一种基于两性纤维素的石墨复合材料及其制备方法

申请号 CN201710836786.4 申请日 2017-09-17 公开(公告)号 CN107419516A 公开(公告)日 2017-12-01
申请人 赵兵; 发明人 赵兵;
摘要 本 发明 公开了一种基于两性 纤维 素的 氧 化 石墨 烯 复合材料 ,按重量计,将20-80份的两性 纤维素 和20-50份的端羟基超支化 聚合物 改性魔芋、1-20份的氧化 石墨烯 先后分散于去离子 水 中超声1h,浴比1:50,然后80-100℃匀速搅拌反应1-24h,用去离子水反复洗涤、抽滤、干燥后得到基于两性纤维素的氧化石墨烯复合材料。本发明以两性纤维素为基材,与端羟基超支化聚合物改性后的魔芋和氧化石墨烯进行反应,通过共价键、静电引 力 、氢键等相互作用力牢固结合,最终得到基于两性纤维素的氧化石墨烯复合材料。该复合材料具备绿色环保、可降解、机械性能好、组织结构规整、孔隙率高等诸多优点,在污 水处理 领域有重要的应用价值。
权利要求

1.一种基于两性纤维素的石墨复合材料的制备方法,其特征在于:
步骤一:将纤维素置于质量分数为20%的氢氧化钠溶液中,浴比1:50,90℃反应
120min,用去离子反复洗至中性,烘干后得到氢氧化钠改性纤维素;然后将氢氧化钠改性纤维素重新分散于去离子水中,浴比1:50,加入三甲基烯丙基氯化铵,其中三甲基烯丙基氯化铵和氢氧化钠改性纤维素的质量比为1:5-1:10,60-80℃反应1-24h,用去离子水反复清洗,烘干后得到三甲基烯丙基氯化铵改性纤维素;将三甲基烯丙基氯化铵改性纤维素重新分散于去离子水中,浴比1:50,缓慢加入1-100g/L的聚酰胺-胺PAMAM水溶液,其中PAMAM水溶液与三甲基烯丙基氯化铵改性纤维素水溶液的体积比为1:5-1:10,75-95℃反应60-
120min,取出后清洗烘干得到阳离子化纤维素;将上述阳离子化纤维素重新分散于去离子水中,浴比1:50,加入引发剂硝酸铈铵,其中硝酸铈铵与阳离子化纤维素的质量比为1:10-
1:30,混合搅拌120min,持续通入氮气保护,然后缓慢加入二丁酸二辛酯磺酸钠,混合搅拌均匀后,缓慢升温至80-90℃并磁搅拌1-12h,自然冷却到室温,用去离子水和乙醇反复洗涤、抽滤、干燥后得到两性纤维素;
步骤二:常温下将魔芋粉分散于去离子水中,浴比1:50,加入戊二,其中戊二醛与魔芋粉水溶液的体积比为1:10,混合搅拌均匀后,缓慢加入1-100g/L的端羟基超支化聚合物水溶液,其中端羟基超支化聚合物水溶液与魔芋粉水溶液的体积比为1:1-1:10,反应24h后,用去离子水和乙醇反复洗涤、抽滤、干燥后得到端羟基超支化聚合物改性魔芋;
步骤三:按重量计,将20-80份的两性纤维素和20-50份的端羟基超支化聚合物改性魔芋、1-20份的氧化石墨烯先后分散于去离子水中超声1h,浴比1:50,然后80-100℃匀速搅拌反应1-24h,用去离子水反复洗涤、抽滤、干燥后得到基于两性纤维素的氧化石墨烯复合材料。
2.根据权利要求1所述的一种基于两性纤维素的氧化石墨烯复合材料的制备方法,其特征在于,所述纤维素包括天然纤维素和再生纤维素。
3.根据权利要求1所述的一种基于两性纤维素的氧化石墨烯复合材料的制备方法,其特征在于,步骤一中所述阳离子化纤维素与二丁酸二辛酯磺酸钠的质量比为5:1-1:5。
4.按权利要求1制备方法得到的一种基于两性纤维素的氧化石墨烯复合材料。

说明书全文

一种基于两性纤维素的石墨复合材料及其制备方法

技术领域

[0001] 本发明涉及一种基于两性纤维素的氧化石墨烯复合材料,属复合材料领域。

背景技术

[0002] 长期以来,纤维素一直是纺织、造纸的主要工业原料,以其可再生性、生物可降解性及成本优势日益受到人们的重视,在药物控制、释放技术、固定化技术、生物传感器、膜材料、功能化学品及添加剂等方面显示出良好的发展前景。由于耕地的减少和石油、天然气等化石资源的日益枯竭,合成纤维的产量将会受到越来越多的制约。而纤维素作为一种绿色、环保、可再生的资源,获得了一个空前的发展机遇。
[0003] 两性纤维素是在纤维素主链上同时带有阴阳离子基团的一类溶性的纤维素衍生物。除了具有与普通两性电解质一样的特殊的溶液性质和流变性能,如增稠、降阻、絮凝、悬浮等功能,还具有高分子多糖来源丰富、易生物降解等优点。它是一种高附加值的纤维素衍生物(纤维素科学与技术,2014,22(01):70-78),在水处理、油田开采、湍流减阻、造纸湿部化学、吸水材料、日用化工等领域有着广阔的应用前景。
[0004] 两性纤维素根据引入基团分类,其阳离子基团通常可以分为叔胺盐和季铵盐类,常用的阳离子改性剂有3-氯-2-羟基-三甲基氯化铵(CHPTAC)(染整技术,2014,36(09):34-36+45)、2,3环氧丙基三甲基氯化铵(西南大学学报(自然科学版),2010,32(01):138-143)、聚环氧氯丙烷胺化物(PECH-amine)(印染,2009,35(05):14-17)、壳聚糖(印染助剂,2016,
33(06):41-44)。阴离子基团可分为磺酸型、羧酸型、硫酸型以及磷酸型等。目前两性纤维素多以水溶性的阴离子型羧甲基纤维素(CMC)为原料与各种阳离子醚化剂反应,从而获得两性纤维素。
[0005] 魔芋葡甘聚糖(Konjac glucomannan,简称KGM)是继淀粉和纤维素之后,一种较为丰富的可再生天然高分子资源,具有可生物降解性,其水溶胶具有很高的粘度和多种特性如增稠、凝胶和成膜等性能;也是一种优良的膳食纤维,可用于预防治疗高血压、高血脂、心血管病等症,已成为重要的食品添加剂和保健食品原料。在化工、环保及石油钻探等领域也有重要用途(结构化学,2003,06:633-642)。
[0006] 使用酸化改性、改性、接枝共聚改性、交联改性和醚化改性等方法可提高KGM的性能,比如加碱去乙酰基处理KGM,处理后其抗应变能增强,力学性能得到提高,故天然的KGM及其改性产物,成为研究的热点之一(材料导报,2009,19:32-36)。
[0007] 除了化学改性,还可以通过与其它合适的生物高聚物混合以改进KGM的性质(材料导报,2009,19:32-36)。例如武汉理工大学樊李红将魔芋经高碘酸钠氧化后制得氧化魔芋(OKGM),利用其基与羟丙基壳聚糖(HPCS)上的基交联制备水凝胶,同时将氧化石墨烯(GO)作为添加剂加入水凝胶中得到羟丙基壳聚糖/氧化魔芋/氧化石墨烯水凝胶(武汉大学学报(理学版),2016,04:361-367)。广州工商学院黄建初采用物理共混的方法,按照 KGM:丝素肽=1:0,1:2,2:1,0:1的摩尔质量比制备共混溶胶,在搅拌的情况下将定量的丝素肽溶于去离子水中,完全溶解后,加入将定量的KGM粉末,在45℃水浴条件下,以450r·min-1搅拌
1h,制备得到共混溶胶(浓度为 1.2%)(热带生物学报,2016,04:472-476)。福建农林大学谢丙清按照 KGM:蚕丝蛋白=1:1、1:2、1:3的质量比混合并搅拌使之混合均匀,研究了蚕丝蛋白对魔芋葡甘聚糖(KGM)结构与溶胶性质的影响(现代食品科技,2016,10:125-130+27)。
[0008] 此外,还有大量关于KGM与羟基磷灰石、蒙脱土、胶原、壳聚糖、纳米管、凹凸棒土、淀粉、大豆蛋白、石墨烯等材料复合的文献报道(酸盐通报,2011,01:162-166+171;于金超.浙江理工大学,2012;塑料工业,2010,07:18-20+33;材料科学与工程学报,2009,06:870-875+884;武汉大学学报(理学版),2008,02:139-142;材料导报,2009,19:32-36;
CN201611262418.5热塑性魔芋葡甘聚糖纳米复合材料的制备方法;CN201210153668.0热塑性魔芋葡甘聚糖/氧化氧化石墨烯复合材料及其制备方法)。但是目前还未见两性纤维素/KGM/氧化石墨烯复合材料的公开文献报道。

发明内容

[0009] 本发明针对上述不足,提供一种基于两性纤维素的氧化石墨烯复合材料及其制备方法。
[0010] 本发明通过下述技术方案予以实现:(1)将纤维素置于质量分数为20%的氢氧化钠溶液中,浴比1:50,90℃反应120min,用去离子水反复洗至中性,烘干后得到氢氧化钠改性纤维素;然后将氢氧化钠改性纤维素重新分散于去离子水中,浴比1:50,加入三甲基烯丙基氯化铵,其中三甲基烯丙基氯化铵和氢氧化钠改性纤维素的质量比为1:5-1:10,60-80℃反应1-24h,用去离子水反复清洗,烘干后得到三甲基烯丙基氯化铵改性纤维素;将三甲基烯丙基氯化铵改性纤维素重新分散于去离子水中,浴比1:50,缓慢加入1-100g/L的聚酰胺-胺PAMAM水溶液,其中PAMAM水溶液与三甲基烯丙基氯化铵改性纤维素水溶液的体积比为1:5-1:10,75-95℃反应60-120min,取出后清洗烘干得到阳离子化纤维素;将上述阳离子化纤维素重新分散于去离子水中,浴比1:50,加入引发剂硝酸铈铵,其中硝酸铈铵与阳离子化纤维素的质量比为1:10-1:30,混合搅拌
120min,持续通入氮气保护,然后缓慢加入二丁酸二辛酯磺酸钠,阳离子化纤维素与二丁酸二辛酯磺酸钠的质量比为5:1-1:5,混合搅拌均匀后,缓慢升温至80-90℃并磁力搅拌1-
12h,自然冷却到室温,用去离子水和乙醇反复洗涤、抽滤、干燥后得到两性纤维素;(2)常温下将魔芋粉分散于去离子水中,浴比1:50,加入戊二醛,其中戊二醛与魔芋粉水溶液的体积比为1:10,混合搅拌均匀后,缓慢加入1-100g/L的端羟基超支化聚合物水溶液,其中端羟基超支化聚合物水溶液与魔芋粉水溶液的体积比为1:1-1:10,反应24h后,用去离子水和乙醇反复洗涤、干燥后得到端羟基超支化聚合物改性魔芋;(3)按重量计,将20-80份的两性纤维素和20-50份的端羟基超支化聚合物改性魔芋、1-20份的氧化石墨烯先后分散于去离子水中超声1h,浴比1:50,然后80-100℃匀速搅拌反应1-24h,用去离子水反复洗涤、抽滤、干燥后得到基于两性纤维素的氧化石墨烯复合材料。
[0011] 作为优选方案,所述纤维素包括天然纤维素和再生纤维素。天然纤维素包括但不限于纤维、麻纤维、秸秆、竹原纤维,再生纤维素包括但不限于粘胶、竹浆纤维、天丝、氨纤维、莫代尔。
[0012] 与现有技术相比,本发明的优点在于:本发明具有如下有益效果:以两性纤维素为基材,与端羟基超支化聚合物改性后的魔芋、氧化石墨烯进行反应,通过共价键、静电引力、氢键等相互作用力牢固结合,最终得到基于两性纤维素的氧化石墨烯复合材料。该复合材料具备绿色环保、可降解、机械性能好、组织结构规整、孔隙率高等诸多优点,在污水处理等领域有重要的应用价值。

具体实施方式

[0013] 下面结合具体实施方式,进一步阐述本发明。
[0014] 实施例1:(1)将棉置于质量分数为20%的氢氧化钠溶液中,浴比1:50,90℃反应120min,用去离子水反复洗至中性,烘干后得到氢氧化钠改性棉;然后将氢氧化钠改性棉重新分散于去离子水中,浴比1:50,加入三甲基烯丙基氯化铵,其中三甲基烯丙基氯化铵和氢氧化钠改性棉的质量比为1:5,60℃反应1h,用去离子水反复清洗,烘干后得到三甲基烯丙基氯化铵改性棉;将三甲基烯丙基氯化铵改性棉重新分散于去离子水中,浴比1:50,缓慢加入1g/L的聚酰胺-胺PAMAM水溶液,其中PAMAM水溶液与三甲基烯丙基氯化铵改性棉水溶液的体积比为1:
5,75℃反应60min,取出后清洗烘干得到阳离子化棉;将上述阳离子化棉重新分散于去离子水中,浴比1:50,加入引发剂硝酸铈铵,其中硝酸铈铵与阳离子化棉的质量比为1:10,混合搅拌120min,持续通入氮气保护,然后缓慢加入二丁酸二辛酯磺酸钠,阳离子化棉与二丁酸二辛酯磺酸钠的质量比为1:1,混合搅拌均匀后,缓慢升温至80℃并磁力搅拌1h,自然冷却到室温,用去离子水和乙醇反复洗涤、抽滤、干燥后得到两性棉;(2)常温下将魔芋粉分散于去离子水中,浴比1:50,加入戊二醛,其中戊二醛与魔芋粉水溶液的体积比为1:10,混合搅拌均匀后,缓慢加入1g/L的端羟基超支化聚合物水溶液,其中端羟基超支化聚合物水溶液与魔芋粉水溶液的体积比为1:1,反应24h后,用去离子水和乙醇反复洗涤、干燥后得到端羟基超支化聚合物改性魔芋;(3)按重量计,将40份的两性棉纤维素和40份的端羟基超支化聚合物改性魔芋、20份的氧化石墨烯先后分散于去离子水中超声1h,浴比1:50,80℃匀速搅拌反应5h,用去离子水反复洗涤、抽滤、干燥后得到基于两性棉纤维素的氧化石墨烯复合材料。
[0015] 实施例2:(1)将亚麻置于质量分数为20%的氢氧化钠溶液中,浴比1:50,90℃反应120min,用去离子水反复洗至中性,烘干后得到氢氧化钠改性亚麻;然后将氢氧化钠改性亚麻重新分散于去离子水中,浴比1:50,加入三甲基烯丙基氯化铵,其中三甲基烯丙基氯化铵和氢氧化钠改性亚麻的质量比为1:8,70℃反应12h,用去离子水反复清洗,烘干后得到三甲基烯丙基氯化铵改性亚麻;将三甲基烯丙基氯化铵改性亚麻重新分散于去离子水中,浴比1:50,缓慢加入50g/L的聚酰胺-胺PAMAM水溶液,其中PAMAM水溶液与三甲基烯丙基氯化铵改性亚麻水溶液的体积比为1:6,85℃反应100min,取出后清洗烘干得到阳离子化亚麻;将上述阳离子化亚麻重新分散于去离子水中,浴比1:50,加入引发剂硝酸铈铵,其中硝酸铈铵与阳离子化亚麻的质量比为1:15,混合搅拌120min,持续通入氮气保护,然后缓慢加入二丁酸二辛酯磺酸钠,阳离子化亚麻与二丁酸二辛酯磺酸钠的质量比为1:2,混合搅拌均匀后,缓慢升温至90℃并磁力搅拌6h,自然冷却到室温,用去离子水和乙醇反复洗涤、抽滤、干燥后得到两性亚麻;(2)常温下将魔芋粉分散于去离子水中,浴比1:50,加入戊二醛,其中戊二醛与魔芋粉水溶液的体积比为1:10,混合搅拌均匀后,缓慢加入10g/L的端羟基超支化聚合物水溶液,其中端羟基超支化聚合物水溶液与魔芋粉水溶液的体积比为1:2,反应24h后,用去离子水和乙醇反复洗涤、干燥后得到端羟基超支化聚合物改性魔芋;(3)按重量计,将40份的两性亚麻纤维素和50份的端羟基超支化聚合物改性魔芋、10份的氧化石墨烯先后分散于去离子水中超声1h,浴比1:50,然后90℃匀速搅拌反应12h,用去离子水反复洗涤、抽滤、干燥后得到基于两性亚麻纤维素的氧化石墨烯复合材料。
[0016] 实施例3:(1)将粘胶置于质量分数为20%的氢氧化钠溶液中,浴比1:50,90℃反应120min,用去离子水反复洗至中性,烘干后得到氢氧化钠改性粘胶;然后将氢氧化钠改性粘胶重新分散于去离子水中,浴比1:50,加入三甲基烯丙基氯化铵,其中三甲基烯丙基氯化铵和氢氧化钠改性粘胶的质量比为1:10,80℃反应24h,用去离子水反复清洗,烘干后得到三甲基烯丙基氯化铵改性粘胶;将三甲基烯丙基氯化铵改性粘胶重新分散于去离子水中,浴比1:50,缓慢加入100g/L的聚酰胺-胺PAMAM水溶液,其中PAMAM水溶液与三甲基烯丙基氯化铵改性粘胶水溶液的体积比为1:10,90℃反应120min,取出后清洗烘干得到阳离子化粘胶;将上述阳离子化粘胶重新分散于去离子水中,浴比1:50,加入引发剂硝酸铈铵,其中硝酸铈铵与阳离子化粘胶的质量比为1:30,混合搅拌120min,持续通入氮气保护,然后缓慢加入二丁酸二辛酯磺酸钠,阳离子化粘胶与二丁酸二辛酯磺酸钠的质量比为5:1,混合搅拌均匀后,缓慢升温至90℃并磁力搅拌12h,自然冷却到室温,用去离子水和乙醇反复洗涤、抽滤、干燥后得到两性粘胶;(2)常温下将魔芋粉分散于去离子水中,浴比1:50,加入戊二醛,其中戊二醛与魔芋粉水溶液的体积比为1:10,混合搅拌均匀后,缓慢加入100g/L的端羟基超支化聚合物水溶液,其中端羟基超支化聚合物水溶液与魔芋粉水溶液的体积比为1:10,反应24h后,用去离子水和乙醇反复洗涤、干燥后得到端羟基超支化聚合物改性魔芋;(3)按重量计,将70份的两性粘胶纤维素和20份的端羟基超支化聚合物改性魔芋、10份的氧化石墨烯先后分散于去离子水中超声1h,浴比1:50,然后100℃匀速搅拌反应24h,用去离子水反复洗涤、抽滤、干燥后得到基于两性粘胶纤维素的氧化石墨烯复合材料。
[0017] 显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。
QQ群二维码
意见反馈