Document | Document Title |
---|---|
US12119867B2 |
Transmission apparatus and transmission method
A transmission apparatus includes a control unit for carrying out processing to secure a resource for a standby system path in response to detection of a sign of failure in an active system path. |
US12119865B2 |
Flexible frequency hopping
Methods, apparatus, and systems for enabling a flexible frequency hopping mechanism are described. In one example aspect, a wireless communication method is disclosed. The method includes receiving, by a communication device, a first message from a network device. The first message comprises a list of frequency hopping offsets and a value indicating a number of repetitions of a data transmission. The method also includes receiving, by the communication device, a second message selecting a frequency hopping offset from the list of frequency hopping offsets and applying multiple frequency hopping offsets to the number of repetitions of the data transmission. The multiple frequency offsets are determined according to a rule associated with the selected frequency hopping offset. |
US12119862B1 |
Radio frequency aperture with cooling assembly
An air interface plane (AIP) of a radio frequency (RF) aperture includes: a circuit board having a first side and a second side opposite the first side; and a matrix of tapered elements arranged on the first side of the circuit board and secured to the circuit board, the matrix of tapered elements cooperating to at least one of receive or transmit an over-the-air RF signal. Suitably, each tapered element of the matrix has: a central hub extending along a longitudinal axis from a hub base which is proximate to the first side of the circuit board to an apex of the tapered element which is distal from the first side of the first circuit board; and a plurality of arms extending from the central hub at the apex of the tapered element, each of the plurality of arms including a first portion that projects the arm radially away from the longitudinal axis and a second portion that projects the arm longitudinally toward the first side of the circuit board. |
US12119858B2 |
Data transmission device and data transmission method
A data transmission device and a data transmission method are provided. The data transmission device includes: a plurality of front-end modules associated with a plurality of antennas, respectively; and a controller configured to select a front-end module to be used for data communication from among the plurality of front-end modules, wherein the controller is configured to: determine a temperature of each of the plurality of front-end modules; and select, from among the plurality of front-end modules, a front-end module having a temperature lower than or equal to a threshold temperature and corresponding to a maximum received power of a receiving device, among received powers of the receiving device corresponding to the plurality of front-end modules, and wherein each of the received powers of the receiving device is obtained based on a specific absorption rate (SAR) requirement or a maximum permissible exposure (MPE) requirement of a corresponding front-end module. |
US12119852B2 |
Impedance converting circuit and amplifier module
A first primary line has a first node at one end and a third node at another end and transmits a radio-frequency signal between the first node and the third node. A second primary line has a second node at one end and a fourth node at another end and transmits a radio-frequency signal between the second node and the fourth node. A first secondary line has a portion connected to the second node and is electromagnetically coupled to the first primary line. The second secondary line has a portion connected to the first node and has another end connected to a portion of the first secondary line. The second secondary line is electromagnetically coupled to the second primary line. A first capacitor is connected in parallel to a portion of the second primary line or a portion of the second secondary line. |
US12119851B2 |
Feed forward echo cancellation device and echo cancellation method
A feed forward echo cancellation device includes a first impedance circuit, a second impedance circuit, and an echo cancellation current generator circuit. The first impedance circuit is configured to output a first current to a node in response to a transmission current. The second impedance circuit is configured to output a second current to a node in response to the transmission current. The echo cancellation current generator circuit is configured to drain an echo cancellation current from the node. The node is connected to an input terminal of a programmable gain amplifier circuit via a gain control circuit, and the gain control circuit is configured to set a gain of the programmable gain amplifier circuit. |
US12119848B1 |
System and method for learning-based lossless data compression
A system and method learning-based lossless data compression. The system and method proposed allow for fast and efficient lossless data compression of a large variety of data types. The system and method have a variety of real-world applications, including deep learning solutions for telemetry, tracking, and command subsystems for satellites. Satellites and their control centers are incredibly spaced apart which makes data compression an extremely important process to transmit large sets of information in a low-latency, high-efficiency environment. The proposed system and method utilize probability prediction driven arithmetic coding which provides faster encoding times and higher compression ratios when paired with a long short-term memory system for data compression. |
US12119847B2 |
Noniterative entropy coding
This disclosure provides methods, devices, and systems for data compression and decompression. The present implementations more specifically relate to entropy encoding and decoding techniques for keeping a state variable within upper and lower bounds using a noniterative process. The entropy encoding uses a fixed state threshold to determine a number of bits to remove and removes the bits from a current state prior to encoding a symbol with the current state. The entropy decoding decodes encoded data in a bitstream based on a current state to obtain the symbol and a new state and determines a number of bits to read from the bitstream and to add to the new state to update the current state. |
US12119841B2 |
G-LDPC decoder and G-LDPC decoding method
a G-LDPC decoder is provided. The G-LDPC decoder includes: a generalized check node decoder configured to, in each of a plurality of iterations: group connected variable nodes into groups, the connected variable nodes being connected to an mth generalized check node among generalized check nodes; generate test patterns in each of one or more of the groups based on a first message received by the mth generalized check node from the connected variable nodes; and identify a value of a second message to be provided from the mth generalized check node to the connected variable nodes based on the test patterns; and a LDPC decoder circuitry configured to, in each of the iterations, update a value of an nth variable node, among the variable nodes, based on the second message received by the nth variable node from a generalized check node that is connected to the nth variable node. |
US12119839B2 |
Digital-to-analog converter
A digital-to-analog converter includes an amplifier, a voltage relaxation circuit, a base current source, a first weighting current source, and at least one second weighting current source. The amplifier receives a reference voltage and a feedback voltage, and generates an output voltage according to the reference voltage and the feedback voltage. The base current source is coupled to an output end of the amplifier through the voltage relaxation circuit, and is configured to generate an adjustable base current. The first weighting current source generates an adjustable first weighting current between a reference ground end and one of a current load and the voltage relaxation circuit according to a first bit of input data. The second weighting current source generates at least one second weighting current according to at least one second bit of the input data. |
US12119832B2 |
Atomic oscillator
An atomic oscillator according to the present invention includes an alkali metal cell, a light source configured to emit excitation light to the alkali metal cell, and a photodetector configured to detect transmission light passed through the alkali metal cell. In the atomic oscillator, a light absorber and a light radiator are placed. The light absorber is configured to raise a temperature thereof in accordance with absorption light to heat the alkali metal cell in contact with the alkali metal cell. The light radiator is configured to radiate light corresponding to heat of the alkali metal cell in contact therewith. The atomic oscillator further includes a second light source configured to emit light to the light absorber, and a second photodetector configured to detect the light radiated by the light radiator. |
US12119828B1 |
Clock synthesizer with dual control
The present disclosure describes circuits (e.g., clock synthesizers) and methods for producing alternating signals. A clock synthesizer includes an oscillator, a voltage control circuit, and a frequency control circuit. The oscillator produces an output signal with a frequency. The voltage control circuit produces a control voltage for the oscillator based on the frequency of the output signal. The frequency control circuit produces a control signal for the oscillator based on (i) an input voltage to the frequency control circuit and (ii) the control voltage. The control signal causes the oscillator to adjust the frequency of the output signal such that the voltage control circuit adjusts the control voltage to be closer to the input voltage. |
US12119827B2 |
Glitch filter with reset circuit
An electric circuit and a method for filtering glitches are described. The electric circuit includes a filter, an inverter circuit, and a reset circuit. The inverter circuit is electrically coupled to an output of the filter. The reset circuit is electrically coupled to the output of the filter. The reset circuit pulls the output of the filter high when an input signal to the electric circuit and the output of the inverter circuit are both low, pulls the output of the filter low when the input signal to the electric circuit and the output of the inverter circuit are both high, and passes the output of the filter when (i) the input signal to the electric circuit is high and the output of the inverter circuit is low or (ii) the input signal to the electric circuit is low and the output of the inverter circuit is high. |
US12119826B2 |
Embedded pattern generator
An example apparatus includes multiplexer circuitry configured to couple a communication module to at least one of a data bus input or a test signal; and embedded pattern generator (EPG) circuitry coupled to the multiplexer circuitry, the EPG circuitry including: clock divider circuitry including a plurality of clock outputs, the clock divider circuitry configured to be coupled to an output of a clock, the plurality of clock outputs configured to be of a frequency equal to a division of a frequency of the output of the clock; a multiplexer including a multiplexer output, the multiplexer configured to couple one of the plurality of clock outputs to the multiplexer output; and signal generator circuitry including an input clock, an EPG input, and a plurality of data outputs, the input clock coupled to the multiplexer output, the signal generator circuitry configured to generate a data stream. |
US12119825B2 |
Frequency multiplier with balun function
Frequency multipliers (300) for generating a differential output signal from a single-ended input signal are disclosed. The frequency multiplier comprises a single-ended input (Pin(f0)) to receive the input signal with a frequency of f0 and differential outputs (+/−Pout(2nf0)) to provide the differential output signals. The frequency multiplier further comprises a first signal branch (301) connected to the single-ended input and one of the differential outputs (+Pout(2nf0)). The first signal branch comprises a first low pass or bandpass filter with a center frequency of f0 (L/BPF1), a first nonlinear component (NC1) and a first high pass or bandpass filter with a center frequency of 2nf0 (H/BPF1). The frequency multiplier further comprises a second signal branch connected to the single-end input and another one of the differential outputs (−Pout(2nf0)). The second signal branch comprises a second low pass or bandpass filter with a center frequency of f0 (L/BPF1), a second nonlinear component (NC2) and a second high pass or bandpass filter with a center frequency of 2nf0 (H/BPF2). The first and second nonlinear components are configured such that even-order harmonics generated in the first and second nonlinear components are in anti-phase, thereby the differential output signals with a frequency of 2n times the frequency of the input signal are generated at the differential output, where n is an integer number. |
US12119824B2 |
Delay cell circuits
A time delay circuit comprising a plurality of differential delay cells each having a respective time delay and being arranged in series. Each delay cell comprises first and second inverter sub-cells, each comprising a respective PMOS transistor and an NMOS transistor arranged in series such that their respective drain terminals are connected at a drain node. Each of the transistors has a back-gate terminal and is arranged such that a respective voltage applied to said back-gate terminal linearly controls its respective threshold voltage. The back-gate terminal of the PMOS transistor in each inverter sub-cell is connected to the drain node of the other sub-cell and/or the back-gate terminal of the NMOS transistor in each inverter sub-cell is connected to the drain node of the other sub-cell. A control signal varies the time delay of the delay cell by adjusting a voltage supplied to a back-gate terminal of a transistor. |
US12119822B2 |
Signal generation circuit having minimum delay, semiconductor apparatus using the same, and signal generation method
A signal generation circuit includes a first delay circuit, a second delay circuit, and a duty control circuit. The first delay circuit delays a first input signal to generate a first output signal. The second delay circuit delays a second input signal to generate a second output signal. The duty control circuit compares phases of the first and second output signals and changes the value of the second delay control signal, and then decreases the times, by which the first and second input signals are delayed, by the same value. |
US12119818B2 |
Photoelectric switch key and keyboard
A photoelectric switch key is provided, which includes a shell, a circuit board, a photosensitive component and a press component. The photosensitive component is electrically connected to the circuit board, and the press component is provided with a light-shielding member. The press component is movably mounted on the shell to enable the light-shielding member to move relative to a light-receiving surface of the photosensitive component. The photosensitive component is capable of receiving external light when the light-shielding member is moved away from the light-receiving surface of the photosensitive component. The light-shielding member is adjacent to and shielding the light-receiving surface of the photosensitive component when the press component is pressed. The light-shielding member is enabled to completely block the external light from irradiating on the photosensitive component when the key is pressed by the user, which achieves the function of the key, and improves the sensitivity of the key. |
US12119817B2 |
Gate driver circuits with independently tunable performance characteristics
A gate driver circuit is provided that includes a turn-on path, a turn-off path, and a fast discharge path. The turn-on path is couplable between a gate of a solid-state switch and a voltage turn-on signal (VGON) from a gate driver, where the turn-on path defines a turn-on time for the solid-state switch. The turn-off path is couplable between the gate and a voltage turn-off signal (VGOFF) from the gate driver, where the turn-off path defines a turn-off time for the solid-state switch. The fast discharge path is selectively couplable in parallel with the turn-off path during a portion of a gate-to-source voltage (VGS) transition for the solid-state switch, where the turn-off path in parallel with the fast discharge path defines a turn-off delay for the solid-state switch and each of the turn-on time, the turn-off time, and the turn-off delay are independently configurable. |
US12119816B2 |
Semiconductor device and semiconductor device control method
A semiconductor device, includes: a first first-conductivity-type transistor supplied with a first power source voltage and controlled by an output signal of a first input inverter; a second first-conductivity-type transistor supplied with the first power source voltage and controlled by an output signal of a second input inverter that inverts an output signal of the first input inverter; a first and a second second-conductivity-type transistor supplied with a second power source voltage; and a third and a fourth first-conductivity-type transistor that are connected in parallel either between the first first-conductivity-type transistor and the first second-conductivity-type transistor or between the second first-conductivity-type transistor and the second second-conductivity-type transistor, and that are configured to isolate either a first node connected to the first first-conductivity-type transistor or a second node connected to the second first-conductivity-type transistor from the second power source voltage in accordance with the first power source voltage. |
US12119811B2 |
Gate driver output protection circuit
A method for protecting a system including a driver integrated circuit includes receiving a driver input signal. The method includes driving an output signal externally to the driver integrated circuit. The output signal is driven based on the driver input signal and an indication of a delay between receipt of an edge of the driver input signal and arrival of a corresponding edge of the output signal at an output node coupled to a terminal of the driver integrated circuit. |
US12119808B2 |
Transversely-excited film bulk acoustic resonator package
Acoustic resonator devices and filters are disclosed. A piezoelectric plate is attached to a substrate, a portion of the piezoelectric plate forming a diaphragm spanning a cavity in the substrate. A first conductor pattern is formed on a surface of the piezoelectric plate. The first conductor pattern includes interleaved fingers of an interdigital transducer disposed on the diaphragm, and a first plurality of contact pads. A second conductor pattern is formed on a back surface of an interposer, the second conductor pattern including a second plurality of contact pads. The interposer has layers of a LTCC circuit card, at least one layer of the tape comprising printed conductors. A plurality of conductive balls directly bonds the first plurality of contact pads formed on the plate to respective contact pads of the second plurality of contact pads formed on the interposer. |
US12119801B2 |
Multilayer LC filter
A multilayer LC filter includes a multilayer body in which insulator layers, a ground electrode, capacitor electrodes, a planar electrode, and via electrodes includes open-side via electrodes connecting the capacitor electrodes and the planar electrode and short-circuit side via electrodes connecting the planar electrode and the ground electrode, an inductor is provided by a conductive path extending from the capacitor electrodes to the ground electrode through the open-side via electrodes, the planar electrode, and the short-circuit side via electrodes, a capacitor is provided by capacitance generated between the ground electrode and the capacitor electrodes, the inductor and the capacitor are connected in parallel to define LC resonators, and it is assumed that the short-circuit side via electrodes of all of the LC resonators in the multilayer body are made common. |
US12119799B1 |
Harmonic suppressed bandwidth and center frequency tunable capacitive coupled band pass filter
A filter comprising a linear array of a plurality of TL-inspired T-networks connected in series by capacitors, each TL-inspired T-network typically comprising a pair of conventional transmission lines connected in series with a circuit comprising pair of inductors and a single capacitor, the conventional transmission lines associated with each TL-inspired T-network being optionally combinable together or with conventional transmission lines in neighboring TL-inspired T-networks, wherein the circuit comprising a pair of inductors and a single capacitor is an artificial transmission line providing target characteristic impedance, which is same as that of the conventional transmission lines, and phase delay. |
US12119798B2 |
Transversely-excited film bulk acoustic resonator package and method
Acoustic resonator devices and filters are disclosed. A piezoelectric plate is attached to a substrate, a portion of the piezoelectric plate forming a diaphragm spanning a cavity in the substrate. A first conductor pattern is formed on a surface of the piezoelectric plate. The first conductor pattern includes interleaved fingers of an interdigital transducer disposed on the diaphragm, and a first plurality of contact pads. A second conductor pattern is formed on a surface of a base, the second conductor pattern including a second plurality of contact pads. Each pad of the first plurality of contact pads is connected to a respective pad of the second plurality of contact pads. A seal is formed between a perimeter of the piezoelectric plate and a perimeter of the base. |
US12119796B2 |
Radio-frequency power amplifier with intermodulation distortion mitigation
An electronic device may include wireless circuitry with a processor, a transceiver, an antenna, and a front-end module coupled between the transceiver and the antenna. The front-end module may include one or more power amplifiers for amplifying a signal for transmission through the antenna. Radio-frequency power amplifier circuitry may include an amplifier, an input transformer for coupling radio-frequency input signals to the amplifier, an active inductor load coupled to the input transformer, and a second order intermodulation generation circuit configured to generate and inject a second order intermodulation product into the input transformer. The injected second order intermodulation product can be used to cancel out unwanted third order intermodulation products generated by the amplifier, which reduces intermodulation distortion experienced by the amplifier circuitry. |
US12119795B2 |
Amplifier circuit and display apparatus having the same
Disclosed is an amplifier circuit comprising a first stage having first and second input terminals, a second stage configured to amplify a voltage supplied from the first stage and including a pull-up node and a pull-down node, a third stage including an output terminal, a tenth PMOS transistor, and a tenth NMOS transistors having gate electrodes respectively connected to the pull-up node and the pull-down node of the second stage, the third stage configured to perform a pull-up driving and pull-down driving of the amplified voltage, a first boosting circuit including an eleventh PMOS transistor having a gate electrode connected to the pull-up node and the first boosting circuit configured to increase a current in the first stage, and a second boosting circuit including an eleventh NMOS transistor having a gate electrode connected to the pull-down node and configured to increase the current in the first stage. |
US12119790B2 |
Circuit device and oscillator
A circuit device includes an oscillation circuit. The oscillation circuit includes a first variable capacitance circuit whose capacitance change characteristic with respect to a capacitance control voltage is a positive characteristic and a second variable capacitance circuit whose capacitance change characteristic with respect to the capacitance control voltage is a negative characteristic, and oscillates a resonator. The circuit device further includes a switch circuit. The switch circuit receives a first input voltage at a first input terminal thereof, receives a second input voltage at a second input terminal thereof, outputs a first output voltage selected from a plurality of voltages including the first input voltage and the second input voltage to a first output terminal thereof to which the first variable capacitance circuit is electrically coupled, and outputs a second output voltage selected from the plurality of voltages to a second output terminal thereof to which the second variable capacitance circuit is electrically coupled. |
US12119789B2 |
Variable gain power amplifiers
A variable-gain power amplifying technique includes generating, with a network of one or more reactive components included in an oscillator, a first oscillating signal, and outputting, via one or more taps included in the network of the reactive components, a second oscillating signal. The second oscillating signal has a magnitude that is proportional to and less than the first oscillating signal. The power amplifying technique further includes selecting one of the first and second oscillating signals to use for generating a power-amplified output signal, and amplifying the selected one of the first and second oscillating signals to generate the power-amplified output signal. |
US12119788B2 |
Oscillator with frequency variation compensation
An example voltage controlled oscillator includes an inductor, a capacitor coupled to the inductor, and a signal source coupled to the inductor and the capacitor to sustain an oscillating signal. The voltage controlled oscillator includes a first varactor coupled to the inductor and the capacitor, wherein the first varactor is biased by a first bias voltage and is configured to change a frequency of the oscillating signal based on a first control voltage signal. The voltage controlled oscillator includes a second varactor coupled to the inductor, the capacitor, and the first varactor, wherein the second varactor is biased by a second bias voltage and is configured to compensate temperature variation of the frequency of the oscillating signal over a plurality of frequency bands based on second control voltage signal. |
US12119783B2 |
Photovoltaic system
A photovoltaic system includes photovoltaic panels arranged in a row. The photovoltaic panels may include at least a first photovoltaic panel and a second photovoltaic panel. The photovoltaic system may further include support ballasts supporting the photovoltaic panels and a connection system configured to mutually connect at least one group of said ballasts. The connection system may include a concrete fairlead conduit. |
US12119782B2 |
Systems for constructing a solar module array
In an aspect, the present disclosure describes a system for constructing a solar module array. The system can comprise one or more mobile platforms; one or more carriers operatively coupled to the one or more mobile platforms, wherein the one or more carriers support a plurality of posts and/or a plurality of solar modules; one or more robotic components for retrieving one or more posts from the plurality of posts and one or more solar modules from the plurality of solar modules from the one or more carriers; and at least one controller in operative communication with the one or more mobile platforms and the one or more robotic components, wherein the at least one controller (i) directs the one or more mobile platforms to transport the one or more carriers over a terrain and (ii) controls the one or more robotic components to (1) autonomously position and install the one or more posts on the terrain, and (2) autonomously position and assemble the one or more solar module to the one or more posts installed on the terrain to thereby construct the solar module array on the terrain. |
US12119779B2 |
Photovoltaic module mounting assembly
The present disclosure provides photovoltaic (PV) module mounting systems and bracket assemblies for securing PV modules to roofs. The photovoltaic module mounting systems may include a roofing panel having a base layer, a flashing panel coupled along an edge of the roofing panel, and a bracket assembly coupled to the roofing panel, where the bracket assembly includes a bracket and a clip, and where the clip is configured to couple with an edge feature of a PV module to secure the PV module to the roofing panel. |
US12119778B2 |
Fast active power output reduction system of doubly-fed induction generator and method thereof
The present invention discloses a FPR system of DFIG, comprising a DC chopper circuit made up of a fully-controlled power switching device and a dump resistor first connected in series and then connected to the positive and negative poles of the DC-link; the fully-controlled power switching device is driven by a power switching device driver; the power switching device driver comprises a first inverting adder, a first PI controller and a PWM modem; the positive and negative input ends of the first inverting adder receive the real-time DC-link voltage signal and its threshold value respectively, and the output end of the first inverting adder is connected to the input end of the first PI controller; the output end of the first PI controller is connected to the input end of the PWM modem; the PWM modem outputs the pulse signal to the control end of the fully-controlled power switching device. |
US12119777B2 |
Control circuit
A control circuit includes a storage unit, a generation unit, an update unit, and a rotation control unit. The storage unit stores a predetermined number of register values to designate a step frequency of a stepper motor. The generation unit generates a micro step clock signal every time a period corresponding to each of the predetermined number of register values stored in the storage unit elapses. The update unit updates the predetermined number of register values stored in the storage unit every time the generation unit generates the predetermined number of micro step clock signals. The rotation control unit supplies a phase current based on the micro step clock signal generated by the generation unit to the stepper motor to rotate a rotor of the stepper motor by a micro step angle found by equally dividing a step angle of the stepper motor into the predetermined number. |
US12119774B2 |
Planar drive system
A planar drive system comprises a stator and a rotor. The stator comprises a plurality of energizable stator conductors. The rotor comprises a magnet device having at least one rotor magnet. A magnetic interaction can be produced between energized stator conductors of the stator and the magnet device to drive the rotor. The stator is configured to carry out energization of the stator conductors so that an alternating magnetic field can be generated via the energized stator conductors. The rotor comprises at least one rotor coil in which an alternating voltage can be induced due to the alternating magnetic field. The planar drive system is configured to transmit data from the stator to the rotor, and the stator is configured to temporarily influence the energization of the stator conductors in order to temporarily cause a change with respect to the alternating voltage induced in the at least one rotor coil. |
US12119773B2 |
Power supply system and method for controlling power supply system
A power source system mounted in a vehicle includes: a first power source (2); a first load (41) operated by electric power supplied from the first power source (2); a first controller (9) that controls an operation of the first load (41) by a first program; a second power source (8) connected to the first power source (2) via a converter (7); a second load (11) operated by electric power supplied from the second power source (8); a second controller (10) that controls an operation of the second load (11) by a second program; an electric power disconnecting device (3) that connects or disconnects between the first power source (2) and the first load (41); and a third controller (12) that controls the electric power disconnecting device (3). When the first program is changed, the third controller (12) disconnects the first power source (2) from the first load (41) by the electric power disconnecting device (3) before a change process of the first program is started. |
US12119769B2 |
Method for controlling a rotary electric machine and a system thereof
The present invention relates to a method (200) and system (100) for controlling a rotary electric machine wherein a state of the rotary electric machine is determined between a low speed state and a high speed state. In the low speed state, a first rotor position (P1) and a first rotor speed (S1) are estimated based on intra-PWM current ripple (ΔX), a mean current vector (Y) and an inductance vector. A second rotor position (P2) and second rotor speed (S2) is estimated based on average current flowing through stator phase windings. State of rotary electric machine is selected based on estimated first rotor speed (S1) and/or estimated second rotor speed (S2). At low speed state, PWM signals are updated based on estimated first rotor position (P1), and at high speed state, PWM signals are updated based on estimated second rotor position (P2). |
US12119768B2 |
Motor driving apparatus and method for controlling the same
A motor driving apparatus driving a motor including a plurality of windings corresponding to each of phases, includes a mode change switch and a plurality of inverters that operate the motor in a closed end winding mode or an open end winding mode; and a controller configured for controlling the mode change switch and the plurality of inverters according to a first mode determination result based on a reverse magnetic flux and a second mode determination result according to an output power limit for each mode. |
US12119767B2 |
Multilevel power conversion system and method
A system includes a first power conversion device connected to a first power source, a first isolated power conversion device connected to the first power source, and a second power conversion device connected to the first isolated power conversion device, wherein outputs of the first power conversion device and outputs of the second power conversion device are connected in series, and series-connected outputs of the first power conversion device and the second power conversion device are configured to drive a motor. |
US12119764B2 |
Estimating input currents provided to an electric motor
Systems and methods for estimating input current are provided, particularly when input currents are applied to an electric motor of a motor system. An Electric Control Unit (ECU), according to one implementation, is configured to control the motor system. The ECU is configured to store computer logic having instructions that, when executed, cause one or more processing devices to obtain a duty cycle parameter at an output of the ECU. The duty cycle parameter, for example, relates to control actions enforced on one or more switches of a power electronics circuit of the motor system. Based on the duty cycle parameter, the instructions further cause the one or more processing devices to estimate an input current provided to the electric motor of the motor system. A more accurate input current estimation may thereby be used to better estimate torque. |
US12119757B2 |
Power supply system including a plurality of power conversion devices to supply AC or DC power
A power supply system includes a plurality of power conversion devices connected in parallel with each other, a load state detector to detect an operating state of a load connected to the DC system, and a command generator to generate a distribution voltage command Vref. Each of the power conversion devices includes a DC voltage controller to generate an output power command Pdc_ref based on a voltage of the DC system and the distribution voltage command Vref, and an AC/DC converter to convert AC power received from the main power source based on the output power command Pdc_ref and output the converted power to the DC system. The command generator generates the distribution voltage command Vref such that loss of the load connected to the DC system is reduced, based on a detection result of the load state detector. |
US12119753B2 |
DC/DC converter and method for controlling output voltage thereof
A DC/DC converter includes an inverter circuit, a transformer, a first rectifier circuit, a second rectifier circuit, and a voltage management circuit. The transformer includes a first primary-side winding, a first secondary-side winding, and a second secondary-side winding. Two terminals of the first primary-side winding are respectively connected to a first output terminal and a second output terminal of the inverter circuit, two terminals of the first secondary-side winding are connected to two input terminals of the first rectifier circuit, and two terminals of the second secondary-side winding are connected to two input terminals of the second rectifier circuit. The voltage management circuit controls an output terminal of the first rectifier circuit, an output terminal of the second rectifier circuit, and an output terminal of the DC/DC converter to be in a first connection relationship in a first sub-cycle of a first working cycle. |
US12119752B2 |
Alternating asymmetrical phase-shift modulation
In order to balance the thermal stress of the switches (S1-S4) of the two legs of an inverter full bridge (4), the driving signals are generated using an up-down counter having a modulation period Tmod of twice the period T of the input voltage (Vin). The up-down counter has a first compare value (41) of D/4 and a second compare value (42) of (2+D)/4, where D is the duty cycle and where the second half bridge is phase shifted by the period T. |
US12119750B2 |
Redundancy of a resonant converter stage by frequency adaptation
A resonant DC/DC converter which has a first DC link, preferably including a first DC link capacitor; a DC/AC converter which has a first plurality of N>1 converter bridges connected in parallel to the first DC link; each converter bridge comprising a plurality of switches each of which may be switched between a conducting state and a non-conducting state. The resonant DC/DC converter also includes an AC intermediate circuit having an input connected to an output of the DC/AC converter and comprising: a transformer, preferably a medium frequency transformer, having a primary side and a secondary side; the primary side comprising at least one primary winding; a first plurality of N capacitors, wherein for each converter bridge, a different one from the first plurality of capacitors is connected between said converter bridge and the at least one primary winding. |
US12119748B2 |
Single-input multiple-output DCDC converters with sequential outputs
A circuit portion comprises a DCDC converter that provides current from an output to a plurality of loads. Channel logic circuitry is configured to provide current from the output of the converter to each load according to a cyclical sequence, wherein each cycle has a duration that is divided equally into a plurality of time slots. The channel logic circuitry is configured to provide current to each load for one or more discrete time slots. The number of time slots is greater than the number of loads so that at least two output loads receive current for different numbers of time slots in a cycle. |
US12119747B2 |
DC/DC converter with parallel buck-boost modules for electrofusion welding
A power convertor configured to output power to an electrofusion welding coupler for performing electrofusion welding. The power convertor comprises an array of connected DC to DC power convertor circuits. In use, the array of connected DC to DC power convertor circuits is configured to receive, at a first interface, power at a first voltage level from a battery and output power, at a second interface, at a second voltage level to provide power to electrofusion welding cable means. The DC to DC power convertors are arranged in a buck-boost configuration which can operate in a boost mode in which the first voltage level is less than the second voltage level and in a buck mode in which the first voltage level is greater than the second voltage level. |
US12119746B2 |
Circuit with voltage controlled oscillator (VCO) circuit and pulse-width modulated (PWM) signal generator, and method
In an embodiment a circuit includes a voltage-controlled oscillator (VCO) circuit having a first node configured to receive a reference voltage, a second node configured to receive a feedback signal, which is a comparison signal, indicative of a variation of a regulated output voltage of an electronic voltage regulator with respect to the reference voltage and a third node configured to provide a clock signal having a clock period based on the reference voltage and the feedback signal, and a pulse-width modulated (PWM) signal generator circuit having a first node coupled to the VCO circuit and configured to receive the clock signal, a second node configured to receive an input signal proportional to an input voltage signal at an input node of the electronic voltage regulator and a third node configured to provide at least one PWM drive signal to one or more electronic switches of a switching stage based on the clock signal. |
US12119745B2 |
Short-circuit protection circuit, chip and system for switched-mode power supply
A short-circuit protection circuit, chip and system for a switched-mode power supply are disclosed. The short-circuit protection circuit includes: a sampling module for sampling an input voltage and producing a first voltage from the input voltage; a generation module for generating a second voltage from a reference voltage; a comparison module for comparing the first voltage and the second voltage; and an output module for producing, from a result of the comparison performed by the comparison module, and outputting a control signal for controlling an external power transistor in the event of a short circuit in the switched-mode power supply. According to the present invention, when an output short circuit is detected, a hiccup-mode duty cycle is adjusted according to the input voltage, thus avoiding great energy loss when the input voltage is high and enabling loaded startup or automatic output recovery after the short circuit condition is removed when the input voltage is low. |
US12119740B2 |
DC/DC converter and communication power supply with common mode noise suppression
The converter includes a primary-side winding, a secondary-side winding, a resonant inductor, a resonant capacitor, and a noise suppression network. The primary-side winding and the secondary-side winding form a transformer. The noise suppression network is connected between a primary-side quiescent point and a secondary-side quiescent point. The primary-side quiescent point is a direct current stable potential at an input terminal of the DC/DC converter. The secondary-side quiescent point is a direct current stable potential at an output terminal of the DC/DC converter. A first parasitic capacitance between a first terminal of the primary-side winding and the secondary-side quiescent point is equal to a second parasitic capacitance between a second terminal of the primary-side winding and the secondary-side quiescent point. A suppression current is generated by the noise suppression network, and has a direction opposite to a direction of a total noise current generated by the resonant inductor. |
US12119739B2 |
Integrated power device with energy harvesting gate driver
An electronic circuit is disclosed. The electronic circuit includes a transistor having a gate terminal, a source terminal and a drain terminal, and a gate driver circuit including a pull-down transistor coupled to the gate terminal, and an input terminal arranged to receive an input signal and generate a corresponding output signal at an output terminal coupled to the gate terminal, where the gate driver circuit is arranged to store energy harvested from the input signal and use the stored energy to change a conductive state of the pull-down transistor. In one aspect, the transistor includes gallium nitride (GaN). In another aspect, the pull-down transistor includes GaN. |
US12119734B2 |
Motor with cooling medium and fins for heat dissipation
A motor includes a rotor rotatable about a central axis and a stator including coils. The stator opposes the rotor with a gap interposed therebetween. A housing defines at least a portion of a closed chamber in which a cooling medium is housed. Heat dissipation portions are able to release heat of the cooling medium in the closed chamber to an outside. A pressure adjustment portion is able to adjust a pressure in the closed chamber. At least a portion of the coils and the rotor is housed in the closed chamber. |
US12119733B2 |
Motor and split fan
A motor, comprising casing, rotating shaft, magnetic ring, three-phase hollow cup coil winding and insulating end cover, is provided. The casing comprises sleeve and inner core arranged coaxially with sleeve and air guide plates connected to sleeve and inner core, the sleeve, inner core and two adjacent air guide plates are surrounded to form air guide channel, inner core is provided with mounting hole, bearing is installed in mounting hole, and rotating shaft passes through bearing, magnetic ring is sleeved outside one end of rotating shaft, three-phase hollow cup coil winding is sleeved outside the magnetic ring. Rotating gap is set between three-phase hollow cup coil winding and magnetic ring, and insulating end cover is installed on the outlet of sleeve. Wind end fixes the three-phase hollow cup coil winding in sleeve, inner core is provided with heat dissipation holes that are all connected with mounting holes. |
US12119730B2 |
Constant stress solid disk rotor of flywheel for flywheel energy storage system and design method thereof
A constant stress solid disk rotor of a flywheel has an outer shape having a plane-symmetric upper surface and lower surface, an outer circumferential radius b, and a rotation center thickness h0, and includes a thickness decreasing region which decreases monotonously in thickness from a rotation center to a connection radius a and a constant thickness region located on an outer edge of the thickness decreasing region and having a constant thickness ha from the connection radius a to the outer circumferential radius b. Shape parameters including the outer circumferential radius b, the rotation center thickness h0, the connection radius a, and the outer edge thickness ha satisfy an equation below. Here, ν is a Poisson's ratio of a rotor material. a b = 1 2 ( - 2 1 - v ( 1 + v - 2 ln ( h a h 0 ) ) + ( 2 1 - v ( 1 + v - 2 ln ( h a h 0 ) ) ) 2 + 4 ( 3 + v ) 1 - v ) |
US12119729B2 |
Interconnections, sensors and control electronics mounted on a plastic bearing of an electric machine
A bearing for a rotating electric machine. The bearing includes a plastic body and at least one electrical conductor fixed to the plastic body in a non-detachable manner. |
US12119726B2 |
Electric generator
A electrical generator that uses wasted heat that emanates from an external heat source to generate electricity. The generation of electricity is based on known thermo-electric principles, electro-chemical principles, magneto-hydro-dynamic principles, the Hall Effect, and electro-static principles. The electrical generator uses a plurality of plates of different thermo-electric conductive materials to generate electricity. Those plurality of plates are stacked on top of the other in a certain order. Each plate has the same array of through holes. Those through holes form an array of lineal channels through the stacked plurality of plates. |
US12119724B2 |
Stator in an electric machine with a wiring device and electric machine
The invention relates to a stator (IO) in an electric machine (I) with a laminated core (II) formed in an annular fashion about a central axis (A), on which core stator coils (16) with coil ends (16a, b) are arranged by means of formers (12a, 12b). The stator (IO) comprises wiring device (20), on which a plurality of mutually isolated connecting conductors (22-26) with coil connection areas (22a-26a) are present for connecting the stator coils (16). The wiring device (20) is joined on the stator in an axial joining direction to the stator coils (16) and is secured by axial connection means (30a, b) to the formers (12a), thus forming a plurality of axial connections (32a, b). According to the invention, to increase the stiffness of the stator (IO), radial supporting means (40, 41) are additionally formed on the wiring device (20) to interact with the formers (12a), said means being designed to be functionally independent of the axial connection means (30a, b). |
US12119717B1 |
Control circuit for fan
The present disclosure provides a control circuit for a fan. The control circuit for a fan including a fan head equipped with a first motor and fan blades connected to the first motor. The control circuit includes an MCU, a stepless regulation circuit and a first driving circuit both connected to the MCU. The stepless regulation circuit includes a stepless regulator for user operation. The first driving circuit is also electrically connected to the first motor, the stepless regulation circuit sends back corresponding electrical signals to the MCU based on user operation of the stepless regulator, and the MCU controls the power output of the first driving circuit to the first motor based on the electrical signal feedback from the stepless regulation circuit, which adjusts the power output to the first motor to adjust the speed of fan blades. |
US12119715B2 |
Motor unit
A motor assembly includes a housing, a first substrate, a plate-shaped second substrate, and a connector portion. The housing includes a tubular portion that accommodates a motor with an axis of rotation that extends in the vertical direction. The first substrate extends in a direction perpendicular to the axial direction. The second substrate extends in a direction intersecting the first substrate. The connector portion electrically connects the first substrate and the second substrate. The connector portion overlaps with the housing as viewed from the axial direction. |
US12119709B2 |
Axial flux machine for an electrical processing device and electrical processing device with an axial flux machine
An axial flux machine, in particular a single-sided axial flux motor, for an electrical machining device, includes a machine shaft, in particular a motor shaft, a disc-shaped stator, and a disc-shaped rotor which is arranged adjacent to the stator in the axial direction of the machine shaft. The stator is formed as a winding carrier for at least one stator winding and the rotor, which is connected to the machine shaft in a rotationally fixed manner, can rotationally moved relative to the stator. The axial flux machine further includes a housing for receiving the stator and the rotor. The housing is cylindrical, open on one side and formed with a substantially closed end face, and the housing fixes the stator in such a way that a defined air gap remains between the rotor and the stator. The axial flux machine can be arranged in an electrical processing device. |
US12119704B2 |
Uninterruptible power supply device
An uninterruptible power supply device includes a rectifier module coupled to an electrical power grid, an inverter module coupled to the rectifier module, and a battery converter module. The rectifier module can process a higher amount of electric power as the designed electrical power provided by the inverter module to enable the uninterruptible power supply device to provide stabilization support to the electrical power grid, wherein the rectifier module comprises at least two rectifier submodules, each dimensioned to process an amount of electrical power according to a capability of the inverter module to process power. The rectifier module is configured to electrically couple the rectifier submodules selectable to process a higher amount of electric power as the inverter module to provide stabilization support to the electrical power grid. |
US12119703B2 |
System configured to decrease battery ageing of ear wearable device due to transportation or storage of the device while ensuring high charge before initial use
An example system includes an ear-wearable device comprising a housing and a rechargeable battery located within the housing; a supplemental power storage device configured to provide electrical energy; and circuitry configured to transfer, responsive to occurrence of an event, electrical energy from the supplemental power storage device to the rechargeable battery prior to an initial use of the ear-wearable device. |
US12119702B1 |
System and method for providing operation information to configurable devices
Methods and systems for providing computer implemented services using configurable hardware components are disclosed. To update operation of a configurable hardware component, a large amount of data may be provided to a single input/output pin of the configurable hardware component. The large amount of data may be encoded in a complex waveform corresponding with at least eleven bits of digital data. The complex waveform may be interpreted by the configurable hardware component to obtain the large amount of data. Using the large amount of data, the configurable hardware component may update its operation to be in condition for providing the computer implemented services. |
US12119699B2 |
Method for periodically activating battery unit and electronic device
A method for periodically activating a battery unit applied to an electronic device equipped with the battery unit includes steps as follows. A plurality of intervals are defined, wherein each of the intervals has an initial voltage value and a target voltage value, and the initial voltage value is greater than the target voltage value. An activation strategy for each of the intervals is defined. A voltage value of the battery unit is detected. One of the intervals is selected as a selected interval according to the voltage value of the battery unit, wherein the voltage value of the battery unit is less than or equal to the initial voltage value of the selected interval, and the voltage value of the battery unit is greater than the target voltage value of the selected interval. The battery unit is activated according to the activation strategy of the selected interval. |
US12119697B2 |
Voltage regulation circuit and system for traction battery and control method thereof
A voltage regulation circuit for traction battery includes a traction battery, a heating module, a charge/discharge interface, and a voltage regulation module. The heating module includes a power storage element and a switch module. The traction battery is connected in parallel to the switch module. An external charging and discharging device is connected in parallel to the traction battery through the charge/discharge interface. The voltage regulation module includes a plurality of switches and a power storage regulation element, and the plurality of switches and the power storage regulation element are disposed between the charge/discharge interface and the traction battery. The voltage regulation module and the switch module are configured to regulate, in response to a voltage regulation control signal, a charge/discharge voltage between the traction battery and the power storage element and a charge voltage of the external charging and discharging device for the traction battery. |
US12119696B2 |
Method and apparatus performing charging modulation
A method for performing a charging modulation between one or more charging poles, a local power system and a global power system is provided, the method comprising: receiving monitoring data from one or more measuring devices; receiving controlling data from the global power system, the local power system, a customer management system, and the one or more charging poles; identifying one or more measuring values corresponding to phases of a three-phase power system according to the monitoring data; adjusting the charge level of a target phase of a target charging electricity by determining whether the target measuring value of the target phase of the target charging electricity exceeds an allowed charging range according to one or more measuring values; and determining whether to turn the target phase of the provided target charging electricity off or on according to current charge level of the target phase. |
US12119693B1 |
Battery harvesting adapter
The present invention includes a battery harvesting adapter configured to connect to a plurality of batteries operable to power a plurality of radios. The plurality of radios includes a PRC-148, a PRC-152, and a PRC-163 radio. The battery harvesting adapter is further configured to capture power from a battery and transfer the power to a radio, a battery, a portable power case, a DC-DC converter, and other equipment. |
US12119692B2 |
Battery holder, power transfer device, electric vehicle and installation method for power transfer device
Provided are a battery holder, a power transfer device, an electric vehicle and an installation method for electric vehicle. The battery holder is mounted on the body of the electric vehicle to fix the battery pack, the battery holder includes a plurality of supporting devices, the plurality of supporting devices are distributed on both sides of the fixing bracket in the length direction of the fixing bracket; in the length direction of the fixing bracket, both sides of the fixing bracket are both arranged with the lock mechanism, the lock mechanism is a primary lock mechanism and a secondary lock mechanism; the secondary lock mechanism is used to provide a secondary locking function or a locking protection function for the battery pack, when the primary lock mechanism fails, it is used to prevent the battery pack from falling. |
US12119691B1 |
Charger system for portable electronic devices
A portable electronic device charger system includes (I) a portable electronic device charger assembly including (A) at least one device bay including (i) a floor including an electrical interface; (ii) a first wall extending perpendicularly from the floor; (II) a portable electronic device case assembly; and (III) an electrical power coupler removably electrically couplable to the interface, and removably couplable to the first wall, and removably couplable to the portable electronic device case assembly. Other aspects are described in the claims, drawings, and text forming a part of the present disclosure. |
US12119687B2 |
Battery pack including plurality of current paths
The present disclosure is directed to providing a battery pack, which may output a current that satisfies the operating specifications of a load even over a wide voltage range by including a plurality of current paths. In addition, according to an aspect of the present disclosure, since a current path corresponding to an input voltage range is automatically selected, there is an advantage of providing a battery pack compatible with an input of a wide voltage range. |
US12119684B2 |
Battery pack, treatment system and method for the production of a battery pack
A battery pack supplies an electrically driven treatment apparatus with an electric driving power and includes a plurality of accumulator cells having cell contacts; at least one circuit board electrically connected to the cell contacts; and a battery pack housing having a first battery pack housing part and a second battery pack housing part. The first battery pack housing part and the second battery pack housing part are closed by each other. The accumulator cells are disposed within the battery pack housing. The cell contacts and the circuit board are disposed within the second battery pack housing part. The second battery pack housing part is configured as a mold for a casting compound, and the cell contacts and the at least one circuit board are enclosed by the casting compound. |
US12119674B2 |
Display device and electronic device including the same
A display device includes: a display panel comprising a display area at which an image is displayed; an input sensor on the display panel and configured to operate in a first mode to sense a first input or in a second mode to sense a second input provided by an input device; a sensor controller configured to control an operation of the input sensor; and a wireless power supply configured to transmit a wireless power signal to the input device at a transmission frequency in response to the input sensor operating in the second mode, wherein the sensor controller is configured to transmit an uplink signal to the input device through the input sensor in the second mode, and the uplink signal comprises a set signal corresponding to the transmission frequency of the wireless power signal. |
US12119671B2 |
Method and apparatus for controlling wireless power transmission
A method of transmitting power of a wireless power transmitter, including a receiving phase of receiving a signal including an FOD status packet from a wireless power receiver; a first determination phase of determining whether a foreign object is present in a charging area of the wireless power transmitter based on the FOD status packet; a power control phase of controlling power transmission in a first power transfer mode upon determining that the foreign object is present in the charging area in the first determination phase, or controlling power transmission in a second power transfer mode upon determining that the foreign object is not present in the charging area in the first determination phase; and a second determination phase of determining whether the foreign object is present in the charging area based on information other than information included in the FOD status packet, while controlling power transmission in one of the first power transfer mode and the second power transfer mode by the power control phase. |
US12119670B2 |
Power reception device for wireless power supply system
A power reception device includes a plurality of power-receiving coils, a plurality of rectifier elements, and a convergent output smoothing capacitor. The plurality of power-receiving coils are positioned in place relative to the housing in such a manner that the plurality of power-receiving coils each include first conductor portions extending along a side surface of the housing. The plurality of rectifier elements are connected respectively to the plurality of power-receiving coils. The convergent output smoothing capacitor stores electric energy output from the plurality of rectifier elements. |
US12119668B2 |
Flexible management system for optical wireless power supply
A safety supervision system for wireless power transmission, comprising a transmitter having an optical beam generator with safe states for transmitting power to receivers that convert the beam into electrical power. The system control unit stores previously known signatures categorized by predetermined parameters associated with one or more unwanted situations, stores data from sensors, compares this stored data to the signatures, and executes one or more responses based on this comparison. The system may comprise transmitter and/or receiver malfunction detection systems adapted to monitor the transmitter and receiver control units and to cause the optical beam generator to switch to a safe state upon detection of a transmitter or receiver control unit malfunction, and may further comprise a hazard detection system preventing human exposure to beam intensity above a predefined safe level. |
US12119667B2 |
Electrical resonators
The present invention relates to an electrical resonator (10), and an array (30) comprising a plurality of the electrical resonators (10). The electrical resonator (10) comprises an inductor coil comprising at least one turn. The at least one turn comprises an outer turn defining an outer coil perimeter (14). The electrical resonator comprises at least one capacitor connected to the inductor coil. The outer coil perimeter (14) comprises four major edges (141). Each of the major edge (141) is substantially linear and arranged on a different edge of a quadrilateral. The outer coil perimeter (14) comprises four minor edges (142) connecting the major edges (141). The array (30) comprises a first plurality of the electrical resonators (10a) arranged in a first layer, and a second plurality of the electrical resonators (10b) arranged in a second layer on top of the first layer. The minor edge (142a) of each electrical resonator substantially abuts the minor edge (142b) of an adjacent electrical resonator in the same layer, and the first and second layer together define a quadrilateral array of the electrical resonators (30), with a centre of each inductor coil in the first layer coincident with the centre of a gap region between inductor coils in the second layer. A method of arranging a plurality of electrical resonators in an array is also disclosed. |
US12119663B2 |
Method and device for energy harvesting and charging rechargeable energy storage devices
A method for energy harvesting and charging energy storage devices is provided. The method uses a voltage converter system and includes the steps of monitoring a parameter VBatt1 indicative of a charging level of a first rechargeable storage device and of maintaining this parameter VBatt1 between a lower and an upper threshold value. The method further includes steps of charging a second rechargeable storage device and operating the voltage converter system for transferring charges from the second to the first rechargeable storage device. An integrated circuit for energy harvesting is provided in which a terminal connectable with a second rechargeable storage device is switchably coupled to both the input and the output of the voltage converter system. |
US12119649B2 |
Oscillation active damping control method and system for grid-tied type-4 wind turbine generator
The application relates to an oscillation active damping control method and system for grid-tied type-4 wind turbine generator. The method comprises: based on an interconnection model of multiple subsystems, constructing a stored energy function and a dissipated energy function of a current inner loop control subsystem, and interaction energy functions between the current inner loop control subsystem and other subsystems are constructed, then establishing an energy feedback model of Type-4 wind turbine generator; when the oscillation occurs, obtaining instantaneous angular frequency of the PLL, and then based on the energy feedback model, adjusting the current reference value of the q-axis current inner loop generated by the reactive power outer loop control subsystem, to make the stored energy function decrease with time, so as to suppress the oscillation. |
US12119647B2 |
Intelligent algorithm for maximum power point tracking through load management in solar photovoltaic systems
Principles of the present disclosure present an advanced control algorithm related to improving maximum power point tracking of a renewable energy system such as a solar photovoltaic system through load management, which estimates optimum load switch points, minimizes unsuccessful switches, and maximizes renewable energy such as photovoltaic energy delivered to loads. |
US12119640B2 |
ESD protection circuit
An electrostatic discharge (ESD) protection circuit is provided to minimize ESD damage to an internal circuit in a CDM model. The ESD protection circuit includes two stages of discharging circuits that are coupled to an IO pin and the internal circuit, a first power clamp circuit, and a second power clamp circuit. The first power clamp circuit is electrically connected to a power rail and a ground rail to discharge a part of a current to the ground, and the second power clamp circuit is electrically connected to a second-stage discharging circuit and the ground rail, so that the other part of the current is discharged to the ground through the second power clamp circuit. |
US12119636B2 |
Test-boost electric power recloser
Embodiments of the present invention include a test-boost electric power recloser that limits the duration of the test current imposed on the power line to less than two electric power cycles, and preferably less than one electric power cycle, when attempting to reclose into a fault. The test-boost recloser sends a test pulse causing a non-latching close followed by a boost pulse causing a latching close if waveform analysis based on the test close indicates that the fault has likely cleared. The test-boost approach can typically be implemented through a software and calibration upgrade to a conventional single-coil recloser, accomplishing results comparable to a dual-actuator recloser at a much lower cost. The recloser may perform iterative and feedback learning feedback processes to automatically improve its operation over time in response to measured fault and non-fault conditions and its success in predicting whether faults have cleared. |
US12119634B2 |
Clamp for suspending wire
A clamp for suspending a wire includes a housing having an inner support surface. The wire is disposed between the inner support surface and a keeper. The clamp further includes a fastening unit, including a first fastener and a second fastener attachable to the first fastener. The housing defines an opening extending in a direction along which the wire is received within the housing. After the second fastener is attached to the first fastener, the fastening unit is not removable from the housing. The fastening unit is movable, within the opening, between a first position and a second position. In the first position, the fastening unit cooperates with the keeper to decrease a distance between the inner support surface and the keeper. In the second position, the fastening unit does not cooperate with the keeper to decrease the distance. |
US12119631B2 |
Electrical connection box
A portion that covers a connection portion between a relay and a bus bar is prevented from coming off. An electrical connection box includes a relay, a bus bar connected to the relay, and a case including an attachment portion for the relay, and includes a cover covering a connection portion between the relay and the bus bar. The cover includes a wall portion and an engaging portion that is provided on a part of the wall portion and prevents the cover from coming off by engaging with a part of the attachment portion. The attachment portion includes a stopper portion that suppresses displacement of the part of the wall portion in a direction in which the engaging portion is disengaged. |
US12119630B2 |
Temperature control device mounted to a sealed electrical wall box
A control system may include a control device, an electrical wall box having a hole for passing a wire or cable into the wall box, and a gland configured to be inserted into the hole of the wall box. The control device may include a temperature sensor. The wall box may be configured to be mounted to a wall. The control device may be configured to be mounted to the wall box such that the temperature sensor is located within the wall box. A wire or cable may be passed from a wall cavity of the wall, through the gland, into an interior of the wall box, and attached to the temperature control device. The gland and the wall box may be configured to prevent air within the wall cavity from entering the wall box when the wire or cable is passed into the wall box. |
US12119629B2 |
Junction box and electronic device assembly system
A junction box and an electronic device assembly system relate to the field of infrastructure technologies. The junction box includes an accommodation chamber configured to accommodate a wire and a sealing cap configured to seal the wire. An upper cover of the accommodation chamber is provided with a first through-hole for wiring, a base of the accommodation chamber is provided with a second through-hole for wiring, and a side wall of the accommodation chamber is provided with one or more operation windows. The upper cover of the accommodation chamber is provided with a first installation position for installing to a pole, and the base of the accommodation chamber is provided with a second installation position for installing to an electronic device. The sealing cap includes a third through-hole for wiring and a fourth through-hole for wiring. |
US12119627B2 |
Wire tray and mounting insert assemblies
This publication describes techniques and apparatuses for releasably attaching an object (e.g., a wire tray) to a substrate. Current apparatuses generally do not enable the removal of an attached wire tray from a substrate without first removing an insert from a mounting stud extending from the substrate. The disclosed techniques and apparatuses are configured to permit the removal of an attached wire tray from a substrate without first removing an insert from a mounting stud extending from the substrate. |
US12119619B2 |
High-intensity color tunable white laser light source using green phosphor
The invention provides a light generating device (1000) configured to generate device light (1001), wherein the light generating device (1000) comprises: a first light source (110) configured to generate one or more of UV and blue first light source light (111), wherein the first light source (110) is a first laser light source (10); a second light source (120) configured to generated green second light source light (121), wherein the second light source (120) is a second laser light source (20); a third light source (130) configured to generate red third light source light (131), wherein the third light source (130) is a third laser light source (30); a fourth light source (140) configured to generate blue fourth light source light (141), wherein the fourth light source (140) is a fourth laser light source (40); a first luminescent material (210) configured to convert at least part of the first light source light (111) into first luminescent material light (211) having an emission band having wavelengths in one or more of (a) the green spectral wavelength range and (b) the yellow spectral wavelength range, wherein the first luminescent material (210) comprises a luminescent material of the type A3B5O12:Ce, wherein A comprises one or more of Y, La, Gd, Tb and Lu, and wherein B comprises one or more of Al, Ga, In and Sc; an optical element (430) configured to combine (i) optionally unconverted first light source light (111), (ii) the second light source light (121), (iii) the third light source light (131), (iv) the fourth light source light (141), and (v) the first luminescent material light (211), to provide device light (1001), wherein the light generating device (1000) is configured to provide in an operational mode white device light (1001) comprising at least the luminescent material light (211) and the fourth light source light (141); and a control system (300) configured to control one or more of the light sources (110, 120, 130, 140). |
US12119611B2 |
Semiconductor laser apparatus and semiconductor laser device
A semiconductor laser apparatus includes: a semiconductor laser device for junction down mounting that includes a first light-emitting device region and a second light-emitting device region formed separately on a substrate. The first light-emitting device region and the second light-emitting device region in the semiconductor laser device each have a stack structure in which an n-type semiconductor layer, an active layer, and a p-type semiconductor layer are stacked in stated order. The first light-emitting device region includes a first electrode film located on the n-type semiconductor layer. The second light-emitting device region includes a second electrode film located on the p-type semiconductor layer. The first electrode film and the second electrode film are electrically connected to each other. |
US12119606B2 |
Terminal block
A terminal block including: a connector that has a tubular shape; and a seating that is formed on an outer periphery of the connector, and is to be fixed to the housing so as to close an opening of the housing, wherein: the seating includes: a first wall that extends in a direction that intersects an axial direction of the connector; a second wall that faces the first wall in the axial direction of the connector; a rib that is provided between the first wall and the second wall so as to connect the first wall and the second wall with each other; and a space that is partitioned by the rib between the first wall and the second wall, and the space is open in a direction that intersects the axial direction of the connector. |
US12119594B1 |
Plug assembly for power cord
In one embodiment, a power plug assembly includes a plug housing, a set of electrical terminals configured to be inserted into a first set of electrical apertures of a first receptacle of an electrical outlet, a first ground terminal configured to be inserted into a first ground aperture of the first receptacle of the electrical outlet, a second ground terminal configured to be inserted into a second ground aperture of a second receptacle of the electrical outlet, a non-protruding portion configured to abut a second set of electrical apertures of the second receptacle of the electrical outlet, and a cord enveloping wires that extend from the plug housing via a side surface of the plug housing, and wherein the wires are coupled to the set of electrical terminals and the first and second ground terminals. |
US12119592B2 |
Power delivery device and control method thereof
A control method of a power delivery device includes communicating with a power adaptor through a configuration channel pin of a connector to acquire a power supply quota of the power adaptor and generate a power consumption threshold based on the acquired power supply quota, selecting a corresponding scenario mode from a plurality of scenario modes according to a scenario setting signal generated by a setting circuit when a total power consumption of a system circuit is greater than the power consumption threshold, selecting a corresponding exclusion parameter from a plurality of exclusion parameters according to the corresponding scenario mode, excluding a corresponding power-down procedure from a plurality of power-down procedures according to the corresponding exclusion parameter to generate a selected power-down group, and performing at least one power-down procedure in the selected power-down group to reduce the total power consumption. |
US12119591B2 |
Shielded flat cable and shielded flat cable with circuit board
A shielded flat cable includes a first differential signal line pair including mutually parallel first and second signal lines, first and second ground lines parallel to the first differential signal line pair arranged between the first and second ground lines, an insulating layer covering the first differential signal line pair, the first and second ground lines, a first shielding layer covering a first surface of the insulating layer, and a second shielding layer covering a second surface of the insulating layer, opposite to the first surface. The insulating layer includes an opening exposing the first ground line at the first surface of the insulating layer, and the first shielding layer is electrically connected to the first ground line through the opening. A width of the first ground line is greater than a width of each of the first and second signal lines. |
US12119590B2 |
Direct plug hermaphroditic electrical connector assemblies
An electrical connector assembly includes a housing having a mating interface configured to be mated with a hermaphroditic mating electrical connector assembly. The housing includes an electrically conductive commoning member having contact openings. Wafer assemblies are coupled to the housing each having a leadframe, a wafer body holding the leadframe, and a ground frame providing electrical shielding for the leadframe. The signal contacts are terminated to cables. The ground shields are electrically connected to the commoning member. The mating ends of the signal contacts and the ground shields form a hermaphroditic mating interface for mating with the hermaphroditic mating electrical connector assembly. |
US12119588B2 |
Lever-type connector
A lever-type connector includes a housing configured to rotate about a first shaft, a second lever configured to rotate about a second shaft and a cam groove linked with rotation of the second lever. The first lever includes a guide portion extending from an operating portion toward the first shaft, and the second lever includes a coupling portion coupled to the first lever relatively displaceably along the guide portion. The both levers are linked and rotated between an initial position where connection of the housing and a mating housing is started and a connection position where the connection of the housing and the mating housing is completed. When a virtual line passing through the second shaft and the coupling portion with the second lever located at the initial position is set, the first shaft is located closer to the connection position than the virtual line. |
US12119587B2 |
Electrical plug connector, electrical plug connection and securing element for an electrical plug connector
An electrical plug connector, comprising a plug connector housing, a locking securement means for locking the electrical plug connector with a corresponding electrical mating plug connector, and a securing element that is displaceable between a pre-latching position and a securing position. The securing element blocks the locking securement means in the securing position to prevent unlocking of the mating plug connector. In a first variant, the electrical plug connector housing forms a lead-in along which the securing element can be displaced into the pre-latching position. In a second variant, the securing element is in the plug connector housing and when the mating plug connector being plugged in, the securing element is mechanically loaded, and a plug connector housing guide guides displacement of the securing element from the pre-securing position into the securing position and the mechanical load is relieved in the displacement. |
US12119585B2 |
Electrical connector assembly with modular cooling features
An electrical connector assembly includes a connector housing defining a cavity in which a pair of electrical terminals is disposed. The assembly also includes a cover that is configured to enclose the cavity, thereby protecting the pair of electrical terminals and thermally manage heat within the cavity. The cover has a thermal management mechanism including one or more liquid ports configured to receive a liquid coolant flow. |
US12119575B2 |
Connector and connector mounting body
It is aimed to provide a connector and a connector mounting body capable of ensuring good workability at the time of manufacturing and connection reliability with a circuit board. A connector includes a connector housing and a flexible cable arranged in the connector housing and including conductive paths. The flexible cable includes terminal connecting portions to be connected to mating terminals on one end sides of the conductive paths and board connecting portions to be connected to a circuit board on the other end sides of the conductive paths. The connector includes a reinforcement plate for reinforcing a region of the flexible cable on the side of the terminal connecting portions. |
US12119574B2 |
Wiring device having a plurality of protrusions
A wiring device has a plate having a first surface and a second surface and a first protrusion having a side surface capable of locking a first substrate and a first upper surface with a plurality of first grooves and the first substrate including a terminal on a surface of the first substrate. Each of the first grooves accommodates a coating of a wiring including a conductor and the coating, the first protrusion extending in a third direction. The holder includes a plurality of connection portions, and the holder includes a plurality of second grooves, each of the second grooves capable of accommodating the conductor exposed from the coating. The cover is rotatably openable and closable with respect to the plate, and the cover brings the conductor into pressure contact with the terminal between the first protrusion and the holder. |
US12119569B1 |
Fan near vertical incidence skywave antenna with feed point near ground
The present invention includes fan near vertical incident skywave (NVIS) antennas, communication systems and method of use. Fan NVIS antennas may be configured in either base station or remote station for use with transceivers. Fan NVIS base station antennas may be in configurations of either 3 or 4 dipoles and include waist wires connecting adjacent vertices and skirt wires connecting dipole end points. Fan NVIS remote station antennas may be in a 2-dipole configuration and also include skirt wires connecting adjacent dipole end points. |
US12119566B2 |
Communication device
A communication device includes a first ground element, a second ground element, a third ground element, a first signaling conductor, a second signaling conductor, a resonant circuit, and a dielectric substrate. The first signaling conductor is disposed between the first ground element and the second ground element. The second signaling conductor is disposed between the second ground element and the third ground element. The first signaling conductor is coupled through the resonant circuit to the first ground element. The dielectric substrate has a first surface and a second surface opposite to each other. The first ground element, the second ground element, the third ground element, the first signaling conductor, and the second signaling conductor are disposed on the first surface of the dielectric substrate. The resonant circuit is configured to increase the isolation between the first signaling conductor and the second signaling conductor in a target frequency band. |
US12119565B2 |
Antenna substrate
An antenna substrate includes a body in which a plurality of insulating layers are stacked, a first antenna layer including a plurality of first pattern layers disposed on the plurality of insulating layers and a plurality of first conductive via layer penetrating through the plurality of insulating layers to connect the plurality of first pattern layers in a stacking direction of the plurality of insulating layers and having a bar shape, and a second antenna layer extending from at least one of an uppermost portion or a lowermost portion of the first antenna layer on the insulating layer of the body. |
US12119562B2 |
Antenna device and method of manufacturing thereof
An antenna device includes first to third antenna units and a feed-in line. An angle between the second antenna unit and the first antenna unit is substantially equal to 90 degrees. An angle between the third antenna unit and the first antenna unit is substantially equal to 90 degrees. The feed-in line crosses over each of the first to third antenna units in a view, and is configured to turn on and turn off each of the first to third antenna units. The first antenna unit and the second antenna unit are configured to generate a first polarized signal, the third antenna unit and the second antenna unit are configured to generate a second polarized signal, and the first polarized signal and the second polarized signal have different polarizations. |
US12119561B2 |
Dual port antenna structure
An antenna structure comprising: a first port; a second port; and a single radiator connected to both the first and second ports, the single radiator being operable to simultaneously transceive in: a symmetrical excited mode in which current flows symmetrically through the single radiator to or from the first port, thereby causing the single radiator to resonate at a first resonant frequency; and an asymmetrical excited mode in which current flows asymmetrically through the single radiator to or from the second port, thereby causing the single radiator to resonate at a second resonant frequency. The single radiator comprises: a first element, a second element, and arm connectors connecting the first element to the second element. The first element being elongate and linear. The second element being elongate, linear, and parallel to the first element. |
US12119554B2 |
Planar monolithic combiner and multiplexer for antenna arrays
Antenna arrays comprising planar combiner networks. An apparatus includes a first antenna component comprising a first waveguide combiner and a first radiating element. The apparatus includes a second antenna component comprising a second waveguide combiner and a second radiating element. The second radiating element supports a polarization that is orthogonal to a polarization of the first radiating element, and the first antenna component is located next to the second antenna component within an antenna array. The first antenna component and the second antenna component are disposed within a lattice spacing of the antenna array. |
US12119553B2 |
Antenna device and electronic equipment
An antenna device includes a first antenna having a length corresponding to a first frequency, and arranged along a ground, a second antenna formed by a slot penetrating metal constituting the first antenna, and having a slot length corresponding to a second frequency higher than the first frequency, a first feeder wire for the first frequency, connected from the ground to the first antenna, a metal element for electromagnetic field coupling, arranged in a non-contact state relative to the second antenna, between the slot and the ground; and a second feeder wire for the second frequency, connected from the ground to the metal element. |
US12119552B2 |
Lens antenna, detection apparatus, and communication apparatus
This application provides a lens antenna, a detection apparatus, and a communications apparatus. The lens antenna includes a feed source, a radio frequency switch, at least two narrow beam radiation units, and a wide beam radiation unit. The feed source may selectively feed any narrow beam radiation unit or the wide beam radiation unit by using the radio frequency switch. The narrow beam radiation unit or the wide beam radiation unit may be connected to the feed source by switching of the radio frequency switch. A first radiation region of the wide beam radiation unit covers a second radiation region of each narrow beam radiation unit. The wide beam radiation unit includes a plurality of radiation sub-units, and the plurality of radiation sub-units are connected to the radio frequency switch by using a power splitter. In this way, radiation of the plurality of radiation sub-units forms a wide beam. |
US12119547B2 |
High reliability portable device
The present invention provides a high reliability portable device, including a cover board, a touch module layered with the cover board, a display module layered with the touch module, and an antenna module layered with the cover board; the antenna module includes an antenna layer with an antenna frame, a first conductive layer with a first conductive frame conductive with the antenna frame, and a protection layer with a protection frame covering the antenna frame and the first conductive frame; the first conductive frame is tougher than the antenna frame, therefore even if the antenna frame is broken, the first conductive layer would still be intact to transmit and receive wireless signals. |
US12119540B2 |
Tic environmental event sensor
The TIC environmental event sensor is a nickel-sized, ultra-thin circuit assembly, containing an extremely compact array of both environmental sensors and physical sensors, along with local and wireless access to all the sensor data, including BTLE & LoRa, as well as an electronic ink display for limited field access to sensor events in real time. The TIC is designed to capture changes in the sensor data in real time, and then log it for future examination. The most recent change will remain on the device's display. The changes can then be transmitted to a smart phone or tablet via BTLE, networked as an asset via LoRa, or locally scrolled at the device. The TIC is Ideal for tracking any variations in the surrounding conditions of an asset's travel, storage, or use. |
US12119536B2 |
Electromagnetic tool using slotted point dipole antennas
Slotted dipole antennas for use in an antenna system on a drill collar segment is presented. Dipoles may be placed in slots on the drill collar segment. A dipole consists of a ferrite rod with electric wires placed above and below the ferrite rod. Wires may be connected such that wire current forms a loop around the ferrite rod. When a group of slots are used for an antenna, wire holes are constructed between slots. Effectively a single wire may be used to go above all ferrite rods in the group and then turn to go below all the ferrite rods. Two wire segments are in a wire hole connecting two adjacent slots. Currents in the two segments are the same in magnitudes and flow in opposite directions. There is no net current in wires in a wire hole. |
US12119532B2 |
Waveguide arrangement
A waveguide arrangement for guiding electromagnetic waves in a cavity surrounded by conductive material is proposed, wherein the waveguide arrangement comprises a printed circuit board material having an electrically conductive, plate-shaped back, a substrate and a conductive layer arranged on a side of the substrate facing away from the back. According to the invention, it is provided that the back has a surface structure, preferably formed by at least one recess, by which the waveguiding cavity is at least partially directly bounded; and/or that the cavity is formed in split-block technology by joining the printed circuit board material as split-block bottom part with a corresponding cover as split-block top part. |
US12119531B2 |
Signal transmission line comprising stacked insulating layers having a signal line and a ground conductor respectively spaced apart by a spacer with a hollow portion
A transmission line includes a first structure including a first insulating substrate and a ground conductor on the first insulating substrate, a second structure including a second insulating substrate and a signal line, ground conductors, and interlayer connection conductors on or in the second insulating substrate, a third insulating substrate including openings, and metal bonding materials that bond the structure and the structure to each other with the third insulating substrate interposed therebetween. The first and second insulating substrates are stacked with the third insulating substrate interposed therebetween to define hollow portions. The signal line and the ground conductor partially face each other across the hollow portions in a bonding direction. The ground conductor includes openings in regions that overlap the signal line but do not overlap the hollow portions when looking in plan view in the bonding direction. |
US12119530B2 |
Combiner
This application provides a combiner, including: a plurality of radio frequency channels, where an ith radio frequency channel includes: an input port, configured to receive as input a first signal corresponding to the ith radio frequency channel, where frequencies of signals corresponding to any two radio frequency channels are different; an output port, configured to output the first signal from the ith radio frequency channel; a resonant cavity component configured between the input port and the output port, including a plurality of resonant cavities connected in series; and a matching resonator, connected to any resonant cavity in the resonant cavity component; and a combination port, connected to an output port of each radio frequency channel, where the ith radio frequency channel is any of the plurality of radio frequency channels, and a consumable device is disposed between matching resonators of any two neighboring radio frequency channels. |
US12119529B2 |
Phase shifter, manufacturing method thereof and antenna
The disclosure provides a phase shifter, a manufacturing method thereof and an antenna, and belongs to the field of communication technology. The phase shifter includes a first substrate; a signal line and reference lines on the first substrate; a first insulating layer on the signal line; a plurality of electrode film bridges on a side of the first insulating layer distal to the signal line; and a first transmission structure on the first insulating layer and electrically connected to the signal line; and an orthographic projection of the first transmission structure on the first substrate is not overlapped with an orthographic projection of the plurality of electrode film bridges on the first substrate. |
US12119523B2 |
Fuel cell system and method for controlling the same
A fuel cell system and a method for controlling the same may adjust generation of condensate water in a fuel cell by setting relative humidities and temperature and pressure conditions of the fuel cell so as to maintain a constant current density, and may alleviate performance deterioration of the fuel cell during operation by removing an excessive amount of the generated condensate water by injecting a cathode pressure impulse into the fuel cell. |
US12119522B2 |
Fuel cell vehicle and method for controlling power generation for the same
A fuel cell vehicle and a method for controlling power generation for the same are provided. The fuel cell includes a motor supplying driving power for driving the fuel cell vehicle, a fuel cell and a battery supplying electrical power for driving the motor, and a vehicle controller for operating the fuel cell in advance by predicting a shortage of discharge power of the battery by monitoring the discharge power of the battery. |
US12119520B2 |
Membrane electrode assembly for fuel cells
A membrane electrode assembly includes an electrolyte membrane stacked between different electrodes, wherein an ionomer layer of the electrolyte membrane comprises an adjacent electrode, a first layer having at least a same cross-sectional area as that of the adjacent electrode, a reinforcing layer and a second layer stacked at a side of the first layer, the second layer having at least the same cross-sectional area as that of the reinforcing layer. |
US12119515B2 |
Separator for an electrochemical device including a porous organic/inorganic composite coating layer and an electrochemical device including same
Disclosed is a separator suitable for an electrochemical device a porous including polymer substrate and an organic/inorganic composite porous coating layer on at least one side of the porous polymer substrate. The organic/inorganic composite porous coating layer includes particulate binder polymers and first inorganic particles, the particulate binder polymers include (a) hybrid polymer particles of a fluorine-containing polymer and an acrylic-containing polymer and (b) acrylic-containing polymer particles, the average particle diameter D50 of the acrylic-containing polymer particles “a” is in a range of 1 μm to 7.5 μm, the average particle diameter D50 of the inorganic particles “b” is in a range of 200 nm to 800 nm, a/b is in a range of 2 to 15, and the average particle diameter D50 of the hybrid polymer particles is smaller than the average particle diameter D50 of the acrylic-containing polymer particles. |
US12119511B2 |
Explosion-proof valve, battery pack, and apparatus
Embodiments of this application provide an explosion-proof valve, a battery pack, and an apparatus. The explosion-proof valve includes a flame arresting member and an air permeable membrane. The flame arresting member is configured to connect to a housing of a battery pack, the air permeable membrane is fastened to the flame arresting member, and the battery pack is capable of exchanging gas with the outside through the flame arresting member and the air permeable membrane in sequence. During use of the explosion-proof valve of this application in the battery pack of this application, when thermal runaway occurs inside the housing of the battery pack, pressure inside the housing is suddenly increased, and as a result, the battery pack releases the pressure through the explosion-proof valve, and high-temperature runaway gas impacts and melts the air permeable membrane, forming a smooth air flow channel. |
US12119508B2 |
Battery module unit, battery module, energy storage system, and electric vehicle
A battery module unit including a plurality of sequentially stacked first brackets and a plurality of battery cells. Each first bracket includes a bracket body. A first battery cell group and second battery cell group disposed the opposite side of the first bracket. A connecting structure is disposed at one end of a plurality of the bracket bodies. A fastener is disposed on the first fixing bracket and is fixed to a sidewall of the connecting structure to fix the connecting structure to the first fixing bracket in a stacking direction. The first battery cell group is symmetric to the second battery cell group around a symmetric central axis of the first fixing bracket or around a symmetric central axis of a plurality of the first fixing brackets. |
US12119506B2 |
Lithium-ion battery device for vehicle
A lithium-ion battery device comprises a housing, a battery cell stored inside the housing, and an adjacent member provided adjacently to and on a rearward side, in a vehicle longitudinal direction, of the battery cell. The battery cell comprises a cell case, an electrode body stored inside the cell case, and a pair of terminals. The cell case includes a first main face and a second main face which face to each other in the vehicle longitudinal direction. At least two gap-forming portions which respectively have a smaller area than the second main face and have a specified thickness of the vehicle longitudinal direction are arranged between the second main face and the adjacent member. The two gap-forming portions are provided to be spaced apart from each other in an inter-terminal direction of the battery cell. |
US12119495B2 |
Electric batteries and methods for producing the same
Electric batteries are provided wherein the positively charged electrode contacts an aqueous layer containing material which is reduced during electric discharge and/or metal ions are transported through special electrolyte that inhibits dendritic deposition on the negatively charged electrode. Methods described include electrolyte compositions including organoborate anions and cations with low charge density, and aqueous solutions containing bromate and/or bromide anions and high concentrations of dissolved salts. |
US12119494B2 |
Positive electrode active substance for lithium ion secondary battery and lithium ion secondary battery
The purpose of the present invention is to provide positive electrode active substance particles for a lithium ion secondary battery, such particles being capable of producing a lithium ion secondary battery having excellent high-speed discharge properties. The present invention is a granulated body of a positive electrode active substance for a lithium ion secondary battery, wherein the primary particle average diameter is 10 to 80 nm and the number of primary particles having a diameter of 100 nm or greater is no more than 5.0%. |
US12119492B2 |
Positive electrode active material for all-solid-state lithium ion secondary battery and method for manufacturing the same
A positive electrode active material for an all-solid-state lithium ion secondary battery includes a lithium-nickel composite oxide particle and a coating layer coating a surface of the particle. The lithium-nickel composite oxide particle has a crystal structure belonging to a space group R-3m, contains at least Li, Ni, an element M, and Nb, a molar ratio among the elements being represented by Li:Ni:M:Nb=a:(1-x-y):x:y (0.98≤a≤1.15, 0 |
US12119486B2 |
Anode material and electrochemical device and electronic device including the same
An anode material includes a lithiated silicon oxide material and a MySiOz layer. The lithiated silicon oxide material includes Li2SiO3, Li2Si2O5 or a combination thereof, and the MySiOz layer coats the lithiated silicon oxide material; M includes Mg, Al, Zn, Ca, Ba, B or any combination thereof; and 0 |
US12119485B2 |
Cathode with coated disordered rocksalt material
A cathode includes a disordered rocksalt phase material and a coating layer disposed on a surface of the disordered rocksalt phase material. The coating layer may include one or more of an oxide, a phosphate, a phosphide, or a fluoride. |
US12119484B2 |
Lithium-containing coatings for cathode materials
A positive electrode including a plurality of electroactive particles defining an electroactive layer is provided. A first lithium-containing coating is disposed on one or more surfaces of the electroactive layer. The first lithium-containing coating covers between about 30% and about 50% of a total exposed surface area of the electroactive layer. A second lithium-containing coating encompasses at least one electroactive particle of the plurality of electroactive particles. The second lithium-containing coating covers between about 95% and about 100% of the at least one electroactive particle. The first and second lithium-containing coatings each have a thickness between about 0.2 nm and about 5 nm. The positive electrode further includes an electrolyte additive that aids in the formation of a first passivation layer on exposed surfaces of the first lithium-containing coating, and a second passivation layer on exposed surfaces of the second lithium-containing coating. |
US12119472B2 |
Active thermal control of UAV energy storage units
Systems, devices, and techniques for active thermal control of energy storage units are described. In some embodiments, an unmanned aerial vehicle (UAV) includes a battery pack. The battery pack includes a plurality of battery cells and an enclosure coupled with the plurality of battery cells to physically retain the plurality of battery cells in an arrangement. The arrangement defines a void space between the plurality of battery cells. The UAV also includes a cooling system configured to cool the battery cells. The cooling system includes a source of forced convection fluidically coupled with the battery pack to drive a cooling fluid through the void space. The cooling system also includes a cooling controller electrically coupled with the source of forced convection to controllably activate the source of forced convection. |
US12119467B2 |
Composite thermal management sheet, method of manufacture, and articles using the same
A composite thermal management sheet for a battery includes a silicone foam layer; and a reactive filler composition disposed within the silicone foam layer, the reactive filler composition including a first filler that decomposes to generate water upon initial exposure to heat; and a second filler different from the first filler, wherein the second filler forms a thermal barrier layer with a decomposition product of the first filler, or absorbs the water, or both. |
US12119466B2 |
Battery pack manufacturing method
A battery pack manufacturing method includes (a) stacking battery cells to form a cell stack, (b) coupling the cell stack and a U-frame to each other, (c) measuring the volume of the space between a flat plate coupled to the U-frame and the cell stack, and (d) applying a polymer resin corresponding in amount to the volume measured in step (c). |
US12119461B2 |
System for supplying power to a portable battery using at least one solar panel
A system for supplying power to a portable battery pack including a battery enclosed by a wearable and replaceable pouch or skin using at least one solar panel is disclosed, wherein the pouch or skin can be provided in different colors and/or patterns. Further, the pouch or skin can be MOLLE-compatible. The battery comprises a battery element housed between a battery cover and a back plate, wherein the battery element, battery cover, and back plate have a slight curvature or contour. Further, the battery comprises flexible leads. |
US12119460B2 |
Vehicular battery wiring module
A flexible printed circuit board including an electronic component includes a flexible printed circuit board, an electronic component, a cover, and a restricting portion. The printed circuit board including an electrically conductive line. The electronic component is mounted on the flexible printed circuit board and joined to the electrically conductive line. The cover covers a joint between the electronic component and the electrically conductive line. The restricting portion is along an outer edge of the cover. The flexible printed circuit board includes a groove along the outer edge of the cover. The groove is defined by opposed groove side surfaces. One of the opposed groove side surfaces farther from the electronic component is defined as the restricting portion. |
US12119457B2 |
Secondary battery, battery module, battery pack and power consuming device
A secondary battery includes a positive electrode plate and an electrolyte solution. The positive electrode plate includes a positive current collector and a positive electrode film provided on at least one surface of the positive current collector. The positive electrode film includes a positive electrode active material and a lithium supplement. The lithium supplement includes at least one of substances represented by formula (I) below, and the positive electrode film and/or electrolyte solution comprises one or more nitrone derivatives, a molecule of each of which includes a structure represented by formula (II) below: |
US12119455B2 |
Electrode assembly and related battery, battery module
The present disclosure provides an electrode assembly and a related battery, battery module, wherein, the electrode assembly includes: a plurality of first type of electrode plates and at least one second type of electrode plate which are arranged in a superimposing manner, the polarity of the first type of electrode plate is opposite to the polarity of the second type of electrode plate, the plurality of first type of electrode plates comprise a first electrode plate and a second electrode plate, wherein the first electrode plate comprises a first current collector, the second electrode plate comprises a second current collector, and the first current collector is different from the second current collector. |
US12119452B1 |
All-inorganic solvents for electrolytes
An all-inorganic electrolyte formulation for use in a lithium ion battery system comprising at least one of each a phosphoranimine, a phosphazene, a monomeric organophosphate and a supporting lithium salt. The electrolyte preferably has a melting point below 0° C., and a vapor pressure of combustible components at 60.6° C. sufficiently low to not produce a combustible mixture in air, e.g., less than 40 mmHg at 30° C. A solid electrolyte interface layer formed by the electrolyte with an electrode is preferably thermally stable ≥80° C. |
US12119451B2 |
Capacity compensating electrolyte with sulfite solvent for lithium ion batteries with silicon-based anodes
An electrochemical cell for a lithium ion battery has an anode comprising a silicon-based active material, a cathode comprising a cathode active material, and a capacity compensating electrolyte comprising a linear sulfite-based solvent and a lithium imide salt. A molar ratio of the lithium imide salt to the linear sulfite-based solvent is between 1:5 and 1:1. |
US12119446B2 |
Electrolyte and electrochemical device
An electrolyte, comprising a compound of Formula I and an additive A, R1, R2, R3, R4, R5, R6, R7 and R8 are each independently selected from: hydrogen, halo, —COOX, substituted or unsubstituted C1-8alkyl, substituted or unsubstituted C2-10alkenyl, substituted or unsubstituted C2-10alkynyl, substituted or unsubstituted C1-8alkoxy, or —Ra—S(═O)2—Rb, wherein Ra is selected from substituted or unsubstituted C1-8alkylene, Rb is selected from halo or substituted or unsubstituted C1-8alkyl, and at least one of R1, R2, R3, R4, R5, R6, R7 and R8 is —COOX. When substituted, the substituent is selected from cyano or halo; and X is selected from Li+, Na+, K+ or Rb+. The additive A is at least one selected from fluoroethylene carbonate, LiPO2F2, or vinylene carbonate. |
US12119445B2 |
Non-aqueous electrolyte secondary battery, electrolyte solution, and method for producing non-aqueous electrolyte secondary battery
Disclosed is a non-aqueous electrolyte secondary battery including: a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte solution, wherein the electrolyte solution includes a solvent, a solute, and a carboxylic anhydride, the solvent includes a carboxylic acid ester compound, and the solute includes a sulfonyl imide compound. |
US12119444B2 |
Annealed garnet electrolyte separators
Set forth herein are pellets, thin films, and monoliths of lithium-stuffed garnet electrolytes having engineered surfaces. These engineered surfaces have a list of advantageous properties including, but not limited to, low surface area resistance, high Li+ ion conductivity, low tendency for lithium dendrites to form within or thereupon when the electrolytes are used in an electrochemical cell. Other advantages include voltage stability and long cycle life when used in electrochemical cells as a separator or a membrane between the positive and negative electrodes. Also set forth herein are methods of making these electrolytes including, but not limited to, methods of annealing these electrolytes under controlled atmosphere conditions. Set forth herein, additionally, are methods of using these electrolytes in electrochemical cells and devices. The instant disclosure further includes electrochemical cells which incorporate the lithium-stuffed garnet electrolytes set forth herein. |
US12119436B2 |
Display device and manufacturing method therefor
A display device may include a substrate, pixels disposed on the substrate, each of the pixels including a first electrode, a second electrode, and a plurality of light emitting elements electrically connected between the first and the second electrodes, and a first oscillator disposed on the substrate and electrically connected to a first electrode of a first pixel of the pixels, the first oscillator including at least one transistor and at least one capacitor. |
US12119433B2 |
Method of manufacturing light emitting device and method of manufacturing light emitting module
A method of manufacturing a light emitting device includes: providing a light emitting element comprising: a semiconductor laminate having a first surface, a second surface, and a lateral surface between the first and second surfaces, and an electrode disposed at the second surface; disposing a resin layer in an A-stage state on a support; placing the light emitting element on an upper surface of the resin layer while the upper surface of the resin layer and the first surface of the semiconductor laminate face each other; heating the resin layer at a first temperature to reduce a viscosity of the resin layer and causing the light emitting element to sink due to its own weight such that the second surface of the semiconductor laminate is exposed; and curing the resin layer by heating the resin layer at a second temperature higher than the first temperature, thereby forming a resin member. |
US12119432B2 |
Encapsulated light emitting diodes for selective fluidic assembly
A method is provided for fabricating an encapsulated emissive element. Beginning with a growth substrate, a plurality of emissive elements is formed. The growth substrate top surface is conformally coated with an encapsulation material. The encapsulation material may be photoresist, a polymer, a light reflective material, or a light absorbing material. The encapsulant is patterned to form fluidic assembly keys having a profile differing from the emissive element profiles. In one aspect, prior to separating the emissive elements from the handling substrate, a fluidic assembly keel or post is formed on each emissive element bottom surface. In one variation, the emissive elements have a horizontal profile. The fluidic assembly key has horizontal profile differing from the emissive element horizontal profile useful in selectively depositing different types of emissive elements during fluidic assembly. In another aspect, the emissive elements and fluidic assembly keys have differing vertical profiles useful in preventing detrapment. |
US12119426B2 |
Light emitting device and production method thereof
A light emitting device includes at least one light emitting unit that includes an insulating layer, a first electrically conductive layer, and a semiconductor layer structure having at least one recess. The first electrically conductive layer and the insulating layer extend into the recess. A contact area between a conductive protrusion portion of the first electrically conductive layer and a first-type semiconductor layer of the semiconductor layer structure is larger than 1.5% of an area of a bottom surface of the first-type semiconductor layer. A method for producing the light emitting device is also disclosed. |
US12119425B2 |
Multi-junction light-emitting diode and method for making the same
A multi-junction light-emitting diode (LED) includes a first epitaxial structure, a second epitaxial structure and a tunnel junction structure disposed therebetween. The tunnel junction structure includes a InzAlX1Ga1−X1As highly doped p-type semiconductor layer wherein z ranges from 0 to 0.05, a AlX2Ga1−X2As first composition graded layer wherein X2 is greater than 0 and less than X1, a GaYIn1−YP highly doped n-type semiconductor layer and a AlX3Ga1−X3As second composition graded layer that are sequentially disposed on the first epitaxial structure in such order. A method for making the abovementioned multi-junction LED is also disclosed. |
US12119423B2 |
Solar cell and photovoltaic module
The solar cell includes a silicon substrate, multiple first electrodes, and multiple second electrodes. The solar cell further includes a tunneling oxide layer, multiple doped polysilicon layers, and at least one barrier layer. The at least one barrier layer is arranged between every adjacent two doped polysilicon layers in the multiple doped polysilicon layers, and the multiple first electrodes are electrically connected to different doped polysilicon layers. The solar cell provided according to the present application can reduce the total thickness of the polycrystalline silicon layer, so that a thinner polycrystalline silicon layer can reduce parasitic absorption, thereby increasing short-circuit current. Moreover, the risk of slurry burning through the tunneling oxide layer is reduced by the barrier layer, while reducing metal recombination, which increases the open circuit voltage of the solar cell, thereby improving the photoelectric conversion efficiency of the solar cell. |
US12119422B2 |
Systems and methods for encapsulating an electronic component
A method of encapsulating an electronic component. The method includes applying a first layer of an encapsulating composition onto an electronic component from an applicator roll, the electronic component being disposed on a substrate. The applicator roll comprises an outer surface and is spaced apart from the electronic component such that a gap exists between the applicator roll and the electronic component. The gap controls the thickness of the first layer of encapsulating composition. The first layer of encapsulating composition encapsulates the electronic component on the substrate. An interface between the surface of the electronic component and the encapsulating composition being substantially free of voids. |
US12119421B2 |
Photodetector
A photodetector including: an amplification region that includes a PN junction provided in a depth direction in a semiconductor layer and that is to be electrically coupled to a cathode; a separation region that defines a pixel region including the amplification region; a hole accumulation region that is provided along a side surface of the separation region and that is to be electrically coupled to an anode; and a gate electrode provided in a region between the amplification region and the hole accumulation region and stacked over the semiconductor layer with a gate insulating film interposed therebetween. |
US12119418B2 |
Method of processing inconsistencies in solar cell devices and devices formed thereby
The present disclosure is directed to a method of processing a solar cell device. The method comprises detecting at least one inconsistency at a surface of a semiconductor substrate having a solar cell active region formed therein. A deposition pattern is determined based on the location of the at least one inconsistency. A material is selectively deposited on the substrate according to the deposition pattern. |
US12119416B2 |
Buffer layers for photovoltaic devices with group V doping
According to the embodiments provided herein, a photovoltaic device can include a buffer layer adjacent to an absorber layer doped p-type with a group V dopant. The buffer layer can have a plurality of layers compatible with group V dopants. |
US12119413B2 |
Schottky diode with tunable blocking voltage
A Schottky diode includes a substrate having a first type dopant, a buried layer within the substrate and having a second type dopant, an epitaxial layer above the buried layer and having the second type dopant, a plurality of rings within the epitaxial layer and having the first type dopant, wherein the plurality of rings comprises an L-shaped ring, a shallow trench isolation (STI) layer at the top region of the epitaxial layer, an anode, a cathode spaced from the anode by the STI layer, and wherein the buried layer has an open region substantially vertically aligned with the anode. |
US12119412B2 |
Semiconductor vertical Schottky diode and method of manufacturing thereof
A semiconductor vertical Schottky diode device, having: a substrate of semiconductor material, with a front surface and a back surface; a lightly doped region formed in a surface portion of the substrate facing the front surface, having a first conductivity type; a first electrode formed on the lightly doped region on the front surface of the substrate, to establish a Schottky contact; a highly doped region at the back surface of the substrate, in contact with the lightly doped region and having the first conductivity type; and a second electrode electrically in contact with the highly doped region, on the back surface of the substrate, to establish an Ohmic contact. |
US12119407B2 |
Semiconductor device
A semiconductor device includes a gate electrode on a substrate, a gate insulating film on the gate electrode, an oxide semiconductor film via the gate insulating film on the gate electrode, a source electrode and a drain electrode on the oxide semiconductor film, a protective film provided on the source electrode and the drain electrode; and a conductive layer provided on the protective film and overlapped on the oxide semiconductor layer. The protective film includes a first silicon oxide film and a first silicon nitride film. The first oxide film is in contact with the oxide semiconductor layer. The gate insulating film includes a second silicon nitride film and a second silicon oxide film. The second silicon oxide film is in contact with the oxide semiconductor layer. The oxide semiconductor layer has a first region located between the source electrode and the drain electrode in a plan view. |
US12119406B2 |
Semiconductor device
The oxide semiconductor film has the top and bottom surface portions each provided with a metal oxide film containing a constituent similar to that of the oxide semiconductor film. An insulating film containing a different constituent from the metal oxide film and the oxide semiconductor film is further formed in contact with a surface of the metal oxide film, which is opposite to the surface in contact with the oxide semiconductor film. The oxide semiconductor film used for the active layer of the transistor is an oxide semiconductor film highly purified to be electrically i-type (intrinsic) by removing impurities such as hydrogen, moisture, a hydroxyl group, and hydride from the oxide semiconductor and supplying oxygen which is a major constituent of the oxide semiconductor and is simultaneously reduced in a step of removing impurities. |
US12119400B2 |
Semiconductor transistor device and method of manufacturing the same
A method for manufacturing a semiconductor transistor device includes etching a vertical gate trench into a silicon region, depositing a silicon gate material on an interlayer dielectric formed in the vertical gate trench so that an upper side of the interlayer dielectric is covered, etching through the silicon gate material in the vertical gate trench to partly uncover the upper side of the interlayer dielectric and so that a silicon gate region of a gate electrode of the semiconductor transistor device remains in the vertical gate trench, and depositing a metal material into the vertical gate trench so that the partly uncovered upper side of the interlayer dielectric is covered by the metal material. |
US12119398B2 |
Semiconductor device
A semiconductor device (1) includes a substrate (2), an electron transit layer (4) disposed on the substrate (2), and an electron supply layer (5) disposed on the electron supply layer (4). The electron transit layer (4) includes a conductive path forming layer (43) in contact with the electron supply layer (5), a first semiconductor region (first nitride semiconductor layer) (41) containing an acceptor-type impurity, and a second semiconductor region (second nitride semiconductor layer) (42) disposed at a position closer to the conductive path forming layer (43) than the first semiconductor region (41) and containing an acceptor-type impurity. The first semiconductor region (41) has a higher acceptor density than the second semiconductor region (42). |
US12119397B2 |
Semiconductor IC device including passivation layer for inactivating a dopant in a p-type semiconductor layer and method of manufacturing the same
A semiconductor integrated circuit device includes: a channel layer, a barrier layer; a first p-type semiconductor layer and a second p-type semiconductor layer, spaced apart from each other on the barrier layer; and a passivation layer on the first p-type semiconductor layer and the second p-type semiconductor layer. The passivation layer may partially inactivate a dopant of at least one of the first p-type semiconductor layer and the second p-type semiconductor layer. |
US12119393B2 |
Punch through stopper in bulk finFET device
A method of forming a semiconductor device that includes forming a fin structure from a bulk semiconductor substrate and forming an isolation region contacting a lower portion of a sidewall of the fin structure, wherein an upper portion of the sidewall of the fin structure is exposed. A sacrificial spacer is formed on the upper portion of the sidewall of the fin structure. The isolation regions are recessed to provide an exposed section of the sidewall of the fin structure. A doped semiconductor material is formed on the exposed section of the lower portion of the sidewall of the fin structure. Dopant is diffused from the doped semiconductor material to a base portion of the fin structure. |
US12119391B2 |
Fin-based semiconductor device structure including self-aligned contacts and method for forming the same
A semiconductor device structure is provided. The semiconductor device structure includes a fin structure formed over a substrate, and a gate structure formed over the fin structure. The gate structure includes a gate dielectric layer, a first conductive layer over the first conductive layer. The gate structure includes a fill layer over the first conductive layer. The semiconductor device structure includes a protection layer formed over the fill layer, and a top surface of the gate dielectric layer is lower than a top surface of the protection layer and higher than a top surface of the first conductive layer. |
US12119390B2 |
Gate spacer structures and methods for forming the same
The present disclosure relates to a semiconductor device including a substrate having a top surface and a gate stack. The gate stack includes a gate dielectric layer on the substrate and a gate electrode on the gate dielectric layer. The semiconductor device also includes a multi-spacer structure. The multi-spacer includes a first spacer formed on a sidewall of the gate stack, a second spacer, and a third spacer. The second spacer includes a first portion formed on a sidewall of the first spacer and a second portion formed on the top surface of the substrate. The second portion of the second spacer has a thickness in a first direction that gradually decreases. The third spacer is formed on the second portion of the second spacer and on the top surface of the substrate. The semiconductor device further includes a source/drain region formed in the substrate, and a portion of the third spacer abuts the source/drain region and the second portion of the second spacer. |
US12119388B2 |
Graphene transistor and method of manufacturing a graphene transistor
The present invention provides a method of manufacturing a graphene transistor 101, the method comprising: (a) providing a substrate having a substantially flat surface, wherein the surface comprises an insulating region 110 and an adjacent semiconducting region 105; (b) forming a graphene layer structure 115 on the surface, wherein the graphene layer structure is disposed on and across a portion of both the insulating region and the adjacent semiconducting region; (c) forming a layer of dielectric material 120 on a portion of the graphene layer structure which is itself disposed on the semiconducting region 105; and (d) providing: a source contact 125 on a portion of the graphene layer structure which is itself disposed on the insulating region 110; a gate contact 130 on the layer of dielectric material 120 and above a portion of the graphene layer structure which is itself disposed on the semiconducting region 105; and a drain contact 135 on the semiconducting region 105 of the substrate surface. |
US12119383B2 |
Transistor with multi-level self-aligned gate and source/drain terminals and methods
Disclosed are a transistor and a method for forming the transistor. The method includes concurrently forming gate and source/drain openings through an uppermost layer (i.e., a dielectric layer) in a stack of layers. The method can further include: depositing and patterning gate conductor material so that a first gate section is in the gate opening and a second gate section is above the gate opening and so that the source/drain openings are exposed; extending the depth of the source/drain openings; and depositing and patterning source/drain conductor material so that a first source/drain section is in each source/drain opening and a second source/drain section is above each source/drain opening. Alternatively, the method can include: forming a plug in the gate opening and sidewall spacers in the source/drain openings; extending the depth of source/drain openings; depositing and patterning the source/drain conductor material; and subsequently depositing and patterning the gate conductor material. |
US12119372B2 |
Light emitting device and display device including the same
A light emitting device, includes: a substrate; a light emitting element on the substrate, the light emitting element having a first end portion and a second end portion arranged in a longitudinal direction; one or more partition walls disposed on the substrate, the one or more partition walls being spaced apart from the light emitting element; a first reflection electrode adjacent the first end portion of the light emitting element; a second reflection electrode adjacent the second end portion of the light emitting element; a first contact electrode connected to the first reflection electrode and the first end portion of the light emitting element; an insulating layer on the first contact electrode, the insulating layer having an opening exposing the second end portion of the light emitting element and the second reflection electrode to the outside; and a second contact electrode on the insulating layer. |
US12119371B2 |
Light source apparatus
The present technology relates to a light source apparatus that makes it possible to provide a widely applicable light source apparatus. A light source apparatus includes a transmissive board that transmits light emitted by a light-emitting element, a circuit board that drives the light-emitting element and is joined to the transmissive board, and a light-emitting board that has the light-emitting element and is connected to the circuit board via a first bump. Further, in the light source apparatus, the circuit board and an organic board are configured to be connected by sandwiching the light-emitting board via second bumps. The present technology can be applied to a light source apparatus that emits light. |
US12119367B2 |
Composite substrate for fabricating III-V photodetector arrays
A method for forming a composite substrate containing layers of dissimilar materials is provided. The method includes a step of disposing a release layer over a base substrate where the base substrate is composed of a first material. A template layer is attached to the release layer. Characteristically, the template layer is composed of a second material and adapted to form a compound semiconductor device thereon. |
US12119361B2 |
Circuit board assembly with photosensitive element mounted to back side of circuit board
A camera module is provided, including a circuit board, a photosensitive element, an optical lens, and a filter element. The circuit board includes a substrate having a substrate front surface, a substrate back surface, and a substrate channel. The substrate front surface and the substrate back surface correspond to each other, and the substrate channel extends from the substrate front surface to the substrate back surface. The photosensitive element has a photosensitive area and a non-photosensitive area surrounding the photosensitive area. A first part of the non-photosensitive area is mounted on the back surface substrate. The photosensitive element and the substrate are conductively connected. The photosensitive area and a second part of the non-photosensitive area correspond to the substrate channel. The optical lens is held in a photosensitive path of the photosensitive element. The filter element is directly mounted on the substrate front surface of the substrate. |
US12119360B2 |
Capacitance matched metal wirings in dual conversion gain pixels
An imaging device includes a pixel including a photoelectric conversion region, a first transfer transistor coupled to the photoelectric conversion region, a first floating diffusion, a second floating diffusion, a second transfer transistor coupled between the first floating diffusion and the second floating diffusion to control access to the second floating diffusion, a third transfer transistor coupled to the photoelectric conversion region, a third floating diffusion coupled, a fourth floating diffusion, and a fourth transfer transistor coupled between the third floating diffusion and the fourth floating diffusion to control access to the fourth floating diffusion. The imaging device includes a first wiring layer including a first wiring connected to the second floating diffusion, a second wiring connected to the fourth floating diffusion, and a third wiring connected to ground and capacitively coupled with the first wiring and the second wiring. |
US12119357B2 |
Image sensor with image receiver and automatic image switching
Provided are an image sensor with one or more image receivers for image switching, and an imaging system and method therefor. The image sensor includes an image sensor array to generate first image data for a first image; a receiver to receive, into the image sensor, second image data for a second image; an image selection circuit coupled to the image sensor array and the receiver to receive the first image data and the second image data and select one of the first image data and the second image data according to one or more image selection criteria and at least one of the first image data and the second image data; and a transmitter coupled to the image selection circuit to transmit the selected one of the first image data and the second image data from the image sensor. |
US12119353B2 |
Semiconductor device, electronic component, and electronic device
A novel semiconductor device formed with single-polarity circuits using OS transistors is provided. Thus, connection between different layers in a memory circuit is unnecessary. This can reduce the number of connection portions and improve the flexibility of circuit layout and the reliability of the OS transistors. In particular, many memory cells are provided; thus, the memory cells are formed with single-polarity circuits, whereby the number of connection portions can be significantly reduced. Further, by providing a driver circuit in the same layer as the cell array, many wirings for connecting the driver circuit and the cell array can be prevented from being provided between layers, and the number of connection portions can be further reduced. An interposer provided with a plurality of integrated circuits can function as one electronic component. |
US12119340B2 |
Semiconductor circuit including a tie-low circuit and method of fabricating same
A circuit (to shape a follower voltage for a follower circuit) includes a tie-low circuit and an anti-noise circuit. The tie-low circuit is connected between a follower node and a first reference voltage. The tie-low circuit is responsive to a second reference voltage. The follower node is connectable to the follower circuit. The anti-noise circuit is connected between the follower node and the second reference voltage. The anti-noise circuit is configured to protect the follower voltage at the follower node from otherwise being distorted by a noise voltage being coupled capacitively to the follower node. |
US12119337B2 |
Method of manufacturing a semiconductor device
A semiconductor device has a first substrate including an element region, a peripheral region that surrounds the element region, a first insulator with a first recess portion in the peripheral region, a first metal layer in the element region, and a first conductor in the peripheral region to surround the element region. A second substrate has an element region, a peripheral region that surrounds the element region, a second insulator with a second recess portion that faces the first recess portion, a second metal layer in contact with the first metal layer, and a second conductor that surrounds the element region of the second substrate. |
US12119336B2 |
Fusion memory device and method of fabricating the same
Disclosed are fusion memory devices and methods of fabricating the same. The fusion memory device comprises a first memory device including a first substrate having active and inactive surfaces opposite to each other and a first memory cell circuit on the active surface of the first substrate, a non-memory device including a second substrate having active and inactive surfaces opposite to each other and a non-memory circuit on the active surface of the second substrate, the non-memory device being provided on the first memory device, and a second memory device on the inactive surface of the second substrate and including a second memory cell circuit different from the first memory cell circuit. The non-memory device lies between the first and second memory cell circuits and controls an electrical operation of each of the first and second memory cell circuits. |
US12119328B2 |
Methods of fabricating the same die stack structure and semiconductor structure
A die stack structure including a first semiconductor die, a second semiconductor die, an insulating encapsulation and a redistribution circuit structure is provided. The first semiconductor die includes a first semiconductor substrate including a first portion and a second portion, a first interconnect structure and a first bonding structure. The first interconnect structure is disposed on a top surface of the second portion, a lateral dimension of the first portion is greater than a lateral dimension of the top surface of the second portion. The second semiconductor die is disposed on the first semiconductor die and includes a second bonding structure, the second semiconductor die is electrically connected with the first semiconductor die through the first and second bonding structures. The insulating encapsulation is disposed on the first portion and laterally encapsulating the second portion and the second semiconductor die. The redistribution circuit structure is electrically connected with the first and second semiconductor dies, and the lateral dimension of the first portion is greater than a lateral dimension of the redistribution circuit structure. |
US12119323B2 |
Semiconductor device and method of manufacturing semiconductor device
According to one embodiment, a method of manufacturing a semiconductor device includes forming a metal bump on a first surface side of a semiconductor chip, positioning the semiconductor chip so the metal bump contacts a pad of an interconnection substrate, and applying a first light from a second surface side of the semiconductor chip and melting the metal bump with the first light. After the melting, the melted metal bump is allowed to resolidify by stopping or reducing the application of the first light. The semiconductor chip is then pressed toward the interconnection substrate. A second light is then applied from the second surface side of the semiconductor chip while the semiconductor chip is being pressed toward the interconnection substrate to melt the metal bump. After the melting, the melted metal bump is allowed to resolidify by the stopping or reducing of the application of the second light. |
US12119322B2 |
Bonding member for semiconductor device
A bonding member 10 used for bonding a semiconductor device 20 and a substrate 30, the bonding member including: a thermal stress relieving layer 11 made of any of Ag, Cu, Au, and Al; a first Ag brazing material layer 12 containing Ag and Sn as main components and provided on a side of the thermal stress relieving layer to which the semiconductor device is bonded; a second Ag brazing material layer 13 containing Ag and Sn as main components and provided on a side of the thermal stress relieving layer to which the substrate is bonded; a first barrier layer 14 made of Ni and/or Ni alloy and provided between the thermal stress relieving layer and the first Ag brazing material layer; and a second barrier layer 15 made of Ni and/or Ni alloy and provided between the stress relieving layer and the second Ag brazing material layer, in which a thermal conductivity of the bonding member after a power cycle test is 200 W/m·K or more. |
US12119321B2 |
Semiconductor device and a method of manufacturing thereof
A semiconductor device comprises a semiconductor die, comprising a stacking structure, a first bonding pad with a first bonding surface positioned away from the stack structure, and a second bonding pad; a carrier comprising a connecting surface; a third bonding pad which comprises a second bonding surface and is arranged on the connecting surface, and a fourth bonding pad arranged on the connecting surface of the carrier; and a conductive connecting layer comprising a first conductive part, comprising a first outer contour, and formed between and directly contacting the first bonding pad and the third bonding pad; a second conductive part formed between the second bonding pad and the fourth bonding pad; and a blocking part covering the first conductive part to form a covering area, wherein the first bonding surface comprises a first position which is the closest to the carrier within the covering area and a second position which is the farthest from the carrier within the covering area in a cross section view, and a distance from the first position to the first out contour is greater than that from the second position to the first outer contour. |
US12119320B2 |
Chip package structure with bump
A chip package structure is provided. The chip package structure includes a redistribution structure and a first chip structure over the redistribution structure. The chip package structure also includes a first solder bump between the redistribution structure and the first chip structure and a first molding layer surrounding the first chip structure. The chip package structure further includes a second chip structure over the first chip structure and a second molding layer surrounding the second chip structure. In addition, the chip package structure includes a third molding layer surrounding the first molding layer, the second molding layer, and the first solder bump. A portion of the third molding layer is between the first molding layer and the redistribution structure. |
US12119316B2 |
Patterned and planarized under-bump metallization
An electronic device substrate with a substantially planar surface formed from an electrically non-conductive material is provided with one or more metalized pads on the substantially planner surface. Each of the one or more metalized pads is surrounded by and coplanar with the first electrically nonconductive material along an outer boundary of the metalized pad. The metalized pad is patterned such that portions of the metalized pad form metalized fingers that extend radially from the outer boundary of the metalized pad in an interdigitated arrangement with the first electrically nonconductive material. The metalized pad has a solderable surface. |
US12119310B2 |
Integrated fuse
A semiconductor wafer includes first zones containing integrated circuits, each first zone including a substrate and a sealing ring at a periphery of the substrate. The first zones are separated from each other by second zones defining cutting lines or paths. The integrated circuit includes an electrically conductive fuse that extends between a first location inside the integrated circuit and a second location situated outside the integrated circuit beyond one of the cutting lines. This electrically conductive fuse includes a portion that passes through the sealing ring and another portion that straddles the adjacent cutting line. The portion of the fuse that passes through is electrically isolated from the sealing ring and from the substrate. The straddling portion is configured to be sliced, when cutting the wafer along the cutting line, so as to cause the fuse to change from an electrical on state to an electrical off state. |
US12119302B2 |
Semiconductor device with protection liners and air gaps and method for fabricating the same
The present application discloses a semiconductor device and a method for fabricating the semiconductor device. The semiconductor device includes a substrate having plurality of contacts, a plurality of composite plugs positioned above the plurality of contacts, a plurality of metal spacers positioned above the substrate; and a plurality of air gaps positioned above the substrate. At least one of the plurality of composite plugs includes a protection liner having a U-shaped profile and a metal plug in the protection liner, and the protection liner is in direct contact with one of the plurality of contacts. |
US12119298B2 |
Semiconductor memory device
According to one embodiment, a semiconductor memory device includes a substrate expanding in a first direction and a second direction, a plurality of conductive layers arranged in a third direction with a distance therebetween, the conductive layers including a first conductive layer, and each including a first portion and a second portion being arranged with the first portion in the second direction and including a terrace portion provided so as not to overlap an upper conductive layer in the third direction, a first insulating portion provided between the first portions and the second portions, and a first insulating layer arranged with the first portion of the first conductive layer in the second direction with the first insulating portion interposed therebetween. |
US12119293B2 |
Through electrode substrate and mounting substrate
A through electrode substrate includes a substrate provided with a through hole, a through electrode positioned in the through hole, and a first wiring structure including at least a first wiring layer positioned on a first surface of the substrate, and a second wiring layer positioned on the first wiring layer. The first wiring layer and the second wiring layer respectively have an insulation layer and an electroconductive layer. A first insulation layer of the first wiring layer includes at least an organic layer. At least one wiring layer of the first wiring structure includes an inorganic layer having insulation properties, the inorganic layer being positioned to a first side of the organic layer of the first insulation layer of the first wiring layer. |
US12119288B2 |
Semiconductor package
A semiconductor package includes: a lead frame that includes a first surface and a second surface opposite to the first surface, where the lead frame includes a first lead that extends in a first direction, and a plurality of second leads that are spaced apart from the first lead on both sides of the first lead; at least one semiconductor chip mounted on the first surface of the lead frame by a plurality of bumps; and an encapsulant that encapsulates the lead frame and the at least one semiconductor chip, wherein the first lead has a groove in the first surface that partitions the plurality of bumps in contact with the first lead. |
US12119287B2 |
Chip package positioning and fixing structure
To obtain a chip package positioning structure capable of adjusting a tilt and a position of a chip package with respect to the circuit board and reducing mounting variations. The chip package positioning and fixing structure that positions and fixes, to a circuit board 4, a chip package 5 in which a flow rate detection element 53 is sealed with a resin so that a detection portion is at least exposed, in which the chip package includes a solder fixation portion 52 that fixes the chip package to the circuit board by soldering, and a positioning portion 514 that performs positioning to the circuit board, and the positioning portion is provided closer to the flow rate detection element from the solder fixation portion. |
US12119285B2 |
Image sensor with actively cooled sensor array
An image sensor comprises an array of sensor elements, each responsive to incident photon flux, and a readout circuit coupled electronically to the array of sensor elements and configured to release an electronic signal varying in dependence on the incident photon flux. A thermal-barrier zone separates the array of sensor elements from the readout circuit, and a solid-state cooler is coupled thermally to the array of sensor elements. |
US12119283B2 |
Heat dissipation structure, method for forming heat dissipation structure, and semiconductor structure
Provided are a heat dissipation structure, a method for forming a heat dissipation structure, and a semiconductor structure. The heat dissipation structure includes a first heat dissipation ring and a second heat dissipation ring. The first heat dissipation ring is formed in a dielectric layer around a Through Silicon Via (TSV) and in contact with the TSV. The TSV passes through a silicon substrate and the dielectric layer. The second heat dissipation ring is formed around the first heat dissipation ring, and in contact with the first heat dissipation ring. The second heat dissipation ring has a heat dissipation gap within it. A dimension of the second heat dissipation ring in a first direction is less than that of the first heat dissipation ring in the first direction. The first direction is a thickness direction of the silicon substrate. |
US12119282B2 |
Method of making a semiconductor device package
A semiconductor device package includes a carrier and an encapsulant disposed on the carrier. At least one portion of the encapsulant is spaced from the carrier by a space. |
US12119280B2 |
Semiconductor device package with reduced stress
A described example includes: a semiconductor device die with an active surface; the semiconductor device die mounted on a package substrate with substrate leads and the semiconductor device die electrically coupled to the substrate leads; at least a first rigid low expansion material (RLEM) covering a portion of the semiconductor device die; and the first RLEM, the semiconductor device die, and a portion of the substrate leads covered with mold compound and forming a packaged semiconductor device die. |
US12119272B2 |
Semiconductor device and method for fabricating the same
A semiconductor device includes a fin-shaped structure on a substrate, a single diffusion break (SDB) structure in the fin-shaped structure to divide the first fin-shaped structure into a first portion and a second portion, and more than two gate structures on the SDB structure. Preferably, the more than two gate structures include a first gate structure, a second gate structure, a third gate structure, and a fourth gate structure disposed on the SDB structure. |
US12119270B2 |
Hybrid source drain regions formed based on same fin and methods forming same
A method includes forming an epitaxy semiconductor layer over a semiconductor substrate, and etching the epitaxy semiconductor layer and the semiconductor substrate to form a semiconductor strip, which includes an upper portion acting as a mandrel, and a lower portion under the mandrel. The upper portion is a remaining portion of the epitaxy semiconductor layer, and the lower portion is a remaining portion of the semiconductor substrate. The method further includes growing a first semiconductor fin starting from a first sidewall of the mandrel, growing a second semiconductor fin starting from a second sidewall of the mandrel. The first sidewall and the second sidewall are opposite sidewalls of the mandrel. A first transistor is formed based on the first semiconductor fin. A second transistor is formed based on the second semiconductor fin. |
US12119268B2 |
Multi-layered insulating film stack
A method for forming a semiconductor device includes: forming a gate structure over a fin, where the fin protrudes above a substrate; forming an opening in the gate structure; forming a first dielectric layer along sidewalls and a bottom of the opening, where the first dielectric layer is non-conformal, where the first dielectric layer has a first thickness proximate to an upper surface of the gate structure distal from the substrate, and has a second thickness proximate to the bottom of the opening, where the first thickness is larger than the second thickness; and forming a second dielectric layer over the first dielectric layer to fill the opening, where the first dielectric layer is formed of a first dielectric material, and the second dielectric layer is formed of a second dielectric material different from the first dielectric material. |
US12119266B2 |
Semiconductor arrangement and method of manufacture
A method for forming a semiconductor arrangement comprises forming a first fin in a semiconductor layer. A first gate dielectric layer includes a first high-k material is formed over the first fin. A first sacrificial gate electrode is formed over the first fin. A dielectric layer is formed adjacent the first sacrificial gate electrode and over the first fin. The first sacrificial gate electrode is removed to define a first gate cavity in the dielectric layer. A second gate dielectric layer including a second dielectric material different than the first high-k material is formed over the first gate dielectric layer in the first gate cavity. A first gate electrode is formed in the first gate cavity over the second gate dielectric layer. |
US12119260B2 |
Methods for manufacturing semiconductor structures including isolation layer and semiconductor structures including isolation layer
An embodiment of the present application relates to the technical field of semiconductors, and discloses a method for manufacturing a semiconductor structure. In this embodiment, the method comprises: providing an insulating substrate (101); depositing an isolation layer (103) on the insulating substrate (101) by a physical vapor deposition process, the isolation layer (103) comprising cobalt atoms and barrier atoms located at grain boundaries of the cobalt atoms; and depositing a copper-containing metal layer (104) on the isolation layer (103). |
US12119257B2 |
Floating pin, wafer carrying device and depositing apparatus
The present application provides a floating pin, a wafer carrying device and a depositing apparatus, which relates to the technical field of semiconductor apparatus, and is used for solving the technical problem of low yield of a workpiece to be processed. The floating pin includes a pin body and a pin head connected to one end of the pin body, wherein the pin head protrudes in relation to a side surface of the pin body, and a side surface of a protruding part of the pin head is a curved surface. By reducing the distance between the pin head and the workpiece to be processed, the impact force on the workpiece to be processed when the pin head collides with the workpiece to be processed can be reduced, damages to the workpiece to be processed can be reduced, and the yield of the workpiece to be processed can be improved. |
US12119256B2 |
Replacing end effectors in semiconductor processing systems
A method of replacing an end effector for wafer handling in a semiconductor processing system includes fixing a first end effector jig to a first stage and a second end effector jig to a second stage of the load lock module; positioning a first end effector at the first end effector jig and a second end effector at the second end effector jig, the second end effector fixed relative to the first end effector; and fixing the second end effector to the second end effector jig. The first end effector is replaced with a replacement end effector and the semiconductor processing system returned to production without re-teaching placement of the replacement end effector in a processing module connected to a wafer handling module mounting the end effectors. Semiconductor processing systems and end effector jigs for replacing end effectors in semiconductor processing systems are also described. |
US12119255B2 |
Layered sheet, container, carrier tape, and electronic component packaging body
A layered sheet 10 includes a substrate layer 1, and surface layers 2 and 3 configured to be layered on at least one surface of the substrate layer 1. The substrate layer 1 contains a first thermoplastic resin and inorganic fillers. The surface layers 2 and 3 contain a second thermoplastic resin and a conductive material. A content of the inorganic fillers in the substrate layer 1 is 0.3 to 28 mass % based on a total amount of the substrate layer. |
US12119254B2 |
Electrostatic chuck assembly for plasma processing apparatus
An electrostatic chuck including a clamping layer having a first clamping electrode and a second clamping electrode is disclosed. A first clamping electrode defining a first clamping zone and a second clamping zone is provided. The first clamping zone and the second clamping zone are separated by a first gap and are electrically connected by at least one electrical connection extending across the first gap. A second clamping electrode disposed radially outward from the first clamping electrode. The second clamping electrode defining a third clamping zone and a fourth clamping zone that are separated by a second gap. The third clamping zone and the fourth clamping zone are electrically connected by at least one electrical connection extending across the second gap. Plasma processing apparatuses and systems incorporating the electrostatic chuck are also provided. |
US12119247B2 |
Method for monitoring, determining the position of, and positioning a pin-lifting system
Method for monitoring a state of a pin lifter device (10), wherein the pin lifter device (10) is designed for moving and positioning a substrate in a process atmosphere region (P). The pin lifter device (10) has a coupling (18) and a drive unit (12) having an electric motor, which is designed and interacts with the coupling (18) in such a way that the coupling (18) is adjustable from a lowered normal position into an individual active position and back. The method for monitoring includes progressively receiving a present item of motor current information with respect to a motor current applied to the electric motor, comparing the present motor current information to an item of target current information, and deriving an item of state information based on the comparison. |
US12119246B2 |
Method, device, and non-transitory computer readable medium for determining timing of removing substrate from cassette in substrate processing device, and substrate processing device
Provided is a method, device, and program for determining a timing of removing a substrate from a cassette in substrate processing device, and substrate processing device. In the method, a tentative removal time point of each substrate is calculated by adding a transfer time to a tentative removal time point of the one previous substrate, wherein the transfer time is required from the start of an action of removing a substrate from the cassette to the end of an action of delivering the substrate to an exchanger. |
US12119241B2 |
Unit for supplying substrate treating liquid and apparatus for treating substrate including the same
A unit for supplying a substrate-treating liquid is provided with a first reservoir and a second reservoir between which a differential pressure is constantly maintained to establish a flow rate, along with a substrate-treating apparatus having the unit for supplying the substrate-treating liquid. The unit for supplying the substrate-treating liquid includes a supply reservoir module and a buffer reservoir module. The supply reservoir module includes a first reservoir for supplying the substrate-treating liquid to an inkjet head unit for jetting the substrate-treating liquid onto a substrate, and a second reservoir for recovering the substrate-treating liquid that remains unused in the inkjet head unit. The buffer reservoir module is configured to provide the substrate-treating liquid to the first reservoir. Differential pressure is constantly maintained between the first reservoir and the second reservoir. |
US12119236B2 |
Method for producing a connection structure and semiconductor device
A method of manufacturing a connection structure may include forming an opening in a first main surface of a first substrate, forming a galvanic seed layer over a first main surface of a carrier substrate, and connecting the first main surface of the first substrate to the first main surface of the carrier substrate, such that the galvanic seed layer is arranged between the first main surface of the first substrate and the first main surface of the carrier substrate. The method may further include galvanically forming a conductive material over the galvanic seed layer. |
US12119235B2 |
Methods of manufacture of semiconductor devices having redistribution layer using dielectric material having photoactive component
A passivation layer and conductive via are provided, wherein the transmittance of an imaging energy is increased within the material of the passivation layer. The increase in transmittance allows for a greater cross-linking that helps to increase control over the contours of openings formed within the passivation layer. Once the openings are formed, the conductive vias can be formed within the openings. |
US12119233B2 |
Etching method
An etching method capable of selectively etching an oxide, which method includes an etching step in which an etching target (12) including an oxide is placed in a chamber (10), and the oxide included in the etching target (12) is etched in the chamber (10) using an etching gas containing a fluorine-containing compound including a functional group represented by the chemical formula below: wherein a symbol * means a bonding point with another atom or atomic group. The oxide is at least one of a metal oxide or a semimetal oxide. Further, in the etching step, the etching is performed without generating a plasma of the etching gas in the chamber (10). |
US12119228B2 |
Deposition method
A method of selectively depositing a material on a substrate with a first and second surface, the first surface being different than the second surface. The depositing of the material on the substrate comprises: supplying a bulk precursor comprising metal atoms, halogen atoms and at least one additional atom not being a metal or halogen atom to the substrate; and supplying a reactant to the substrate. The bulk precursor and the reactant have a reaction with the first surface relative to the second surface to form more material on the first surface than on the second surface. |
US12119226B2 |
Method for manufacturing mask structure, semiconductor structure and manufacturing method thereof
A method for manufacturing the mask structure includes: forming a first mask layer, a first buffer layer, a second mask layer, and a second buffer layer sequentially stacked from bottom to top; patterning the second buffer layer and the second mask layer, as to obtain a first pattern structure, the first pattern structure exposes a part of the first buffer layer; forming a first mask pattern on sidewalls of the first pattern structure; forming a carbon plasma layer as a protective layer on an exposed part of an upper surface of the first buffer layer; removing the first pattern structure; and removing a remaining protective layer. |
US12119225B2 |
Oxide semiconductor sputtering target and method of fabricating thin-film transistor using same
An oxide semiconductor sputtering target used in a sputtering process to deposit an active layer of a TFT. The oxide semiconductor sputtering target is formed from a material based on a composition of In, Sn, Ga, Zn, and O. The material contains gallium oxide, tin oxide, zinc oxide, and indium oxide. The In, Sn, Ga, and Zn contents are in ranges of 60% to 80%, 0.5% to 8%, 5% to 15%, and 10% to 30% by weight with respect to the weight of In+Sn+Ga+Zn, respectively. A method of fabricating a TFT includes depositing an active layer using the oxide semiconductor sputtering target. Such a TFT is used in a liquid crystal display (LCD), an organic light-emitting display, an electroluminescence display, and the like. |
US12119221B2 |
PEALD nitride films
A method of depositing nitride films is disclosed. Some embodiments of the disclosure provide a PEALD process for depositing nitride films which utilizes separate reaction and nitridation plasmas. In some embodiments, the nitride films have improved growth per cycle (GPC) relative to films deposited by thermal processes or plasma processes with only a single plasma exposure. In some embodiments, the nitride films have improved film quality relative to films deposited by thermal processes or plasma processes with only a single plasma exposure. |
US12119216B2 |
Arc lamp with forming gas for thermal processing systems
Apparatus, systems, and methods for processing workpieces are provided. An arc lamp can include a tube. The arc lamp can include one or more inlets configured to receive water to be circulated through the arc lamp during operation as a water wall, the water wall configured to cool the arc lamp. The arc lamp can include a plurality of electrodes configured to generate a plasma in a forming gas introduced into the arc lamp via the one or more inlets. The forming gas can be or can include a mixture of a hydrogen gas and an inert gas, the hydrogen gas in the mixture having a concentration less than 4% by volume. The hydrogen gas can be introduced into the arc lamp prior to generating the plasma. The arc lamp may be used for processing workpieces. |
US12119211B2 |
Substrate processing apparatus
A substrate processing apparatus capable of locally controlling a plasma intensity and improving thin film properties and thickness uniformity includes: a power supply unit, a processing unit electrically connected to the power supply unit, and a substrate support unit below the processing unit, wherein the substrate support unit includes a first ground electrode and a second ground electrode. |
US12119206B2 |
Switching circuit
In one embodiment, an impedance matching network includes a variable reactance circuit having fixed reactance components and corresponding switching circuits. Each switching circuit includes a diode and a driver circuit. The driver circuit includes, coupled in series, a biasing current source positioned to provide a bias current to bias the diode, a first switch, a second switch, and a resistor. For each diode of each switching circuit, the control circuit is configured to receive a value related to a voltage drop on the resistor and, based on the value related to the voltage drop, adjust the bias current being provided by the biasing current source. |
US12119205B2 |
Atomic layer etching by electron wavefront
Atomic layer etching of a substrate using a wafer scale wave of precisely controlled electrons is presented. A volume of gaseous plasma including diluent and reactive species and electrons of a uniform steady state composition is generated in a positive column of a DC plasma proximate the substrate. A corrosion layer is formed on the substrate by adsorption of the reactive species to atoms at the surface of the substrate. The substrate is positively biased to draw electrons from the volume to the surface of the substrate and impart an energy to the electrons so to stimulate electron transitions in the corrosion layer species, resulting in ejection of the corrosion layer species via electron stimulation desorption. The substrate is negatively biased to repel the electrons from the surface of the substrate back to the volume, followed by a zero bias to restore the steady state composition of the volume. |
US12119200B2 |
Industrial magnetron
An industrial magnetron includes an anode cylinder body and a cooling block arranged in a columnar manner around an outer periphery of the anode cylinder body, where the cooling block is provided with a refrigerant flow path that circulates a liquid refrigerant to circulate around the anode cylinder body and directly cool the anode cylinder body, and the refrigerant flow path has a helical groove on an inner wall surface. |
US12119198B2 |
Movable bracket interlocking mating connectors with switch activation
In embodiments, systems and apparatus comprise a bracket having a through hole configured to receive a first connector connected to a panel spaced from the bracket, the bracket movable between first and second positions; a switch mountable on the panel, the switch having first and second switch positions; and at least one compression spring extending from the bracket to bias the bracket into the first position spaced away from the switch. When the bracket is in the first position, the switch is in the first switch position, and when the bracket is in the second position, the bracket engages and actuates the switch into the second switch position. The bracket is movable into the second position to engage and actuate the switch by coupling a second connector to the first connector. The switch is configured to trigger a signal indicating that the first connector is connected to the second connector. |
US12119192B2 |
Hermetic terminal and contact device using the hermetic terminal
A contact device according to the present disclosure includes: a metal container having a through hole and an opening; a pipe lead inserted into the through hole; an insulating material that seals the metal container and the pipe lead; and a terminal base made of a low-resistance metal, the terminal base penetrating the pipe lead and being fixed to the pipe lead. The pipe lead has a fragile portion that relieves external stress. |
US12119191B2 |
Systems and methods for controlling a position of contacts in a relay device
A system may include a relay device. The relay device may include an armature that moves between a first position that electrically couples a first contact to a second contact and a second position that electrically uncouples the first contact from the second contact. The relay device may also include a relay coil that receives a voltage configured to magnetize a relay coil, thereby causing the armature to move from the first position to the second position. The system also includes a control system that receives an indication that the armature is in the second position and sends a signal to an actuator in response to receiving the indication. The signal causes an arm associated with the actuator to move the armature to achieve a gap distance between the first contact and the second contact. |
US12119190B2 |
Direct current relay
A direct current relay is disclosed. A movable contact part provided on a direct current relay, according to an embodiment of the present disclosure, comprises a movable contact and a pin member that is through-coupled to the movable contact. The movable contact can be supported by the pin member and simultaneously move on a straight line along the pin member. Therefore, even when a physical force is applied to the movable contact, the movable contact does not arbitrarily separate therefrom. The pin member is coupled to a support member insertion-coupled to a housing and an upper yoke. The pin member is formed to have a diameter larger than that of a hollow formed in the support member. The pin member can be insertion-coupled to the support member. Therefore, arbitrary separation of the movable contact can be prevented even without a separate fastening member. |
US12119182B2 |
Multilayer ceramic electronic component including internal conductive layer including a plurality of holes
A multilayer ceramic electronic component includes a multilayer body including stacked ceramic layers, internal conductive layers stacked on the ceramic layers, and external electrodes each connected to the internal conductive layers. The internal conductive layers each include holes each having a different area equivalent diameter. The holes include first holes including ceramic pillars therein and second holes not including ceramic pillars therein. The ceramic pillars connect ceramic layers on sides of the internal conductive layers. When an area equivalent diameter in which a cumulative value in a cumulative distribution of area equivalent diameters of the holes existing in each of the internal conductive layers is 90% is defined as an area equivalent diameter D90, an abundance ratio of the first holes in a first population including holes each having the area equivalent diameter D90 or more is about 14% or more. |
US12119180B2 |
Multilayered high-temperature dielectric film
A multilayered dielectric film includes a plurality of nanolayers, with at least one first type of layer including traditional dielectric films and at least one second type of layer including high heat stability polymers. The consultant layered film demonstrates an improved storage modulus and decreased dissipation factor at high temperatures. The at least one first type of layer and the at least one second type of layer differ in dielectric permittivity by a factor of between approximately 0.5 and approximately 1.5 times. |
US12119176B2 |
Supercapacitors and integrated assemblies containing supercapacitors
Some embodiments include an integrated assembly having a supercapacitor supported by a semiconductor substrate. The supercapacitor includes first and second electrode bases. The first electrode base includes first laterally-projecting regions, and the second electrode base includes second laterally-projecting regions which are interdigitated with the first laterally-projecting regions. A distance between the first and second laterally-projecting regions is less than or equal to about 500 nm. Carbon nanotubes extend upwardly from the first and second electrode bases. The carbon nanotubes are configured as a first membrane structure associated with the first electrode base and as a second membrane structure associated with the second electrode base. Pseudocapacitive material is dispersed throughout the first and second membrane structures. Electrolyte material is within and between the first and second membrane structures. Some embodiments include methods of forming integrated assemblies. |
US12119173B2 |
Magnetic levitation system, base and carrier of a magnetic levitation system, and method of levitating a carrier
A magnetic levitation system for transporting a carrier is described. The magnetic levitation system includes a base defining a transportation track, a carrier movable relative to the base along the transportation track, and a plurality of active magnetic bearings provided at the base and configured to face a guided structure of the carrier. The guided structure includes a first guided zone and a second guided zone configured to interact with the plurality of active magnetic bearings and a recessed zone. The recessed zone is arranged between the first guided zone and the second guided zone in a transport direction of the carrier and is recessed with respect to the first guided zone and the second guided zone. |
US12119172B2 |
Magnetic mat device
The present invention relates generally to the field of floor mats. More specifically, the present invention relates to a magnetic mat device that prevents a user from wasting excessive amounts of time searching for nuts, bolts, screws, sockets, or other parts that fall onto the floor while working. The device is primarily comprised of a body, further comprised of a top layer, a middle layer, further comprised of at least one magnet, and a bottom layer. Further, the top layer is comprised of a top surface that helps prevent against slips as well as stains from oils and other liquids. Further, the bottom surface is comprised of protrusions that prevent the device from sliding on the floor. The device is also comprised of a side surface comprised of at least one magnet to attach multiple devices together to encompass any size workstation. |
US12119162B2 |
Coil component
A coil component that can stabilize the position of a coil while relaxing the stress between coil wiring and a magnetic layer includes an element body and a coil in the element body. The element body has magnetic layers laminated in a first direction. The coil has pieces of coil wiring laminated in the first direction. The pieces extend along a plane orthogonal to the first direction. Each of the pieces of coil wiring has two faces on both sides in the first direction and two side faces on both sides in a direction orthogonal to the first direction, in a section orthogonal to an extending direction of each of the pieces. The two faces and one side face among the two side faces form a gap with the magnetic layer, and the other side face among the two side faces is in contact with the magnetic layer. |
US12119161B2 |
High-density single-turn inductor
An inductor having a coaxial structure is described. In one example, the structure of the single-turn inductor can include a conductor, an insulation layer, a shielding layer, and a magnetic core. An air duct can be located between the shielding layer and the magnetic core. The shielding layer and the magnetic core can both be connected to a ground. In one example, the single-turn inductor can include a single-layer termination structure formed on terminations of the shielding layer. In another example, the single-turn inductor can include a double-layer termination structure formed on terminations of the shielding layer. Displacement current in the single-turn inductor can be reduced using, for example, lumped equivalent circuit models, a semi-conductive shielding layer model, or a resistive layer and conductive shielding layer model. |
US12119160B2 |
Coil component
A coil component includes an insulating base body and a coil conductor arranged in the base body and having a winding portion extending around a coil axis. The insulating base body includes a magnetic body portion made of a magnetic material and a magnetic gap portion made of a low-permeability material having a lower relative permeability than the magnetic material. The magnetic gap portion is shaped like a ring when seen in a direction along the coil axis and arranged within the winding portion. The magnetic body portion includes a first region positioned within the winding portion, a second region positioned opposite the first region with respect to the magnetic gap portion in the direction along the coil axis, and a third region arranged within a through hole defined by an inner peripheral surface of the magnetic gap portion, where the third region connects together the first and second regions. |
US12119154B2 |
Coil device
The present invention provides a coil device which includes two coil elements in the same device and achieves an improved wire occupancy. The coil device includes a core including a winding core, and a winding wire part of which a first wire and a second wire are wound in a plurality of layers around the winding core, wherein the winding wire part includes a first part in which the first wire and the second wire of a same turn are wound adjacent to each other on a same layer, and a second part in which the first wire and the second wire of a same turn are wound in different layers without being adjacent to each other. |
US12119147B2 |
Resistor device
A resistor device has a resistor body, a first electrode assembly and a second electrode assembly. The resistor body has a resistor layer. The first electrode assembly has two first electrodes symmetrically distributed on both sides of the resistor layer, wherein the first electrodes are electrically connected to the resistor layer. The second electrode assembly has two second electrodes symmetrically distributed on both sides of the resistor layer, wherein the second electrodes are electrically connected to the resistor layer, and positions which the first electrode and the second electrode located on the same side of the resistor layer are connected to the resistor layer have an equipotential. The resistor device does not generate voltage drop through voltammetry detection, improves the accuracy of resistance value precision measurement of the voltammetry detection, and thus can be applied to precision circuits that have high requirements on resistance value precision. |
US12119140B2 |
Insulating bushing
Disclosed herein is an insulating bushing adapted to protect a busbar and having improved waterproof performance. The insulating bushing includes: a first bushing provided with a first bushing passage through which the busbar passes; a second bushing provided with a first bushing-receiving portion receiving an upper portion of the first bushing inserted through a lower portion of the first bushing-receiving portion and a second bushing passage through which the busbar passes; and a cover coupled to an outer surface of the second bushing and provided with a cover passage through which the busbar passes. |
US12119139B2 |
Process for the manufacture of an electric cable by extrusion of a composition based on a propylene polymer and on a dielectric liquid
The invention relates to a process for the manufacture of an electric cable comprising an extruded thermoplastic layer obtained from a composition comprising at least one dielectric liquid and at least one thermoplastic polymer chosen from a propylene homopolymer and copolymer, and also to a cable obtained by said process. |
US12119133B2 |
Circular few layer graphene
Disk shaped fine carbon particles. A fine carbon particle having a diameter of less than 3 microns and a height of less than 0.05 micron substantially in disk form are described. Admixtures with other fine particles are also described. |
US12119131B2 |
Method for synthesizing copper-silver alloy, method for forming conduction part, copper-silver alloy, and conduction part
A method for synthesizing a copper-silver alloy includes an ink preparation step, a coating step, a crystal nucleus formation step and a crystal nucleus synthesis step. In the ink preparation step, a copper salt particle, an amine-based solvent, and a silver salt particle are mixed, thereby preparing a copper-silver ink. In the coating step, a member to be coated is coated with the copper-silver ink. In the crystal nucleus formation step, at least one of a crystal nucleus of copper having a crystal grain diameter of 0.2 μm or less and a crystal nucleus of silver having a crystal grain diameter of 0.2 μm or less is formed from the copper-silver ink. In the crystal nucleus synthesis step, the crystal nucleus of copper and the crystal nucleus of silver are synthesized. |
US12119130B2 |
Permanent magnet insertion device
The present technology relates to a permanent magnet insertion device that includes a frame and a plurality of single pole assemblies adjacently disposed within the frame. Each of the single pole assemblies includes a first member bearing a first permanent-magnet and a second member bearing a second permanent-magnet. The first permanent-magnet and the second permanent-magnet are spaced apart by a gap. At least one of the first member or the second member is movable relative to the other of the first member or the second member to increase or to decrease a dimensional value of the gap. A hydraulic driver is configured to move the first member relative to the second member to increase or to decrease the dimensional value of the gap. A mechanical driver is configured to move the first member relative to the second member to increase or to decrease the dimensional value of the gap. |
US12119127B2 |
Storage device having nuclear fuel assembly receiving housings that are formed using a first notched flat bar with boron and a second notched flat bar without boron
A storage device for storing and/or transporting nuclear fuel assemblies. The storage device includes a number N of adjacent recesses. Some of the recesses created by means of notched, intersecting and stacked plates. In at least one transverse plane, at least one of the adjacent recesses has an inner surface which defines the recess. The adjacent recess being formed in part by a first surface of a first notched plate made with boron and a first surface of a second notched plate made without boron. |
US12119126B2 |
Radiation protection apparatus and materials therefor
The present invention relates to rigid structures and composite materials thereof for providing radiation attenuation/shielding. Some embodiments pertain to a radiation shielding apparatus including: a plurality of positionable radiation-shielding stacks of tiles. The stacks are subsequently and adjacently arranged in a contiguous configuration. A tile positioning mechanism allows movement of tiles within a stack between a stacked (retracted) position and an extended position. In the extended position, the tiles of each of the plurality of radiation shielding stacks at least partially overlap tiles of subsequent and adjacent tile stack at corresponding opposing side-margins thereof. |
US12119122B2 |
Infection risk mapping device, method, and computer-readable storage medium
An information processing device includes at least one processor, in which the processor acquires position information and vital information of a user, determines whether or not the user is an infection risk person who has a probability of infection with an infectious disease, on the basis of the vital information, specifies, in a case where the user is determined to be the infection risk person, an infection risk place where there is a probability that the user is infected by the other person or infects the other person, on the basis of the position information, and distinguishably maps the infection risk place specified for the infection risk person and the infection risk place specified in advance for a confirmed infected person with the infectious disease. |
US12119117B2 |
Method and system for disease quantification of anatomical structures
This disclosure discloses a method and system for predicting disease quantification parameters for an anatomical structure. The method includes extracting a centerline structure based on a medical image. The method further includes predicting the disease quantification parameter for each sampling point on the extracted centerline structure by using a GNN, with each node corresponds to a sampling point on the extracted centerline structure and each edge corresponds to a spatial constraint relationship between the sampling points. For each node, a local feature is extracted based on the image patch for the corresponding sampling point by using a local feature encoder, and a global feature is extracted by using a global feature encoder based on a set of image patches for a set of sampling points, which include the corresponding sampling point and have a spatial constraint relationship defined by the centerline structure. Then, an embed feature is obtained based on both the local feature and the global feature and input into to the node. The method is able to integrate local and global consideration factors of the sampling points into the GNN to improve the prediction accuracy. |
US12119114B2 |
Missing medical diagnosis data imputation method and apparatus, electronic device and medium
The present disclosure discloses a missing medical diagnosis data imputation method and apparatus, an electronic device and a medium. The method includes the following steps: acquiring a medical diagnosis data set with data missing; randomly dividing original data into initial sample point data and candidate sample point data, and constructing and training a generative adversarial network initial imputation model by utilizing the initial sample point data; estimating an influence of sample points on a parameter of the generative adversarial network initial imputation model and a prediction result of the generative adversarial network initial imputation model by utilizing an influence function; and sampling a sample point with highest influence among the candidate sample point data by utilizing a binary search algorithm, and further iteratively optimizing the generative adversarial network initial imputation model so as to impute missing data for the medical diagnosis data. |
US12119111B2 |
Method for controlling robot, robot, and non-transitory computer-readable recording medium storing program
A control method of a robot according to an aspect of the present disclosure includes receiving from an external computer information that instructs the robot to encourage a user to exercise; sensing a user's current position; moving the robot into a predetermined area that includes the user's current position; causing the robot to perform a gesture to encourage the user to exercise; monitoring behavior of the user; and performing driving of the robot along with exercise of the user, based on a result of the monitoring. |
US12119110B2 |
Robotic surgery using multi-user authentication without credentials
One example method for robotic surgery using multi-user authentication without credentials includes receiving, by a robotic surgical device, a case code associated with a medical procedure; validating the case code; determining one or more users associated with the case code; and providing access to the one or more users to the robotic surgical device to enable a robotic surgical procedure. |
US12119108B2 |
Medical ETL task dispatching method, system and apparatus based on multiple centers
The present disclosure discloses a medical ETL task dispatching method, system and apparatus based on multiple centers. The method includes following steps: step S1: testing and verifying ETL tasks; step S2: deploying the ETL tasks to a hospital center, and dispatching the ETL tasks to a plurality of executors for execution; step S3: screening an executor set meeting resource demands of ETL tasks to be dispatched; step S4: calculating a current task load of each executor in the executor set; step S5: selecting the executor with a minimum current task load to execute the ETL tasks; and step S6: selecting, by the dispatching machine, the ETL tasks from executor active queues according to a priority for execution. The present disclosure selects the most suitable executor by analyzing a serving index as a task to be dispatched on a current dispatching machine. |
US12119096B2 |
Healthcare object recognition, systems and methods
Healthcare object (HCO) discriminator systems and methods are presented. Systems can obtain a digital representation of a scene via a sensor interface. An HCO discriminator platform analyzes the digital representation to discriminate objects within the scene as being associated with a type of HCO or as being unrelated to a type of HCO. Once the HCO recognition platform determines that a type of HCO is relevant, it instantiates an actual HCO. The HCO can be routed to one or more destinations based on routing rules generated from a template or based on the manner in which the objects in the scene were discriminated. |
US12119092B2 |
Perioperative education and engagement of surgical patients
When a patient is referred to a physician or hospital for a multi-encounter medical procedure, a computer retrieves information from a patient's electronic medical record (EMR) stored in an electronic medical record system of a medical facility. If the EMR suggests that the patient is possibly at risk, a computer poses a questionnaire to the patient, the questionnaire being specifically diagnostic for the suggested risk condition and/or appropriateness of care preferences of the patient. A computer evaluates the EMR information and questionnaire answers together to evaluate risk characteristics of the patient. Based on the evaluating, the computer recommends at least one pathway to be implemented by the medical staff in the patient's care. |
US12119091B1 |
Utilizing masked autoencoder generative models to extract microscopy representation autoencoder embeddings
The present disclosure relates to systems, non-transitory computer-readable media, and methods for training and utilizing generative machine learning models to generate embeddings from phenomic images (or other microscopy representations). For example, the disclosed systems can train a generative machine learning model (e.g., a masked autoencoder generative model) to generate predicted (or reconstructed) phenomic images from masked version of ground truth training phenomic images. In some cases, the disclosed systems utilize a momentum-tracking optimizer while reducing a loss of the generative machine learning model to enable efficient training on large scale training image batches. Furthermore, the disclosed systems can utilize Fourier transformation losses with multi-stage weighting to improve the accuracy of the generative machine learning model on the phenomic images during training. Indeed, the disclosed systems can utilize the trained generative machine learning model to generate phenomic embeddings from input phenomic images (for various phenomic comparisons). |
US12119090B1 |
Utilizing masked autoencoder generative models to extract microscopy representation autoencoder embeddings
The present disclosure relates to systems, non-transitory computer-readable media, and methods for training and utilizing generative machine learning models to generate embeddings from phenomic images (or other microscopy representations). For example, the disclosed systems can train a generative machine learning model (e.g., a masked autoencoder generative model) to generate predicted (or reconstructed) phenomic images from masked version of ground truth training phenomic images. In some cases, the disclosed systems utilize a momentum-tracking optimizer while reducing a loss of the generative machine learning model to enable efficient training on large scale training image batches. Furthermore, the disclosed systems can utilize Fourier transformation losses with multi-stage weighting to improve the accuracy of the generative machine learning model on the phenomic images during training. Indeed, the disclosed systems can utilize the trained generative machine learning model to generate phenomic embeddings from input phenomic images (for various phenomic comparisons). |
US12119089B2 |
Generation and use of simulated genomic data
Embodiments of the invention utilize a graph-based approach for simulating genomic datasets from large scale populations. Genomic data may be represented as a directed acyclic graph (DAG) that incorporates individual sample data including variant type, position, and zygosity. A simulator may operate on the DAG to generate variant datasets based on probabilistic traversal of the DAG. This probabilistic traversal reflects genomic variant types associated with the subpopulation used to build the DAG, and as a result, the generated variant datasets maintain statistical fidelity to the original sample data. |
US12119088B2 |
Deep neural network-based sequencing
A system, a method and a non-transitory computer readable storage medium for base calling are described. The base calling method includes processing through a neural network first image data comprising images of clusters and their surrounding background captured by a sequencing system for one or more sequencing cycles of a sequencing run. The base calling method further includes producing a base call for one or more of the clusters of the one or more sequencing cycles of the sequencing run. |
US12119087B2 |
Methods and systems for sequence calling
The present disclosure provides methods and systems for accurate and efficient context-aware base calling of sequences. In an aspect, disclosed herein is a method for sequencing a nucleic acid molecule, comprising: (a) sequencing the nucleic acid molecule to generate a plurality of sequence signals; and (b) determining base calls of the nucleic acid molecule based at least in part on (i) the plurality of sequence signals and (ii) quantified context dependency for at least a portion of the plurality of sequence signals. |
US12119086B2 |
Method and system for performing data analysis for plant phenotyping
The invention relates to a method for performing data analysis for plant phenotyping of single plants in a field and a data acquisition and evaluation system for performing data analysis for plant phenotyping of single plants in a field. Further, the invention relates to a mobile platform for use in the data acquisition and evaluation system. The method comprises the steps of capturing spectral data via a hyperspectral imaging sensor, capturing image data via an image sensor, capturing georeference data via an inertial measurement unit, spatializing the image data to generate georeferenced image data and a digital surface model, spatializing the spectral data, generating georeferenced spectral data based on the spatialized spectral data and the digital surface model and overlaying the georeferenced image data and georeferenced spectral data with field plan information to generate a high-resolution analysis data set. |
US12119085B2 |
System and method of making predictions of mature Cannabis plants from seedling information
Systems and methods of predicting a Cannabis chemotype from genetic data include obtaining a training dataset comprising genetic data for at least one mature Cannabis plant, and corresponding chemotype information for the at least one mature Cannabis plant, generating a chemotype prediction model based on the training dataset, the chemotype prediction model being able to predict the chemotype of a mature Cannabis plant, receiving genetic data for a Cannabis seedling, and predicting, via the chemotype prediction model, the chemotype of the Cannabis seedling upon maturation. |
US12119081B2 |
Semiconductor storage device and control method of semiconductor storage device
A semiconductor storage device includes: a storage element that holds data; a bit line that is coupled to the storage element and in which step-down to reference voltage causes data held in the storage element to be inverted, a first step-down circuit that steps down bit line voltage to a first predetermined value equal to or below the reference voltage, the bit line voltage being voltage applied to the bit line; and a control circuit that detects a first voltage change based on a first output from a first inverter which has a voltage dependence of an occurring delay and a second output from a second inverter in which a voltage dependence of an occurring delay is larger than that of the first inverter, and that controls a step-down amount of the bit line voltage by the first step-down circuit depending on an amount of the detected first voltage change. |
US12119078B2 |
Data processing circuit and semiconductor memory divided into segments
A data processing circuit includes a primary transmission path, multiple secondary transmission paths and multiple storage arrays which share the primary transmission path. Each storage array includes at least two sub-arrays, and the secondary transmission path is formed between each sub-array and the primary transmission path, and the sub-array transmits a signal through the secondary transmission path and the primary transmission path. |
US12119077B2 |
Circuit for receiving data, system for receiving data, and memory device
Embodiments of the present disclosure provide a circuit for receiving data, a system for receiving data, and a memory device. The circuit for receiving data includes: a first amplification module, including: an amplification unit, provided with a first node, a second node, a third node, and a fourth node; a first N-channel metal oxide semiconductor (NMOS) transistor and a second NMOS transistor, the first NMOS transistor being provided with one terminal connected to the first node and another terminal connected to one terminal of the second NMOS transistor, another terminal of the second NMOS transistor being connected to the second node, a gate of one of the first NMOS transistor and the second NMOS transistor being configured to receive a first complementary feedback signal, and a gate of the other one of the first NMOS transistor and the second NMOS transistor being configured to receive an enable signal. |
US12119069B2 |
Anti-fuse memory reading circuit with controllable reading time
In an anti-fuse memory reading circuit with controllable reading time, a reading time control circuit generates a control signal corresponding to reading time. Based on a clock signal, a programmable reading pulse generation circuit generates a reading pulse with a pulse width corresponding to the control signal. Based on the reading pulse and the control signal, the reading amplification circuit selects a pull-up current source corresponding to the reading time, pulls up a voltage on a bit line (BL) of an anti-fuse memory cell, reads data stored in the anti-fuse memory cell starting from a rising edge of the reading pulse, and latches the read data at a falling edge of the reading pulse. The anti-fuse memory reading circuit can generate a reading pulse with a corresponding pulse width and a pull-up current source with a corresponding size based on the required reading time. |
US12119066B2 |
Flash memory device having multi-stack structure and channel separation method thereof
A flash memory device is provided. The flash memory device includes: a first memory cell; a second memory cell on the first memory cell; and a third memory cell between the first memory cell and the second memory cell. The first memory cell, the second memory cell and the third memory cell share a channel. The third memory cell is configured to block channel sharing between the first memory cell and the second memory cell based on a channel separation voltage provided in first to k-th program loops. The third memory cell is configured to connect the channel sharing between the first memory cell and the second memory cell based on a channel connection voltage provided to the third memory cell in a (k+1)-th program loop. |
US12119063B2 |
Memory device and operation method thereof
Disclosed is a memory device includes a memory block that is connected with a plurality of wordlines, a voltage generating circuit configured to output a first non-selection voltage through a plurality of driving lines, and an address decoding circuit configured to connect the plurality of driving lines with unselected wordlines of the plurality of wordlines. During a wordline setup period for the plurality of wordlines, the voltage generating circuit floats first driving lines corresponding to first unselected wordlines of the unselected wordlines from among the plurality of driving lines when the first unselected wordlines reach a first target level, and floats second driving lines corresponding to second unselected wordlines of the unselected wordlines from among the plurality of driving lines when the second unselected wordlines reach a second target level different from the first target level. |
US12119060B2 |
Content-addressable memory and electronic device including the same
Provided is a content-addressable memory. The content-addressable memory may include a memory cell connected to a match line, a word line, and a search line, and the memory cell includes a first channel layer and a second channel layer doped with different dopants. |
US12119059B2 |
Write method for differential resistive memories
A method is provided for writing a data word to a resistive memory consisting of 2T2R differential cells each having first and second sets of a resistor (R) and a selection transistor (T). The method includes generating an initial codeword, programming it in 1T1R mode, checking its programming in 1T1R mode, inverting it, programming the inverted initial codeword in 1T1R mode, checking its programming in 1T1R mode, and reading, in 2T2R differential mode, that the read data correspond to said initial data. A device designed to implement this write method and to an electronic system including this device is also provided. |
US12119058B2 |
Error correction for identifier data generated from unclonable characteristics of resistive memory
Leveraging stochastic physical characteristics of resistive switching devices to generate data having very low cross correlation among bits of that data is disclosed. Data generated from stochastic physical characteristics can also be referred to as physical unclonable feature—or function—(PUF) data. Additionally, error correction functions for PUF data generated from resistive switching memory cells are provided. The error correction functions facilitate additional redundancy and longevity of PUF data, among other benefits. Different embodiments include addressing arrangements to incorporate ECC parity bits among generated PUF data bits, even for differential PUF bits respectively defined by multiple memory cells in different portions of a resistive memory array. |
US12119049B2 |
Memory controller performing data training, system-on-chip including the memory controller, and operating method of the memory controller
A memory controller includes a first receiver configured to compare a read reference voltage with a piece of data received through a first data line and output a first piece of data; a first duty adjuster configured to adjust a duty of the first piece of data; a second receiver configured to compare the read reference voltage with a piece of data received through a second data line and output a second piece of data; a second duty adjuster configured to adjust a duty of the second piece of data; and a training circuit configured to perform a training operation on pieces of data received through a plurality of data lines, to obtain a target read reference voltage for each piece of data and correct a duty of each piece of data based on a level of the target read reference voltage for each piece of data. |
US12119048B2 |
Semiconductor memory devices and electronic devices including the semiconductor memory devices
A semiconductor memory device includes a data input/output (I/O) buffer, a data first-in/first-out (FIFO) circuit, an address comparing circuit. The data I/O buffer provides a memory cell array with write data. The data FIFO circuit includes plurality of data FIFO buffers which store read data that is read from the memory cell array in each of a plurality of read operations. The data FIFO circuit outputs data stored in one of the plurality of data FIFO buffers based on a plurality of sub matching signals. The address comparing circuit sequentially stores previous addresses accompanied by first commands designating the plurality of read operations and generates the plurality of sub matching signals based on a comparison of the previous addresses and a present address accompanied by a second command designating a present read operation. |
US12119044B2 |
Memory devices and methods for controlling row hammer
Memory devices and methods for controlling a row hammer are provided. The memory device includes a memory cell array including a word line and a plurality of counter memory cells storing an access count value of the word line, and a control logic circuit configured to monitor a row address accessing the word line during a row hammer monitoring time frame and to determine the row address to be a row hammer address when the number of times the word line is accessed is greater than or equal to a threshold value, wherein the row hammer address is to be stored in an address storage. The control logic circuit is further configured to hold up a determination operation for a next row hammer address, based on activation of a latch full signal indicating that there is no free space to store the row hammer address in the address storage. |
US12119039B2 |
Refresh control circuit and method, and memory
A refresh control circuit includes the following: an address output circuit configured to output a to-be-refreshed address signal including a block address signal and a row address signal; a block decoding circuit configured to: receive the block address signal; decode the block address signal and output a first block selection signal for selecting multiple data blocks from the memory array, in response to that the memory array is subjected to no row hammer attack, or decode the block address signal and output a second block selection signal for selecting one data block from the memory array, in response to that the memory array is subjected to a row hammer attack; and a row decoding circuit, configured to receive the row address signal, decode the row address signal and output a row selection signal. |
US12119036B2 |
Magnetic memory devices and methods of controlling domain sizes thereof
A magnetic memory device may include a magnetic track, which is extended in a first direction, and a first electrode, which is provided at a biasing point of the magnetic track and is configured to apply a voltage to the magnetic track. The magnetic track includes a first region between a first end of the magnetic track and the biasing point and a second region between the biasing point and a second end of the magnetic track. The first electrode may be configured to cause a difference between a current density in the first region and a current density in the second region. |
US12119028B2 |
Video segment selection and editing using transcript interactions
Embodiments of the present invention provide systems, methods, and computer storage media for identifying candidate boundaries for video segments, video segment selection using those boundaries, and text-based video editing of video segments selected via transcript interactions. In an example implementation, boundaries of detected sentences and words are extracted from a transcript, the boundaries are retimed into an adjacent speech gap to a location where voice or audio activity is a minimum, and the resulting boundaries are stored as candidate boundaries for video segments. As such, a transcript interface presents the transcript, interprets input selecting transcript text as an instruction to select a video segment with corresponding boundaries selected from the candidate boundaries, and interprets commands that are traditionally thought of as text-based operations (e.g., cut, copy, paste) as an instruction to perform a corresponding video editing operation using the selected video segment. |
US12119027B2 |
Method and apparatus for simultaneous video editing
The disclosure generally relates to a method for simultaneously editing a video by a plurality of users which includes receiving a media file at the application server, decoding the media file using the process server, wherein decoding the media file using the process server comprises uncompressing the video streams and audio streams in the media file to access a plurality of video frames of the video stream and a plurality of audio packets of the audio stream, altering a plurality of video frames of a video stream and audio packets of an audio stream using a web application hosted on an application server, previewing the altered video stream and altered audio steam using the application server, and encoding the video stream and audio stream and the associated metadata using the process server. |
US12119017B2 |
Information processing device, information processing system and information processing method
Provided is a device that includes a user spoken voice extraction unit that extracts a user spoken voice from a microphone input sound. The user spoken voice extraction unit analyzes a sound source direction of an input sound, determines whether the input sound includes an external apparatus output sound on the basis of sound source directions of external apparatus output sounds recorded in a database, and removes a sound signal corresponding to a feature amount, for example, a frequency characteristic of the external apparatus output sound recorded in the database, from the input sound to extract a user spoken voice from which the external apparatus output sound has been removed upon determining that the input sound includes the external apparatus output sound. |
US12119014B2 |
Joint acoustic echo cancelation, speech enhancement, and voice separation for automatic speech recognition
A method for automatic speech recognition using joint acoustic echo cancellation, speech enhancement, and voice separation includes receiving, at a contextual frontend processing model, input speech features corresponding to a target utterance. The method also includes receiving, at the contextual frontend processing model, at least one of a reference audio signal, a contextual noise signal including noise prior to the target utterance, or a speaker embedding including voice characteristics of a target speaker that spoke the target utterance. The method further includes processing, using the contextual frontend processing model, the input speech features and the at least one of the reference audio signal, the contextual noise signal, or the speaker embedding vector to generate enhanced speech features. |
US12119011B2 |
Cross product enhanced harmonic transposition
The present invention relates to audio coding systems which make use of a harmonic transposition method for high frequency reconstruction (HFR). A system and a method for generating a high frequency component of a signal from a low frequency component of the signal is described. The system comprises an analysis filter bank providing a plurality of analysis subband signals of the low frequency component of the signal. It also comprises a non-linear processing unit to generate a synthesis subband signal with a synthesis frequency by modifying the phase of a first and a second of the plurality of analysis subband signals and by combining the phase-modified analysis subband signals. Finally, it comprises a synthesis filter bank for generating the high frequency component of the signal from the synthesis subband signal. |
US12119010B2 |
Acoustic environment simulation
Encoding/decoding an audio signal having one or more audio components, wherein each audio component is associated with a spatial location. A first audio signal presentation (z) of the audio components, a first set of transform parameters (w(f)), and signal level data (β2) are encoded and transmitted to the decoder. The decoder uses the first set of transform parameters (w(f)) to form a reconstructed simulation input signal intended for an acoustic environment simulation, and applies a signal level modification (α) to the reconstructed simulation input signal. The signal level modification is based on the signal level data (β2) and data (p2) related to the acoustic environment simulation. The attenuated reconstructed simulation input signal is then processed in an acoustic environment simulator. With this process, the decoder does not need to determine the signal level of the simulation input signal, thereby reducing processing load. |
US12119009B2 |
Sound signal downmixing method, sound signal coding method, sound signal downmixing apparatus, sound signal coding apparatus, program and recording medium
A sound signal downmix method includes an inter-channel relationship information obtaining step of obtaining an inter-channel correlation value and an inter-channel time difference in an approximate manner, and a downmix step of obtaining a downmix signal based on the obtained information. In the inter-channel relationship information obtaining step, multiple channel signals are sorted such that signals of adjacent channels are similar to each other, the inter-channel correlation value and the inter-channel time difference are determined only between adjacent channels after the sorting, the inter-channel correlation value between non-adjacent channels is obtained by determining a value that has a monotonically non-decreasing relationship with the inter-channel correlation between the adjacent channels, and the inter-channel time difference between non-adjacent channels is obtained by adding up the inter-channel time differences of adjacent channels. |
US12119008B2 |
End-to-end integration of dialog history for spoken language understanding
Systems, computer-implemented methods, and computer program products to facilitate end to end integration of dialogue history for spoken language understanding are provided. According to an embodiment, a system can comprise a processor that executes components stored in memory. The computer executable components comprise a conversation component that encodes speech-based content of an utterance and text-based content of the utterance into a uniform representation. |
US12119007B2 |
Dynamically adapting fulfillment of a given spoken utterance based on a user that provided the given spoken utterance
Implementations described herein relate to determining how to fulfill a spoken utterance based on a user that provided the spoken utterance. For example, implementations can receive a spoken utterance from a user, determine a set of fulfillment actions for the spoken utterance, and determine whether the user that provided the spoken utterance corresponds to a first user or a second user. Further, and in response to determining that the user corresponds to the first user, implementations can select a subset of first fulfillment action(s) from the set, and cause the subset of first fulfillment action(s) to be implemented to satisfy the spoken utterance. Moreover, and in response to determining that the user corresponds to the second user, implementations can select a subset of distinct, second fulfillment action(s) from the set, and cause the subset of second fulfillment action(s) to be implemented to satisfy the spoken utterance. |
US12119006B2 |
Biasing interpretations of spoken utterance(s) that are received in a vehicular environment
Implementations described herein relate to various techniques for biasing interpretations of spoken utterances that are received in a vehicular environment. For example, implementations can receive a spoken utterance that includes a query from a user of a vehicle and obtain a corresponding vehicle sensor data instance generated by vehicle sensor(s) of the vehicle. Some implementations can determine to execute a search over only a first corpus of data, but not a second corpus of data, to obtain a given response to the query based on various criteria, including at least the query, the corresponding vehicle sensor data instance, a corresponding timestamp associated with the corresponding vehicle sensor data instance, and/or a corresponding duration of time the user has been associated with the vehicle. Additional, or alternative, implementations can execute a search over both the first and second corpora of data, and obtain the given response based on the criteria. |
US12119004B2 |
Systems and methods for voice audio data processing
The present disclosure may provide a voice audio data processing system. The voice audio data processing system may obtain voice audio data, which includes one or more voices, each being respectively associated with one of one or more subjects. For one of the one or more voices and the subject associated with the voice, the voice audio processing system may generate a text based on the voice audio data. The text may have one or more sizes, each size corresponding to one of one or more volumes of the voice. The text may have one or more colors, each color corresponding to one of one or more emotion types of the voice. |
US12119000B2 |
Input detection windowing
A device, such as Network Microphone Device or a playback device, detecting an event associated with the device or a system comprising the device. In response, an input detection window is opened for a given time period. During the given time period the device is arranged to receive an input sound data stream representing sound detected by a microphone. The input sound data stream is analyzed for a plurality of keywords and/or a wake-word for a Voice Assistant Service (VAS) and, based on the analysis, it is determined that the input sound data stream includes voice input data comprising a keyword or a wake-word for a VAS. In response, the device takes appropriate action such as causing the media playback system to perform a command corresponding to the keyword or sending at least part of the input sound data stream to the VAS. |
US12118996B2 |
Method for processing voice signals of multiple speakers, and electronic device according thereto
Disclosed is an electronic device. The electronic device includes a processor configured to execute one or more instructions stored in a memory to: control a receiver to receive a speech signal; determine whether the received speech signal includes speech signals of a plurality of different speakers; when the received speech signal includes the speech signals of the plurality of different speakers, detect feature information from a speech signal of each speaker; determine relations between pieces of speech content of the plurality of different speakers, based on the detected feature information; determine a response method based on the determined relations between the pieces of speech content; and control the electronic device such that an operation of the electronic device is performed according to the determined response method. |
US12118995B1 |
Identifying a location of a voice-input device
Techniques for identifying a location of a voice-controlled device within an environment. After identifying a location of the device, the device may receive a voice command from a user within the environment and may determine a response to the command based in part on the location, may determine how to output a response based in part on the location or may determine how to interact with the user based in part on the location. |
US12118994B2 |
Providing contextual automated assistant action suggestion(s) via a vehicle computing device
Implementations set forth herein relate to an automated assistant that can provide suggestions for a user to interact with the automated assistant to control applications while in a vehicle. The suggestions can be provided to encourage hands-free interactions with the applications, by suggesting an assistant input that invokes the automated assistant to operate as an interface between the user and the applications. Assistant suggestions can be based on a context of a user and/or a context of the vehicle, such as content of a display interface of a device that the user is accessing while in the vehicle. For instance, the automated assistant can determine that an action that the user has employed an application to perform can be initialized more safely and/or in less time by utilizing a particular assistant input. This particular assistant input can then be rendered at an interface of a vehicle computing device. |
US12118992B2 |
Voice interaction method and apparatus, device and computer storage medium
Technical solutions relate to the fields of artificial intelligence technologies and voice technologies. A technical solution includes: performing voice recognition and demand analysis on a voice instruction input by a user; in response to an unknown demand obtained by the demand analysis, acquiring information of a query entity and query content using a result of the demand analysis, and acquiring reply information corresponding to the query content by communication with the query entity; and returning a first voice response to the user using the reply information. |
US12118984B2 |
Systems and methods to resolve conflicts in conversations
Systems and methods are presented herein for providing a user with a notification, or access to content, based on the user's factual discourse during a conversation with other users. A first user may provide a first statement. A second user may provide a second statement. An application determines the first and the second statement are associated with first and second user profiles, respectively. The application analyzes the elements of each respective statement and determines there is a conflict between the user statements. In response to determining there is a conflict between the respective statements, the application generates a respective search query to verify each respective statement. When the application determines there is an answer that resolves the conflict between the respective statements, the application generates a notification for the users that comprises the answer that resolves the conflict and may include access to content affirming the answer. |
US12118982B2 |
System and method for constraining air traffic communication (ATC) transcription in real-time
Systems and methods are provided for the selection of a speech model for automatic speech recognition during the runtime of a transcription system, the system includes an event detector to determine one of a number of flight events that include flight plan changes and phase transitions based on data received from a set of inputs; an intelligent keyword generator to collate a set of keywords associated with the flight plan information and to generate a wordlist in response to a determination by the event detector of flight plan changes or flight phase transitions; and a processor to determine whether the wordlist is covered by a current speech model implemented in the automatic speech recognition wherein if the wordlist is not covered by the current speech model, then the processor to select a pre-built speech model that covers the wordlist for use as the current speech model in the automatic speech recognition. |
US12118981B2 |
Determining multilingual content in responses to a query
Implementations relate to determining multilingual content to render at an interface in response to a user submitted query. Those implementations further relate to determining a first language response and a second language response to a query that is submitted to an automated assistant. Some of those implementations relate to determining multilingual content that includes a response to the query in both the first and second languages. Other implementations relate to determining multilingual content that includes a query suggestion in the first language and a query suggestion in a second language. Some of those implementations relate to pre-fetching results for the query suggestions prior to rendering the multilingual content. |
US12118972B2 |
Systems and methods for manufacturing acoustic panels
The present disclosure relates to methods of manufacturing an acoustic absorption system. The acoustic absorption system can include a curtain that includes one or more insulating or acoustic absorption sheets. The manufacturing method uses press welding to seal the insulating sheets between a first layer of material and a second layer of material. Each insulating sheets is disposed within a corresponding compartment of the acoustic absorption system and an entire perimeter of each compartment can be sealed simultaneously, wherein the seals form a plurality of panels. |
US12118970B2 |
Compensating noise removal artifacts
An apparatus including circuitry configured to: obtain at least two audio signals; determine, with respect to the at least two audio signals, an audio object part and an ambience audio part; determine a level parameter based on the ambience audio part; apply a noise suppression to the audio object part, wherein the noise suppression is configured to be controlled based on the determined level parameter; and generate a noise suppressed audio object part based on the applied noise suppression. |
US12118967B2 |
Customizable guitar stand
A customizable stand for storing and displaying musical instruments, such as guitars, is disclosed. The customizable stand includes a rectangular frame having four vertical posts and a plurality of horizontal supports with at least one shelf extending transversely within the frame and supported by the four vertical posts. The customizable stand may also include a music box and a plurality of wheels attached to the frame. |
US12118966B2 |
Detachable, pitch changing accessory for lap-based stringed instrument
An accessory for a stringed instrument includes a base and at least one leg-actuated lever arm pivotably attached to the base. The base is attached to the body of the instrument. A string is attached to the lever arm such that pivoting of the lever arm via application of force by the player's leg changes tension of the string. In implementations with two lever arms, one lever arm may be calf-actuated, and the other lever arm may be thigh-actuated. Lever arm rotation limiters and spring tension adjusters enable the pitch change to be accurately set and repeatably implemented during play. |
US12118960B2 |
Display device and control method therefor
A display device and a control method therefor are disclosed. The display device includes: a display; a transmitter configured to transmit an infrared (IR) signal; and one or more processors configured to: control the display to display a multi-screen including a plurality of images based on a plurality of image signals received from a plurality of source devices, each of the plurality of source devices using a same IR protocol; perform, based on a user command indicating a first image from among the plurality of images, a process for selectively controlling a first source device, from among the plurality of source devices, which provides the first image; and transmit an IR signal for selectively controlling the first source device through the transmitter. |
US12118959B2 |
Gamma voltage generating circuit, source driver and display device including the same
A display device including a display panel including a scan line, a data line, and a pixel connected thereto, a gate driver, and a source driver including a gamma voltage generator to generate gamma voltages having different voltage levels, a digital-to-analog converter to generate the data voltage corresponding to a gray scale value using the gamma voltages, and a source buffer, in which the gamma voltage generator includes a first resistor string to set a voltage range of the gamma voltages, a second resistor string to set tab gamma voltages corresponding to some of the gamma voltages within the voltage range, gamma buffers to output the tab gamma voltages, and a third resistor string including tabs respectively connected to output terminals of the gamma buffers, the third resistor string being configured to divide a voltage between the tabs to generate the gamma voltages. |
US12118956B2 |
Display panel control method and display module
The present application provides a display panel control method and a display module. A display voltage corresponding to corresponding pixel unit can be compensated for based on a difference between a first feed-through voltage generated by a pixel electrode when a first transistor is turned from on to off and a second feed-through voltage generated by a common electrode when a second transistor is turned from on to off, so as to improve the problem such as the flicker or the image sticking in the display picture due to the unevenness of the feed-through voltages. |
US12118955B2 |
Driving method and driving circuit of display panel, and display device
A driving method and a driving circuit for a display panel, and a display device. In the driving method, a binding-point voltage is first detected and a voltage difference between the binding-point voltage and a common-electrode voltage is obtained through a calculation. In case that the voltage difference between the binding-point voltage and the common-electrode voltage is smaller than a preset voltage difference, an existence of a problem of bright and dark lines on the display panel is indicated, the data voltage waveform has a ramp-up, and a charging rate of a blue pixel or a green pixel is insufficient, in this case, the binding-point voltage, i.e., a charging voltage of the red pixel is boosted to reduce a charging loss during a ramp-up process, and to increase the charging rate, so that the bright and dark lines of the display panel can be improved, thereby improving the display effect. |
US12118951B2 |
Display system with optical device
A display system includes a display screen layer, a coupling region, an upper guide, a first coupler, a second coupler, and an optical element. The coupling region may be positioned along a sidewall of the display screen layer and may route a beam between the optical element and the upper guide and may route the beam between the first coupler and the second coupler. The first coupler may be positioned along a front surface of the upper guide and may couple a beam through the front surface of the upper guide. The second coupler may be positioned between the coupling region and the upper guide and may couple the beam between the coupling region and the upper guide. The optical element may be positioned below a back surface of the upper guide. A computing device with the display system is also disclosed. |
US12118946B2 |
Scan circuit and display apparatus
A scan circuit is provided, including first, second and third control signal driving circuits; wherein, in a first region, the first control signal driving circuit includes L stages, L being an integer ≥1; in a second region, the second control signal driving circuit includes M1 stages and the third control signal driving circuit includes M2 stages, M1, M2 each being an integer ≥1; in a third region, the first control signal driving circuit includes N1 stages, the second control signal driving circuit includes N2 stages, and the third control signal driving circuit includes N3 stages, N1, N2, N3 each being an integer ≥2; and the first region, the second region, and the third region surround a first portion, a second portion, and a third portion of a perimeter of a display region, respectively, the first portion, the second portion, and the third portion being at least partially non-overlapping. |
US12118945B2 |
Display apparatus
A display apparatus includes a data driving portion having a plurality of driving portions corresponding to a plurality of split regions of a display panel, a gamma voltage portion providing a same gamma voltage set to the plurality of driving portions, and a data processing portion including a data adjustment portion and a maximum dimming signal extraction portion. The data adjustment portion can process a plurality of input image data corresponding to the plurality of split regions to output a plurality of output image data to the plurality of driving portions, and the maximum dimming signal extraction portion can provide a maximum dimming signal among a plurality of dimming signals for the plurality of split regions to the gamma voltage portion. |
US12118944B2 |
Controllers to drive display lines
In examples, an electronic device comprises a camera and a display having a transparent area aligned with the camera. The display comprises a first line corresponding to a pixel row or column of the display, the first line extending from a first end of the display to the transparent area. The display comprises a second line corresponding to the pixel row or column and extending from a second end of the display to the transparent area, the first and second lines separated by a gap. The electronic device includes a controller coupled to the display, the controller to drive the first and second lines consecutively. |
US12118942B2 |
Display panel and display device
A display panel including a pixel driving circuit including a driving transistor, a first transistor having a gate electrode connected to a first gate line and a first electrode connected to a gate electrode of the driving transistor, and a second transistor having a gate electrode connected to a second gate line, a first electrode connected to the gate electrode of the driving transistor, and a second electrode connected to a second electrode of the driving transistor, the driving transistor is a P type transistor, and the first transistor and the second transistor are N type transistors, wherein the display panel further includes: a base substrate, a first conductive layer, a third conductive layer, and a first conducting part. |
US12118939B2 |
Pixel circuit and driving method therefor, array substrate, and display device
A pixel circuit and a driving method therefor, an array substrate and a display device are provided. The pixel circuit includes a driving circuit, a data writing circuit, a first initialization circuit. The driving circuit is configured to control a driving current; the data writing circuit is configured to write a data signal into the control terminal of the driving circuit; the first initialization circuit is configured to apply a first initialization voltage to the control terminal of the driving circuit, and includes a first transistor; the data writing circuit includes a second transistor and the driving circuit includes a third transistor; semiconductor materials of active layers of both the first transistor and the second transistor have a smaller leakage current characteristic than a semiconductor material of a third active layer of the third transistor. |
US12118936B2 |
Pixel circuit and driving method thereof and display panel having the same
A pixel circuit may comprise: a first transistor having a first terminal connected to a data line and to which a data signal is applied and a gate terminal connected to a scan line and to which a scan signal is applied; a third transistor having a gate terminal connected to a second terminal of the first transistor and a second terminal connected to a light emitting device; a capacitor having a second terminal commonly connected to the second terminal of the first transistor and the gate terminal of the third transistor; and a second transistor having a second terminal commonly connected to a first terminal of the capacitor and a first terminal of the third transistor, a first terminal connected to a first power supply voltage, and a gate terminal connected to an emission line to which an emission signal is applied. |
US12118934B2 |
Display device
A display device, by detecting a subpixel which is a defect by using an electronic fuse electrically connected to a driving transistor disposed on a subpixel and performing a repair, a display device being capable of detecting a defect and repairing by a circuit driving of the subpixel can be provided. Thus, even in the case that a repair by a physical method is not possible according to types of the display device, by detecting a defect of the subpixel and performing a repair, an image quality deterioration due to the defect of the subpixel can be prevented. |
US12118933B2 |
Pixel circuit, driving method, electroluminescent display panel and display apparatus
Disclosed are a pixel circuit, a driving method, an electroluminescent display panel and a display apparatus. The pixel circuit includes: a driving control module, a first light emitting control module, a light emitting device and a first capacitor; where the first light emitting control module is coupled between the driving control module and a first electrode of the light emitting device; and the first capacitor is coupled between the light emitting control end and the first electrode of the light emitting device. |
US12118930B2 |
Drive circuit, display device, and debugging method
A drive circuit, a display device, and a debugging method. The drive circuit is coupled to a display panel, the display panel includes a plurality of display regions, and the drive circuit includes a plurality of compensation sub-circuits. The plurality of compensation sub-circuits are coupled to the plurality of display regions in a one-to-one corresponding manner through traces, and each of the compensation sub-circuits is configured to output a voltage determined based on a wire resistance of the trace to the corresponding display region through the traces. The display panel is configured as a plurality of display regions, and each display region is coupled to one drive circuit through one single trace, such that the compensation sub-circuits can apply different voltages to the display regions, and the voltages are determined based on wire resistances of the traces. |
US12118929B2 |
Light emitting display device and driving method of the same
A display device includes a display panel configured to display an image, a data driver configured to supply a data voltage to the display panel, and a timing controller configured to control the data driver, and the data driver pauses a data latch operation. |
US12118927B2 |
Electronic apparatus
An electronic apparatus includes a first light emitting array and a second light emitting array. The first light emitting array includes first light-emitting units disposed in a first region and a first sub region. The second light emitting array is disposed adjacent to the first light emitting array. The second light emitting array includes second light-emitting units disposed in a second region and a second sub region. The difference between the average brightness in the first region and the average brightness in the second region is in a range from 0% to 20%, and the difference between the average brightness in the first sub region and the average brightness in the second sub region is less than the difference between the average brightness in the first region and the average brightness in the second region. |
US12118924B2 |
Display device having plurality of initialization power sources
A display device includes pixels, and a power supply to supply a first initialization voltage to the pixels through a first initialization power line, and to supply a second initialization voltage to the pixels through a second initialization power line. At least one of the pixels includes a first transistor, a second transistor, a third transistor, and a light emitting element. |
US12118923B2 |
Driving circuit for display panel
The present application provides a driving circuit for display panel, which comprises a driving-signal generating circuit generating a driving signal in a frame time for driving a display element of a display panel. The driving signal includes at least one first turn-on pulse width, at least one first turn-off pulse width, at least one second turn-on pulse width, and at least one second turn-off pulse width. The first turn-on pulse width is greater than the second turn-on pulse width. The first turn-off pulse width is smaller than the second turn-off pulse width. By adopting the driving circuit according to the present application, EMI may be reduced and the displaying quality may be improved. |
US12118922B2 |
Display apparatus
A display apparatus according to embodiments may comprise: a PCB comprising a plurality of layers having a circuit printed thereon; a plurality of driver ICs which transmit at least one signal and are attached to the inside of the PCB; a driver circuit connecting the driver ICs in a first direction; scan ICs included in the driver ICs, respectively; a scan circuit connecting the scan ICs in the first direction and not crossing the driver circuit; and a controller that controls at least one of the driver ICs, the driver circuit, and the scan circuit. |
US12118918B2 |
Method and system for transmitting data, timing controller, and source driver chip
Provided is a method for transmitting data. The method includes: transmitting equalization matching data to a source driver chip upon sending a link stable pattern to the source driver chip, wherein the equalization matching data is configured for the source driver chip to determine a target equalization gain, and perform gain compensation, based on the target equalization gain, on display data from the timing controller; and transmitting the display data to the source driver chip in response to a first condition being met, wherein the first condition is that the source driver chip determines the target equalization gain. |
US12118917B2 |
Driving system and driving method of display panel
A driving system and a display panel are provided. The driving system includes a timing controller and a driving chip. The driving chip receives the video signal and processes the video signal to output a characteristic current or a regular current to the display panel. The driving chip outputs the characteristic current to the display panel when the driving chip receives the characteristic video signal and to output the regular current to the display panel when the driving chip receives the regular video signal, and the characteristic current is smaller than regular current. The driving system of the display panel according to the present disclosure could alleviate the capacitor coupling effect caused by the large voltage jump introduced by the huge gray value difference when the display panel in a frame transition and thus improve the horizontal crosstalk of the display panel. |
US12118912B2 |
Pixel structure and display panel
A pixel structure and a display panel are provided. The pixel structure includes a plurality of pixel units. Each pixel unit includes a first sub-pixel, a second sub-pixel and a third sub-pixel. The first sub-pixel and the second sub-pixel are located on the same side of the third sub-pixel along the first direction. Each of the first sub-pixel and the second sub-pixel is arranged opposite to the third sub-pixel, and the first sub-pixel is arranged opposite to the second sub-pixel along the second direction. The areas of the first sub-pixel, the second sub-pixel and the third sub-pixel increase sequentially. The third sub-pixel includes a body portion and an extension portion. The body portion extends in the second direction, the extension portion is connected to the body portion and extends in the first direction towards the first sub-pixel and is arranged opposite to the first sub-pixel. |
US12118908B2 |
Electronic device and method for controlling display of same
An electronic device is provided. The electronic device includes a first display driving circuit configured to control the first area of the flexible display, a second display driving circuit configured to control the second area of the flexible display, a processor, and a memory storing instructions, which when executed by the processor, cause the electronic device to: while the housing is in the flat state, display a first execution screen, corresponding to a first application, on the first area and the second area of the flexible display, while the first execution screen, corresponding to the first application, is displayed on the first area and the second area of the flexible display, identify the housing being moved from flat state to the partially folded state, based at least on the housing being moved from the flat state to the partially folded state, display a second execution screen corresponding to the first application, different from the first execution screen, on the first area and the second area of the flexible display, and while the second execution screen is displayed in the partially folded state, control the first display driving circuit and the second driving circuit such that one of the first area and the second area of the flexible display, which is more closely aligned with a ground plane, consumes electrical power less than electrical power consumed by the other one of the first area and the second area of the flexible display. |
US12118907B2 |
Display apparatus
A display apparatus includes a display panel in which pixels, signal lines connected to the pixels, and gate lines supplying gate signals to the pixels are provided, and link lines provided on a rear surface of the display panel and connected to the signal lines provided on a front surface of the display panel, wherein a test unit is provided at ends of the link lines on the rear surface. |
US12118904B2 |
Active electronic shelf label
Disclosed in the present disclosure is an active electronic shelf label, including: a shelf label body, a guide rail, a guide rail positive power supply line, a guide rail negative power supply line, a shelf label positive elastic sheet, and a shelf label negative elastic sheet. The shelf label body is connected to the guide rail and movable along the guide rail. The guide rail positive power supply line and the guide rail negative power supply line are respectively provided along the guide rail. A first contact point of the shelf label positive elastic sheet is electrically coupled to a power input terminal of the shelf label body. A first contact point of the shelf label negative elastic sheet is electrically coupled to a power output terminal of the shelf label body. A second contact point of the shelf label positive elastic sheet is electrically coupled to the guide rail positive power supply line by contact, and a second contact point of the shelf label negative elastic sheet is electrically coupled to the shelf label negative elastic sheet by contact. The present disclosure can improve the efficiency of installing and disassembling the electronic shelf label, enables flexible adjustment of the position of the shelf label body on the guide rail according to actual needs, and is simple in structure, light in weight, and easy to maintain. |
US12118901B1 |
Luggage tag
The luggage tag is an identification device. The luggage tag comprises a tag panel, an anchor panel, and a luggage item. The luggage item further comprises an anchor point. The tag panel attaches to the anchor panel to form a lateral disk structure. The lateral disk structure formed by the tag panel and the anchor panel attaches to the anchor point of the luggage item. The lateral disk structure is a flexible structure. The lateral disk structure displays a tag panel image that: a) uniquely identifies the luggage item; and, b) associated the luggage item with its owner. |
US12118896B2 |
Visual bionic digestive system for human gastrointestinal tract model
The present invention discloses a visual bionic digestive system for a human gastrointestinal tract model, and belongs to the field of bionic digestive systems. The visual bionic digestive system for a human gastrointestinal tract model comprises a reaction system and a control system; the reaction system comprises a bionic stomach system, a bionic small intestine system, a bionic large intestine system and a filtering system; the control system comprises a PLC, peristaltic pumps, and a circulating water tank; the water inlet pipes of the bionic stomach system, the bionic small intestine system, and the bionic large intestine system are connected to a water outlet of the circulating water tank through water pipes; the water outlet pipes of the bionic stomach system, the bionic small intestine system, and the bionic large intestine system are connected to a water inlet of the circulating water tank through water pipes, solenoid valves are arranged on the water pipes, and the solenoid valves on the water pipes are controlled by the PLC. The bionic digestive system provided by the present invention has the advantages of strong visibility, high automation, device modularization, and simple and effective gastrointestinal peristalsis simulation way. |
US12118895B2 |
Mixed-reality endoscope and surgical tools with haptic feedback for integrated virtual-reality visual and haptic surgical simulation
An apparatus has a device representing an endoscope, the device being either an endoscope or a dummy endoscope having shape and feel resembling an endoscope, and includes a tracker adapted to operate with a three-dimensional tracking system to track location and orientation of the device in three dimensions in a simulated operating-room environment. The apparatus also has a physical head model comprising hard and soft components, the device representing an endoscope configured to be inserted into the physical head model to provide a haptic feedback of endoscopic surgery. |
US12118892B2 |
Ornament apparatus, systems and methods
Systems, methods and apparatus are disclosed involving an ornament having electronics for interaction with a participant and for interaction with a social media platform, and in a particular embodiment, to an ornament having an integrated camera, an integrated speaker, an integrated microphone and other electronics adapted to have the ornament interact with a participant, such as a child, and electronically capture the audio, video, or both of the interaction with the participant and make such available via the social media platform. |
US12118891B2 |
Flight path configuration method and device
A flight path configuration method includes: acquiring flight path information of an unmanned aerial vehicle, wherein the unmanned aerial vehicle is in an idle state; determining a tracking area where the unmanned aerial vehicle is located, wherein at least one base station is located in the tracking area; and sending first paging signaling to the base station, wherein the first paging signaling includes the flight path information, and the first paging signaling is used to instruct the base station to send the flight path information to the unmanned aerial vehicle by means of preset signaling. The configuration of a flight path can be completed on the basis of an operator's network without establishing a proprietary link, thereby simplifying the configuration process. |
US12118887B2 |
Collision warning unit, mobile communications devices and method for collision warning
Disclosed is a collision warning unit configured to emit a detection signal into a surrounding area and to receive at least one signal component reflected at an object in the surrounding area, and, depending on the received signal component, to output a collision warning signal. The collision warning unit has a UWB (ultra-wideband) radar for transmitting the detection signal and receiving the reflected signal component. |
US12118884B2 |
Cooperative artificial intelligent assisted driving
Systems and methods of cooperative autonomous driving which maximize objectives of a global traffic environment are provided. In particular, a cooperative controller may control multiple connected vehicles within a traffic environment. In certain embodiments, the cooperative controller may assign each connected vehicle a traffic role, based in part on their situation within the traffic environment. In some embodiments, this traffic role may also be based on a “priority level” for the connected vehicle which corresponds to a desired travel time. Once traffic roles have been assigned, the cooperative controller may control each connected vehicle according to a driving policy associated with its assigned traffic role. |
US12118881B1 |
System and method for providing consolidated events in a traffic management control centre using situational awareness
A system and method for providing consolidated events in a traffic management control centre may include: obtaining a plurality of raw events, each from an event source and each including at least one of a geographical location, timestamp and event type; validating each of the raw events against a set of rules; terminating the raw events for which validation is not successful and leaving validated events; obtaining context data from a plurality of georeferenced dynamic map layers; matching each of the validated events with the georeferenced dynamic map layers using the at least one of geographical location, timestamp and event type, and enriching each of the validated events with the associated context data to generate enriched events; matching each of the enriched events against a plurality of stored events to generate consolidated events; and providing at least one of the consolidated events to a user. |
US12118880B2 |
Systems and methods for coordinated vehicle lane assignment
Systems and methods described herein relate to coordinated vehicle lane assignment. One embodiment receives from a locality manager, at a section manager that communicates with one or more connected vehicles in a section of a roadway, target lateral flows for two or more lanes of the roadway in the section of the roadway; converts the target lateral flows to a target number of connected vehicles N at the section manager; selects for lane change, at the section manager, a set of N connected vehicles whose ranked distances from a following vehicle in a target lane are greatest among the one or more connected vehicles, when a direction of lane change is uniform among the set of N connected vehicles; and transmits lane-change actions from the section manager to the set of N connected vehicles. |
US12118878B2 |
Techniques for release assistance indication assertion
Techniques for transmitting data include one or more processors of a computing device included in a network device identifying data to be transmitted; and while a data session window is open: transmitting, using a transmitter of the network device, the data to a transceiver that is included in the network device and is separate from the one or more processors, wherein the transceiver is configured to transmit the data outside of the network device; and in response to determining that there is no additional data to be transmitted, (a) delaying for a period of time, and (b) after the period of time, instructing the transceiver to end the data session window early and transition to a lower power state. |
US12118868B2 |
Child monitoring devices and systems
A child monitoring device has a plurality of sensors to sense data relating to a child to be monitored, a wireless communications unit and a processing unit. The processing unit is able to receive signals from the sensors, receive data relating to the child input via said wireless communications unit, cause the wireless communications unit to wirelessly communicate with an external database to receive data, process the signals received from said sensors to determine child development conditions, compare determined child development conditions with the data received from external database, and cause said wireless communications unit to transmit messages containing child development information for reception by an external device. |
US12118867B2 |
Notification apparatus, notification method, notification system, and computer readable recording medium
The invention provides a notification apparatus 1 including an alarm sound generating unit 2 for generating alarm sounds, a location information obtaining unit 3 for obtaining location information, an activating unit 4 for activating the alarm sound generating unit 2 and the location information obtaining unit 3, a communication unit 5 for performing low-power wide-area wireless communication, and a control unit 6 for transmitting notification information via the communication unit 5 if the control unit 6 fails to obtain the location information from the location information obtaining unit 3 after the activating unit 4 activated the alarm sound generating unit 2, the notification information including notification apparatus identifying information identifying the notification apparatus a and notification occurrence information indicative of occurrence of notification. |
US12118864B2 |
Security device zones
A method is provided. The method includes receiving, from a monitor interface implemented by a first computing device, input specifying a zone within a field of view of an image capture device; storing, in response to reception of the input, a record defining the zone; receiving, from the image capture device, an image acquired within the field of view by the image capture device; and rendering, via a customer interface implemented by a second computing device distinct from the first computing device, the image with a representation of the zone overlaid upon the image. |
US12118857B2 |
Method of verifying that a wager was placed before market close
The present disclosure provides a method to determine if a user had placed a wager and verify that the wager was placed before the wagering market closed in a play-by-play wagering network. This method provides the ability to receive a wager from a user and allows the wagering network to receive a timestamp from the user's device to determine if the wager was placed before the market closing. Also, this method provides the ability to verify that there is no fraud, malicious activity, or cheating from the user by verifying that through a 3rd party network, such as the user's network connecting the user to the internet, that the timestamps provided by the network are correct and allowing the user to confirm their wager if received a few moments after the market has closed. |
US12118856B2 |
Electronic gaming based on intermediate points in an event
Systems and methods related to gaming based on the results at intervals of a race. Other embodiments are disclosed. |
US12118850B2 |
Gaming chip with a stripe pattern and management system for identification of the gaming chip based on imaging
A management system includes a recording device recording an image of a gaming chip and an inspection device determining a type and authenticity of the gaming chip. The gaming chip has a multilayer structure in which both sides of a colored layer are sandwiched between light color layers, surface printing representing a type of the gaming chip is performed on outer sides of the light color layers, and an authenticity recognition mark is printed on the colored layer of an inside of the light color layers by an infrared absorbing material. A visible light camera photographs a visible light image of the surface printing, and an infrared light camera photographs an infrared image of the internal printing. The inspection device determines the type and authenticity of the gaming chip using the visible light image and the infrared image. |
US12118848B2 |
Systems, apparatus, and methods for unlocking higher RTP games
An electronic gaming machine for providing player access to a higher return to player (RTP) wagering games is provided. The electronic gaming machine includes at least one memory device and at least one processor in communication with the at least one memory device. The at least one processor executes instructions to store a plurality of wagering games, including a first wagering game with a first RTP and a second wagering game with a second RTP. The first RTP and the second RTP are different. The at least one processor also executes instructions to execute the first wagering game, receive a player identifier from a player, determine that the player has access to the second wagering game based, at least in part, on the player identifier, and execute the second wagering game for the player. |
US12118847B2 |
System and method for providing awards based on dynamic reels
Systems and methods which provide a player zero, one or more awards based on a variable quantity of symbol display positions associated with one or more reels. |
US12118846B2 |
Enhanced personalized gesture inputs at an electronic gaming machine
Devices, systems and methods are provided. A device may include a gesture input device to detect gesture inputs performed by a user, a processor circuit, and a memory coupled to the processor circuit. The memory includes machine-readable instructions that, when executed by the processor circuit, cause the processor circuit to receive a first gesture input value from the first gesture input device and that corresponds to a user-specific gesture that the user performs, associate the first gesture input value with a first gaming device operation to be performed by the gaming device, receive the first gesture input value that is associated with the first gaming device operation, and responsive to receiving the first gesture input value that is associated with the first gaming device operation, cause the gaming device to perform the first gaming device operation. |
US12118845B2 |
Disk feeding device
Provided are a holding body that holds a guide roller and locking position changing means for changing a locking position of the holding body with respect to a base body along a track in a circumferential direction centered on a rotation axis of a rotary disk, the locking position changing means including a first tooth row and a second tooth row, and the like that mesh with each other. In the configuration, since a feeding roller with which a coin collides is smoothly moved in a forward movement direction regardless of a distance between the feeding roller and a guide roller (regardless of a size of the coin), occurrence of the coin jam due to a movement failure of the feeding roller can be suppressed. |
US12118844B2 |
Coin receiving and dispensing device, coin lifting device, and coin lifting device of coin receiving and dispensing device
Denominational dispensing and storing devices are arranged on three stages, and a plurality of denominational dispensing and storing devices are arranged on each stage. At least a dispensing passage is provided for each stage, the dispensing passages are stacked in an up-down direction, and a bottom plate of the dispensing passage is inclined downward toward a dispensing port side. An upward transport belt arranged and inclined upward toward the dispensing port side is arranged below a lower end of each bottom plate. A coin fed from each of the denominational dispensing and storing devices first falls onto an inclined plate from the dispensing passage, slips down, and then falls on the upward transport belt. The coin that has fallen on the upward transport belt is transported to the dispensing port by the upward transport belt moving toward the dispensing port side. |
US12118841B2 |
IoT switchgear operation system using sound wave communication
An IoT switchgear operation system using sound wave communication including: a communication terminal for requesting, from an IoT switchgear via sound wave communication, one or more operations among manager registration, user registration, transmission of a changed password, transmission of a one-time digital key for a user, which is for the user himself/herself to open or close the IoT switchgear, and transmission of a one-time digital key for another person, which is for a terminal of another user to open or close the IoT switchgear; and the IoT switchgear for performing manager registration, user registration, a change of a password, storage of a one-time digital key for a user, and opening or closing of a door by using a one-time digital key for another person, which are requested by the communication terminal via sound wave communication with the communication terminal. |
US12118836B2 |
Probability neural network for reduced battery power drain
A processor, responsive to detecting a controller is drawing power from a battery to perform a task when a vehicle is parked and detecting a parameter indicative of a likelihood that the controller will complete the task within a predefined time period has a value less than a threshold value, generates a message for a user requesting whether the controller should be shut down without completing the task. |
US12118835B2 |
Diagnostic systems and methods of a continuously variable transmission
A diagnostic system of a vehicle for diagnosing a drive belt of a continuously variable transmission. A diagnostic circuit detects or predicts a fault of the drive belt based on an operating parameter received from a sensor associated with the vehicle during a predetermined diagnostic period. |
US12118832B1 |
Method and system for analyzing and predicting vehicle stay behavior based on multi-task learning
The present application discloses a method and a system for analyzing and predicting a vehicle stay behavior based on multi-task learning, and the method includes the following steps: acquiring vehicle GPS and OBD data including a vehicle ID, a travel start time, a start longitude, a start latitude, an end time, an end longitude, and an end latitude after desensitization; preprocessing vehicle GPS and OBD data to obtain vehicle stay behavior data including stay location and stay duration; extract a spatial-temporal characteristic of the preprocessed vehicle stay behavior data by a deep recurrent neural network; inputting the spatial-temporal characteristic into a multi-task learning and predicting network, and obtaining the correlation between a stay location prediction task and the stay duration prediction task based on the historical stay behavior of the vehicle through the multi-task learning and predicting network to predict the stay location and stay duration. |
US12118831B1 |
Fleet metrics analytics reporting system
An analytics reporting system to perform operations that include: aggregating sensor data collected from a plurality of sensor devices within a database, the sensor data comprising a set of values that correspond with a metric; generating a threshold value based on the set of values that correspond with the metric; accessing a portion of the sensor data based on an identifier associated with the portion of the sensor data; determining the portion of the sensor data transgresses the threshold value; and generating a report that comprises a display of the portion of the sensor data based on the determining that the portion of the sensor data transgresses the threshold value. |
US12118830B2 |
System, method, and apparatus for managing vehicle data collection
A vehicle that includes a vehicle communication system including a policy manager circuit configured to interpret a data collection policy including a trigger condition, a vehicle data identifier configured to identify vehicle data to be captured in response to a trigger event occurrence, and a trigger evaluation data identifier configured to identify trigger evaluation data to be captured in response to the trigger condition; and an end point configured to provide a raw vehicle data stream including a trigger evaluation data stream and an identified vehicle data stream in response to the data collection policy. |
US12118828B2 |
Blockchain-based voting system
A control system for conducting an election may include a voter client configured to be used by a voter to cast a vote for a candidate, a registrar server, and a moderator server. The moderator server may be configured to obscure the identity of the voter. The registrar server may be configured to randomly assign a ballot to the obscured voter. The registrar server may be configured to encrypt the ballot. The moderator server may be configured to transmit the encrypted ballot to the voter client. The voter client may be configured to decrypt the encrypted ballot to recover the ballot. The voter client, in response to the voter selecting a desired candidate, may be configured to generate a ballot associated with a vote. The voter client may be configured to encrypt the ballot using a public key of the registrar server and a public key of the moderator server. |
US12118825B2 |
Obtaining high-resolution oculometric parameters
Disclosed are systems and methods for extracting high resolution oculometric parameters. A video stream having a video of a face of a user is processed to obtain a set of oculometric parameters, such as eyelid data, iris data (e.g., iris translation, iris radius and iris rotation), and pupil data (e.g., pupil center and pupil radius) at a first resolution. A deconvolution process is performed on the video stream to improve accuracy or resolution of the oculometric parameters, based on stimulus information of a video stimulus displayed on a client device associated with the user, environment data of an environment in which the user is located, device data of the client device, etc. The oculometric parameters are then processed using a prediction model that is trained based on high resolution oculometric parameters obtained using eye tracking devices to predict oculometric parameters at a resolution greater than the first resolution. |
US12118824B2 |
Face detection method and server
A face detection method to be implemented by a camera and a server that are communicably connected to each other includes the steps of: acquiring a captured video captured by the camera; detecting a face of one or more persons based on the captured video; generating one or more face cut-out images by cutting out a region of the detected face; counting a number of detection times that a person who is the same as or similar to a person in the face cut-out image is detected in a predetermined detection period; determining a category of the person based on the number of detection times; and outputting the face cut-out image corresponding to the person, the number of detection times corresponding to the person, and the category corresponding to the person in association with each other. |
US12118820B2 |
Information processing system, information processing method, and storage medium for anonymized person detection
An apparatus includes: a memory storing one or more instructions; and a processor configured to execute the one or more instructions to: obtain a first image captured by a camera; detect one or more head patterns in the first image; identify a first head pattern, among the one or more head patterns, as a head pattern of a subject closest to the camera based on a size of the first head pattern; obtain a second image based on the identified first head pattern; and display the second image. |
US12118817B2 |
Pose data generation device, CG data generation system, pose data generation method, and non-transitory computer readable storage medium
Provided is a system that estimates pose data of a person with high accuracy at low cost. At a time step at which image data is to be captured and obtained, a pose data generation system obtains pose data based on the image data. At a time step at which image data is not to be obtained, the pose data generation system predicts pose data at a current time step from a previous time step using IMU data and performs interpolation processing to obtain pose data. Thus, even when a rate of obtaining the image data is low, the pose data generation system performs the above interpolation processing using IMU data to obtain pose data with a high frame rate. |
US12118815B2 |
Information processing device, associating method, and associating program
An information processing apparatus includes processing circuitry configured to register a set of item names corresponding to an item name field associated with an item value field in a predetermined business form, and identify an association of an item name field with an item value field included in a business form to be processed based on the set of item names registered. |
US12118814B2 |
System and method for facilitating the synchronization of written works with accompanying audio
An interactive system for identifying and correcting inconsistencies between a written work, an audio reading of the written work, and a resulting transcription of the audio reading. The system stores on a computing device connected to a network a manuscript, an audio version of the manuscript, and a transcription of the audio version of the manuscript. Via a transcription engine, difference and comparison engine, and a user device having a visual interface, a user is visually presented via the display the inconsistencies between the transcript and the manuscript, the user can amend the manuscript and/or the transcript to reconcile the works, the user can listen to a corresponding section of the corresponding audio file, and the user can interact with collaborators in a context aware interface. Upon the user processing, the manuscript may be read and listened to simultaneously as an enhanced e-book through a separate software tool. |
US12118813B2 |
Continuous learning for document processing and analysis
A document processing method includes receiving one or more documents, performing optical character recognition on the one or more documents to detect words comprising symbols in the one or more documents, and determining a encoding value for each of the symbols. It further includes applying a first hash function to each encoding value to generate a first set of hashed symbol values, applying a second hash function to each hashed symbol value to generate a vector array including a second set of hashed symbol values, and applying a linear transformation to each value of the second set of hashed symbol values of the vector array. The method also includes applying an irreversible non-linear activation function to the vector array to obtain abstract values associated with the symbols and saving the abstract values to train a neural network to detect fields in an input document. |
US12118811B2 |
Electronic device and method for shape recognition based on stroke analysis in electronic device
According to an embodiment, an electronic device may include a display, a memory, and at least one processor operatively coupled to the display and the memory. The memory stores instructions that are configured to, when executed, enable the at least one processor to display first stroke data of a first stroke trajectory, based on an input of a first touch-move after a first touch-down on the display, perform shape recognition on the first stroke trajectory, based on a size of the first stroke trajectory and a distance between a stroke start point of the first stroke trajectory and another point on the first stroke trajectory, convert the first stroke data into second stroke data corresponding to a recognized shape form, based on the shape recognition, and display the second stroke data on the display. Various other embodiments may be possible. |
US12118806B2 |
Vehicular imaging system
A vehicular imaging system includes a camera operable to capture image data. The camera is configured for attachment at an upper windshield area of an in-cabin side of a windshield of a vehicle. An image processor is operable for processing image data captured by the camera. Captured image data is processed by the image processor for a collision avoidance system of the equipped vehicle. Captured image data is processed by the image processor for a lane departure warning system of the equipped vehicle. Responsive at least in part to processing by the image processor of captured image data, shadows viewed by the camera are detected. The vehicular imaging system determines misalignment of the camera responsive at least in part to processing by the image processor of captured image data. |
US12118800B2 |
Multiple hypothesis-based fusion of sensor data
This document describes a multiple hypothesis-based data fusion tracker. Each hypothesis aligns to a different pseudo measurement type. The fusion tracker automatically determines, using a predefined error covariance associated with the radar, which pseudo measurement type has a greater chance of being accurate for a current situation. The fusion tracker may rely on either one of two combined radar and vision calculations, or the fusion tracker may ignore the vision-based pseudo measurements and instead, rely on radar pseudo measurements alone. By selecting between three different bounding boxes, a vision angle based box, a vision lateral position based box, or a radar only based box, the fusion tracker can balance accuracy and speed when drawing, repositioning, or resizing bounding boxes, even under congested traffic or other high volume situations. |
US12118798B2 |
Autonomous vehicle system for performing object detections using a logistic cylinder pedestrian model
A system obtains, from an autonomous vehicle, point cloud data, projects the point cloud data onto a two-dimensional plane, and determines an optimized center parameter value of an optimized circle and an optimized radius parameter value of the optimized circle that, collectively, maximizes a probability distribution of a center parameter and a radius parameter across the point cloud data. The system determines whether one or more of the data points of the point cloud data are located within the optimized circle. If there are, the system assigns a pedestrian class value to the point label of the data point. If there are data points of the point cloud data that are located outside of the optimized circle, they system assigns a non-pedestrian class value to the point label of the data point. |
US12118797B2 |
Method for determining a semantic segmentation of an environment of a vehicle
A method is provided for semantic segmentation of an environment of a vehicle. Via a processing device, a grid of cells is defined dividing the environment of the vehicle. A radar point cloud is received from a plurality of radar sensors, and at least one feature of the radar point cloud is assigned to each grid cell. By using a neural network including deterministic weights, high-level features are extracted for each grid cell. Several classes are defined for the grid cells. For layers of a Bayesian neural network, various sets of weights are determined probabilistically. Via the Bayesian neural network, confidence values are determined for each class and for each grid cell based on the high-level features and based on the various sets of weights in order to determine a predicted class and an extent of uncertainty for the predicted class for each grid cell. |
US12118789B2 |
Device and method for tracking objects in composed video
Objects are tracked in real time in a composed video acquired by joining a plurality of videos. A grouping candidate determining unit extracts objects present within an overlapping area, in which pieces of frame data are overlapped, among objects that have been detected and tracked in each of a plurality of pieces of frame data that were captured at the same time as candidate objects. A grouping unit arranges a plurality of candidate objects of which a degree of overlapping is equal to or larger than a predetermined threshold as a group, and an integration unit assigns integration object IDs to groups and objects that have not been grouped. |
US12118788B2 |
Learning semantic segmentation models in the absence of a portion of class labels
Performing semantic segmentation in an absence of labels for one or more semantic classes is provided. One or more weak predictors are utilized to obtain label proposals of novel classes for an original dataset for which at least a subset of sematic classes are unlabeled classes. The label proposals are merged with ground truth of the original dataset to generate a merged dataset, the ground truth defining labeled classes of portions of the original dataset. A machine learning model is trained using the merged dataset. The machine learning model is utilized for performing semantic segmentation on image data. |
US12118787B2 |
Localization of narrations in image data
Methods, system, and computer storage media are provided for multi-modal localization. Input data comprising two modalities, such as image data and corresponding text or audio data, may be received. A phrase may be extracted from the text or audio data, and a neural network system may be utilized to spatially and temporally localize the phrase within the image data. The neural network system may include a plurality of cross-modal attention layers that each compare features across the first and second modalities without comparing features of the same modality. Using the cross-modal attention layers, a region or subset of pixels within one or more frames of the image data may be identified as corresponding to the phrase, and a localization indicator may be presented for display with the image data. Embodiments may also include unsupervised training of the neural network system. |
US12118786B2 |
Image processing apparatus, image processing method, and storage medium
A first designation unit configured to designate a first image group, a second designation unit configured to designate a second image group, an analysis unit configured to analyze an image included in the second image group, a determination unit configured to determine a reference for selecting an image from the first image group, based on a result of analyzing the image included in the second image group, a selection unit configured to select a third image group from the first image group, based on the reference, and a changing unit configured to accept a change in a parameter that is obtained from the third image group selected by the selection unit are included and to produce a changed parameter. The selection unit is configured to select an image from the first image group by use of the changed parameter. |
US12118778B2 |
Machine vision-based method and system for locating objects within a scene containing the objects
A machine vision-based method and system for locating an object within a scene are provided. The method includes uniformly illuminating a target surface of the object within the scene with light having an intensity within a relatively narrow range of wavelengths such that the light overwhelms the intensity of ambient light within the narrow range to obtain reflected, backscattered illumination. The method also includes sensing brightness of the surface due to a diffuse component of the backscattered illumination to obtain brightness information. Backscattered illumination from the target surface is inspected to obtain geometric information. Rotationally and positionally invariant surface albedo of the object is computed based on the brightness and geometric information. The surface albedo and the geometric information may then be used by a matching algorithm. |
US12118776B2 |
Image processing method, apparatus, and device, and storage medium
The present disclosure provides an image processing method, apparatus, and device, and a storage medium. The method includes determining, in response to receiving a preset identification operation triggered for a capturing frame on a capturing page, a target image having image clarity meeting a preset clarity condition based on the capturing frame on the capturing page. Then, the target image is transmitted to an image identification server for image identifying. Thus, the image processing method provided in the embodiments of the present disclosure can determine a target image having image clarity meeting a preset clarity condition first before image identification and allow an image identification server to perform identification based on the target image which meets the preset clarity condition, thereby the accuracy of image identification can be improved. |
US12118773B2 |
Machine learning system for technical knowledge capture
This disclosure describes machine learning techniques for capturing human knowledge for performing a task. In one example, a video device obtains video data of a first user performing the task and one or more sensors generate sensor data during performance of the task. An audio device obtains audio data describing performance of the task. A computation engine applies a machine learning system to correlate the video data to the audio data and sensor data to identify portions of the video, sensor, and audio data that depict a same step of a plurality of steps for performing the task. The machine learning system further processes the correlated data to update a domain model defining performance of the task. A training unit applies the domain model to generate training information for performing the task. An output device outputs the training information for use in training a second user to perform the task. |
US12118768B1 |
Systems and methods for managing computer memory for scoring images or videos using selective web crawling
A method includes storing a database comprising a plurality of pointers to web pages and identifiers of entities associated with the plurality of pointers; receiving a first request comprising a first identifier; identifying subset of the plurality of pointers from the database responsive to each pointer of the subset having a stored association with a first identification that matches the first identifier; responsive to identifying the subset of the plurality of pointers, establishing, via one or more pointers, a connection with a server hosting a set of web pages associated with the subset of the plurality of pointers; retrieving one or more images or videos from each of the set of web pages over the established connection; calculating a performance score for each of the one or more images or videos; and generating a record identifying the performance score for each of the one or more images or videos. |
US12118767B1 |
Classification method based on skeleton lines for map building shapes
Disclosed in the present disclosure is a classification method based on skeleton lines for building shapes. The method includes: (1) expanding a template library of buildings by combining building shape classification in architecture and building shape features in real life on the basis of inheriting advantages of a traditional template matching method; (2) avoiding influence of small depressions and protrusions of the buildings on overall shapes by constructing a least-squares template; (3) extracting the skeleton lines of the buildings and calculating feature vectors of the buildings; and (4) calculating similarity between feature vectors of skeleton lines of the buildings and skeleton lines of templates by using cosine similarity, and selecting the template with the highest similarity as a classification result of the building shapes. |
US12118765B2 |
Method and system for product search based on deep-learning
A method and system for performing a deep learning based product search obtain an input image including a target product to be searched; transform a model pose included in the input image; obtain a standard input image having the transformed pose of the model; obtain a main product image having an area including the target product by performing deep learning based on the standard input image; extract a feature vector from the main product image; perform a product search for a product similar to the target product based on the feature vector; and output a result of the product search. |
US12118764B2 |
Method and apparatus for processing image based on partial images
A method and apparatus for processing an image based on partial images. The method includes extracting a feature of a current partial processing region of an input image frame by inputting pixel data of the current partial processing region into a convolutional neural network (CNN), updating a hidden state of a recurrent neural network (RNN) for a context between the current partial processing region and at least one previous partial processing region by inputting the extracted feature into the RNN, and generating an image processing result for the input image frame based on the updated hidden state. |
US12118763B2 |
Cognitive load scoring of a visual stimulus
An apparatus comprises at least one processing device comprising a processor coupled to a memory. The at least one processing device is configured to obtain an information density matrix for an input visual stimulus, the information density matrix characterizing information density of feature points in the input visual stimulus, and to identify one or more clusters of feature points in the input visual stimulus by performing spatial clustering of the feature points utilizing the information density matrix. The at least one processing device is also configured to determine a cognitive load score for the input visual stimulus based at least in part on the identified one or more clusters of feature points, the cognitive load score characterizing cognitive energy required to mentally process the input visual stimulus. The at least one processing device is further configured to modify a design of the input visual stimulus to adjust the cognitive load score of the input visual stimulus. |
US12118762B2 |
Method and system for providing visual explanations for image analytics decisions
The invention relates to method and system for providing visual explanations for image analytics decisions. The method includes extracting a set of local features from each of a plurality of image instances using a deep learning (DL) model; determining a feature list by aggregating the set of local features from each of the plurality of image instances; generating a two-dimensional (2D) pixel map based on the feature list; superimposing the 2D pixel map of aggregated features on each of the plurality of image instances; and providing a visual explanation for an image analytics decision on one or more of the plurality of image instances based on superimposition. |
US12118758B2 |
Planar and azimuthal mode in geometric point cloud compression
A device for encoding point cloud data, the device comprising: a memory to store the point cloud data; and one or more processors coupled to the memory and implemented in circuitry, the one or more processors configured to: determine a horizontal plane position of a node, wherein the horizontal plane position indicates a position of a single plane that is perpendicular to a first axis of a coordinate system, wherein the first axis is a horizontal axis; determine, from a plurality of contexts consisting of 8 contexts, a context for the horizontal plane position of the node; and perform arithmetic encoding on a syntax element indicating the horizontal plane position using the determined context. |
US12118755B2 |
Stochastic compression of raster data
Methods, systems, and computer program products for stochastic compression of raster data are provided herein. A computer-implemented method includes obtaining at least one compression ratio and at least one error value for a given set of raster data; compressing at least a portion of the given set of raster data based at least in part on the at least one compression ratio and the at least one error value; transmitting the compressed raster data, to at least one given destination, based at least in part on a given transmission speed variable; and performing one or more automated actions based at least in part on the transmitted compressed raster data. |
US12118753B2 |
System and method for color mapping for improved viewing by a color vision deficient observer
A method and system for color mapping digital visual content for improved viewing by a color vision deficient observer includes receiving the digital visual content to be color mapped, clustering color values of the digital visual content into a plurality of color clusters, assigning each color cluster to a respective one of a set of target color values in which the set of target color values have increased visual distinguishability for the color vision deficient observer; and for each color cluster, mapping the color values of the color cluster to the target color value, thereby generating a color-mapped digital visual content. One or more regions of interest of the content can be identified and the color mapping may be applied onto to those regions of interest. |
US12118750B1 |
System and method for calibrating a camera and object tracking system using a calibrated camera
A method for calibrating a camera without the decomposition of camera parameters into extrinsic and intrinsic components is provided. Further, there is provided a method for tracking an object in motion comprising capturing one or more image frames of an object in motion, using one or more calibrated cameras that have been calibrated according to a calibration method that generates and uses a respective transformation matrix for mapping three-dimensional (3D) real world model features to corresponding two-dimensional (2D) image features. The tracking method further comprises determining, using a hardware processor, motion characteristics of the object in motion based on the captured one or more image frames from each one or more calibrated cameras, the determining of the motion characteristics based on implicit intrinsic camera parameters and implicit extrinsic camera parameters of the respective transformation matrix from each respective one or more calibrated cameras. |
US12118749B2 |
Calibration system and calibration method for multi-camera system
A calibration system for a multi-camera system is disclosed. The calibration system includes a connection device, a storage device, and a processor. The processor is configured to control each camera of the multi-camera system to capture a calibration image of a calibration board having a pattern including multiple conventional features and at least one non-conventional feature in which an FOV of the calibration image of at least one camera does not contain at least one conventional feature of the pattern, detect the conventional features and the non-conventional feature in the calibration image and record positions thereof in the storage device, transform a position of each conventional feature into absolute coordinates relative to reference coordinates by using a position of the non-conventional feature as the reference coordinates, and according to the absolute coordinates of the transformed conventional features, match the conventional features in the calibration images captured by the cameras to calibrate the cameras. |
US12118741B2 |
Three-dimensional person behavior estimation
The present invention provides a processing apparatus (20) including a first generation unit (22) that generates, from a plurality of time-series images, three-dimensional feature information indicating a time change of a feature in each position in each of the plurality of images, a second generation unit (23) that generates person position information indicating a position in which a person is present in each of the plurality of images, and an estimation unit (24) that estimates person behavior indicated by the plurality of images, based on the time change of the feature indicated by the three-dimensional feature information in the position in which the person is present being indicated by the person position information. |
US12118738B2 |
Generation of three-dimensional scans for intraoperative imaging
A system for executing a three-dimensional (3D) intraoperative scan of a patient is disclosed. A 3D scanner controller projects the object points included onto a first image plane and the object points onto a second image plane. The 3D scanner controller determines first epipolar lines associated with the first image plane and second epipolar lines associated with the second image plane based on an epipolar plane that triangulates the object points included in the first 2D intraoperative image to the object points included in the second 2D intraoperative image. Each epipolar lines provides a depth of each object as projected onto the first image plane and the second image plane. The 3D scanner controller converts the first 2D intraoperative image and the second 2D intraoperative image to the 3D intraoperative scan of the patient based on the depth of each object point provided by each corresponding epipolar line. |
US12118737B2 |
Image processing method, device and computer-readable storage medium
Embodiments of the present disclosure relate to an image processing method, a device and a computer-readable storage medium. The method includes obtaining a first reference image and a second reference image of a reference object. The method further includes determining a first constraint and a second constraint based on the first reference image and the second reference image. The first constraint is related to a difference between different depth maps of the same reference images, and the second constraint is related to a depth consistency of different reference images. The method further includes training a depth estimation model at least based on the first constraint and the second constraint. In this way, an obtained trained depth estimation model may provide more accurate depth information. |
US12118730B2 |
Device for detecting an edge using segmentation information and method thereof
An edge detecting device includes a feature extracting circuit configured to extract first and second feature data from an input image; a prototype generating circuit configured to generate prototype data using the first feature data and an input label, the prototype data including foreground and background information of an object; a region detecting circuit configured to generate a segmentation mask by detecting a region of an object using the first feature data and the prototype data; and an edge extracting circuit configured to generate an edge map by combining the segmentation mask and the second feature data. |
US12118729B2 |
Determination device, determination method, and recording medium
A determination device includes a partial image acquisition unit that repeatedly acquires a partial image of a target image until a predetermined end condition is established, a score calculation unit that calculates a score related to the presence or absence of processing of the partial image in each time the partial image acquisition unit acquires the partial image, and a processing determination unit that determines the presence or absence of processing of the target image on the basis of the score. |
US12118724B2 |
Interactive coronary labeling using interventional x-ray images and deep learning
A method for classifying a vasculature comprises training a training device with an initial model of a vasculature using diagnostic image data representing a geometry for a plurality of vessels of a vessel tree and including a respective vessel labeling for each vessel, providing at least one diagnostic image of a patient's vessel tree and identifying a variation between the vessel tree represented by the initial model and the patient's vessel tree. This variation is checked and labeled in order to improve the trained model. The process may be repeated iteratively until reaching an accurate patient-specific model of the vasculature. |
US12118723B1 |
Compute system with image based skin cancer detection mechanism and method of operation thereof
A method of operation of a compute system includes: receiving a patient image; segmenting a skin lesion in the patient image; constructing a normalized image by cropping the patient image and adding padding to position the skin lesion at the center of the normalized image; identifying, by a cancer artificial intelligence (AI) already trained, a skin cancer classification, a skin cancer sub-class, and a risk level assessment; and generating a skin cancer display including the normalized image, the skin cancer classification, the skin cancer sub-class, and the risk level assessment for displaying on a device. |
US12118722B2 |
Compute system with eczema diagnostic mechanism and method of operation thereof
A method of operation of a compute system includes: generating a skin segmentation including a non-skin region and a skin prediction based on a patient image; generating a body part segmentation based on the patient image; generating a cropped image based on the skin segmentation and the body part segmentation with the cropped image includes the non-skin region based on the skin prediction; generating a eczema segmentation based on the cropped image and the skin prediction; generating intermediate scores for erythema, papulation, lichenification, and excoriation for the cropped image; and generating a full body EASI score based on the eczema segmentation and the intermediate scores for displaying on a device to assist in diagnosis. |
US12118715B2 |
Systems and methods for image classification
A method and apparatus of a device that classifies an image is described. In an exemplary embodiment, the method includes tiling at least one region of interest of the input image into a set of tiles. For each tile, the method includes extracting a feature vector of the tile by applying a convolutional neural network, wherein a feature is a local descriptor of the tile; and computing a score of the tile from the extracted feature vector, said tile score being representative of a contribution of the tile into a classification of the input image. The method also includes sorting a set of the tile scores and selecting a subset of the tile scores based on their value and/or their rank in the sorted set. The method also includes applying a classifier to the selected tile scores in order to classify the input image. |
US12118710B2 |
Process for the detection of bitter almonds based on the processing of digital images and a device associated therewith
Procedure for the detection of bitter almonds based on the processing of digital images, and a system and device associated therewith. Detection procedure and system for the automated classification of sweet and bitter almonds based on the processing of digital images. The fluorescence of the cyanogenic compounds naturally present in almonds generates a clear difference in colour between sweet and bitter almonds which subsequently is analysed and classified by means of a computer program. The invention also includes the device, either portable or automatic, for carrying out the classification of bitter or sweet almonds. This device will be necessary during the goods reception process and in the validation/verification of the quality of the finished product, prior to the loading and transport process. |
US12118709B2 |
Method for identifying cause of manufacturing defects
A method for identifying a cause of manufacturing defects is provided. The method includes capturing, by an image capture unit, a number N of images from a semiconductor wafer, wherein each of the s umber N of images comprises a number M of geometric features, calculating, by a processing unit, a geometric center for each of the geometric features of the number N of images, calculating, based on the number N of images, a number M of average geometric centers associated with the number M of geometric features, and calculating a shift amount for each geometric feature of the number N of images. |
US12118708B2 |
Device and method for detecting defects on wafer
Disclosed is a wafer defect inference system, which includes a test equipment that receives a first image obtained by imaging circuit patterns formed on a semiconductor wafer by using a scanning electron microscope and a second image obtained by imaging a layout image of a mask for implementing the circuit pattern on the semiconductor wafer and combines the first image and the second image to generate a combination image, and at least one computing device that is capable of communicating with the test equipment and infers a defect associated with the circuit pattern formed on the semiconductor wafer. The computing device receives the combination image, performs machine learning for inferring the defect based on the combination image, and generates an output image including information about the defect based on the machine learning. |
US12118707B2 |
System and method for semiconductor topography simulations
The present disclosure provides a method for topography simulation of a physical structure under a topography-changing process. The method includes initializing a voxel mesh as a three-dimensional (3D) representation of the physical structure, generating a batch of particles, simulating a flight path of one of the particles with a ray-tracing method by a parallel processing thread in a hardware accelerator, identifying a surface normal of a voxel unit in the voxel mesh that intersects the flight path by the parallel processing thread, determining a surface reaction between the one of the particles and the voxel unit by a central processing unit (CPU), and updating the voxel mesh based on the determining of the surface reaction. |
US12118704B2 |
Model input size determination method, electronic device and storage medium
A model input size determination method, an electronic device and a storage medium are provided, the method includes acquiring a plurality of test images and a defect result; and encoding each test image to obtain an encoding vector. The encoding vector is decoded to obtain a reconstructed image, then a reconstruction error and a plurality of sub-vectors are calculated; the plurality of sub-vectors is inputted into a Gaussian mixture model, then a plurality of sub-probabilities, an estimated probability and a test error are determined; a detection result in the test image according to the test error and the corresponding error threshold are obtained; an accuracy according to the detection result and the defect result are determined, and an input size is selected from the plurality of preset sizes according to the accuracy. An accuracy of defect detection in manufacturing can be improved. |
US12118701B2 |
Method and system to characterize and monitor the sharpness of a digital imaging system
The invention is related to a method for automatic selection and pre-processing of digital images that comprise the necessary amount of Transfer function modulated quantum-noise to apply a mathematical sharpness calculation method for calculation of a sharpness parameter of the digital imaging system. Suitable images for the method are selected from the pool of available images acquired by the digital imaging system during daily operation. |
US12118700B2 |
Device and method for dynamic range expansion in a virtual reality scene
A lower dynamic range visual content (21) of a virtual reality or VR scene represented in a curved shape form is adapted to a higher dynamic range display of the virtual reality scene. At least two planar key views (230) of the VR scene area obtained at least two parameter values (240) respectively associated with those planar key views are obtained, corresponding to at least one parameter adapted to expand a dynamic range of a visual content, and a higher dynamic range visual content (22) corresponding to the lower dynamic range visual content in at least part of the VR scene extending beyond the planar key views is determined, based on the parameter values. Applications to Inverse Tone Mapping. |
US12118697B2 |
Merging split-pixel data for deeper depth of field
A method includes obtaining split-pixel image data including a first sub-image and a second sub-image. The method also includes determining, for each respective pixel of the split-pixel image data, a corresponding position of a scene feature represented by the respective pixel relative to a depth of field, and identifying, based on the corresponding positions, out-of-focus pixels. The method additionally includes determining, for each respective out-of-focus pixel, a corresponding pixel value based on the corresponding position, a location of the respective out-of-focus pixel within the split-pixel image data, and at least one of: a first value of a corresponding first pixel in the first sub-image or a second value of a corresponding second pixel in the second sub-image. The method further includes generating, based on the corresponding pixel values, an enhanced image having an extended depth of field. |
US12118690B2 |
Image display method and device, and computer storage medium
Provided is an image display method, including: transmitting a first image of a first resolution to a display component at a first frequency in the case that the mode information indicates a first mode, wherein the first image is formed by splicing a plurality of sub-images of a second resolution; and transmitting a second image of the first resolution to the display component at a third frequency in the case that the mode information indicates a second mode, wherein n second images form a frame of image of the display component. |
US12118686B2 |
Virtualization, visualization and autonomous design and development of objects
An integrated platform is provided that enables the various steps of development operations from design to sales, the virtualization, the visualization and the interpretation of a device so it may be fully created (designed), viewed, manipulated, packaged, simulated, tested, published and marketed right from within the platform. The resulting virtual device (VD) may be a multi-layered, -dimensional, -angular, -disciplinary, -documentarian, -service, manipulated and used in multiple ways. The provided VD may include visual representations of the VD via a traditional display device in a non-immersive environment and/or within an immersive environment via new virtual-reality (VR) devices. For instance, a user may create, manipulate, in real-time, layered multi-dimensional views of a VD in a virtual-reality, augmented-reality (AR), augmented virtual-reality (AVR), and/or mixed-reality (MR) environments. |
US12118670B2 |
Method and device for generating digital model
The disclosure discloses a method and device for generating a digital model. The method includes: acquiring integrated point cloud data of a measured object based on at least one set of measured object images of the measured object; performing mesh processing on the integrated point cloud data with at least two different resolutions so as to obtain at least two mesh models of the measured object; and integrating the at least two mesh models so as to generate an integrated mesh model with multiple resolutions. |
US12118669B2 |
Subdividing a three-dimensional mesh utilizing a neural network
Methods, systems, and non-transitory computer readable storage media are disclosed for utilizing one or more neural networks to recursively subdivide a three-dimensional mesh according to local geometries of vertices in the three-dimensional mesh. For example, the disclosed system can determine a local geometry (e.g., a one-ring neighborhood of half-flaps) for each vertex in a three-dimensional mesh. For each subdivision iteration, the disclosed system can then utilize a neural network to determine displacement coordinates for existing vertices in the three-dimensional mesh and coordinates for new vertices added to edges between the existing vertices in the three-dimensional mesh in accordance with the local geometries of the existing vertices. Furthermore, the disclosed system can generate a subdivided three-dimensional mesh based on the determined displacement coordinates for the existing vertices and the determined coordinates for the new vertices. |
US12118668B2 |
Scene representation using image processing
An image processing system configured to obtain a mesh representation of a scene, wherein the mesh representation comprises a plurality of polygons defined by respective vertices associated with an in-plane position, the in-plane position being in a plane comprising a first dimension and a second dimension, and the vertices having an associated vertex depth value in a third dimension different from the first dimension and the second dimension. The image processing system comprises an in-plane position estimation network configured to process image data representative of an image of the scene to estimate the in-plane positions associated with respective vertices of the mesh representation. The image processing system further comprises a depth estimation engine configured to process the in-plane positions and the image data to estimate the associated vertex depth values for the respective vertices of the mesh representation. |
US12118667B2 |
Methods and systems for unified rendering of light and sound content for a simulated 3D environment
An illustrative audiovisual content rendering system generates a light dataset configured to model light energy at a particular location within a simulated 3D environment for a video frame time. The audiovisual content rendering system also generates an audio dataset configured to model acoustic energy at the particular location within the simulated 3D environment for an audio frame time concurrent with the video frame time. The audiovisual content rendering system stores the light dataset and the audio dataset together within a voxel-based data structure. More particularly, the light dataset and the audio dataset are stored together within a particular voxel of the voxel-based data structure that corresponds to the particular location within the simulated 3D environment. Corresponding methods and systems are also disclosed. |
US12118666B2 |
Method, device and system for cooperatively constructing point cloud map
A method, a device and a system for cooperatively constructing a point cloud map, relating to the field of point cloud map construction. The method includes acquiring point cloud data of corresponding road sections respectively acquired by a plurality of vehicles when moving on different road sections, an overlap region being provided between any first road section and second road section which are adjacent; determining, by using the point cloud data of the overlap region, a transformation matrix for transforming the point cloud data of the second road section into the point cloud data of the first road section; using the transformation matrix to transform the point cloud data of the second road section; and splicing the point cloud data of the first road section and the transformed point cloud data of the second road section to construct a point cloud map of the preset route. |
US12118664B2 |
Systems and methods for designing and deploying wireless communication mesh networks
Disclosed herein are systems and methods that relate to wireless communication mesh network design and operation. In one aspect, the disclosed process may involve (1) obtaining potential-customer information related to a set of potential customers for a service to be provided through a wireless communication mesh network in an AOI, where the potential-customer information comprises both (i) information related to potential customers that are identified during a pre-marketing phase and (ii) information related to potential customers that are identified during a door-to-door marketing phase, and where the set of potential customers have a corresponding set of customer locations in the AOI, (2) evaluating the obtained potential-customer information and thereby identifying a subset of customer locations at which to deploy the wireless communication mesh network, and (3) generating and outputting information that facilitates deployment of the wireless communication mesh network at the identified subset of customer locations in the AOI. |
US12118662B2 |
Optimizing computer-based generation of three-dimensional virtual objects
In an approach to improve the generation of a virtual object in a three-dimensional virtual environment, embodiments of the present invention identify a virtual object to be generated in a three-dimensional virtual environment based on a natural language utterance. Additionally, embodiments generate the virtual object based on a CLIP-guided Generative Latent Space (CLIP-GLS) analysis, and monitor usage of the generated virtual object in the three-dimensional virtual space. Moreover, embodiments infer human perception data from the monitoring, and generate a utility score for the virtual object based on the human perception data. |
US12118658B1 |
Systems and methods for modifying a virtual reality environment based on a subject's position
A method comprises receiving a value corresponding to a height of a subject, and then determining, using processing circuitry, an eye height of the subject based on the height of the subject and on anthropometric data. In some embodiments, the subject may be using a virtual reality application that includes a displayed virtual environment. Based on the determined eye height of the subject, the processing circuitry may cause at least one environmental parameter of the virtual environment to be modified. |
US12118656B2 |
VRS rate feedback
Techniques for performing shader operations are provided. The techniques include, performing pixel shading at a shading rate defined by pixel shader variable rate shading (“VRS”) data, and updating the pixel VRS data that indicates one or more shading rates for one or more tiles based on whether the tiles of the one or more tiles include triangle edges or do not include triangle edges, to generate updated VRS data. |
US12118654B2 |
Progressive multisample anti-aliasing
One embodiment provides a graphics processor comprising an interface to a system interconnect and a graphics processor coupled to the interface, the graphics processor comprising circuitry configured to compact sample data for multiple sample locations of a pixel, map the multiple sample locations to memory locations that store compacted sample data, the memory locations in a memory of the graphics processor, apply lossless compression to the compacted sample data, and update a compression control surface associated with the memory locations, the compression control surface to specify a compression status for the memory locations. |
US12118649B2 |
Deep learning based three-dimensional reconstruction method for low-dose PET imaging
Disclosed is a three-dimensional low-dose PET reconstruction method based on deep learning. The method comprises the following steps: back projecting low-dose PET raw data to the image domain to maintain enough information from the raw data; selecting an appropriate three-dimensional deep neural network structure to fit the mapping between the back projection of the low-dose PET and a standard-dose PET image; after learning from the training samples the network parameters are fixed, realizing three-dimensional PET image reconstruction starting from low-dose PET raw data, thereby obtaining a low-dose PET reconstructed image which has a lower noise and a higher resolution compared with the traditional reconstruction algorithm and image domain noise reduction processing. |
US12118645B2 |
Generating microstructures for materials based on machine learning models
In one embodiment, a method is provided. The method includes determining a set of spheres for a volume of a material. The volume of the material comprises the set of spheres and additional materials. The sizes of the set of spheres are based on a Gaussian mixture model (GMM). The method also includes determining a set of locations for the set of spheres within the volume of the material. The method further includes generating a set of images of the volume of the material based on a first generative adversarial network and a second generative adversarial network. The set of images depict a microstructure of the volume of material. |
US12118644B2 |
Data loading method and apparatus for convolution operation
Disclosed are a data loading method and apparatus for a convolution operation, a computer device, a storage medium and a computer program product. The method includes: splitting a feature image to be loaded into the cache unit into a plurality of sub-feature images; determining a target cache line corresponding to each of the sub-feature images in each of the cache lines according to a positional relationship of each of the sub-feature images in the feature image; wherein target cache lines corresponding to at least two sub-feature images with the same positional relationship are located in the same cache set, and target cache lines corresponding to at least two sub-feature images with an adjacent positional relationship are located in different cache sets; loading a data content of each of the sub-feature images into the target cache line corresponding to each of the sub-feature images. |
US12118643B2 |
Hardware-accelerated nearest neighbor queries for arbitrary data primitives
Apparatuses, systems, and techniques to perform a K-nearest-neighbor query. In at least one embodiment, a set of bounding boxes corresponding to a set of primitives is generated that allows the query to be solved using light transport simulation acceleration features of a GPU. |
US12118640B2 |
Hardware accelerator for histogram of oriented gradients computation
A hardware accelerator for histogram of oriented gradients computation is provided that includes a gradient computation component configured to compute gradients Gx and Gy of a pixel, a bin identification component configured to determine a bin id of an angular bin for the pixel based on a plurality of representative orientation angles, Gx, and signs of Gx and Gy, and a magnitude component configured to determine a magnitude of the gradients Gmag based on the plurality of representative orientation angles and the bin id. |
US12118636B2 |
Casino table games with interactive content
A method, apparatus and computer readable storage to implement an automated system for video surveillance in a casino or other controlled environment. Players in the casino can be automatically scanned and analyzed for whether they are under the legal gambling age or not. When an underage gambler is detected, a casino security employee (or other casino personnel) is notified so they can take the appropriate action. Similarly, players who are excluded from the casino can also be automatically detected and would be ejected when detected. |
US12118632B2 |
Method, device, and computer program product for scheduling tour guiding resources
A method includes: acquiring a plurality of historical routes of movement of a plurality of historical users in a geographic area, wherein each historical route includes at least a portion of a plurality of locations; determining, based on the plurality of historical routes and a plurality of current positions of a plurality of users in the geographic area, a set of predicted locations among the plurality of locations that the plurality of users will visit in the future, respectively, wherein the plurality of users use a tour guiding service associated with the plurality of locations that is provided by a mobile network; selecting a set of popular locations from the set of predicted locations based on the number of users among the plurality of users who will visit each predicted location in the set of predicted locations; and scheduling tour guiding resources associated with the set of popular locations. |
US12118627B2 |
Secure and traceable manufactured parts
A method for the verification and authentication of additive manufactured product, comprising the steps of receiving, from a customer, at least one customer requirement for a product, deriving at least one manufacturing requirement and generating a product geometry file for the product, recording, by a first computing device, to a distributed transaction register, a first transaction reflecting certification of the product geometry file, obtaining a first output reflecting the first transaction, printing the product with a 3D printer, recording, by a second computing device, to the distributed transaction register, a second transaction reflecting the printing of the product and the first output, obtaining a second output reflecting the second transaction, embedding within the product a unique code reflecting the second output, whereby the product geometry file and the printing of said product may be verified with the unique code such that the product may be authenticated. |
US12118626B2 |
Generating context-aware process-based model determinations for greenhouse gas emissions from agricultural fields
Methods, systems, and computer program products for generating context-aware process-based model determinations for greenhouse gas emissions from agricultural fields are provided herein. A computer-implemented method includes obtaining data related to multiple conditions pertaining to at least one agricultural field; deriving one or more contextual features for one or more activities associated with the at least one agricultural field, wherein deriving the contextual feature(s) includes processing at least a portion of the obtained data using one or more activity-related models; updating one or more greenhouse gas emission estimates, pertaining to the at least one agricultural field, generated by at least one process-based model by processing at least a portion of the one or more greenhouse gas emission estimates and at least a portion of the derived contextual feature(s) using a spatio-temporal learning model; and performing one or more automated actions based on the one or more updated greenhouse gas emission estimates. |
US12118625B2 |
Systems to prescribe and deliver fertilizer over agricultural fields and related methods
A computer-implemented method of prescribing spatially-variable application rates of one or more nutrients for an agricultural field is disclosed. The method comprises calculating, by a processor, an average NDVI* map for a crop across multiple prior crop-growing seasons for discrete pixels of the agricultural field; identifying, by the processor, a target yield for the crop in the agricultural field for an upcoming crop-growing season; calculating a provisional average nutrient application rate of a nutrient based on a replacement amount of the nutrient consumed at harvest for the crop and the target yield for the crop in the agricultural field; determining an average nutrient credit of the crop in the agricultural field for a prior crop growing season of the multiple prior crop-growing seasons; calculating a final average nutrient application rate of the nutrient for the target yield for the crop in the agricultural field based on the average nutrient credit and the provisional average nutrient application rate; computing a linear slope for a spatially-variable nutrient application guide based on the final average nutrient application rate and a median NDVI* value of the average NDVI* map; prescribing spatially-variable nutrient application rates of the nutrient across the agricultural field based on the linear slope to the NDVI* map for each of the discrete pixels. |
US12118621B2 |
Hardline threshold softening
A first schema accessed is associated with a plurality of entities that are participants of an electronic system. Each entity has a corresponding attribute. Each of a first subset of the entities has a respective attribute value below a threshold. Each of a second subset of the entities has a respective attribute value above the threshold. According to the first schema, it is determined that data and/or transactions associated with the first and second subsets of the entities are processed using a first and a second model, respectively. A second schema is generated by softening the predefined threshold such that according to the second schema, data and/or transactions associated with the first subset of the entities and data and/or transactions associated with the second subset of the entities are each processed using both the first model and the second model. The second schema is implemented in the electronic system. |
US12118618B2 |
Technology for user-enabled use restrictions on user-authorized financial instrument
A computing device, a computer program product, and a computer-implemented method for delivering enhanced financial services and, more particularly, for facilitating enhanced network communication between a user and a financial institution via a client device. A digital financial management platform for the client device is provided that includes one or more user-engageable use restriction input settings to enable one or more use restrictions on one or more user-authorized financial payment instruments associated with one or more financial accounts maintained by the user at a financial institution. The one or more user-engageable use restriction input settings includes a predetermined spend limit input setting having a predetermined maximum spend limit that is based on a current user status level among a plurality of user status levels associated with the one or more financial accounts. Each user status level in the plurality of user status levels is based on the accumulated overall financial assets of the one or more financial accounts. |
US12118604B2 |
Slot selection for pickup scheduling and order fulfillment
A system and method for slot selection is provided. A customer order is received for an in-store pickup at a retail store and a set of inputs is received. The set of inputs includes slot-related information related to a first set of timeslots available at the retail store within a first time-period, inventory information, and order preparation constraints. Based on the set of inputs, a capacity constraint is determined. The capacity constraint sets a number of customer orders to be scheduled for the in-store pickup within each of the first set of timeslots. Thereafter, a first timeslot is determined from among the first set of timeslots. The first timeslot accommodates the customer order in accordance with the capacity constraint and a pickup wait time within the first timeslot is below a threshold. The first timeslot is displayed on a customer device. |
US12118601B2 |
Method, system, and non-transitory computer-readable medium for analyzing facial features for augmented reality experiences of physical products in a messaging system
The subject technology receives image data including a representation of a face of a user. The subject technology analyzes the image data to determine a set of characteristics of the representation of the face. The subject technology, based at least in part on the determined set of characteristics, selects a particular product and a set of media content associated with the particular product. The subject technology causes display, at a client device, at least one recommendation corresponding to the set of media content associated with the particular product. |
US12118597B2 |
Emergency management system
Provided is an emergency management system including at least one processor in communication with an electronic payment processing network, the electronic payment processing network including a transaction processing system, a plurality of merchant systems associated with merchant locations, and a plurality of issuer systems. The at least one processor is programmed or configured to retrieve, from the electronic payment processing network, transaction data associated with a plurality of transactions and determine an operational status of at least one first entity associated with the plurality of transactions based on the difference between a first transaction count and a second transaction count, and in response to determining the operation status of the at least one first entity, automatically communicate a message to at least one second entity based on the operational status of the at least one first entity. |
US12118596B2 |
Systems and methods for server load balancing based on correlated events
Methods and systems for balancing online stores amongst servers. Detecting a flash sale associated with a first online store. Identifying an occurrence of a first event correlated to the flash sale associated with the first online store. Identifying a second online store associated with a second event corresponding to the first event. Responsive to identifying the second online store associated with the second event corresponding to the first event, moving the second online store from a first server to a second server. |
US12118595B2 |
Autonomous vehicle fitting room
Systems and methods for providing an autonomous vehicle fitting room. In particular, systems and methods are provided for users to try ordered products in an autonomous vehicle at the time of delivery. Users can then take selected products from the autonomous vehicle and/or leave other products in the autonomous vehicle to be returned automatically. The autonomous vehicle can be configured to determine which products were taken and automatically charge a user account for these products. |
US12118588B2 |
Method and system for advertising on shuttle services
An advertising method for a shuttle comprises by a controller, responsive to identifying a drop-off location and a business paying to influence a route traveled by the shuttle, selecting one of a plurality of routes to the drop-off location according to a priming estimate indicating that points of interest along the one share more characteristics with the business relative to others of the plurality; and commanding the shuttle to travel the one. |
US12118584B1 |
Blockchain based digital coupon processing system and related methods
A digital coupon processing system may include a user device and a digital coupon processing server. The server may generate a digital coupon for a given product for purchase, cooperate with a blockchain server to generate a non-fungible token (NFT) associated with the digital coupon on a blockchain, and place the NFT into a redeemable account on the blockchain. The server may also assign a unique coupon identifier (UCI) to the NFT, and communicate the digital coupon and UCI to the user device for redemption. The server may also, upon redemption of the digital coupon, obtain the UCI from the given shopper, and determine if the NFT is on the redeemable account on the blockchain based upon the UCI, and when so, cooperate with a point-of-sale (POS) device to apply the digital coupon to the product for purchase, and transfer the NFT to a non-redeemable account on the blockchain. |
US12118583B2 |
Event gamification in real time
A consumer may enroll in an event gamification system. An event listener may detect an event. The event gamification system may determine that the event qualifies for a game in which the consumer is enrolled. The event gamification system may transmit an achievement notification to the consumer as soon as the event occurs. The game may be displayed in a GUI on a consumer device. The consumer may be rewarded for completing the achievements in the game. Also, a server computer receiving a plurality of data sets that represent visually perceptible elements for a plurality of host web pages, wherein each of the plurality of host web pages displays an active link associated with a product on a merchant web page. The server automatically generating composite web page from: i) the particular data set associated with the particular host web page and the particular set of visually perceptible elements and ii) the related electronic content associated with the product from the merchant web page. |
US12118582B2 |
Technical improvements to payment card linked rewards programs
A rewards system operator receives one or more files from a payment card processor containing payment card transaction information for qualifying payment card transactions made with linked payment cards at one or more merchants participating in a rewards program. The rewards system operator directly debits the merchants for any fees owed under the rewards program. The rewards system operator gives users of the linked payment cards a reward for making qualifying purchases under the rewards program. |
US12118580B2 |
Methods, apparatuses, and non-transitory computer-readable record media for reward on cryptocurrency exchange
Disclosed are a method, a system, and a non-transitory computer-readable record medium for a reward on a cryptocurrency exchange. A cryptocurrency reward method includes determining a reward amount for a user that meets a reward condition in a cryptocurrency exchange, the reward amount being in a fiat currency, setting at least one cryptocurrency as at least one selected cryptocurrency based on a selection of the user, converting the reward amount into the at least one selected cryptocurrency to obtain at least one converted reward amount, and transferring the at least one converted reward amount to an account of the user. |
US12118573B2 |
Messaging service for providing updates for multimedia content of a live event delivered over the internet
Messaging services for providing updates for multimedia content delivered over the Internet for a live event. In one embodiment, a messaging server provides real-time updates for multimedia content of a live event delivered over the Internet to multiple media players that request the multimedia content over the Internet. In one embodiment, the real-time updates indicate when the multimedia content is available for delivery over the Internet. In another embodiment, the real-time updates can be used to dynamically insert advertisement markers for advertisement breaks in the multimedia content. |
US12118572B2 |
Dynamic carbon sink measurement method for afforestation carbon sink and forest management carbon sink projects
The present invention relates to a dynamic carbon sink measurement method for afforestation carbon sink and forest management carbon sink projects, comprising: (1) monitoring the project boundary; (2) monitoring the baseline IoT; (3) monitoring the project IoT; (4) monitoring the real-time total carbon stock and carbon change; (5) determining the monitoring end and monitoring the automatic period. The invention dynamically obtains the baseline and project carbon density by deploying carbon layer carbon density IoT monitoring sample plots. Combining the division and area computation of baseline carbon layers, remote sensing monitoring of project carbon layer changes, the invention dynamically updates the project carbon layer area, dynamically and periodically obtains the baseline and project carbon layer total carbon stock, the total carbon stock and the carbon change within the project boundary, which significantly improves monitoring timeliness and precision for projects, while reducing monitoring costs, making it suitable for large-scale promotion and application. |
US12118570B2 |
Prospective client intake and assignment system
Methods and systems for automatically interviewing and evaluating prospective clients for engagement by a law firm. Through a virtual agent interface a prospective client is engaged in conversation to elicit information useful in determining whether the prospective client is suitable for an engagement. Information obtained from the prospective client is evaluated to identify likely causes of action, which are scored and assessed against engagement criteria. If the scoring and assessment reveal that the prospective client's likely cause of action is suitable for engagement, an engagement process is initiated, otherwise, the interview continues in an attempt to identify other potential causes of action and/or additional facts for reassessing the initially identified potential cause of action. If one or more potential causes of action score sufficiently high enough to warrant engagement, an engagement process is initiated, otherwise a non-engagement procedure with the prospective client is performed. |
US12118568B2 |
Self-provisioning humanoid for automated customer support
A computer executed process for mimicking human dialog, referred to herein as a “humanoid” or “humanoid system,” can be configured to provision itself to provide automated customer support. The humanoid can be trained for a customer support campaign. The training can include the humanoid observing communications between a human operator and at least one customer regarding at least one customer support case in the customer support campaign. The humanoid can assess at least one confidence level of the humanoid for the customer support campaign to determine whether the humanoid is adequately trained to handle future customer support cases for the customer support campaign. The humanoid can provision itself to handle at least one future customer support case in the customer support campaign in response to determining that it is adequately trained for the customer support campaign. |
US12118567B2 |
Detecting and preventing duplicate transactions on a transaction exchange platform
Aspects described herein may relate to a transaction exchange platform using a streaming data platform (SDP) and microservices to process transactions according to review and approval workflows. The transaction exchange platform may receive transactions from origination sources, which may be added to the SDP as transaction objects. As the transactions are received, the transactions may be analyzed to detect duplicate transactions and/or errors in the transactions. The transaction exchange platform may take steps to remediate transactions that are recognized as duplicates or predicted to generate one or more errors. Similarly, the transaction exchange platform may take steps to remediate transactions that are rejected by a clearinghouse. |
US12118564B2 |
User behavior-based machine learning in entity account configuration
A flexible advance system allows users to request and receive advances instantly. The flexible advance system facilitates intra-system transfers between a third-party entity and employee accounts at a third-party system by generating and providing funding instructions to the third-party entity. Funding instructions include a funding amount that the flexible advance system predicts using one or more machine-learned models that account for seasonality and time delays. In executing the instructions from the flexible advance system, the third-party entity transfers funds to its entity account with the third-party system based on the funding amount. Once the flexible advance system receives an indication that the third-party entity has executed the instructions, the flexible advance system authorizes users of the flexible advance system to request short-term advances. The flexible advance system processes short-term advances such that corresponding funds are immediately transferred from the entity account of the third-party entity to employee accounts without delay. |
US12118563B1 |
Distributed ledger based interchange
Techniques are described for a distributed ledger based interchange system for transferring value between entities. A decentralized and distributed ledger system, such as a blockchain network, may include treasury accounts each associated with an institution that participates in the system. A particular transaction may be submitted for approval based on the votes of the peers in the distributed ledger based interchange system. If at least a threshold number of votes indicate approval, the transaction is approved. A signal may be sent to the institutional systems indicating that accounts of the sending and receiving entities may respectively be debited and credited the value of the transaction. Settlement may occur between the treasury accounts of the sending and receiving institutions on the distributed ledger system, and settlement may be performed in real time with respect to the transaction. |
US12118556B2 |
Database configuration for asset transfers
An example operation may include one or more of receiving, by a blockchain node of a permissioned blockchain network, a request to transfer an asset from an asset provider to an asset requester, determining the request is valid, and in response validating one or more of an asset requester and an asset provider associated with the request, determining a risk exposure associated with the request is acceptable and generating a blockchain transaction to a public blockchain network to transfer the asset. |
US12118552B2 |
User profiling based on transaction data associated with a user
A user profile scoring platform may analyze a transaction log of a transaction account of a user to determine, based on transactions of the transaction log, a qualification status of the user, wherein the qualification status indicates that a characteristic of the user satisfies a threshold qualification metric. The user profile scoring platform may determine, based on the qualification status, a transaction-based score associated with the user, wherein the transaction-based score is determined using a transaction log analysis model. The user profile scoring platform may obtain, based on receiving the access information, a user score associated with a user transaction history that is associated with a plurality of transaction accounts that are associated with the user and different from the transaction account. The user profile scoring platform may perform an action based on the transaction-based score and the user score. |
US12118551B2 |
Systems and methods for single message transactions with batch settlement
A computer-implemented method for processing single message transactions with batch settlement may include receiving a dual-message transaction from a merchant, converting the received dual-message transaction to a single-message transaction, setting a flag on the converted single-message transaction indicating the conversion to a single-message transaction, receiving a batch settlement file from the merchant, for each transaction in the batch settlement file, determining whether the single-message transaction conversion flag is set, upon determining that the single-message transaction conversion flag is not set, storing the transaction for later processing, and upon determining that the single-message transaction conversion flag is set, sending the transaction to a payment network. |
US12118547B1 |
Dynamic code payment card verification methods and systems
Embodiments described herein disclose methods and systems for authorizing a payment card transaction using dynamic codes. The system can issue a payment card to a user. The payment card can be associated with a verification application accessible by a device associated with the user. The verification application can include a dynamic code associated with the payment card. The system can receive a request for authorization for a transaction using the payment card from a remote computing device, and the request can include an identifier of the payment card and a verification code. The system can identify the payment card using the identifier of the payment card and can compare the verification code with a value of the dynamic code at the time of the transaction. The system can authorize the transaction when the verification code matches the value of the dynamic code at the time of the transaction. |
US12118545B2 |
Key-value map commitments system and method
A method includes a validation computer receiving an authorization request message comprising a user state and a user proof from a user device. The user state comprises first and second user state elements. The user proof comprises first, second, and third user proof elements. The validation computer computes a first verification value by multiplying the first user proof element raised to the power of the second user state element, and the second user proof element raised to the power of the first user state element. The computer computes a second verification value by raising the second user proof element to the power of the second user state element. The computer compares the first verification value to a first accumulated state element of an accumulated state. The compares the second verification value to a second accumulated state element. The validation computer authorizes the authorization request message based on the comparison steps. |
US12118544B2 |
Blockchain tracking of a physical diamond token
A diamond asset comprising one or more diamonds and an encryption chip is used to asset-back a cryptographic token that can be used to conduct transactions. A user device executes an application programming interface configured to access a blockchain that stores a smart contract associated with the cryptographic token backed by the value of the one or more diamonds. When the user device receives an instruction to perform a transaction related to the cryptographic token, the user device causes the encryption chip to sign the smart contract. In response to determining that the smart contract was signed by the encryption chip, the user device causes the transaction to be performed. |
US12118543B2 |
Updating automatic payment method to avoid service disruption
A device may obtain access to an email account associated with a user. The device may scan a set of emails in the email account associated with the user for one or more indicators related to an expiration status of an automatic payment method. The device may detect one or more emails in the scanned set of emails that contain the one or more indicators related to the expiration status of the automatic payment method. The device may perform one or more actions to maintain continuous service for one or more recurring payment accounts associated with the automatic payment method. The device may communicate with one or more merchant devices associated with the one or more recurring payment accounts to automatically replace the automatic payment method with an updated payment method. |
US12118542B2 |
COIN operated digital payments hub
A system and method are described for a COIN-based payment event data management system. The COIN can provide a consolidated source of accounting for all parties to a transaction by providing for multi-directional translation, resolution, accounting and other functions. A COIN server can interface with buyers and sellers, requestors and debtors, and other parties. The COIN server can communicate with different API's of various parties. Functionality can include means of analyzing payment and transaction behavior. |
US12118539B2 |
Standardisation method and apparatus for erroneous transactions
A standardisation method and apparatus for erroneous transactions: receiving an erroneous service invocation request sent by a client terminal, and converting the erroneous service invocation request into a standard format exchange message; on the basis of a preset certificate database, encrypting sensitive data areas in the exchange message to generate encrypted message areas; signing key fields in the exchange message to generate signed message areas; and, by means of a two-way authenticated secure communication link, sending the exchange message comprising the encrypted message areas and the signed message areas to a UnionPay erroneous transaction network. The embodiments provide a unified interface for interfacing client terminals to access a UnionPay erroneous transaction network; each UnionPay member institution only needs to invoke the interface assembly provided in the embodiments of the present invention to be able to interface with the UnionPay erroneous transaction network, improving development efficiency and operating stability. |
US12118535B2 |
System and techniques for detecting the orientation of a transaction card
Disclosed is a contactless card, and a system in which the contactless card may be used. The contactless card may include a chip component, a communication interface, processing circuitry, and electromagnetic field sensing circuitry. The electromagnetic field sensing circuitry of the contactless card may be operable to provide orientation signals to the processing circuitry when the contactless card is in proximity to an oscillating electromagnetic field output by a card reader device. The processing circuitry of the contactless card may be operable to receive the orientation signals. An orientation of the contactless card with respect to the mobile device may be determined. An orientation indication signal may be generated based on the determined orientation, and a haptic indication, an audio indication, a visual indication or a combination directing movement of the contactless card in a particular direction may be output. |
US12118533B1 |
Behavior based allocation of payment tokens
The disclosure describes a campaign director (CD) system associated with a financial institution and an associated campaign manager (CM) unit executing on a mobile device used to facilitate behavior based allocation of payment tokens and activation of payment transactions based on the tokens. The CM unit of the mobile device may be programmed by the CD system at the financial institution to generate tokens according to a token generation model that is a function of financial behavior history associated with a credit card account. When a credit card is used to initiate a payment transaction with a merchant, the CM unit of the mobile device may generate a token for the payment transaction and send the token to the CD system at the financial institution. The CD system then determines whether to activate the payment transaction based on the token and merchant data associated with the payment transaction. |
US12118530B2 |
Advanced methods, systems and devices for registering information in a database
A method and system are provided for registering, in a database, a transaction between two parties, and for allowing a third party to cause an action to be performed in relation to the transaction. The method comprise a step of creating (s2) a transaction record, steps of electronically signing (s4, s12, s18, s26) the transaction record, steps of registering (s6, s14, s20, s28) the transaction record in the database, steps of issuing a notification (s8, s16, s22) that the transaction record has been registered in the database, steps of verifying (s10, s24) the transaction record by the third party, and a step of causing (s30), by the third party, an action to be performed based on transaction content information. |
US12118529B2 |
Systems and methods for reader device registration, use and management
Embodiments of the invention include a method of performing a payment transaction comprising receiving transaction data by a PIN pad terminal from a point-of-sale terminal, and receiving tender from a customer, by the PIN pad terminal. Tender data and the transaction data are sent to a service gateway, by the PIN pad terminal. The service gateway collects metadata from the tender data and the transaction data. The tender data is sent by the PIN pad terminal to the point-of-sale terminal, which sends the tender data and the transaction data to a merchant gateway for approval or denial of the tender data. The tender data sent to the POS may be encrypted. The service gateway may provide customer and merchant analytics based on the metadata, as well as perform security/fraud checks, BIN management, PIN pad management. Systems are also disclosed. |
US12118521B2 |
Real-time transaction and receipt processing systems
A transaction processing system for preforming one or more steps of a method is disclosed. The system may receive user receipt preferences including rules specifying whether or not a user wants a receipt. The system may also receive (i) a purchase authorization request associated with an attempted purchase and (ii) user device location data. The system may further set a receipt flag corresponding to the receipt status. If the system determines that the transaction is to be authorized, it attaches the receipt flag to the authorization message and transmits the authorization message to the merchant. Alternatively, if the system determines that the transaction is not to be authorized, it attaches the receipt flag to the cancellation message and transmits the cancellation message to the merchant. |
US12118516B2 |
Data center guide creation for augmented reality headsets
A method, computer program product and computer system to automatically generate augment reality-based guides for maintenance procedures is provided. A processor retrieves non-structured text instructions to perform a maintenance procedure on a device within a data center. A processor extracts at least one imperative statement from the non-structured text instructions. A processor identifies a named entity in the extracted at least one imperative statement from the non-structured text instructions. A processor generates a mapping of the named entity to be used by an augmented reality device, where the mapping indicates the position of the named entity on the device within a data center. A processor provides to the augmented reality device the extracted at least one imperative statement and the mapping of the named entity, where the augmented reality device displays the extracted imperative statement and the mapping of the named entity to a user of the augmented reality device. |
US12118513B1 |
Providing generative artificial intelligence (AI) content based on existing in-page content in a workspace
A method for creating in-block content presented in a block on a page of a workspace. The block is configured to initiate a generative process to create in-block content of a particular type. The method includes determining a selection of in-page content based on a location of the block relative to the in-page content and the particular type of in-block content. The method can include causing a generative function to create generative content of the particular type based on the selection of the in-page content. The method can further include populating a block area to present the generative content. |
US12118511B2 |
History management apparatus, history management method, and program
A history management apparatus includes a first memory that stores an inventory transaction history information record associating the quantity of a management target with a unique group number, and a control unit that stores, in a second memory, an inventory transaction history detailed information record assigning a unique sequence number and a first flag indicating an existence of the management target to each preset quantity of the management target with respect to the quantity of the management target, stores, in response to a decrease in the quantity of the management target, the decreased quantity in association with a new group number in the first memory, and changes, to a second flag indicating an absence of the management target, each first flag included in inventory transaction history detailed information records which are stored in the second memory and the number of which is equal to the decreased quantity. |
US12118510B2 |
Intelligent marketing and advertising platform
An intelligent marketing and advertising platform which provides an innovative merchandising solution for retailers by effectively transforming the glass surface of retail product containers (such as cooler doors) into a non-transparent display of planograms. The merchandising solution provides for digital planograms and pricing management, real time promotional updates and sales data, etc. This is accomplished by converting/transforming the simple glass surface of a retail product container (such as cooler/freezer doors) into digital “smart” screens that provide for innovative advertising solutions. The cooler/freezer doors are configured to use at least one camera to capture images when the doors are opened, in order to effectively take inventory of what is inside the cooler/freezer. |
US12118509B2 |
Systems and methods of product recognition through multi-model image processing
In some embodiments, systems and methods are provided to recognize products in a physical facility through a portable device that comprises a decision control circuit configured to: process each frame of the subset of frames by multiple modeling techniques each relative to a corresponding image attribute and obtain a corresponding product identification probability; determine corresponding aggregated identification probabilities of the first product based on the product identification probabilities; collectively evaluate the aggregated identification probabilities and identify when a predefined relationship with a collective threshold probability exists; and cause an image of the first product to be displayed in response to identifying that one or more of the aggregated identification probabilities having the predefined relationship with the collective threshold probability. |
US12118508B2 |
Method and warehouse for delivery order processing
A method for operating an order fulfilment warehouse utilizing a gig-based labor force (e.g. freelance delivery drivers) performing picking functions in the warehouse and subsequently delivering the order to the customer. Preferably, the facility is staffed with only supervisory labor and receiving/putaway labor to replenish the warehouse inventory. The delivery driver may access an order database via a mobile application to accept a customer's online order, such as a grocery item order. The customer's order may additionally include retrieving items from another facility, such as a restaurant. The grocery order may be from a limited or dedicated warehouse facility that has a curated group of items/SKUs. The delivery driver enters the warehouse, checks in, and then proceeds to pick the order from the warehouse. The driver validates the order and then departs the facility and proceeds toward delivery of the order directly to the customer. |
US12118505B2 |
Docking smart lockers systems, methods, and devices
Disclosed herein are mobile smart lockers configured for implementation in various locations including residential locations to overcome last mile delivery challenges. Further disclosed are systems and methods for providers of geolocational sites to offer sites for acceptance and requestors of smart locker hubs to select sites for stationing mobile smart locker devices. |
US12118500B2 |
Decentralized shipping network using blockchains
Technologies are shown for shipping route selection involving receiving sender and recipient shipping information for an item to be shipped and obtaining shipping route options for the item based on the sender and recipient shipping information. The route options are provided for display and selection of an option. A routing data block is created for the item at an address on a blockchain that stores shipping information for each stage of the selected route. A shipping tag is encoded with the blockchain address and attached to the item. The tag can be scanned to obtain the blockchain address and request information for a next stage of the shipping route from the block. The next shipping information from the block is received and utilized to ship the item to a next geolocation. The next shipping information can be determined based on current conditions, such as weather, pricing and availability. |
US12118499B2 |
Apparatuses, computer-implemented methods, and computer program products for automatic item searching and verification
Embodiments of the present disclosure provide for automatic item searching and verification. In example contexts, embodiments provide such functionality to improve the accuracy and efficiency of item searching during item loading and/or unloading, such as when delivering packages. Some embodiments provide for capturing an image, or set of images, identifying relevant items represented in the captured images, generating augmented reality elements associated with such relevant items, and rendering the augmented reality elements in an augmented reality environment, which can be maintained as the user continues to perform user action. Some embodiments additionally or alternatively detect improper actions based on captured image(s), and generate and provide notifications to a user for viewing. |
US12118493B2 |
Interactive graphical user interface for insurance claim handlers including identifying insurance claim risks and health utilizing machine learning
A system to provide an automated risk relationship resource allocation tool via back-end application computer server of an enterprise. A resource allocation data store may contain electronic records representing requested resource allocations between the enterprise and a plurality of entities. The server may receive an indication of a selected requested resource allocation and retrieve, from the resource allocation data store, the electronic record associated with the selected requested resource allocation. The server may execute a machine learning algorithm to generate an overall score for the selected requested resource allocation and generate a request health index via an analytic model for the entity associated with the selected requested resource allocation. The system may then support a graphical interactive user interface display via a distributed communication network, the interactive user interface display providing resource allocation data including the overall score and the request health index. |
US12118492B2 |
Methods and apparatus for data-driven vendor risk assessment
The techniques described herein relate to methods, apparatus, and computer readable media configured to provide data-driven vendor risk assessment. In some aspects, a distributed computer system is provided that includes an interface component adapted to obtain security status information from at least two software application components, the at least two software application components being used by an organizational entity. The distributed computer system also includes a monitoring component adapted to receive the security status information from the at least two software application components and to determine a security status of the organizational entity based on the received security status information. |
US12118491B2 |
Rapid operational analysis application for supply chain management
An improved industrial process includes: receiving in a processor a plurality of data items related to an industrial process, each data item being time stamped so that each data item includes time stamp and industrial process data regarding an industrial process occurring at a time; analyzing the plurality of data items in a processor via a plurality of rules, the analyzing identifying deviations of at least one variable of the plurality of data items from a mean value of the variable; setting a statistical control parameter as an achievable quantity for the at least one variable; identifying the plurality of data items where the at least one variable exceeds the statistical control parameter to define at least one excess; and eliminating the at least one excess by shifting resources or altering the process related to the at least one quantity, the shifting or altering being a function of the analyzing of the plurality of data items. Methods related to achievable opportunities for improvement and to identifying contributing factors are also provided. |
US12118490B1 |
Workflow insight engine and method
A computer-implemented method is disclosed for generating insights for improving software workflows, where a workflow corresponds to a sequence of interactions of a user with one or more different user interface screens of software applications to perform a task. Attributes of the workflow associated with quality, efficiency and other attributes are measured by scoring aspects of the workflow and generating reports. The reports may also provide insights on opportunities to automate workflows. |
US12118489B2 |
Modular system for food assembly
One variation of a food production station includes: a manual assembly zone; an autonomous assembly zone; and a controller. The manual assembly zone includes: a prep surface; and a receptacle configured to receive a sequence of food hoppers configured to store ingredients for manual preparation of food products on the prep surface. The autonomous assembly zone includes: a sequence of module housings supporting the prep surface and configured to house a sequence of food dispensing modules configured to dispense ingredients into food containers; and a conveyor located within the sequence of module housings and configured to transfer food containers along the sequence of food dispensing modules for dispensation of ingredients into food containers. The controller is configured to: receive food orders; and coordinate motion of the conveyor and trigger the sequence of food dispensing modules to dispense ingredients into food containers to assemble food products according to food orders. |
US12118485B2 |
Computer system and method for tracking the impact of a change event
Disclosed herein is a software application for tracking the impact of a change event on a budget for a project. In one aspect, a computing system may receive user input defining a given change event that comprises a line item, and setting an estimated revenue for the line item to a dynamic amount that is to track a most-firm cost for the first line item. Based on the received user input and the estimated revenue for the line item, the computing system may create a data record that represents the given change event, detect a more-firm cost available for the line item, and based on detecting the more-firm cost available for the line item, (i) determine an updated most-firm cost for the line item and (ii) determine an updated estimated revenue for the line item to track the updated most-firm cost for the line item. |
US12118484B2 |
Automated services exchange
Methods, apparatus, and processor-readable storage media for providing an automated services exchange are described herein. An example computer-implemented method includes obtaining provider requests from one or more service providers, wherein each of the provider requests comprises an indication of at least one type of service provided by the corresponding service provider and attributes associated with the at least one type of the service; processing the provider requests, wherein the processing for a respective one of the provider requests comprises generating a corresponding set of metrics associated with the at least one type of service and the attributes of the respective provider request; and matching a given one of the provider requests to at least one consumer request based at least in part on: the processing and constraints identified in the at least one consumer request with respect to at least a portion of the attributes of the given provider request. |
US12118477B2 |
Facilitating hydrocarbon exploration from earth system models
A system includes a processor and a memory. The memory includes instructions that are executable by the processor to access training data of a modern feature of interest from direct observations, remotely determined data, or a combination thereof. The instructions are also executable to compile parameter data from at least one model simulation that impacts the modern feature of interest. The instructions are executable to train a machine-learning model to generate a predictive model that matches the training data of the modern feature of interest using the compiled parameter data as input. Furthermore, the instructions are executable to predict a feature of interest in a past time period using the predictive model and at least one historical model simulation that impacts the feature of interest. Additionally, the instructions are executable to execute a processing operation for facilitating hydrocarbon exploration based on the predicted feature of interest from the predictive model. |
US12118475B2 |
Computer modeling for detection of discontinuities and remedial actions in fastening systems
Disclosed herein are systems and methods for identifying welding anomalies and discontinuities in stud welding using AI models. Instead of conventional welding accuracy methods (e.g. destructive and/or image generation methods) a processor may communicate with one or more sensors associated with a joining machine to retrieve joining data and attributes. The processor may then execute an AI model that is trained based on previously performed stud welding, their corresponding welding attributes, and their corresponding discontinuities and/or anomalies. The processor may execute the AI model using data retrieved from the sensors and may calculate a likelihood of a discontinuity and discontinuity attributes, such as, location, depth, and the like. The processor may also execute a second AI model to identify an appropriate course of action to remedy the identified/predicted discontinuity. |
US12118474B2 |
Techniques for adaptive pipelining composition for machine learning (ML)
The present disclosure relates to systems and methods for an adaptive pipelining composition service that can identify and incorporate one or more new models into the machine learning application. The machine learning application with the new model can be tested off-line with the results being compared with ground truth data. If the machine learning application with the new model outperforms the previously used model, the machine learning application can be upgraded and auto-promoted to production. One or more parameters may also be discovered. The new parameters may be incorporated into the existing model in an off-line mode. The machine learning application with the new parameters can be tested off-line and the results can be compared with previous results with existing parameters. If the new parameters outperform the existing parameters as compared with ground-truth data, the machine learning application can be auto-promoted to production. |
US12118472B2 |
Methods and systems for training and providing a machine learning model for audio compensation
A computer implemented method for training a machine learning model for audio compensation includes: receiving 3D models of a plurality of rooms, each of the 3D models comprising at least one sound source and at least one acoustic property; receiving a plurality of impulse responses at a listening position in each of the plurality of rooms, training the machine learning model for audio compensation using at least the plurality of impulse responses as input. Methods and systems using the disclosed computer implemented method and its features are also disclosed. |
US12118471B2 |
Mitigation for prompt injection in A.I. models capable of accepting text input
A system for use with an artificial intelligence (AI) model configured to accept text input, such as generative pre-trained transformer (GPT), that detects and tags trusted instructions and nontrusted instructions of an input provided by a user responsive to an AI model prompt. The system uses reinforcement learning (RL) and a set of rules to remove the untrusted instructions from the input and provide only trusted instructions to the AI model. The input is represented as tokens, wherein the trusted instructions and the untrusted instructions are represented using incompatible token sets. |
US12118470B2 |
System for predicting aggressive driving
A system for predicting aggressive driving behavior for a driver of a vehicle includes a first edge computing device that can acquire spatial-temporal data for the vehicle from one or more sensors that are part of traffic infrastructure. The first edge computing device includes a processor and instructions executable by the processor that execute deep learning methods on the data from the sensors to cluster the data as a driving score. A trained model is applied to the driving score to determine an aggressive driving behavior risk level, and the first edge computing device is configured to predict the aggressive driving behavior based on the aggressive driving behavior risk level. |
US12118467B2 |
Data processing method, image display method, data processing device, and image display device
A reduction in concentration due to a change in an emotion is inhibited. A change in an emotion of the human is suitably reduced. Part (in particular, an eye or an eye and its vicinity) or the whole of a user's face is detected, a feature of the user's face is extracted from data on the detected part or whole of the face, and an emotion of the user is estimated from the extracted feature of the face. In the case where the estimated emotion is an emotion that might reduce concentration, for example, a stimulus is applied to the sense of sight, the sense of hearing, the sense of touch, the sense of smell, or the like of the user to recover the concentration of the user. |
US12118463B1 |
Weight value decoder of neural network inference circuit
Some embodiments provide a method for a neural network inference circuit that executes a neural network including multiple computation nodes at multiple layers. Each computation node of a set of the computation nodes includes a dot product of input values and weight values. The method reads a set of encoded weight data for a set of weight values from a memory of the neural network inference circuit. The method decodes the encoded weight data to generate decoded weight data for the set of weight values. The method stores the decoded weight data in a buffer. The method uses the decoded weight data to execute a set of computation nodes. Each computation node of the set of computation nodes includes a dot product between the set of weight values and a different set of input values. |
US12118462B2 |
System, method, and computer program product for multivariate event prediction using multi-stream recurrent neural networks
Described are a system, method, and computer program product for multivariate event prediction using multi-stream recurrent neural networks. The method includes receiving event data from a sample time period and generating feature vectors for each subperiod of each day. The method also includes providing the feature vectors as inputs to a set of first recurrent neural network (RNN) models and generating first outputs for each RNN node. The method further includes merging the first outputs for each same subperiod to form aggregated time-series layers. The method further includes providing the aggregated time-series layers as an input to a second RNN model and generating final outputs for each RNN node of the second RNN model. |
US12118445B1 |
Temporal-based deformable kernels
Techniques are disclosed for implementing a convolutional neural network that determines an offset field for deforming a kernel to be used in a convolution. The offset field is temporally-based, at least in part, on data generated at an earlier time. Furthermore, techniques are disclosed for using sensor data to train a neural network to learn shapes or configurations of such deformed kernels. The temporal-based deformable convolutions may be used for object identification, object matching, object classification, segmentation, and/or object tracking, in various examples. |
US12118443B2 |
Machine-learning based gesture recognition using multiple sensors
A device implementing a system for machine-learning based gesture recognition includes at least one processor configured to, receive, from a first sensor of the device, first sensor output of a first type, and receive, from a second sensor of the device, second sensor output of a second type that differs from the first type. The at least one processor is further configured to provide the first sensor output and the second sensor output as inputs to a machine learning model, the machine learning model having been trained to output a predicted gesture based on sensor output of the first type and sensor output of the second type. The at least one processor is further configured to determine the predicted gesture based on an output from the machine learning model, and to perform, in response to determining the predicted gesture, a predetermined action on the device. |
US12118441B2 |
Knowledge augmented sequential decision-making under uncertainty
One or more systems, devices, computer program products and/or computer-implemented methods of use provided herein relate to outputting an optimal decision policy base on informal knowledge input. A system can comprise a memory that stores computer executable components, and a processor that executes the computer executable components stored in the memory, wherein the computer executable components can comprise an analysis component that analyzes an input dataset comprising a constraint in a natural language form, and an augmentation component that generates an influence mapping comprising a constraint variable based on the constraint input. In an embodiment, an input dataset employed to support the influence mapping can comprise time-stamped tuple data comprising a state, an action and a reward. In an embodiment, an inference engine can generate an output policy in response to the constraint input and which output policy can be based on the constraint input and constraint variable. |
US12118440B2 |
Automated order execution based on user preference settings utilizing a neural network prediction model
A computer-implemented method comprising receiving user preference information, based on the received user preference information, determining one or more user settings, processing data to determine a data condition, wherein, to determine the data condition, a plurality of alternate data inputs of different types are processed and normalized, and applied to a series of operations to generate a forecast having a degree of confidence, and the data condition is compared with third party information; providing an electronic notification indicative of the data condition to the user device, wherein the electronic notification includes the data condition compared with the third party information, a confidence indicator associated with the data condition, and a user prompt; in response to a single user input, the user device generating an instruction to execute the user request; and based on the instruction, executing the user request based on the determined one or more user settings. |
US12118437B2 |
Active learning via a surrogate machine learning model using knowledge distillation
Systems and methods of training a model is provided. The system can identify an unlabeled data set with phrases received by a virtual assistant that interfaces with one or more virtual applications to execute one or more functions. The system can query the unlabeled data set to select a first set of phrases based at least on one or more confidence scores output by a surrogate model that corresponds to a third-party model maintained by a third-party system. The system can receive, via a user interface, indications of functions to be executed by the one or more virtual applications responsive to the selected first set of phrases. The system can provide, to the third-party system, the indications of functions for the selected first set of phrases to train the third-party model and configure the virtual assistant to execute a function responsive to a phrase in the first set of phrases. |
US12118432B2 |
Method for synthesizing product of Pauli rotations in a quantum circuit and process for synthesizing quantum circuits for Trotter-Suzuki n-order expansion
A method for generalizing an algorithm configured to synthesize a diagonal product of Pauli rotations to synthesize a product of Pauli rotations comprising X, Y and Z rotations, the method comprising: Providing a table of p number of rows and m number of columns, where p is a number of qubits and m a number of rotations in the quantum circuit, and where the table comprises X, Y, Z or I entry corresponding to the respective rotations of the qbits; Determining a pivot row, and recursively, until all rotations of the product of Pauli rotations are 1-qubit rotations: Determine a target row, Conjugate the target row with the pivot row by insertion of predetermined quantum gates on the qubits corresponding to the target row and/or pivot row by calling, at each recursive call, entries of the same type of the pivot row and by always calling first the identity entry. |
US12118428B2 |
Using distance sensor delta to determine when to enter presentation mode
An apparatus includes a distance sensor, an image sensor, one or more processors, and memory. The memory stores one or more programs configured for execution by the one or more processors. The apparatus measures a baseline depth. The apparatus measures a first depth subsequent to measuring the baseline depth. The apparatus determines that the first depth is different from the baseline depth. In response to the determination, the apparatus activates a read cycle. Subsequent to activating the read cycle, the apparatus measures a second depth. The apparatus detects that the second depth is within a threshold range of the baseline depth. In response to the detection, the apparatus deactivates the read cycle. |
US12118426B1 |
Bioptic barcode reader with rotated field-of-view
An example bioptic barcode reader includes a housing having a lower housing portion with an upper surface facing a product scanning region, an upper housing portion extending above the lower housing portion, a generally horizontal window positioned at the upper surface, a generally upright window positioned in the upper housing portion, an imaging assembly with a primary field-of-view (FOV), and a first mirror configured to redirect a first portion of the primary FOV towards the upper housing portion. An optical element arrangement is configured to rotate a second portion of the primary FOV by 90 degrees about a central axis of the second portion of the primary FOV. |
US12118422B2 |
Personal identification medium
A personal identification medium is provided that includes a decorative layer provided with an antenna, and a laser marking layer in which a personal information marking portion is marked on the decorative layer, where the antenna includes a non-decorative portion and a decorative portion connected to the non-decorative portion, and the personal information marking portion formed on the laser marking layer overlaps at least a portion of the decorative portion formed on the decorative layer. |
US12118410B2 |
Deletion of events based on a plurality of factors in a connected car computing environment
A computational device maintains indications of a plurality of events associated with navigation of a plurality of vehicles in a geographical area. A determination is made as to whether to delete an event from the plurality of events, by performing: transmitting, by an event deletion manager, a query to a plurality of deletion determination agents on whether to delete the event; receiving, by the event deletion manager, an indication from the plurality of deletion determination agents whether to delete the event; and aggregating, by the event deletion manager, indications received from the plurality of deletion determination agents to determine whether to delete the event. |
US12118407B2 |
High availability multi-single-tenant services
A method includes executing a pool of primary virtual machine (VM) instances, each primary VM instance executing a corresponding individual service instance, and instantiating a shared secondary VM instance. The method includes identifying unavailability of a particular primary VM instance of the pool of primary VM instances, and causing the corresponding individual service instance executing on the particular primary VM instance to failover to the shared secondary VM instance to commence executing the corresponding individual service instance. The method includes, after the failover to the shared secondary VM instance, determining a difference between a current resource level of the shared secondary VM instance and a target resource level associated with the corresponding individual service instance, and adjusting the current resource level of the secondary VM instance based on the difference. |
US12118406B2 |
Interactive augmented reality based optimization of machine learning model execution on hybrid cloud
According to one embodiment, a method, computer system, and computer program product for cloud service brokerage. The embodiment may include receiving a data set and user defined contextual parameters relating to a machine learning (ML) problem of a user to be performed on the data set. The embodiment may include identifying a resource requirement of the ML problem and available resources. The embodiment may include enabling user configuration of the contextual parameters in an interactive augmented reality (AR) view. The embodiment may include identifying a set of clusters upon which to execute computing tasks of the ML problem. The set of clusters is identified out of the available resources. The embodiment may include implementing a ML evaluation process to determine an optimized load distribution model for execution of the computing tasks within the set of clusters. The embodiment may include implementing the optimized load distribution model. |
US12118402B2 |
Utilizing key value-based record distribution data to perform parallelized segment generation in a database system
A record processing and storage system is operable to receive a set of records for storage. The set of records are included in a plurality of pages stored by a page storage system, and each page of the plurality of pages includes a plurality of records in the set of records. Key value-based record distribution data is generated for the set of records based on a plurality of cluster key values of the set of records. A cluster key domain spanned by the plurality of cluster key values is divided into a plurality of key space sub-intervals based on the key value-based record distribution data. The set of records are segregated into a plurality of row subsets corresponding to the plurality of key space sub-intervals. A plurality sets of segments are generated by processing the plurality of row subsets in parallel. |
US12118401B1 |
Digital processing systems and methods for facilitating the development and implementation of applications in conjunction with a serverless environment
Systems, methods, and computer program products allow usage of shared software resources. A first application to be run as a first image includes first code and first metadata information including a first set of functionalities, and first specific settings for a first set of functionalities. A mapping of the first set of functionalities to a first list of shared software resources enables the first application to accomplish the first set of functionalities. A second application to be run as a second image includes a second code and second metadata information including a second set of functionalities and second specific settings for a second set of functionalities. A mapping of the second set of functionalities to a second list of shared software resources enables the second application to accomplish the second set of functionalities. The first and second lists of shared software resources have at least one shared resource in common. |
US12118399B2 |
Resource allocation method, device and audio-visual playback terminal
Provided are a method and apparatus for resource allocation and an audiovisual playback terminal. The resource allocation method is applicable to a resource allocation system in an audiovisual playback terminal. The audiovisual playback terminal includes multiple device entities. The resource allocation system includes a resource configurator and several service instances. The method includes: causing the resource configurator to respond to a path requesting request from at least one target service instance, each of the path requesting requests containing a device entity list required by the target service instance in implementation of a service function; allocating device entities according to a preset resource allocation rule according to the instance attribute and the device entity list of each target service instance to create a path for each target service instance, so that the target service instance can invoke the device entities in the corresponding path to achieve the corresponding service function. |
US12118398B2 |
Scheduling heterogeneous computation on multithreaded processors
Aspects include computation systems that can identify computation instances that are not capable of being reentrant, or are not reentrant capable on a target architecture, or are non-reentrant as a result of having a memory conflict in a particular execution situation. For example, a system can have a plurality of computation units, each with an independently schedulable SIMD vector. Computation instances can be defined by a program module, and a data element(s) that may be stored in a local cache for a particular computation unit of the plurality. Each local cache does not maintain coherency controls for such data elements. During scheduling, a scheduler can maintain a list of running (or runnable) instances, and attempt to schedule new computation instances by determining whether any new computation instance conflicts with a running instance and responsively defer scheduling. Such memory conflict checks can be conditioned on a flag or other indication of the potential for non-reentrancy. |
US12118396B2 |
Computing resource autoscaling based on predicted metric behavior
Methods, systems, apparatuses, and computer-readable storage mediums described herein are configured to automatically allocate or deallocate computing resources based on a prediction of performance metrics behavior. For instance, the historical behavior of compute metrics (or a time series obtained therefor) is analyzed to detect a seasonality (i.e., a seasonal pattern) and a trend therefor. A prediction of the metrics' behavior for a future time frame is determined based on the seasonality and the trend. Based on the prediction, computing resources are allocated or deallocated at or prior to the future time frame occurring. For example, if a prediction is made that a particular metric will increase, additional compute resources are allocated to handle the increase ahead of the predicted metric increase. If a prediction is made that a particular metric will decrease, compute resources are deallocated at the time the metric is predicted to decrease. |
US12118386B2 |
Techniques for container scheduling in a virtual environment
The present disclosure relates generally to virtualization, and more particularly to techniques for deploying containers in a virtual environment. The container scheduling can be based on information determined by a virtual machine scheduler. For example, a container scheduler can receive a request to deploy a container. The container scheduler can send container information to the virtual machine scheduler. The virtual machine scheduler can use the container information along with resource utilization of one or more virtual machines to determine an optimal virtual machine for the container. The virtual machine scheduler can send an identification of the optimal virtual machine back to the container scheduler so that the container scheduler can deploy the container on the optimal virtual machine. |
US12118385B2 |
System and method for real-time data dependency management and task orchestration
Various methods, apparatuses/systems, and media for real-time data dependency management are disclosed. A processor extracts data entity events from a plurality of data sets from upstream application; identifies dependent data entities for each data entity event based on initializing a data dependency graph with parent data nodes that represent all entities and their respective child data dependencies; publishes a data dependency event for each required parent data node in the data dependency graph; publishes a data dependency ready event for a certain parent node based on determining the certain parent node is configured for event publishing and that the certain parent node's child data dependencies are available; transmits the data dependency ready event to a task orchestration service platform; and orchestrates, upon receiving the data dependency ready event by the task orchestration service platform, a process instance and executes tasks for a corresponding data entity based on the process instance. |
US12118382B2 |
Asynchronous data movement pipeline
Apparatuses, systems, and techniques to parallelize operations in one or more programs with data copies from global memory to shared memory in each of the one or more programs. In at least one embodiment, a program performs operations on shared data and then asynchronously copies shared data to shared memory, and continues performing additional operations in parallel while the shared data is copied to shared memory until an indicator provided by an application programming interface to facilitate parallel computing, such as CUDA, informs said program that shared data has been copied to shared memory. |
US12118381B2 |
Extraction of side channel information from multithreaded processors based on processor resource contention
Systems and methods are disclosed to implement a thread sensor generation system to generate thread sensors for extracting side channel information about other executing threads on a multithreading CPU. In embodiments, the system generates a set of sensors for evaluation. Each sensor may include a sequence of arithmetic or logic operations between variables or constants, which will cause a particular resource usage pattern by the CPU. The sensors are executed on the CPU in parallel with instances of a victim thread to measure an execution slowdown profile of the sensor thread caused by CPU resource conflicts with the victim thread. Based on the execution slowdown profiles, a sensitivity metric is calculated for each sensor, which is used to select the best sensor(s) for the victim thread. Sensors generated using the disclosed techniques can be used to extract secret information via side-channel attacks on currently available multithreaded processors. |
US12118377B2 |
Transition to modern management using managed virtual machines
Examples of enterprise management using managed virtual machines are described. A host user context configuration can be received from a host management agent. The host user context configuration can include one or more policies. A managed virtual machine user context configuration can be received from a guest management agent within a managed virtual machine. A portion of the host user context configuration can be processed using a translation matrix to identify a configuration service provider (CSP)-based profile that is mapped to a policy from the host user context configuration. A command to enforce the CSP-based profile on the managed virtual machine can be transmitted. |
US12118371B2 |
Assisting users with personalized and contextual communication content
In one embodiment, a method includes receiving one or more voice inputs from a first user, determining a first language register associated with the first user based on the one or more voice inputs, selecting a second language register for a voice response based on the one or more voice inputs, generating the voice response based on the second language register, and providing the voice response in response to the one or more voice inputs. |
US12118370B2 |
Computing network for implementing a contextual navigation and action user experience framework and flattening deep information hierarchies
A contextual navigation and action user experience framework that facilitates workflows across multiple contexts and levels of object hierarchy is disclosed. Exemplary features include a swapper interface, an action toolbar with contextual buttons and contextual tabs, and a toolkit that provides an overview portal to view alerts, cross reference information, and perform actions on objects and insights that are important to the user across an entire product suite. |
US12118366B2 |
Method, computer program and apparatus for performing a boot process for a system
The present invention relates to a method, to a computer program containing instructions and to an apparatus for performing a boot process for a system that supports redundant copies of boot images. In a first step, an active copy of the boot images is determined (S1). Then the active copy of the boot images is processed (S2). In response to a successful boot process, another copy of the boot images is then set (S3) as the active copy for a subsequent boot process. |
US12118365B2 |
System and method for device interoperability and synchronization
A device interoperability system for one or more user devices associated with a user, wherein said one or more user devices comprises a first user device, said device interoperability system comprising a communications module, wherein a first connection is established between said first user device and said communications module; storage associated with said device interoperability system and coupled to said communications module, wherein said storage stores an operating system, one or more programs, and data associated with the user, further wherein said operating system is booted by said first user device via said first connection; and one or more processors to support said device interoperability system. |
US12118364B2 |
Touch sensing integrated circuit system, touch sensing system, and method for writing firmware
An embodiment is able to simplify the design and manufacturing process by unifying the step of writing boot loaders to the integrated circuits. |
US12118363B2 |
Coordinated boot synchronization and startup of information handling system subsystems
An information handling system may include a processor, a subsystem communicatively coupled to the processor, and a management controller communicatively coupled to the processor and the subsystem and configured for out-of-band management of the information handling system, the management controller further configured to, in response to an alternating current power cycle of the information handling system: cause a basic input/output system of the information handling system to pause its boot process prior to enumeration of functions of the subsystem; and upon completion of the boot process of the subsystem and initialization of virtual functions of the subsystem, cause the basic input/output system to unpause the boot process in order to enumerate the functions of the subsystem including the virtual functions. |
US12118355B2 |
Cache coherence validation using delayed fulfillment of L2 requests
Methods and systems for validating cache coherence in a data processing system are described. A processing element may detect a load instruction requesting the processing element to transfer data from a global memory location to a local memory location. The processing element may apply, in response to detecting the load instruction requesting the processing element to transfer data from the global memory location to the local memory location, a delay to the transfer of the data from the global memory location to the local memory location. The processing element may execute the load instruction and transferring the data from the global memory location to the local memory location with the applied delay. The processing element may validate, in response to executing the load instruction and transferring the data with the applied delay, a cache coherence of the data processing system. |
US12118354B2 |
Virtually padding data structures
A virtual padding unit provides a virtual padded data structure (e.g., virtually padded matrix) that provides output values for a padded data structure without storing all of the padding elements in memory. When the virtual padding unit receives a virtual memory address of a location in the virtual padded data structure, the virtual padding unit checks whether the location is a non-padded location in the virtual padded data structure or a padded location in the virtual padded data structure. If the location is a padded location in the virtual padded data structure, the virtual padding unit outputs a padding value rather than a value stored in the virtual padded data structure. If the location is a non-padded location in the virtual padded data structure, a value stored at the location is output. |
US12118350B1 |
Hierarchical clustering for coding practice discovery
Code changes may be hierarchically clustered to discover coding practices. Code change graphs for changes to code in a source code repository may be clustered according to hierarchy of different features determined for the source code into groups. The code change graphs in the groups may then be indexed according their similarity with other code change graphs in the groups. Then one or more coding practices corresponding to the indexed code changes may be provided. |
US12118349B2 |
Systems and methods of context-mapped container deployment for controlled application updates
Systems and methods are provided for determining, at an operator executed on a server that is separate from an application, whether to perform an update of the application. The operator may perform an upgrade precheck when it is determined that the update to the application is to be performed. The precheck may include determining whether a database migration is to be performed as part of the update to the application, and receiving an update mode and an update type to determine the upgrade to the application. The operator may provide to the application via an application program interface (API), one or more application shutdown configuration parameters for the update based on the received update mode and update type of the upgrade precheck. The operator may deploy the update to the application based on the determined update mode and update type. |
US12118348B2 |
Method and equipment for generating a differential upgrade package, and method for upgrade
A method for generating a differential upgrade package, adaptable for upgrading a firmware of an embedded system with the differential upgrade package. A differential comparison is performed on an original file and a new file to generate global discrepancy information, comprising addresses and lengths of matched data portions in the new file and the original file. Thereafter, based on the global discrepancy information, the new file is divided into a plurality of blocks, with patch parameters for each of the blocks determined. Based on the patch parameters, a plurality of differential blocks are generated, respectively corresponding to each of the blocks. In the end, the differential upgrade package generation equipment combines the differential blocks into the differential upgrade package, allowing the embedded system to sequentially load each of the differential blocks from the differential upgrade package to upgrade the firmware. A differential upgrade package generation equipment is also provided. |
US12118345B2 |
Application status reporting via platform binary tables
Example computing device that may be implemented to report application status via platform binary tables are disclosed. In response to an upgrade log detected during a BIOS initialization, a platform binary table to a management agent stored in a memory is generated. An application status corresponding with the upgrade log is collected during the BIOS initialization. In response to an operating system initialization, the management agent is launched from the platform binary table to report the application status via the management agent. The upgrade log is removed. |
US12118341B2 |
Conversion and restoration of computer environments to container-based implementations
Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for conversion and restoration of computer environments to container-based implementations. In some implementations, an archive of configuration data for a server system is obtained, where the server system includes at least one application. A set of multiple software images is generated, where the multiple software images are generated such that they divide the functionality of at least one application among the respective containers. In generating the set of multiple software images, settings of the at least one application are identified based on the configuration data in the archive, a subset of the settings is selected for each of the software images, and the selected subsets of settings are converted into converted subsets of settings for the respective software images. |
US12118335B2 |
GUI generation system
Disclosed is a user interface (UI) Platform system for converting graphical user interface (GUI) design elements into API-integratable computer code (including native code) and logic, comprising a software tool, the software tool comprising a computer processor, a computer readable non-transitory storage medium coupled with the computer processor, and the computer readable non-transitory storage medium having a software algorithm adapted to accept at least a first graphic file representing at least a portion of a GUI defined for a known receiving device. |
US12118331B2 |
Bias unit element with binary weighted charge transfer lines
A Bias Unit Element (UE) comprises NAND gates with complementary outputs, the complementary outputs coupled through a charge transfer capacitor to a differential charge transfer bus comprising positive charge transfer lines and negative charge transfer lines. Each line of the differential charge transfer bus has a particular binary weighted line weight, such as 1, 2, 4, 2, 4, 8, and 4, 8, 16. Digital bias inputs are provided to the Bias UE NAND gate inputs, with a clear bit to initialize charge, and a sign input for enabling one of a positive Bias UE or negative Bias UE. A low-to-high transition causes a transfer of charge to the binary weighted charge transfer bus, thereby adding or subtracting a bias value from the charge transfer bus. |