首页 / 国际专利分类库 / 固定结构 / 一般门、窗、百叶窗或卷辊遮帘;梯子 / 用于增加外反射率的功能层上带有吸收层的低辐射涂层制品

用于增加外反射率的功能层上带有吸收层的低辐射涂层制品

申请号 CN201280058312.7 申请日 2012-09-14 公开(公告)号 CN103958431B 公开(公告)日 2017-09-08
申请人 葛迪恩实业公司; 发明人 凯文·奥康纳; 劳敬宇; 约翰·沃尔福;
摘要 一种涂层制品,包括低 辐射 涂层,所述低辐射涂层具备吸收层,位于功能层(红外反射层)之上,被设计用来使所述涂层具有增强的外反射(例如,在绝缘玻璃窗单元中)和较好的选择性。在示例性 实施例 中,吸收层是金属性的或基本金属性的,并直接位于两个红外反射层中的较低层之上并与其 接触 。在示例性实施例中,氮化物的层(例如,氮化 硅 或其他)可直接位于所述吸收层之上并与其接触,用来减少及防止 热处理 期间的 氧 化(例如,热 钢 化、热弯曲、和/或热强化),从而可实现预测的 颜色 ,较高的外反射值、和/或较好的选择性。根据本 发明 的示例性实施例的涂层制品可用于绝缘玻璃(IG)窗单元、车船窗、其他类型的窗、或其他任何合适的应用。
权利要求

1.一种涂层制品,包括由玻璃基板支持的涂层,所述涂层包含:
含有氮化的第一层,由玻璃基板支持;
含有化锌的第一层,由玻璃基板支持,并位于所述含有氮化硅的第一层之上与其直接接触
含有的第一、第二红外反射层,其中,所述第一红外反射层比所述第二红外反射层更接近所述玻璃基板,且其中,含有银的所述第一红外反射层位于所述含有氧化锌的第一层之上并与其直接接触;
含有镍和/或铬的金属性吸收层,位于所述第一红外反射层之上并与其直接接触;
含有氮化硅的第二层,位于所述金属性吸收层之上并与其直接接触;
含有金属氧化物的层,位于所述含有氮化硅的第二层之上并与其直接接触;
含有氧化锌的第二层,位于所述含有金属氧化物的层之上,并位于所述第二红外反射层之下与其直接接触;
至少一个介质层,位于所述第二红外反射层之上,且
其中,所述涂层的表面电阻为≤3.0Ω/平方米,且单片测量的所述涂层制品的透光率为35-55%,玻璃面可见反射率为20-50%,且所述玻璃面可见反射率至少比所述涂层制品的薄膜面可见反射率高5%。
2.如权利要求1所述的涂层制品,其中,所述第一红外反射层和所述玻璃基板之间不存在高折射率层。
3.如上述权利要求中任何一项所述的涂层制品,其中,单片测量的所述涂层制品的玻璃面可见反射率为20-35%。
4.如权利要求1所述的涂层制品,其中,单片测量的所述涂层制品的玻璃面可见反射率为24-30%。
5.如权利要求1所述的涂层制品,其中,所述金属性吸收层的厚度为25-50 Å。
6.如权利要求1所述的涂层制品,其中,所述涂层制品的透光率为35-45%。
7.如权利要求1所述的涂层制品,其中,所述金属性吸收层包含NiCr。
8.如权利要求1所述的涂层制品,其中,所述涂层制品被热处理
9.如权利要求1所述的涂层制品,其中,所述涂层制品被热化,且由于回火,玻璃面反射ΔE*值为≤4.5。
10.如权利要求1所述的涂层制品,其中,所述含有氮化硅的第二层至少比所述含有氮化硅的第一层薄50 Å。
11.如权利要求1所述的涂层制品,其中,所述金属氧化物为氧化
12.如权利要求1所述的涂层制品,其中,所述至少一个介质层位于所述第二红外反射层之上,所述第二红外反射层包括含有氮化硅的第三层。
13.如权利要求12所述的涂层制品,其中,所述含有氮化硅的第二层至少比所述含有氮化硅的第三层薄100 Å。
14.如权利要求1所述的涂层制品,其中,所述含有氧化锌的第二层直接接触所述含有金属氧化物的层。
15.一种绝缘玻璃窗单元,包括:
上述权利要求中任何一项所述的涂层制品,被耦合至另一个玻璃基板,其之间具间隔。
16.如权利要求15所述的绝缘玻璃窗单元,其中,所述涂层位于最接近太阳的所述玻璃基板的内表面,且所述绝缘玻璃窗单元的外反射率为23-30%,且得热系数SHGC为0.25以下。
17.一种涂层制品,包括由玻璃基板支持的涂层,所述涂层包含:
含有银的第一、第二红外反射层,其中,所述第一红外反射层比所述第二红外反射层更接近所述玻璃基板,且其中,含有银的所述第一红外反射层位于含有氧化锌的层之上并与其直接接触;
金属性吸收层,位于所述第一红外反射层之上并与其直接接触;
含有氮化物的层,位于所述金属性吸收层之上并与其直接接触;
含有金属氧化物的层,位于所述含有氮化物的层之上;
至少一个介质层,位于所述第二红外反射层之上,且
其中,所述涂层的表面电阻为≤3.0Ω/平方米,且单片测量的所述涂层制品的透光率为35-55%,玻璃面可见反射率为20-50%,其中,所述玻璃面可见反射率至少比所述涂层制品的薄膜面可见反射率高5%。
18.如权利要求17所述的涂层制品,其中,所述第一红外反射层和所述玻璃基板之间不存在高折射率层。
19.如权利要求17-18中任何一项所述的涂层制品,其中,单片测量的所述涂层制品的玻璃面可见反射率为24-30%。
20.如权利要求17所述的涂层制品,其中,所述金属性吸收层的厚度为25-50 Å。
21.如权利要求17所述的涂层制品,其中,所述金属性吸收层替换为NiCrNx层。
22.如权利要求17所述的涂层制品,其中,所述金属性吸收层包含NiCr。
23.如权利要求17所述的涂层制品,其中,所述涂层制品被热钢化,且由于回火,玻璃面反射ΔE*值为≤4.5。
24.如权利要求17所述的涂层制品,其中,所述玻璃面可见反射率至少比所述涂层制品的薄膜面可见反射率高10%。
25.如权利要求17所述的涂层制品,其中,所述玻璃面可见反射率至少比所述涂层制品的薄膜面可见反射率高15%。

说明书全文

用于增加外反射率的功能层上带有吸收层的低辐射涂层制品

[0001] 本发明涉及一种涂层制品,包括低辐射涂层。在示例性实施例中,所述低辐射涂层的吸收层位于功能层(红外反射层)之上,被设计用来使所述涂层具有增强的外反射(例如,在绝缘玻璃窗单元中)和/或增强的玻璃面可见反射率(例如,单片测量)、以及较好的选择性。在示例性实施例中,吸收层是金属性的或基本金属性的,并直接位于两个红外反射层中的较低层之上并与其接触。在示例性实施例中,氮化物层(例如,氮化等)可直接位于所述吸收层之上并与其接触,用来减少及防止热处理期间的化(例如,热化、热弯曲、和/或热强化),从而可在热处理后实现预测的颜色,较高的外反射值、和/或较好的选择性。根据本发明的示例性实施例的涂层制品可用于绝缘玻璃(IG)窗单元、车船窗、其他类型的窗、或其他任何合适的应用。
[0002] 发明背景
[0003] 在现有技术中,涂层制品被用在绝缘玻璃(IG)窗单元、车船窗、和/或其他等类似的玻璃应用中。在一些已知实施例中,通常是将涂层制品进行热处理(例如,热钢化、热弯曲、和/或热强化)来达到钢化、弯曲、或其他目的。
[0004] 在一些情况下,出于审美目的,涂层制品的设计往往希望具有较高的外反射率,并具有较好的选择性、透光率、低辐射(或辐射率)、和较低的表面电阻率(Rs)。低辐射(low-E)和较低的表面电阻性质可使涂层制品切断大量的红外辐射,来减少类似车辆或建筑内部的热气。但是,涂层制品的热处理通常要求使用至少580℃的温度,优选是至少600℃,且更优选是至少620℃。但上述高温的使用(例如5-10分钟,或更多)经常导致涂层断裂,具有不理想的较低的外反射率,和/或由于不可取的方式而导致上述性质恶化
[0005] 共同拥有的美国专利文件2005/0202254被纳入此处作为参考,其公开了一种涂层制品,从玻璃基板往外,具有下述玻璃基板上的层:
[0006] 层
[0007] 玻璃基板
[0008] TiO2
[0009] Si3N4
[0010] ZnO
[0011] Ag
[0012] NiCrOx
[0013] SnO2
[0014] Si3N4
[0015] SnO2
[0016] ZnO
[0017] Ag
[0018] NiCrOx
[0019] SnO2
[0020] Si3N4
[0021] 虽然上述的涂层制品可热处理,并具有许多理想及优选的特性,但是问题在于当涂层制品被用于绝缘玻璃窗单元时,具有较低的外反射率。特别是,美国专利2005/0202254中示出具涂层的绝缘玻璃窗单元仅可实现1-12%.的外部玻璃面可见反射率。
[0022] 在另一个实施例中,虽然美国专利No.8,017,243的涂层制品具有许多理想及优选的特性,但其问题在于具有较低的外反射或玻璃面可见反射率。特别是,美国专利No.8,017,243中示出具涂层的绝缘玻璃窗单元仅可实现1-14%(见RgY值)的外部玻璃面可见反射率。
[0023] 在另一个实施例中,虽然美国专利7,419,725的涂层制品具有许多理想及优选的特性,但其问题在于具有较低的外反射或玻璃面可见反射率。特别是,美国专利No.7,419,725中示出具涂层的绝缘玻璃窗单元仅可实现16.9-17.7%(见RgY值)的外部玻璃面可见反射率。
[0024] 如上所述,本领域的技术人员需要一种具理想的光学特性(例如,低辐射的绝缘玻璃窗单元具有较高的外部玻璃面可见反射率和理想的透光率)的涂层制品的技术。
[0025] 发明的示例性实施例概述
[0026] 本发明涉及一种涂层制品,包括低辐射涂层。在示例性实施例中,所述低辐射涂层的吸收层位于功能层(红外反射层)之上,被设计用来使所述涂层具有增强的外反射(例如,在绝缘玻璃窗单元中)和/或增强的玻璃面可见反射率(例如,单片测量)、以及较好的透光率、选择性、较低的得热系数SHGC、以及低辐射。在示例性实施例中,吸收层是金属性的或基本金属性的,并直接位于两个红外反射层中的较低层之上并与其接触。在示例性实施例中,金属或基本金属的吸收层(例如,NiCr),其厚度约为25-50Å,并在绝缘玻璃窗单元的应用中发现具有增强的外反射率,和/或单片测量时具有增强的玻璃面可见反射率,且仍旧具有理想的透光率和低辐射。在示例性实施例中,氮化物层(例如,氮化硅等)可直接位于所述吸收层之上并与其接触,用来减少及防止热处理期间的氧化(例如,热钢化、热弯曲、和/或热强化),从而可在热处理后实现预测的颜色,较高的外反射值、和/或较好的选择性。根据本发明的示例性实施例的涂层制品可用于绝缘玻璃(IG)窗单元、车船窗、其他类型的窗、或其他任何合适的应用。
[0027] 在本发明的示例性实施例中,提供一种涂层制品,包括由玻璃基板支持 的涂层,,所述涂层包括:含有的第一、第二红外(IR)反射层,其中,所述第一红外反射层比所述第二红外反射层更接近所述玻璃基板,且其中,含有银的所述第一红外反射层位于含有氧化锌的第一层之上并与其直接接触;基本金属吸收层,位于所述第一红外反射层之上并与其直接接触;含有氮化物的层,位于基本金属吸收层之上并与其直接接触;含有金属氧化物的层,位于所述含有氮化物的层之上;至少一个介质层,位于所述第二红外反射层之上,且其中,所述涂层的表面电阻为≤3.0Ω/平方米,且单片测量的所述涂层制品的透光率为20-70%,玻璃面可见反射率至少为20%。在示例性实施例中,涂层制品可被热处理(例如,热钢化,当涂层位于所述玻璃基板上时执行回火)。在示例性实施例中,涂层制品可被用于绝缘玻璃窗单元。
[0028] 附图简要说明
[0029] 图1是根据本发明的示例性实施例的涂层制品的横截面图。
[0030] 图2是根据本发明的示例性实施例的绝缘玻璃单元的横截面图。
[0031] 示例性实施例的具体说明
[0032] 在此,涂层制品可用在包含有单个或多个玻璃基板的绝缘玻璃窗单元、车船窗、单片建筑窗、住宅窗、和/或其他合适的应用中。
[0033] 在本发明的示例性实施例中,涂层包括双银堆栈,但本发明并不局限于该实施例。
[0034] 例如,在本发明的示例性实施例中,热处理(HT)和/或非热处理的涂层制品具有多个红外反射层(例如两个具间隔的基于银的层)可实现≤3.0(优选是≤2.5,更优选是≤2.0,最优选是≤1.7)的表面电阻 。在示例性实施例中,在热处理(HT)之后和/或之前,以及以单片形式测量时,涂层制品可实现约20-70%的透光率(Ill. C, 2 degree),优选是
30-60%,更优选是35-55%,且最优选是40-50%。进一步,在示例性实施例中(热处理或非热处理),当耦合至其他玻璃基板形成绝缘玻璃窗单元时,根据本发明的示例性实施例的绝缘玻璃单元涂层制品可实现20-70%的透光率,优选是30-60%,更优选是35-55%,更优选是40-
50%,且最优选是41-46%。在示例性实施例中,在热处理(HT)之后和/或之前,以及以单片形式测量时,玻璃面可见反射率(RgY%)明显较高(例如,至少比薄膜面可见反射率 (RfY%)高
5%,更优选是高10%-15%)。例如,当玻璃面可见反射率为24%,薄膜面可见反射率为12%时,玻璃面可见反射率比薄膜面可见反射率高12%(24%–12%=12%)。在本发明的示例性实施例中,在热处理( HT )之后和/或之前,以及以单片形式测量时,涂层制品可实现至少20%的玻璃面可见反射率(RgY%),优选是20-50%,更优选是20-40%,更优选是 20-35%,甚至更优选是
22-35%,最优选是24-30%。进一步,在示例性实施例中(热处理或非热处理),当耦合至其他玻璃基板形成绝缘玻璃窗单元时,根据本发明的示例性实施例的绝缘玻璃单元涂层制品可实现至少20%的玻璃面可见反射率(RgY%),优选是20-50%,更优选是20-40%,更优选是 20-
35%,甚至更优选是22-35%,更优选是23-30%或24-29%,最优选是25-27%。在示例性实施例中,通过与在此所述的任何实施例相结合,涂层可使绝缘玻璃单元的得热系数SHGC值为
0.27以下,更优选是0.25以下,最优选是0.24以下。
[0035] 在此使用的“热处理(heat treatment)”和“热处理(heat treating)”表示将制品加热至一定的温度来实现玻璃制品的热钢化、热弯曲、和/或热加强。该定义,例如,在烤炉或熔炉中以至少580℃的温度来加热涂层制品,更优选是至少600℃,以足够的时间来执行钢化、弯曲、和/或热强化。在一些情况下,热处理至少进行4到5分钟。在本发明的不同实施例中,涂层制品可热处理也可不热处理。
[0036] 图1是例示出根据本发明的非限制性实施例的涂层制品的横截面图。该涂层制品包括:基板1(例如,纯色、绿色、色、或蓝绿色玻璃基板,厚度为1.0-10.0mm,更优选是1.0-7.0mm,最优选是5-7mm,示例厚度约为6 mm);低辐射涂层(或层体系)30,直接或间接地位于基板1上。涂层(或层体系)30包括:基于和/或包含氮化硅的底部介质层3,其可以是高硅类型的Si3N(4 在一些实施例中可掺杂类似的其他材料,也可不掺杂),用于去雾处理,或是本发明的另一个实施例中的任何其他合适的化学计量的氮化硅;第一下部介质接触层7(与下部红外反射层9接触);第一导电和金属红外反射层9;金属或基本金属吸收层4(例如,包括镍铬或其他等),位于红外反射层9之上并直接与其接触;基于和/或包含氮化硅的介质层
14,位于吸收层4之上并直接与其接触;基于和/或包含氧化的夹层15;第二下部介质接触层17(其与红外反射层19接触)、第二导电和金属红外反射层19;上部接触层21(其与红外反射层19接触);介质层23;和保护性介质层25。所述接触层7、17、21分别至少与一个红外反射层(例如基于银的层)接触。上述的层3-25形成低辐射(即,低放射)涂层30,并提供至玻璃或玻璃基板1上。在示例性实施例中,下部的红外反射层9和玻璃基板1之间不存在介电的高折射率层(例如,二氧化层),“高折射率层”表示折射率为2.15以上的层。
[0037] 在示例性实施例中,所解决的问题是如何生成玻璃面反射( RgY )与薄膜面反射 (RfY ) 之间具高差异的涂层,包括在热处理(例如,热钢化)之后的过程。通常情况下,双银涂层设计使玻璃面可见反射和薄膜面可见反射之间光度差异较低,而一些市场,特别是一部分商业市场在审美上要求高差异。因此,在本发明的示例性实施例中,涂层制品被设计成具有较高的类似镜子的玻璃面可见反射,同时维持较低的薄膜面可见反射。虽然,现有技术中的单一银涂层可做到这一点,但本发明的示例性实施例涉及一种多银涂层来实现上述要求。单一银涂层的缺点在于,其可能具有较高的0.29 的太阳热获取系数(得热系数SHGC),且由于高太阳能负荷十分常见,因此不能满足提出的SHGC<0.25的能源代码标准。在本发明的示例性实施例中,当维持上述的高反射差异理论时可实现0.23的SHGC来满足能源代码标准。在本发明的示例性实施例,通过使用金属或基本金属的“吸收”镍铬层来代替位于底部银之上的“透明的氧化镍铬层,从而在热处理之后可实现较高的 RgY/RfY差异。在示例性实施例中,为了避免加热过程中严重氧化的镍铬进入位于底部银之上的氧化镍铬层,将类似氮化硅的氮化物层直接置于含镍铬的吸收层之上。进一步,在示例性实施例中,为了在加热期间减少或降低雾传播并维持光学特性,可将少量的氮(50mL)引入至位于底部银之上的吸收层中。氮对镍铬的即时光学特性具有较小的影响,但可使其在加热期间保持金属或基本金属质。
[0038] 在为单片时,如图1所示,涂层制品仅包括一个玻璃基板1。但是,该单片的涂层制品可能用于类似叠层的车辆挡玻璃、绝缘玻璃窗单元等装置中。在用于绝缘玻璃窗单元时,绝缘玻璃窗单元可包括两个具间隔的玻璃基板。在美国专利No.7,189,458示出并说明了有关绝缘玻璃窗单元的一个示例,其公开的内容被纳入此处作为参考。示例性绝缘玻璃窗单元可包括:如图1中示出的玻璃基板1,通过垫片密封剂等被耦合至另一个玻璃基板,并在其之间定义间隔。在一些情况下,该绝缘玻璃单元的实施例中的基板之间的间隔中,可填入类似氩(Ar)的气体。在一些情况下,示例性绝缘玻璃单元可包括一对具间隔的玻璃基板,厚度分别为3-7mm(例如,6mm),其中的一个涂有在此所述的涂层30,其中基板之间的间隔可为5-30mm,更优选是10-20mm,且最优选是约为12mm。在示例中,涂层30可施加在面对间隔的任何一个基板的内表面,但是,在优选的实施例中,涂层30可施加在如图2所示的外玻璃基板1的内表面。图2中也示出绝缘玻璃窗单元的示例,可包括:图1中所示的涂层的玻璃基板1,通过垫片、密封剂等4被耦合至另一个玻璃基板2,其之间定义有间隔6。在一些情况下,绝缘玻璃单元中的基板之间的间隔6中可填入类似氩(Ar)的气体。在本发明的另一个实施例中,间隔6的压可小于大气,或不小于大气。
[0039] 仍参照图2,示例性绝缘玻璃单元可包括一对具间隔的玻璃基板(1和2),厚度分别为6 mm,其中的一个涂有在此所述的涂层30,其中基板之间的间隔6可为5-30mm,更优选是10-20 mm,且最优选是12-16mm。在示例性实施例中,涂层30可施加在如图2所示的外玻璃基板1的内表面(即,外部方向的表面#2之上),当然,在本发明的另一个实施例中,涂层也可施加在另一个基板2上。
[0040] 在本发明的示例性实施例中,吸收层4位于下部的红外反射层9之上并直接与其接触。在示例性实施例中,位于吸收层4之上并与其直接接触的层14是氮化物层,并基本或完全非氧化。其优点在于可防止(或减少)热处理期间吸收层被氧化,从而更好地使吸收层执行其预期的功能,特别是吸收至少一些数量的可见光(例如,至少5%,更优选是10%)。应理解,当热处理期间,层被过多氧化时,其不能执行作为吸收层的适当功能。
[0041] 在本发明的示例性实施例中,吸收层4可包括镍和/或铬(例如,具任何 Ni:Cr 合适比例的镍铬)。在示例性实施例中,吸收层4包括0-10%的氧气,优选是0-5%的氧气,且更优选是0-2%的氧气(原子百分比)。进一步,吸收层4中加入0-20%的氮气,更优选是1-15%的氮气,且最优选是1-10%的氮气(原子百分比)。虽然对于吸收层4来说镍铬(例如,在示例性实施例中可能被氮化)是优选材料,但也可使用其他材料,或将其他材料添加至镍和/或铬中。例如, 在本发明的示例性实施例中,吸收层4可以是或包括 Ni、Cr、NiCrNx、CrN、ZrN等。在非热处理的实施例中,类似其他 Ti、Zr、NiOx 等材料,任何一个上述的材料可用于吸附/吸收层4。
[0042] 低辐射涂层的吸收层4被设计用来使涂层和/或涂层制品(包括实施例中的绝缘玻璃单元)具有增强的外(或是玻璃面)反射(例如在绝缘玻璃窗单元),并具有理想的透光率、选择性、较低的得热系数、以及低辐射。在示例性实施例中,金属或基本金属吸收层(例如,NiCr )4比上部接触层21薄,吸收层的厚度约为25-80Å,更优选是25-50 Å ,更优选是30-40 Å,且最优选是33-37 Å(例如,厚度约35 Å)。进一步,在示例性实施例中,吸收层14可以是金属或是轻微被氧化,则上部接触层21明显被氧化( 例如,至少50% 被氧化)。由此,层4可作为吸收层并使涂层制品的外部或玻璃面反射率明显增加,且上部接触层21不作为吸收层。
[0043] 在示例性实施例中,金属或基本金属吸收层14直接位于金属或基本金属红外反射层9和氮化物层14之间并与其接触,用来减少或防止热处理期间层4的氧化(例如,热钢化、热弯曲、和/或热强化),从而可随热处理(HT)达到反射率和透光率。
[0044] 进一步,在示例性实施例中,基于和/或包含金属氧化物的层15(或是包含氧化锡)可配置在氮化物层14与上部红外反射层19之间,特别是,在示例性实施例中,层15可位于氮化物层14与基于和/或包含氧化锌的接触层17之间并直接与其接触。在示例中发现,包含氧化锡的中间层15的使用可使涂层制品实现理想的光学特性。
[0045] 在本发明的实施例中,介质层3、14和25可以是氮化硅或包括氮化硅。氮化硅层3、14、和25可位于其他材料之间,来增加涂层制品的热处理性,例如,热钢化或其他。在本发明的另一个实施例中,这些层的氮化硅可以是化学计量的类型(即,Si3N4),或是高硅类型。例如,高硅的氮化硅13(和/或14)与基于银的红外反射层下的氧化锌和/或氧化锡相结合,允许银沉积(例如,通过溅射或其他方式),从而与将其他材料配置在银之下相比,表面电阻减少。进一步,高硅的氮化硅层3中的自由硅的存在,可使类似钠(Na)的原子在热处理期间从基板1向外迁移,从而在到达银之前,通过高硅的氮化硅层3被有效地停止。由此,在本发明的示例性实施例中,高硅的 SixNy 可减少热处理期间对于含银层的损害,从而可减少表面电阻(Rs)或以符合要求的方式来维持几乎相同。进一步,在本发明的选择性实施例中 ,层3中的高硅 SixNy 可减少热处理期间对于吸收层4的损害(例如,氧化)。在示例性实施例中,高硅的氮化硅被用于层3和/或层14时,高硅的氮化硅层以 SixNy 层被沉积,其中,x/y为
0.76-1.5,更优选是0.8-1.4,且更优选是0.85-1.2。进一步,在示例性实施例中,热处理之前和/或热处理之后,高硅的SixNy层的折射率“n”至少为2.05,更优选是至少2.07,且一些情况下为2.10 (例如,632nm)(在此,也可使用化学计量的Si3N4,其折射率“n”为2.02-2.04 )。
在示例性实施例中,当高硅的SixNy 层被沉积,折射率“n”至少为2.10时,可获得提高的热稳定,更优选是至少2.20,且最优选是2.2-2.4。
[0046] 在本发明的示例性实施例中,在此所述的任何和/或所有氮化硅层可掺杂类似不锈钢或铝的材料。例如,在本发明的示例性实施例中,上述的任何和/或所有氮化硅层(例如,3、14、和/或25)可选择性包括0-15%的铝、更优选是1 -10%的铝。在本发明的实施例中,通过溅射硅或硅铝氮化硅被沉积。在一些情况下,还可提供氧气至一个或多个氮化硅层。由于层14用来保护吸收层4防止其在热处理期间被氧化,在本发明的实施例中,氮化硅层14至少比氮化硅层3和/或25薄50Å,更优选是至少薄100Å。在示例性实施例中,氮化硅层14至少比氮化硅层25薄100Å,并至少比 氮化硅层3薄50Å。在本发明的实施例中,虽然氮化硅是用于层3、14、25的优选材料,但应理解,在其他实施例中,其他材料也可代替或被添加来用于一个或多个上述层。
[0047] 优选是,红外(IR)反射层9、19为基本或完全金属和/或导电的,并可包含或是由银(Ag)、金构成,或是其他合适的红外反射材料。红外反射层9、19可使涂层具有低辐射和/或较好的太阳能控制特性。在本发明的实施例中,红外反射层可被轻微氧化。在示例性实施例中,上部红外反射层19比下部红外反射层9 厚(例如,至少厚 5Å,更优选是厚10-15Å)。
[0048] 在本发明的示例性实施例中,上部接触层21可以是氧化镍或包括氧化镍(Ni) 、氧化铬(Cr) 、或是类似氧化镍铬( NiCrOx )的氧化镍合金,或是其他合适的材料。上述材料的使用,例如,层21中的 NiCrOx 可增加耐久性。在本发明的实施例中(即,完全化学计量),层21中的 NiCrOx可完全(或基本上完全)被氧化,或是部分被氧化。在一些情况下,氧化镍铬层21可至少50%被氧化。在本发明的另一个实施例中,接触层21(例如,包括氧化镍和/或氧化铬)可被氧化分级或不氧化分级。氧化分级表示根据层的厚度,层中氧化级别的改变,例如,接触层可被分级, 与红外反射层19紧邻的接触界面中被氧化的程度,要小于远离或更远离红外反射层19的接触层部分。在本发明的另一个实施例中,接触层21(例如,包括氧化镍和/或氧化铬)可基本穿过整个红外反射层19或不穿过。
[0049] 在本发明的示例性实施例中,介质层15可包括氧化锡。但是,与在此所述的其他层一样,在不同的情况下可使用其他材料。
[0050] 在本发明的示例性实施例中 ,下部接触层7和/或17可以是氧化锌或包括氧化锌(例如ZnO)。层7、17的氧化锌可包含类似铝和/或锡的其他材料(例如,生成ZnAlOx)。例如,在本发明的示例性实施例中,一个或多个基于氧化锌的层7、17可掺杂1 -10%的铝,更优选是1 -5%的铝,且最优选是1 -4%的铝。
[0051] 在本发明的示例性实施例中,介质层23可以是氧化锡或包括氧化锡。在本发明的示例性实施例中,类似其他涂层,可选择性地配置层23或不配置。在一些情况下,介质层25可以是覆盖层,包括氮化硅(例如,Si3N4)或任何其他合适的材料。选择性地,可在层25之上配置其他层(例如:包括氧化锆的层)。层25用于增加耐久性,并在热处理期间和环境中保护底下层。在示例性实施例中,层25可具有1.9-2.2的折射率,更优选是1.95-2.05。
[0052] 示出的涂层下或涂层上也可配置其他层。虽然层体系或层30位于基板1“之上”或由基板1“支持”(直接或非直接),但在其之间可也配置其他层。由此,即使层3和基板1之间配置有其他层,图1的涂层也被视为位于基板1“之上”或由基板1“支持”。进一步,在实施例中,示出的涂层中的一些层可被除去,且另一个实施例中,也可在多个层中添加其他没有示出的层,或是在不脱离本发明的实施例的思想范围下,在本发明的其他实施例中可将一些层与添加在分开部分之间的其他层分离。
[0053] 在本发明的另一个实施例中,各种厚度和材料可用于层中,以下,示出图1中位于玻璃基板1上的各溅射沉积的厚度和材料,顺序为自玻璃基板向外:
[0054] 示例性材料/厚度; 图1的实施例
[0055]
[0056] 在本发明的示例性实施例中,当单片测量时,该涂层制品具有表2中所说明的光学及太阳能特性(在任何选择性的热处理之前)。相关的光学特性与Ill.C 2º相一致,但L*值为根据环境的任意值(Hunter)。在此,表面电阻率(Rs)考虑到所有红外反射层(例如,基于银的层9、19)
[0057]
[0058] 进一步,在本发明的示例性实施例中,该涂层制品可选择性地被热处理,来满足钢化,并耦合至另一个基板来形成绝缘玻璃单元,并具有以下绝缘玻璃单元的光学/太阳能特性。在此,如图2 所示出的,当涂层30位于绝缘玻璃窗单元的表面#2之上时,如以下表所示,绝缘玻璃窗单元的外反射率可表示为RgY。
[0059] 示例性光学特征(绝缘玻璃单元)
[0060]
[0061] 进一步,在示例性实施例中,涂层制品经热处理(例如,热钢化)被热稳定,且在单片测量时,由于热处理,其玻璃面反射ΔE*值≤5.0,更优选是≤4.5。
[0062] 以下实施例仅作为示例被说明,其并用来不限制所述的权利要求
[0063] 示例
[0064] 以下示例1通过在6mm厚的透明玻璃基板上溅射被制成,具备以下说明的层堆栈。示例1与图1中所示出的本发明的实施例相一致。示例1具有以下层堆栈,其中,厚度的单位为Å(angstroms)。
[0065] 层 厚度(Ǻ)
[0066] 玻璃(6 mm厚)
[0067] SixNy (层3) 120 Å
[0068] ZnOx (层7) 100  Ǻ
[0069] Ag (层9) 151  Ǻ
[0070] NiCr (层4) 35  Ǻ
[0071] SixNy (层14) 43  Ǻ
[0072] SnO2 (层15) 750 Å
[0073] ZnOx (层17) 100  Ǻ
[0074] Ag (层19) 172  Ǻ
[0075] NiCrOx (层21) 40  Ǻ
[0076] SnO2 (层23) 120 Å
[0077] Si3N4 (层25) 225  Ǻ
[0078] 热处理之后示例1被热钢化并单片测量,被计算出具有以下特性:
[0079] 特性 Ex.1(热处理)
[0080] Tvis (or TY)(Ill. C 2º):47.7%
[0081] a*t (Ill. C 2°):-4.5
[0082] b*t (Ill. C 2°):1.0
[0083] RfY (Ill. C, 2 deg.):7.0%
[0084] a*f (Ill. C, 2°):-3.0
[0085] b*f (Ill. C, 2°):-14.5
[0086] RgY (Ill. C, 2 deg.):25.0%
[0087] a*g (Ill. C, 2°):-1.5
[0088] b*g (Ill. C, 2°):-6.5
[0089] ΔE* (透光率):<= 4.5
[0090] ΔE* (玻璃面反射率):<= 4.5
[0091] 示例1的钢化涂层基板被耦合至另一个6mm的透明玻璃基板,其之间具有12mm的空气间隔,形成图2中所示出的绝缘玻璃窗单元,并具有以下特性:
[0092] 特性 Ex.1(绝缘玻璃单元)
[0093] Tvis (or TY)(Ill. C 2º):42.7%
[0094] a*t (Ill. C 2°):-5.5
[0095] b*t (Ill. C 2°): 1.0
[0096] RfY (Ill. C, 2 deg.):13.0%
[0097] a*f (Ill. C, 2°):-2.5
[0098] b*f (Ill. C, 2°):-8.0
[0099] RgY (Ill. C, 2 deg.): 26%
[0100] a*g (Ill. C, 2°):-2.0
[0101] b*g (Ill. C, 2°):-6.0
[0102] SHGC (表面#2):0.23
[0103] 差雾度(%):<= 0.80
[0104] 如上所述,本发明虽然已参照最实用和优选的实施例进行了说明,但是本发明并不局限于所述实施例,相反可在上述说明的范围内进行各种修改变形,修改将由后附的权利要求范围定义。在此说明的任何实施例可用来与其他实施例相结合或不与其他实施例相结合。
QQ群二维码
意见反馈