Programmable pressure drilling and programmable gradient drilling and a method and apparatus for finishing

申请号 JP2010541509 申请日 2008-12-29 公开(公告)号 JP2011508125A 公开(公告)日 2011-03-10
申请人 シュルンベルジェ ホールディングス リミテッドSchlnmberger Holdings Limited; 发明人 ワーカー カン; ジェフ ダウントン;
摘要 掘削組立体の近くを密封することによってドリルビット坑底組立体に隣接してプログラム可能圧 力 ゾーンを創出する方法は、圧力を坑井面の間隙圧にほぼ等しい又はこれよりも僅かに低い圧力に調節して地層からの 流体 の流れを可能にするステップと、掘削しながら、プログラム可能圧力ゾーンと坑井アニュラス部又は環状域との間で掘削組立体からの流体の流れのポンプによる送り出し又は掘削組立体中への流体の流れのチョークを行うことによって調節し、それにより、坑井の制御が必要でなければ、プログラム可能圧力ゾーンに過剰の圧力が加わるのを回避するステップとを有する。
【選択図】 図1
权利要求
  • プログラム可能圧力掘削方法であって、
    環状空間を密封して坑井内に第1の圧力ゾーンと第2の圧力ゾーンを作るステップと、
    前記第1の圧力ゾーンと前記第2の圧力ゾーンの両方の中の圧力を検出するステップと、
    前記第1の圧力ゾーンと前記第2の圧力ゾーンとの間の圧力を調節して特定の圧力勾配を達成するステップと、
    前記第1の圧力ゾーン内の圧力を動的に調節しながら前記坑井内の前記第1の圧力ゾーン内の掘削を実施するステップとを有する、方法。
  • 掘削しながら前記坑井内の前記第1の圧力ゾーンを強化するステップを更に有する、請求項1記載の方法。
  • 前記第1の圧力ゾーン内の圧力を前記第2の圧力ゾーン内の圧力と均一にするステップを更に有する、請求項1記載の方法。
  • 均圧後、前記第1の圧力ゾーン内での前記掘削を前進させて坑井内の別の箇所で密封を実施するステップを更に有する、請求項1記載の方法。
  • 前記第1の圧力ゾーンを流体的に隔離するステップを更に有する、請求項2記載の方法。
  • 前記強化ステップは、前記第1の圧力ゾーンを安定化する次の選択された方法、即ち、坑井をシーラントで被覆する方法及びスリーブを配備し、ケーシングを定位置にセメント固定し、拡張可能な管を拡張させ、インターロック式連続ストリップ又は砂利充填物を挿入して配備する方法のうちの一方を含む、請求項2記載の方法。
  • 前記第1の圧力ゾーン内の地層圧力及び地層深さを連続的にモニタして掘削された前記坑井の流動的ポテンシャルプロフィールを生じさせるステップを更に有する、請求項1記載の方法。
  • 前記第1の圧力ゾーン内の圧力を調整し、前記流動的ポテンシャルプロフィールを測定して地層圧力及び透過性を求めるステップを更に有する、請求項1記載の方法。
  • 前記地層を音波エネルギーで連続的に励振し、前記第1の圧力ゾーン内の圧力を調整しながら前記地層内の音速を測定し、それにより前記第1の圧力ゾーンを破損させないで地層特性を検出するステップを更に有する、請求項1記載の方法。
  • 掘削しながら坑井情報を前記第1の圧力ゾーンから動的に坑外に伝達し、前記坑外から戻った制御信号を受け取るステップを更に有する、請求項1記載の方法。
  • 前記坑井情報は、ワイヤードドリルパイルを介して伝達される、請求項10記載の方法。
  • 前記坑井が前記第1の圧力ゾーン内で掘削されているときに、前記坑井内の各圧力ゾーンの産出可能性を判定するステップを更に有する、請求項1記載の方法。
  • 前記第1の圧力ゾーン内に配置された1つ又は2つ以上のセンサと連絡状態にある制御ユニットによって判定された情報を利用してドリルビットを前記第1の圧力ゾーン内でかじ取りするステップを更に有する、請求項1記載の方法。
  • 坑井のプログラム可能圧力掘削方法であって、
    環状シールを坑底組立体を備えたドリルパイプの遠位端部の近くに配置するステップを有し、前記環状シールは、ドリルパイプの連続運動を可能にし、
    前記環状シールを前記坑井に係合させて前記坑井内の前記シールの下で前記坑底組立体に隣接して位置するアニュラス部内の変更可能な環状圧力部を形成するステップを有し、
    前記環状シールを維持しながら前記坑底組立体を利用して前記坑井を掘削するステップを有し、
    前記シールの近位側に加わる圧力とは異なる圧力で前記坑井の掘削中、前記シールの遠位側に加わる前記坑井の圧力を維持するステップを有する、方法。
  • 前記シールを解除しないで前記シールを通って掘削流体及び掘屑を除去するステップを更に有する、請求項14記載の方法。
  • 前記坑井内の圧力は、前記環状シールの反対側に位置したアニュラス部内の圧力よりも低い、請求項14記載の方法。
  • 掘削坑井内の流体圧力を制御する方法であって、
    ドリルパイプとドリルストリングの末端部の近くに位置する坑井面との間に可動坑井シールを構成するステップと、
    坑井面のところの第1の流体圧力及び前記坑井シールの反対側における坑井と前記ドリルストリングとの間の環状空間内の第2の圧力を検出するステップと、
    掘削しながら流体を前記坑井面から前記坑井シールを通って前記環状空間内に圧送することにより坑井面のところの圧力を調節するステップと、
    掘削が前記坑井面のところで進んでいるときに前記坑井シールを動かすステップとを有する、方法。
  • 前記可動シールは、トラクタを付勢することにより作られる、請求項17記載の方法。
  • 前記可動シールは、スクリューを動かすことにより作られる、請求項17記載の方法。
  • 坑井シールを前記坑井面に当接配置するステップを更に有する、請求項17記載の方法。
  • 前記坑井シールは、スリーブである、請求項17記載の方法。
  • 前記坑井シールは、前記坑井面と反応する密封剤である、請求項17記載の方法。
  • 前記坑井シールは、拡張可能なケーシングである、請求項17記載の方法。
  • 前記坑井シールは、インターロック式ストリップである、請求項17記載の方法。
  • プログラム可能圧力掘削装置であって、
    ドリルストリングの遠位端部に連結可能なドリル組立体と、
    前記ドリル組立体の近位側に配置された第1の圧力センサと、
    前記ドリルストリングと隣接の円周方向壁との間に形成されたアニュラス部から前記ドリルストリングの遠位端部を密封するよう選択可能に係合し、前記ドリル組立体の前方進行につれて動くシールと、
    前記シールの反対側に設けられていて、前記ドリル組立体の前記遠位端部と前記アニュラス部との間の圧力差を比較測定する第2の圧力センサと、
    流体を前記ドリル組立体の前記遠位端部に隣接して位置する領域から前記シールを通過して前記アニュラス部に取り出す少なくとも1つのポンプとを有する、プログラム可能圧力掘削装置。
  • 地層強化シールを更に有する、請求項25記載のプログラム可能圧力掘削装置。
  • 前記シールは、スリーブである、請求項25記載のプログラム可能圧力掘削装置。
  • 前記隣接の円周方向壁は、前記坑井である、請求項25記載のプログラム可能圧力掘削装置。
  • 前記隣接の円周方向壁は、ケーシングである、請求項25記載のプログラム可能圧力掘削装置。
  • 前記シールは、インターロック式の螺旋巻きコイルである、請求項25記載のプログラム可能圧力掘削装置。
  • 前記スリーブの近位端部は、前記地層への当接配備に先立ってケーシングにラッチ止めされる、請求項27記載のプログラム可能圧力掘削装置。
  • 前記プログラム可能圧力掘削装置は、逆循環式中心排出ドリルビット及びアンダーリーマである、請求項25記載のプログラム可能圧力掘削装置。
  • 说明书全文

    炭化素坑井の掘削及び仕上げのための方法及び装置が開示され、特に、掘削坑底組立体に隣接して密閉チャンバを構成し、地層損傷、流体損出及び表層損傷を回避する圧に維持可能であるべきそのチャンバ内の圧力を選択的に調節する一方で、ドリルビット寿命を延ばした状態で高い掘削速度の実現を可能にし、壁に対する付着性の差を最小限に抑え、掘削が進んでいるときに地層から集められた地層情報を最大活用する方法及び掘削を完了した後に、坑井健全性を維持しながら永続的なケーシング設置及びセメント固定を実施する方法が開示される。 開示される装置は、掘削が進んでいるときに地層保護シールを提供して坑井健全性を維持しながら開いた坑井の仕上げを容易にすることができる。 かかる地層保護シールが互いに異なる地層圧力状態の多数のゾーンを横切って設置された状態で永続的なケーシング設置及び坑井のセメント固定を行う方法が開示される。

    用語 平衡不足掘削(underbalanced drilling:UBD)は、貯留層間隙圧よりも低い掘削用流体静水頭で坑井を掘削する方式である。 圧力管理式掘削(managed pressure drilling:MPD)は、坑底圧力が貯留層間隙圧僅かに高く又はこれに等しく保たれる「低水頭」及び「平衡状態」掘削を含む。 逆循環式中心排出(Reverse Circulation Center Discharge:RCCD)は、地層壁との掘削用流体接触を最小限に抑えた状態で平衡不足状態の坑井を掘削する方式である。 全ての掘削は、一般的な意味において圧力管理型掘削であると考えることができるので、本明細書で用いるプログラム可能圧力掘削(Programmable Pressure Drilling:PPD)という用語は、掘削中及びセメント固定中、正又は負の圧力オフセットを動的に計算し、調節し、そして適用することによりダウンホール環状圧力を規定の環境限度範囲内に正確に制御するために用いられる適応坑井構築プロセスを意味するものとする。 さらに、プログラム可能勾配掘削(Programmable Gradient Drilling:PGD)システムは、PPD方式を採用し、それにより、坑井の残部内の圧力を乱さないで掘削しながら可変圧力オフセットを坑井の小刻みな区分にわたり調整方式で適用することができ、その結果、坑井を更にケーシング設置すると共にこれを仕上げる完全にプログラム可能な環状圧力プロフィール又は勾配が得られるようにする適応坑井構築プロセスを意味している。 PPD及びPGDは、更に、自動プロセス制御ループの利用度が増したプログラム可能自動圧力掘削(Programmable Automated Pressure Drilling:PAPD)又はプログラム可能自動勾配掘削(Programmable Automated Gradient Drilling:PAGD)と理解することができる。

    PPDは、掘削ゾーン内における規定の圧力差で坑底圧力の維持を説明している。 これは、制御ユニット・シール組立体の利用によって達成される。 ボーリング孔内の所望の場所に設置された静止シールユニットは、坑井を制御し、掘削ゾーンを通って循環している掘削用泥水を用いてビットの冷却を行うのに十分な流れをもたらし、掘屑を制御ユニット及びシールユニットの遠位側から制御ユニット及びシールユニットの近位側に運搬し、そして坑外又は地表に戻すのに十分な流量を提供するのに足る圧力状態で制御ユニットとシールユニットの両方の近位側に加わる圧力を維持する。 シールにより、掘削は、シールの近位側に生じる圧力とは異なる圧力を掘削ゾーンに維持した状態で可動制御ユニットの遠位側で続くことができる。

    PGDは、PPDを実施しながら、圧力バリヤとして働くと共に地層を小刻みに強化し、それにより同時に可動制御ユニットに密接した可動シールユニットを提供する性状が化学的か機械的かのいずれかの地層保護シールを地層壁上に小刻みに配備し、両方のユニットの運動を掘削組立体の運動に密に協調させる追加の観点を記載している。

    従来型掘削方式又はOBDは、典型的には、坑井内の掘削用流体の静水圧を地層の間隙圧とその破断圧力との間に維持する。 掘削用流体は、地層流体を制御すると共に掘屑を地表まで運搬するために坑井内で連続的に循環している。 掘削用流体は又、坑井を安定化すると共にドリルビットを潤滑したり冷却したりするよう働く。

    本発明は、典型的なUBDと関連した安全上の危険性、例えばH 2 S放出、坑井中への炭化水素の相当な量の予想外且つ予定外の放出(「キック」)を最小限に抑えるためのOBDを環境規則が掘削中におけるフレア(flare)又は産出を禁じている場合、掘削ゾーンにおけるMPD又はUBDの利点と組み合わせようとするものである。 かかる方法は、地層の損傷、循環の減少及び他のあらゆる周知の問題を回避する。 さらに、本発明は、UDB又はMPDプログラムを備えた一般に見受けられる外部機器、例えば窒素注入ユニット、閉鎖タンクバッテリ、多相セレクタ、回転チョーク装置、真空脱気装置等を装備した掘削構造体の必要性を回避する。

    典型的には、掘削用流体は、水を主成分とする液体か油を主成分とする液体かのいずれかであり、かかる掘削用流体は、経験する又は予想される坑井条件に特有の密度、流体損失特性及び流動学的性質を与えるための種々の固体と液体の混合物を含む。 これら従来型掘削方法は、関心のある地層上における掘削用流体のこの静水頭によって生じる認識可能な問題にも関わらず坑井を掘削する最も安全な手法として長年認識されている。 掘削用流体の圧力は、自然状態の地層の圧力よりも高いので、流体の進入がしばしば起こり、それにより地層のウォッシュアウト又は地層構造それ自体中への流体及び固形物の進入に起因した物理的閉塞によって生じる地層に対する透過性による損傷が生じる。

    UBDは、坑井流体圧力勾配が自然の地層の圧力勾配よりも低く、それにより掘削が進んでいるときに坑井流体が流れることができるようにする掘削として開発された。 この技術は、循環減少を最小限に抑えると共に進入速度を増大させる一方で、地層構造体中への掘削用流体の進入により生じる損傷を最小限に抑える。 産出ゾーンは、直ちに識別され、詳細な坑井プロフィールをこれら平衡不足坑井内における掘削プログラムの進展から形成でき、これにより、特に辺境の又は古い地質学的地層に関して掘削時間が短くなる。

    掘削時間の短縮、ビット寿命の延長、地層変化の早期検出及び掘削中の地層の産出間隔の動的試験は、UBDの使用によって促進される。 掘削効率の増大は、損傷されていない地層からの採収のための試掘と一緒に、平衡不足掘削を非常に望ましいものにする。

    現在実施されているUBDでは、安全且つ効率的な掘削のための専用の坑外機器が必要である。 掘削用流体の密度制御は、典型的には、ドリルパイプかパラサイトパイプかのいずれかの中への窒素注入によって達成される。 これには、適当な窒素注入を行うために相当大規模な坑外準備が必要である。 坑底圧力を制御するための坑外チョークを利用すると、スタンドパイプ圧力を昇降させることができるが、チョークの動作は、固有の遅れ時間に起因して坑底組立体では生じない。 遅れ時間の推定は、単相システムにとって通常容易であるが、多相流れシステムは、応答を正確に制御したり管理したりすることはいうまでもなくモデル化するのが複雑且つ困難であり、それ故これらの応答を予測することが困難である。

    UBDの結果として、正しく管理されなければ、ブローアウト(暴噴)、火災又は爆発の恐れが高くなる場合があり、UBDでは、リグ係員を全く異なるシステムで十分に訓練する必要があり、UBDは、広いデッキ空間を占めると共に通常沖合に非常に拘束されている追加の海底スペースを必要とし、更に、典型的には、窒素注入及び多相流れチョークに必要な追加の坑外機器及び分離機器に鑑みて費用が高く付く。 さらに、これらの問題の全てにかかわらず、UBDは、利点がコストを遙かに上回るので現代型掘削プログラムにおいて依然として広く用いられている。

    MPDは、坑井内の環状圧力プロフィールを正確に制御する一群の技術として当業界において知られている。 掘削及びセメント固定中、環状圧力のプロフィールに対して常に正確な制御を行う必要性は、これが間隙圧力及び破砕圧力方式の掘削及び仕上げ、掘削上の危険性の減少に起因した掘削効率の向上を可能にすると共に更に坑井内に設置されるべき直径の減少した多数の高価なケーシングストリングの利用を回避するので十分に立証されている。 地球の地層は、結果的に数百年間にわたって予想外の圧力及び岩石強度の変化を生じさせる地質学的変化を受ける。 複雑で深海に存在し且つ不便な貯留層に達するため、当業界は、同一坑井区分において多数の互いに異なる間隙圧及び破砕勾配による掘削を行う新たな方法を必要としている。 今日、環状圧力を変化させ、環状圧力を坑井内の多数の固定された箇所で所望の限度内に保つことができる一方で、坑井の掘削を連続して行う技術は存在していない。 当業界は、地表からの正の背圧をアニュラス部側に及ぼして勾配ポンプを作動停止させたときに等価循環密度(ECD)減少を補償することによって坑井の底部の近くの一箇所において泥水静水圧に等しい又はこれよりも高い所望の圧力を維持する一定坑底圧力システムを知っている。 かかる方法及び関連の装置は、坑底圧力の動的減少を可能にしない。 というのは、減少があると、ゆっくりとしたプロセスである泥水静水圧現象を変える必要があるからである。 かかる方法及び装置は又、これらの変化が坑井の残部の環状圧力プロフィールに影響を及ぼすのを阻止せず、坑井健全性に対する結果としての悪影響又は地層への流入の誘発を阻止しない。 当業界は、勾配の変化をパラサイトストリングの使用によるN 2を注入するかダウンホールポンプを利用するかのいずれかによって達成できる地表と坑底との間の固定箇所を確立するデュアル勾配システムを知っている。 デュアル勾配技術の性能がちょうど2つの勾配に限定されるだけでなく、これら勾配が掘削及び仕上げ中、変化しないようにする際の正確さ及び精度は、多くの制御できない要因、例えば圧縮可能な掘削用流体を含む長い開口した穴区分、地表流体流入に対する制御の欠如、常時連続循環要件及び坑井に沿って全体的なダウンホール測定の欠如に起因して問題である。

    本発明は、ドリルビット及び坑底組立体に隣接したところの圧力を制御し、掘削しながら地層を密封すると共に/或いは強化することにより従来型平衡過剰掘削のセーフガードの全てを伴う平衡不足掘削の利点の全てを得ようとするものである。 本発明は又、坑井全体にわたって環状圧力プロフィールを正確に制御することにより現行のMPD方式の欠点を解決しようとするものである。 本発明は又、設計、掘削用流体の洗浄及びその維持と関連した問題及びコストに関する新規な解決策を当業界に提供する。 本発明は又、平衡不足状態の調査井を安全に掘削し、それにより従来型OBD技術では従来見落とされていた新たな産出ゾーンを発見するチャンスを増大させる解決策を当業界に提供する。

    掘削業界は、長年これらの問題に対する解決策を模索していた。 例えば、米国特許第5,873,420号明細書は、ドリルビットに隣接して制御弁を用いて空気を泥水混合物中に放出し、それにより検出された坑底圧力及び他の流体測定値に基づいて静水頭を小さくすることを開示している。 開口坑底圧力が非安全レベルに達した場合、空気供給量を減少させ又はゼロにし、それにより地層圧力を制御するために高密度掘削泥水の柱を利用する。

    同様に、米国特許第6,732,804号明細書は、掘削泥水の柱を坑井アニュラス部内に維持して坑井が暴噴しないよう制御することができる同心ケーシングを利用した動的マッドキャップシステムを開示している。 この特許明細書は又、ドリルビット組立体が点検整備又は交換のために引き出す際に坑底部分を封止する配備弁を用いることを開示している。 先行技術の装置の中には、開口穴地層強化又は保護のための手段を開示しているものは存在しない。

    例えば、米国特許第5,954,137号明細書及び同第7,086,481号明細書に示されている裸孔平衡不足掘削を保護しようとする先行技術のダウンホールプラグ装置は、ダウンホールプラグを設定したりこれを解除したりするドリルストリング操作を必要としている。

    米国特許第5,873,420号明細書

    米国特許第6,732,804号明細書

    米国特許第5,954,137号明細書

    米国特許第7,086,481号明細書

    本願は、プログラム可能圧力掘削方法であって、環状空間を密封して坑井内に第1の圧力ゾーンと第2の圧力ゾーンを作るステップと、第1の圧力ゾーンと第2の圧力ゾーンの両方の中の圧力を検出するステップと、第1の圧力ゾーンと第2の圧力ゾーンとの間の圧力を調節して特定の圧力勾配を達成するステップと、第1の圧力ゾーン内の圧力を動的に調節しながら坑井内の第1の圧力ゾーン内の掘削を実施するステップとを有することを特徴とする方法を開示する。 この方法は、掘削しながら坑井内の第1の圧力ゾーンを強化するステップ、第1の圧力ゾーン内の圧力を第2の圧力ゾーン内の圧力と均一にするステップ及び均圧後、第1の圧力ゾーン内での掘削を前進させて坑井内の別の箇所で密封を実施するステップを更に有するのが良い。

    この方法は、第1の圧力ゾーンを流体的に隔離するステップを更に有するのが良い。 強化ステップは、第1の圧力ゾーンを安定化する次の選択された方法、即ち、坑井をシーラントで被覆する方法及びスリーブを配備し、ケーシングを定位置にセメント固定し、拡張可能な管を拡張させ、インターロック式連続ストリップ又は砂利充填物を挿入して配備する方法のうちの一方を含むのが良い。

    この方法は、第1の圧力ゾーン内の地層圧力及び地層深さを連続的にモニタして掘削された坑井の流動的ポテンシャルプロフィールを生じさせるステップ又は第1の圧力ゾーン内の圧力を調整し、流動的ポテンシャルプロフィールを測定して地層圧力及び透過性を求めるステップを更に有するのが良い。

    この方法は、地層を音波エネルギーで連続的に励振し、第1の圧力ゾーン内の圧力を調整しながら地層内の音速を測定し、それにより第1の圧力ゾーンを破損させないで地層特性を検出するステップ及び/又は掘削しながら坑井情報を第1の圧力ゾーンから動的に坑外に伝達し、坑外から戻った制御信号を受け取るステップを更に有するのが良い。 坑井と地層の情報に関するこの連絡は、ワイヤードドリルパイルを介して行われるのが良い。

    さらに、この方法では、坑井が第1の圧力ゾーン内で掘削されているときに、坑井内の各圧力ゾーンの産出可能性を判定し、それにより坑井が掘削されているときに密な坑井及び地層の情報を提供し、掘削後においてそれ以上の調査又は研究を必要としないことを想定している。 この方法は、掘削しながら瞬時測定を実施することを想定しているので、この方法では、第1の圧力ゾーン内に配置された1つ又は2つ以上のセンサと連絡状態にある制御ユニットによって判定された情報を利用してドリルビットを第1の圧力ゾーン内でかじ取りすることができる。

    理解可能であるように、坑井のこのプログラム可能圧力掘削方法は、環状シールを坑底組立体を備えたドリルパイプの遠位端部の近くに配置するステップを有し、環状シールは、ドリルパイプの連続運動を可能にし、環状シールを坑井に係合させて坑井内のシールの下で坑底組立体に隣接して位置するアニュラス部内の変更可能な環状圧力部を形成するステップと、環状シールを維持しながら坑底組立体を利用して坑井を掘削するステップと、シールの近位側に加わる圧力とは異なる圧力で坑井の掘削中、シールの遠位側に加わる坑井の圧力を維持するステップとを更に有する。 この方法は、シールを解除しないでシールを通って掘削流体及び掘屑を除去するステップを更に有するのが良く、坑井内の圧力は、環状シールの反対側に位置したアニュラス部内の圧力よりも低い。

    掘削坑井内の流体圧力を制御する方法は、ドリルパイプとドリルストリングの末端部の近くに位置する坑井面との間に可動坑井シールを構成するステップと、坑井面のところの第1の流体圧力及び坑井シールの反対側における坑井とドリルストリングとの間の環状空間内の第2の圧力を検出するステップと、掘削しながら流体を坑井面から坑井シールを通って環状空間内に圧送することにより坑井面のところの圧力を調節するステップと、掘削が坑井面のところで進んでいるときに坑井シールを動かすステップとを有する。

    可動シールは、トラクタを付勢することにより、或いはスクリューを動かすことにより作られるのが良い。 この方法は、坑井シールを坑井面に当接配置するステップを更に有するのが良い。 坑井シールは、スリーブ、トラクタを付勢するかスクリューを動かすかのいずれを行うことにより坑井壁に押し付けられると坑井面と反応する密封剤、坑井壁面に係合するよう拡張する拡張可能なケーシング又はインターロック式部材に係合して地層を密封し又は強化するようコイルから解けて坑井壁面に巻き付けらるインターロック式ストリップであるのが良い。

    本発明のプログラム可能圧力掘削装置は、ドリルストリングの遠位端部に連結可能なドリル組立体と、ドリル組立体の近位側に配置された第1の圧力センサと、ドリルストリングと隣接の円周方向壁との間に形成されたアニュラス部からドリルストリングの遠位端部を密封するよう選択可能に係合し、ドリル組立体の前方進行につれて動くシールと、シールの反対側に設けられていて、ドリル組立体の遠位端部とアニュラス部との間の圧力差を比較測定する第2の圧力センサと、流体をドリル組立体の遠位端部に隣接して位置する領域からシールを通過してアニュラス部に取り出す少なくとも1つのポンプとを有する。

    プログラム可能圧力掘削装置は、地層強化シールを更に有するのが良く、シールは、スリーブであり、隣接の円周方向壁は、坑井かケーシングかのいずれかであるのが良い。 シールは、インターロック式の螺旋巻きコイルであるのが良い。

    プログラム可能圧力掘削装置では、スリーブの近位端部は、地層への当接配備に先立ってケーシングにラッチ止めされ、次に、これを裸孔坑井内に配備して掘削の仕上げを行いながら地層を密封し又は強化するのが良い。 地層の性状に鑑みて、この装置は、掘削用流体又は掘屑の影響を最も少なくすることにより産出地層の健全性を維持するよう設計されている。 したがって、この開示内容のもう1つの特徴は、好ましくは、逆循環式中心排出ドリルビット及びアンダーリーマを備えた掘削装置を用いることであり、ただし、この掘削組立体には、標準型パイロット穴ドリルビットも利用できる。

    プログラム可能圧力掘削の実施する方法の略図である。

    プログラム可能圧力掘削の実施する方法の略図である。

    環状圧力差を管理するために可動制御ユニット内に設置された協調ブラダを利用したポンプの略図である。

    ケーシング内に設置された非可動密封ユニットを用い、ビットの近くに可動制御ユニットを用いて圧力を制御する二次戻り導管を提供することによりプログラム可能圧力掘削(PPD)を実施する方法の略図である。

    本発明のPPDプログラム可能圧力掘削及び仕上げの観点を実施する一方法の連続略図の1つであり、タイバック(tie-back)ストリングの遠位端部に取り付けられた異形ラッチ内への坑底組立体の位置決め状態を示すプログラム可能圧力掘削システムの実施形態の略図である。

    本発明のPPDプログラム可能圧力掘削及び仕上げの観点を実施する一方法の連続略図の1つであり、ケーシング固定状態の坑井の遠位端部に設けられたラッチまで下降されている変形実施形態の略図である。

    本発明のPPDプログラム可能圧力掘削及び仕上げの観点を実施する一方法の連続略図の1つであり、ラッチ内に嵌め込まれたりタイバックストリングから外されたりする坑底組立体の略図である。

    本発明のPPDプログラム可能圧力掘削及び仕上げの観点を実施する一方法の連続略図の1つであり、地層の掘削を続行するためにドリルストリングのランディングを待機している坑底組立体の略図である。

    本発明のPPDプログラム可能圧力掘削及び仕上げの観点を実施する一方法の連続略図の1つであり、掘削を続行するためにライナ(タイバック管)をラッチ解除する前における坑底組立体を備えたラッチ止めドリルストリングの略図である。

    本発明のPPDプログラム可能圧力掘削及び仕上げの観点を実施する一方法の連続略図の1つであり、掘削が続行することができるようにするラッチ解除ドリルストリング及びタイバック管の略図であり、掘削用流体流路を更に示す図である。

    本発明のPPDプログラム可能圧力掘削及び仕上げの観点を実施する一方法の連続略図の1つであり、ケーシング内へのラッチ止めが行われ、それによりドリルストリング及びドリルビットを(図示していない他のBHA、例えばモータ、LWD、ダウンホールポンプと一緒に)穴から引き外すことができるようにするために引き戻されたタイバックストリングの略図である。

    本発明のPPDプログラム可能圧力掘削及び仕上げの観点を実施する一方法の連続略図の1つであり、ドリルビット(図示していない他のBHA、例えばモータ、LWD、ダウンホールポンプ等)が地表まで引かれている一方で、これらの除去に起因して生じた貫通ボアが穴内に残されたBHA内に設けられているダウンホール弁を用いて閉鎖され、それにより圧力シールが維持されている状態を示す略図である。

    本発明のPPDプログラム可能圧力掘削及び仕上げの観点を実施する一方法の連続略図の1つであり、次のケーシングストリングの設定に備えてタイバックライナのための全深さのところのドリルビットの略図である。

    本発明のPPDプログラム可能圧力掘削及び仕上げの観点を実施する一方法の連続略図の1つであり、掘削の完了後にドリルビット(並びに図示していない他のBHA、例えばモータ、LWD、ダウンホールポンプ等)を地表まで引いている一方で、これらの除去に起因して生じた貫通ボアが穴内に残されたBHA内に設けられているダウンホール弁を用いて閉鎖され、それにより圧力シールが維持されている状態を示す略図である。

    坑井を仕上げるようプログラム可能圧力掘削方法によって達成可能なセメント固定作業の略図である。

    可動制御ユニット及びシールユニット用いて本発明のPGDプログラム可能勾配掘削及び仕上げを実施する方法の略図である。

    可動制御ユニット及びシールユニット用いて本発明のPGDプログラム可能勾配掘削及び仕上げを実施する方法の略図である。

    可動制御ユニット及びシールユニット用いて本発明のPGDプログラム可能勾配掘削及び仕上げを実施する方法の略図である。

    可動制御ユニット及びシールユニット用いて本発明のPGDプログラム可能勾配掘削及び仕上げを実施する方法の略図である。

    可動制御ユニット及びシールユニット用いて本発明のPGDプログラム可能勾配掘削及び仕上げを実施する方法の略図である。

    本発明のPGDプログラム可能勾配掘削及び仕上げを実施する装置の一実施形態の略図である。

    PGADプログラム可能勾配掘削及び仕上げを実施する際に用いられる装置のトラクタ構成の略図である。

    本発明のトラクタ構成の別の実施形態を示す図である。

    トラクタが泥水モータによって駆動される変形実施形態の更に別の図である。

    本発明のPGDプログラム可能勾配掘削及び仕上げを実施する際に用いられる拡張型スクリュー実施形態の略図である。

    化学的封孔処理剤を坑井壁に被着配置するために用いることができる拡張型スクリューの変形例の分析的略図である。

    本発明のPGDプログラム可能勾配掘削及び仕上げ観点を実施する際に用いられるトラクタ構成の略図である。

    本発明のPGDプログラム可能勾配掘削及び仕上げ観点を実施するための一方法の連続略図である。

    本発明のPGDプログラム可能勾配掘削及び仕上げ観点を実施する際に用いられるインターロック式ストリップ配備掘削組立体の略図である。

    図1及び図2は、掘削組立体の内部に配置された可動制御ユニットC及び隣接のケーシングか隣接の坑井壁かのいずれかに当てて掘削組立体周りに位置する環状シールを形成するシールユニット106を用いてプログラム可能圧力掘削を実施する方法の略図である。 開示する制御ユニットCは、検出及び測定を行い、この制御ユニットは、ワイヤードケーシング又はダウンホール測定及び制御技術において周知の任意他の方法により電磁信号泥水パルス遠隔測定と連絡してこれでもって制御可能である。 シールユニット106は、固定されていても良いが可動であっても良く、或いは、可動動的シールであっても良い。 固定された場合、シールユニット106は、シール106を貫通する掘削組立体の運動を可能にする。 動的である場合、シールユニット106は、掘削組立体の運動と共に動いて圧力ゾーンのシールを維持すると共にプログラム可能勾配掘削(PGD)状況において、坑井壁上に地層安定化又は密封材料を配備する。

    制御ユニットCは又、ドリルストリング内のポンプ圧力と協調してチョーク/ポンプシステムによりプログラム可能圧力ゾーン110に出入りする流体の流れを制御する。 例えば、プログラム可能圧力ゾーンが掘削の過剰平衡を回避するよう圧力を下げることを必要とした場合、制御ユニットCは、流体がドリルビットに到達するのを阻止し又はプログラム可能圧力ゾーン110からの流出流量を増大させ或いは、これらの両方を行ってプログラム可能圧力ゾーン内に所望の圧力を達成する。 測定値、例えば流動的ポテンシャル(可採埋蔵量)を用いると、プログラム可能圧力ゾーン内に維持されるべき所望の圧力を識別する一方で、かかる所望の圧力が当初他の貯留層特徴付け及びモデル化技術を用いても分かっていない場合に掘削を行うことができる。

    制御ユニットCに近接して設けられたポンプPは、掘削用流体をプログラム可能圧力掘削ゾーン110から環状シール106の真上のアニュラス部又は環状域112に動かすことができ、ここで、掘削用流体及び掘屑は、通常の仕方で地表まで持ち上げられる。 このポンプPは、制御ユニットCのチョーク/分流弁と協調して全掘削用流体の流れの第1の部分をドリルストリングDSの内側の表面から環状シール106の真上ドリルストリングDSの外部のアニュラス部112に逸らし、この第1の部分の容量パーセントは、掘削技術の当業者には既に知られているように全ての掘屑を地表まで持ち上げて戻すのに十分な環状速度を生じさせるのに必要な水圧により決定される。 ポンプPは、プログラム可能圧力掘削ゾーンに出入りする掘削用流体の第2の部分の流れをプログラム的に制御する。 この第2の部分の全容量パーセントは、ビットに対して冷却作用を提供する一方で、当業者には知られているように、掘削のためにビットの必要とするのに十分な水圧エネルギーを送り出すのにも必要な流れによって定められるが、本発明の目的のうちの1つである流れのプログラミングは、地層を保護するため、例えば地層を過剰の水圧から保護するためにプログラム可能掘削ゾーン圧力を最適圧力状態に維持するためにポンプPによって実施される。

    坑外ポンプからの流れは、制御ユニットCの方向にアニュラス部を通って再循環してプログラム可能圧力ゾーン中への流れを減少させるよう分流可能である。 プログラム可能圧力ゾーン内の検出圧力は、制御ユニットCに隣接して設けられていて、これによって制御されるポンプPによって更に管理され、ポンプPは又、掘削泥水及び掘屑をPPDゾーンから除去する。 ポンプPは、坑外からの電力を提供する必要性を回避するためにダウンホール電源、例えば油圧モータ(図示せず)により駆動される。 既存の技術、例えば坑外からケーブルによって提供される電気的サービスも又、本発明の精神から逸脱することなく、利用できる。 また、坑底掘削組立体によって用いられる標準型泥水モータを用いると、ポンプPを駆動することができる。

    標準型フロードリルビットが図1に概略的に示されているが、図2に示されているように、好ましくは、RCCDドリルビット構成が用いられ、それによりプログラム可能掘削ゾーン中への掘削用流体の流入を一段と最小限に抑えるが、かかる構成は、圧力ゾーン内における坑井から掘屑を除くには十分である。 ビットを冷却すると共に制御ユニットC、ポンプP及び弁構造を通って掘屑を上昇させるのに必要な掘削用流体の流量は、過剰平衡状態の掘削作業に通常用いられる掘削用流体よりも著しく少ないことが見込まれる。

    泥水モータを用いることにより、泥水ポンプ及びポンプPの回転速度をほぼマッチさせることが可能であり、それにより、歯車箱の必要性が回避される。 伝動装置(ウォブル型継手)がモータ及びポンプに設けられるローブの異なる数を考慮に入れるうえで最も用いられる可能性が高い数値であることが見込まれる。 プログレッシブキャビティポンプは、研磨用途において遠心ポンプと比較して優れた性能を発揮する。 モータとポンプの両方は、中空シャフトを備える。 モータの場合、これにより、ポンプに動力を供給するのに必要な流量だけをモータに通すことができる。 ポンプの場合、このシャフトにより、掘削流体をドリルビットを通過してポンプそれ自体をバイパスすることができる。

    プログラム可能勾配掘削(PGD)を実施するため、本明細書において詳細に説明しているように、制御ユニットCは、シールユニット106を作動させてシーラント、例えばインテリジェント泥水ケーク又は機械的バリヤ、例えばスリーブを配備する。 変形実施形態では、拡張可能なパッカ、パッカの内壁に当ててスウエージにより配備される拡張可能なケーシングシステム又はこの技術分野において現在利用できる任意他の形式のボーリング孔安定化手段を提供する。

    最後に、かかる圧力ゾーンをいったん掘削して強化し又は安定化すると、制御ユニットCは、過剰平衡ゾーン112内の圧力と平衡不足状態のゾーン110の均一化を可能にし、坑井内の次の作業のためにシールを解除する。 変形例として、この方法は、外部パッカを設定することにより安定化されたゾーンのゾーン隔離をもたらすことができ、これらは全て掘削業界において周知の仕方で実施される。 このプロセスを坑井の健全性を保つのに必要なほど頻繁に繰り返し実施するのが良く、他方、仕上げ及び穴あけに適当なゾーンを検出する。 掘削がこれらゾーン内の過剰平衡状態では起こらず、地層が高圧掘削用泥水ケークで塞がっていないままであるので、産出を開始するのに費用がかかり且つ時間のかかる坑井準備を企てる必要がない。

    加うるに、本発明の技術の利用は、PPDゾーン内への掘削用流体の流量を減少させた状態で前もって連続掘削を行うことにより最適化され、かくして、低トルク高貫通速度のビットであるドリルビット組立体を首尾良く配備できたかどうかで左右され、かかるビットは、ビットの1平方インチ面積あたり流体動力(HSI)が得られる。 毎分約150ガロン(1ガロンは、3.8リットル)の流量が泥水モータの流体動力を提供すると共にビットの高い貫通速度を依然として保つのに十分であることが見込まれる。 低トルクビット、例えば米国特許第6,892,898号明細書に見受けられる旋回式ドリルビットをこの用途に用いることができる。 当業者には周知である他の既存の従来設計のドリルビットを本発明の精神又は範囲から逸脱することなく代替しても良い。 RCCDビット技術の利用は、掘削用泥水とPPDゾーン坑井壁の接触を回避するうえで非常に望ましい。

    図3は、ポンプ1002の流量の媒介調整によるPPDゾーン内のプログラム可能圧力P2と圧力ゾーンのシールの情報のアニュラス部圧力P1との圧力差に起因してインフレートされ又はデフレートされる協調ブラダ対BL1,BL2を提供する別の実施形態の略図である。 ポンプ1002は、作動油をリザーバRから密閉チャンバC,Dに流して掘削用流体と掘屑をプログラム可能圧力ゾーンからアニュラス部内に交互に移動させる一方で、交互に位置するチャンバとブラダを拡張させ、流体と掘屑を吸収し、符号P2のところのプログラム可能圧力ゾーン内の圧力を維持する。 さらに、これにより、PPDゾーン内への流体の出入りに起因する圧力衝撃波を阻止するという追加の利点が得られる。 各協調ブラダに設けられていて、チャンバ1004に連結された符号1006V1(C)及び符号1008V2(C)として示された弁装置並びにチャンバ1005に連結された弁装置1007V1(D)及び弁装置1009V2(D)が、図1に示されると共に上述した制御ユニットCによって制御され、流体をプログラム可能圧力ゾーン内に移動させたりこれから出して圧力P1を有するアニュラス部内に移動させる。

    図3の2つのブラダの協調は、本発明の精神又は意図から逸脱することなく、他の手段によっても達成できる。 例えば、ブラダを真空チャンバ内に挿入しても良く、真空チャンバは、ブラダを完全インフレーション状態にする。 機械的ネット又は装置がブラダの周りに配置され、これは、制御ユニットCからの信号を受け取ると、ネット内に引っ張り込んでブラダを収縮させ、それによりブラダから掘削用流体及び掘屑を除去してこれを空にし、掘削用流体及び掘屑は、プログラム可能圧力ゾーン内の拡張中のチャンバ内に吸い込まれる。 弁装置は、この場合も又、ブラダに出入りする掘削用流体及び掘屑の運動を調節し、それにより圧力管理ゾーンへの圧力波による衝撃を回避すると共に掘削ゾーン内圧力を器具に隣接した自然な状態の管理機器圧よりも低く保つ。

    図4は、ケーシング内に設置された非可動密封ユニット106を用い、ビットの近くに位置する可動制御ユニットを用いて圧力を制御する二次戻り導管を提供することによりPPDプログラム可能圧力掘削及び仕上げを実施する方法の略図である。 ドリルストリング114及び二次戻り導管115は、掘削組立体の重量を用いるか地表のところに設けられた頂部駆動装置を用いてドリルストリングDSに加えられた押圧力によるかのいずれかによってドリルストリング114を二次戻り導管115に対して回転させることができると共に二次戻り導管115がシールユニット106を通って滑ることができるようにする専用ラッチを用いて互いに機械的に結合され、それにより掘削組立体及びビット105のそれ以上の運動が可能になっている。 動的又は滑りシール107が、隔離を維持すると共に更にアニュラス部112内の環状掘削用泥水がPPDゾーン110内に流入するのを阻止する。

    隔離により滑りシール107の下に圧力ゾーン110が作られ、これら滑りシールにより、ケーシング115は、ドリルストリング114を包囲することができ、それによりドリルストリング114の外壁とケーシング115の内壁との間に心出し環状空間113が作られ、かくして上述した仕方で制御ユニットCによりアニュラス部113内に入れられている掘削用流体及び掘屑の除去を可能にする。 したがって、プログラム可能圧力掘削が達成され、それにより裸孔領域110の底部のところの圧力が圧力をP2の状態に維持される一方で、アニュラス部113の内部の制御ユニットCの真上の圧力は、典型的には、これよりも高い圧力P1であり、その結果、坑井に更にケーシングを設置すると共にこれを仕上げる裸孔全体に沿って単一であるが容易に変更可能な勾配が得られる。

    図5以下に詳細に示されているように、上述の方法から派生したプログラム可能圧力掘削を達成する別の変形技術が開示されている。 遠位端部のところに既に構成されたアンダーリーマ及びビットを含む坑底組立体(BHA)を備えたライナ1103を穴の中に通し、先のケーシング固定作業で設定されたライナハンガを用いて地表の下に吊り下げるのが良い。 ドリルビットは、当業者には知られている仕方でアンダーリーマを通ってこれを回収できることができるようなものである。 BHAは、先の説明において既に取り上げたプログラム可能圧力/勾配掘削を行うと共に更に掘削しながらロギング(LWD)を行う制御ユニットC及びシールユニット並びにかじ取り可能な回転システム(RSS)(これらの全ては、当該技術分野においては周知であり、ここではこれ以上詳細には図示しない)を有する。 ライナの遠位端部の外面のところに設けられた機械的シールは、先のケーシング固定作業において定位置にいったん配置されると、それ自体ライナから離脱し、それによりライナが外側機械的シールの内側シールを通って摺動することができるようにする一方で、シール前後の圧力差が維持され、即ちダウンホールストリッピングBOP(防噴装置)としての作用を果たす。

    次に、図8に示されているようにドリルストリングDSをライナの内部に通し、底部のBHAにラッチ止めするのが良く、それによりBHAがライナから解除されると同時にドリルストリングDSがBHAにトルク及び重量を伝達することができるようになる。 次に、ライナをライナハンガから解除し、例えばドリルパイプ及びBHAがライナに対して回転できるようにする回転ラッチ装置を用いてライナをドリルパイプにラッチ止めするのが良い。 次に、ライナは、ドリルパイプからぶら下がり、それによりライナを動かしてこれを再設定する手段が提供されると共に第2の戻り導管が提供される。 ドリルストリングDS又はBHAによりライナに伝達される掘削トルク又はビットに加わる重量(WOB)はゼロである。

    異なる圧力環境における全深さまで掘削後、ライナを定位置に設置し、セメント固定し、そしてドリルパイプを回収するのが良い。 ライナは、一時的隔離を可能にするための化学物質があらかじめ施され、後で1本のスチールケーシングで置き換えられる拡張可能なスチール型又は可動性管構造体であるのが良い。

    具体的に説明すると、図5〜図14に示されているように、本発明の方法を用いると、プログラム可能な仕方での掘削と掘削の完了時における裸孔のセメント固定の両方を行うことができる。 図5に示されているこの変形方法では、ケーシングストリング101の遠位端部内にランディングプロフィール1101を提供する必要がある。 坑底組立体BHAは、タイバック又はチュービング1103で構成され又はその遠位端部のところに係合し、このタイバック又はチュービングは、BHAを支持し、この種の掘削サービスにおいてツールの受ける圧力状態でシールを維持するのに十分な強度を有するケーシング、拡張可能な管状部材又は可動性導管であるのが良い。 BHAは、少なくとも、ビット、アンダーリーマ並びに上述したポンプ及び制御ユニットで構成され、ポンプ及び制御ユニットは、必要ならば裸孔圧力を検出し、これをアニュラス部圧力とは異なる圧力状態に維持するために用いられる。 ポンプは、坑外からの泥水の流れによって駆動される油圧ポンプである。 タイバック管1103は、ラッチ止め表面1105を更に備えており、このラッチ止め表面は、タイバックチュービング1103に設けられているラッチプロフィール1101に対するラッチ止めとラッチ解除を選択的に行うことができる。

    図6に詳細に示されているように、タイバックチュービング1103を標準型掘削作業の使用により坑井内に下降させてケーシングストリング101の遠位端部に至らせ、その時点で、ライナハンガ又はチュービングハンガ1201をタイバックチュービング1103の近位端部に取り付ける。 このライナハンガ又はチュービングハンガは、地表のところの坑口のところか先に設置されたケーシング内のダウンホールのところかのいずれかに設けられるのが良い。 これら作業の各々は、掘削業界では周知であり、当業者者としての掘削業者によって容易に達成される。

    図7に示されているように、タイバックチュービング1103を下降させてこれをラッチプロフィール1101がケーシング101の遠位端部内に位置した状態でラッチ止め表面1105に係合させる。 このラッチ止めは、機械的手段か油圧的手段かのいずれかによって達成できるが、いったん確立されると、シールは、ケーシング101の下の裸孔及びタイバックチュービング1103とケーシング101との間のアニュラス部からの流体連通を阻止する。 タイバックチュービング1103を頂部1201,1301のところで吊り下げると共にケーシングシールラッチを図8に示されているように符号1101,1105のところで達成すると、BHAと嵌合可能な遠位端部及び吊り下げプロフィール1101を提供する上端部を備えたドリルストリングDSを下降させてこれをBHAに係合させる。 図9に示されているように、ドリルストリングDSがラッチ止めされていったんBHA内に入れられると、BHAをそれと同時にライナから解除し、ドリルストリングDSがライナとは別個独立にトルク及び重量BHAに伝達することができる。 さらに、上側吊り下げプロフィール1401は、タイバックチュービングと嵌合したラッチ表面1201に係合し、かくして、ドリルストリングDSがラッチ止めされ、タイバックチュービング1103の頂部のところで支持される。

    次にタイバックチュービング1103をラッチ1105の解除によりケーシングラッチ1101から解除し、その結果、ドリルストリングDSがタイバックチュービング1103及びBHAを支持するようにする。 シールをケーシングシール1101内に維持して流体連通を阻止するが、タイバックチュービング1103が掘削の進行につれて坑底組立体BHAと一緒に坑井内に前進することができるようにする。 図10に詳細に示されているように、掘削用流体をドリルストリングDSに沿ってポンプ/制御ユニット本体内の制御ユニット及び分流弁まで循環させ、このポンプ/制御ユニット本体により、低圧流体を裸孔内に用いることができ、それによりビットを冷却すると共に掘屑をビット作用面から洗い落とす。 この方法については、本明細書において上述しており、矢印によって表された流体の流れは、概略的にしか示されていない組立体を通る掘削用流体の動きを示している。 具体的に説明すると、この実施形態との関連で、制御ユニットCは、いったん作動されると、タイバックチュービング1103と環状シール1102を形成し、その結果、BHAをタイバックチュービング1103から離脱させて、ドリルストリングDSにラッチ止めすることにより作られたアニュラス部を同時に密封してプログラム可能圧力ゾーン110を横切って圧力バリヤを維持するようにする。 シール1102は、掘削力がモデル導管に作用するのを阻止する荷重を伝達せず且つ荷重を支持しないパッカであるのが良い。 これら2つのステップは、特にドリルストリングDSを穴から取り出す際に圧力の望ましくない均一化を阻止するよう実施される。

    BHAは、好ましくは、逆循環式ビット(RCCD)を装備し、従って、アニュラス部から逸らされた掘削用流体は、地表からタイバックチュービングの遠位端部に連携されている制御ユニット/ポンプに流される掘削用流体よりも実質的に低い流量を呈するようになる一方で、プログラム可能制御ユニットに一体のポンプが掘屑及び流体をボーリング孔面から除去することができるようにする。 逆循環式ビットの流れ特性の詳細については図2を参照されたい。 掘屑は、直ちに迅速な除去のためにシールのアニュラス部側に隣接して位置する領域まで運ばれ、掘削用流体の流れは、プログラム可能掘削ゾーンから分流される。

    注目されるように、吊り下げプロフィール1401は、機械式であるに過ぎず、この吊り下げプロフィールにより、掘削用流体を掘屑と共に地表に戻すことができる。 タイバックチュービングが開放坑井中に動くと、図12により明確に示されているように、この吊り下げプロフィール1401は、シール1101に隣接して移動する。 これらがいったん隣り合うと、必要ならば、別のケーシングストリングを坑井内に挿入して掘削を続行しなければならない。 特定のゾーンの全深さに達した場合、ドリルストリングDSを引き戻してラッチ1401,1201,1105,1101に係合させてBHAをいつでも穴から出すことができるようにする。 形態は、図9に示されている位置に戻り、この位置では、BHAは、タイバックチュービング1103内にラッチ止めして戻り、それによりアニュラス部を機械的に閉鎖し、次に制御ユニットCを作動停止させてシール1102を解除する。 かくして、図12に示されているように、ドリルストリングDSをBHAから取り外し、ドリルストリングを引き出しているときにBHA内で弁1801を閉鎖する。 かくして、掘削された裸孔の部分全体を閉じる一方で、この作業を完了させる。 用いられるチュービングが金属ケーシングである場合、通常のセメント固定作業を実施して既存のケーシングを坑井内に設置するのが良い。 チュービングが拡張可能なケーシングである場合、上述の取り外しステップは、ケーシングを通って拡張型マンドレル又はスウエージを動かしてこれを坑井内に設置するステップを更に有するのが良い。 チュービングが可撓性導管である場合、坑井を仕上げ又は導管を拡張させて坑井横壁を裸孔内で支持することができるようにする。 これら仕上げ技術の各々は、標準の作業であり、当業者には周知である。

    上述したように、組立状態のユニットを用いて掘削を開始するため、掘削用流体をシステム中に循環させる。 BHA内のポンプ及び弁装置は、システム内の掘削用流体の流れから受ける流体圧力を減少させて裸孔に加える異常な圧力を最小限に抑える。 流体学的シール1101は、制御ユニットC内の付勢状態のシール1102と組み合わさって、たとえタイバック管1103及びBHAが前方に掘削している場合であってもこの圧力差を維持する。 したがって、このシールは、ダウンホールストリッピング防噴装置のように働き、それによりタイバック1103は、管の周りにシールを維持しながら滑ることができる。 このシールは、ゴムである必要はなく、金属間シールを使用することができる。 というのは、管は、荷重を支持せず、専用のツール継手表面を備える必要がないからである。 タイバック管1103は、アニュラス部圧力を裸孔圧力から封止する手段となるよう導管として働くに過ぎない。

    掘削用流体の正確な流量は、低動作圧力で働く標準型ドリルビット技術によって達成でき又は掘屑の除去を最大にしながらビット作用面のところの圧力増大を最小限に抑えるよう逆循環式ドリルビットを用いて達成でき、これらはすべて、掘削業界において周知の仕方で実施される。 逆循環式ドリルビットにより、裸孔内における坑井壁の過剰の妨害無しにドリルストリングの中央部分内への掘削用流体及び掘屑の動きが可能になる。 この実施形態では、これら掘屑及び掘削用流体は、比較的短い距離だけ持ち上げる必要があるに過ぎず、この場所で、これら掘屑及び掘削用流体を通常の掘削用流体戻しシステムのシールの上方で完全圧力循環流体と混合する。

    既存のタイバック又はライナハンガ1103を図12に示すように交換し、例えばビット組立体を交換する必要なく、ビットトリップが必要な場合、ドリルパイプ及びライナを穴から引き出し、ダウンホール安全弁1801を越えて最後のラッチ止め箇所まで動かし、ライナ1103を通常通り吊り下げ、BHAがダウンホール弁1801を通過するときにダウンホール弁1801が閉じるようにすることができ、それにより掘削ゾーン圧力P2が保たれたままになり、他方、ドリルストリングDSをビット及び他のBHAコンポーネントと一緒に穴から引き出すことができる。 シール1101及び弁1801がビットトリップについて少なくとも一時的に、図13に示されているように圧力ゾーン圧力P2を保持するので、タイバックを先のラッチ止め箇所まで引き戻さないでビットトリップを達成することができる。

    図14は、PGDプログラム可能勾配掘削方法によって達成できるセメント固定作業の略図である。 このシステムを用いて坑井をいったん掘削すると、不透過性地層−強化シールを備えた裸孔の長い区分は、定位置のままであり、これは、複数個の外部シールを備えることができる。 ケーシングを通してこれをセメント固定するため、次に、セメント固定作業を開始してシールの後ろに保たれた圧力を乱さないような仕方で完了させるのが良い。 これは、制御ユニットCから得られた坑井プロフィールを用いてセメント固定中のゾーンを横切るセメントの循環圧力を制御するダウンホールシステムの使用により選択的にステージングしたりセメント固定したりすることができる隔離パッカを備えたケーシングストリングを設計することにより達成できる。 したがって、例えば、産出物が少なくなったゾーンをセメント固定するため、軽量スラリをパッカシステムの使用により注入して軽量スラリを産出物の少なくなったゾーンのみを横切って選択的に配置し、ゾーンの残りをセメント固定作業のこの部分から保護するようにする。

    図14は、坑井を仕上げるためにプログラム可能圧力掘削方法によって達成できるセメント固定作業の略図である。 セメント固定ドリルストリングDSを下降させ、タイバックチュービングラッチプロフィール1201に係合する吊り下げラッチ1401、ドリルストリングDSとタイバックチュービング1103との間にシールをもたらす外部ケーシングパッカ2107及び坑底組立体弁1801を貫通して挿入可能であり又はケーシング掘削の当業者には十分に理解されているようにBHAに既に組み込まれたケーシングシュー2101を提供する。 電気ワイヤラインケーブル2103を通してこのポンプに電力供給する。 ダウンホールポンプ2105を連結してこれが裸孔内のアニュラス部からその入力を受け取り、その出力が上述のDSとケーシング101との間のアニュラス部に送り出されるようにする。 ダウンホールポンプの目的は、圧力に対するダウンホール制御を行うことだけである。 表面セメント固定セットアップを通常通りダウンホールポンプと協調して用いて圧力差勾配をセメント固定作業中、裸孔内に達成することができるようにし、ただし、セメントが裸孔アニュラス部に加えられているときのセメント固定ゾーンの裸孔部分からの流体の時宜を得た除去のために必要な表面ポンプ圧力が低いことが見込まれる。 したがって、ダウンホールポンプは、かかるシステム中に追加してもろくて圧力に敏感なゾーンを首尾良くセメント固定できるようにし、この場合、かかる仕上げに見受けられる場合の多い流体又はセメントの損失が生じないようにする。 電線及び局所センサは、ポンプの作動に対して完全な制御をもたらすと共にシール1101,2107,2108前後の圧力差を維持することができるようにする。 ポンプ2105が坑井内に配置されるのでポンプ圧力をすぐに調節してポンプ圧力の過剰に起因した裸孔坑井地層の噴出を防止するのが良い。 セメントは、あらかじめ設定された圧力ゾーンシール1101に沿って下方に下って裸孔中に入り、そしてケーシングの遠位端部周りに循環してセメント固定作業を完了するようにする。 坑井は、新たに掘削され、掘削用流体は、大抵の従来型掘削プログラムに見受けられるようにビットの周りにそしてアニュラス部を上方に循環することがないようになっているので、地層は、フィルタケークが僅かであり、セメント固定作業を簡単且つ容易に達成することができ、この場合、裸孔壁に対するセメントの結合具合が向上する。 この技術は、外部ケーシングパッカによって分離された任意の数の産出ゾーンについて使用することができ、他方、坑井の掘削全体を通じて各産出ゾーンの圧力ゾーン健全性が維持される。 各圧力ゾーンは、制御ユニットCによって直ちに識別されるので、かかる情報を掘削プログラム全体を通じて経験した圧力ゾーン勾配と一致してセメント固定目的に利用できる。

    図15A〜図15Eは、可動制御ユニットC及び可動且つ小刻みに配備可能なシールユニットSを用いてPPDを実行しながらPGDプログラム可能勾配掘削及び仕上げを達成するステップの略図である。 上述したPPDに必要な機能の実行に加えて、制御ユニットCは、本明細書において詳細に説明したように、シールユニットSを交互に作動させてシーラント、例えばインテリジェント泥水ケーク又は機械的バリヤ、例えば坑井強化スリーブを配備することができる。 変形実施形態は、拡張可能なパッカ、パッカの内壁に当ててスウエージにより配備される拡張可能なケーシングシステム又は当該技術分野において現在利用できるボーリング孔安定化の任意他の形態を提供しても良い。

    最後に、プログラム可能圧力ゾーンをいったん掘削して強化すると、コントロールユニットCは、過剰平衡状態のゾーン112内の圧力と平衡不足状態のゾーン110の圧力を均一化し、坑井内における次の作業のためにシールを解除する。 このプロセスは、必要に応じて頻繁に又は坑井の健全性を保つために同時に小刻みに繰り返し実施されるのが良く、他方、仕上げ及び穴あけに適したゾーンが検出される。 掘削は、これらゾーン内において過剰平衡状態の条件では起こらず、地層は、高圧掘削泥水ケークで塞がれていないままなので、産出を開始するのに費用がかかり且つ時間もかかる坑井準備を行う必要はない。

    図15Aは、ケーシング101の下での強化又は安定性のある地層102内における裸孔坑井壁に対するシールの係合に先立って、ドリルストリングDSの遠位端部のところでドリルビット105に隣接した制御ユニットC及びシールユニットSの運動を示している。 図15Bは、強化された又は安定性のある坑井面102内における開放ボーリング孔面に対するプログラム可能圧力ゾーンシール106の設置状態を示している。 図15Cは、強化された又は安定性のある坑井面102に当てて先に設置されているシール106の下にボーリング孔104の非圧密状態の又は不安定な部分中へのドリルビット105による掘削の続行状態を示している。 環状プログラム可能圧力ゾーン110内の圧力は、プログラム可能圧力ゾーン110からシール112の上の過剰平衡状態の環状ゾーン中に掘削用流体を除去することにより地層圧力を下回った状態に又は間隙圧破砕圧力窓内のままであるよう制御ユニットCによって制御され、シール112は、坑井噴出等からの十分な安全性を提供する。 他の掘削機器、例えば方向性掘削システム、掘削しながらの測定(MWD)ユニット、掘削業界の当業者によく知られている追加の地層評価システムを制御ユニットCの下に追加的に供給することができ、これは、本発明の精神又は目的から逸脱しない。 加うるに、図15A〜図15Eに示されているドリルストリングDSは、コイル状チュービング、複合チュービング又は掘削用流体を本発明のプログラム可能圧力ゾーンから戻すための任意他の導管であって良い。

    制御ユニットCは、非圧密状態の地層の間隙構造からの自然な流れを連続的にサンプリングし、かかる情報をオペレータによる分析のために地表に電送し又はかかる情報を自動ダウンホール制御システムにおける直接的な使用のために供給することができ、これらは全て、当該技術分野において周知の仕方で行われる。 プログラム可能圧力ゾーン110が間隙圧坑底圧力よりも低く維持され、成分測定値は、全て、通常の掘削作業で生じる泥水ケークによる坑井のケーシング固定又は強化に先立って既存の技術に利用できるので、掘削が達成される地質学的構造及び層の産出性に関する詳細な情報が利用可能である。 隣接の地層の流動的ポテンシャルは、例えば米国特許出願公開第2006−0125474号明細書に記載されている技術を用いて容易に測定でき、この米国特許出願公開を参照により引用し、その記載内容を本明細書の一部とする。 掘削しながら測定を行う能力の向上により、従来得ることが困難であった動的坑井プロフィールを得る機会が提供され、例えば、坑井経路をかじ取りしてこれが延長された坑井システムの最も産出性の高い層内に位置したままであるようにする機会が得られる。

    図15Dは、全て必要な情報を検出してこれらを地表に中継した後に開放坑井を強化するステップを記載している。 本明細書において説明するようにドリルストリングの操作によって地層を強化し又は安定化してそれ以上の坑井開発を可能にする。 強化は、坑井面に対して機械的シーラント、例えばスロット付きライナ、サンドスクリーン、拡張可能なサンドスクリーン、裸孔砂利パック、裸孔パッカ付きケーシング及び拡張可能な管類(これらには限定されない)を当てて配置することによる密封から成るのが良い。 拡張可能な管類、例えばサンドスクリーンは、これらの元の外径の33%〜55%拡張することができる。 固体ライナは、一般に、これらの元の直径の5%〜16%にわたって拡張するのに止まる。 地表のコイルから配備でき、据え付け時に米国特許第6,250,385号明細書及び同第6,679,334号明細書に記載されているような連続支持部材を形成するインターロック式ストリップについて本願において後で詳細に説明する。 化学的表層も又、スチールケーシングによる交換を成すための一時的ブリッジを形成するよう配置されるのが良く、それにより掘削されたボーリング孔の長さを単一直径として延長させ又は坑井が単一の直径として、即ちモノボア(monobore)として仕上げる。 掘削が進んでいるときにスリーブを坑井表面に当てて配置して裸孔を強化すると共に裸孔構造の健全性を保つための実施形態が本明細書において開示される。 本出願人は、公知の全ての坑井強化技術をプログラム可能圧力ゾーン掘削のための本発明の方法に利用するために適合可能であり、本発明を坑井安定化の特定の仕方に制限するのと解釈されるような記載は本明細書には含まれていない。 地層を強化し又は安定化した(102)後、プログラム可能圧力ゾーン内の圧力をシール106及び解除したシールの上方に存在する静水頭で標準化するのが良く、これら全て、図15Eに詳細に示されている。

    図16は、本発明のPGDプログラム可能勾配掘削及び仕上げを実施する装置の一実施形態の略図である。

    地表からの流れ1は、泥水モータ2を駆動し、この泥水モータは、原動力を配電及び制御システム4のための電源として発電機3に供給する。 シール又は圧力バウンダリ7が、上側チャンバ39と下側チャンバ25を互いに隔離し、坑井壁28に沿って動くようになっている。 「上側」及び「下側」という用語は、重力に関して2つのチャンバの物理的関連を説明しているものと解されてはならない。 というのは、下側チャンバは、水平掘削状況においては、地心的に上側チャンバの上方に位置する場合があるからである。

    シール本体7のボーリング孔接触インターフェースは、シャクトリムシ(inch-worm)構造8(詳細には示されていない)であり、この構造では、2つのパッカが交互に加圧され、掘削が進んでいるときに「寸動」されて坑井壁28との連続シールを維持する。 掘削が進んでいるときに上側チャンバ39と下側チャンバ25との間に可動シールを維持するよう他のシール装置を改造することができ、これは、本発明の精神又は目的から逸脱しない。 可動シールを具体化する更に別の実施形態について以下に説明する。

    第1の電気モータ及び泥水ポンプ5が、導管24を用いて泥水を加圧シール3を通って送り出すよう配電及び制御システム4によって制御される。 第2の電気モータ及びポンプ31が、導管15を用いて泥水をシール7を通って下側チャンバから上側チャンバに移動させることにより同様に働く。 第1の圧力センサ29を下側チャンバに用いると共に第2の圧力センサ30を上側チャンバに用いることにより、制御システム4は、電気ポンプの速度を調節して下側チャンバ25の所要の圧力管理を達成し、それにより通常は必要とされる坑外機器の複雑さ及び費用なしで、平衡不足掘削に同等な条件を達成する。 注目されるべきこととして、1つ又は2つ以上の圧力センサ、例えば圧力センサ29で表されているセンサの配置は、実施されるべき掘削プログラムのために必要に応じて、プログラム可能圧力ゾーン内の任意の場所であって良く、これは本発明の範囲から逸脱しない。

    導管15を通る泥水の流れは、循環導管10からビット11及びアンダーリーマ12を貫通して設けられたリーマ本体循環導管13を通って引き出され、これらは全て、掘削業界においては周知の仕方で実施される。 この逆循環流は、この流れ中に岩石屑を同伴し、最終的には、全ての開放循環掘削泥水システムに類似した仕方で伸縮導管41を経て地表まで運搬される。 伸縮導管41は、ケーシング16に連結され、それによりスリーブシール19をその運搬容器18内の表面から外すことができ、それにより運搬容器18は、スリーブシール19へのケーシング連結部を横切ることができる。

    逆循環導管15は、流れ導管22との連結部の下流側で上側チャンバ戻り流れ導管21に接合し、それにより流体の流れを駆動モータ及びポンプ5に提供して掘屑がビット11及びリーマ12を通って再循環されないようにし、逆流保護弁34が、下側チャンバ25へのかかる掘屑戻りが生じないよう追加の保護作用を提供する。 泥水モータ2及び掘屑流れ導管15の掘屑及び排出流は、ケーシング16とボーリング孔壁28との間のアニュラス部を通って地表まで戻され、これらは全て、当該技術分野においては周知の仕方で行われる。 再循環弁14が、リーマ再循環導管13を通る流量を変化させるために用いられ、その結果、ビット11とリーマ12の両方は、これらの切断要望に適したバランスのとれた流れ条件を有するようにし、この流量は、配電及び制御システム4によってリアルタイムで制御される。

    第2の電気モータ6は、リーマ12を回転させ、第3の電気モータ26はパイロット穴(誘導坑)40を掘削するためのビット11の方向性かじ取りを制御するためにかじ取り可能な回転システム(RSS)27を回転させる。

    ケーシング16は、地表まで延びており、このケーシングは、定位置に残されたままにされる。 アンダーリーマ12は、パイロット穴40をボーリング孔内へのケーシング16の挿入を可能にするのに十分な幅まで開くのに必要である。 次に、プログラム可能圧力システム機器を掘削がケーシング16を介していったん完了すると、地表まで回収する。
    シールキャリヤ18をケーシング37の第2の区分にラッチ止めし、これを回転軸受17の使用によりケーシング16の第1の区分に連結する。 この回転軸受17は、ロック可能であり(図示せず)その結果、ケーシング16、輸送容器18及びケーシング37の第2の区分を必要に応じて一緒に回転させることができるようになっている。 スリーブシール19は、シールキャリヤ18内に納められ、そしてローラ20上に送り出され、ローラは、スリーブシール19内のコンパートメントを穴あけして結合剤36を放出し、結合剤は、スリーブシール19をローラ20に隣接した坑井壁にくっつけてこれを封着させる。

    システムの前方運動は、スリーブシール19の硬化速度及び掘削速度によって定められる。 シールの硬化状態を判定するためにセンサをスリーブシール19(図示せず)内に配備するのが良く、それにより信号を配電及び制御ユニット4に提供して前方掘削速度の最適化を続行する。 スリーブシール19のスリーブシール硬化速度と前進掘削速度の協調により、重要なリアルタイム入力が地表に提供されてケーシング下降要件を調節する。 リアルタイムで地表に電送されるこの上方をワイヤードドリルパイプ連結部32によって配電及び制御モジュール4から提供することができ、それによりドローワークス/頂部駆動システムの下降速度を制御する。 同じ速度に関する情報をシャクトリムシ形スリーブシールに提供し、ケーシング16をボーリング孔内に前進させているときにスリーブシールがケーシング16と一斉に動くようになる。

    通常の掘削条件下において、シール7を引っ込めて(即ち、シャクトリムシ形パッカを両方ともデフレートさせて)、ついには、圧力管理を必要とする別の領域に遭遇するようにする。

    密封が必要な地層領域に遭遇すると、シャクトリムシ形シール8を付勢し、ケーシングロックオン17を解除し、ケーシング16が回転し、シールキャリヤ本体18が回転しないようにする(回転ケーシングを設置する前にシールが回転ケーシングにさらされるのを回避するために)。 ローラシステム20は、電動機付きであり(図示せず)、このローラシステムが前方に掘削を行っているときにスリーブシール19を追い出す。 また、シャクトリムシ形シール8は、ビット11及びリーマ12からの掘削反動荷重を受けなければならない。 この効果を最小限に抑えるため、ビット11及びリーマ12を互いに逆方向に回転させてトルクのバランスを取るのが良い。

    掘削中に実施される主圧力密封作業は、スリーブシール19が完全ケーシング−ボーリング孔アニュラス部圧力にさらされるほど十分硬化し又は固化するまでシャクトリムシ形シール8によって達成される。

    変形例として、坑底組立体のドリルビット及びリーマに隣接して位置する圧力ゾーンを隔離する本明細書において説明する新規な方法を他の変形実施形態によって達成しても良い。 例えば、図17〜図20に示されているように、牽引可能なドーナツ形スリーブが本明細書において説明するようにこのシステムのドリルビットに隣接して位置する下側チャンバ(例えば、図17の符号270又は図18の符号380)と上側チャンバ(図17の符号260又は図18の符号370)との間のシールとして働くよう設けられるのが良い。 この牽引可能なドーナツ形スリーブのための原動力は、起電手段又は機械的に、例えば、図19の泥水モータ駆動装置によって提供できる。 トラクタは、ドリルパイプ回転又は任意他のエネルギーを利用できるダウンホールにより駆動可能なその回転方向に応じて引く力/押す力を及ぼす。 図17に示されているように、トラクタ250及びトラクタ本体230は、ドリルパイプ220で摺動可能に支持され、このドリルパイプは、動的シール240によって封止される。

    変形例として、ドーナツ形シールキャリヤ230をドリルパイプ220に回転可能に連結しても良く、動的シール240に代えて圧力保持回転軸受を用いても良く、それにより、ドリルパイプ220を押したり引いたりすることによりドーナツ形シールを駆動する手段が得られる。 掘削用泥水がトラクタ250とトラクタ本体230との間で強制的に動くと共にトラクタの外面の摩擦力が地層210だけに働くことにより、ドーナツ形スリーブは、そのキャリヤ230上でこれに沿って摺動する。

    変形例として、図18に示されているように、キャリヤ320は、ドーナツ形スリーブ350に設けられているスプライン加工軌道を用いてつがい関係をなすトラクタ本体320に係合し、このトラクタ本体は、この場合も又、ドリルパイプ310に回転可能に連結されている。 同様に、図19に示されているように、トラクタ530及びスリーブ550を動かすための原動力は、駆動リング543を動かす回転子530及び固定子546と共に泥水モータ固定子530が動くことと関連した水圧力に起因して得られ、それにより、駆動ドッグ545をスプライン加工トラクタ530及びトラクタ本体550上でこれに沿って動かす。

    図17に示されているにせよ図18に示されているにせよ図19に示されているにせよいずれの場合においても、キャリヤ回転速度230,320,530は、ドリルパイプ移動要件と一致した標的トラクション/牽引速度にマッチしなければならない。

    変形例として、図21に概略的に示されているように、シール530の螺旋溝付き内面は、大径ゴム被覆ねじ512のようなドリルパイプに取り付けられている螺旋駆動機構体511(ドーナツ形トラクタ)と噛み合う。 シール510の内面に設けられた螺旋溝は、坑井壁210に対するシール510の圧縮押し付けによって活性化される化学的密封剤513を収容しており、それにより、内面を裏返しにしてこれを坑井外壁210に当てると、壁を強化することができ、これはら全て、ダウンホール掘削関連業界では周知のやり方で実施される。

    これら密封剤をボーリング孔壁に送り出すための幾つかの変形手段の略図については図21A〜図21Cを参照されたい。 図21Aの波形又はばね入り溝は、牽引により生じる長手方向荷重に耐えるほど十分機械的に強固であるが、生じる半径方向力に対しては比較的弱く、スリーブがボーリング孔壁に対して拡張しながら一回転すると、図21Bに示されているように拡張し、それにより、半径方向に拡張した際に化学的密封剤が図21Cに示されているように波形ポケットから放出される。 図21に示されている装置によって達成される場合、外面が壁にくっつき、内面がねじ510によって前方に駆動されるように裏返しにされた袋512又は坑井壁に当てて配置可能に化学シーラントを開くよう圧縮されるスロット付き部材は、各々、坑井の化学的強化シールとなる。 坑井210の隣接の壁に対する袋512の押し潰しにより生じる化学反応は、スリーブの溝が密封剤を放出すると、不透過性シールを形成する。 スリーブ510の外面は、これがそれ自体スリップ/スライド運動しなければならないので摩擦減少させるよう設計されており、又、ドーナツ形トラクタの半径方向力によって圧縮されてボーリング孔壁に押し付けられる。 図22に示されているこの半径方向力Fは、図20及び図21に示されている袋及び隣接の坑井壁に対するねじの圧縮力と同様、これ又、ドーナツ形トラクタの下に位置する坑井区分と上方の区分との間にシールを形成し、又、螺旋溝から放出された化学物質をボーリング孔壁に含浸させて強化圧力バリヤを形成して地層の作業を可能にするのを助ける。

    図22に詳細に示されているように、原理的には密封袋部材512を坑井壁に当てて配備するようになっているが、トラクタ溝510は、拡張可能なスリーブ512に設けられている溝と噛み合ってシーラント801を押しやり、それにより、全て上述したように掘削組立体105によって新たに掘削された地層を強化する。 裸孔110は、トラクタTの係合によってアニュラス部112から密封される。 この実施形態では、制御ユニットCは、トラクタTと組み合わされる。

    図22に示されている実施形態としての密封袋をリール(コイル状チュービングCTに類似している)として表面上に収納し、次に、坑井内に下降させることにより配備し、その後掘削を行うのが良い。 この種の螺旋シール実施形態を坑井内に設置するシーケンスが図23A〜図23Eに記載されている。 図23Aのラッチ止めパッカ710を当業界においてありふれたワイヤライン設置パッカシステムを用いて最後のケーシングシューの真上に設置する。 次に、密封袋を表面コイル720(図23B)から入れることにより配備し、その下端部725をパッカ710(図23C)内にラッチ止めする。 次に、スリーブ/シール730の上端部を切断し、地表のところで吊り下げる。 次に、図23Dのドリルパイプ740をドーナツ形トラクタ750が閉鎖又は作動停止位置にある状態でシールを貫通して坑井内に下降させる。 ドリルパイプのトラクタがパッカ710の近くの位置にいったん達すると、トラクタをインフレートさせると共に/作動させてこれが図23Eのシールの内面の螺旋溝と噛み合うようにする。 次に、シールの上端部をドリルパイプにラッチ止めする。 掘削が進むと、ドーナツ形トラクタは、スリーブを下方に引き下げて掘削速度にマッチするようにする。 シール725の下端部は、パッカ710のところで固定状態のままであり、その上端部は、掘削が進むと、下方に動く。 スリーブ又は袋は、裸孔内でそれ自体逆転し、その結果、内面が逆になり、これがボーリング穴壁に接触し、それと同時に、化学物質を放出し、かかる化学物質は、裸孔内に不透過性強化バリヤを形成し、これらは全て、本明細書において上述してある。

    最後に、プログラム可能勾配掘削は、掘削とストリッピングの設置を同時に行うことができ、ストリッピングは、坑井壁に当てて配備されると、掘削が続けて進むと、追加の専用機器を必要としないで、壁を安定化すると共にこれを支持する。 坑井内におけるストリップ又は螺旋巻き管状構造体の配備は、周知である。 これについては、米国特許第6,679,334号明細書及び同第6,250,385号明細書を参照されたい。 なお、これら米国特許の両方を参照により引用し、これらの記載内容を本明細書の一部とする。 このストリップ技術は、掘削が進行しているときに、安定性を隣接の坑井壁に追加するよう改造可能である。

    図24に詳細に示されているように、上述した掘削装置に類似した掘削装置は、ストリップアプリケータ2203の追加の特徴を提供し、その結果、参照した先の出願に記載されている螺旋ストリップ2201を掘削が進んでいるときに掘削組立体によって動かすようにする。 螺旋ストリップ2201を坑外リール2200から坑井のアニュラス部の下に動かし、ここで、螺旋ストリップをポンプ組立体及びBHAによって支持して入口シール2204を通り、シール2205を介してプログラム可能圧力ゾーン内に入れる。 入口シール2204は、ドリルストリングDS及びBHAがストリップ2201に対して回転することができるようにする回転シールである。 アプリケータアーム2203は、組立体を回転させると動き、それによりストリップを坑井上に動かし、ここで、ドーナツ形ローラ2215は、隣接のストリップを圧縮し、これを坑井に接触させ、それにより掘削が進んでいるときに、坑井地層の支持体となり、これを安定化する。 変形例として、アプリケータアーム2203は、電動式(図示せず)であっても良く、回転シール2204を用いてこれを取り付けてアプリケータアームを制御された速度でドリルストリングDSとは独立して回転させることができる。 標準のポンプ圧力状態による掘削用流体2220を分流弁2210により送り出し、流量制御弁2212がプログラム可能掘削ゾーン内への掘削用流体の流れを調節するので、圧力は、地層の自然の圧力状態に維持される。 この実施形態の逆循環式ポンプPは、本発明の他の実施形態のポンプと同様に作動する。 本発明のインターロック式ストリップ材料の掘削と配備を同時実施した場合、標準型掘削リグ機器を用い、後で従来型仕上げ技術により仕上げ可能な係合状態のインターロック式ストリップによる地層の完全保護によって、本発明のプログラム可能圧力ゾーン掘削における安全な過剰平衡状態の保護が可能である。

    本出願人は、本願が首尾良い掘削プログラムを可能にするには、脆弱すぎると従来考えられていた地層を安全に掘削する実質的に新たな機会を提供すると確信している。 ほぼ瞬時の圧力変化を多くの現行の技術によって達成することができ、かかる技術は、このプログラム可能圧力ゾーン掘削方法に使用できるよう改造可能である。 例えば、坑底組立体に隣接した流動的ポテンシャルを地層の音波励振によって測定することができ、これらは全て、米国特許出願公開第2006−0125474号明細書に詳細に記載されており、この米国特許出願公開を参照により引用し、あらゆる目的についてその記載内容を本明細書の一部とし、流動的ポテンシャルは、プログラム可能圧力掘削ゾーンに出入りする掘削用流体の流量と関連して制御ユニットにより収集されて利用できる地層圧力を指示することができる。 地層間隙圧が例えば産出量が少なくなった地層内で低下した場合、掘削用流体圧力を低下させて掘削用流体の静水圧に起因する坑井壁の潰れを阻止するのが良い。 同様に、地層圧力が増大したことが検出された場合、掘削用流体圧力を高めて、坑井のその部分をケーシング固定することができるまで自然な圧力状態を維持するのが良い。

    プログラム可能圧力掘削ゾーン110のサイズが限定されているので、圧力差を容易に制御でき、ドリルビットの最適性能を得るための調節を行うことができると共に地層の健全性を安全に維持することができる。 プログラム可能圧力ゾーン掘削が必要ではない場合、かかる掘削から通常の開ループ掘削にいつでも切り換えることが可能である。

    スリック内部ボアを有するライナハンガを設定し、プログラム可能圧力ゾーン掘削が進行しているときに密封面が密封を行うことができるようにする一方で、スリック内部ボアを通るドリルストリングの長手方向運動を可能にする実施形態を含む他の実施形態について以下に説明する。 この場合、隔離されると共に掘削されたゾーンをセメント固定し、ケーシング設置し又は掘削業界において周知の適当な化学的橋渡し解決策によって安定化することができる。 制御ユニットが管理された掘削ゾーンにおける坑井条件を検出することができるので、実質的な裸孔情報を集め、ロギングを完了させることができ、この場合、裸孔の多孔性又は流れ特性に打ち勝つ静水圧の妨げが生じない。 動的坑井プロフィールにより、掘削された坑井の将来の管理が可能になるだけでなく、通常の掘削技術により従来隠されていた実質的な産出ゾーン情報が提供される。 互いに近くに位置する坑井からリアルタイムで掘削情報と共に集められたデータの共分散は、現場の広さに基づく情報の相関を可能にするはずである。 このプログラム可能圧力ゾーン掘削方法を用いた場合、緊密な貯留層中の割れ目のネットワーク化及び伝搬を研究することができる。 プログラム可能圧力ゾーン坑井中の割れ目は、オフセットした坑井中の他の圧力及び温度の変化を生じさせる場合があり、それにより、研究中の現場の坑井及び割れ目の地球物理学的解釈の指針が得られる。

    このプロセスの開発により、掘削業者又は自動軌道制御システム(地表のところ又はダウンホールのところ)が自動かじ取り掘削組立体の開発をかじ取りし又は可能にすることができる能力が増大し、かかる自動かじ取り掘削組立体は、ドリルストリングをほぼ標的ゾーンに案内するために地層評価データを含む制御ユニットCにより集められた情報及びデータを受け取る。

    本発明は、掘削が進行しているときに制御ユニットにより得られる完全な坑井プロフィールを提供するので、坑井全体に見受けられる各地層を最も効率的に且つ地層を保護するやり方でセメント固定することができるセメント固定プログラムを容易に設計して具体化することができる。 例えば、非圧密状態のゾーンが検出された場合、地層圧力と一致したセメントスラリを隔離パッカがそのゾーンを隔離するよういったん設置されると、地層に送り出すのが良く、これらは全て、油性セメント固定作業の技術において周知な仕方で実施される。 プログラム可能圧力掘削ゾーン方法の使用により、問題のある各地層に関して特別に設計されたセメント固定プログラムの利用が可能である。

    また、上述の開示内容を考慮して容易に理解できるように、このプログラム可能圧力掘削装置により許容される裸孔掘削プログラムで達成された坑井強化の結果として、モノボアケーシングにより坑井の相当な区分をケーシング設置することができ、それによりケーシングのサイズの制限無しに、産出ゾーンへの換算坑井が作られる。 セメントを定位置にいったん固定すると、本発明によって得られる坑井プロフィールに鑑みて、坑井の健全性を保ちながら、坑井から高い産出率を得ることができる一方で、このプログラム可能圧力掘削方法を用いて設置することができるモノボア産出ケーシングに鑑みて、坑井を掘削する産出地層の健全性が保たれる。

    プログラム可能圧力掘削及びプログラム可能勾配掘削は、地層圧力と坑井アニュラス部圧力の圧力差のほぼ瞬時の調整を可能にする。 掘削プログラム中における地層変化に基づいて泥水特性を変更する必要はない。 掘削パラメータ、例えば流量、圧力、ビットに加わる重量、トルク及びドラグのほぼ瞬時の測定値を検出してこれを制御ユニットによって掘削マネジャ又は掘削制御システムに送ることができる。 坑井地層特性及び掘削中に得られる全ての地層の産出性並びに坑井の短い持続時間の試験及び特性決定(ビルドアップ及びドローダウン)を非圧密状態の地層中で測定してこれを分析のために地表に送ることができる。 炭化水素が非圧密状態の地層からの掘削用泥水と混合した状態で地表まで流れることができるが、かかる産出量は、僅かであり、制御ユニットCによって坑井の下で制御可能であり、これら最小放出から地表で経験する不利な圧力差は生じないであろう。 これは、多くの不確実性が存在する探鉱井におけるこの技術、例えば必要な泥水設計及び特性、ケーシング設計、地層評価及び用いられるべき試験技術の非常に高い利用可能性を提供している。 本発明を利用することにより、オペレータは、泥水設計が単純化され、ケーシングが減少し、地層の損傷を生じさせないで掘削しながら坑井の産出性に関する測定値を得ることができるので危険性を最小限に抑えた状態で探鉱井を掘削することができ、それにより、貯留層又は産出ゾーンの正確な存在場所及び貯留層又はゾーンの真のポテンシャルの最も正確且つ非常に最も重要な判定が可能である。

    多くの実施形態及びこれらの変形例を開示した。 上述の説明は、本発明者により想定されている本発明の最適実施対応を含むが、考えられる変形例が全て開示されているわけではない。 このために、本発明の範囲及び先行技術からの区別は、上述の開示内容には限定されず、これとは異なり、特許請求の範囲の記載に基づいて定められると共に解釈されるべきである。

    QQ群二维码
    意见反馈