自控激光手术设备

申请号 CN201610616343.X 申请日 2016-07-30 公开(公告)号 CN106175942A 公开(公告)日 2016-12-07
申请人 杨超坤; 发明人 不公告发明人;
摘要 本 发明 公开了自控激光手术设备,包括垂直 支架 、与垂直支架相连的悬臂、与所述悬臂相连接的手术 治疗 头,所述手术治疗头包括显微观察系统、 光源 接口 、摄像头和摄像输出端口。该手术设备结构合理,便于安装,节省了大量的人 力 和物力。
权利要求

1.自控激光手术设备,其特征在于,包括垂直支架、与垂直支架相连的悬臂、与所述悬臂相连接的手术治疗头,所述手术治疗头包括显微观察系统、光源接口、摄像头和摄像输出端口。
2.根据权利要求1所述的自控激光手术设备,其特征在于,所述摄像头上粘贴有透明纸。
3.根据权利要求2所述的自控激光手术设备,其特征在于,所述透明纸和所述摄像头的镜片的尺寸相匹配。
4.根据权利要求3所述的自控激光手术设备,其特征在于,所述透明纸通过以下步骤制备而成:
S1,制备分散浆料溶液:在50mg浆料中添加200ml的蒸馏,用高速搅拌机以8000~
10000rpm/min的转速下搅拌5min,得到分散浆料溶液;
S2,制备TEMPO化浆:用超纯水分别溶解10mg氯化钠和5mg TEMPO催化剂,倒入分散浆料溶液中,在50~1000KPa负压下搅拌2min得到混合浆料溶液;使用经过拉伸的滴管逐滴滴加次氯酸钠进入混合浆料溶液中反应30min;使用超纯水清洗上述经过反应的混合浆料溶液得到洁净浆料,取2ml洁净浆料用超纯水配置0.5%~2.0%浆浓TEMPO氧化浆;将氧化浆经过微射流机以3000psi的压做均质处理,得到凝胶状的纳米纤丝化纤维素分散体,将纳米纤丝化纤维素分散体放在4~10℃的条件下贮藏;
S3,制备纳米管抗菌原液:称取5~7mg尿素和5~6mg十二烷基苯磺酸钠加入93~
95ml超纯水中使用超声分散30min,取碳纳米管80.0mg,加入上述溶液中超声30min,取出后置于磁力搅拌器上,调节温度至30~45℃,搅拌速度为5000~8000rpm/min,加入两个磁转子,加入3~5mg氯化钠,边搅拌边向其中加入AgCl溶液,反应1h得到碳纳米管银抗菌原液;
S4,制备NFC分散体与木材纤维混合液:将步骤S1中制得的纳米纤丝化纤维素分散体使用蒸馏水将其稀释至0.1wt%,然后放置在磁力搅拌器中以1000rpm/min速度搅拌30min;将干度为15.0wt%漂白硫酸盐针叶木浆加水稀释至1%,充分搅拌使絮聚的纤维充分分散;将
0.1wt%NFC分散体与1wt%的木材纤维混合搅拌10min后备用;
S5,透明纸成型:取2ml碳纳米管银抗菌原液和200ml凝胶状纳米纤维丝纤维素分散体混合形成混合溶液,将上述混合液置于塑料袋中抽真空,在氮气的保护下使用13Csγ射线辐射源对上述混合液进行辐射,将经过辐射后的混合溶液倒入到布氏漏斗中过滤,形成一层很薄湿的NFC层,重复两次13Csγ射线辐射照射和过滤过程,形成NFC层双层结构,将该双层结构使用吸湿纸吸去其多于水分,使水分含量保持在5%~6%之间;最后,将上述NFC双层纸放置到压榨机中以500~4000Pa的压力对透明纸进行压榨干燥。
5.根据权利要求4所述的自控激光手术设备,其特征在于,步骤S1中的各个反应温度为
23~27℃;0.5%~2.0%浆浓TEMPO氧化浆的pH值为8~15。
6.根据权利要求4所述的自控激光手术设备,其特征在于,步骤S3中,在布氏漏斗放置的滤纸的直径为70~90mm,滤纸的数量为2~3张,在滤纸上还放置有1~2张直径为90mm,孔径为0.65微米的PVDF滤膜。

说明书全文

自控激光手术设备

技术领域

[0001] 本发明涉及医学领域,尤其涉及自控激光手术设备。

背景技术

[0002] 相关技术中采用的手术设备存在以下技术问题,由于体积太大导致连接不够方便,浪费了大量的人和物力。

发明内容

[0003] 本发明旨在提供自控激光手术设备,以解决上述技术问题。
[0004] 本发明的实施例中提供了自控激光手术设备,包括垂直支架、与垂直支架相连的悬臂、与所述悬臂相连接的手术治疗头,所述手术治疗头包括显微观察系统、光源接口、摄像头和摄像输出端口。
[0005] 本发明的上述实施例提供的自控激光手术设备的结构设置合理,从而解决了上述技术问题。附图说明
[0006] 此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
[0007] 图1是本发明的结构示意图。
[0008] 图2是根据一示例性实施例示出的自控激光手术设备的摄像头上所覆盖的透明纸的制备方法的工艺流程图

具体实施方式

[0009] 这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
[0010] 在本申请的描述中,需要说明的是,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
[0011] 结合以下实施例对本发明作进一步描述。
[0012] 应用场景1
[0013] 图1是根据一示例性实施例示出的自控激光手术设备,如图1所示,所述设备包括垂直支架1、与垂直支架相连的悬臂2、与所述悬臂2相连接的手术治疗头,所述手术治疗头包括显微观察系统4、光源接口7、摄像头8和摄像输出端口13。
[0014] 本发明的上述实施例提供的自控激光手术设备的结构设置合理,从而解决了上述技术问题。
[0015] 优选地,所述摄像头8上粘贴有透明纸。
[0016] 优选地,所述透明纸和所述摄像头8的镜片的尺寸相匹配。
[0017] 图2是根据一示例性实施例示出的自控激光手术设备的透明纸的制备方法的工艺流程图。参照图2,所述透明纸的制备方法包括以下步骤:
[0018] S1,制备分散浆料溶液:在50mg浆料中添加200ml的蒸馏,用高速搅拌机以8000~10000rpm/min的转速下搅拌5min,得到分散浆料溶液;
[0019] S2,制备TEMPO化浆:用超纯水分别溶解10mg氯化钠和5mg TEMPO催化剂,倒入分散浆料溶液中,在50~1000KPa负压下搅拌2min得到混合浆料溶液;使用经过拉伸的滴管逐滴滴加次氯酸钠进入混合浆料溶液中反应30min;使用超纯水清洗上述经过反应的混合浆料溶液得到洁净浆料,取2ml洁净浆料用超纯水配置0.5%~2.0%浆浓TEMPO氧化浆;将氧化浆经过微射流机以3000psi的压力做均质处理,得到凝胶状的纳米纤丝化纤维素分散体,将纳米纤丝化纤维素分散体放在4~10℃的条件下贮藏;
[0020] S3,制备纳米管抗菌原液:称取5~7mg尿素和5~6mg十二 烷基苯磺酸钠加入93~95ml超纯水中使用超声分散30min,取碳纳米管80.0mg,加入上述溶液中超声30min,取出后置于磁力搅拌器上,调节温度至30~45℃,搅拌速度为5000~8000rpm/min,加入两个磁转子,加入3~5mg氯化钠,边搅拌边向其中加入AgCl溶液,反应1h得到碳纳米管银抗菌原液;
[0021] S4,制备NFC分散体与木材纤维混合液:将步骤S1中制得的纳米纤丝化纤维素分散体使用蒸馏水将其稀释至0.1wt%,然后放置在磁力搅拌器中以1000rpm/min速度搅拌30min;将干度为15.0wt%漂白硫酸盐针叶木浆加水稀释至1%,充分搅拌使絮聚的纤维充分分散;将0.1wt%NFC分散体与1wt%的木材纤维混合搅拌10min后备用;
[0022] S5,透明纸成型:取2ml碳纳米管银抗菌原液和200ml凝胶状纳米纤维丝纤维素分散体混合形成混合溶液,将上述混合液置于塑料袋中抽真空,在氮气的保护下使用13Csγ射线辐射源对上述混合液进行辐射,将经过辐射后的混合溶液倒入到布氏漏斗中过滤,形成一层很薄湿的NFC层,重复两次13Csγ射线辐射照射和过滤过程,形成NFC层双层结构,将该双层结构使用吸湿纸吸去其多于水分,使水分含量保持在5%~6%之间;最后,将上述NFC双层纸放置到压榨机中以500~4000Pa的压力对透明纸进行压榨干燥。
[0023] 经过上述步骤的系列处理加工,制成了一种具有抗菌性能的透明纸。采用Lambda紫外可见分光光度计并参照国际标准对通过本发明的实施例提供的方法制备而成的透明纸进行光透射率和抗菌性能的对比分析,经过分析发现,本实施制备的透明纸光透射率为80~97.65%,且表现出对优异的抗菌性能。
[0024] 优选地,步骤S1中的各个反应温度为23~27℃;0.5%~2.0%浆浓TEMPO氧化浆的pH值为8~15。
[0025] 优选地,步骤S3中,在布氏漏斗放置的滤纸的直径为70~90mm,滤纸的数量为2~3张,在滤纸上还放置有1~2张直径为90mm,孔径为0.65微米的PVDF滤膜。
[0026] 实验测试:
[0027] (1)抗菌性能测试:采用吸光度法,检测透明纸对大肠杆菌和霉菌的抑菌效果。结果如表1和表2所示。
[0028] 表1透明纸对大肠杆菌的抑菌的吸光度值
[0029]  OD680
空白对照 8±0.01
0.5% 7.5±0.05
0.75% 6±0.08
1.0% 0.22±0.08
1.5% 0.03±0.02
[0030] 试验表明,添加了碳纳米管银抗菌原液和使用13Csγ射线辐射源对上述混合液进行辐射照射后制成的透明纸,具有优异的抗大肠杆菌性能,在经过480h试验后,其抑菌的效果和开始的1h没有明显差别。
[0031] 采用吸光度法,检测透明纸对霉菌的抑菌效果。结果如表1所示。
[0032] 表2透明纸对霉菌的抑菌的吸光度值
[0033]  OD680
空白对照 6±0.01
0.5% 6±0.05
0.75% 4±0.08
1.0% 0.10±0.06
1.5% 0.05±0.01
[0034] 试验表明,添加了碳纳米管银抗菌原液和使用13Csγ射线辐射源对上述混合液进行辐射照射后制成的透明纸,具有优异的抗霉菌性能,在经过480h试验后,其抑菌的效果和开始的1h没有明显差别。
[0035] (2)光吸收效率的测试
[0036] 将透明纸粘贴于玻璃基底上,通过光学检测平台测定其光吸收效率。将入射光与透明纸表面垂直的度设定为90°,将从透射光的强度达到最高强度的5%时开始计算散射角度。将一束直径为0.5cm,波长为500nm的红色激光照射透明纸,激光通过透明纸后,于背景中形成了直径为25.6cm的光圈。将上述光线垂直照射于粘贴有透明 纸的玻璃基底上,其对光线吸收率达到80~97.65%。
[0037] (3)拉伸强度测试
[0038] 通过拉伸压缩试验,采用本实施例提供的方法制备而成的透明纸具有很好的拉伸强度(60~72MPa)和优异的延展性能(延伸率为45~50%),是相关技术中常用的普通再生纤维素膜的13~18倍。
[0039] 实验结果表明:该透明纸具有优异的抗菌性能、良好的透光率和有益的拉伸性能,该透明纸的透光率大为增强。
[0040] 应用场景2
[0041] 图1是根据一示例性实施例示出的自控激光手术设备,如图1所示,所述设备包括垂直支架1、与垂直支架相连的悬臂2、与所述悬臂2相连接的手术治疗头,所述手术治疗头包括显微观察系统4、光源接口7、摄像头8和摄像输出端口13。
[0042] 本发明的上述实施例提供的自控激光手术设备的结构设置合理,从而解决了上述技术问题。
[0043] 优选地,所述摄像头8上粘贴有透明纸。
[0044] 优选地,所述透明纸和所述摄像头8的镜片的尺寸相匹配。
[0045] 图2是根据一示例性实施例示出的自控激光手术设备的透明纸的制备方法的工艺流程图。参照图2,所述透明纸的制备方法包括以下步骤:
[0046] S1,制备分散浆料溶液:在50mg浆料中添加200ml的蒸馏水,用高速搅拌机以8000~10000rpm/min的转速下搅拌5min,得到分散浆料溶液;
[0047] S2,制备TEMPO氧化浆:用超纯水分别溶解10mg氯化钠和5mg TEMPO催化剂,倒入分散浆料溶液中,在50~1000KPa负压下搅拌2min得到混合浆料溶液;使用经过拉伸的滴管逐滴滴加次氯酸钠进入混合浆料溶液中反应30min;使用超纯水清洗上述经过反应的混合浆料溶液得到洁净浆料,取2ml洁净浆料用超纯水配置0.5%~2.0%浆浓TEMPO氧化浆;将氧化浆经过微射流机以3000psi的压力做均质处理,得到凝胶状的纳米纤丝化纤维素分散体,将纳米纤丝化纤维素 分散体放在4~10℃的条件下贮藏;
[0048] S3,制备碳纳米管银抗菌原液:称取5~7mg尿素和5~6mg十二烷基苯磺酸钠加入93~95ml超纯水中使用超声分散30min,取碳纳米管80.0mg,加入上述溶液中超声30min,取出后置于磁力搅拌器上,调节温度至30~45℃,搅拌速度为5000~8000rpm/min,加入两个磁转子,加入3~5mg氯化钠,边搅拌边向其中加入AgCl溶液,反应1h得到碳纳米管银抗菌原液;
[0049] S4,制备NFC分散体与木材纤维混合液:将步骤S1中制得的纳米纤丝化纤维素分散体使用蒸馏水将其稀释至0.1wt%,然后放置在磁力搅拌器中以1000rpm/min速度搅拌30min;将干度为15.0wt%漂白硫酸盐针叶木浆加水稀释至1%,充分搅拌使絮聚的纤维充分分散;将0.1wt%NFC分散体与1wt%的木材纤维混合搅拌10min后备用;
[0050] S5,透明纸成型:取2ml碳纳米管银抗菌原液和200ml凝胶状纳米纤维丝纤维素分散体混合形成混合溶液,将上述混合液置于塑料袋中抽真空,在氮气的保护下使用13Csγ射线辐射源对上述混合液进行辐射,将经过辐射后的混合溶液倒入到布氏漏斗中过滤,形成一层很薄湿的NFC层,重复两次13Csγ射线辐射照射和过滤过程,形成NFC层双层结构,将该双层结构使用吸湿纸吸去其多于水分,使水分含量保持在5%~6%之间;最后,将上述NFC双层纸放置到压榨机中以500~4000Pa的压力对透明纸进行压榨干燥。
[0051] 经过上述步骤的系列处理加工,制成了一种具有抗菌性能的透明纸。采用Lambda紫外可见分光光度计并参照国际标准对通过本发明的实施例提供的方法制备而成的透明纸进行光透射率和抗菌性能的对比分析,经过分析发现,本实施制备的透明纸光透射率为80%,且表现出对优异的抗菌性能。
[0052] 优选地,步骤S1中的各个反应温度为23℃;0.5%%浆浓TEMPO氧化浆的pH值为8。
[0053] 优选地,步骤S3中,在布氏漏斗放置的滤纸的直径为70mm,滤纸的数量为2张,在滤纸上还放置有1张直径为90mm,孔径为 0.65微米的PVDF滤膜。
[0054] 实验测试:
[0055] (1)抗菌性能测试:采用吸光度法,检测透明纸对大肠杆菌和霉菌的抑菌效果。结果如表1和表2所示。
[0056] 表1透明纸对大肠杆菌的抑菌的吸光度值
[0057]  OD680
空白对照 8±0.01
0.5% 7.6±0.05
0.75% 7±0.08
1.0% 0.32±0.08
1.5% 0.08±0.02
[0058] 试验表明,添加了碳纳米管银抗菌原液和使用13Csγ射线辐射源对上述混合液进行辐射照射后制成的透明纸,具有优异的抗大肠杆菌性能,在经过480h试验后,其抑菌的效果和开始的1h没有明显差别。
[0059] 采用吸光度法,检测透明纸对霉菌的抑菌效果。结果如表1所示。
[0060] 表2透明纸对霉菌的抑菌的吸光度值
[0061]  OD680
空白对照 6±0.01
0.5% 6±0.03
0.75% 4.5±0.08
1.0% 0.12±0.06
1.5% 0.06±0.01
[0062] 试验表明,添加了碳纳米管银抗菌原液和使用13Csγ射线辐射源对上述混合液进行辐射照射后制成的透明纸,具有优异的抗霉菌性能,在经过480h试验后,其抑菌的效果和开始的1h没有明显差别。
[0063] (2)光吸收效率的测试
[0064] 将透明纸粘贴于玻璃基底上,通过光学检测平台测定其光吸收效率。将入射光与透明纸表面垂直的角度设定为90°,将从透射光的强度达到最高强度的5%时开始计算散射角度。将一束直径为0.5cm, 波长为500nm的红色激光照射透明纸,激光通过透明纸后,于背景中形成了直径为26cm的光圈。将上述光线垂直照射于粘贴有透明纸的玻璃基底上,其对光线吸收率达到80%。
[0065] (3)拉伸强度测试
[0066] 通过拉伸压缩试验,采用本实施例提供的方法制备而成的透明纸具有很好的拉伸强度(60MPa)和优异的延展性能(延伸率为45%),是相关技术中常用的普通再生纤维素膜的12倍。
[0067] 实验结果表明:该透明纸具有优异的抗菌性能、良好的透光率和有益的拉伸性能,该透明纸的透光率大为增强。
[0068] 应用场景3
[0069] 图1是根据一示例性实施例示出的自控激光手术设备,如图1所示,所述设备包括垂直支架1、与垂直支架相连的悬臂2、与所述悬臂2相连接的手术治疗头,所述手术治疗头包括显微观察系统4、光源接口7、摄像头8和摄像输出端口13。
[0070] 本发明的上述实施例提供的自控激光手术设备的结构设置合理,从而解决了上述技术问题。
[0071] 优选地,所述摄像头8上粘贴有透明纸。
[0072] 优选地,所述透明纸和所述摄像头8的镜片的尺寸相匹配。
[0073] 图2是根据一示例性实施例示出的自控激光手术设备的透明纸的制备方法的工艺流程图。参照图2,所述透明纸的制备方法包括以下步骤:
[0074] S1,制备分散浆料溶液:在50mg浆料中添加200ml的蒸馏水,用高速搅拌机以8000~10000rpm/min的转速下搅拌5min,得到分散浆料溶液;
[0075] S2,制备TEMPO氧化浆:用超纯水分别溶解10mg氯化钠和5mg TEMPO催化剂,倒入分散浆料溶液中,在50~1000KPa负压下搅拌2min得到混合浆料溶液;使用经过拉伸的滴管逐滴滴加次氯酸钠进入混合浆料溶液中反应30min;使用超纯水清洗上述经过反应的混合浆料溶液得到洁净浆料,取2ml洁净浆料用超纯水配置0.5%~2.0%浆 浓TEMPO氧化浆;将氧化浆经过微射流机以3000psi的压力做均质处理,得到凝胶状的纳米纤丝化纤维素分散体,将纳米纤丝化纤维素分散体放在4~10℃的条件下贮藏;
[0076] S3,制备碳纳米管银抗菌原液:称取5~7mg尿素和5~6mg十二烷基苯磺酸钠加入93~95ml超纯水中使用超声分散30min,取碳纳米管80.0mg,加入上述溶液中超声30min,取出后置于磁力搅拌器上,调节温度至30~45℃,搅拌速度为5000~8000rpm/min,加入两个磁转子,加入3~5mg氯化钠,边搅拌边向其中加入AgCl溶液,反应1h得到碳纳米管银抗菌原液;
[0077] S4,制备NFC分散体与木材纤维混合液:将步骤S1中制得的纳米纤丝化纤维素分散体使用蒸馏水将其稀释至0.1wt%,然后放置在磁力搅拌器中以1000rpm/min速度搅拌30min;将干度为15.0wt%漂白硫酸盐针叶木浆加水稀释至1%,充分搅拌使絮聚的纤维充分分散;将0.1wt%NFC分散体与1wt%的木材纤维混合搅拌10min后备用;
[0078] S5,透明纸成型:取2ml碳纳米管银抗菌原液和200ml凝胶状纳米纤维丝纤维素分散体混合形成混合溶液,将上述混合液置于塑料袋中抽真空,在氮气的保护下使用13Csγ射线辐射源对上述混合液进行辐射,将经过辐射后的混合溶液倒入到布氏漏斗中过滤,形成一层很薄湿的NFC层,重复两次13Csγ射线辐射照射和过滤过程,形成NFC层双层结构,将该双层结构使用吸湿纸吸去其多于水分,使水分含量保持在5%~6%之间;最后,将上述NFC双层纸放置到压榨机中以500~4000Pa的压力对透明纸进行压榨干燥。
[0079] 经过上述步骤的系列处理加工,制成了一种具有抗菌性能的透明纸。采用Lambda紫外可见分光光度计并参照国际标准对通过本发明的实施例提供的方法制备而成的透明纸进行光透射率和抗菌性能的对比分析,经过分析发现,本实施制备的透明纸光透射率为90%,且表现出对优异的抗菌性能。
[0080] 优选地,步骤S1中的各个反应温度为24℃;1.0%浆浓TEMPO氧化浆的pH值为10。
[0081] 优选地,步骤S3中,在布氏漏斗放置的滤纸的直径为80mm,滤纸的数量为2~3张,在滤纸上还放置有1~2张直径为90mm,孔径为0.65微米的PVDF滤膜。
[0082] 实验测试:
[0083] (1)抗菌性能测试:采用吸光度法,检测透明纸对大肠杆菌和霉菌的抑菌效果。结果如表1和表2所示。
[0084] 表1透明纸对大肠杆菌的抑菌的吸光度值
[0085]  OD680
空白对照 8±0.01
0.5% 7.8±0.01
0.75% 6.5±0.08
1.0% 0.32±0.08
1.5% 0.05±0.02
[0086] 试验表明,添加了碳纳米管银抗菌原液和使用13Csγ射线辐射源对上述混合液进行辐射照射后制成的透明纸,具有优异的抗大肠杆菌性能,在经过480h试验后,其抑菌的效果和开始的1h没有明显差别。
[0087] 采用吸光度法,检测透明纸对霉菌的抑菌效果。结果如表1所示。
[0088] 表2透明纸对霉菌的抑菌的吸光度值
[0089]  OD680
空白对照 6±0.01
0.5% 6.5±0.05
0.75% 4.0±0.08
1.0% 0.15±0.06
1.5% 0.08±0.01
[0090] 试验表明,添加了碳纳米管银抗菌原液和使用13Csγ射线辐射源对上述混合液进行辐射照射后制成的透明纸,具有优异的抗霉菌性能,在经过480h试验后,其抑菌的效果和开始的1h没有明显差别。
[0091] (2)光吸收效率的测试
[0092] 将透明纸粘贴于玻璃基底上,通过光学检测平台测定其光吸收效 率。将入射光与透明纸表面垂直的角度设定为90°,将从透射光的强度达到最高强度的5%时开始计算散射角度。将一束直径为0.5cm,波长为500nm的红色激光照射透明纸,激光通过透明纸后,于背景中形成了直径为27cm的光圈。将上述光线垂直照射于粘贴有透明纸的玻璃基底上,其对光线吸收率达到90%。
[0093] (3)拉伸强度测试
[0094] 通过拉伸压缩试验,采用本实施例提供的方法制备而成的透明纸具有很好的拉伸强度(68MPa)和优异的延展性能(延伸率为46%),是相关技术中常用的普通再生纤维素膜的15倍。
[0095] 实验结果表明:该透明纸具有优异的抗菌性能、良好的透光率和有益的拉伸性能,该透明纸的透光率大为增强。
[0096] 应用场景4
[0097] 图1是根据一示例性实施例示出的自控激光手术设备,如图1所示,所述设备包括垂直支架1、与垂直支架相连的悬臂2、与所述悬臂2相连接的手术治疗头,所述手术治疗头包括显微观察系统4、光源接口7、摄像头8和摄像输出端口13。
[0098] 本发明的上述实施例提供的自控激光手术设备的结构设置合理,从而解决了上述技术问题。
[0099] 优选地,所述摄像头8上粘贴有透明纸。
[0100] 优选地,所述透明纸和所述摄像头8的镜片的尺寸相匹配。
[0101] 图2是根据一示例性实施例示出的自控激光手术设备的透明纸的制备方法的工艺流程图。参照图2,所述透明纸的制备方法包括以下步骤:
[0102] S1,制备分散浆料溶液:在50mg浆料中添加200ml的蒸馏水,用高速搅拌机以8000~10000rpm/min的转速下搅拌5min,得到分散浆料溶液;
[0103] S2,制备TEMPO氧化浆:用超纯水分别溶解10mg氯化钠和5mg TEMPO催化剂,倒入分散浆料溶液中,在50~1000KPa负压下搅拌2min得到混合浆料溶液;使用经过拉伸的滴管逐滴滴加次氯酸钠进 入混合浆料溶液中反应30min;使用超纯水清洗上述经过反应的混合浆料溶液得到洁净浆料,取2ml洁净浆料用超纯水配置0.5%~2.0%浆浓TEMPO氧化浆;将氧化浆经过微射流机以3000psi的压力做均质处理,得到凝胶状的纳米纤丝化纤维素分散体,将纳米纤丝化纤维素分散体放在4~10℃的条件下贮藏;
[0104] S3,制备碳纳米管银抗菌原液:称取5~7mg尿素和5~6mg十二烷基苯磺酸钠加入93~95ml超纯水中使用超声分散30min,取碳纳米管80.0mg,加入上述溶液中超声30min,取出后置于磁力搅拌器上,调节温度至30~45℃,搅拌速度为5000~8000rpm/min,加入两个磁转子,加入3~5mg氯化钠,边搅拌边向其中加入AgCl溶液,反应1h得到碳纳米管银抗菌原液;
[0105] S4,制备NFC分散体与木材纤维混合液:将步骤S1中制得的纳米纤丝化纤维素分散体使用蒸馏水将其稀释至0.1wt%,然后放置在磁力搅拌器中以1000rpm/min速度搅拌30min;将干度为15.0wt%漂白硫酸盐针叶木浆加水稀释至1%,充分搅拌使絮聚的纤维充分分散;将0.1wt%NFC分散体与1wt%的木材纤维混合搅拌10min后备用;
[0106] S5,透明纸成型:取2ml碳纳米管银抗菌原液和200ml凝胶状纳米纤维丝纤维素分散体混合形成混合溶液,将上述混合液置于塑料袋中抽真空,在氮气的保护下使用13Csγ射线辐射源对上述混合液进行辐射,将经过辐射后的混合溶液倒入到布氏漏斗中过滤,形成一层很薄湿的NFC层,重复两次13Csγ射线辐射照射和过滤过程,形成NFC层双层结构,将该双层结构使用吸湿纸吸去其多于水分,使水分含量保持在5%~6%之间;最后,将上述NFC双层纸放置到压榨机中以500~4000Pa的压力对透明纸进行压榨干燥。
[0107] 经过上述步骤的系列处理加工,制成了一种具有抗菌性能的透明纸。采用Lambda紫外可见分光光度计并参照国际标准对通过本发明的实施例提供的方法制备而成的透明纸进行光透射率和抗菌性能的对比分析,经过分析发现,本实施制备的透明纸光透射率为92%,且表现出对优异的抗菌性能。
[0108] 优选地,步骤S1中的各个反应温度为25℃;1.5%浆浓TEMPO氧化浆的pH值为12。
[0109] 优选地,步骤S3中,在布氏漏斗放置的滤纸的直径为85mm,滤纸的数量为2~3张,在滤纸上还放置有1~2张直径为90mm,孔径为0.65微米的PVDF滤膜。
[0110] 实验测试:
[0111] (1)抗菌性能测试:采用吸光度法,检测透明纸对大肠杆菌和霉菌的抑菌效果。结果如表1和表2所示。
[0112] 表1透明纸对大肠杆菌的抑菌的吸光度值
[0113]  OD680
空白对照 8±0.01
0.5% 7.5±0.08
0.75% 6.5±0.09
1.0% 0.28±0.08
1.5% 0.04±0.02
[0114] 试验表明,添加了碳纳米管银抗菌原液和使用13Csγ射线辐射源对上述混合液进行辐射照射后制成的透明纸,具有优异的抗大肠杆菌性能,在经过480h试验后,其抑菌的效果和开始的1h没有明显差别。
[0115] 采用吸光度法,检测透明纸对霉菌的抑菌效果。结果如表1所示。
[0116] 表2透明纸对霉菌的抑菌的吸光度值
[0117]  OD680
空白对照 6±0.01
0.5% 5.6±0.05
0.75% 4.9±0.08
1.0% 0.15±0.06
1.5% 0.05±0.04
[0118] 试验表明,添加了碳纳米管银抗菌原液和使用13Csγ射线辐射源对上述混合液进行辐射照射后制成的透明纸,具有优异的抗霉菌性能,在经过480h试验后,其抑菌的效果和开始的1h没有明显差别。
[0119] (2)光吸收效率的测试
[0120] 将透明纸粘贴于玻璃基底上,通过光学检测平台测定其光吸收效率。将入射光与透明纸表面垂直的角度设定为90°,将从透射光的强度达到最高强度的5%时开始计算散射角度。将一束直径为0.5cm,波长为500nm的红色激光照射透明纸,激光通过透明纸后,于背景中形成了直径为25.6cm的光圈。将上述光线垂直照射于粘贴有透明纸的玻璃基底上,其对光线吸收率达到92%。
[0121] (3)拉伸强度测试
[0122] 通过拉伸压缩试验,采用本实施例提供的方法制备而成的透明纸具有很好的拉伸强度(70MPa)和优异的延展性能(延伸率为48%),是相关技术中常用的普通再生纤维素膜的15倍。
[0123] 实验结果表明:该透明纸具有优异的抗菌性能、良好的透光率和有益的拉伸性能,该透明纸的透光率大为增强。
[0124] 应用场景5
[0125] 图1是根据一示例性实施例示出的自控激光手术设备,如图1所示,所述设备包括垂直支架1、与垂直支架相连的悬臂2、与所述悬臂2相连接的手术治疗头,所述手术治疗头包括显微观察系统4、光源接口7、摄像头8和摄像输出端口13。
[0126] 本发明的上述实施例提供的自控激光手术设备的结构设置合理,从而解决了上述技术问题。
[0127] 优选地,所述摄像头8上粘贴有透明纸。
[0128] 优选地,所述透明纸和所述摄像头8的镜片的尺寸相匹配。
[0129] 图2是根据一示例性实施例示出的自控激光手术设备的透明纸的制备方法的工艺流程图。参照图2,所述透明纸的制备方法包括以下步骤:
[0130] S1,制备分散浆料溶液:在50mg浆料中添加200ml的蒸馏水,用高速搅拌机以8000~10000rpm/min的转速下搅拌5min,得到分散浆料溶液;
[0131] S2,制备TEMPO氧化浆:用超纯水分别溶解10mg氯化钠和5mg TEMPO催化剂,倒入分散浆料溶液中,在50~1000KPa负压下搅拌2min得到混合浆料溶液;使用经过拉伸的滴管逐滴滴加次氯酸钠进入混合浆料溶液中反应30min;使用超纯水清洗上述经过反应的混合浆料溶液得到洁净浆料,取2ml洁净浆料用超纯水配置0.5%~2.0%浆浓TEMPO氧化浆;将氧化浆经过微射流机以3000psi的压力做均质处理,得到凝胶状的纳米纤丝化纤维素分散体,将纳米纤丝化纤维素分散体放在4~10℃的条件下贮藏;
[0132] S3,制备碳纳米管银抗菌原液:称取5~7mg尿素和5~6mg十二烷基苯磺酸钠加入93~95ml超纯水中使用超声分散30min,取碳纳米管80.0mg,加入上述溶液中超声30min,取出后置于磁力搅拌器上,调节温度至30~45℃,搅拌速度为5000~8000rpm/min,加入两个磁转子,加入3~5mg氯化钠,边搅拌边向其中加入AgCl溶液,反应1h得到碳纳米管银抗菌原液;
[0133] S4,制备NFC分散体与木材纤维混合液:将步骤S1中制得的纳米纤丝化纤维素分散体使用蒸馏水将其稀释至0.1wt%,然后放置在磁力搅拌器中以1000rpm/min速度搅拌30min;将干度为15.0wt%漂白硫酸盐针叶木浆加水稀释至1%,充分搅拌使絮聚的纤维充分分散;将0.1wt%NFC分散体与1wt%的木材纤维混合搅拌10min后备用;
[0134] S5,透明纸成型:取2ml碳纳米管银抗菌原液和200ml凝胶状纳米纤维丝纤维素分散体混合形成混合溶液,将上述混合液置于塑料袋中抽真空,在氮气的保护下使用13Csγ射线辐射源对上述混合液进行辐射,将经过辐射后的混合溶液倒入到布氏漏斗中过滤,形成一层很薄湿的NFC层,重复两次13Csγ射线辐射照射和过滤过程,形成NFC层双层结构,将该双层结构使用吸湿纸吸去其多于水分,使水分含量保持在5%~6%之间;最后,将上述NFC双层纸放置到压榨机中以500~4000Pa的压力对透明纸进行压榨干燥。
[0135] 经过上述步骤的系列处理加工,制成了一种具有抗菌性能的透明纸。采用Lambda紫外可见分光光度计并参照国际标准对通过本发明的实施例提供的方法制备而成的透明纸进行光透射率和抗菌性能的 对比分析,经过分析发现,本实施制备的透明纸光透射率为97.65%,且表现出对优异的抗菌性能。
[0136] 优选地,步骤S1中的各个反应温度为27℃;2.0%浆浓TEMPO氧化浆的pH值为15。
[0137] 优选地,步骤S3中,在布氏漏斗放置的滤纸的直径为90mm,滤纸的数量为3张,在滤纸上还放置有2张直径为90mm,孔径为0.65微米的PVDF滤膜。
[0138] 实验测试:
[0139] (1)抗菌性能测试:采用吸光度法,检测透明纸对大肠杆菌和霉菌的抑菌效果。结果如表1和表2所示。
[0140] 表1透明纸对大肠杆菌的抑菌的吸光度值
[0141]  OD680
空白对照 8±0.01
0.5% 7.7±0.05
0.75% 6.7±0.08
1.0% 0.32±0.08
1.5% 0.03±0.04
[0142] 试验表明,添加了碳纳米管银抗菌原液和使用13Csγ射线辐射源对上述混合液进行辐射照射后制成的透明纸,具有优异的抗大肠杆菌性能,在经过480h试验后,其抑菌的效果和开始的1h没有明显差别。
[0143] 采用吸光度法,检测透明纸对霉菌的抑菌效果。结果如表1所示。
[0144] 表2透明纸对霉菌的抑菌的吸光度值
[0145]  OD680
空白对照 6±0.01
0.5% 6±0.05
0.75% 4.9±0.08
1.0% 0.15±0.06
1.5% 0.04±0.01
[0146] 试验表明,添加了碳纳米管银抗菌原液和使用13Csγ射线辐射源 对上述混合液进行辐射照射后制成的透明纸,具有优异的抗霉菌性能,在经过480h试验后,其抑菌的效果和开始的1h没有明显差别。
[0147] (2)光吸收效率的测试
[0148] 将透明纸粘贴于玻璃基底上,通过光学检测平台测定其光吸收效率。将入射光与透明纸表面垂直的角度设定为90°,将从透射光的强度达到最高强度的5%时开始计算散射角度。将一束直径为0.5cm,波长为500nm的红色激光照射透明纸,激光通过透明纸后,于背景中形成了直径为29cm的光圈。将上述光线垂直照射于粘贴有透明纸的玻璃基底上,其对光线吸收率达到97.65%。
[0149] (3)拉伸强度测试
[0150] 通过拉伸压缩试验,采用本实施例提供的方法制备而成的透明纸具有很好的拉伸强度(72MPa)和优异的延展性能(延伸率为50%),是相关技术中常用的普通再生纤维素膜的18倍。
[0151] 实验结果表明:该透明纸具有优异的抗菌性能、良好的透光率和有益的拉伸性能,该透明纸的透光率大为增强。
[0152] 最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
QQ群二维码
意见反馈