成以形成基本连续的三维蜂窝状纳米基体材料416,该蜂窝状纳米基体材料416包括纳米基体材料420,该纳米基体材料420通过相应的涂层216的烧结和相关扩散组合形成,所述涂层216包括颗粒芯418的多个散布颗粒
414。这种独特结构可以包括材料的亚稳态组合,这非常困难或不可能通过由具有相同相关组分材料量的熔融物固化形成。涂层和相关涂层材料可以选择成在预定流体环境中提供可选择的且可控的溶解,比如井眼环境,其中预定的流体可以是注入井眼中或从井眼抽出的通常使用的井眼流体。正如将要从这里的描述进一步理解的,纳米基体材料的受控的溶解暴露出了芯材料的散布颗粒。颗粒芯还可以选择成在井眼流体中也提供可选择的且可控的溶解。替代性地,它们还可以选择成向粉末压实物400提供特殊的机械特性,比如抗压强度或剪切强度,而不必要提供芯材料本身可选择的且可控的溶解,因为这些颗粒周围的纳米基体材料的可选择的且可控溶解将必要地释放它们以便于井眼流体将它们携带走。基本连续的蜂窝状纳米基体材料416的微观结构形态可以选择成利用散布颗粒提供增强相材料,其可以选择成提供各方等大的散布颗粒414,所述微观结构形态为这些粉末压实物提供了强度增强的机械特性,包括抗压强度和剪切强度,因为可以将获得的纳米基体材料/散布颗粒的形态操纵成通过与传统强度增强机构类似的过程提供强度增强,比如晶粒尺寸减小、通过杂质原子的使用导致溶液变硬、沉淀或寿命增强以及强度/工作增强机构。纳米基体材料/散布颗粒结构由于许多颗粒纳米基体材料界面以及正如这里所述的纳米基体材料内离散层之间的界面而易于限制紊乱运动。这是这些材料的压裂行为的典型。使用未涂层的纯Mg粉末制造并承受剪切应力的粉末压实物400足以引起显示出的晶间压裂。相反,使用具有纯Mg粉末颗粒芯214的粉末颗粒212制造以形成散布颗粒414的粉末压实物400以及包括Al来形成纳米基体材料416的金属涂层216并承受足以引起失败的显示出的穿晶压裂和正如这里所述的基本更高的压裂应力的剪切应力。因为这些材料具有高强度特性,所以芯材料和涂层材料可以选择成利用低密度材料或者其他低密度材料,比如低密度金属、陶瓷、玻璃或碳,而对所需应用(包括井眼工具和元件)中的使用不提供必要的强度特性。
[0064] 虽然已经示出并描述了一个或多个实施方式,但是在不脱离本发明精髓和范围的前提下可以对其做出修改和替代。因此,应该理解的是本发明是通过例证而非限定来描述的。
QQ群二维码
意见反馈