首页 / 国际专利分类库 / 固定结构 / 土层或岩石的钻进;采矿 / 地层钻进,例如深层钻进 / 井眼或井的阀装置 / .球阀 / Method and apparatus for drilling using less pressure fluid of solid component content

Method and apparatus for drilling using less pressure fluid of solid component content

申请号 JP51925896 申请日 1995-12-13 公开(公告)号 JP3589425B2 公开(公告)日 2004-11-17
申请人 テレジェット・テクノロジーズ・インコーポレイテッド; 发明人 シュー,フランク・ジェイ;
摘要
权利要求
  • 坑井を穿孔する方法にして、
    ドリルビットにて終わるドリルストリングを坑井内へ移動させる工程と、
    穿孔流体が地層物質に衝突し前記ドリルビットと共働して地層物質を掘削するよう、固体成分含有量の少ない穿孔流体を前記ドリルストリングを経て圧送し前記ドリルビットより流出させる工程と、
    地層物質を穿孔しつつ前記坑井と前記ドリルストリングとの間の環状空間内へ前記穿孔流体の密度よりも高い密度を有する環状空間流体を連続的に圧送し、前記環状空間流体が実質的に地表より前記ドリルビットの下端まで延在するようにする工程と、
    前記ドリルストリング内の実質的に障害物のない管状通路を経て前記穿孔流体及び地層物質の掘削により生じる掘削物を地表へ戻す工程と、
    前記穿孔流体と前記環状空間流体との間の界面が前記ドリルビットの位置に形成され、前記界面に於いて前記環状空間流体が前記穿孔流体と混合し、前記穿孔流体及び前記掘削物と共に地表へ向けて戻され、前記穿孔流体が前記環状空間へ流入することが実質的に防止されるよう、前記環状空間内にて前記環状空間流体を所定の圧力に維持する工程と、
    を含んでいることを特徴とする方法。
  • 前記環状空間流体を所定の圧力に維持する前記工程は更に、
    前記穿孔流体、前記掘削物、前記環状空間流体のリターン流れを地表に於いて選択的に絞り、該絞りの部分を横切る圧損を制御する工程と、
    穿孔の進行に応じて前記穿孔流体と前記環状空間流体との間の界面を維持するに十分な流量にて前記穿孔流体を前記ドリルストリング内へ圧送し前記ドリルビットより流出させる工程と、
    前記環状空間流体の前記所定の圧力及び前記穿孔流体の 圧送供給量を監視する工程と、
    を含んでいることを特徴とする請求項1に記載の方法。
  • 前記管状通路内の前記穿孔流体及び前記掘削物を含む前記穿孔流体を地表及び前記ドリルビットの位置に於いて前記ドリルストリング内に閉じ込める工程と、
    前記ドリルストリングの閉じ込め処理が行われている状態にて前記ドリルストリングに或る長さのドリルパイプを接続する工程と、
    前記ドリルストリングの閉じ込め処理を解除して穿孔を継続する工程と、
    を含んでいることを特徴とする請求項1に記載の方法。
  • 前記穿孔流体は清澄な水であることを特徴とする請求項1に記載の方法。
  • 前記穿孔流体は清澄化された穿孔泥であることを特徴とする請求項1に記載の方法。
  • 前記環状空間流体はフィルタケーキを形成する稠密な穿孔泥であることを特徴とする請求項1に記載の方法。
  • 坑井を穿孔する方法にして、
    ドリルビットにて終わるドリルストリングであって、内部に少なくとも一つの高圧導管と少なくとも一つのリターン導管とを有するドリルストリングを坑井内へ移動させる工程と、
    穿孔流体が地層物質に衝突し前記ドリルビットと共働して地層物質を掘削するよう、固体成分含有量の少ない穿孔流体を前記高圧導管を経て圧送し前記ドリルビットより流出させる工程と、
    地層物質を穿孔しつつ前記坑井と前記ドリルストリングとの間の環状空間内へ前記穿孔流体の密度よりも高い密度を有する環状空間流体を連続的に圧送し、前記環状空間流体が実質的に地表より前記ドリルビットの下端まで延在するようにする工程と、
    前記ドリルストリング内の前記リターン導管を経て前記穿孔流体、地層物質の掘削により生じる掘削物、過剰の環状空間流体を地表へ戻す工程と、
    前記穿孔流体と前記環状空間流体との間の界面が前記ドリルビットの位置に形成され、前記界面に於いて前記環状空間流体が前記穿孔流体と混合し、前記穿孔流体及び前記掘削物と共に地上へ向けて戻され、前記穿孔流体が前記環状空間へ流入することが実質的に防止されるよう、前記環状空間内にて前記環状空間流体を所定の圧力に維持する工程と、
    地表及び前記ドリルビットの位置に於いて前記穿孔流体を前記ドリルストリング内に周期的に閉じ込める工程と、
    前記ドリルストリングの閉じ込め処理が行われている状態にて前記ドリルストリングに或る長さのドリルパイプを接続する工程と、
    前記ドリルストリングの閉じ込め処理を解除して穿孔を継続する工程と、
    を含んでいることを特徴とする方法。
  • 前記閉じ込め処理の工程は、
    前記ドリルストリングの前記リターン導管に設けられた弁部材を地表に於いて閉弁させる工程と、
    前記ドリルストリング内の全ての流体が実質的に前記ドリルストリングより流出することが防止されるよう、前記ドリルビットに近接して前記ドリルストリングの前記高圧導管に設けられた弁部材を閉弁させる工程と、
    を含んでいることを特徴とする請求項7に記載の方法。
  • 前記環状空間流体を所定の圧力に維持する前記工程は更に、
    前記リターン導管を地表に於いて選択的に絞り、該絞りの部分を横切る圧損を制御する工程と、
    穿孔の進行に応じて前記所定の圧力を維持すると共に前記穿孔流体と前記環状空間流体との間の界面を維持するに十分な流量にて前記穿孔流体を前記高圧導管内へ圧送し前記ドリルビットより流出させる工程と、
    前記環状空間流体の前記所定の圧力及び前記穿孔流体の 圧送供給量を監視する工程と、
    を含んでいることを特徴とする請求項7に記載の方法。
  • 穿孔流体は清澄な水であることを特徴とする請求項7に記載の方法。
  • 前記穿孔流体は清澄化された穿孔泥であることを特徴とする請求項7に記載の方法。
  • 前記環状空間流体はフィルタケーキを形成する稠密な穿孔泥であることを特徴とする請求項7に記載の方法。
  • 請求項1又は7に記載の方法であって、 前記環状空間流体を所定の圧力に維持する工程におい て、
    前記リターン導管に於ける流体及び掘削物の流れを選択 的に絞る工程と、
    前記穿孔流体の圧送供給量を選択的に制御する工程と、
    前記環状空間への前記環状空間流体の圧送供給量を選択 的に制御する工程と、
    前記環状空間流体の圧力と前記穿孔流体の圧送供給量を 監視する工程と
    が含まれることを特徴とする方法。
  • 坑井を穿孔する方法にして、
    ドリルビットにて終わるドリルストリングであって、内部に少なくとも一つの高圧導管と少なくとも一つのリターン導管とを有するドリルストリングを坑井内へ移動させる工程と、
    穿孔流体が地層物質に衝突し前記ドリルビットと共働して地層物質を掘削するよう、固体成分含有量の少ない穿孔流体を前記高圧導管を経て圧送し前記ドリルビットより流出させる工程と、
    掘削の進行に応じて 前記穿孔流体を前記高圧導管内へ圧 送すると共に該穿孔流体よりも高い密度を有する環状空 間流体を前記ドリルストリングと前記坑井との間の環状 空間内へ圧送する工程にして、前期環状空間流体を前記 穿孔流体と前記環状空間流体との間の界面を維持するに 十分な流量にて圧送し、前記環状空間内にて前記環状空間流体を所定の圧力に維持する工程と、
    前記穿孔流体が前記環状空間へ流入することを実質的に防止する よう前記穿孔流体と前記環状空間流体との間の 前記界面 前記ドリルビットの位置に形成 すべく、前記ドリルストリング内の前記リターン導管を経て前記穿孔流体及び地層物質の掘削により生じる掘削物を地表へ戻す工程と、
    前記リターン導管を地表に於いて選択的に絞り、該絞りの部分を横切る圧損を制御する工程と、
    前記所定の圧力、絞り度合、流量を監視する工程と、
    を含んでいることを特徴とする方法。
  • 地表及び前記ドリルビットの位置に於いて前記穿孔流体を前記ドリルストリング内に周期的に閉じ込める工程と、
    前記ドリルストリングの閉じ込め処理が行われている状態にて前記ドリルストリングに或る長さのドリルパイプを接続する工程と、
    前記ドリルストリングの閉じ込め処理を解除して穿孔を継続する工程と、
    を含んでいることを特徴とする請求項 14に記載の方法。
  • 前記閉じ込め処理の工程は、
    前記ドリルストリングの前記リターン導管に設けられた弁部材を地表に於いて閉弁させる工程と、
    前記ドリルストリング内の全ての流体が実質的に前記ドリルストリングより流出することが防止されるよう、前記ドリルビットに近接して前記ドリルストリングの前記高圧導管に設けられた弁部材を閉弁させる工程と、
    を含んでいることを特徴とする請求項 15に記載の方法。
  • 前記穿孔流体は清澄な水であることを特徴とする請求項 14に記載の方法。
  • 前記穿孔流体は清澄化された穿孔泥であることを特徴とする請求項 14に記載の方法。
  • 前記環状空間流体はフィルタケーキを形成する稠密な穿孔泥であることを特徴とする請求項 14に記載の方法。
  • 前記環状空間流体を所定の圧力に維持する前記工程は更に、前記穿孔流体が前記ドリルストリング内へ圧送される際の流量を選択的に変更する工程を含んでいることを特徴とする請求項 14に記載の方法。
  • 地層を穿孔するために使用される複数導管式ドリルパイプにして、
    捩り荷重を伝達するアウタ導管と、
    前記アウタ導管の両端に設けられドリルパイプの他のセクションを前記ドリルパイプに接続するための手段と、
    前記アウタ導管内に偏心状態にて配置され、前記ドリルパイプを経て高圧の流体を導く少なくとも一つの小径の導管と、
    前記アウタ導管内に偏心状態にて配置され、前記小径の導管の直径よりも大きい直径を有する少なくとも一つの大径の導管と、
    前記大径の導管内に配置され、前記大径の導管を選択的に遮断する閉止部材であって、開弁位置に於いては前記大径の導管の直径を実質的に低減しない閉止部材と、
    を含んでいることを特徴とする複数導管式ドリルパイプ。
  • 一対の小径の導管と、
    前記アウタ導管内に偏心状態にて配置され、前記ドリルパイプ内に導電体を配設する電気導管と、
    を含んでいることを特徴とする請求項 21に記載の複数導管式ドリルパイプ。
  • 前記閉止部材は前記ドリルパイプの外部より操作可能なボール弁であることを特徴とする請求項 21に記載の複数導管式ドリルパイプ。
  • 前記アウタ導管内に配置された各導管は両端に於いて前記アウタ導管に固定されていることを特徴とする請求項 21に記載の複数導管式ドリルパイプ。
  • 前記アウタ導管の両端に設けられ、対応する小径の導管を有するドリルパイプの他のセクションが前記ドリルパイプに接続されないときには閉弁され、ドリルパイプの他のセクションが前記ドリルパイプに接続されるときには開弁される閉止部材を含んでいることを特徴とする請求項 21に記載の複数導管式ドリルパイプ。
  • 说明书全文

    技術分野
    本発明は、地層を穿孔するための方法及び装置に係り、更に詳細には、固体成分含有量の少ない高圧の液体を使用して石油を回収すべく地層を穿孔するための方法及び装置に係る。
    発明の背景
    坑井の回転穿孔に於いては、穿孔流体を使用することが従来より行われている。 坑井の側壁を保護し保持すべく、多くの場合穿孔流体はフィルタケーキを形成する稠密な泥である。 泥は管状のドリルストリングを経て圧送され、ドリルビットに設けられたノズルより流出し、ドリルストリングと坑井の側壁との間の環状空間を経て地上へ戻される。 この流体はドリルビットを冷却すると共に潤滑し、ガスキックや吹き出しを防止すべく静圧の流体コラムを形成し、また坑井の側壁の地層表面にフィルタケーキを形成する。 穿孔流体はノズルを経てドリルビットより流出し、ビットの歯により形成された掘削物を迅速に洗い流すに十分な速度にて坑底に衝突する。 特に高速の流体にて除去することが可能な比較的柔らかい地層の場合には、流体の速度が高いほど穿孔速度が高くなることが知られている。
    高いノズル噴射速度を使用する泥液圧はドリルビットの掘削速度に好ましい影響を与えることがよく知られているが、一般に穿孔流体は地層物質の掘削のための主要なメカニズムとしては使用されない。 その一つの理由は、摩耗量を低減する努が払われてはいるが、従来の穿孔泥は非常に研摩性が高いということである。 穿孔流体中に研摩粒子が存在する場合には、地層物質を効果的に掘削するに十分な液圧馬力を発生するに必要な圧力により、ドリルビット、特にノズル及び対応するドリルストリング部材に過剰な摩擦摩耗が惹起される。 清澄な水や研摩性を有しない流体を使用することにより摩擦摩耗の問題が解消されるものと思われるが、かかる流体は多孔質の地層や泥沼のようになり易い地層の場合には、その密度や特徴の点からフィルタケーキを形成する稠密な穿孔泥に置き代わることができない。 また高圧のガスが存在しその吹き出しを防止するために高密度の流体が必要である場合には、清澄な水を使用することができない。
    フィルタケーキを形成する稠密な穿孔泥と共に固体成分含有量の少ない高圧の穿孔流体を使用し、それら両方の利点を生かす努力が従来より行われている。 例えば1960年9月6日付にて発行された米国特許第2,951,680号公報には、膨らませ可能なパッカーがドリルビットの直上にてドリルストリングに回転可能に連結された二流体式の穿孔システムが開示されている。 穿孔工程に於いては、パッカーが膨らまされ、そのパッカーより上方のドリルストリングと坑井の壁との間の環状空間が従来の穿孔泥にて充填される。 次いでガス状の穿孔流体又は低密度の穿孔流体がドリルストリングを経て下方へ圧送され、ドリルビットに設けられたノズルより流出する。 パッカーは穿孔流体と環状空間流体とが互いに混合することを防止する。 掘削物を含む穿孔流体はパッカーより下方のドリルストリングの側壁に受けられたポート及びドリルストリング内に形成された導管を経て地表へ戻される。 ドリルストリング内にてドリルビットの近傍にパッカーが存在するので、設計上及び信頼性の問題がある。 更に掘削物を含む穿孔流体がドリルストリング内の曲りくねった通路を経て戻され、通路は掘削物にて栓塞され易い。
    また1966年8月23日付にて発行された米国特許第3,268,017号公報には、二種類の流体を使用して穿孔する方法及び装置であって、互いに同心の二つのチューブよりなるドリルストリングが使用される方法及び装置が開示されている。 清澄な水が穿孔流体として使用され、ドリルストリングのインナチューブを経て下方へ圧送され、ドリルビットより流出する。 坑井の壁を被覆する穿孔泥又は穿孔流体はドリルストリングと坑井との間の環状空間に維持される。 掘削物を含む穿孔流体はドリルストリングの互いに同心のインナチューブとアウタチューブとの間に郭定された環状通路を経て地表へ戻される。 ドリルストリングと坑井の壁との間の壁を被覆する穿孔泥のコラムの高さが検出され、コラムに関連する静水圧の変化により生じる圧力の増大に応答して穿孔流体の圧力が増大される。 ドリルストリング内のインナチューブとアウタチューブとの間の環状通路を経て掘削物を含む流体を戻すことは、環状通路が栓塞され易く栓塞物を除去することが非常に困難であるので問題がある。 更に坑井内の環状空間流体の高さを測定することにより環状空間流体により及ぼされる圧力を検出することは、環状空間流体や穿孔泥が環状空間(穿孔工程の進行に応じて坑井の全長に亘り環状空間流体や穿孔泥が維持される必要がある)内へ連続的に圧送される場合には、非常に困難である。
    更に1988年1月12日付にて発行された米国特許第4,718、503号公報には坑井を穿孔する方法であって、一対の互いに同心のドリルパイプの下端に連結されたドリルビットを使用する方法が開示されている。 石油や水の如き第一の低粘性の流体がインナドリルパイプを経て下方へ圧送され、インナドリルパイプとアウタドリルパイプとの間にの環状通路を経て地表へ戻される。 坑井の壁とアウタドリルパイプとの間形成された環状空間には環状空間流体又は穿孔泥のコラムが静的な状態に維持される。 ドリルパイプのセクションを追加する必要が生じると、フィルタケーキを形成する穿孔泥が清澄な穿孔流体に取って代わり、フィルタケーキを形成する稠密な環状空間流体又は穿孔泥のみが坑井を占有するよう、フィルタケーキを形成する穿孔泥がインナドリルパイプを経て下方へ圧送される。 ドリルパイプのセクションを追加するためのかかる方法は非常に面倒なものであり、実際非経済的である。
    従って環状空間内にフィルタケーキを形成する稠密な流体を維持しつつ低密度の穿孔流体にて穿孔を行う方法及び装置であって、商業的に実施可能な方法及び装置が必要とされている。
    発明の概要
    本発明の主要な目的は、穿孔中坑井とドリルストリングとの間の環状空間内に穿孔流体の密度よりも高い密度を有する環状空間流体を維持しつつ、固体成分含有量の少ない高圧の液体を使用して坑井を穿孔するための改良された方法及び装置を提供することである。
    本発明のこの目的及び他の目的は、ドリルビットにて終わるドリルストリングを坑井内へ移動させることによって達成される。 固体成分含有量の少ない穿孔流体がドリルストリングを経て圧送され、ドリルビットより流出せしめられ、穿孔流体は地層物質に衝突し、ドリルビットと共働して地層物質を掘削する。 穿孔流体の密度よりも高い密度を有する環状空間流体が、坑井とドリルビットとの間の環状空間内へ連続的に圧送され、環状空間流体は実質的に地表よりドリルストリングの下端まで延在する。 穿孔流体及び地層物質の掘削により生じる掘削物はドリルストリング内の実質的に障害物のない管状通路を経て地表へ戻される。 環状空間流体は所定の制御された圧力に維持され、穿孔流体と環状空間流体との間の界面がドリルビットの位置に形成され、該界面に於いて環状空間流体が穿孔流体と混合し、穿孔流体及び掘削物と共に地表へ向けて戻され、穿孔流体が環状空間へ流入することが実質的に防止される。
    本発明の好ましい実施形態によれば、環状空間流体を所定の制御された圧力に維持する工程は更に、穿孔流体、掘削物、及び環状空間流体のリターン流れを地表に於いて選択的に絞り、該絞りの部分を横切る圧損を制御する工程を含んでいる。 穿孔流体も穿孔の進行に応じて穿孔流体と環状間流体との間の界面を維持するに十分な流量にてドリルストリング内へ圧送される。 穿孔流体と環状空間流体との間の界面が確実に維持されるよう、環状空間流体の所定の制御された圧力及び環状空間流体の絞り度合が監視される。
    また本発明の好ましい実施形態によれば、本発明の方法は更に、管状通路内の穿孔流体及び掘削物を含む穿孔流体を地表及びドリルビットの位置に於いてドリルストリング内に閉じ込める工程を含んでいる。 ドリルストリングの閉じ込め処理が行われている状態にてドリルストリングに或る長さのドリルパイプが接続され、しかる後ドリルストリングの閉じ込め処理が解除されて穿孔が継続される。
    また本発明の好ましい実施形態によれば、穿孔流体は清澄な水又は清澄化された穿孔泥であり、環状空間流体はフィルタケーキを形成する稠密な穿孔泥である。
    更に本発明の好ましい実施形態によれば、ドリルストリングは引張り荷重及び捩り荷重を伝達するアウタ導管を有する複数導管式のドリルパイプを含んでいる。 ドリルパイプの他のセクションをドリルパイプに接続するための手段がアウタ導管の両端に設けられる。 少なくとも一つの大径の導管がアウタ導管内に偏心状態にて配置され、大径の導管を選択的に遮断する閉止部材が大径の導管内に配置される。 閉止部材は開弁位置に於いては大径の導管の直径を実質的に低減しない。
    本発明の他の目的、特徴、利点は以下の説明を参照することにより明らかとなる。
    【図面の簡単な説明】
    図1は本発明の好ましい実施形態による方法及び装置の概略を示す図である。
    図2は本発明による方法及び装置を制御するプロセスの各工程を示す論理フローチャートである。
    図3は本発明の好ましい実施形態による複数導管式のドリルパイプの断面図である。
    図4は図3の線4−4に沿う長手方向断面図であり、図3に示されたドリルパイプの一部を示している。
    図5は図3の線5−5に沿う長手方向断面図であり、図3に示されたドリルパイプの一部を示している。
    図6A乃至図6Hは本発明の好ましい実施形態による複数導管式のドリルパイプに使用されるクロスオーバスタビライザの長手方向断面及び横断面を示す図である。
    図7A乃至図7Dは本発明の好ましい実施形態による複数導管式のドリルパイプ及びクロスオーバスタビライザに使用される坑底組立体の長手方向断面及び横断面を示す図である。
    好ましい実施形態の説明
    添付の図面、特に図1には、本発明による坑井を穿孔する方法の概略が図示されている。 ドリルビット3にて終わるドリルストリング1が坑井5内へ移動される。 低密度の、すなわち固体成分含有量の少ない穿孔流体がスイベルに於いて穿孔流体入口7を経てドリルストリング1内へ圧送される。 穿孔流体は清澄な水又は清澄化された穿孔泥であってよいが、摩擦摩耗を回避するためには通常の穿孔泥の密度よりも低い密度を有し少ない固体成分含有量を有するものでなければならない。 穿孔流体は固体物質の大きさが7μm以下の水であることが好ましい。 また穿孔流体はビット3に於いて3200の液圧馬力を与えるよう20000psig(1400kg/cm 2 )の圧送圧力にてドリルストリング1へ供給されることが好ましい。 加圧された水はドリルストリング1内に延在しビット3と流体的に連通する少なくとも一つの小径の高圧導管9によりドリルストリング1内を経て搬送される。 後に詳細に説明する如き穿孔流体の逆流を防止する逆止弁11がビット3の位置又はその近傍に設けられている。
    入口7を経て高圧の穿孔流体が供給されることに加えて、フィルタケーキを形成する稠密な環状空間流体が、回転式吹き出し防止装置15の下方の環状空間流体入口13を経てドリルストリング1と坑井5との間の環状空間内へ圧送される。 回転式吹き出し防止装置15は環状空間流体を所定の制御された圧力に維持しつつドリルストリング1が回転されることを可能にする。 環状空間流体は穿孔される地層物質の特性及び他の一般的な因子に応じて選定された従来の穿孔泥である。 環状空間流体は地表よりビット3まで延在する環状空間流体のコラムを維持するよう環状空間内へ連続的に圧送される。 後に詳細に説明する如く、高圧の穿孔流体及び環状空間流体の圧力及び注入量、即ち圧送供給量は、ビット3の位置に於いて穿孔流体と環状空間流体との間の界面を維持し、これにより穿孔流体が環状空間内へ流入してフィルタケーキを形成する稠密な環状空間流体を希釈することが実質的に防止されるよう制御され監視される。 しかし環状空間流体の一部は穿孔流体と混合し、リターン導管17を経て地表へ戻される。 本発明の好ましい実施形態による方法は、特に従来の制御装置やデータ処理装置を使用して自動化されコンピュータにて制御されるよう構成される。
    ビット3に於ける高圧の穿孔流体の供給により生じる液圧馬力はビット3の通常の作用と共働して地層物質をより一層効率的に掘削する。 穿孔流体及び地層物質の掘削により生成される掘削物は、ドリルストリング1内の実質的に障害物のない管状リターン通路17を経て地表へ戻される。 「実質的に障害物のない」とは、実質的に流体の流れに対する絞りが存在しない実質的に直線的な管状通路であって、実質的な量の掘削物を含有する流体を流すことができ、栓塞等が発生した場合に栓塞部を容易に除去することができる通路を意味する。 実質的に障害物のない管状のリターン通路17は同心パイプ構造により得られる環状空間とは区別されるべきものであり、同心パイプ構造は栓塞し易く、また栓塞が生じた場合に栓塞部を容易に除去することができない。 穿孔流体及び掘削物のリターン流れは、穿孔流体と環状空間流体との間の界面がビット3の位置に維持されるよう、スイベルに設けられた絞り弁21により地表に於いて選択的に絞られる。
    リターン導管17には、ドリルストリング1にドリルパイプの新しいセクションを追加することを容易にするためのボール弁19がドリルストリング1の実質的に上端の位置に設けられている。 高圧導管9及びリターン導管17内に存在する低密度の穿孔流体は、特にポンプの圧送圧力が与えられていない場合やリターン導管17内のリターン流れが十分に絞られていない場合に、環状空間流体よりの静水圧又は地層の圧力によりドリルストリング1より吹き出され易い。 穿孔が終了される場合には、地表に於いてボール弁19が閉弁され、これによりリターン導管17内に穿孔流体が閉じ込められる。 逆止弁11がそれより上方の穿孔流体の静水圧と共働して高圧導管9を遮断する。 次いでドリルパイプの新しいセクションがドリルストリング1に追加され、ボール弁19が開弁されることにより穿孔が開始される。 ボール弁19が開弁される際に於ける圧力サージの発生を回避するためには、ドリルパイプの新しいセクションがドリルストリング1に接続される前に少なくともリターン導管17が流体にて充填されなければならない。 同様にドリルストリング1を取り出してビット3を交換する目的や同様の他の目的で穿孔を安全に終了させることができる。
    図2は本発明の方法による穿孔工程中に於けるドリルストリング1内の流体の制御を示すフローチャートである。 ブロック51に於いては、ドリルストリング1の軸線方向速度が検出される。 この検出は穿孔工程中にドリルストリング1を回転させる上端駆動装置(図示せず)に作用するフック荷重及び上端駆動装置の軸線方向位置を検出することにより達成される。 本発明の好ましい実施形態によれば、ドリルストリング1が下方へ移動しているときには、換言すれば穿孔工程に関連する条件が存在するときには、環状空間流体及び穿孔流体が圧送される。 穿孔に対応するドリルストリングの下方への移動中には環状空間流体及び穿孔流体が圧送されなければならないことは明らかである。 大抵の工程に於いては、環状空間流体及び穿孔流体の一方又は両方を圧送することが好ましくないのはドリルストリング1が移動しておらずその速度が0である場合のみである。 ドリルストリングの速度が0に等しくない場合には、少なくとも環状空間流体が坑井内へ圧送される。 ドリルストリング1の速度が0ではなく穿孔に関連する工程が行われているときには、環状空間流体がドリルストリング1の速度に応じて自動的に圧送されることが好ましい。 また後に説明する場合を除き、穿孔流体の圧送はオペレータにより手動的に制御されることが好ましい。
    ドリルストリング1が取り出される場合には、ドリルストリング1により占有されなくなる坑井の体積に置き代わるに十分な流量にて坑井内に環状空間流体が圧送される。 従って坑井は常に保護された状態に維持される。
    かくしてドリルストリング1が移動していれば、ブロック53に於いて少なくとも環状空間流体が坑井内へ圧送される。 またドリルストリング1の速度が穿孔工程が行われていることを示す正の値であれば、環状空間流体及び穿孔流体の両方の流体が坑井内へ圧送される。 穿孔流体は7000〜15000フィート(2100〜4600m)の深さに於いては坑底面積の1平方inch(1inch=2.54cm)当たり20〜40の液圧馬力を発生するに十分な圧力にてドリルストリング1内へ圧送される。 図3乃至図7Dとの関連で説明するドリルストリング1の寸法及び他の運転パラメータに基づき、穿孔流体は20000psig(1400kg/cm 2 )の圧力及び200ガロン/min(0.75m 3 /min)の流量にて地表に於いてドリルストリング1内へ供給される。
    ドリルストリング1が軸線方向へ移動しているときには、環状空間流体はドリルビット3を通過して環状空間流体を連続的に掃引する流量にて環状空間内へ圧送される。 通常の穿孔工程中には、この流量はドリルビット3の周りを通過する環状空間流体の連続的な流れを維持し、坑井の下端に界面を維持するだけではなく、環状空間より掘削物や他の小片を除去する。 環状空間流体の注入流量はドリルストリング1の軸線方向下方への速度の関数として設定される。 好ましい典型的な注入流量はドリルストリング1の速度の2倍の速度にて移動する環状空間流体を維持する流量である。 この注入流量はドリルストリング1が移動しているときには常に維持される。
    圧送流量、即ち注入流量に加えて、所定の正の圧力が地表に於いて環状空間流体に維持され、この圧力は回転式吹き出し防止装置15の直下に於いて検出される。 この所定の圧力は或る一つの特定の圧力ではなく、好ましくは約60〜70psig(4.2〜4.9kg/cm 2 )の圧力範囲である。 この圧力は吹き出し防止装置15に設けられた従来の圧力検出装置により検出される。
    ブロック55に於いては、所定の正の圧力を確実に維持すべく、環境空間の圧力が測定され所定の圧力と比較される。 環状空間の圧力が所定の圧力よりも高いときには、環状空間の圧力が低減される。 環状空間の圧力を低減する方法には下記の三つの方法がある。
    (1)リターン導管17に設けられた絞り弁21を開き、絞り弁21を横切る圧損を低減する。
    (2)穿孔流体の注入流量、即ち圧送流量を低減する。
    (3)環状空間流体の注入流量、即ち圧送流量を低減する。
    絞り弁21を開くことは環状空間の圧力を所定の範囲に低減するのに好ましい方法である。 もしこの方法が有効でなければ、オペレータにより設定された注入流量に拘らず穿孔流体の注入流量が自動的に低減又は制限される。 最終的な手段として、環状空間流体の注入流量がドリルストリングの速度に基づいて所定の流量以下に低減される。 地表よりドリルビット3まで延在する希釈されていない環状空間流体のコラムを維持する必要があるので、環状空間流体の注入流量を低減することは環状空間の圧力を低減するための最終手段である。 環状空間流体の注入流量を低減することを環状空間の圧力を低減するための最終手段とすることにより、穿孔流体が環状空間流体と混合しこれを希釈する虞れが低減される。
    ブロック57に於いて環状空間の圧力が所定の圧力よりも低い旨の判別が行われると、ブロック61に於いて環状空間の圧力が増大される。 環状空間の圧力を増大させる方法には下記の三つの方法がある。
    (1)環状空間流体の注入流量を所定の流量に戻るよう増大させる。
    (2)穿孔流体の注入流量をオペレータにより選定された流量になるよう増大させる。
    (3)リターン導管17に設けられた絞り弁21を閉弁し又は絞り、これにより絞り弁21を横切る圧損を増大させる。
    何らかの理由により注入流量が環状空間流体の速度をドリルストリング1の速度よりも高い値、好ましくはドリルストリングの速度の2倍に維持するに十分な流量である場合には、上述の第一の方法が行われる。 環状空間流体の注入流量が十分である場合には、第二の方法が行われてよい。 しかし穿孔流体のポンプはそのピーク出力又はその近傍にて作動しており、穿孔流体の注入流量を十分に増大させることができないものと考えられる。 その場合にはリターン導管17に設けられた絞り弁21を閉弁する第三の方法が行われる。
    環状空間の圧力が所定の範囲内にあるときには、何等の対処も行われず、ドリルストリング1の速度及び環状空間の圧力が連続的に検出される。 穿孔工程が終了する場合やオペレータが穿孔流体の注入流量を低減する場合には、環状空間の圧力が低下し、絞り弁21が自動的に閉弁し、これにより次の動作が行われるまでドリルストリング1及び坑井が効果的に閉じ込められた状態に維持される。
    図3は本発明の方法の実施に使用される好ましい装置による複数導管式ドリルパイプ101の横断面を示す断面図である。 ドリルパイプ101はアウタチューブ103を含み、アウタチューブ103は作動中ドリルパイプ101に与えられる引張り荷重及び捩り荷重を担持する作用をなす。 アウタチューブ103は7−5/8inch(19.4cm)の外径を有し、S135の定格強度になるよう熱処理されたAPI材料にて形成されることが好ましい。 アウタチューブ103内には複数個のインナチューブが偏心状態且つ非対称にて収容されており、流体を搬送する導管、電気導管等として作用する。
    これらのインナチューブは外径3−1/2inch(9cm)のリターンチューブ105を含み、リターンチューブ105は実質的に図1に示されたリターン導管17に対応している。 リターンチューブ105は非常に高い圧力の流体を搬送したり高い耐食性を有するよう設計されていないので、L80の定格強度になるよう熱処理されたAPI材料にて形成される。 2−3/8inch(6.0cm)の外径を有する一対の高圧チューブ107がアウタチューブ103内に配置されており、実質的に図1に示された高圧導管9に対応している。 高圧チューブ107は非常に高い圧力の流体を搬送しなければならないので、S135の定格強度になるよう熱処理されたAPI材料にて形成される。 アウタチューブ103内には電気導管等として機能する他のチューブ109が設けられてよい。 チューブ111は実際にはチューブではなく、図5を参照して後に詳細に説明する逆止弁組立体の一部である。
    図4は互いに固定された本発明による一対のドリルパイプ101を示す図3の線4−4に沿う長手方向断面図である。 図4より解る如く、アウタチューブ103、リターンチューブ105、高圧チューブ107が上端部材113にねじにより固定されている。 上端部材113は従来のツールジョイントと同様に形成されており、実質的にリターンチューブ105と整合された外径3−1/2inch(9.0cm)、定格圧力10000psig(703kg/cm 2 )のボトムシール式ボール弁115を含んでいる。 ボール弁115は約2−3/8inch(6.0cm)の内径を有し、リターンチューブ105内に実質的な流れの障害物、即ち流れの絞りを与えない。 またボール弁115は図1に示されたボール弁19、即ち閉止部材に対応している。
    アウタチューブ103の下端は実質的に従来のツールジョイントとして形成された下端部材117にねじにより固定されている。 シールリング119が下端部材117内に受け入れられており、リターンチューブ105及び高圧チューブ107に対しドリルパイプ101の内部をシールする作用をなす。 複数個の分割リング121がリターンチューブ105及び高圧チューブ107に設けられた周溝に係合しており、ロックリング123、125及びアウタチューブ103により下端部材117内に固定されている。 分割リング121及びロックリング123、125はドリルパイプ101の他の部分に対し相対的に軸線方向へ運動しないようインナチューブを拘束する作用をなす。 ドリルパイプ101のインナチューブがドリルパイプの両端に於いて軸線方向へ運動しないよう固定されなければ、チューブは作動中に高圧の流体や振動に起因する不適当な変形作用を受ける。
    ドリルパイプ101のセクションを追加する場合には、インナチューブ(リターンチューブ105及び高圧チューブ107のみが図示されている)の下端が上端部材113内に受け入れられ、従来のエラストマシールによりシールされる。 ロックリング127が上端部材113及び下端部材117のねじ接続部を互いに機械的に連結する。 ロックリング127が上端部材113にねじにより担持された状態にて下端部材117より完全に離脱し得るよう、下端部材117には上端部材113のピッチ円直径よりも大きいピッチ円直径を有するねじが設けられている。 ロックリング127のねじは上端部材113と下端部材117との間に約100万ポンド(約450トン)の軸線方向の接触力を発生するよう形成されている。 ドリルパイプ101の各セクションは45フィート(13.7m)の長さを有していることが好ましい。
    図5はドリルパイプ101のインナチューブ105、107とアウタチューブ103との間の二つの内部環状空間の間にて流体を下方へ通す逆止弁構造を示す図3の線5−5に沿う長手方向断面図である。 上端部材113に設けられた孔内には逆止弁組立体が配置されている。 逆止弁組立体はコイルばね131により上方へ付勢されドリルパイプ101を通る流体の下方への流れを許すが上方への流れを阻止する従来の弁部材129を含んでいる。
    同様の逆止弁組立体が下端部材117に設けられている。 この逆止弁組立体はポペット部材133とスリーブ111内に配置されたコイルばね135とを含み、スリーブ111はリターンチューブ105と同様に下端部材117に固定されている。 上端部材113内の逆止弁組立体とは異なり、下端部材117内に設けられた逆止弁組立体の機能は、ドリルパイプ101の二つのセクションの結果が解除される場合にドリルパイプの内部より流体が流出することを防止することである。 二つのセクションが連結される場合には、ポペット部材133の延長部が上端部材113に設けられたラグ、即ちボス137に係合してポペット部材133が開弁され、これによりドリルパイプ101の一連のセクションのアウタチューブ103の内部が流体的に連通接続される。
    この逆止弁構造により、アウタチューブ103の内部、即ち内部環状空間を環状空間流体等にて充填することができ、またアウタチューブ103を通る下向きに一方向の流体通路を形成することができる。 この流体通路は任意の深さに於けるドリルパイプ101の内部と外部との間の差圧を等しくするために必要である。 差圧を等しくすることは少量の流体をドリルストリング101の内部環状空間内へ圧送し、流体が逆止弁を経て下方へ導かれ圧力を等しくすることによって達成される。
    図6A乃至図6Hは本発明の好ましい実施形態によるドリルパイプ101に使用されるクロスオーバスタビライザ201の断面図である。 特に図6Aはクロスオーバスタビライザ201の縦断面図であり、図6B乃至図6Hは図6Aの長さに沿って互いに隔置された対応する切断線に沿う横断面図である。 クロスオーバスタビライザ201は穿孔中測定(MWD)装置との干渉を回避すべく非磁性材料製の一つの部材にて形成される。 またクロスオーバスタビライザ201は図4及び図5との関連で上述した如くドリルパイプ101の一つのセクションの下端に連結される。
    クロスオーバスタビライザ201にはそれを貫通する複数個の孔205及び207が形成されており、図6Bに示されている如くそれぞれドリルパイプ101の高圧チューブ107及びリターンチューブ105に対応している。 図6Cに示されている如く、一方の高圧孔207より他方の高圧孔へ高圧の穿孔流体を導くクロスオーバポート211が一方の高圧孔207の側壁に形成されている。
    図6Dに示されている如く、一方の高圧孔207を栓塞する取り外し可能なプラグ213がポート211の下方にて孔207内に配置されている。 孔207のプラグ213より下方の部分は従来の取り外し可能な指向性のMWD装置を収容している。 プラグ213は高圧の穿孔流体がMWD装置に衝撃を与えること防止する作用をなす。 プラグ213より下方に於いては、孔205及び207の直径が低減され、これにより図6Eに示されている如く孔207に実質的に対向して配列された他の一つの高圧穿孔流体孔213のための空間を与えている。 図6Fに示されている如く、高圧の穿孔流体が実質的に互いに対向して配列された一方の高圧孔207及び他方の高圧孔213により高圧の穿孔流体が導かれるよう、クロスオーバ孔215が孔207を孔213に接続している。
    孔207及び213が互いに対向して配列されていることにより、これらの孔により搬送される高圧の流体によって曲げモーメントが発生されることが抑制される。 前述の如く、他方の高圧孔207は図6Gに示されている如くMWD装置を収容している。 クロスオーバスタビライザ201は坑底組立体301の上端部分に接続されており、坑底組立体301は図4及び図5との関連で上述したドリルパイプのセクションと実質的に同様のドリルパイプのセクションであって、図6Hに示されている如くクロスオーバスタビライザ201の孔205、207、213に対応して配列されたインナチューブを有するドリルパイプのセクションを含んでいる。
    図7A乃至図7Dは本発明の好ましい実施形態による坑底組立体301及びドリルビット401の断面図である。 特に図7Aは坑底組立体301及びドリルビット401の縦断面図であり、図7B乃至図7Dは図7Aの長さに沿って互いに隔置された対応する切断線に沿う横断面図である。 図7A及び図7Bより解る如く、坑底組立体301は図4及び図5との関連で上述した如くクロスオーバスタビライザ201に連結された上側アウタチューブ303Aを含んでいる。 拡径された下側アウタチューブ303Bが上側アウタチューブ303Aに連結され、坑底組立体301内により大きい空間を与えている。 下側アウタチューブ303Bはインナチューブ307及び313を受け入れ得るようその下端に於いてねじ切りされており、インナチューブ307及び313はクロスオーバスタビライザ201により設定された互いに対向する位置関係を維持している。 リターンチューブ305が回転可能であると共に組み立てを容易にするよう下側アウタチューブ303Bとシール係合している。 ポート315がリターンチューブ305の側壁に設けられており、図5との関連で上述した逆止弁組立体と同様の逆止弁組立体317を介して下側アウタチューブ303B及びその内部のチューブとの間に郭定された内部環状空間と流体的に連通している。 かくして内部環状空間内の流体は該内部環状空間よりリターンチューブ305内へ圧送され、しかもリターンチューブ305内の流体が内部環状空間へ流入することが防止される。
    ソレノイド駆動体のフラッパ弁319がリターンチューブ305内に配置されており、このフラッパ弁はその下方に圧力を維持し得るよう1万psig(7000kg/cm 2 )の定格を有する。 フラッパ弁319はドリルストリング1が取り出される場合にはリターンチューブ305内に流体を捕捉するよう閉弁される。 一対の逆止弁321が下側アウタチューブ303Bの下方部に形成され高圧チューブ307、313と連通する通路内に配置されている。 図1との関連で上述した如く、逆止弁321は穿孔流体が高圧チューブ307、313内を上方へ逆流することを防止する。 リターンチューブの延長部323がリターンチューブ305と流体的に連通する状態にて下側アウタチューブ303Bの下方部にねじ込まれている。
    固定カッタ型のアースボーリングビット401が従来のねじ式のピン及びボックス接続により下側アウタチューブ303Bの下端部に固定されている。 ビット401は従来のブレード構造にて配列された複数個の硬質の、このましくはダイヤモンド製のカッタを有するビット面403を含んでいる。 リターン通路405がビット面403の偏心した位置よりビット401を貫通して延在し、リターンチューブの延長部323及びリターンチューブ305と流体的に連通しており、これにより穿孔流体、掘削物、これらと混合された環状空間流体のためのリターン導管を形成している。
    径方向に互いに隔置された四つの高圧通路407がビット401を貫通して延在し、実質的に横方向の通路409と交差しており、通路409はねじ止め、ろう付け又は溶接により固定されたプラグ411により栓塞されている。 複数個のノズル413が横断方向の通路409より延在し、高圧の穿孔流体を坑底へ供給するようになっている。 ノズル413の合計の流路断面積は0.040inch 2 (0.26cm 2 )であることが好ましい。 またビットは7−7/8inch(20cm)の外径を有するドリルパイプ101との関連で使用されるAPI製の9−7/8inch(25.1cm)のゲージのビットであることが好ましい。
    本発明による方法及び装置によれば多数の利点が得られる。 特に本発明によれば、穿孔の進行につれて環状空間内に稠密なフィルタケーキを形成する流体を維持しつつ固体成分含有量の少ない穿孔流体を使用して穿孔を行う方法及び装置が得られる。 本発明の方法及び装置は従来の方法や装置に比して商業的実施可能性に優れている。 更に本発明による方法は自動化やコンピュータによる制御に特に適している。
    以上に於いては本発明を好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されるものではなく、本発明の範囲内にて修正や変更が加えられてよいものである。

    QQ群二维码
    意见反馈