Document | Document Title |
---|---|
US11677426B2 |
Integrated frequency selective limiter utilizing quadratic and an-harmonic energy scattering
An adaptive filter includes, in part, a linear filter, and a non-linear resonator coupled to the linear filter and adapted to resonate at a frequency that is an integer multiple of the frequency of a received RF signal. The adaptive filter filters out the received RF signal. The resonant frequency may be twice the frequency of the received RF signal. The adaptive filter optionally includes a second non-linear resonator coupled to the linear filter and adapted to resonate at a frequency defined by a sum of the integer multiple of the frequency of the received signal and an offset frequency. |
US11677417B2 |
Method and system for accelerated stream processing
Disclosed herein are methods and systems for hardware-accelerating various data processing operations in a rule-based decision-making system such as a business rules engine, an event stream processor, and a complex event stream processor. Preferably, incoming data streams are checked against a plurality of rule conditions. Among the data processing operations that are hardware-accelerated include rule condition check operations, filtering operations, and path merging operations. The rule condition check operations generate rule condition check results for the processed data streams, wherein the rule condition check results are indicative of any rule conditions which have been satisfied by the data streams. The generation of such results with a low degree of latency provides enterprises with the ability to perform timely decision-making based on the data present in received data streams. |
US11677413B2 |
Audio ADC for supporting voice wake-up and electronic device
Disclosed are an audio ADC for supporting voice wake-up and an electronic device. The audio ADC includes a programmable gain amplifier (PGA) having an input terminal for receiving an audio signal; a bypass switch having an input terminal for receiving an analog audio signal; and a successive approximation ADC having input terminals respectively connected to output terminals of the PGA and the bypass switch; the PGA gains and amplifies the audio signal, the bypass switch bypasses the PGA, and outputs the analog audio signal; the successive approximation performs analog-to-digital conversion with noise shaping on the analog audio signal after gain amplification at a first sampling rate/oversampling rate when the audio ADC is normal working, and turns off noise shaping when the audio ADC is sleep, performs analog-to-digital conversion on the analog audio signal output by the bypass switch at a second sampling rate/oversampling rate, and outputs to a DSP. |
US11677411B2 |
A/D converter, sensor processing circuit, and sensor system
An A/D converter includes an A/D conversion unit and an output unit. The A/D conversion unit includes a second A/D converter (successive approximation register A/D converter) and generates first digital data having a first number of bits and second digital data having a second number of bits, where the second number of bits is smaller than the first number of bits. The output unit provides first output information that is the first digital data and also provides second output information based on the second digital data. The output unit provides the second output information before providing the first output information. |
US11677409B2 |
Cloud assisted calibration of analog-to-digital converters
Embodiments of the present disclosure includes systems and methods for diagnosing and correcting deficiencies in operation of integrated circuits. A set of operational data of an integrated circuit is received by a network via a communication interface. A deficiency in operation of the integrated circuit is diagnosed based on the set of operational data. A correction is generated for improving operation of the integrated circuit based on the deficiency diagnosed. The correction is transmitted over the network via the communication interface to the integrated circuit. |
US11677405B2 |
Multiple PLL system with common and difference mode loop filters
A plurality of Phase Locked Loops, PLL (12, 14), are distributed across an Integrated Circuit, each receiving a common reference signal (A). A local phase error (B) of each PLL (12, 14) is connected to a phase error averaging circuit (16), which calculates an average phase error (C), and distributes it back to each PLL (12, 14). In each PLL (12, 14), two loop filters (20, 22) with different bandwidths are deployed. A lower bandwidth, high DC gain, common mode loop operates on the average phase error, and forces the PLL outputs (H) to track the phase of the common reference signal. A high bandwidth, difference mode loop operates on the difference between the local phase error (B) and the average phase error (C) to suppress phase differences between PLL outputs, minimizing interaction between them. The reference noise contribution at the output is controlled by the common mode loop, which can have a low bandwidth. The reference noise contribution and oscillator interaction suppression are thus independently controlled. |
US11677404B1 |
Independently clocking digital loop filter by time-to-digital converter in digital phase-locked loop
A time-to-digital converter (TDC) circuit includes phase error calculation circuitry to: determine phase error values based on a time difference between a input reference clock and a feedback clock of a digital phase-locked loop (DPLL) circuit, the input reference clock and the feedback clock being unsynchronized; and provide the phase error values to a digital loop filter (DLF) of the DPLL circuit. The TDC circuit further includes clock generation circuitry to: generate a filter clock that asserts a clock pulse in response to detecting each last-received pulse of the input reference clock and the feedback clock; and provide the filter clock to the DLF concurrently with providing the phase error values to the DLF that are synchronized to the filter clock. |
US11677402B2 |
Parametrically activated quantum logic gates
In a general aspect, a quantum logic gate is performed in a quantum computing system. In some cases, a pair of qubits are defined in a quantum processor; the pair of qubits can include a first qubit defined by a first qubit device in the quantum processor and a second qubit defined by a tunable qubit device in the quantum processor. A quantum logic gate can be applied to the pair of qubits by communicating a control signal to a control line coupled to the tunable qubit device. The control signal can be configured to modulate a transition frequency of the tunable qubit device at a modulation frequency, and the modulation frequency can be determined based on a transition frequency of the first qubit device. |
US11677400B2 |
Level shifter circuit and method of operating the same
A circuit includes an input circuit, a level shifter circuit, an output circuit, and a first and a second feedback circuit. The input circuit is coupled to a first voltage supply, and configured to receive a first input signal, and to generate at least a second input signal. The level shifter circuit is coupled to a second voltage supply, and configured to generate at least a first and second signal responsive to at least the enable signal or the first input signal. The output circuit is coupled to at least the level shifter circuit and the second voltage supply, and configured to generate at least an output signal, a first and second feedback signal responsive to the first signal. The first and second feedback circuit are configured to receive the enable signal, and the inverted enable signal, and the corresponding first and second feedback signal. |
US11677393B2 |
Driver circuit and method of operating the same
A circuit includes a power supply voltage node having a power supply voltage level, a protection circuit that generates a first signal having first and second logical voltage levels based on the power supply voltage level, and a gate driver. The gate driver includes a first n-type HEMT between the power supply voltage node and a first node, a second n-type HEMT between the first node and a power supply reference node, and a DCFL circuit between the first node and an output terminal. A gate of the first n-type HEMT receives the first signal, a gate of the second n-type HEMT receives a second signal, and the DCFL circuit generates a third signal at the output terminal based on the second signal when the first signal has the first logical voltage level, and as a DC voltage level when the first signal has the second logical voltage level. |
US11677392B2 |
Bias networks for DC or extended low frequency capable fast stacked switches
Passive gate bias network topologies are implemented for stacked FET switch structures, which improve the settling time and low cut-off frequency for both DC and non-DC operation. DC capable stacked switch bias structures provide gate and bulk bias voltages, using input DC voltages, which are coupled to the gate terminals and the bulk terminals of the stacked switches. The DC coupling can be achieved using resistors, or a combination of resistors and diodes. An exemplary SPST switch includes a series stacked switch in combination with a shunt stacked switch, which can be controlled between alternating states. For low cut-off frequency improvement structures, an input signal is coupled to the gate terminals and bulk terminals of the switches in the stacked switches, using a DC block capacitor and resistors. The low cut-off of the bulk can be improved by connecting the bulk terminal of one switch to the opposite polarity switch. |
US11677390B2 |
Multimode frequency multiplier
This disclosure describes apparatuses, methods, and techniques for implementing a multimode frequency multiplier. In example implementations, an apparatus for generating a frequency includes a multimode frequency multiplier. The multimode frequency multiplier includes a multiphase generator and a reconfigurable frequency multiplier. The multiphase generator is configured to produce a first signal including multiple phase components and having a first frequency. The reconfigurable frequency multiplier is coupled in series with the multiphase generator. The reconfigurable frequency multiplier is configured to produce a second signal based on the first signal and having a second frequency that is a multiple of the first frequency. |
US11677385B2 |
DC pulse power supply device and duty control method for DC pulse power supply device
In a DC pulse power supply device according to the present invention, at the time of starting pulsing operation, the duty of the pulsing operation of a chopper circuit is controlled, a switching element is set to an ON state, and the pulse width at which the DC reactor is in an energized state is made variable over the period until the capacitor voltage is charged to a sufficient voltage to reset the magnetic saturation of the DC reactor. Gradually increasing the pulse width suppresses the degree of increase in the DC reactor current, and suppresses the DC reactor current below the magnetic saturazion level. As a result, the magnetic saturation of the DC reactor is suppressed at the time of starting pulsing operation. |
US11677384B2 |
Semiconductor integrated circuit with semiconductor layer having indium, zinc, and oxygen
Provided is a semiconductor device including a sequential circuit including a first transistor and a capacitor. The first transistor includes a semiconductor layer including indium, zinc, and oxygen to form a channel formation region. A node electrically connected to a source or a drain of the first transistor and a capacitor becomes a floating state when the first transistor turns off, so that a potential of the node can be maintained for a long period. A power-gating control circuit may be provided to control supply of power supply potential to the sequential circuit. The potential of the node still can be maintained while supply of the power supply potential is stopped. |
US11677381B2 |
Film bulk acoustic resonator structure and fabricating method
A film bulk acoustic resonator (FBAR) structure includes a bottom cap wafer, a piezoelectric layer disposed on the bottom cap wafer, a bottom electrode disposed below the piezoelectric layer, and a top electrode disposed above the piezoelectric layer. Portions of the bottom electrode, the piezoelectric layer, and the top electrode that overlap with each other constitute a piezoelectric stack. The FBAR structure further includes a lower cavity disposed below the piezoelectric stack. A projection of the piezoelectric stack is located within the lower cavity. |
US11677378B2 |
Elastic wave device
An elastic wave device includes a piezoelectric thin film, IDT electrodes on the piezoelectric thin film, an insulating layer surrounding the piezoelectric thin film on a primary surface of a support substrate, a spacer layer surrounding the piezoelectric thin film in plan view, and a cover on the spacer layer. The spacer layer includes an outer edge and an inner edge closer than the outer edge to the piezoelectric thin film in plan view. The primary surface of the insulating layer closer to the spacer layer includes a sloping region that extends where the insulating layer overlaps the spacer layer in plan view and in which the distance from the first primary surface of the support substrate along the direction perpendicular or substantially perpendicular to the support substrate increases from the outer edge toward the inner edge. |
US11677377B2 |
Multi-layer piezoelectric substrate with grounding structure
An acoustic wave device is disclosed. The acoustic wave device can include a piezoelectric layer positioned over a substrate. The acoustic wave device can also include an interdigital transducer electrode positioned over the piezoelectric layer. The acoustic wave device can also include a grounding structure positioned over the piezoelectric layer. The acoustic wave device can also include a conductive layer positioned between the piezoelectric layer and the substrate. The acoustic wave device can further include an electrical pathway that electrically connects the conductive layer to the grounding structure. |
US11677375B2 |
Transversely excited film bulk acoustic resonator with recessed interdigital transducer fingers
Acoustic resonator devices, filters, and methods are disclosed. An acoustic resonator includes a substrate and a piezoelectric plate having front and back surfaces, the back surface attached to a surface of the substrate except for a portion of the piezoelectric plate forming a diaphragm that spans a cavity in the substrate. An interdigital transducer (IDT) is formed on the front surface of the piezoelectric plate such that interleaved fingers of the IDT are disposed on the diaphragm. The IDT is configured to excite a primary acoustic mode in the diaphragm in response to a radio frequency signal applied to the IDT. At least one finger of the IDT is disposed in a groove in the diaphragm. A depth of the groove is less than a thickness of the at least one finger of the IDT. |
US11677362B2 |
Radio frequency transistor amplifiers having multi-layer encapsulations that include functional electrical circuits
RF transistor amplifiers are provided that include a submount and an RF transistor amplifier die that is mounted on top of the submount. A multi-layer encapsulation is formed that at least partially covers the RF transistor amplifier die. The multi-layer encapsulation includes a first dielectric layer and a first conductive layer, where the first dielectric layer is between a top surface of the RF transistor amplifier die and the first conductive layer. |
US11677358B2 |
Power amplifier circuit
A power amplifier circuit includes a substrate and a semiconductor chip disposed on or above the substrate. The semiconductor chip includes a power amplifier unit that amplifies an RF signal, a ground terminal to which a ground of the power amplifier unit is coupled, and a first circuit element having a first end electrically coupled to the ground terminal without any portion outside the semiconductor chip interposed therebetween, and having a second end. The substrate includes a second circuit element having a first end electrically coupled to an output of the power amplifier unit and a second end electrically coupled to the second end of the first circuit element. The first and second circuit elements constitute a harmonic wave termination circuit. The harmonic wave termination circuit reflects, to the power amplifier unit, a harmonic wave component of the amplified RF signal output from the power amplifier unit. |
US11677354B2 |
RC time based locked voltage controlled oscillator
Circuits and processes for locking a voltage-controlled oscillator (VCO) at a high frequency signal are described. A circuit may include an adjustable current converter (ACC), coupled at an input terminal to a power source, operable to output a control signal (VC) at an output terminal. A first switch may be coupled to the ACC and to the VCO. The VCO, when in an “ON” state, receives the control signal and outputs a high frequency signal (VHF). A digital filter may be coupled to the VCO and operable to receive the VHF. Based on the VHF, the digital filter generates a data signal having a data value. The circuit may also include a digital-to-analog converter (DAC) operable to receive the data signal and, based on the data value, output an adjustment signal to the ACC. The ACC may adjust the control signal based on the adjustment signal received from the DAC. |
US11677345B2 |
Control method and system for continuous high and low voltage ride through of permanent-magnet direct-drive wind-driven generator set
The present application provides a method and a system for controlling continuous high voltage ride-through and low voltage ride-through of a permanent magnet direct-driven wind turbine. The method includes: determining a transient time period during which the wind turbine is transitioned from a high voltage ride-through state to a low voltage ride-through state; controlling the wind turbine to provide, during the transient time period, a gradually increasing active current to the point of common coupling; and controlling the wind turbine to provide, during the transient time period, a reactive current to the point of common coupling according to an operation state of the wind turbine before the high voltage ride-through state. |
US11677341B2 |
Generation of motor drive signals with misalignment compensation
A motor drive circuit provides a drive signal to an electronically commutated motor. A control circuit the motor drive circuit based on calibration data. The calibration data indicate a relationship between an actual angular position of a rotor of the motor in response to the drive signal and an expected angular position of a rotor of an ideal motor in response to the drive signal. |
US11677340B2 |
Motor drive device and motor drive method
A motor drive device that includes: a power control unit that drives a motor, which configures a motive power source of a moving body, by supplying a drive signal modulated according to a carrier frequency; a memory; and a processor that is coupled to the memory, the processor being configured to: predict torque demand on the motor, and change the carrier frequency of the power control unit in a case in which an increase in the torque demand on the motor has been predicted. |
US11677338B2 |
Producing electrical energy using an etalon
A circuit for generating electrical energy is disclosed. The circuit uses a pulse generator in combination with a conductor. Waste heat can be converted to usable energy due to a cooling effect of the circuit on the conductor. A resultant energy applied to a load is larger than the energy supplied by the pulse generator due to the absorption of external energy by the conductor. |
US11677337B2 |
Comb drive for microelectromechanical system
A comb drive for MEMS device includes a stator and a rotor displaceable relative to the stator in a first direction. The stator includes stator comb fingers and the rotor includes rotor comb fingers. The stator comb fingers are coupled to two high impedance nodes to form high impedance node domains arranged in the first direction. The rotor comb fingers are coupled to two oppositely biased electrodes to form oppositely biased domains. Pairs of capacitors with opposite acoustic polarity are respectively formed between the high impedance node domains and the oppositely biased domains. The comb drive of the present invention has increased electrostatic sensitivity for a given unit cell cross-sectional area whilst maintaining an acceptable capacitance and linearity of voltage signal vs displacement. Extra force shim unit cells may be used, which allows for the stiffness between the rotor and stator to be controlled and reduced to zero for a particular displacement range, without impacting sensitivity. |
US11677335B2 |
Method for operating a power converter
A method of operating a thyristor-based line-commutated multi-phase power converter on a multi-phase AC voltage connection point, which is supplied by an AC voltage network. Between the AC voltage connection point and an AC voltage connection of the power converter, a series circuit of modules is arranged for each phase. Each of the series circuits has a first electronic switching element, a second electronic switching element, and an electric energy storage device. The voltages of the phases of the AC voltage connection point are measured and, if an undervoltage is detected on a phase of the AC voltage connection point, an additional voltage adding to the voltage of that phase is generated by way of the series circuit of modules allocated to that phase in such a way that the voltage of that phase is increased, at least temporarily. |
US11677332B2 |
Inverter current equalization method and apparatus, inverter system, and wireless charging system
An inverter current equalization method includes separately comparing a reactive current of a first inverter and a reactive current of a second inverter with a reactive current reference value, to obtain a reactive current difference of the first inverter and a reactive current difference of the second inverter, separately comparing an active current of the first inverter and an active current of the second inverter with an active current reference value, to obtain an active current difference of the first inverter and an active current difference of the second inverter, and adjusting an input voltage amplitude of the first inverter and an input voltage amplitude of the second inverter based on the reactive current difference of the first inverter and the reactive current difference of the second inverter. |
US11677330B2 |
Power conversion device, power conversion system, and power conversion method
A power conversion device connected in parallel to a second power conversion device including power conversion circuitry that performs power conversion by changing a connection state between first multiple lines on a primary side and second multiple lines on a secondary side, baseline selection circuitry that selects one of the second multiple lines on the secondary side as a baseline and partial modulation control circuitry that controls the power conversion circuitry to maintain a state in which the baseline is connected to one of the first multiple lines on the primary side and to change a connection state between other second multiple lines on the secondary side and the first multiple lines on the primary side, wherein the baseline selection circuitry switches a line selected as the baseline based on a switching timing used by second baseline selection circuitry of the second power conversion device to select a second baseline. |
US11677329B2 |
Control system for medium voltage variable frequency drive
A drive system (300) includes a plurality of power cells (312) supplying power to one or more output phases (A, B, C), each power cell (312) having multiple switching devices (315a-d) incorporating semiconductor switches, and a control system (400) in communication with the plurality of power cells (312) and controlling operation of the plurality of power cells (312), wherein the control system (400) includes a system on chip (410) with one or more central processing units (412, 414) and a field programmable gate array (416) in communication with the one or more central processing units (412, 414). |
US11677326B2 |
LLC resonant converter and method of controlling the same
An LLC resonant converter includes a transformer and a primary-side circuit coupled to the transformer. The primary-side circuit includes a first bridge arm, a second bridge arm, and a control unit. The first bridge arm includes a first switch and a second switch, and the second bridge arm includes a third switch and a fourth switch. The control unit provides a first control signal to control the first switch and provides a fourth control signal to control the fourth switch. The control unit adjusts a switching frequency of the first control signal and the fourth control signal according to an output voltage. When the switching frequency increases to a frequency threshold value, the switching frequency is controlled to be fixed at the frequency threshold, and the first control signal and the fourth control signal are controlled to have a variable phase difference. |
US11677325B2 |
Digital nonlinear transformation for voltage-mode control of a power converter
A power converter controller includes an analog to digital converter (ADC) to generate a digital representation of a feedback signal of a power converter, the feedback signal being received from a compensator of the power converter and being based on an output voltage of the power converter. A nonlinear gain block of the power converter controller receives the digital representation of the feedback signal and generates a transformed digital representation of the feedback signal using a nonlinear function. A switch control block of the power converter controller controls an on-time of a primary-side switch of the power converter based on the transformed digital representation of the feedback signal. |
US11677323B2 |
Progressive power converter drive
In at least some examples, an apparatus includes a logic circuit, first transistor, and second transistor. The logic circuit has a first logic circuit output, and a second logic circuit output. The first transistor has a first transistor gate, a first transistor source, and a first transistor drain, the first transistor gate coupled to the first logic circuit output, the first transistor drain adapted to couple to a voltage source, and the first transistor source coupled to a switching terminal. The second transistor has a second transistor gate, a second transistor source, and a second transistor drain, the second transistor gate coupled to the second logic circuit output, the second transistor drain adapted to couple to the voltage source, and the second transistor source coupled to the switching terminal, wherein a transistor width of the second transistor is larger than a transistor width of the first transistor. |
US11677322B2 |
Adaptive on-time DC-to-DC buck regulators with constant switching frequency
Voltage regulator circuits and methods therefor provided. In some embodiments, a voltage regulator circuit comprises: a first switch coupled to a power input; a second switch coupled to the first switch; a switching node between the first switch and the second switch; an inductor coupled between the switching node and an output node; a capacitor coupled between the output node and ground; a driver configured to operate the first and second switches according to a pulse-width-modulated (PWM) signal; a PWM circuit configured to generate the PWM signal based on at least an error signal; and a phase detector configured to generate the error signal based on a phase difference between the PWM signal and a clock reference signal. |
US11677320B2 |
Circuits and techniques for power regulation
Boot-strapping systems and techniques for circuits are described. One or more solid-state switches of a switched regulation circuit may be implemented using core transistors and the boot-strapping systems, rather than I/O transistors. |
US11677312B2 |
Semiconductor device and power converter
A semiconductor device improved in deterioration detection accuracy by using an inductance of a bonding wire. The semiconductor device includes a first conductor pattern formed on the insulating substrate, the main current of the semiconductor die device flowing through the first conductor pattern; a second conductor pattern formed on the insulating substrate for sensing the potential of the surface electrode of the semiconductor die device; a first bonding wire for connecting the surface electrode and the first conductor pattern; and a second bonding wire. Further, there is a voltage sensing unit which is connected to the first conductor pattern and the second conductor pattern to sense a potential difference between the first conductor pattern and the second conductor pattern at the time of switching of the semiconductor die device; and a deterioration detection unit for detecting deterioration of the first bonding wire by using the sensed potential difference. |
US11677300B2 |
Motor and blower
A motor including a rotating portion that rotates about a center axis that extends vertically and a stationary portion that rotatably supports the rotating portion. The stationary portion includes a stator including a coil, radially facing at least a portion of the rotating portion, a base disposed axially below the stator, a circuit board disposed axially between the stator and the base, a conductor electrically connected to the coil and the circuit board, including an extending portion extending axially downward from the circuit board, and a resin portion covering the circuit board and the conductor, connecting the base and the stator. The base is provided in its axially upper surface with an opening that overlaps the conductor when viewed axially. |
US11677289B2 |
Electric power system for hypersonic speed operation
A powered system that has an electric power system with a stator having plural poles with each pole having a conductive winding that may surround the corresponding pole and may be configured to generate a magnetic field, and a rotor that may be configured to rotate in response to the magnetic field generated by the stator. The at least one of the conductive windings may be insulated with an insulation material configured to conduct heat from the at least one conductive winding while operating at a temperature above 600° C. |
US11677284B2 |
IPM BLDC motor
A BLDC motor server includes a stator configured in a hollow cylindrical shape and comprising a plurality of teeth around which a plurality of coils is wound to form an electromagnetic field, respectively; and a rotor configured in a cylindrical shape rotatable within the stator and comprising a plurality of permanent magnets, each having an arched section in which an outer circumference side is extended in both directions from a rotation center side, wherein the plurality of permanent magnets is disposed, so that facing outer surface portions of two permanent magnets neighboring each other are adjacent to each other, and wherein a width Wo of the outer circumference side of each permanent magnet is configured to be smaller than a width Wc of the rotation center side thereof. The BLDC motor may reduce a noise and a vibration as well as increasing an efficiency of the motor. |
US11677283B2 |
Electric machine having vibration attenuating stator laminations
An electric machine includes a stator formed from a plurality of stacked laminations and defining a center bore and a rotor disposed within the center bore. The rotor is configured to output a rotational torque in response to an input current delivered to the stator. At least one of the stacked laminations of the stator includes a pattern of perforations disposed at a yoke portion of the stator to attenuate structure-bore transmission of vibration during operation of the electric machine. |
US11677277B2 |
Shape design system and method for wireless power transmission system
Proposed is a shape design technology for a wireless power transmission system, the shape design system including: a learning module configured to perform learning based on shape information and compensation information input in relation to a design target and generate new shape information; and an analysis module configured to evaluate wireless power transmission performance based on the shape information from the learning module and provide the learning module with a performance evaluation result. |
US11677276B2 |
Non-contact optical power feeding method using a multi-junction solar cell, and light-projecting device for optical power feeding
There are provided a method and a device for feeding electric power to a vehicle, etc. installed with a solar photovoltaic power generation panel employing a multi-junction solar cell in a non-contact manner by irradiating light to the solar photovoltaic power generation panel. In the method, light containing a wavelength component absorbed by each of all solar cell layers laminated in a multi-junction solar cell of the vehicle, etc. is projected from a light-projecting device to the light receiving surface of the multi-junction solar cell; and electric power generated by the irradiation of light from the multi-junction solar cell is taken out. The device includes structures for emitting light containing a wavelength component absorbed by each solar cell layer laminated in the multi-junction solar cell, and for irradiating the light to a light receiving surface of the multi-junction solar cell. |
US11677275B2 |
Wireless power transfer network management
Concepts and technologies directed to wireless power transfer network management are disclosed herein. Embodiments of a system can include an optical beamforming transmitter, a processor, and a memory that stores computer-executable instructions that configure a processor to perform operations. The operations can include receiving a power charge message that requests wireless power transfer to charge a battery system of a wirelessly chargeable equipment. The operations can include detecting that the wirelessly chargeable equipment is within a power transfer range of the optical beamforming transmitter. The operations can include determining that the wirelessly chargeable equipment is not stationary. The operations can include tracking movement of the wirelessly chargeable equipment and activating the optical beamforming transmitter that provides wireless power transfer to the wirelessly chargeable equipment while the wirelessly chargeable equipment is within the power transfer range. |
US11677273B2 |
Drive circuits for multi-mode wireless power transmitter
A multi-mode wireless power transmitter includes a first drive circuit of a first type and a second drive circuit of a second type. The first drive circuit is configured to drive a first transmit coil at a first frequency. The second drive circuit is configured to drive a second transmit coil at a second frequency higher than the first frequency. |
US11677272B2 |
Wireless power transmitting device and wireless power receiving device
A wireless power transmitting device includes: an upper coil including a first tubular spiral coil and a first planar spiral coil disposed beneath the first tubular spiral coil; a lower coil including a second planar spiral coil disposed to face the first planar spiral coil and a second tubular spiral coil disposed beneath the second planar spiral coil; a connecting stub configured to connect the upper coil and the lower coil to each other; and a power source configured to supply a power to the upper coil or the lower coil. The first planar spiral coil and the second planar spiral coil generate an electric field and a magnetic field in a resonance state to transfer at least some of the power from the power source to an external wireless power receiving device through the electric field and the magnetic field. |
US11677271B2 |
Load and consumer
A load includes a device for inductively powering it, the device including an insertion part, following the insertion of which into the load the powering of the latter is provided. |
US11677270B2 |
Apparatus for generating electrical power from motion of vehicle
An apparatus for generating electric power from the motion of a vehicle according to the disclosure includes: a magnetic fluid storage unit in which a magnetic fluid is stored and from which the magnetic fluid is discharged by a pressing force of the vehicle; a pipe unit through which the magnetic fluid discharged from the magnetic fluid storage unit moves; and an induction coil unit arranged to surround a circumference of the pipe unit so that an induced electromotive force is generated when the magnetic fluid moves. |
US11677269B2 |
Systems and methods for harvesting vibration energy using a hybrid device
Hybrid energy harvesting devices that harvest vibrational energy over a broad frequency spectrum using several different energy harvesting mechanisms that are operable over different frequency ranges. In one embodiment, a device uses an inductive current generator to convert vibrational energy at lower frequencies to electrical energy, and also uses one or more piezoelectric charge generators to convert vibrational energy at higher frequencies to electrical energy. The electrical energy produced by these different mechanisms is provided to a controller which processes the input energy and generates an output which is applied to an energy store such as a battery. The energy stored in the battery can then be drawn by a wireless sensor or other device. The energy harvesting device may have the same form factor as a conventional battery to allow installation in battery-powered equipment without modification. |
US11677268B2 |
Media access control security (MACsec) application cryptographic fingerprinting
An intelligent electronic device (IED) includes memory and a processor operatively coupled to the memory. The processor is configured to establish, over a communication network of a power system, a connection association (CA) with a receiving device using a MACsec Key Agreement (MKA). The processor is configured to automatically send an announce message indicating a set of enabled application protocols on the IED to the receiving device. |
US11677267B2 |
Reserve power supply system
A reserve power supply system for providing a supplemental source of electrical power to a main power source. The system includes a backup battery and a switch that can be controlled to couple the backup battery to the main power source when reserve power is needed. The system also includes a sensor to detect when the backup battery should be engaged and a system control unit. |
US11677266B2 |
Split-bus electrical panel in parallel configuration to maximize PV/battery inverter back-feed power
An apparatus provides a single split-bus electrical panel with back-feed circuit breakers arranged and sized so that, for example, a single 225 A rated split-bus electrical panel with a 200 A main breaker may be used to connect a far higher photovoltaic power source than conventional configurations. The circuit breakers are connected to a Microgrid Interconnection Device for isolation of critical loads during a utility power outage. A first panel section of the split-bus panel is connected to a utility and supplies power to non-critical loads. A second panel section is connected to a renewable power source with battery back-up to supply power to the critical loads and is connected through a relay to the utility, in parallel with the first panel section, to supply both utility power and renewable power when there is no outage. The relay is configured to isolate the second panel when there is a utility outage. |
US11677262B2 |
In-vehicle backup control apparatus and in-vehicle backup apparatus
An in-vehicle backup the control apparatus includes a switch unit (for example, including second switch units), a control unit, a low-voltage detection circuit, and a latching circuit. The switch unit is provided between a power storage unit and a load (for example, a second load). The control unit controls the switch unit. The low-voltage detection circuit detects a low-voltage state of an electric power path through which electric power from a power supply unit is supplied. When the low-voltage detection circuit detects the low-voltage state, the latching circuit is switched to a latched state in which the switch unit is kept in an on state. When the electric power path is in the low-voltage state, the control unit releases the latched state and controls the switch unit to be in an on state. |
US11677261B2 |
Load control device having a reduced leakage through ground
A load control device for controlling power delivered from an AC power source to an electrical device may be configured to conduct current through earth ground and may disconnect a switching circuit to reduce an amount of current conducted through the earth ground. The load control device may comprise a controllably conductive device configured to control the power delivered from the AC power source to the electrical device so as to generate a switched-hot voltage, a switching circuit electrically coupled with a detect circuit, and a control circuit configured to render the switching circuit conductive and nonconductive. The detect circuit may generate a detect signal indicating a magnitude of the switched-hot voltage. The control circuit may be configured to monitor the detect signal and to render the switching circuit non-conductive after detecting an edge on the detect signal to reduce the total current through the earth ground. |
US11677259B2 |
Power backup architecture using capacitor
Various embodiments described herein use a set of capacitor sets (e.g., capacitor banks) in a power backup architecture for a memory sub-system, where each capacitor set can be individually checked for a health condition (e.g., in parallel) to determine their respective health after the memory sub-system has completed a boot process. In response to determining that at least one capacitor set has failed the health condition (or a certain number of capacitor sets have failed the health condition), the memory sub-system can perform certain operations prior to primary power loss to the memory sub-system (e.g., preemptively performs a data backup process to ensure data integrity) and can adjust the operational mode of the memory sub-system (e.g., switch it from read-write mode to read-only mode). |
US11677255B1 |
Frequency management for wireless power transfer
A wireless power transmitter can include a coil, an inverter coupled to the coil, and control circuitry coupled to the inverter that, responsive to receiving a burst request pulse from a wireless power receiver, initiates inverter operation, driving the coil and powering the receiver. The control circuitry can operate inverter switches so bandwidth of the wireless power transfer signal falls within a specified range by: (a) extending a minimum on time of the switches, (b) modifying pulse width modulation (PWM) drive signals supplied to the switches to shape a coil current burst envelope, and/or (c) modifying PWM signal amplitude supplied to the switches. Modifying the PWM drive signals can include using a symmetrical PWM scheme in which the positive and negative pulses are symmetrical in width on a cycle-by-cycle basis or using a complementary PWM scheme in which the positive and negative pulse widths are complementary on a cycle-by-cycle basis. |
US11677253B2 |
Monitoring device, monitoring method, computer program, deterioration determination method, deterioration determination device, and deterioration determination system
A monitoring device includes: an acquisition unit configured to acquire information regarding whether a learning model is in a first mode or in a second mode, the learning model configured to detect a state of an energy storage device; and a change unit configured to change an operation of a balancer circuit from a predetermined state in a case where the learning model is in the first mode, the balancer circuit configured to balance a voltage of the energy storage device. |
US11677251B2 |
Portable battery pack with security anchor base
Embodiments are disclosed for a portable battery pack with a secure anchor base. In an embodiment, an apparatus comprises: a housing having a top surface and at least one side surface, the housing having two or more ports, the two or more output ports including at least one charging port configured to charge an accessory device attached to the at least one charging port and a cable input port for receiving a cable pin; one or more batteries; one or more printed circuit boards containing electronic components, wherein the electronic components include charging circuitry coupled to the charging port and the one or more batteries; an anchor base assembly, including: an actuator; mechanical linkage coupled to the actuator; and a lock configured to lock or unlock the actuator. |
US11677245B2 |
Direct-current power distribution in a control system
A control system may include a direct-current (DC) power bus for charging internal energy storage elements in control devices of the control system. For example, the control devices may be motorized window treatments configured to adjust a position of a covering material to control the amount of daylight entering a space. The system may include a bus power supply that may generate a DC voltage on the DC power bus. For example, the DC power bus may extend from the bus power supply around the perimeter of a floor of the building and may be connected to all of the motorized window treatments on the floor (e.g., in a daisy-chain configuration). An over-power protection circuit may be configured to disconnect the bus power supply if a bus current exceeds a threshold for a period of time. |
US11677242B2 |
Power supply arbitration device, power supply device, power consumption device, power supply remote controller, power supply arbitration method, and power system
There is provided a power supply arbitration device that makes it possible for side of a power consumer to take initiative to stabilize a power grid and suppress peak power for the power consumer. The power supply arbitration device including a control unit, a communication unit that communicates with another device through a communication network, and a storage unit that stores information, in which, in a case where a power request received by the communication unit is requested from a power consumption device registered in the storage unit, the control unit specifies a power supply device registered in the storage unit as a power feeding device that supplies power requested by the registered power consumption device on a basis of a power consumption profile associated with the registered power consumption device. |
US11677241B2 |
Power trading system and management apparatus
The present invention provides a power trading system that executes power trading between a plurality of apparatuses, wherein at least one apparatus of the plurality of apparatuses includes a management unit configured to manage electric energy of a battery, and the management unit manages the electric energy of the battery by discrimination between electric energy derived from exhaustible energy and electric energy derived from renewable energy. |
US11677236B2 |
Device for discharging a capacitor
A device for discharging a capacitor includes a resistive component having a resistance value selectable from among at least three resistance values. The device is configured to be connected in parallel with the capacitor. A circuit operates to select the resistance value of the resistive component. |
US11677235B2 |
Avalanche triggered overvoltage protection
A device, system and method protects from overvoltages. A power control device includes a component (310) configured to be powered according to a duty cycle. The power control device includes a controller (330) configured to determine the duty cycle that places the component on or off. The power control device includes a comparator (335) configured to determine when the duty cycle is off and an overvoltage is being experienced by the component. When the duty cycle is off and the overvoltage is being experienced by the component, the comparator selects a circuit pathway (345, 350) including a clamping device (350). |
US11677233B2 |
Smart bus plug remote actuation, monitoring, and control
A power distribution system includes a plurality of bus plugs. Each of a respective bus plug of the plurality of bus plugs includes an electrical switch configured to selectively control a corresponding energization of the respective bus plug and an actuator operable to control a corresponding electrical switch. The system includes a remote application having commands defining the energization of at least one of the plurality of bus plugs. The system further includes a communication module configured to communicate the commands from the remote application to the at least one of the plurality of bus plugs. The commands cause the corresponding actuator to control the corresponding electrical switch. Methods of controlling energization of a bus plug with a remote application and communication module configured to operate an actuator are also provided. |
US11677230B2 |
Motor protection relay interface using magnetometer-based sensors
An apparatus includes a magnetometer-based current sensor (e.g., a Hall-effect or fluxgate-based current sensor) configured to sense a magnetic field generated by a current in at least one conductor connecting a motor drive output to a motor and to responsively produce a first current sense signal and a magnetometer-based voltage sensor (e.g., a Hall-effect or fluxgate-based voltage sensor) configured to sense a magnetic field generated in response to a voltage of the at least one conductor and to responsively produce a first voltage sense signal. The apparatus further includes a signal conversion circuit configured to receive the first current sense signal and the first voltage sense signal and to generate a second current sense input and a second voltage sense input for provision to a current sense input and a voltage sense input, respectively, of a motor protection relay that protects the motor. |
US11677224B1 |
Marine power box system
Disclose is a housing formed in a rectilinear configuration. The housing has rear and front cover panels, left and right side panels, and lower and upper panels. Next provided is a divider panel having a rectangular configuration disposed between the front cover panel and back panel, and between the left and right side panels, and between the lower and upper panels. Next provided is plurality of electrical receptacles located in the divider panel facing forwardly with wiring extending from a source of potential into the rearward chamber then coupling to the electrical receptacles. Lastly, a vent in the divider panel is provided with a fan for exhausting heated air from the rearward chamber to the forward chamber and to exterior of the housing. |
US11677222B1 |
Winged cable mount
A winged cable mount that secures a cable or a cable bundle positioned on the mount. The winged cable mount includes a round base and side supports extending from the base. Each side support includes a main member and a tab positioned at a distal end of the main member. The side supports wrap around the cable or cable bundle positioned on the mount. The round base includes aligned slots positioned opposite each other for receiving a cable tie to secure the cable or cable bundle positioned on the mount. |
US11677219B2 |
Braided shield de-braider machine
An apparatus for de-braiding a braided shield of a wire. The apparatus comprises a brush assembly having a first bristle wheel mounted on a first axis and a second bristle wheel mounted on a second axis wherein the first bristle wheel and the second bristle wheel are positioned with respect to one another to have their respective bristles brush against a braided shield of a wire placed between the first and second bristle wheels; a wheel drive motor; a first flexible drive shaft connecting the wheel drive motor to the first axis to rotate the first bristle wheel; a second flexible drive shaft connecting the first axis to the second axis to rotate the second bristle wheel; and a drive assembly, wherein the drive assembly moves the brush assembly both axially and rotationally with respect to a wire placed between the first bristle wheel and the second bristle wheel. |
US11677214B2 |
Diode laser having reduced beam divergence
The present disclosure relates to a diode laser having reduced beam divergence. Some implementations reduce a beam divergence in the far field by means of a deliberate modulation of the real refractive index of the diode laser. An area of the diode laser (e.g., the injection zone), may be structured with different materials having different refractive indices. In some implementations, the modulation of the refractive index makes it possible to excite a supermode, the field of which has the same phase (in-phase mode) under the contacts. Light, which propagates under the areas of a lower refractive index, obtains a phase shift of π after passing through the index-guiding trenches. Consequently, the in-phase mode is supported and the formation of the out-of-phase mode is prevented. Consequently, the laser field can, in this way, be stabilized even at high powers such that only a central beam lobe remains in the far field. |
US11677212B2 |
Semiconductor laser diode and semiconductor component
The invention relates to a semiconductor laser diode (1) comprising: —a semiconductor layer sequence (2) having an active region (20) provided for generating radiation; —a radiation decoupling surface (10) which extends perpendicular to a main extension plane of the active region; —a main surface (11) which delimits the semiconductor layer sequence in the vertical direction; —a contact layer (3) which adjoins the main surface; and —a heat-dissipating layer (4), regions of which are arranged on a side of the contact layer facing away from the active region, wherein the contact layer is exposed in places for external electrical contact of the semiconductor laser diode. The invention also relates to a semiconductor component. |
US11677211B2 |
Semiconductor device, semiconductor device package, and manufacturing methods thereof
A semiconductor device includes: a bottom plate having an upper surface and a lower surface, wherein the upper surface comprises an outer peripheral part and an inside part that is enclosed by the outer peripheral part and that protrudes more upward than the outer peripheral part; a frame joined to the upper surface of the bottom plate and comprising a first through-hole that penetrates the frame; a plate jointed to the outside or inside surface of the frame, the plate comprising a second through-hole that penetrates the plate in a same direction as that of the first through-hole, a thickness of the plate being greater than a thickness of the frame; a lead terminal inserted into the first through-hole and the second through-hole; a fixing member provided in the second through-hole and fixing the lead terminal; and a semiconductor element fixed to the inside part. |
US11677208B2 |
Optical amplification device and optical amplification method
An optical amplification device includes a first Raman amplifier outputs a first excitation light to a transmission line in a same direction as a signal light, and a second Raman amplifier outputs a second excitation light to the transmission line in an opposite direction to the signal light. The first Raman amplifier includes a first detector detects a first power of a first transmitted light transmitted through a first optical filter. The second Raman amplifier includes a second detector detects second power of a second transmitted light transmitted through a second optical filter. The first Raman amplifier stops output of the first excitation light when the first power is higher than a threshold. The second Raman amplifier stops output of the second excitation light when the second power is reduced from power of the first excitation light transmitted through the second optical filter. |
US11677207B2 |
Continuously tunable booster optical amplifier-based fiber ring laser covering L and extended L bands
A fiber optic ring laser, and non-transitory computer readable medium for using a fiber optic ring laser are disclosed. The disclosed fiber optic ring laser includes a semiconductor booster optical amplifier (BOA), as a gain medium; a Fiber Fabry Perot Tunable Filter (FFP-TF), as a wavelength selection element; an optical isolator (ISO) to insure unidirectional operation of the fiber optic ring laser; and a polarization controller (PC) for attaining an optimized polarization state in order to achieve a stable-generated output in terms of output power and wavelength, wherein the BOA, the FFP-TF, the ISO and the PC are coupled to form a ring configuration that implements a continuously tunable booster amplifier-based fiber ring laser. |
US11677197B2 |
Electrical connector having a molded metal support receiving a contact module and a metallic outer cover secured to the support through interposed molded insulators and method of making same
An electrical connector includes: a metallic cover; an insulative frame molded inside the metallic cover; a metal injection molded (MIM) support and a contact module received by the MIM support, the contact module having a rear base, a front tongue, and an upper and a lower rows of contacts extending through the base and exposing to two opposite faces of the tongue, the MIM support having a pair of side arms flanking the two rows of contacts; and an insulator molded outside the MIM support and the contact module and secured to the insulative frame. |
US11677196B2 |
Board-to-board radio frequency coaxial connector
A board-to-board radio frequency coaxial connector includes an adapter, a clamping socket including a first outer conductor, a first inner conductor, and a first insulator, and a fixed socket including a second outer conductor, a second inner conductor, and a second insulator. The clamping socket and the fixed socket are respectively arranged at two ends of the adaptor. The adapter includes a third outer conductor, a third inner conductor, and two third insulators. The two third insulators are respectively arranged at two ends of the third inner conductors and sleeved on an outside of the third inner conductor. Each of the two third insulators includes a body portion and an auxiliary portion. The body portion includes a second groove recessed inwardly from its outer circumferential surface. Two ends of the third outer conductor are respectively electrically connected to the first and second outer conductors. |
US11677189B2 |
Electrical plug connector and method for assembling an electrical plug connector
An electrical plug connector, having an electrically insulating housing assembly and an outer-conductor assembly connected in positively locking fashion to the housing assembly. The outer-conductor assembly has at least one fastening tab which can be bent from a basic state into a fastening state. The outer-conductor assembly is received in the housing assembly such that the housing assembly blocks relative movement between the outer-conductor assembly and the housing assembly in positively locking fashion along a first translational degree of freedom (x) and/or along a second translational degree of freedom (y). The fastening in the basic state, allows an assembling movement for assembling the housing assembly on the outer-conductor assembly along a third translational degree of freedom (z) and, in the bent fastening state, blocks the housing assembly on the outer-conductor assembly in positively locking fashion at least along the third translational degree of freedom (z). |
US11677187B2 |
Pressure tolerant deep-sea electrical connector
A connector for sealably engaging contacts therein and permitting reliable disengagement thereof includes a first unit having one or more elongated shafts. Each elongated shaft includes at least one first contact. The connector further includes a second unit having a body with one or more channels therein. Each channel includes at least one second contact. Each channel is configured to receive at least a portion of one of the elongated shafts therein to permit electrical connection of the one or more first contacts to the respective one or more second contacts. The second unit further includes an axial slit extending radially outwardly from each channel toward an outer surface of the body of the second unit. Each slit of the second unit is a circumferentially discontinuous portion of the channel configured to prevent the second unit from forming a constrictive belt around the one or more elongated shafts therein. |
US11677179B2 |
Sealed FFC electrical connectors
A sealable FFC connector includes a housing, a plurality of contacts, a sealing member, and an actuator. The housing includes a slot configured to receive a mating component. The contacts are held in the housing and are configured to be in electrical contact with the mating component when the mating component is in a mated position in the slot. The sealing member includes at least a portion supported by the housing. The actuator is coupled to the housing and is movable from an opened position, in which the mating component may be inserted in the slot, to a closed position, in which a biasing force is applied on the sealing member such that, when the mating component is in the mated position in the slot, the sealing member provides a seal to prevent moisture and debris from entering the slot. |
US11677178B2 |
Poke-through electrical assembly
An electrical power and/or electronic data unit is mountable in a floor, and is fitted with an upper bezel that is openable and closable to provide selective access to an interior of the unit, which is optionally fitted with one or more electrical power or data outlets. A lower insert including an intumescent block is supported below an upper housing, and is angularly adjustable relative to the upper housing. One or more bores or openings formed in the lower insert allow the passage of cords into a pass-through opening in the upper housing, and out through an upper bezel cover. |
US11677175B2 |
Electrical connecting assembly and electrical connector
The embodiments of the present disclosure provide an electrical connecting assembly and an electrical connector. The electrical connecting assembly comprises two electrical connecting parts and a connecting part. Each of the electrical connecting parts comprises a main body comprising an electrical contacting component. The connecting part comprises a securing component. Two sides of the connecting part extend toward one direction and are connected with the two electrical connecting parts. The two electrical connecting parts are disposed symmetrically across the connecting part. A first electrical connector head comprises an electrical plugging member and the electrical connecting assembly assembled to the electrical plugging member. A second electrical connector head comprises an electrical connecting notch in which the electrical plugging member having the electrical connecting assembly is assembled. The electrical contacting component of the electrical connecting assembly abuts against two inner sidewall surfaces of the electrical connecting notch. |
US11677173B2 |
Electrical connector with increased conductive paths
An electrical connector includes an insulative housing having a mating cavity and a plurality of power contact pairs. Each power contact pair defines an upper contact set and a lower contact set, each one of the upper contact set and the lower contact set comprises a first contact unit and a second contact unit, each one of the first contact unit and the second contact unit has a retaining portion and at least one contacting portion extending from the retaining portion into the mating cavity. The retaining portions of the upper contact set are arranged in a height direction of the insulative housing with the contacting portions thereof arranged in a transverse direction of the insulative housing, the retaining portions of the lower contact set are arranged in the height direction with the contacting portions thereof arranged in the transverse direction. |
US11677171B2 |
System and method for sealing electrical terminals
A sealing device and method for sealing an electrical terminal. The sealing device includes a heat shrinkable tubing having an inner wall. A first sealant/adhesive is configured to cooperate with the heat shrinkable tubing. The first sealant/adhesive has a first sealant/adhesive first surface and an oppositely facing first sealant/adhesive second surface. The second surface of the first sealant/adhesive is bonded to the inner wall of the heat shrinkable tubing. A second sealant/adhesive is configured to cooperate with free ends of electrical conductors which are in electrical engagement with the electrical terminal. The second sealant/adhesive has a second sealant/adhesive first surface and an oppositely facing second sealant/adhesive second surface. The second sealant/adhesive first surface is provided in engagement with the electrical conductors. The second sealant/adhesive second surface is provided in engagement and bonded with the first sealant/adhesive first surface. |
US11677165B2 |
Devices, systems, and methods for directional antennas that protect sensitive zones
A set of headphones include a zone that is sensitive to electromagnetic radiation, a first earpiece including a first directional antenna operable at a first frequency and having a first radiation pattern radiating away from the zone, and a second earpiece including a second directional antenna operable at the first frequency and having a second radiation pattern radiating away from the zone. |
US11677163B1 |
Quasi-omni cylindrical antenna with null-filling sub arrays
An antenna producing a quasi-omni radiation pattern. The antenna includes at least three main panels, each having a plurality of radiating elements thereon, disposed in one or more columns of elements. The main panels are disposed in a substantially circular arrangement to generate the quasi-omni radiation pattern. At least one null filling panel is disposed between every two consecutive main panels of the at least three main panels, directed towards a null in the quasi-omni radiation pattern between the two consecutive main panels. The null filling panel has at least a single column of elements that radiate a null filling signal that is substantially the same signal as a signal from elements from the two adjacent main panels. |
US11677162B2 |
Electronic device for identifying performance of communication circuit based on signal transmitted and received via antenna
An electronic device is provided The electronic device includes a patch antenna element, at least one antenna including a first feeding unit electrically connected to the patch antenna element and a second feeding unit electrically connected to the patch antenna element so as to have a designated isolation for a signal that is input to the first feeding unit, a radio frequency integrated circuit (RFIC) which includes a first communication circuit including a first transmission circuit and a first reception circuit which are electrically connected to the first feeding unit, and a second communication circuit including a second transmission circuit and a second reception circuit which are electrically connected to the second feeding unit, and a processor. |
US11677161B1 |
Apparatus, system, and method for transferring radio frequency signals between parallel waveguides in antennas
A steerable antenna comprising (1) a lower waveguide configured to direct radio frequency signals in a specific direction, (2) an upper waveguide positioned substantially parallel to the lower waveguide, wherein the upper waveguide is configured to direct the radio frequency signals in another direction substantially opposite to the specific direction, and (3) a plate coupled between the lower waveguide and the upper waveguide, wherein the plate includes one or more coupling elements that facilitate transferring the radio frequency signals between the lower waveguide to the upper waveguide. Various other apparatuses, systems, and methods are also disclosed. |
US11677158B2 |
Projected geometry antenna array
An integrated antenna array device includes a circuitry component layer having bounds defining a circuitry zone. The circuitry component layer includes beam steering circuitry. The integrated antenna array device also includes an antenna component layer affixed to the circuitry component layer in the circuitry zone. The antenna component layer includes a radiating region and an interconnecting region. The radiating region is outside the circuitry zone and includes one or more antenna arrays having radiating antenna elements. The interconnecting region is substantially defined within the circuitry zone and interconnects the beam steering circuitry with the one or more radiating elements. |
US11677145B1 |
Selective true-time delay for energy efficient beam squint mitigation in phased array antennas
Technologies directed to using selective true-time delay for energy efficient beam squint mitigation in phased array antennas in communication systems are described. One communication system includes a first register to store a first value indicative of a mode of operation of the communication system and a second register to store a value corresponding to a first time duration. The communication system includes antenna elements, digital beamforming (DBF) devices, phase shifters, and delay circuitry. In a first mode, the delay circuitry does not delay a first signal and, in a second mode, the delay circuitry delays a second signal. |
US11677136B2 |
Antenna device and communication device
An antenna device includes: a feeding antenna conductor; a non-feeding antenna conductor; a ground conductor; a first artificial magnetic conductor disposed between the feeding antenna conductor and the non-feeding antenna conductor, and the ground conductor; and a second artificial magnetic conductor disposed side by side with the first artificial magnetic conductor and electrically connected to the ground conductor. The feeding antenna conductor and the non-feeding antenna conductor are disposed on the first artificial magnetic conductor. |
US11677135B2 |
Packaged electronic device having integrated antenna and locking structure
A method for forming packaged electronic device structure includes providing a conductive leadframe. The leadframe can include a die pad with a first major surface and a second major surface opposite to the first major surface, and a plurality of conductive leads. The method can include coupling an electronic device to the plurality of conductive leads. The method can include providing an antenna structure, which can include a conductive pillar structure and an elongated conductive beam structure. The method can include providing a package body encapsulating the electronic device, at least portions of each conductive lead, and at least portions of the die pad. In an example, the conductive pillar structure can extend from the first package body surface to the second package body surface, the elongated conductive beam structure can be disposed adjoining the first package body surface and is electrically connected to the conductive pillar structure, and at least a portion of the elongated conductive beam structure is exposed outside of the package body. |
US11677134B2 |
Mobile medicine communication platform and methods and uses thereof
Telemedicine systems and methods are described. In a telemedicine system operable to communicate with a remote operations center, communications can be transmitted/received using a transceiver having an antenna. The antenna can include first and second di-pole antenna elements, the first di-pole antenna element being vertically polarized and the second di-pole antenna element being horizontally polarized. A controller of the system can establish, using the transceiver, a telemedicine session with the operations center using a Transport Morphing Protocol (TMP), the TMP being an acknowledgement-based user datagram protocol. The controller can also mask one or more transient network degradations to increase resiliency of the telemedicine session. The telemedicine system can include a 2D and 3D carotid Doppler and transcranial Doppler and/or other diagnostic devices, and provides for real-time connectivity and communication between medical personnel in an emergency vehicle and a receiving hospital for immediate diagnosis and treatment to a patient in need. |
US11677133B2 |
Deployable structure for use in establishing a reflectarray antenna
A deployable structure for use in establishing a reflectarray antenna is provided that includes a flexible reflectarray and a deployment structure that includes an endless pantograph for deploying the flexible reflectarray from a folded, undeployed state towards a deployed state in which the flexible reflectarray is substantially planar. In a particular embodiment, the deployment structure includes a plurality of tapes that engage the endless pantograph and are used to establish a positional relationship between the deployed reflectarray and another component of the reflectarray antenna. |
US11677132B2 |
Circuit board assembly and electronic device including the same
Disclosed is an antenna module including a circuit board, a communication circuit disposed on one surface of the circuit board, one or more antenna elements electrically connected to the communication circuit and arranged in at least a part of the circuit board, and a connection circuit board which includes an at least partially covered opening and is disposed on the one surface of the circuit board such that the communication circuit is disposed in an inner space of the connection circuit board. |
US11677130B2 |
Waveguide and communication system
A waveguide for receiving an incident electromagnetic wave (EMW) having an operating frequency Γ includes an array of spaced apart unit cells arranged along the waveguide. The unit cells are configured to resonantly couple to the incident EMW and radiate an EMW at the operating frequency propagating inside and along the waveguide. Each unit cell is configured to couple to the incident EMW with a first coupling efficiency and includes a dielectric body configured to couple to the incident EMW with a second coupling efficiency and one or more metal layers disposed on and partially covering the dielectric body. The second coupling efficiency is substantially smaller than the first coupling efficiency. A communication system includes the waveguide and a transceiver configured to emit an EMW having the operating frequency Γ. |
US11677126B2 |
Phase shifter and antenna device
There is provided a phase shifter including a substrate, a signal line on the substrate, ground lines disposed in pairs on the substrate, and at least one film bridge. Two ground lines of the ground lines are on two sides of the signal line and are respectively spaced apart from the signal line. Each film bridge includes a plurality of connection walls and a bridge floor structure that is opposite to the substrate. The connection walls are respectively on the two ground lines. The bridge floor structure includes a phase shifting electrode and at least one pair of adsorption electrodes respectively connected to two sides of the phase shifting electrode. The phase shifting electrode is opposite to the signal line. Two adsorption electrodes in each pair are respectively opposite to the two ground lines, and are respectively connected to the connection walls on the two ground lines. |
US11677123B2 |
Mitigating thermal runaway in lithium ion batteries using damage-initiating materials or devices
A method of manufacturing a battery includes introducing a first material to the battery, providing an anode, a cathode and a separator of the battery; and assembling the anode, the separator and the cathode. The first material is configured and arranged to increase the internal impedance of the battery upon mechanical or thermal loading. |
US11677121B2 |
Battery pack
The disclosure relates to a technical field of batteries, and in particular, relates to a battery pack. The battery pack includes a box body, a beam, a battery apparatus, and an electrical support base. The beam is disposed in the box body. The battery apparatus is disposed in the box body, and an electrical conductor is disposed on the battery apparatus. The electrical support base is disposed on the beam. The electrical conductor extends from the battery apparatus to the electrical support base and is connected to the electrical support base. |
US11677119B2 |
Secondary battery
To improve the safety of a secondary battery, the present disclosure provides a secondary battery including: a plurality of battery cells each including a case and an electrode assembly accommodated in the case; a plurality of first bus bars electrically connected to the plurality of battery cells and having a first thickness, the plurality of first bus bars being apart from each other with a predetermined gap therebetween; and a second bus bar arranged above the plurality of first bus bars and electrically connected to the plurality of first bus bars, the second bus bar having a second thickness greater than the first thickness. |
US11677117B2 |
Battery module and battery module manufacturing method
A battery module includes a box-shaped housing case that is open at an upper side and that does not include a hole formed in a side wall, a battery stack that includes plural battery cells stacked along a horizontal direction and that is housed inside the housing case, and a shim that is disposed between the battery stack and the housing case so as to press the battery stack along the stacking direction of the battery cells in a state in which the battery stack is housed inside the housing case. |
US11677115B2 |
Battery module and battery pack including same
A battery module, which includes at least one battery cell and a module case for packaging the at least one battery cell, wherein the module case includes: a top cover configured to cover an upper side of the at least one battery cell; and a side plate configured to cover all of opposing side surfaces of the top cover and opposing side surfaces of the at least one battery cell and configured to be coupled to the top cover by fitting. |
US11677113B2 |
Battery pack assembly
A battery pack assembly (1) comprising two holding frames (3), wherein the two holding frames (3) hold a plurality of cells (2) between them, each cell (2) being held longitudinally between the two holding frames (3), wherein two or more of the plurality of cells (2) are connected by a conductive means (7), and wherein the two holding frames (3) are reversibly held together by a fastening means (10), wherein the fastening means (10) cause terminals of the cells (2) to be urged against the conductive means (7) and removal or loosening of the fastening means (10) enables the cells (2) to be freed from the assembly (1), at least one holding frame (3) comprising one or more elastomeric protrusions (6) and wherein the conductive means (7) are positioned such that parts of them lie between one or more elastomeric protrusions (6) and one or more cell terminals, such that the urging of the frames (3) together by the fastening means (10) causes the conductive means (7) to be urged into contact by the elastomeric protrusions (6) with said one or more terminals. |
US11677104B2 |
Functional safety in a battery management system
In a particular embodiment, a method of functional safety in a battery management system is disclosed that includes: generating, by a module monitoring system of the battery management system, battery sensor data; generating, by the module monitoring system, based on the battery sensor data, integrity data; sending, by the module monitoring system, via a wireless black communication channel to a wireless network controller of the battery management system, the battery sensor data and the integrity data; and sending, by the wireless network controller, to a vehicle control system, the battery sensor data. |
US11677101B2 |
High-elasticity polymer for lithium metal protection, lithium secondary battery and manufacturing method
A lithium secondary battery comprising a cathode, an anode, and an elastic polymer protective layer disposed between the cathode and the anode, and a working electrolyte, wherein the elastic polymer protective layer comprises a high-elasticity polymer having a thickness from 50 nm to 100 μm, a lithium ion conductivity from 10−8 S/cm to 5×10−2 S/cm at room temperature, and a fully recoverable tensile elastic strain from 2% to 1,000% when measured without any additive or filler dispersed therein and wherein the high-elasticity polymer comprises a crosslinked polymer network of chains derived from at least one multi-functional monomer or oligomer selected from an acrylate, polyether, polyurethane acrylate, tetraethylene glycol diacrylate, triethylene glycol dimethacrylate, or di(trimethylolpropane) tetraacrylate, wherein a multi-functional monomer or oligomer comprises at least three reactive functional groups. |
US11677097B2 |
Solid electrolyte, method of preparing the same, and electrochemical device including the same
A solid electrolyte including a compound represented by Formula 1 or 3, the compound having a glass transition temperature of −30° C. or less, and a glass or glass-ceramic structure, AQX—Ga1−zMz1(F1−kClk)3−3zZ3z1 Formula 1 wherein, in Formula 1, Q is Li or a combination of Li and Na, K, or a combination thereof, M is a trivalent cation, or a combination thereof, X is a halogen other than F, pseudohalogen, OH, or a combination thereof, Z is a monovalent anion, or a combination thereof, 1 |
US11677096B2 |
Solid electrolyte, all solid battery, and manufacturing method of all solid battery
Solid electrolyte includes a first solid electrolyte that is a phosphate salt including Li and Ta, and a second solid electrolyte that is NASICON type solid electrolyte. In a cross section of the solid electrolyte, an area ratio of the first solid electrolyte is more than 10% and an area ratio of the second solid electrolyte is more than 10%. |
US11677095B2 |
Secondary battery and electronic device
To provide a secondary battery that is suitable to a portable information terminal or a wearable device. To provide an electronic device having a novel structure that can have various forms and a secondary battery that fits the forms of the electronic device. The secondary battery includes a film provided with depressions or projections that can ease stress on the film due to application of external force. The sizes of the depressions or projections are different between a center portion and an end portion of the film. The end portion of the film is sealed with an adhesive layer. The depressions or projections of the film are formed by pressing such as embossing. |
US11677092B2 |
Assembly method using assembly tool
Provided is an assembly method using an assembly tool used when a component is assembled to each of a plurality of connection ports to provided at an upper surface of a fuel-cell stack and communicating with a plurality of communication holes. The assembly tool includes a base portion positioned on the upper surface of the fuel-cell stack and a plurality of covering portions covering the plurality of connection ports. Each of the plurality of covering portions is, relative to the base portion, provided movably between a covering position for covering a corresponding one of the connection ports and a non-covering position accessible to a corresponding one of the connection ports. |
US11677091B2 |
Use of quaternary ammonium salt-type anthraquinone-based active material and salt cavern organic aqueous redox flow battery
The present invention relates to use of a quaternary ammonium salt-type anthraquinone-based active material, and a salt cavern organic aqueous redox flow battery. The quaternary ammonium salt-type anthraquinone-based active material is used as a negative active material in a salt cavern battery, and a quaternary ammonium salt group is introduced, which can improve the solubility of anthraquinone in a neutral sodium chloride solution, thereby increasing the energy density of the battery. Also, the material has a relatively good stability, without the need for charging and discharging under the protection of an inert gas environment. |
US11677090B2 |
Direct isopropanol fuel cell
A direct isopropanol fuel cell adapted for use in ambient conditions and utilizing as fuel isopropanol and water preferably with isopropanol at relatively high concentrations representing 30% to 90% isopropanol. |
US11677089B2 |
Catalyst and method for preparing the same
The present specification relates to a carrier-nanoparticle complex, a catalyst including the same, an electrochemical cell or a fuel cell including the catalyst, and a method for preparing the same. |
US11677086B2 |
Control system, moving body, and control method
According to an embodiment, a control system includes a fuel cell configured to generate electric power using an anode and a cathode, a power storage device capable of storing the electric power generated by the fuel cell, auxiliary equipment to which the electric power is able to be supplied, and a controller configured to control operations of the fuel cell and the auxiliary equipment. The controller performs control so that the electric power is consumed by the auxiliary equipment in accordance with a power storage state of the power storage device at the time of power generation of the fuel cell and adjusts one or both of a timing and a degree at which electric power to be consumed by the auxiliary equipment is limited on the basis of temperature information associated with the auxiliary equipment. |
US11677084B1 |
Shell reinforcing structure for fuel cell humidifier
A shell reinforcing structure for a fuel cell humidifier comprises a main body shell, fixed plates and grating mechanisms, wherein the side edges of the main body shell are fixedly connected with the fixed plates, the side edge of the fixed plate is provided with an end cover, the upper part of the end cover on the left side is fixedly connected with a dry air inlet tube, the left side of the upper part of the main body shell is fixedly connected with a moisture outlet tube, the right side of the upper part of the main body shell is fixedly connected with a moisture inlet tube, the upper end of the end cover on the right side is fixedly connected with a dry air outlet tube, fixed holes are formed in the side edge surface of the fixed plate. |
US11677081B2 |
Membrane electrode assembly and polymer electrolyte fuel cell
A membrane electrode assembly includes a polyelectrolyte membrane having a first surface and a second surface facing away from the first surface; a fuel-electrode-side electrocatalyst layer bonded to the first surface and containing a first catalytic material, a first electrically conductive carrier, and a first polyelectrolyte, the first electrically conductive carrier carrying the first catalytic material; and an oxygen-electrode-side electrocatalyst layer bonded to the second surface and containing a second catalytic material, a second electrically conductive carrier, a second polyelectrolyte, and a fibrous material, the second electrically conductive carrier carrying the second catalytic material. The membrane electrode assembly contains voids, the voids including pores each having a size in a range of 3 nm or more and 5.5 μm or less. |
US11677079B2 |
Electrode for lithium secondary battery and manufacturing method thereof
An electrode for a lithium secondary battery, which may be applied to the lithium secondary battery to increase cycling performance and efficiency of the battery, and a manufacturing method thereof. When the electrode for the lithium secondary battery of the present invention is applied to the lithium secondary battery, uniform deposition and stripping of lithium metals occur throughout the surface of the electrode when charging/discharging the battery, thereby inhibiting uneven growth of lithium dendrites and improving cycle and efficiency characteristics of the battery. Further, the electrode for the lithium secondary battery of the present invention exhibits remarkably high flexibility, as compared with existing electrodes including a metal current collector and an active material layer, thereby improving processability during manufacture of the electrode and assembling the battery. |
US11677063B2 |
Method for forming palladium thin film on glass substrate
A method of making a nanostructured palladium thin film electrode is described. The method involves contacting a substrate with an aerosol comprising a solvent and a Pd(II) compound. The substrate is heated, and no hydrogen gas or an additional reducing agent is required to reduce the Pd(II) to form the deposited thin film. The nanostructured palladium thin film electrode is capable of detecting compounds such as hydrazine in an aqueous sample with a 10 nM limit of detection. |
US11677062B2 |
Method of manufacturing light source device having a bonding layer with bumps and a bonding member
A method of manufacturing a light source device includes: disposing bumps containing a first metal on a first substrate which is thermally conductive; disposing a bonding member on the bumps, the bonding member containing Au—Sn alloy; disposing a light emitting element on the bumps and the bonding member; and heating the first substrate equipped with the bumps, the bonding member, and the light emitting element. |
US11677061B2 |
Semiconductor device, method of fabricating the same, and display device including the same
A semiconductor device includes a substrate including a first region and a second region that are arranged in a first direction that is parallel to an upper surface of the substrate; a separation layer provided on the first region of the substrate; a high electron mobility transistor (HEMT) device overlapping the separation layer in a second direction that is perpendicular to the upper surface of the substrate; a light-emitting device provided on the second region of the substrate; and a first insulating pattern covering a side surface of the HEMT device, wherein the first insulating pattern overlaps the separation layer in the second direction. |
US11677059B2 |
Light-emitting device package including a lead frame
A light-emitting device package includes a lead frame, a light-emitting device chip, a molding structure, and a plurality of slots. The lead frame includes a first lead and a second lead including metal and spaced apart from each other. The light-emitting device chip is mounted on a first area of the lead frame, which includes a part of the first lead and a part of the second lead. The molding structure includes an outer barrier surrounding an outside of the lead frame and an inner barrier. The plurality of slots are formed in each of the first lead and the second lead. The inner barrier divides the lead from into the first area and a second area. The inner barrier fills between the first lead in the second lead. The second area is located outside of the first area. The plurality of slots are filled by the molding structure. |
US11677058B2 |
Display device
A display device includes a substrate. The substrate has a trench portion recessed inward at a side, and includes a first display area, a second display area and a third display area, the second and third display areas being protruded from a first side of the first display area with the trench portion interposed therebetween, and a peripheral area around the display area. First gate lines, second gate lines, and third gate lines are respectively on the first display area, the second display area, and the third display area, and are respectively coupled to first pixels, second pixels, and third pixels. First, second, and third gate drivers are respectively to sequentially provide first gate signals, second gate signals, and third gate signals to the first gate lines, second gate lines, and third gate lines. The third gate driver is on the peripheral area between the third and second display areas. |
US11677057B2 |
Light emitting device, light emitting module, and illuminating apparatus
A light emitting device includes a substrate, a first group of light emitting diode (LED) structures, a second group of LED structures, and a connection port is provided. The substrate has a first surface and a second surface opposite to the first surface. The first group of LED structures is disposed on one side of the first surface. The second group of LED structures is disposed on another side of the first surface opposite to the first group of LED structures. The connection portion includes at least an opening, and a first connection pad and a second connection pad electrically coupled to at least a part of the LED structures. The connection port is adapted to be coupled to other device through the opening. A light emitting module and an illuminating apparatus are also provided. |
US11677055B2 |
Light emitting device and light emitting apparatus
A light emitting device includes at least one light emitting and connecting unit that includes an epitaxial layer structure and a metallic connecting layer structure, and an insulating substrate that has a main substrate body and first and second contact members. The connecting layer structure interconnects the epitaxial layer structure and the main substrate body, and is completely plane at least right under the epitaxial layer structure. The contact members extend from a first surface to a second surface on the main substrate body, and are disposed outside an imaginary projection of the epitaxial layer structure on the main substrate body. The first contact member is electrically connected with the connecting layer structure. Alight emitting apparatus including the device is also disclosed. |
US11677054B2 |
Light-emitting device
A light-emitting device includes: a base member; a base body formed on an upper surface of the base member, the base body including a wiring layer; a light-emitting element mounted on an upper surface of the base body, wherein the light-emitting element includes an element-substrate, and a semiconductor layer located on the element-substrate; a resin frame located on the upper surface of the base body; and a first resin located inside the resin frame to cover a part of side surfaces of the light-emitting element, a part of inner side surface of the resin frame, and the upper surface of the base body. The first resin includes: a reflective material layer that contains a reflective material, and a resin layer that is located on an upper surface of the reflective material layer and does not contain the reflective material. |
US11677053B2 |
Method of manufacturing light emitting element
A method of manufacturing a light emitting element includes: providing a first light emitting part and a second light emitting part, the first light emitting part comprising a first base member and a first semiconductor layered body, the second light emitting part comprising a second base member and a second semiconductor layered body; bonding the first and second light emitting parts to each other such that the first base member and the second base member are disposed between the first semiconductor layered body and the second semiconductor layered body; disposing a light reflecting member to cover the bonded first and second light emitting parts; removing a portion of the light reflecting member to expose surfaces of the first and second base members; and disposing a wavelength conversion member on the exposed surface of the first base member and the exposed surface of the second base member. |
US11677052B2 |
Semiconductor light-emitting device
A semiconductor light-emitting device includes a semiconductor light-emitting element having a supporting substrate and a sealing member located above the supporting substrate, a mounting substrate on which the semiconductor light-emitting element is mounted in such a manner that the sealing member faces the mounting substrate, and a sealing part that integrally covers a part of the supporting substrate and a side surface of the sealing member and seals the semiconductor light-emitting element and the mounting substrate. |
US11677046B2 |
Electrode structure of light emitting device
A light-emitting device, comprising: a substrate; a semiconductor stacking layer comprising a first type semiconductor layer on the substrate, an active layer on the first semiconductor layer, and a second semiconductor layer on the active layer; and an electrode structure on the second semiconductor layer, wherein the electrode structure comprises a bonding layer, a conductive layer, and a first barrier layer between the bonding layer and the conductive layer; wherein the conductive layer has higher standard oxidation potential than that of the bonding layer. |
US11677045B2 |
Optoelectronic semiconductor body and light-emitting diode
A light-emitting diode includes a semiconductor body and electrical connection points for contacting the semiconductor body, the semiconductor body including an active region including a quantum well that generates electromagnetic radiation, a first region and a second region that impede passage of charge carriers from the active region, wherein the semiconductor body is based on a nitride compound semiconductor material, the first region is directly adjacent to the active region on a p-side, the second region is arranged on a side of the first region facing away from the active region, the first region has an electronic band gap larger than the electronic band gap of the quantum well and less than or equal to an electronic band gap of the second region, the first region and the second region contain aluminum, and the active region emits electromagnetic radiation having a peak wavelength of less than 480 nm. |
US11677044B2 |
Highly efficient gallium nitride based light emitting diodes via surface roughening
A gallium nitride (GaN) based light emitting diode (LED), wherein light is extracted through a nitrogen face (N-face) of the LED and a surface of the N-face is roughened into one or more hexagonal shaped cones. The roughened surface reduces light reflections occurring repeatedly inside the LED, and thus extracts more light out of the LED. The surface of the N-face is roughened by an anisotropic etching, which may comprise a dry etching or a photo-enhanced chemical (PEC) etching. |
US11677037B2 |
Metamorphic layers in multijunction solar cells
A method of forming a multijunction solar cell that includes an InGaAs buffer layer and an InGaAlAs grading interlayer disposed below, and adjacent to, the InGaAs buffer layer. The grading interlayer achieves a transition in lattice constant from one solar subcell to another adjacent solar subcell. |
US11677034B2 |
FPCB/FCCL replacing tinned-copper welding strip as photovoltaic module bus bar
A FPCB/FCCL replacing a tinned-copper welding strip as a photovoltaic module bus bar is a composite material including an insulating base material and a conductive layer, and the insulating base material is made from PI or PET, and the conductive layer is generally the copper foil. According to the present invention, when the flexible solar module adopts the FPCB/FCCL to replace the tinned-copper welding strip as the photovoltaic module bus bar, the product quality and product stability are greatly improved, and the FPCB/FCCL bus bar is also suitable for the double-glass solar module and the single-glass solar module. The copper foil of FPCB/FCCL may be integrated with circuits, or be the complete copper foil (without circuits), or the copper foil of FPCB/FCCL may simultaneously has the part with circuits and the part without circuits. |
US11677033B2 |
Passive element on a semiconductor base body
A semiconductor device includes: a semiconductor base body of a first conductivity-type; a first electrode electrically connected to the semiconductor base body; a first semiconductor region of a second conductivity-type provided at an upper part of the semiconductor base body; a second semiconductor region of the first conductivity-type provided at an upper part of the first semiconductor region; a second electrode electrically connected to the first semiconductor region; an insulating film provided on a top surface of the second semiconductor region; and a passive element provided on a top surface of the insulating film. |
US11677029B2 |
Semiconductor device including active pattern having a protrusion portion on a base portion and method for manufacturing the same
A semiconductor device including an active pattern, which has a base portion and a protrusion portion on the base portion, and a source/drain pattern provided on the base portion may be provided. The protrusion portion may include a first curved pattern portion, a first flat pattern portion disposed at a lower level than the first curved pattern portion, and a second curved pattern portion disposed at a lower level than the first flat pattern portion. Each of the first and second curved pattern portions has a curved side wall, and the first flat pattern portion has a flat side wall. The germanium concentration of the first curved pattern portion is a higher than the germanium concentration of the first flat pattern portion, and the germanium concentration of the first flat pattern portion is higher than the germanium concentration of the second curved pattern portion. |
US11677022B2 |
Semiconductor structure and method of forming thereof
A semiconductor structure and a method for forming a semiconductor structure are provided. The semiconductor structure includes a substrate; a gate electrode disposed within the substrate; a gate dielectric layer disposed within the substrate and surrounding the gate electrode; a plurality of first protection structures disposed over the gate electrode; a second protection structure disposed over the gate dielectric layer; and a pair of source/drain regions on opposing sides of the gate dielectric layer. |
US11677020B2 |
Semiconductor device including different nitride regions and method for manufacturing same
According to one embodiment, a semiconductor device includes first to third electrodes, first to third nitride regions, and first and second insulating films. The first nitride region includes Alx1Ga1−x1N, and includes first and second partial regions, a third partial region between the first and second partial regions, a fourth partial region between the first and third partial regions, and a fifth partial region between the third and second partial regions. The first nitride region includes first to fifth partial regions. The second nitride region includes Alx2Ga1−x2N, and sixth and seventh partial regions. At least a portion of the third electrode is between the sixth and seventh partial regions. The first insulating film includes silicon and oxygen and includes first and second insulating regions. The third nitride region includes Alx3Ga1−x3N, and first to seventh portions. The second insulating film includes silicon and oxygen and includes third to seventh insulating regions. |
US11677017B2 |
Quantum well stacks for quantum dot devices
Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include a (111) silicon substrate, a (111) germanium quantum well layer above the substrate, and a plurality of gates above the quantum well layer. In some embodiments, a quantum dot device may include a silicon substrate, an insulating material above the silicon substrate, a quantum well layer above the insulating material, and a plurality of gates above the quantum well layer. |
US11677015B2 |
Method of manufacturing a semiconductor device and a semiconductor device
In a method of manufacturing a semiconductor device, a fin structure having a channel region protruding from an isolation insulating layer disposed over a semiconductor substrate is formed, a cleaning operation is performed, and an epitaxial semiconductor layer is formed over the channel region. The cleaning operation and the forming the epitaxial semiconductor layer are performed in a same chamber without breaking vacuum. |
US11677010B2 |
Method of manufacturing a semiconductor device and a semiconductor device
In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. A source/drain region of the fin structure, which is not covered by the sacrificial gate structure, is etched, thereby forming a source/drain space. The first semiconductor layers are laterally etched through the source/drain space. An inner spacer made of a dielectric material is formed on an end of each of the etched first semiconductor layers. A source/drain epitaxial layer is formed in the source/drain space to cover the inner spacer. A lateral end of each of the first semiconductor layers has a V-shape cross section after the first semiconductor layers are laterally etched. |
US11677002B2 |
Semiconductor structure
A semiconductor structure includes a substrate, a channel layer, a barrier layer, a source structure, a drain structure, a doped compound semiconductor layer, a dielectric layer, and a gate structure. The channel layer is disposed on the substrate. The barrier layer is disposed on the channel layer. The source structure and the drain structure are disposed on opposite sides of the barrier layer. The doped compound semiconductor layer is disposed on the barrier layer. The doped compound semiconductor layer has a first side adjacent to the source structure and a second side adjacent to the drain structure. The doped compound semiconductor layer has at least one opening exposing at least a portion of the barrier layer. The dielectric layer is disposed on the doped compound semiconductor layer and the barrier layer. The gate structure is disposed on the doped compound semiconductor layer. |
US11677001B2 |
Semiconductor device with c-shaped channel portion, method of manufacturing the same, and electronic apparatus including the same
The present disclosure discloses a semiconductor device with C-shaped channel portion, a method of manufacturing the same, and an electronic apparatus including the same. According to the embodiments, the semiconductor device may comprise a channel portion on a substrate, the channel portion including two or more curved nanosheets or nanowires spaced apart from each other in a lateral direction relative to the substrate and each having a C-shaped cross section; source/drain portions respectively located at upper and lower ends of the channel portion relative to the substrate; and a gate stack surrounding an outer circumference of each nanosheet or nanowire in the channel portion. |
US11677000B2 |
IC structure including porous semiconductor layer under trench isolations adjacent source/drain regions
An integrated circuit (IC) structure includes an active device over a bulk semiconductor substrate, and an isolation structure around the active device in the bulk semiconductor substrate. The active device includes a semiconductor layer having a center region, a first end region laterally spaced from the center region by a first trench isolation, a second end region laterally spaced from the center region by a second trench isolation, a gate over the center region, and a source/drain region in each of the first and second end regions. The isolation structure includes: a polycrystalline isolation layer under the active device, a third trench isolation around the active device, and a porous semiconductor layer between the first trench isolation and the polycrystalline isolation layer and between the second trench isolation and the polycrystalline isolation layer. |
US11676999B2 |
Electronic devices and methods of manufacturing the same
An electronic device includes a dielectric layer including crystal grains having aligned crystal orientations the dielectric layer may be between a substrate and a gate electrode. The dielectric layer may be between isolated first and second electrodes. A method of manufacturing an electronic device may include preparing a substrate having a channel layer, forming the dielectric layer on the channel layer, and forming a gate electrode on the dielectric layer. |
US11676998B2 |
Method for fabricating semiconductor device with P-N junction isolation structure
The present disclosure provides a method for fabricating a semiconductor device. The method includes providing a substrate, forming a first well layer in the substrate and having a first electrical type, forming an isolation-mask layer on the first well layer, forming mask openings along the isolation-mask layer to expose portions of the first well layer, forming bottom conductive layers in the portions of the first well layer, forming a bias layer in the first well layer and spaced apart from the bottom conductive layers, forming first insulating layers on the bottom conductive layers, forming first conductive lines on the first insulating layers and parallel to each other. The bottom conductive layers have a second electrical type opposite to the first electrical type. The bottom conductive layers, the first insulating layers, the first conductive lines together configure programmable units. |
US11676997B2 |
High voltage resistor with high voltage junction termination
High voltage semiconductor devices are described herein. An exemplary semiconductor device includes a first doped region and a second doped region disposed in a substrate. The first doped region and the second doped region are oppositely doped and adjacently disposed in the substrate. A first isolation structure and a second isolation structure are disposed over the substrate, such that each are disposed at least partially over the first doped region. The first isolation structure is spaced apart from the second isolation structure. A resistor is disposed over a portion of the first isolation structure and electrically coupled to the first doped region. A field plate disposed over a portion of the second doped region and electrically coupled to the second doped region. |
US11676992B2 |
Inductor module and method for fabricating the same
An inductor module and a method for fabricating the same are disclosed. The inductor module includes a substrate, a first inter-level dielectric layer, a plurality of second inter-level dielectric layers, a trench, and a first metal layer. The first inter-level dielectric layer is disposed on the substrate. The second inter-level dielectric layers are sequentially stacked on the first inter-level dielectric layer. The trench is disposed to penetrate at least two of the second inter-level dielectric layers. The first metal layer is disposed in the trench. The first metal layer has a top side surface and a bottom side surface opposite to each other. The top side surface is coplanar with an upper surface of the trench in the second inter-level dielectric layers. The bottom side surface is coplanar with a bottom surface of the trench in the second inter-level dielectric layers. |
US11676987B2 |
Semiconductor structure and the manufacturing method thereof
The present invention provides a semiconductor structure for forming a CMOS image sensor. The semiconductor structure includes at least a photodiode formed in the substrate for collecting photoelectrons, and the photodiode has a pinning layer, a first doped region and a second doped region in order from top to bottom in a height direction of the substrate. The semiconductor structure further includes a third doped region located in the substrate corresponding to a laterally extending region of the second doped region. The first doped region has an ion doping concentration greater than the ion doping concentration of the second doped region, the ion doping concentration of the second doped region is greater than the ion doping concentration of the third doped region, and the third doped region is in contact with the second doped region after diffusion. The present invention also provides a method of manufacturing the above-described semiconductor structure. |
US11676985B2 |
Image sensor intended to be illuminated via a back side, and corresponding method for acquiring a light flux
A back side illuminated image sensor includes a pixel formed by three doped photosensitive regions that are superposed vertically in a semiconductor substrate. Each photosensitive region is laterally framed by a respective vertical annular gate. The vertical annular gates are biased by a control circuit during an integration phase so as to generate an electrostatic potential comprising potential wells in the central portion of the volume of each doped photosensitive region and a potential barrier at each interface between two neighboring doped photosensitive regions. |
US11676983B2 |
Sensor with dam structure and method for manufacturing the same
A sensor includes a first chip, a dam structure and a cover. The first chip includes a substrate, a sensing area and a low-k material layer. The sensing area is located on the surface of the substrate. The low-k material layer is located in the substrate. The dam structure is located on the first chip. The dam structure covers the edge of the low-k material layer. The cover is located on the dam structure and covers the sensing area. A manufacturing method of a sensor is also provided. |
US11676982B2 |
Image sensing device
An image sensing device includes a substrate, a first reflector, and at least one second reflector. The substrate includes a photoelectric conversion element corresponding to each unit pixel. The first reflector is disposed in a manner that at least some parts of the first reflector overlap with the photoelectric conversion element, and is configured to reflect incident light directed to the photoelectric conversion element in a direction away from the photoelectric conversion element. The second reflect disposed over the substrate is configured to reflect the incident light reflected by the first reflector in a direction along which the incident light moves again closer to the photoelectric conversion element. |
US11676979B2 |
Image sensing device including air layer between color filters
Image sensing devices are disclosed. In an aspect, an image sensing device may include an array of sensor pixels to detect incident light to output pixel signals indicative of an image of the incident light, color filters respectively formed over the sensor pixels to filter light incident to the sensor pixels, respectively, and one or more optical grid structures disposed between adjacent color filters. Each of the one or more optical grid structures may include an air layer formed between the color filters and a first capping film structured to cover the air layer and having an open area formed over the air layer and connected to an outside of the color filters. |
US11676978B2 |
Solid-state imaging device, method of manufacturing the same, and electronic equipment
A solid state imaging device including a semiconductor layer comprising a plurality of photodiodes, a first antireflection film located over a first surface of the semiconductor layer, a second antireflection film located over the first antireflection film, a light shielding layer having side surfaces which are adjacent to at least one of first and the second antireflection film. |
US11676972B2 |
Display device
A display device includes a first transistor. The first transistor includes an oxide semiconductor layer, a first gate electrode facing the oxide semiconductor layer and a gate insulating layer between the oxide semiconductor layer and the first gate electrode. The first gate electrode has hydrogen storage properties. |
US11676971B2 |
Display device and electronic device
A display device including a display portion with an extremely high resolution is provided. The display device includes a pixel circuit and a light-emitting element. The pixel circuit includes a first element layer including a first transistor and a second element layer including a second transistor. A channel formation region of the first transistor includes silicon. The first transistor has a function of driving the light-emitting element. The second transistor functions as a switch. A channel formation region of the second transistor includes a metal oxide. The metal oxide functions as a semiconductor. The second element layer is provided over the first element layer. |
US11676969B2 |
Semiconductor-on-insulator wafer having a composite insulator layer
Various embodiments of the present disclosure are directed towards a semiconductor wafer. The semiconductor wafer comprises a handle wafer. A first oxide layer is disposed over the handle wafer. A device layer is disposed over the first oxide layer. A second oxide layer is disposed between the first oxide layer and the device layer, wherein the first oxide layer has a first etch rate for an etch process and the second oxide layer has a second etch rate for the etch process, and wherein the second etch rate is greater than the first etch rate. |
US11676963B2 |
Integrated circuit device and method of manufacturing the same
An integrated circuit device includes a fin-type active region protruding from a substrate and extending in a first direction, a plurality of semiconductor patterns disposed apart from an upper surface of the fin-type active region, the plurality of semiconductor patterns each including a channel region; a gate electrode surrounding the plurality of semiconductor patterns, extending in a second direction perpendicular to the first direction, and including a main gate electrode, which is disposed on an uppermost semiconductor pattern of the plurality of semiconductor patterns and extends in the second direction, and a sub-gate electrode disposed between the plurality of semiconductor patterns; a spacer structure disposed on both sidewalls of the main gate electrode; and a source/drain region connected to the plurality of semiconductor patterns, disposed at both sides of the gate electrode, and contacting a bottom surface of the spacer structure. |
US11676961B2 |
Semiconductor device with low noise transistor and low temperature coefficient resistor
A semiconductor device includes a resistor having a resistor body including polysilicon, with fluorine in the polysilicon. The resistor body has a laterally alternating distribution of silicon grain sizes. The semiconductor device further includes an MOS transistor having a gate including polysilicon with fluorine. The fluorine in the gate has a higher average concentration than the fluorine in the resistor body. The semiconductor device may be formed by forming a gate/resistor layer including polysilicon. A fluorine implant mask is formed over the gate/resistor layer, exposing the gate/resistor layer in an area for the gate and over implant segments in an area for the resistor body. The implant segments do not cover the entire area for the resistor body. Fluorine is implanted into the gate/resistor layer where exposed by the fluorine implant mask. The gate/resistor layer is patterned to form the gate and the resistor body. |
US11676958B2 |
Semiconductor device including cumulative sealing structures and method and system for making of same
A semiconductor device includes: first and second core regions; first and second input/output (I/O) regions coupled to each other and to the first and second core regions; the first and second I/O regions being between an expendable region and correspondingly the first and second core regions; a sealing ring surrounding the core regions and the I/O regions; metallization layers and interconnection layers; inter-communication (inter-com) segments extending between the I/O regions; first and second parapets which extend from the first to third sides of the sealing ring or from first to second locations on corresponding third and fourth parapets, the latter extending from the first to third sides of the sealing ring; the first parapet being between the first core region and the first I/O region; and the second parapet being between the second core region and the second I/O region. |
US11676957B2 |
Integrated circuit device, system and method
An integrated circuit (IC) device includes a substrate having opposite first and second sides, an active region over the first side of the substrate, a first conductive pattern over the active region, and a second conductive pattern under the second side of the substrate. The active region includes a first portion and a second portion. The first conductive pattern is electrically coupled to the first portion and the second portion of the active region. The second conductive pattern is electrically coupled to the first portion and the second portion of the active region. |
US11676956B2 |
Semiconductor device manufacturing method
Provided is a technique suitable for multilayering thin semiconductor elements via adhesive bonding while avoiding wafer damage in a method of manufacturing a semiconductor device, the method in which semiconductor elements are multilayered through laminating wafers in which the semiconductor elements are fabricated. The method of the present invention includes bonding and removing. In the bonding step, a back surface 1b side of a thinned wafer 1T in a reinforced wafer 1R having a laminated structure including a supporting substrate S, a temporary adhesive layer 2, and the thinned wafer 1T is bonded via an adhesive to an element forming surface 3a of a wafer 3. A temporary adhesive for forming the temporary adhesive layer 2 contains a polyvalent vinyl ether compound, a compound having two or more hydroxy groups or carboxy groups and thus capable of forming a polymer with the polyvalent vinyl ether compound, and a thermoplastic resin. The adhesive contains a polymerizable group-containing polyorganosilsesquioxane. In the removing step, a temporary adhesion by the temporary adhesive layer 2 between the supporting substrate S and the thinned wafer 1T is released to remove the supporting substrate S. |
US11676955B2 |
Separation method and assembly for chip-on-wafer processing
A method for separating semiconductor die stacks of a chip-on-wafer assembly is disclosed herein. In one example, divider walls are arranged in a pattern on a first surface of a device wafer such that regions between the divider walls define mounting sites. Die stacks are mounted to the device wafer, wherein individual die stacks are located at a corresponding mounting site between the divider walls. The device wafer is cut through from a second surface that is opposite the first surface of the device wafer, and the divider walls are removed from between the die stacks to form a vacant lane between adjacent die stacks. |
US11676954B2 |
Bonded three-dimensional memory devices with backside source power supply mesh and methods of making the same
A semiconductor structure includes a memory die bonded to a logic die. The memory die includes an alternating stack of insulating layers and electrically conductive layers; memory openings extending through the alternating stack, memory opening fill structures located in the memory openings and comprising a respective vertical semiconductor channel and a respective memory film, a source layer contacting the vertical semiconductor channels, a backside isolation dielectric layer contacting a backside surface of the source layer, and a source power supply mesh including a planar portion of a source-side electrically conductive layer that is located on a backside of the backside isolation dielectric layer and electrically connected to the source layer by conductive material portions that extend through the backside isolation dielectric layer. |
US11676949B2 |
Semiconductor packages having supporting members
A semiconductor package includes a lower substrate including a lower passivation layer, a lower pad, element pads and a supporting pad that are disposed on a lower surface of the lower substrate. The lower passivation layer partially covers the lower pad, the element pads and the supporting pad. A semiconductor chip is disposed on an upper surface of the lower substrate. An upper substrate is disposed on the semiconductor chip and is connected to the lower substrate. An encapsulator is disposed between the lower substrate and the upper substrate. An element is disposed on the lower surface of the lower substrate. The element is bonded to the element pads. A lower supporting member is disposed on the lower surface of the lower substrate. A supporting bonding member bonds the lower supporting member to the supporting pad. |
US11676945B1 |
3D semiconductor device and structure with metal layers
A semiconductor device, the device including: a first silicon layer including a first single crystal silicon; a first metal layer disposed over the first single crystal silicon layer; a second metal layer disposed over the first metal layer; a first level including a plurality of transistors, the first level disposed over the second metal layer, where the plurality of transistors include a second single crystal silicon; a third metal layer disposed over the first level; a fourth metal layer disposed over the third metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error; and a via disposed through the first level, where the fourth metal layer provides a global power distribution, and where a typical thickness of the fourth metal layer is at least 50% greater than a typical thickness of the third metal. |
US11676939B2 |
Discrete polymer in fan-out packages
A package includes a first molding material, a lower-level device die in the first molding material, a dielectric layer over the lower-level device die and the first molding material, and a plurality of redistribution lines extending into the first dielectric layer to electrically couple to the lower-level device die. The package further includes an upper-level device die over the dielectric layer, and a second molding material molding the upper-level device die therein. A bottom surface of a portion of the second molding material contacts a top surface of the first molding material. |
US11676935B2 |
Bonding method and structure
A bonding method is capable of realizing high bonding strength and connection reliability even at a connection part in a high temperature area by means of simple operation low temperature bonding. The method includes a first step wherein, on at least one of the bonded surfaces of two materials to be bonded having a smooth surface, a thin film of noble metal with a volume diffusion coefficient greater than that of the base metal of the material to be bonded is formed using an atomic layer deposition method at a vacuum of 1.0 Pa or higher, a second step wherein a laminate is formed by overlapping the two materials to be bonded so that the bonded surfaces of the two materials are connected through the thin film, and a third step wherein the two materials to be bonded are bonded by holding the laminate at a predetermined temperature. |
US11676934B2 |
Clip bond semiconductor packages and assembly tools
The present disclosure is directed to a high throughput clip bonding tool or system which is flexible and easily adapts to different clip bond pitches or sizes. The clip bonding system may be an integrated system with various modules, including a clip singulation module, a feeder module, a transfer module and a clip attach module within a shared footprint. For example, an incoming clip source may be fed to the clip singulation module for clip singulation before the singulated clips are transferred by the feeder and transfer modules to a clip presentation area for clip alignment before pickup. A pickup tool of the clip attach module is configured to facilitate pickup and attachment of clips onto the semiconductor packages to be clip bonded. For example, the pickup head is programmable to facilitate clip bonding process of different applications which may require clips and packages with different sizes. |
US11676932B2 |
Semiconductor interconnect structures with narrowed portions, and associated systems and methods
Semiconductor devices having interconnect structures with narrowed portions configured to mitigate thermomechanical stresses, and associated systems and methods, are disclosed herein. In one embodiment, a semiconductor package includes a semiconductor die and a pillar structure coupled to the semiconductor die. The pillar structure can include an end portion away from the semiconductor die, the end portion having a first cross-sectional area. The pillar structure can further include a narrowed portion between the end portion and the semiconductor die, the narrowed portion having a second cross-sectional area less than the first-cross-sectional area of the end portion. A bond material can be coupled to the end portion of the pillar structure. |
US11676929B2 |
Electronic substrate and electronic apparatus
Provided is an electronic substrate that achieves a reduction in the size of a substrate and enables a void risk in an underfill to be reduced, and an electronic apparatus. The electronic substrate includes an electronic chip that is placed above a substrate, an electrode that exists between the substrate and the electronic chip and electrically connects the substrate and the electronic chip, an underfill with which a space between the substrate and the electronic chip is filled so that the electrode is sealed and protected, a protection target to be protected from inflow of the underfill, the protection target being formed on the substrate, and an underfill inflow prevention unit that is formed in the substrate so as to surround an entirety or a portion of the protection target. |
US11676926B2 |
Solder joints on nickel surface finishes without gold plating
A method for interconnecting two conductors includes creating a first nickel layer on a first conductor of an electrical component, producing a first non-gold protective layer on the first nickel layer, the first non-gold protective layer being configured to prevent the first nickel layer from oxidizing, creating a second nickel layer on a second conductor, producing a second non-gold protective layer on the second nickel layer, the second non-gold protective layer being configured to prevent the second nickel layer from oxidizing, and interconnecting the first and second nickel layers using a solder layer that interfaces with the first and second nickel layers between the first and second conductors. |
US11676925B2 |
Semiconductor packages having improved reliability in bonds between connection conductors and pads and methods of manufacturing the same
A semiconductor package includes a first semiconductor chip having a through-electrode and an upper connection pad on an upper surface of the first semiconductor chip that is connected to the through-electrode; a second semiconductor chip stacked on the first semiconductor chip, and having a lower connection pad on a lower surface of the second semiconductor chip; a non-conductive film between the first semiconductor chip and the second semiconductor chip, with the non-conductive film including voids having an average diameter of 1 μm to 100 μm, the voids having a volume fraction of 0.1 to 5 vol %; and a connection conductor that penetrates the non-conductive film and connects the upper connection pad and the lower connection pad. |
US11676915B2 |
Semiconductor package
A semiconductor package including a redistribution substrate with a first insulating layer, one or more second insulating layers on the first insulating layer, and a plurality of redistribution layers. The first insulating layer includes a first photosensitive resin having an elongation of 60% or more and toughness of 70 mJ/mm3 or more. The one or more second insulating layers include a second photosensitive resin having an elongation in a range of 10% to 40% and toughness of 40 mJ/mm3. |
US11676914B2 |
Semiconductor substrate and method of sawing the same
A semiconductor substrate may include a plurality of semiconductor chips and a protection pattern. The semiconductor chips may be divided by two scribe lanes intersecting each other. Corners of the semiconductor chips may be disposed at the intersection of the two scribe lanes. The protection pattern may be arranged at the intersection of the scribe lanes to surround the corners of the semiconductor chips. Thus, the corners of the semiconductor chips may be protected by the protection pattern form colliding with each other in a following grinding process. |
US11676912B2 |
Semiconductor device package and method for manufacturing the same
A semiconductor device package and a method for manufacturing a semiconductor device package are provided. The semiconductor device package includes a substrate, a clip, and a support structure. The clip is disposed on the substrate. The clip includes a first portion and a second portion separated from each other by a slit. The support structure is above the substrate and supports the clip. The support structure has a first surface and a second surface facing the first surface, and the first surface and the second surface define a gap. |
US11676911B2 |
Method and device for reducing metal burrs when sawing semiconductor packages
A semiconductor device has a substrate. A conductive layer is formed over the substrate and includes a ground plane. A first tab of the conductive layer extends from the ground plane and less than half-way across a saw street of the substrate. A shape of the first tab can include elliptical, triangular, parallelogram, or rectangular portions, or any combination thereof. An encapsulant is deposited over the substrate. The encapsulant and substrate are singulated through the saw street. An electromagnetic interference (EMI) shielding layer is formed over the encapsulant. The EMI shielding layer contacts the first tab of the conductive layer. |
US11676906B2 |
Chip package and manufacturing method thereof
A chip package includes a redistribution layer, at least one first semiconductor chip, an integrated fan-out package, and an insulating encapsulation. The at least one first semiconductor chip and the integrated fan-out package are electrically connected to the redistribution layer, wherein the at least one first semiconductor chip and the integrated fan-out package are located on a surface of the redistribution layer and electrically communicated to each other through the redistribution layer, and wherein the integrated fan-out package includes at least one second semiconductor chip. The insulating encapsulation encapsulates the at least one first semiconductor chip and the integrated fan-out package. |
US11676903B2 |
Combined backing plate and housing for use in bump bonded chip assembly
A method for forming an electronic chip assembly. A first metal plate is coupled to a first side of a substrate to form a backing plate. A first cavity is created extending through the substrate to extend at least to the first metal plate. An electronic component is bonded to the substrate such that the electronic component is located within the first cavity. A second metal plate, having a second cavity, is disposed to a second side of the substrate, and over the first cavity such that the electronic component is encased within the first and second cavities by the first and second metal plates. |
US11676902B2 |
Semiconductor package including interposer
A semiconductor package includes a base package substrate, a first semiconductor chip, and a second semiconductor chip. The base package substrate includes a redistribution region where a redistribution layer is provided, a plurality of vertical conductive vias connected to the redistribution layer, and a recess region recessed from an upper surface of the redistribution region. The base package substrate further includes an interposer in the recess region, the interposer comprising a substrate, a plurality of upper pads disposed at an upper surface of the substrate, and plurality of through electrodes respectively connected to the plurality of upper pads to pass through the substrate. The first semiconductor chip and second semiconductor chip, each include a plurality of conductive interconnection terminals respectively connected to the plurality of upper pads and the vertical conductive vias exposed at the upper surface of the redistribution region. The first semiconductor chip and the second semiconductor chip are mounted on the extension region and the interposer and disposed horizontally apart from each other. As seen from a plan view, the interposer is disposed to overlap a portion of each of the first semiconductor chip and the second semiconductor chip. |
US11676900B2 |
Electronic assembly that includes a bridge
An electronic assembly that includes a substrate having an upper surface and a bridge that includes an upper surface. The bridge is within a cavity in the upper surface of the substrate. A first electronic component is attached to the upper surface of the bridge and the upper surface of the substrate and a second electronic component is attached to the upper surface of the bridge and the upper surface of the substrate, wherein the bridge electrically connects the first electronic component to the second electronic component. |
US11676898B2 |
Diffusion barrier for semiconductor device and method
A method includes forming an insulating layer over a conductive feature; etching the insulating layer to expose a first surface of the conductive feature; covering the first surface of the conductive feature with a sacrificial material, wherein the sidewalls of the insulating layer are free of the sacrificial material; covering the sidewalls of the insulating layer with a barrier material, wherein the first surface of the conductive feature is free of the barrier material, wherein the barrier material includes tantalum nitride (TaN) doped with a transition metal; removing the sacrificial material; and covering the barrier material and the first surface of the conductive feature with a conductive material. |
US11676897B2 |
Power gating switch tree structure for reduced wake-up time and power leakage
An aspect relates to an apparatus including a first and second power rails; a first set of power switch cells coupled to the first and second power rails, the first set of power switch cells being cascaded from an output to an input of a control circuit; and a second set of power switch cells coupled to the first and second power rails, the second set of power switch cells being coupled to one of a pair of cells of the first set, the first output, and the first input of the control circuit. Another aspect relates to a method including propagating a control signal via a first set of cascaded power switch cells to sequentially couple a first power rail to a second power rail; and propagating the control signal via a second set of power switch cells coupled between a pair of cells of the first set. |
US11676896B2 |
Integrated circuit and method for forming the same
A semiconductor device includes a substrate, a gate structure, source/drain structures, a backside via, and a power rail. The gate structure extends along a first direction parallel with a front-side surface of the substrate. The backside via extends along a second direction parallel with the front-side surface of the substrate but perpendicular to the first direction, the backside via has a first portion aligned with one of the source/drain structures along the first direction and a second portion aligned with the gate structure along the first direction, the first portion of the backside via has a first width along the first direction, and the second portion of the backside via has a second width along the first direction, in which the first width is greater than the second width. The power rail is on a backside surface of the substrate and in contact with the backside via. |
US11676893B2 |
Semiconductor device and fabrication method for the same
A reliable semiconductor device and a method for preparing the reliable semiconductor device are provided. The semiconductor device includes at least one die comprising an integrated circuit region; a first recess region surrounding the integrated circuit region; and a second recess region surrounding the first recess region. A first columnar blocking structure is disposed in the first recess region and a second columnar blocking structure is disposed in the second recess region. |
US11676888B2 |
Semiconductor devices
A device including a stack of layers defining a first conductor pattern at a first level of the stack and one or more semiconductor channels in respective regions, connecting a pair of parts of the first conductor pattern, and capacitively coupled via a dielectric to a coupling conductor of a second conductor pattern at a second level of the stack. The stack includes at least two insulator patterns over which the first level or second level conductor patterns is formed. A first insulator pattern occupies one or more semiconductor channel regions to provide the dielectric. The second insulator pattern defines one or more windows in the one or more semiconductor channel regions through which the second conductor pattern contacts the first insulator pattern other than via the second insulator pattern. The second insulator pattern overlaps the first insulator pattern outside the one or more semiconductor channel regions. |
US11676886B2 |
Integrated circuit package structure with conductive stair structure and method of manufacturing thereof
An integrated circuit package structure includes a circuit board, an integrated circuit die and a conductive stair structure. The circuit has an upper surface. The integrated circuit die is located on the upper surface of the circuit board. The conductive stair structure is located on the upper surface of the circuit board. The conductive stair structure includes steps along a first direction substantially perpendicular to the upper surface of the circuit board. The steps have different heights relative to the upper surface of the circuit board. |
US11676879B2 |
Semiconductor package having a chip carrier and a metal plate sized independently of the chip carrier
A semiconductor package includes: a carrier having a first side and a second side opposite the first side, the first side having a plurality of contact structures; a semiconductor die having a first side and a second side opposite the first side, the first side of the semiconductor die having a plurality of pads attached to the plurality of contact structures at the first side of the carrier; a metal plate attached to the second side of the semiconductor die, the metal plate having a size that is independent of the size of the carrier and based on an expected thermal load to be presented by the semiconductor die; and an encapsulant confined by the carrier and the metal plate and laterally surrounding an edge of the semiconductor die. Corresponding methods of production are also provided. |
US11676878B2 |
Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
The present disclosure relates to a thermally enhanced package, which includes a carrier, a thinned die over the carrier, a mold compound, and a heat extractor. The thinned die includes a device layer over the carrier and a dielectric layer over the device layer. The mold compound resides over the carrier, surrounds the thinned die, and extends beyond a top surface of the thinned die to define an opening within the mold compound and over the thinned die. The top surface of the thinned die is at a bottom of the opening. At least a portion of the heat extractor is inserted into the opening and in thermal contact with the thinned die. Herein the heat extractor is formed of a metal or an alloy. |
US11676874B2 |
Methods and apparatuses for packaging an ultrasound-on-a-chip
Described herein are methods and apparatuses for packaging an ultrasound-on-a-chip. An ultrasound-on-a-chip may be coupled to a redistribution layer and to an interposer layer. Encapsulation may encapsulate the ultrasound-on-a-chip device and first metal pillars may extend through the encapsulation and electrically couple to the redistribution layer. Second metal pillars may extend through the interposer layer. The interposer layer may include aluminum nitride. The first metal pillars may be electrically coupled to the second metal pillars. A printed circuit board may be coupled to the interposer layer. |
US11676873B2 |
Semiconductor package having sealant bridge
Semiconductor packages having a sealant bridge between an integrated heat spreader and a package substrate are described. In an embodiment, a semiconductor package includes a sealant bridge anchoring the integrated heat spreader to the package substrate at locations within an overhang gap laterally between a semiconductor die and a sidewall of the integrated heat spreader. The sealant bridge extends between a top wall of the integrated heat spreader and a die side component, such as a functional electronic component or a non-functional component, or a satellite chip on the package substrate. The sealant bridge modulates warpage or stress in thermal interface material joints to reduce thermal degradation of the semiconductor package. |
US11676872B2 |
Materials and methods for passivation of metal-plated through glass vias
A through-glass via (TGV) formed in a glass substrate may comprise a metal plating layer formed in the TGV. The TGV may have a three-dimensional (3D) topology through the glass substrate and the metal plating layer conformally covering the 3D topology. The TGV may further comprise a barrier layer disposed over the metal plating layer, and a metallization layer disposed over the barrier layer. The metallization layer may be electrically coupled to the metal plating layer through the barrier layer. The barrier layer may comprise a metal-nitride film disposed on the metal plating layer that is electrically coupled to the metallization layer. The barrier layer may comprise a metal film disposed over the metal plating layer and over a portion of glass surrounding the TGV, and an electrically-insulating film disposed upon the metal film, the electrically-insulating film completely overlapping the metal plating layer and partially overlapping the metal film. |
US11676870B2 |
Method of determining thickness of memory gate electrode during device manufacture
A stacked-layer body including a gate insulating film and a control gate electrode is formed in a product region and a scribe region. Next, a gate insulating film and a conductive film are so formed that the stacked-layer body is covered. Next, an etching process is so performed to the conductive film that an upper surface of the conductive film is lower than that of an upper surface of the stacked-layer body, thereby forming a measurement pattern in the scribe region. Next, a memory gate electrode is formed by patterning the conductive film in the product region. Next, a silicide layer is formed on an upper surface of the memory gate electrode in the product region in a state where an upper surface of the measurement pattern is covered by an insulating film. Next, a resistance value of the measurement pattern covered by the insulating film is measured. |
US11676865B2 |
Semiconductor structure and fabrication method thereof
Semiconductor structures and fabrication methods thereof are provided. The method includes providing a substrate; forming a stacked material structure on the substrate; and forming trenches in the stacked material structure. Bottoms of the trenches are in the first material layer, the trenches are arranged along a first direction and form an initial stacked structure sequentially including an initial first layer, an initial second layer and an initial third layer. The method also includes etching the initial third layer to form transitional third layers arranged along a second direction perpendicular to the first direction; removing a portion of the initial first layer and a portion of the initial second layer of the initial stacked structure at two sides along the second direction to form a stacked structure including a first layer, a second layer and the transitional third layers; and forming a gate structure. |
US11676860B2 |
Barrier for preventing eutectic break-through in through-substrate vias
A method involving a barrier for preventing eutectic break-through in through-substrate vias is disclosed. The method generally includes steps (A) to (D). Step (A) may form one or more vias through a substrate. The substrate generally comprises a semiconductor. Step (B) may form a first metal layer. Step (C) may form a barrier layer. The barrier layer generally resides between the vias and the first metal layer. Step (D) may form a second metal layer. The second metal layer may be in electrical contact with the first metal layer through the vias and the barrier layer. |
US11676855B2 |
Patterning interconnects and other structures by photo-sensitizing method
A representative method includes forming a photo-sensitive material over a substrate, and forming a cap layer over the photo-sensitive material, and patterning the cap layer. Using the patterned cap layer, a first portion of the photo-sensitive material is selectively exposed to a pre-selected light wavelength to change at least one material property of the first portion of the photo-sensitive material, while preventing a second portion of the photo-sensitive material from being exposed to the pre-selected light wavelength. One, but not both of the following steps is then conducted: removing the first portion of the photo-sensitive material and forming in its place a conductive element at least partially surrounded by the second portion of the photo-sensitive material, or removing the second portion of the photo-sensitive material and forming from the first portion of the photo-sensitive material a conductive element electrically connecting two or more portions of a circuit. |
US11676853B2 |
Interconnect structure
A method includes: forming a first conductive structure in a first dielectric layer; forming a conductive protection structure that is coupled to at least part of the first conductive structure; forming a second dielectric layer over the first dielectric layer; forming a via hole extending through at least part of the second dielectric layer to expose a portion of the conductive protection structure; cleaning the via hole; and refilling the via hole with a conductive material to form a via structure. |
US11676851B2 |
Method for manufacturing a fluid sensor device and a fluid sensor device
According to an aspect of the present inventive concept there is provided a method for manufacturing a fluid sensor device comprising: bonding a silicon-on-insulator arrangement comprising a silicon wafer, a buried oxide, a silicon layer, and a first dielectric layer, to a CMOS arrangement comprising a metallization layer and a planarized dielectric layer, wherein the bonding is performed via the first dielectric layer and the planarized dielectric layer; forming a fin-FET arrangement in the silicon layer, wherein the fin-FET arrangement is configured to function as a fluid sensitive fin-FET arrangement; removing the buried oxide and the silicon wafer; forming a contact to the metallization layer and the fin-FET arrangement, wherein the contact comprises an interconnecting structure configured to interconnect the metallization layer and the fin-FET arrangement; forming a channel comprising an inlet and an outlet, wherein the channel is configured to allow a fluid comprising an analyte to contact the fin-FET arrangement. |
US11676849B2 |
Substrate carrier
Embodiments of substrate carriers and method of making the same are provided herein. In some embodiments, a substrate carrier includes a substantially planar body formed of an upper layer stacked on a lower layer; and a plurality of pockets formed in the substantially planar body each of which includes a support surface surrounding the pocket for supporting a substrate. |
US11676847B2 |
Substrate placing table and substrate processing apparatus
A substrate placing table according to an exemplary embodiment includes a base and an electrostatic chuck provided on the base. The electrostatic chuck includes a lamination layer portion, an intermediate layer, and a covering layer. The lamination layer portion is provided on the base. The intermediate layer is provided on the lamination layer portion. The covering layer is provided on the intermediate layer. The lamination layer portion includes a first layer, an electrode layer, and a second layer. The first layer is provided on the base. The electrode layer is provided on the first layer. The second layer is provided on the electrode layer. The intermediate layer is provided between the second layer and the covering layer and is in close contact with the second layer and the covering layer. The second layer is a resin layer. The covering layer is ceramics. |
US11676844B2 |
Coating film forming apparatus and adjustment method therefor
A coating film forming apparatus includes a carry-in/out section in which a substrate is carried in and carried out; a periphery coating module configured to form a ring-shaped coating film by supplying a coating liquid along a periphery of the substrate based on a processing parameter for controlling a coating state by the coating film; an imaging module configured to image the substrate on which the ring-shaped coating film is formed; a transfer mechanism configured to transfer the substrate; and a controller configured to output a control signal to perform a process of forming the ring-shaped coating film on the substrate based on the processing parameter having different values and imaging the substrate by the imaging module, and configured to determine, based on an imaging result of the substrate, a value of the processing parameter for forming the ring-shaped coating film on the substrate in the periphery coating module. |
US11676843B2 |
System and method for connecting electronic assemblies
A method and system for connecting electronic assemblies and/or for manufacturing workpieces, having a plurality of modules for connecting the electronic assemblies, includes at least one module configured as a loading station and/or unloading station. At least one further module is configured as a manufacturing station. A manufacturing workpiece carrier is provided for accommodating the electronic assemblies and/or the workpieces, and is movable in automated manner by way of a conveying unit from the loading station via the manufacturing station to the unloading station. The system is configured in particular for assembly line production. In a secondary aspect, a foil/film transfer unit is proposed which provides automated application of foils/films as a process cover in the loading station. |
US11676841B2 |
Overhead hoist transport device and method of using the same
Some implementations described herein provide a method that includes loading, from a load port and into a first buffer of a multiple-buffer overhead hoist transport (OHT) vehicle, a first transport carrier storing one or more processed wafers. The method includes unloading to the load port, while the first buffer retains the first transport carrier, and from a second buffer of the multiple-buffer OHT vehicle, a second transport carrier storing one or more wafers for processing. In other implementations, the method includes loading, into a first buffer of the multiple-buffer OHT vehicle, a first transport carrier storing one or more wafers for processing, while a semiconductor processing tool, associated with a load port, is processing one or more wafers associated with a second transport carrier. The method includes positioning the multiple-buffer OHT vehicle above the load port while the multiple-buffer OHT vehicle retains the first transport carrier in the first buffer. |
US11676840B2 |
Adsorption device, transferring system having same, and transferring method using same
A transferring method includes providing an adsorption device, using the adsorption device to attract and hold a plurality of light emitting diodes (LEDs), providing a target substrate with a plurality of spots of anisotropic conductive adhesive on a surface of the target substrate; moving the adsorption device or the target substrate wherein each of the plurality of LEDs adsorbed by the adsorption device becomes in contact with one of the plurality of spots of anisotropic conductive adhesive; and curing the plurality of spots of anisotropic conductive adhesive on the target substrate and moving away the adsorption device. |
US11676839B2 |
Method for making adsorption device
A method for making an adsorption device includes: providing and etching a substrate to form a plurality of receiving grooves spaced apart from each other; forming a magnetic film in each of the plurality of receiving grooves; and forming a magnet in each of the plurality of receiving grooves. Each receiving groove includes a bottom wall and a side wall coupling the bottom wall. The magnetic film covers the bottom wall and the side wall of each of receiving groove. |
US11676836B2 |
Semiconductor device
A semiconductor device includes a first semiconductor chip including bitlines, wordlines, common source line, first bonding pads, second bonding pads, third bonding pads and memory cells, the memory cells being electrically connected to the bitlines, the wordlines, and the common source line, the first bonding pads being electrically connected to the bitlines, the second bonding pads being electrically connected to the wordlines, and the third bonding pads being electrically connected to the common source line; a second semiconductor chip including fourth bonding pads, fifth bonding pads, sixth bonding pads and an input/output circuit, the fourth bonding pads being electrically connected to the first bonding pads, the fifth bonding pads being electrically connected to the second bonding pads, the sixth bonding pads being electrically connected to the third bonding pads and the input/output circuit being configured to write data to the memory cells via the fourth bonding pads and the fifth bonding pads; a sensing line extending along an edge portion of the first semiconductor chip, an edge portion of the second semiconductor chip, or the edge portion of the first semiconductor chip and the edge portion of the second semiconductor chip; and a detecting circuit in the second semiconductor chip, the detecting circuit being configured to detect defects from the first semiconductor chip, the second semiconductor chip, or both the first semiconductor chip and the second semiconductor chip using the sensing line. |
US11676833B2 |
Protective sheet for use in processing wafer, handling system for wafer, and combination of wafer and protective sheeting
A protective sheeting for use in processing a semiconductor-sized wafer includes a protective film and a cushioning layer attached to a back surface of the protective film. At least in a central area of the protective sheeting, no adhesive is applied to a front surface and a back surface of the protective sheeting, the central area having an outer diameter which is equal to or larger than an outer diameter of the semiconductor-sized wafer. Further, a protective sheeting for use in processing a wafer has a protective film and a cushioning layer attached to a back surface of the protective film, wherein, on an entire front surface and an entire back surface of the protective sheeting, no adhesive is applied. A handling system for a semiconductor-sized wafer and to a combination of a wafer and the protective sheeting are also described. |
US11676832B2 |
Laser ablation system for package fabrication
The present disclosure relates to systems and methods for fabricating semiconductor packages, and more particularly, for forming features in semiconductor packages by laser ablation. In one embodiment, the laser systems and methods described herein can be utilized to pattern a substrate to be utilized as a package frame for a semiconductor package having one or more interconnections formed therethrough and/or one or more semiconductor dies disposed therein. The laser systems described herein can produce tunable laser beams for forming features in a substrate or other package structure. Specifically, frequency, pulse width, pulse shape, and pulse energy of laser beams are tunable based on desired sizes of patterned features and on the material in which the patterned features are formed. The adjustability of the laser beams enables rapid and accurate formation of features in semiconductor substrates and packages with controlled depth and topography. |
US11676826B2 |
Semiconductor die package with ring structure for controlling warpage of a package substrate
A semiconductor die package and a method of forming the same are provided. The semiconductor die package includes a package substrate, an interposer substrate over the package substrate, two semiconductor dies over the interposer substrate, and an underfill element formed over the interposer substrate and surrounding the semiconductor dies. A ring structure is disposed over the package substrate and surrounds the semiconductor dies. Recessed parts are recessed from the bottom surface of the ring structure. The recessed parts include multiple first recessed parts arranged in each corner area of the ring structure and two second recessed parts arranged in opposite side areas of the ring structure and aligned with a portion of the underfill element between the semiconductor dies. An adhesive layer is interposed between the bottom surface of the ring structure and the package substrate. |
US11676811B2 |
Substrate cleaning device, substrate processing apparatus, substrate cleaning method and substrate processing method
A substrate cleaning device that includes a rotation holder and a cleaner. The rotation holder includes a rotator provided to be rotatable about a rotation axis, and a holder provided at the rotator to be capable of holding a substrate. The cleaner includes a cleaning tool provided to be capable of removing foreign matter on a back surface of the substrate by polishing, a mover that moves the cleaning tool while pressing the cleaning tool against the back surface of the substrate held by the holder, and a cleaning brush that further cleans the back surface of the substrate, which has been cleaned or is being cleaned by the cleaning tool. |
US11676807B2 |
Apparatuses for optical and mass spectrometry detection
Presented herein are apparatuses for use in capillary separations. An apparatus includes a coupling that integrates a capillary with a voltage source, a sheath liquid system, a fluid exit port, and a manifold. The coupling may be an elbow connector or equivalent. The manifold receives incident light from an incident light input, and emitted light is collected by a collected light output. The capillary enters the manifold at an input for the capillary, traverses the coupling, and terminates at the fluid exit port, for example an electrospray emitter. The capillary may also enter the manifold at an input for the capillary and terminates inside the manifold. |
US11676804B2 |
Apparatus and method for treating substrate
A substrate treating apparatus includes a chamber having a treatment space therein, a substrate support unit that supports a substrate in the treatment space, a gas supply unit that supplies a gas into the treatment space, and a plasma generation unit including an RF power supply that applies RF power, wherein the plasma generation unit generates plasma from the gas using the RF power. The substrate support unit includes a support plate that supports the substrate and a heating unit that controls temperature of the substrate. The heating unit includes a heating member, a heater power supply that applies power to the heating member, and a filter unit that prevents coupling of the heating member and the RF power supply. The filter unit includes a filter that interrupts the RF power supplied from the RF power supply and a filter control unit that prevents degradation in performance of the filter. |
US11676803B2 |
Liner assembly for vacuum treatment apparatus, and vacuum treatment apparatus
Disclosed are a liner assembly for vacuum treatment apparatuses and a vacuum treatment apparatus, wherein the liner assembly for vacuum treatment apparatuses comprises: an annular liner including a sidewall protection ring and a support ring which are interconnected, the outer diameter of the support ring being greater than that of the sidewall protection ring, the annular liner enclosing a treating space; and a gas channel provided in the support ring, the gas channel communicating with the treating space. The liner assembly for vacuum treatment apparatuses offer an improved performance. |
US11676798B2 |
Cooling for a plasma-based reactor
In one embodiment, the disclosed apparatus is a heat-pipe cooling system that includes a conical structure having an upper portion that is truncated. The conical structure is configured to be formed above a dielectric window with the conical structure being configured to condense vapor from a heat-transfer fluid placed or formed within a volume formed between the dielectric window and the conical structure. At least one cooling coil is formed on an exterior portion of the conical structure. Other apparatuses and systems are disclosed. |
US11676797B2 |
DC plasma control for electron enhanced material processing
Systems and methods for material processing using wafer scale waves of precisely controlled electrons in a DC plasma is presented. The anode and cathode of a DC plasma chamber are respectively connected to an adjustable DC voltage source and a DC current source. The anode potential is adjusted to shift a surface floating potential of a stage in a positive column of the DC plasma to a reference ground potential of the DC voltage/current sources. A conductive plate in a same region of the positive column opposite the stage is used to measure the surface floating potential of the stage. A signal generator referenced to the ground potential is capacitively coupled to the stage to control a surface potential at the stage for provision of kinetic energy to free electrons in the DC plasma. |
US11676794B2 |
Super-resolution microscopy
We describe a super-resolution optical microscopy technique in which a sample is located on or adjacent to the planar surface of an aplanatic solid immersion lens and placed in a cryogenic environment. |
US11676793B2 |
Apparatus of plural charged particle beams
An electromagnetic compound lens may be configured to focus a charged particle beam. The compound lens may include an electrostatic lens provided on a secondary optical axis and a magnetic lens also provided on the secondary optical axis. The magnetic lens may include a permanent magnet. A charged particle optical system may include a beam separator configured to separate a plurality of beamlets of a primary charged particle beam generated by a source along a primary optical axis from secondary beams of secondary charged particles. The system may include a secondary imaging system configured to focus the secondary beams onto a detector along the secondary optical axis. The secondary imaging system may include the compound lens. |
US11676791B2 |
X-ray tube liquid metal bearing structure for reducing trapped gases
A bearing structure for an X-ray tube is provided that includes a journal bearing shaft with a radially protruding thrust bearing encased within a bearing sleeve, one of which rotates relative to the other. The stationary component, e.g., the journal bearing and/or the thrust bearing includes at least one vent groove formed therein that improves the ability of the journal bearing structure to enable gases trapped by the liquid metal within the bearing assembly to escape through the vent groove to the exterior of the X-ray tube. By adding a strategically located channel or vent groove of sufficient size in at least one of the journal bearing or the thrust bearing, the pressures resisted by the seal created between the liquid metal and the vent groove(s) in the bearing components is significantly reduced, allowing escape of the gases to avoid detrimental effects to the operation of the X-ray tube, while maintaining the load carrying capacity of the bearing assembly. |
US11676783B2 |
Press-type input device and press-rotate-type input device
A press-type input device includes a first pressing member, a second pressing member, a base, and a holding member. The first pressing member has a pressure receiving surface and a first axis and is tiltable around the first axis. The second pressing member has a second axis and is tiltable around the second axis. The base includes a detection unit configured to detect a tilt of the second pressing member. The holding member is configured to hold, together with the base, the first pressing member and the second pressing member. A location of at least one of the first axis or the second axis is variable in accordance with a pushed location on the pressure receiving surface. When viewed in a direction vertical to the pressure receiving surface, the second axis and the detection unit do not overlap each other. |
US11676779B2 |
Key module trigger element having more than one contact finger each with differing pre-travel paths
What is presented is a key module for a keyboard. The key module comprises a key tappet. The key module also comprises a module housing. The module housing is formed to movably accommodate the key tappet, in order to enable a translational actuation movement of the key tappet between a rest position and in an actuated position relative to the module housing. The key module further comprises a trigger element for triggering an actuation signal of the key module in response to the actuation movement. The trigger element is attached to the key tappet. The trigger element is a contactor for electrically shorting contact pads of a circuit substrate of the keyboard. The trigger element comprises more than two elastically deformable contact fingers for contacting the contact pads after different pre-travel paths in the course of the actuation movement. |
US11676777B2 |
Two terminal arc suppressor
A two terminal arc suppressor for protecting switch, relay or contactor contacts and the like comprises a two terminal module adapted to be attached in parallel with the contacts to be protected and including a circuit for deriving an operating voltage upon the transitioning of the switch, relay or contactor contacts from a closed to an open disposition, the power being rectified and the resulting DC signal used to trigger a power triac switch via an optoisolator circuit whereby arc suppression pulses are generated for short predetermined intervals only at a transition of the mechanical switch, relay or contactor contacts from an closed to an open transition and, again, at an open to a close transition during contact bounce conditions. |
US11676775B2 |
Chip form ultracapacitor
An energy storage apparatus suitable for mounting on a printed circuit board using a solder reflow process is disclosed. In some embodiments, the apparatus includes: a sealed housing body (e.g., a lower body with a lid attached thereto) including a positive internal contact and a negative internal contact (e.g., metallic contact pads) disposed within the body and each respectively in electrical communication with a positive external contact and a negative external contact. Each of the external contacts provide electrical communication to the exterior of the body, and may be disposed on an external surface of the body. An electric double layer capacitor (EDLC) (also referred to herein as an “ultracapacitor” or “supercapacitor”) energy storage cell is disposed within a cavity in the body including a stack of alternating electrode layers and electrically insulating separator layers. An electrolyte is disposed within the cavity and wets the electrode layers. A positive lead electrically connects a first group of one or more of the electrode layers to the positive internal contact; and a negative lead electrically connects a second group of one or more of the electrode layers to the negative internal contact. |
US11676772B2 |
Nanostructured devices having perovskite nanocrystal layer for photodetection, optical memory, and neuromorphic functionality
The present disclosure relates to a device that includes a perovskite nanocrystal (NC) layer, a charge separating layer, an insulating layer, a gate electrode, a cathode, and an anode, where the charge separating layer is positioned between the perovskite NC layer and the insulating layer, the insulating layer is positioned between the charge separating layer and the gate electrode, and the cathode and the anode both electrically contact the charge separating layer and the insulating layer. In some embodiments of the present disclosure, the device may be configured to operate as at least one of a photodetector, an optical switching device, and/or a neuromorphic switching device. |
US11676771B2 |
Perovskite solar cell and method for manufacturing same
A method for manufacturing a perovskite solar cell, includes disposing an electron transport layer on a transparent conductive substrate, disposing an additive-doped perovskite light absorption layer on the electron transport layer, disposing a hole transport layer on the additive-doped perovskite light absorption layer, and disposing an electrode on the hole transport layer. The disposing of the additive-doped perovskite light absorption layer includes adding an additive having hydrophobicity to a perovskite precursor solution, and applying the additive-added perovskite precursor solution onto the electron transport layer to form the additive-doped perovskite light absorption layer. |
US11676766B2 |
Multilayer capacitor
A multilayer capacitor includes a capacitor body having first through six surfaces, and having alternately stacked first internal electrodes and second internal electrodes having dielectric layers therebetween and each having one end thereof exposed through a respective one of third and fourth surfaces. First and second conductive layers respectively include first and second connection portions respectively disposed on the third and fourth surfaces of the capacitor body and respectively connected to the first and second internal electrodes, and first and second band portions respectively extending from the first and second connection portions to respective portions of the first, second, fifth, and sixth surfaces of the capacitor body. First and second reinforcing layers each include a carbon material and an impact-absorbing binder and are respectively disposed on the first and second band portions. |
US11676765B2 |
Ceramic electronic device and manufacturing method of the same
A ceramic electronic device includes a multilayer structure having a parallelepiped shape in which a first dielectric layer of which a main component is ceramic, a first internal electrode layer, a second dielectric layer of which a main component is ceramic, and a second internal electrode layer are stacked in this order, the first internal electrode layer being exposed to a first end face of the parallelepiped shape, the second internal electrode layer being exposed to a second end face of the parallelepiped shape, wherein in the multilayer structure, a conductive layer is provided on a side of the first end face, at a same level in a stacking direction as the second internal electrode, the conductive layer being spaced from the second internal electrode layer. A length of a gap between the second internal electrode layer and the conductive layer is 30 μm or less. |
US11676763B2 |
Multilayer ceramic capacitor having ultra-broadband performance
The present invention is directed to a multilayer ceramic capacitor comprising a first external terminal disposed along a first end, a second external terminal disposed along a second end that is opposite the first end, and an active electrode region containing alternating dielectric layers and active electrode layers. At least one of the electrode layers comprises a first electrode and a second electrode. The first electrode is electrically connected with the first external terminal and has a first electrode arm comprising a main portion and a step portion. The main portion has a lateral edge extending from the first end of the multilayer capacitor and the step portion has a lateral edge offset from the lateral edge of the main portion. The second electrode is electrically connected with the second external terminal. |
US11676761B2 |
Inductor component
An inductor component comprising a spiral wiring wound on a plane; a first magnetic layer and a second magnetic layer located at positions sandwiching the spiral wiring from both sides in a normal direction relative to the plane on which the spiral wiring is wound; a vertical wiring extending from the spiral wiring in the normal direction to pass through the first magnetic layer; and an external terminal disposed on a surface of the first magnetic layer to connect an end surface of the vertical wiring. The first magnetic layer has magnetic permeability lower than that of the second magnetic layer. |
US11676759B2 |
Coil component
A coil component includes a body, a support substrate disposed within the body, a coil portion disposed on the support substrate and having first and second lead-out portions exposed to respective surfaces of the body, a noise removal portion disposed within the body and spaced apart from the coil portion, and including a pattern portion forming an open loop and having a slit between one end portion thereof and another end portion thereof spaced apart from each other. The noise removal portion also includes a third lead-out portion connected to the pattern portion and having one surface exposed to a side surface of the body. An insulating layer is disposed between the coil portion and the noise removal portion, and first to third external electrodes are disposed on respective surfaces of the body and connected to the first to third lead-out portions, respectively. |
US11676755B2 |
Coil component and its manufacturing method
Disclosed herein is a coil component that includes a magnetic element body, a coil conductor embedded in the magnetic element body and having an end portion exposed from the magnetic element body, and a terminal electrode connected to the end portion of the coil conductor. The terminal electrode includes a conductive resin contacting the end portion of the coil conductor and containing conductive particles and a resin material, and a metal film covering the conductive resin. The end portion of the coil conductor has an exposed surface exposed from the magnetic element body and contacting the conductive resin and a non-exposed surface covered with the magnetic element body. The exposed surface is larger in surface roughness than the non-exposed surface. |
US11676753B2 |
Coil component
A coil component includes a support substrate, a coil portion disposed on at least one surface of the support substrate, a magnetic body, in which the support substrate and the coil portion are disposed, having a through-portion penetrating through a center of the coil portion, a nonmagnetic layer disposed below the through-portion, and an insulating layer disposed between the nonmagnetic layer and the through-portion. |
US11676751B2 |
Magnetic device
A magnetic device is equipped with a stacked body including a first ferromagnetic layer, a second ferromagnetic layer, and a non-magnetic layer sandwiched between the first ferromagnetic layer and the second ferromagnetic layer; and an insulator which covers at least a part of side surfaces of the stacked body, in which the insulator has a space outside the side surface of the stacked body. |
US11676748B2 |
Anisotropic magnetic powders and method of producing the same
A method of producing anisotropic magnetic powders comprising obtaining a precipitate containing an element R, iron and lanthanum from a solution including R, iron and lanthanum, wherein R is at least one selected from the group consisting of Sc, Y, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu; obtaining an oxide containing R, iron and lanthanum from the precipitate; treating the oxide with a reducing gas to obtain a partial oxide; obtaining alloy particles by reduction diffusion of the partial oxide at a temperature in the range of 920° C. to 1200° C.; and nitriding the alloy particles to produce an anisotropic magnetic powder represented by the following general formula: Rv-xFe(100-v-w-z)NwLaxWz, where 3≤v−x≤30, 5≤w≤15, 0.08≤x≤0.3, and 0≤z≤2.5. |
US11676747B2 |
Permanent magnet, rotary electrical machine, and vehicle
A permanent magnet is expressed by a composition formula: RpFeqMrCusCo100-p-q-r-s. The magnet includes a crystal grain having a main phase including a TbCu7 crystal phase, and a volume ratio of the TbCu7 crystal phase to the main phase is 95% or more. |
US11676746B2 |
Making an aluminum nitride heater
A method of making a heater includes an aluminum nitride base having equal to or less than 1% impurities, particularly one embodiment having none of polybrominated biphenyl, polybrominated diphenyl ether, hexabromocyclododecane, polyvinyl chloride, chlorinated paraffin, phthalate, cadmium, hexavalent chromium, lead, and mercury. The base is fired in a heating unit before any layering. Thereafter, on a topside and backside of the base a conductor layer is layered and allowed to settle and dry before firing. Next, a resistive layer is layered on the base from a resistor paste such that the resistive layer connects to the conductor layer on the topside. The resistor paste is allowed to settle and dry and then the base with the conductor and resistor layers is fired. At least four layers of glass are layered next over the resistive layer, each instance thereof including layering a glass, drying the glass and firing. |
US11676737B2 |
Encapsulation composition for storage or confinement of waste which is toxic to health and/or the environment
The invention relates to an encapsulation composition for the storage or the confinement of waste which is toxic to health and/or the environment, comprising a resin composition containing at least one epoxy resin, and a hardening composition containing at least one polyamidoamine and at least one aromatic polyamine, said encapsulation composition having an aromaticity rate which is equal to, or higher than, 35%. The invention also relates to the use of said composition for encapsulating said waste. |
US11676726B2 |
Apparatus and method for generating a treatment plan for salutogenesis
An apparatus and method for generating a treatment plan for salutogenesis, the apparatus comprising a at least a processor and a memory communicatively connected to the processor, the memory containing instructions configuring the at least a processor to receive physiological data associated with a user and comprising a plurality of biomarkers, wherein the plurality of biomarkers comprise at least a glycocalyx degradation biomarker, determine a concentration for each at least a glycocalyx degradation biomarker of the plurality of biomarkers, classify the at least a glycocalyx degradation biomarker to a disease condition and a treatment label as a function of the concentration, and generate a treatment plan as a function of the disease condition and the treatment label. |
US11676722B1 |
Method of early detection, risk stratification, and outcomes prediction of a medical disease or condition with machine learning and routinely taken patient data
A method of determining the risk of developing a known disease or condition or of identifying the presence of the known disease or condition in a subject includes obtaining subject data that includes results of blood tests. The blood tests include a basic metabolic panel (BMP) and a complete blood count (CBC) panel. The method further includes classifying the subject data with respect to the risk of the subject having or developing the known disease or condition by using the subject data in a machine learning classification system. The classification system includes a machine learning model previously trained on BMP and CBC data from a positive group of training subjects who received a diagnosis of the disease or condition and from a negative group of training subjects who were not diagnosed to have the disease or condition. |
US11676720B2 |
Medical information processing apparatus
A medical information processing apparatus according to an embodiment includes processing circuitry and a hardware display device. The processing circuitry generates a plurality of sets of virtual patient information in each of which patient attribute information, at least one medical action, at least one medical event, and at least one test result are associated with one another; receives a user's operation of selecting one of the sets of virtual patient information; and causes the hardware display device to display the event and the medical action included in the selected piece of virtual patient information in time series. The hardware display device displays, under control of the processing circuitry, the event and the medical action included in the selected piece of virtual patient information in time series. |
US11676715B2 |
System and method for collecting whole blood from blood donors
A system and method for collecting whole blood from blood donors includes first and second whole blood collection devices disposed at different blood donation centers. A remote server computer is in communication with the blood collection devices. The whole blood collection devices transfer donation procedure information to the remote server. The remote server computer facilitates retrieval of the donation procedure information at a handheld computing device. The donation procedure information includes data based on product volume collected and data indicating performance of operators of the whole blood collection devices. The handheld computing device displays a number of whole blood units collected. Blood collection can be improved using the donation procedure information. |
US11676714B2 |
Method, system, and computer program product for physician efficiency measurement and patient health risk stratification
A method for measuring physician efficiency and patient health risk stratification is disclosed. Episodes of care are formed from medical claims data and an output process is performed. Physicians are assigned to report groups, and eligible physicians and episode assignments are determined. Condition-specific episode statistics and weighted episode statistics are calculated, from which physician efficiency scores are determined. |
US11676709B2 |
Physician scheduling and selection resource
A method for a patient to identify and select a health care provider to service the patient's particular need and subsequently schedule an appointment with the health care provider is described. Data regarding the patient and data regarding the provider are used to determine matching physicians to the patient's needs. The patient has the ability to select among matching physicians, rank ordered based on a combination of patient and other criteria, and the patient is offered an average rating for each physician, where the rating is based on reliable reviews of at least other patients. |
US11676707B2 |
Classification based on characterization analysis methods and systems
A method at a computing device for classifying elements within an input, the method including breaking the input into a plurality of patches; for each patch: creating a vector output; applying a characterization map to select a classification bin from a plurality of classification bins; and utilizing the selected classification bin to classify the vector output to create a classified output; and compiling the classified output from each patch. |
US11676706B2 |
Medical image processing apparatus and medical image processing method which are for medical navigation device
The present invention relates to a medical image processing apparatus and a medical image processing method for a medical navigation device, and more particularly, to an apparatus and method for processing an image provided when using the medical navigation device. To this end, the present invention provides a medical image processing apparatus for a medical navigation device, including: a position tracking unit configured to obtain position information of the medical navigation device within an object; a memory configured to store medical image data generated based on a medical image of the object; and a processor configured to set a region of interest (ROI) based on position information of the medical navigation device in reference to the medical image data, and generate partial medical image data corresponding to the ROI, and a medical image processing method using the same. |
US11676705B2 |
Tracking wound healing progress using remote image analysis
Systems and methods for tracking healing progress of multiple adjacent wounds are provided. In one embodiment, a system may include a processor configured to receive a first image of a plurality of adjacent wounds near a form of colorized surface having colored reference elements, determine colors of the plurality of wounds, correct for local illumination conditions, receive a second image of the plurality of wounds near the form of colorized surface, to determine second colors of the plurality of wounds in the second image, match each of the plurality of wounds in the second image to a wound of the plurality of wounds in the first image, and determine an indicator of the healing progress for each of the plurality of wounds based on changes between the first image and the second image. |
US11676703B2 |
Combination of radiomic and pathomic features in the prediction of prognoses for tumors
Embodiments discussed herein facilitate building and/or employing model(s) for determining tumor prognoses based on a combination of radiomic features and pathomic features. One example embodiment can perform actions comprising: providing, to a first machine learning model, at least one of: one or more intra-tumoral radiomic features associated with a tumor or one or more peri-tumoral radiomic features associated with a peri-tumoral region around the tumor; receiving a first predicted prognosis associated with the tumor from the first machine learning model; providing, to a second machine learning model, one or more pathomic features associated with the tumor; receiving a second predicted prognosis associated with the tumor from the second machine learning model; and generating a combined prognosis associated with the tumor based on the first predicted prognosis and the second predicted prognosis. |
US11676702B2 |
Method for automatic visual annotation of radiological images from patient clinical data
Presented herein are methods, systems, devices, and computer-readable media for image annotation for medical procedures. The system operates in a parallel manner. In one flow, the system starts from clinical terms and image and applies image detection module in order to get visual candidates for related radiological finding and provide them with semantic descriptors. In the second (parallel) flow, the system produces a list of prioritized semantic descriptors (with probabilities). The second flow is done by application of a reverse inference algorithm that uses clinical terms and expert clinical knowledge. The results of both flows combined by matching module for detection the best candidate and with limited user input images can be annotated. The clinical terms are extracted from clinical documents by textual analysis. |
US11676698B2 |
Athletic performance sensing and/or tracking systems and methods
Athletic performance sensing and/or tracking systems include components for measuring or sensing athletic performance data and/or for storing and/or displaying desired information associated with the athletic performance to the user (or others). Such systems can allow users a wide variety of options in creating workouts, selecting and presenting media content during the athletic performance, etc., e.g., to help keep users entertained and motivated. In some instances, user feedback may be used, optionally in combination with objective data relating to a workout, to control features of the workout routine, to control the music or other media content selected and/or presented, and/or to control features of future workout routines and/or the presented media content. |
US11676697B2 |
Athletic performance sensing and/or tracking systems and methods
Athletic performance sensing and/or tracking systems include components for measuring or sensing athletic performance data and/or for storing and/or displaying desired information associated with the athletic performance to the user (or others). Such systems can allow users a wide variety of options in creating workouts, selecting and presenting media content during the athletic performance, etc., e.g., to help keep users entertained and motivated. In some instances, user feedback may be used, optionally in combination with objective data relating to a workout, to control features of the workout routine, to control the music or other media content selected and/or presented, and/or to control features of future workout routines and/or the presented media content. |
US11676694B2 |
Device and method for training users of ambulatory medical devices
Apparatuses and methods for training users of ambulatory medical devices. The methods relate to improving user interactions with the touchscreens of devices. In one embodiment there is an operating mode that records all user interactions along with various device parameters and allows the clinician to review the patient's performance for the initial use period. Automated analysis software may be employed to analyze the data generated by the device. The results of the analysis may be used by the clinician to improve the patient and device interaction. |
US11676686B2 |
Computer graphical user interface with genomic workflow
Methods and computer apparatuses are disclosed for processing genomic data in at least partially automated workflows of modules. A method comprises: specifying a source from which nucleic acid sequence(s) are to be obtained; selecting module(s) for processing data, including at least one module for processing the one or more nucleic acid sequences; presenting, in a graphical user interface, graphical components representing the source and the module(s) as nodes within a workspace; receiving, via the graphical user interface, inputs arranging the source and the module(s) as a workflow comprising a series of nodes, the series indicating, for each particular module, that output from one of the source or another particular module is to be input into the particular module; generating an output for the workflow based upon the nucleic acid sequence(s) by processing each module in an order indicated by the series. |
US11676685B2 |
Artificial intelligence-based quality scoring
The technology disclosed assigns quality scores to bases called by a neural network-based base caller by (i) quantizing classification scores of predicted base calls produced by the neural network-based base caller in response to processing training data during training, (ii) selecting a set of quantized classification scores, (iii) for each quantized classification score in the set, determining a base calling error rate by comparing its predicted base calls to corresponding ground truth base calls, (iv) determining a fit between the quantized classification scores and their base calling error rates, and (v) correlating the quality scores to the quantized classification scores based on the fit. |
US11676684B2 |
Artificial intelligence model for predicting actions of test substance in humans
Actions, such as effects and adverse-events, of a test substance in humans are predicted by using an artificial intelligence model trained by a method for training an artificial intelligence model, the method including inputting into the artificial intelligence model a set of first training data and second training data or a set of the second training data to train the artificial intelligence model. |
US11676681B2 |
Semiconductor device
A semiconductor device including an SRAM capable of sensing a defective memory cell that does not satisfy desired characteristics is provided. The semiconductor device includes a memory cell, a bit line pair being coupled to the memory cell and having a voltage changed towards a power-supply voltage and a ground voltage in accordance with data of the memory cell in a read mode, and a specifying circuit for specifying a bit line out of the bit line pair. In the semiconductor device, a wiring capacitance is coupled to the bit line specified by the specifying circuit and a voltage of the specified bit line is set to a voltage between a power voltage and a ground voltage in a test mode. |
US11676679B2 |
Two-layer code with low parity cost for memory sub-systems
A memory sub-system configured to encode data using an error correcting code and an erasure code for storing data into memory cells and to decode data retrieved from the memory cells. For example, the data units of a predetermined size are separately encoded using the error correcting code (e.g., a low-density parity-check (LDPC) code) to generate parity data of a first layer. Symbols within the data units are cross encoded using the erasure code. Parity symbols of a second layer are calculated according to the erasure code. A collection of parity symbols having a total size equal to the predetermined size can be further encoded using the error correcting code to generate parity data for the parity symbols. |
US11676674B2 |
Apparatus and method for programming and verifying data in a non-volatile memory device
A memory device includes a cell group including a plurality of non-volatile memory cells capable of storing data and a control circuit configured to perform plural program loops for storing the data, each program loop including a program voltage application operation and a verification operation. During the respective program loop, the control circuit performs the verification operation for an N target level, an N−1 target level lower than the N target level, and an N+1 higher than the N target level, in response to the program voltage application operation for the N target level. When a quantity of non-volatile memory cells having threshold voltages over the N+1 target level satisfies a preset criterion, the control circuit skips a next verification for a target level lower than the N+1 target level, in response to a next program voltage application operation for the N+1 target level. |
US11676668B2 |
Responding to changes in available power supply
Memories having a first pool of memory cells having a first storage density and a second pool of memory cells having a second storage density greater than the first storage density, and a controller configured to cause the memory to determine whether a value of an indication of available power of a power supply for the memory is less than a threshold, and in response to determining that the value of the indication of available power is less than the threshold, increase a size of the first pool of memory cells, limit programming of data received by the memory to the first pool of memory cells, and cease movement of data from the first pool of memory cells to the second pool of memory cells, as well as apparatus including similar memories. |
US11676666B2 |
Read disturb scan for unprogrammed wordlines
A memory device to perform a read disturb scan of unprogrammed memory cells. In one approach, a test read is performed on unprogrammed memory cells in a first memory block of a storage media (e.g., NAND flash) to provide a test result. Based on the test result, a portion of the unprogrammed cells for which a threshold voltage is above a predetermined voltage is determined. A determination is made whether the portion of the unprogrammed memory cells exceeds a predetermined limit. In response to determining that the portion exceeds the predetermined limit, data is moved from the first memory block to a second memory block of the storage media. |
US11676665B2 |
Memory device and erasing and verification method thereof
A memory device includes a memory string and a control circuit coupled to the memory string. The memory string includes a top select gate, word lines, a bottom select gate, and a P-well. The control circuit is configured to, in an erasing operation, apply an erasing voltage to the P-well, apply a verifying voltage to a selected word line of the word lines after applying the erasing voltage to the P-well, and apply a first turn-on voltage to the bottom select gate, starting after applying the erasing voltage to the P-well and before applying the verifying voltage to the selected word line. |
US11676660B2 |
Static random access memory with a supplementary driver circuit and method of controlling the same
A static random access memory (SRAM) includes a first memory cell array, a second memory cell array, a first data line coupled to the first memory cell array and the second memory cell array, a second data line coupled to the first memory cell array and the second memory cell array, a primary driver circuit coupled to at least the first data line, and a supplementary driver circuit coupled to at least the first data line. The supplementary driver circuit is configured to receive a supplementary driver circuit enable signal, sense a voltage of a first signal of the first data line, and pull the voltage of the first signal to a first voltage level during a write operation of a first memory cell in the first memory cell array in response to at least a first NOR output signal. |
US11676657B2 |
Time-interleaving sensing scheme for pseudo dual-port memory
The present invention provides a pseudo dual-port memory. The pseudo dual-port memory includes a single-port memory, a multiplexer, a timing control circuit and an output circuit. The multiplexer is configured to sequentially output a first address and a second address to the single-port memory. The output circuit is configured to receive output data from the single-port memory to generate a first reading result corresponding to the first address and a second reading result corresponding to the second address. The output circuit includes a first sense amplifier and a second sense amplifier, wherein the first sense amplifier receives the output data to generate first data serving as the first reading result according to a first control signal, and the second sense amplifier receives the output data to generate second data serving as the second reading result according to a second control signal. |
US11676648B2 |
Current steering in reading magnetic tunnel junction
The disclosed MTJ read circuits include a current steering element coupled to the read path. At a first node of the current steering element, a proportionally larger current is maintained to meet the requirements of a reliable voltage or current sensing. At a second node of the current steering element, a proportionally smaller current is maintained, which passes through the MTJ structure. The current at the first node is proportional to the current at the second node such that sensing the current at the first node infers the current at the second node, which is affected by the MTJ resistance value. |
US11676647B2 |
Media type selection using a processor in memory
Systems, apparatuses, and methods related to image based media type selection are described. Memory systems can include multiple types of memory media. Data can be written in a type of memory media based on one or more settings applied to the data. A setting can be determined based on input received by a logic within the memory system. In an example, a method can include receiving, at logic within a memory system that comprising a plurality of memory media types, data from an image sensor coupled to the logic of the memory system, receiving input from a host, identifying one or more attributes of the data, analyzing the received input to determine an setting, generating the setting based on the analyzed input, and writing the data to a first memory media type of the plurality of memory media types based on the generated setting. |
US11676644B2 |
Memory and calibration and operation methods thereof for reading data in memory cells
Embodiments of a memory, and calibration and operation methods thereof for reading data in memory cells are disclosed. In an example, first data from a plurality of memory cells is sensed, each of the first data corresponding to a first bit. Measurements of first currents converted from voltages of the first data are obtained. Second data from the plurality of memory cells is sensed, each of the second data corresponding to a second bit which is different from the first bit. Measurements of second currents converted from voltages of the second data are obtained. One or more parameters corresponding to one or more components of a charge sharing circuit are adjusted until each of a plurality of reference currents provided by a plurality of transistors is within a predetermined range of a nominal value determined based on the measurements of first currents and the measurements of second currents. |
US11676639B2 |
Intelligent sports video and data generation from AI recognition events
An intelligent sports video and data generating system using AI detection engines in Sports Detection Devices, broadcasting commands that incorporate global time stamp information to a plurality of the Sports Detection Devices, such that the recorded sports action data can be time-aligned with video data, wherein an automatically spliced together video or data set can be generated based on the parameters of an input query. |
US11676636B2 |
Scalable storage device
Implementations described and claimed herein provide a high-capacity, high-bandwidth scalable storage device. The scalable storage device includes a layer stack including at least one memory layer and at least one optical control layer positioned adjacent to the memory layer. The memory layer includes a plurality of memory cells and the optical control layer is adapted to receive optically-encoded read/write signals and to effect read and write operations to the plurality of memory cells through an electrical interface. |
US11676627B2 |
Magnetic recording head with stable magnetization of shields
Aspects of the present disclosure generally relate to a magnetic recording head that includes a main pole, a leading shield, a first side shield disposed on a first side of the main pole, a second side shield disposed on a second side of the main pole, and a trailing shield. The trailing shield is disposed on a trailing side of the main pole. One or more approaches are disclosed to control return-fluxes. In some embodiments, at least one of the upper return pole, the leading shield, the trailing shield, the first side shield, and the second side shield includes a laminate structure having at least a pair of ferromagnetic layers, and a non-magnetic spacer layer disposed between adjacent ferromagnetic layers. In some embodiments, one or more shunts are positioned, such as connecting the leading shield to the upper return pole in order to create circuits to control magnetic flux. |
US11676625B2 |
Unified endpointer using multitask and multidomain learning
A method for training an endpointer model includes short-form speech utterances and long-form speech utterances. The method also includes providing a short-form speech utterance as input to a shared neural network, the shared neural network configured to learn shared hidden representations suitable for both voice activity detection (VAD) and end-of-query (EOQ) detection. The method also includes generating, using a VAD classifier, a sequence of predicted VAD labels and determining a VAD loss by comparing the sequence of predicted VAD labels to a corresponding sequence of reference VAD labels. The method also includes, generating, using an EOQ classifier, a sequence of predicted EOQ labels and determining an EOQ loss by comparing the sequence of predicted EOQ labels to a corresponding sequence of reference EOQ labels. The method also includes training, using a cross-entropy criterion, the endpointer model based on the VAD loss and the EOQ loss. |
US11676622B2 |
Method, apparatus and systems for audio decoding and encoding
An audio processing system (100) accepts an audio bitstream having one of a plurality of predefined audio frame rates. The system comprises a front-end component (110), which receives a variable number of quantized spectral components, corresponding to one audio frame in any of the predefined audio frame rates, and performs an inverse quantization according to predetermined, frequency-dependent quantization levels. The front-end component may be agnostic of the audio frame rate. The audio processing system further comprises a frequency-domain processing stage (120) and a sample rate converter (130), which provide a reconstructed audio signal sampled at a target sampling frequency independent of the audio frame rate. By its frame-rate adaptability, the system can be configured to operate frame-synchronously in parallel with a video processing system that accepts plural video frame rates. |
US11676621B2 |
Hearing device and method with non-intrusive speech intelligibility
A hearing device includes: an input module for provision of a first input signal; a processor configured to provide an electrical output signal based on the first input signal; a receiver configured to provide an audio output signal; and a controller comprising a speech intelligibility estimator configured to determine a speech intelligibility indicator indicative of speech intelligibility based on the first input signal, wherein the controller is configured to control the processor based on the speech intelligibility indicator; wherein the speech intelligibility estimator comprises a decomposition module configured to decompose the first input signal into a first representation of the first input signal in a frequency domain, wherein the first representation comprises one or more elements representative of the first input signal; and wherein the decomposition module comprises one or more characterization blocks for characterizing the one or more elements of the first representation in the frequency domain. |
US11676617B2 |
Acoustic noise suppressing apparatus and acoustic noise suppressing method
An acoustic noise suppressing apparatus includes a sound pickup circuit, a first and second suppression circuits, and an output signal selection circuit. The sound pickup circuit picks up sound. The first suppression circuit processes the sound, in which the first suppression circuit is configured to calculate a first suppression sound signal in which acoustic noise is suppressed from the sound by using a first algorithm suitable for multiple sound sources. The second suppression circuit processes the audio signal in parallel with the first suppression circuit, in which the second suppression circuit is configured to calculate a second suppression sound signal in which acoustic noise is suppressed from the sound signal by using a second algorithm suitable for a single sound source. The output signal selection circuit outputs only one of the first suppression audio signal and the second suppression audio signal. |
US11676616B2 |
Backward-compatible integration of harmonic transposer for high frequency reconstruction of audio signals
A method for decoding an encoded audio bitstream is disclosed. The method includes receiving the encoded audio bitstream and decoding the audio data to generate a decoded lowband audio signal. The method further includes extracting high frequency reconstruction metadata and filtering the decoded lowband audio signal with an analysis filterbank to generate a filtered lowband audio signal. The method also includes extracting a flag indicating whether either spectral translation or harmonic transposition is to be performed on the audio data and regenerating a highband portion of the audio signal using the filtered lowband audio signal and the high frequency reconstruction metadata in accordance with the flag. |
US11676613B2 |
Speech coding using auto-regressive generative neural networks
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for coding speech using neural networks. One of the methods includes obtaining a bitstream of parametric coder parameters characterizing spoken speech; generating, from the parametric coder parameters, a conditioning sequence; generating a reconstruction of the spoken speech that includes a respective speech sample at each of a plurality of decoder time steps, comprising, at each decoder time step: processing a current reconstruction sequence using an auto-regressive generative neural network, wherein the auto-regressive generative neural network is configured to process the current reconstruction to compute a score distribution over possible speech sample values, and wherein the processing comprises conditioning the auto-regressive generative neural network on at least a portion of the conditioning sequence; and sampling a speech sample from the possible speech sample values. |
US11676610B2 |
Acoustic signatures for voice-enabled computer systems
Acoustic signatures can be used in connection with a voice-enabled computer system. An acoustic signature can be a specific noise pattern (or other sound) that is played while the user is speaking and that is mixed in the acoustic channel with the user's speech. The microphone of the voice-enabled computer system can capture, as recorded audio, a mix of the acoustic signature and the user's voice. The voice-enabled computer system can analyze the recorded audio (locally or at a backend server) to verify that the expected acoustic signature is present and/or that no previous acoustic signature is present. |
US11676609B2 |
Speaker recognition method, electronic device, and storage medium
The present disclosure provides a speaker recognition method, an electronic device, and a storage medium. An implementation includes: segmenting the target audio file and the to-be-recognized audio file into a plurality of audio units respectively; extracting an audio feature from each of the audio units to obtain an audio feature sequence of the target audio file and an audio feature sequence of the to-be-recognized audio file; performing feature learning on the audio feature sequence of the target audio file and the audio feature sequence of the to-be-recognized audio file by using Siamese neural network, to obtain a feature vector corresponding to the target audio file and feature vectors respectively corresponding to the plurality of audio units in the to-be-recognized audio file; and recognizing, by using an attention mechanism-based machine learning model, the audio units belonging to the target speaker in the to-be-recognized audio file based on the feature vectors. |
US11676606B2 |
Context-sensitive dynamic update of voice to text model in a voice-enabled electronic device
A voice to text model used by a voice-enabled electronic device is dynamically and in a context-sensitive manner updated to facilitate recognition of entities that potentially may be spoken by a user in a voice input directed to the voice-enabled electronic device. The dynamic update to the voice to text model may be performed, for example, based upon processing of a first portion of a voice input, e.g., based upon detection of a particular type of voice action, and may be targeted to facilitate the recognition of entities that may occur in a later portion of the same voice input, e.g., entities that are particularly relevant to one or more parameters associated with a detected type of voice action. |
US11676603B2 |
Conversational agent for healthcare content
Various implementations disclosed herein include devices, systems, and methods for indicating whether a conversation regarding a subject satisfies a boundary condition associated with the subject. In various implementations, a device includes a display, a processor and a non-transitory memory. In some implementations, the method includes detecting a conversation in which a person is conveying information regarding a subject. In some implementations, the method includes determining whether the information satisfies a boundary condition associated with the subject. In some implementations, the boundary condition is defined by a set of one or more content items related to the subject. In some implementations, the method includes displaying an indicator that indicates whether or not the information being conveyed by the person satisfies the boundary condition associated with the subject. |
US11676600B2 |
Methods and apparatus for detecting a voice command
According to some aspects, a method of monitoring an acoustic environment of a mobile device, at least one computer readable medium encoded with instructions that, when executed, perform such a method and/or a mobile device configured to perform such a method is provided. The method comprises receiving acoustic input from the environment of the mobile device while the mobile device is operating in the low power mode, detecting whether the acoustic input includes a voice command based on performing a plurality of processing stages on the acoustic input, wherein at least one of the plurality of processing stages is performed while the mobile device is operating in the low power mode, and using at least one contextual cue to assist in detecting whether the acoustic input includes a voice command. |
US11676599B2 |
Operational command boundaries
A method for managing commands utilizing command boundaries includes establishing a first command boundary for a first intelligent virtual assistant operating on a first electronic device. The method also includes, responsive to receiving audio from a plurality of sources within a vicinity of the first electronic device, identifying a portion of the audio from the plurality of sources within the first command boundary. The method also includes, responsive to determining a command is identifiable in the portion of the audio from the plurality of sources within the first command boundary, sending the command to the first intelligent virtual assistant on the first electronic device. |
US11676594B2 |
Decaying automated speech recognition processing results
A method for decaying speech processing includes receiving, at a voice-enabled device, an indication of a microphone trigger event indicating a possible interaction with the device through speech where the device has a microphone that, when open, is configured to capture speech for speech recognition. In response to receiving the indication of the microphone trigger event, the method also includes instructing the microphone to open or remain open for a duration window to capture an audio stream in an environment of the device and providing the audio stream captured by the open microphone to a speech recognition system. During the duration window, the method further includes decaying a level of the speech recognition processing based on a function of the duration window and instructing the speech recognition system to use the decayed level of speech recognition processing over the audio stream captured by the open microphone. |
US11676591B1 |
Smart computing device implementing artificial intelligence electronic assistant
In some examples, a method is disclosed. The method includes detecting, by a smart device, an audible utterance of a trigger word. The method also includes, responsive to the detection of the audible utterance of the trigger word, recording audio via the smart device. The method also includes processing, via the smart device, the recorded audio to determine whether the recorded audio contains a command for the smart device or a different smart device to perform an action. The method also includes, responsive to determining that the recorded audio includes a command for the smart device or a different smart device to perform the action, determining whether the command is serviceable by the smart device without involvement of the different smart device. The method also includes, responsive to determining whether the command is serviceable by the smart device without involvement of the different smart device, taking action regarding the command. |
US11676587B2 |
Method, apparatus and device for implementing voice application, computer readable storage medium
The present disclosure provides a method, an apparatus and a device for implementing a voice application and a computer readable storage medium, which determine a feedback content and a template identifier corresponding to a voice command of a user on a server side, and the determination result is performed by the IoT device. As the Internet information is iteratively updated, the voice command is also updated, the processing function of the voice command can be updated on the server side, so that the voice application in the IoT device does not need to be updated. Therefore, the processing capability of the voice application can be updated without upgrading the voice application itself, thereby alleviating the problem of an excessively long upgrade process due to the OTA upgrade process in the prior art. |
US11676580B2 |
Electronic device for processing user utterance and controlling method thereof
An electronic device is provided. The electronic device includes a microphone, and at least one processor operatively connected to the microphone, wherein the at least one processor may include a buffer memory configured to store a first feature vector for a first voice signal obtained from the microphone as an inverse value, and an operation circuit configured to perform a norm operation for a first feature vector and a second feature vector, based on the second feature vector, based on a second voice signal streamed from the microphone and an inverse value of the first feature vector stored in the buffer memory, or calculate a similarity between the first feature vector and the second feature vector. In addition, various embodiments identified through the specification are possible. |
US11676577B2 |
Speech processing
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for adapting a language model are disclosed. In one aspect, a method includes the actions of receiving transcriptions of utterances that were received by computing devices operating in a domain and that are in a source language. The actions further include generating translated transcriptions of the transcriptions of the utterances in a target language. The actions further include receiving a language model for the target language. The actions further include biasing the language model for the target language by increasing the likelihood of the language model selecting terms included in the translated transcriptions. The actions further include generating a transcription of an utterance in the target language using the biased language model and while operating in the domain. |
US11676574B2 |
Duration based task monitoring of artificial intelligence voice response systems
A method, computer system, and a computer program product for task monitoring is provided. The present invention may include training an AI voice response system based on task performance data, wherein the task performance data originates from at least one monitoring device. The present invention may include receiving a request for instructions to complete a task from a user. The present invention may include monitoring a performance of the task by the user, wherein the performance of the task by the user is monitored utilizing at least one monitoring device. The present invention may include determining differences between the performance of the task by the user and a task sequence. |
US11676571B2 |
Synthesized speech generation
A device for speech generation includes one or more processors configured to receive one or more control parameters indicating target speech characteristics. The one or more processors are also configured to process, using a multi-encoder, an input representation of speech based on the one or more control parameters to generate encoded data corresponding to an audio signal that represents a version of the speech based on the target speech characteristics. |
US11676570B2 |
Adaptive noise cancellation for multi-rotor vehicle
A noise cancellation system for cancelling sounds within a vehicle. The noise cancellation system includes microphones, a camera, a controller, and speakers. The microphones are disposed adjacent to occupant locations, and configured to generate microphone signals representative of noise sounds and cancellation audio sounds. The camera is configured to generate a video signal that captures head configurations of the occupants. The controller is configured to receive rotor control signals, calculate hearing locations based on tracking data of the head configurations of the occupants, and generate a speaker signals based on the hearing locations, the microphone signals, and the rotor control signals. The speakers are configured to generate the cancellation audio sounds. The cancellation audio sounds attenuate the noise sounds. |
US11676567B2 |
Method for manufacturing a sound absorption structure comprising a cellular panel incorporating acoustic elements and sound absorption structure obtained using said method
A method for manufacturing a sound absorption structure comprising a cellular panel, a porous layer positioned on a cellular panel first face, a reflective layer positioned on a cellular panel second face and a plurality of acoustic elements positioned in the cellular panel. The method comprises the steps of producing, for each acoustic element, a recess in the cellular panel opening out onto the first and second faces of the cellular panel, inserting the acoustic elements into their recesses, laying an anchoring layer on the second cellular panel face, curing or polymerization at a first pressure to connect each acoustic element to the cellular panel and/or to the anchoring layer, putting in place the porous layer and the reflective layer, and curing or polymerization at a second pressure to connect the porous layer and the reflective layer to the cellular panel. |
US11676564B2 |
Integrated melodic instrument digital interface (MIDI) controller within a laptop chassis
A system and method for a laptop computer chassis that integrates a MIDI controller. The laptop is specifically designed for music producers, and it combines a standard laptop computer with producer hardware into one design. The laptop computer features a standard keyboard and buttons, but replaces the lower portion with a MIDI controller. The system functions together through the use of a DAW, but will also be compatible with other 3rd party products. |
US11676563B2 |
Heel raised adjustable drum pedal
A device may include a drum pedal board with a first end, a second end, a left side, and a right side. Further the device may include an incline section coupled to either the left side or the right side of the drum pedal board, a heel base with variable height, a hinge coupling the first end of the drum pedal board to the heel base, and a drum pedal base coupled to the heel base. The drum pedal board may be substantially parallel to the drum pedal base. The incline section may have a variable incline via a hinge. The heel base may have a variable height via a plurality of heel inserts. An adjustable strap may be operable to secure a user's foot to the drum pedal board. A raised toe section may be operable to raise an end of the drum pedal board. |
US11676560B2 |
Strings saddle or yoke for a musical instrument, and related methods of core over installation
Disclosed is an improved string saddle or yoke that can have a string bent thereover without causing a separation of the string's windings. |
US11676556B2 |
Row crosstalk mitigation
A method and light-emitting diode (LED) device configured to compensate for crosstalk between rows of the LED device. |
US11676555B2 |
Display device and operating method thereof
A display device that achieves both high-accuracy sensing by a touch sensor unit and smooth input using the touch sensor unit is provided. The display device includes a display unit and the touch sensor unit. The touch sensor unit performs touch sensing operation at a different timing from display image rewriting by the display unit, whereby the high-accuracy sensing can be achieved. The display unit has a function of rewriting a display image only in a region that needs to be rewritten. In the case where the entire display region is not necessarily rewritten, the time for the sensing operation by the touch sensor unit can be lengthened, whereby the smooth input can be achieved. |
US11676553B2 |
Reduced heat generation from a source driver of display device
A display device includes a display panel including first data lines, second data lines, gate lines, and a plurality of pixels, a voltage generator which generates a first driving voltage and a second driving voltage, and a source driver which generates a first data voltage having a first polarity based on the first driving voltage and a second data voltage having a second polarity based on the second driving voltage. The source driver includes a first source driver coupled to the first data lines and a second source driver coupled to the second data lines. The voltage generator alternately provides the first driving voltage and the second driving voltage to each of the first source driver and the second source driver. |
US11676550B2 |
Spatial light modulator system, spatial light modulator device, and display apparatus for preventing influences of mechanical operations of a light modulation unit
Provided is a spatial light modulator device that includes a light modulation unit, a first memory, and a second memory. The light modulation unit performs a transition operation between a first state and a second state. In the first memory, data for specifying which one state of the first state and the second state the light modulation unit is to be put in is written during a transition time in which the transition operation is performed. In the second memory, the data retained in the first memory is written after the transition time ends and the second memory supplies the data to the light modulation unit. |
US11676549B2 |
Method of controlling display of display device, apparatus thereof, and display apparatus
The embodiments of the present application disclose a method of controlling display of a display device, an apparatus thereof and a display apparatus. The display device includes a backlight unit and a display panel, wherein the backlight unit includes a plurality of backlight partitions, each of which is independently driven, and the display panel includes a plurality of display partitions in one-to-one correspondence with the backlight partitions. The method comprises: causing the display panel to display a test image, wherein each pixel of the test image has a same gray value; acquiring a luminance of each display partition of the display panel; determining a compensation coefficient according to the luminance of each display partition; adjusting backlight data of the backlight partition according to the compensation coefficient to obtain adjusted backlight data of each backlight partition; and providing the adjusted backlight data to the backlight unit for display by the display panel. |
US11676546B2 |
Display apparatus and method of adjusting display apparatus to display a phase distribution pattern
A display apparatus includes a light source, an optical phase modulator, a drive circuit, and a controller. The optical phase modulator includes a plurality of pixels, and modulates a phase of light from the light source for each of the pixels by displaying a phase distribution pattern indicated by phase distribution data. The drive circuit performs voltage application to the optical phase modulator based on the phase distribution data. The controller divides a pixel region in the optical phase modulator into a plurality of division regions. The controller causes the drive circuit to perform voltage application based on adjustment data to perform display in at least one division region of the plurality of division regions. The adjustment data is for determining an amount of voltage application performed by the drive circuit. The amount of voltage application corresponds to the phase distribution data. The display is based on the adjustment data. |
US11676545B2 |
Display device and display driving method
A display device includes a display panel on which a plurality of sub-pixels are disposed; a timing controller configured to transmit an image control signal to a host system to receive image data from the host system; a data driving circuit configured to convert the image data transmitted from the timing controller into a data voltage and configured to supply the data voltage to the display panel; and a semi-off switching circuit configured to control the image control signal so that the image data is cut off from the host system during a semi-off period of a predetermined time from a time when an off monitoring signal is transmitted from the host system in response to the power off signal. |
US11676543B2 |
Display device and method of operating a display device
A display device includes a display panel, a controller, and a data driver. The display panel includes a plurality of pixels. The controller detects a logo region including a logo in image data, determines a correction gain based on a first average gray level of the logo region and a second average gray level of a peripheral region adjacent to the logo region, and generates corrected image data by correcting the image data based on the correction gain. The data driver provides data signals to the plurality of pixels based on the corrected image data. |
US11676541B2 |
Shift register unit, gate driving circuit, display device, and method for controlling shift register unit
The present disclosure provides a shift resister unit, a gate driving circuit, a display device, and a method for controlling a shift register unit. The shift register unit incudes a first input sub-circuit, a first output sub-circuit, a first reset sub-circuit, a second input sub-circuit, and a third input sub-circuit. The first input sub-circuit is configured to change a potential of a first node in a first phase. The first output sub-circuit is configured to output a gate driving signal in the first phase and output a compensation driving signal in a second phase. The first reset sub-circuit is configured to reset the first node. The second input sub-circuit is configured to change a potential of a second node in the first phase and maintain the potential of the second node. The third input sub-circuit is configured to change the potential of the first node in the second phase. |
US11676540B2 |
Pixel circuit, method for driving the same, display panel and display device
A pixel circuit, a method for driving the same, a display panel and a display device are provided. The pixel circuit includes: a driving sub-circuit, a first light-emission controlling sub-circuit, a second light-emission controlling sub-circuit, an anode potential controlling sub-circuit, all of which operate in cooperation so that the pixel circuit drives a light-emitting element to emit light, where the second light-emission controlling sub-circuit provides voltage output by the driving sub-circuit to an anode of the light-emitting element in a light-emission period, and the anode potential controlling sub-circuit provides a signal of a first voltage signal terminal to the anode of the light-emitting element in a non-light-emission period. |
US11676538B2 |
Electronic device
An electronic device includes a light emitting unit, a current source, voltage comparator, and an emission control unit. The voltage comparator is configured to receive a voltage data and a ramp signal and output a comparison signal according to the voltage data and the ramp signal. The emission control unit is configured to output a driving current to the light emitting unit according to the supply current, the emission enable signal, and the comparison signal. The ramp signal is a first ramp signal during a first frame, and the ramp signal is a second ramp signal during a second frame after the first frame. The emission control unit is configured to be operated in a first mode based on the first ramp signal, and the emission control unit is configured to be operated in a second mode based on the second ramp signal. |
US11676537B2 |
Pixel driving circuit, display panel and display apparatus
Provided is a pixel driving circuit, a display panel and a display apparatus. The pixel driving circuit includes: driving transistor having gate electrode connected to first node, first electrode connected to second node, and second electrode electrically connected to third node coupled to light emitting element; storage capacitor connected to the first node; and M first transistors having M first and second electrodes connected to the first node M functional signal terminals, respectively, M≥1. A driving cycle of the pixel driving circuit includes light-emitting stage and N non-light-emitting stages, N≥M. The M first transistors are respectively turned on in the N non-light-emitting stages, and the M first transistors are all turned off in the light-emitting stage. One of the N non-light-emitting stages includes first non-light-emitting stage adjacent to the light-emitting stage. Channel length L and width W of the first transistor satisfy: W × L < C st × Δ V ∑ i = 1 i = M C ox × ( V G _ off - V N 1 ) 2 ❘ "\[LeftBracketingBar]" V G _ off - V N 1 ❘ "\[RightBracketingBar]" + ❘ "\[LeftBracketingBar]" V G _ off - V X _ i ❘ "\[RightBracketingBar]" . |
US11676535B2 |
Pixel and display device
A pixel of a display device includes a light-emitting diode and a pixel circuit that provides a current corresponding to a data signal to the light-emitting diode in response to a plurality of scan signals and a light emission control signal. The light emission control signal includes a first section and a second section, the second section includes a light-emission-on section and a light-emission-off section, the light emission control signal has an active level in the light-emission-on section and has an inactive level in each of the first section and the light-emission-off section, and the light-emission-on section and the light-emission-off section of the light emission control signal may vary depending on a light emission ratio of a dimming mode. |
US11676533B2 |
Signal processing device and image display apparatus including the same
A signal processing device and an image display apparatus including the same are disclosed. The image display apparatus includes a display including an organic light emitting diode panel and a signal processor configured to control the display, wherein the signal processor is configured to perform luminance conversion based on a first luminance conversion pattern in the case in which the luminance level of an input image is greater a first level and to perform luminance conversion based on a second luminance conversion pattern having a higher luminance level than the first luminance conversion pattern in the case in which the luminance level of the input image is equal to or less than the first level, whereby low gray level expression of the organic light emitting diode panel is improved. |
US11676527B2 |
Display driver adjusting output timings of driving voltages at output channels
A display driver is provided. A designation of an output timing at each of first and kth output channels is received, and first and second delay pulse signals are generated at respective output timings of the first and the kth output channels. First to kth first direction delay shift signals where a first delay pulse signal is present after a delay increased for each output channel from the first toward the kth output channel are generated. First to kth second direction delay shift signals where a second delay pulse signal is present after the delay increased for each output channel from the kth toward the first output channel are generated. One whose timing at which a delay pulse signal is present is earlier is selected from each of the direction delay shift signals corresponding to the same output channel, and set as first to kth output timing signals. |
US11676522B2 |
Display panel and display device
A display panel and a display device are provided. A shift register of the display panel includes a first control unit, configured to receive an input signal and control a signal of a first node in response to a first clock signal; a second control unit, configured to receive a first voltage signal and control a signal of a second node in response to the input signal and the first clock signal; a third control unit, configured to receive the first voltage signal and a second voltage signal and control a signal of a fourth node in response to the signal of the second node and a signal of a third node; and a fourth control unit, configured to receive a third voltage signal and a fourth voltage signal and generate an output signal in response to the signals of the second node and the fourth node. |
US11676515B2 |
Content encryption and in-place decryption using visually encoded ciphertext
Systems and methods are provided for encrypting and decrypting data using visually encoded ciphertext. The method includes selecting, using a graphical user interface coupled to an electronic device, one or more portions of a document to be encrypted, visually encoding the selected one or more portions of the document, generating a visual representation, wherein the visual representation corresponds to encrypted content, and replacing the selected one or more portions of the document with the visual representation. The method further includes displaying, to the user, the visual representation, capturing the visual representation using one or more cameras, decoding the visual representation, obtaining the encrypted content, and decrypting the encrypted content, generating decrypted content. |
US11676512B2 |
Injection training device
An injection training device for association with a skin of a user and simulating an injection event is provided herein. In a non-limiting embodiment, the injection training device comprises a housing having an opening for receiving a container, the housing comprising at least one sensor for detecting a condition of use of the device, wherein the housing is configured to be positioned at the skin of a user during an injection event. |
US11676510B2 |
Welding simulation systems with observation devices
Described herein are examples of welding simulation systems with observation devices that facilitate the types of group interactions that occur in conventional weld training. In some examples, third party observers may use the observation devices to observe the welding simulation from their own perspectives. In some examples, this may allow for traditional “over the shoulder” observation, and/or group/classroom observation and interaction. |
US11676509B2 |
Feedback from a welding torch of a welding system
A welding system includes a welding torch. The welding torch includes a sensor configured to detect a motion associated with the welding torch, a temperature associated with the welding torch, or some combination thereof. A display of the welding torch is activated, a determination is made that the welding torch has been involved in a high impact event, live welding using the welding torch is disabled, a software selection is made, or some combination thereof, based on the motion, the temperature, or some combination thereof. |
US11676508B2 |
Using cloud-based data for industrial automation system training
A cloud-based performance enhancement service captures and collects data relating to interactions of users with industrial automation systems of multiple industrial customers for storage and analysis on a cloud platform. The service employs a performance enhancement component that analyzes the data to facilitate determining correlations between certain user interactions and favorable performance of an industrial automation system, determining user interactions that are less favorable or unsafe, determining alternative actions that a user can take to achieve a same or similar preferred operational result, generating recommendations relating to the alternative actions, determining or designing components or techniques that can automate a preferred user action, determining improved user assignments in connection with the industrial automation system, and/or generating training modules or presentations based on preferred user actions that can be used to train users to more efficiently interact with an industrial automation system to achieve improved system performance. |
US11676507B2 |
Food description processing methods and apparatuses
Disclosed embodiments include apparatuses, methods and storage media associated with modifying a food record database. The method comprises receiving a plurality of food records from a plurality of sources, each of the plurality of food records comprising at least a food record description, the plurality of sources including (i) at least one non-user entity that is an owner of a third party food database and (ii) users of the food record database. The method further comprises receiving search requests from users, and returning one or more top search results from the food record database in response. The method also comprises determining a score for a particular food record identified by the top search results, wherein the score is calculated based at least in part on one of: a number of times the particular food record has been included in the top search results of the search requests or a number of times the particular food record has been logged. |
US11676504B1 |
Adaptive educational activities
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for adaptive educational activities are disclosed. In one aspect, a computer-implemented method includes receiving, by a computing device that is configured to grant a given user access to a first group of activity modules based on a classification of the given user, user data and classification data. The method includes granting the user access to a first activity module and a second activity module, and preventing the user from accessing a third activity module. The method includes receiving interaction data based on the user interacting with the first activity module, and determining that the interaction data indicates an improper classification of the user. Based on the interaction data, the method includes maintaining the classification of the user, granting the user access to a fourth activity module, and preventing the user from accessing the second activity module. |
US11676499B2 |
Methods and systems for alerting a visual descent point (VDP)
Methods and system for alerting a Visual Decent Point (VDP) in an aircraft system. The methods and systems retrieve runway altitude data and Minimum Descent Altitude (MDA) data from an avionics database for a target runway. Data in the avionics database for the target runway does not include a published VDP. The method includes calculating the VDP based on a difference between the runway altitude data and the MDA so as to achieve a target downward acceptable glidepath angle during final descent from the MDA to the target runway. The method includes outputting an alert of the VDP by an output device of the aircraft system. |
US11676493B2 |
Vehicle control method for platooning, vehicle mounted apparatus and vehicle
A vehicle control method for platooning vehicles includes determining, for a first following vehicle, a predicted movement state information, and a lead vehicle predicted movement state information of a lead vehicle corresponding to a number of time points in the future. In the vehicle control method, when there is an adjacent second following vehicle, second following vehicle predicted movement state information corresponding to the number of time points is determined, and also includes determining optimized control quantities corresponding to respective ones of the number of time points, including determining an overall constraint model based on constraints between the first following vehicle and the lead vehicle, and constraints between the first following vehicle and the second following vehicle; determining the optimized control quantities; and performing longitudinal control in accordance with the optimized control quantities. A vehicle and an apparatus mounted therein may execute the vehicle control method. |
US11676491B2 |
Communication device for platooning in vehicle and communication method therefor
A communication device for a platooning vehicle is provided and includes a communication circuit; a memory; and a control circuit electrically connected with the communication circuit and the memory. The control circuit transmits, via the communication circuit, platooning information to another platooning vehicle in the platooning group when platooning is initiated and receives, via the communication circuit, information from an outside vehicle that is not part of the platooning group, the information including identification information of the outside vehicle. The information from the outside vehicle is processed when the identification information of the outside vehicle matches identification information of the other platooning vehicle, the identification information of the other platooning vehicle previously stored in a memory of the other platooning vehicle. The information receiving from the outside vehicle is stopped when the identification information of the outside vehicle does not match the identification information of the other platooning vehicle. |
US11676484B2 |
Governing the operation of an asset within a geo-zone
A method of operating an incursion warning system for a work zone, the incursion warning system comprising: a plurality of sensor units arranged about a perimeter of the work zone; and a plurality of alarm units each comprising one or more of an audio, visual or haptic alarm operable to warn a workforce of a potential danger in response to a detected breach into the work area; the method comprising: establishing a geo-zone delimiting a geographical area that includes at least part of the work zone; and a set of rules associated with the geo-zone; deriving an instruction for one of the alarm units determined to be in the geo-zone from the set of rules based on a characteristic of the alarm unit and a characteristic(s) of one or more other alarm units determined to be within the geo-zone; and wherein the instruction is derived in response to a change in a characteristic of the alarm unit and/or the one or more other alarm units and/or one or more of the sensor units within the geo-zone. |
US11676482B2 |
System and methods for enhanced remote control functionality
A hand-held device having a touch sensitive surface uses a relative distance from an origin location to each of a plurality of touch zones of the touch sensitive surface activated by a user to select a one of the plurality of touch zones as being intended for activation by the user. |
US11676480B2 |
System and method for simplified setup of a universal remote control
A system and method for enabling set up of a controlling device capable of controlling a plurality of appliances, via an interactive instruction set and associated programming. The programming is accessible by a STB or other controllable appliance and is configured to appropriately display interactive instructions and prompts to a user during a user initiated set up procedure for configuration of another controllable device (e.g., DVD, VCR, DVR, etc) available to the user. |
US11676476B2 |
Battery tamper indicator for detector
A smoke detector includes a tamper indicator that can prevent a cover from at least partially covering a battery location and/or mounting of a detector body to a detector mount if a battery is not located at the battery location of the detector body. The detector mount and/or cover can engage with the detector body by relative rotation about an engagement axis, and the tamper indicator can pivot about a pivot axis that is parallel to the engagement axis and/or move along a linear path. The tamper indicator can prevent engagement of a portion of the detector mount, such as an intermediate component between the detector body and a base of the detector mount, with the detector body. The intermediate component can at least partially cover the battery location when engaged with the detector body. The base of the detector mount can engage with the detector body via the intermediate component. |
US11676463B2 |
Doorbell system and security method thereof
Provided are a doorbell system and a method of operating the same. The doorbell system includes a doorbell which includes: a camera configured to obtain at least one of an image of a first object in a first region and an image of a second object in a second region closer to the doorbell than the first region; an image processor configured to detect the first object from the image of the first object, and identify the second object from the image of the second object; and an alert generator configured to select and transmit to a user terminal an alert sound or alert sound information corresponding to the identified second object. |
US11676462B2 |
Validating radio frequency identification (RFID) alarm event tags
An RFID portal of an EAS system first interrogates a first zone extending into a controlled area beyond a threshold distance from an interrogating antenna of the portal. The portal defines an exit from the controlled area, the threshold distance being less than a width of the exit. The portal first detects, in response to the first interrogating, a first response of a particular RFID tag. The portal second interrogate, subsequent to the first detecting, in a second zone extending into the controlled area at least to the threshold distance. The portal second detects, in response to the second interrogating, at least one second response of the particular RFID tag indicating a received signal strength of the second interrogating at the particular RFID tag corresponding to a distance from an interrogating antenna of the portal less than the threshold distance. The EAS system alarms in response to the second detecting. |
US11676456B2 |
Gaming system
Certain embodiments involve a system comprising at least one processor; and a memory storing instructions which when executed by the at least one processor cause the at least one processor to: cause a first symbol array to be selected and displayed on at least one display in a display area, the first symbol array including a plurality of selected symbols from each reel of a plurality of reels at respective symbol locations of the display area; add at least one first Wild symbol to the display; cause a second symbol array to be selected and displayed on the at least one display in the display area, the second symbol array including a plurality of selected symbols from each reel at the respective symbol locations of the display area; add at least one second Wild symbol to the display; and move the at least one first Wild symbol relative to the display area. |
US11676455B2 |
Gaming system
A described gaming system implements an arrangement wherein, as part of a first base game instance, a gaming device is caused to include, at a first symbol position of a symbol array to be implemented by a gaming device, a first Wild symbol at a first symbol position on a reel of a plurality of reels; and, as part of a second base game instance following the first game instance, a modification of the reel of the plurality of reels is performed to move the first Wild symbol into a second symbol position different than the first symbol position. |
US11676453B2 |
Electronic gaming machines with dynamic auto play mode methods enabled by AI-based playstyle models
The present disclosure relates generally to a gaming system, device, and method supportive of an enhanced electronic gaming machine auto play mode. A gaming system, device, and method are provided that identify data associated with a set of previous gameplay sessions, the data including a set of previous gameplay decisions associated with the set of previous gameplay sessions; generate a set of playstyle models based on the set of previous gameplay decisions; and enable a gameplay mode in which a playstyle model of the set of playstyle models may be utilized to provide automated player inputs to a gameplay session. |
US11676450B2 |
System and method of conducting games of chance with enhanced payouts based on cash in amount
A system and method of providing a player loyalty program to award a player of an electronic gaming machine, including conducting games with enhanced payouts based on a cash in or initial investment amount. In response to a player's initial investment or cash in amount, a payout schedule is selected. The larger the initial investment the better the selected payout schedule for the player. Live games facilitated by electronic gaming machines or devices and server-based games may utilize the method disclosed herein. Players may also receive enhanced awards such as enhanced player points based on the amount of the initial investment. Awards and bonuses may also be provided to players who exhaust an initial investment exceeding a threshold amount. |
US11676447B2 |
Systems and methods for utilizing RFID technology to facilitate a gaming system
In accordance with some embodiments, an RFID-enabled table game system provides for determining whether there is a variance between an expected balance of inventory and an actual balance of inventory in a game element container. If a variance is detected, the RFID-enabled game system may identify at least one characteristic associated with an RFID-enabled game element that is determined to be a source of the variance (e.g., a player position at which the RFID-enabled game element had last been detected, a denomination or value of the game element, and/or an identifier associated with the game element). In some embodiments, an alert may be output to game provider personnel (e.g., a dealer of a card game) at the end of a game play when such a variance is detected, thus allowing the variance to be corrected in an efficient and timely manner. |
US11676446B2 |
System and method for secondary engagement with table games
A system includes a smart table for providing a wagering game to one or more players. The smart table includes a table management device operable by a dealer, and the smart table defines a plurality of player positions. The system also includes a processor configured to open a wagering window. The wagering window defines a period of time during which at least one primary player is enabled to place a primary wager and during which at least one secondary player is enabled to place a secondary wager. The instructions also cause the processor to close the wagering window in response to expiration of the period of time, and resolve the primary wager for the primary player and the secondary wager for the secondary player in response to closing the wagering window and based upon an outcome of the wagering game. |
US11676443B2 |
Method of using video and AI in wagering
A system and method for utilizing video analysis to enhance in-play sports wagering by overlaying potential play outcomes with the live video and adjusting the display of the potential outcomes based on the video analysis of the actual play's outcome. |
US11676442B2 |
Game device
A game device of the present invention has a defining part for defining an opening to allow a prize to fall, an operation part for receiving input information, a prize support member for supporting the prize, wherein the prize support member is configured to be operable by that the operation part receives the input information, and an operation control unit for controlling movement of the prize support member. The prize support member is provided above the opening so as to expose the opening. This makes it possible to provide a game device which is capable of effectively utilizing a space inside a housing and having enhanced amusement. |
US11676440B2 |
Systems and methods for pharmaceutical dispensing
A pharmaceutical dispenser for dispensing a quantity of pharmaceuticals into a container includes a pharmaceutical counter to count and release the quantity of pharmaceuticals. A pharmaceutical outlet delivers the quantity of pharmaceuticals to the container. A pharmaceutical gate receives the quantity of pharmaceuticals from the pharmaceutical counter. The pharmaceutical gate includes a receiver sized and shaped to define a pharmaceutical receiving space to hold the quantity of pharmaceuticals. The receiver moves between a receiving position and a dispensing position. In the receiving position, the receiver receives the quantity of pharmaceuticals in the pharmaceutical receiving space from the pharmaceutical counter. In the dispensing position, the receiver dispenses the quantity of pharmaceuticals toward the pharmaceutical outlet. |
US11676438B2 |
Authentication and age verification for an aerosol delivery device
A charger for an electronic nicotine delivery systems (“ENDS”) device, which may include aerosol delivery devices provides functionality for authentication, including age verification. Such devices may be restricted based on age or other factors that require some form of authentication, verification, and/or identification to satisfy the restriction. The accessory or charger may provide or connect with a verification system for confirming an age of a user. If the authentication or verification is not satisfied, the charger or accessory will not charge the device, rendering it unusable. |
US11676436B2 |
Vehicle parking authorization assurance system
Methods, systems and apparatuses are provided for managing a parking facility. A host processor may receive identification information relating to a vehicle entering, exiting and/or parked in the parking facility. The host processor may determine an account associated with the vehicle, based on the identification information and on account information associated with the account. The host processor may determine that the vehicle is authorized to park in the parking facility, based on the account information. And host processor transmits permission information to a user device to thereby allow the vehicle to enter, exit and/or remain parked in the parking facility. |
US11676434B2 |
Methods and apparatus for validating wireless access card authenticity and proximity
A method includes performing, by a terminal with an access card, a first relay attack check for the access card in accordance with a local value associated with the terminal and a local value associated with the access card; determining, by the terminal, that the access card has passed the first relay attack check, and based thereon, performing, by the terminal with the access card, an authentication check of the access card in accordance with the local value associated with the terminal, the local value associated with the access card, and a local challenge value associated with the terminal; and determining, by the terminal, that the access card has passed the first relay attack check and the authentication check, and based thereon, validating, by the terminal, the access card. |
US11676429B2 |
Vehicle wheel impact detection and response
A computer can be programmed to determine that an impact to a wheel of a vehicle exceeds an impact severity threshold and transmit a message describing the impact via a vehicle communications network. An electronic controller can be programmed to make an adjustment to monitoring the component based on receiving the message in the electronic controller. |
US11676425B2 |
System and method for speech recognition for occupancy detection in high occupancy toll applications
A system and method for dividing toll charges among vehicle occupants includes, at a mobile device, receiving identifying information for each vehicle occupant that can be used to verify the identity of the occupant. The identifying information can be biometric in nature, including images or voice prints. The information is provided to tolling service with which each of the occupants has an account. Toll charges that accrue as the vehicle travels are then divided or split among the vehicle occupants. |
US11676424B2 |
Iris or other body part identification on a computing device
An iris or other object detection method and apparatus are disclosed. In one embodiment, the method comprises sending image data to a display of a device that is captured with a first camera of the device with an indication to guide a user to position a body part of the user with respect to the display while the image data is being sent to the display, providing feedback to the user to indicate to the user that the body part is in position so that an image of the body part can be captured by a second camera of the device, capturing an image of the body part with the second camera, and performing recognition on the body part using the image. |
US11676420B2 |
Photographic emoji communications systems and methods of use
Photographic emoji communications systems and methods of use are provided herein. An example method receiving a plurality of image files from a user device, each of the image files including a selfie of the user; for each of the plurality of image files, determining a reaction emotion of an associated selfie based on facial attributes of the user; storing the plurality of image files in a repository, each of the plurality of image files being labeled with a respective reaction emotion as a selfiemoji; receiving a request to include one of the selfiemojis in a message; and inserting one of the selfiemojis into the message. |
US11676415B2 |
Sensing device capable of improving sensing effect thereof
A sensing device includes a sensing circuit, a conductive line, and a sampling circuit. The conductive line is electrically connected to the sensing circuit. The sampling circuit is electrically connected to the conductive line. The sampling circuit includes a capacitor, a first thin film transistor, and a second thin film transistor. The first terminal of the first thin film transistor is electrically connected to the first terminal of the capacitor. The first terminal of the second thin film transistor is electrically connected to the second terminal of the capacitor. The second terminal of the first thin film transistor is electrically connected to the conductive line. The second terminal of the second thin film transistor is electrically connected to the ground terminal. |
US11676411B2 |
Systems and methods for neuronal visual-linguistic data retrieval from an imaged document
Systems and methods for automatic information retrieval from imaged documents. Deep network architectures retrieve information from imaged documents using a neuronal visual-linguistic mechanism including a geometrically trained neuronal network. An expense management platform uses the neuronal visual-linguistic mechanism to determine geometric-semantic information of the imaged document. |
US11676404B2 |
Vehicular driver monitoring system with customized outputs
A vehicular driver monitoring system includes an electronic control unit (ECU), memory that stores driver information, and a driver monitoring camera viewing a head of a driver present in the vehicle. When the driver is present in the vehicle, and via processing at the ECU of image data captured by the driver monitoring camera and provided to the ECU, the system recognizes the driver present in the vehicle as being one of the at least one potential driver of the vehicle having driver information stored in the memory, and the vehicular driver monitoring system accesses the driver information that is associated with the driver. Responsive to determination by the vehicular driver monitoring system that a geographical location of the accessed stored driver information corresponds to a current geographical location of the vehicle, the system generates an output for the driver that corresponds to the current geographical location of the vehicle. |
US11676401B2 |
Multi-distance information processing using retroreflected light properties
In some examples, a method may include receiving retroreflected light that indicates at least one retroreflective property of a retroreflective article, wherein retroreflected light is captured at a first distance. The method may include determining a first set of information based at least in part on the at least one retroreflective property of the retroreflective article. The method may include receiving, from the light capture device, an image that includes at least one object, wherein the image is captured at a second distance. The method may include determining, based at least in part on the spatially resolvable property, a second set of information that corresponds to the object in the image. The method may include performing, by a computing device, at least one operation based at least in part on the second set of information. |
US11676398B2 |
Detection of emergency vehicles
Aspects of the disclosure relate to detecting an emergency vehicle. For instance, a plurality of images may be taken from a perspective of an autonomous vehicle. One or more gates representing a region of interest at a respective distance from the vehicle may be generated for the images. A plurality of lights may be detected within the one or more gates. A first candidate emergency vehicle may be identified from a detected plurality of lights in one or more gates of one of the images, and a second candidate emergency vehicle may be identified from a detected plurality of lights in one or more gates of another of the images. The first and second candidate emergency vehicles are determined to be the same emergency vehicle and to be active. An operational system of the autonomous vehicle is controlled based on the determination that the given emergency vehicle is active. |
US11676395B2 |
Automated capture of image data for points of interest
Automated capture of image data for points of interest may be implemented for points of interest in an environment external to a vehicle. Sensors implemented as part of a vehicle may collect sensor data for an environment. Processing of the sensor data may be performed to detect points of interest in the environment. In response to detecting a point of interest, image data may be captured by one or more of the sensors implemented at the vehicle. Different types of image data may be captured, such as panoramic images and three-dimensional reconstructions of a scene. Metadata may be generated for captured image data which may describe the point of interest that is captured by the image data. The image data and the metadata may be stored locally at the vehicle or to a remote data store. The image data may also be shared with other computing devices. |
US11676394B2 |
Processing device for conversion of images
A processing unit recognizes an object based on image data. An object recognition unit identifies the object based on the image data. A conversion unit is configured as a neural network provided as an upstream stage of the object recognition unit. The conversion unit converts a first image IMG acquired by the camera into a second image, and inputs the second image to the object recognition unit. |
US11676391B2 |
Robust correlation of vehicle extents and locations when given noisy detections and limited field-of-view image frames
A computer accesses a plurality of image frames. The computer identifies, within the plurality of image frames, a plurality of vehicle front vehicle back detections. The computer pairs at least a subset of the plurality of vehicle back detections with vehicle front detections. A given vehicle back detection is paired with a given vehicle front detection based on camera angle relative to a predefined axis. The computer assigns, using each of a plurality of pools, a score to each vehicle front detection—vehicle back detection pair, each non-paired vehicle front detection, and each non-paired vehicle back detection. Each pool comprises a data structure representing a scoring mechanism and a set of detections. The computer assigns each detection to a pool that assigned a highest score to that detection. Upon determining that a given pool comprises at least n detections: the computer labels the given pool as representing a specific vehicle. |
US11676386B2 |
Method and system for automated analysis of human behavior utilizing video data
The present disclosure provides a method and system for automated analysis of human behavior. The automated analysis of human behavior is performed to determine fraudulent behavior. The system collects a technical data and a video data from one or more data sources and one or more video sources. In addition, the system trains a fraudulent behavior detection system with the collected technical data and the video data in real-time. Further, the system receives a live video stream data from the one or more video sources. Furthermore, the system analyzes the live video stream data received from the one or more video sources installed at the facility in real-time. Moreover, the system predicts likelihood of fraudulent behavior of humans based on analyzation of the live video stream data. Also, the system performs prediction to alarm concerned authorities of the facility about likelihood of fraudulent behavior. |
US11676385B1 |
Processing method and apparatus, terminal device and medium
A target video and video description information corresponding to the target video are acquired; salient object information of the target video is determined; a key frame category of the video description information is determined; and the target video, the video description information, the salient object information and the key frame category are input into a processing model to obtain a timestamp of an image corresponding to the video description information in the target video. |
US11676383B2 |
Object counting system for high volume traffic
A system may be configured to perform object counting in high volume traffic. In some aspects, the system may detect a candidate object within the region of interest in a current video frame, and determine that the candidate object is a detected object based at least in part on comparing an attribute value of the candidate object to historic attribute information determined during a plurality of previous video frames. Further, the system may determine track information based on the detected object and determine an object count representing a number of the objects that have entered the region of interest and/or a number of the objects that have exited the region of interest. |
US11676378B2 |
Providing travel-based augmented reality content with a captured image
Aspects of the present disclosure involve a system comprising a computer-readable storage medium storing a program and method for providing augmented reality content with a captured image in association with traveling, in accordance with some example embodiments. The program and method provide for receiving, by a messaging application running on a device of a user, a request to scan an image captured by a device camera; determining, in response to the receiving, a travel parameter associated with the request and an attribute of an object depicted in the image; obtaining supplemental content based on the travel parameter and on the attribute; and displaying an augmented reality content item, which includes the supplemental content, with the captured image. |
US11676377B2 |
Enhanced vision systems and methods
An enhanced vision system includes a first optic subsystem and a transparent photodetector subsystem disposed within a common housing. The first optic subsystem may include passive devices such as simple or compound lenses, active devices such as low-light enhancing image intensifiers, or a combination of passive and active devices. The transparent photodetector subsystem receives the visible image exiting the first optic subsystem and converts a portion of the electromagnetic energy in the visible image to a signal communicated to image analysis circuitry. On a real-time or near real-time basis, the image analysis circuitry detects and identifies structures, objects, and/or individuals in the visible image. The image analysis circuitry provides an output that includes information regarding the structure, objects, and individuals to the system user contemporaneous with the system user viewing the visible image. |
US11676372B2 |
Object/region detection and classification system with improved computer memory efficiency
The present disclosure relates to an object detection and classification system with higher accuracy and resolution in a less computer memory environment. The system comprises an input value generation unit to receive an input image and generate an input value including feature information; a memory value generation unit to receive a reference image and generate a memory value including feature information; a memory management unit to select information having high importance from the memory values and store in a computer memory; an aggregated value generation unit to compute similarity between the input value and the memory value, calculate a weighted sum to generate an integrated value, and aggregate the integrated value and the input value; and an object detection unit to detect or classify the object from the input image using the aggregated value. |
US11676371B2 |
Apparatus for processing a neural network
An apparatus for processing a neural network comprises an image memory into which an input image is written tile-by-tile, each tile overlapping a previous tile to a limited extent; a weights memory for storing weight information for a plurality of convolutional layers of a neural network, including at least two pooling layers; and a layer processing engine configured to combine information from the image and weights memories to generate an output map and to write the output map to image memory. The apparatus is configured to store a limited number of values from adjacent a boundary of an output map for a given layer. The layer processing engine is configured to combine the output map values from a previously processed image tile with the information from the image memory and the weights when generating an output map for a layer of the neural network following the given layer. |
US11676367B1 |
System and method for anomaly detection using anomaly cueing
Described a system for anomaly detection using anomaly cueing. In operation, an input image having two-dimensional (2D) image mixtures of primary components is reformatted into one-dimensional (1D) input signals. Blind source signal separation is used to separate the 1D input signals into separate output primary components, which are 1D output signals. The 1D output signals are reformatted into 2D spatially independent component output images. The system then calculates all possible pair product images of the 2D spatially independent component output images and corresponding signal-to-noise ratios. A pair product image is selected based on the peak signal-to-noise ratio and thresholded to identify anomalies in the pair product image. Several types of devices can then be controlled based on the identified anomalies in the pair product image. |
US11676364B2 |
Real-time detection of lanes and boundaries by autonomous vehicles
In various examples, sensor data representative of an image of a field of view of a vehicle sensor may be received and the sensor data may be applied to a machine learning model. The machine learning model may compute a segmentation mask representative of portions of the image corresponding to lane markings of the driving surface of the vehicle. Analysis of the segmentation mask may be performed to determine lane marking types, and lane boundaries may be generated by performing curve fitting on the lane markings corresponding to each of the lane marking types. The data representative of the lane boundaries may then be sent to a component of the vehicle for use in navigating the vehicle through the driving surface. |
US11676355B2 |
Method and system for merging distant spaces
A method of merging distant virtual spaces is disclosed. Data describing an environment surrounding a MR merging device is received. A first slice plane is generated, positioned, and displayed within the environment. A second MR merging device is connective with in a second environment. Data describing inbound content from the second MR merging device is received. Content data is sent from the MR merging device to the second MR merging device. The inbound content data is processed and displayed on the first slice plane. |
US11676353B2 |
Systems and methods configured to facilitate animation
Systems and methods configured to facilitate animation are disclosed. Exemplary implementations may: obtain a first scene definition; receive second entity information; integrate the second entity information into the first scene definition such that a second scene definition is generated; for each of the entities of the entity information, execute a simulation of the virtual reality scene from the second scene definition for at least a portion of the scene duration; for each of the entities of the entity information, analyze the second scene definition for deviancy between the given entity and the second motion capture information; for each of the entities of the entity information, indicate, based on the analysis for deviancy, the given entity as deviant; and for each of the entities of the entity information, re-integrate the given entity into the second scene definition. |
US11676349B2 |
Wearable augmented reality devices with object detection and tracking
The technology disclosed can provide capabilities to view and/or interact with the real world to the user of a wearable (or portable) device using a sensor configured to capture motion and/or determining the path of an object based on imaging, acoustic or vibrational waves. Implementations can enable improved user experience, greater safety, greater functionality to users of virtual reality for machine control and/or machine communications applications using wearable (or portable) devices, e.g., head mounted devices (HMDs), wearable goggles, watch computers, smartphones, and so forth, or mobile devices, e.g., autonomous and semi-autonomous robots, factory floor material handling systems, autonomous mass-transit vehicles, automobiles (human or machine driven), and so forth, equipped with suitable sensors and processors employing optical, audio or vibrational detection. |
US11676346B2 |
Augmented reality vehicle interfacing
Among other things, an apparatus includes a processor, and storage for instructions executable by the processor to, in connection with a trip of a person in an autonomous vehicle, select a specific location at which the person will be picked up for the trip or a specific location at a destination of the trip, and present through a user interface of a device visible information that depicts the specific location. |
US11676345B1 |
Automated adaptive workflows in an extended reality environment
A device is fitted with a camera and an extended reality (XR) software application program executing on a processor. Via the XR software application program, a technique is performed for automating adaptive workflows in the XR environment. In the technique, the XR software application program determines an identifier of an asset in the XR environment. The XR software application program sends to a data intake and query system a request associated with a playbook having one or more execution tasks associated with the asset. The XR software application program receives the playbook and generates an XR object associated with an execution task in the playbook. The XR software application program causes the XR object to be displayed at a location in the XR environment corresponding to a determined location, relative to the asset, of a portion of the asset with which the execution task is associated. |
US11676341B2 |
Computer implemented methods for generating 3D garment models
The invention relates to a first computer implemented method for automatically generating a first 3D garment model representing a first garment to be fabricated from first garment panels, a second computer implemented method for virtually finishing a second 3D garment model representing a second garment to be fabricated without finishes or with default finishes, and a third computer implemented method for automatically generating a plurality of third 3D garment models in a batch process, each third 3D garment model representing a third garment to be fabricated from third garment panels. |
US11676329B1 |
Mobile device holographic calling with front and back camera capture
Aspects of the present disclosure are directed to a holographic calling system providing holographic calling between an artificial reality device and a mobile device having both front and back facing cameras. The user of the mobile device can position it so one of the cameras is pointed toward their face and another camera captures the user's hand not holing the mobile device. The holographic calling system can automatically determine the position of the mobile device in relation to the user's face and hand. Once the mobile device is positioned within an appropriate capture zone, the captured images of the user's face are used to create a first representation of the sending user's face, the captured images of the user's hand are used to create a second representation of the sending user's hand. Each representation is provided as output from a receiving artificial reality device, positioned relative to each other. |
US11676322B2 |
Graphics architecture including a neural network pipeline
One embodiment provides for a graphics processor comprising a block of graphics compute units, a graphics processor pipeline coupled to the block of graphics compute units, and a programmable neural network unit including one or more neural network hardware blocks. The programmable neural network unit is coupled with the block of graphics compute units and the graphics processor pipeline. The one or more neural network hardware blocks include hardware to perform neural network operations and activation operations for a layer of a neural network. The programmable neural network unit can configure settings of one or more hardware blocks within the graphics processor pipeline based on a machine learning model trained to optimize performance of a set of workloads. |
US11676319B2 |
Augmented reality anthropomorphtzation system
Embodiments of the present disclosure relate generally to systems for enhancing a first media item through the addition of a supplemental second media item. A user may provide a request to enhance a selected media item, and in response, an enhancement system retrieves and presents a curated collection of supplemental content to be added to the media, to the user. The user may review the curated collection of supplemental content, for example by providing a tactile input to scroll through the curated collection of content. |
US11676317B2 |
Generation of custom composite emoji images based on user-selected input feed types associated with Internet of Things (IoT) device input feeds
Composite emoji images may be generated based on user-selected input feed types associated with various Internet of Things (IoT) device input feeds. A plurality of input feed type indicators corresponding to a plurality of input feed types may be displayed for user selection. The plurality of input feed types may be associated with a plurality of IoT device input feeds. A user selection of at least some of the plurality of input feed types may be received. A composite emoji image may be generated based on a composite of a base template emoji and individual emoji image layer portions that are generated according to the at least some of the plurality of input feed types of the user selection. For each real-time IoT device input feed, a current emoji image layer portion associated with the feed may be regularly updated for display to better enable the user selection. |
US11676316B1 |
Shareable settings for modifying images
A system for sharing settings for modifying images is described. In an example embodiment, an image-modification application may display an image and editing elements in a user interface programed to edit image-adjustment settings that affect aspects of the image on the user interface. The image-modification application may receive user inputs modifying the editing elements and, in response, modify image-adjustment settings and apply the modified image-adjustment settings to the visual aspects of the image. In some embodiments, the image-modification application may receive a first user input requesting to export a settings file including the modified image-adjustment settings, generate the settings file based on the modified image-adjustment settings, and export the settings file. |
US11676314B2 |
Boundary correspondence determination for digital objects
Boundary correspondence determination techniques are described for digital objects as implemented by a boundary correspondence system. In an implementation, the boundary correspondence system partitions outer boundaries of first and second digital objects into a first plurality of cuts and a second plurality of cuts, respectively. A set of corresponding cut pairs are then determined based on a comparison of the first plurality of cuts with the second plurality of cuts. Further, corresponding anchor point pairs are determined based on a comparison of anchor points of the set of corresponding cut pairs. The boundary correspondence system then generates and outputs a mapping of the first digital object to the second digital object based on the determined correspondence of anchor point pairs. |
US11676313B2 |
Generating vector graphics by processing raster graphics
One embodiment of a disclosed system, method, and computer readable storage medium which includes an algorithm for generating a vector graphic based on a raster graphic input. A tablet scribe system identifies a boundary of a raster graphic image. The boundary is comprised of contrasting pixels in the raster graphic. The system determines a slope for each line segment of the raster graphic boundary. Based on a comparison of the slope for the adjacent line segments, the system generates a contour replaces line segments with equivalent slopes wherein each line segments represents a point on the contour. The system condenses the contour by removing redundant points on the contour based on their position relative to neighboring points and converts the edges of one or more remaining line segments into continuous curves on the contour. |
US11676310B2 |
System and methods for encoding octree structured point cloud data using an entropy model
The present disclosure is directed encoding LIDAR point cloud data. In particular, a computing system can receive point cloud data for a three-dimensional space. The computing system can generate a tree-based data structure from the point cloud data, the tree-based data structure comprising a plurality of nodes. The computing system can generate a serial representation of the tree-based data structure. The computing system can, for each respective node represented by a symbol in the serial representation: determine contextual information for the respective node, generate, using the contextual information as input to a machine-learned model, a statistical distribution associated with the respective node, and generate a compressed representation of the symbol associated with the respective node by encoding the symbol using the statistical distribution for the respective node. The computing system can generate a compressed bitstream by sequentially ordering a plurality of compressed representations associated with the plurality of symbols. |
US11676308B2 |
Method for image processing and apparatus for implementing the same
A method of processing an image divided into a plurality of pixel blocks which are processed according to a processing sequence is provided, which comprises, for a current pixel block: determining an application area consisting of a set of pixels in blocks preceding the current block in the processing sequence, for each pixel of the application area, computing a gradient representing a directional change of an intensity at the pixel, and selecting, based on at least one of the computed gradients, an intra prediction video coding mode among a plurality of intra prediction video coding modes usable for encoding and/or decoding the current block. |
US11676307B2 |
Online sensor calibration for autonomous vehicles
According to an aspect of an embodiment, operations may comprise capturing, at a vehicle as the vehicle travels, LIDAR scans and camera images. The operations may further comprise selecting, at the vehicle as the vehicle travels, a subset of the LIDAR scans and the camera images that are determined to be useful for calibration. The operations may further comprise computing, at the vehicle as the vehicle travels, LIDAR-to-camera transformations for the subset of the LIDAR scans and the camera images using an optimization algorithm. The operations may further comprise calibrating, at the vehicle as the vehicle travels, one or more sensors of the vehicle based on the LIDAR-to-camera transformations. |
US11676306B1 |
Enhancing and mapping the multi-dimentional color differentiation of intrinsic images
An array (map) of intrinsic images of an image of interest is established by selecting the intensities of a focused and defocused/diffused images of the image of interest. After obtaining a first focused image, a series of defocused/diffused images are obtained at different exposure times, where intrinsic images are obtained from the first focused image and the series of defocused/diffused images in order to form an array of image sets of the intrinsic images in the form of a matrix. In addition, a second focused image can be obtained at a different exposure time than the first focused image, and a second series defocused/diffused images are obtained at different exposure times, where second intrinsic images are obtained from the second focused image and the second series of defocused/diffused images in order to form an array of image sets of the intrinsic images and the second intrinsic images in the form of a matrix. The array of image sets cover and shows the required granularity of intrinsic differences among the intrinsic images generated enhancing the intrinsic images resulting in more noticeable details of the intrinsic image and the image of interest not previously appreciated. |
US11676305B2 |
Systems and methods for automated calibration
A method for automated calibration is provided. The method may include obtaining a plurality of interest points based on prior information regarding a device and image data of the device captured by a visual sensor. The method may include identifying at least a portion of the plurality of interest points from the image data of the device. The method may also include determining a transformation relationship between a first coordinate system and a second coordinate system based on information of at least a portion of the identified interest points in the first coordinate system and in the second coordinate system that is applied to the visual sensor or the image data of the device. |
US11676304B2 |
Apparatus for calibrating an ADAS sensor of an advanced driver assistance system of a vehicle
An apparatus (1) for calibrating an ADAS sensor of an advanced driver assistance system of a vehicle (9), comprises: a base unit (2); a support structure (3) connected to the base unit (2); a vehicle calibration assistance structure (4), including a first surface which has a first combination of predetermined graphical features and which can be associated with the support structure so that the first surface, at an operating position, faces towards the service area (8); a flexible panel roller assembly connected to the support structure and including a roller and a flexible target panel (40). |
US11676299B2 |
Locating a vehicle using a drone
A system that includes a computer and an unmanned aerial vehicle (UAV) is described. The computer may be programmed to receive, from the UAV, image data of a vehicle parking region; to process the data by identifying an actuation of a UAV indicator that occurs within a predetermined interval of a response of a vehicle in the region; and based on the identification, to determine a location of the vehicle. |
US11676298B1 |
System and method for change analysis
In variants, the method for change analysis can include detecting a rare change in a geographic region by comparing a first and second representation, extracted from a first and second geographic region measurement sampled at a first and second time, respectively, using a common-change-agnostic model. |
US11676292B2 |
Machine learning inference on gravity aligned imagery
Systems, methods, and computer program products are described that include obtaining, at a processor, a first image from an image capture device onboard a computing device, detecting, using the processor and at least one sensor, a device orientation of the computing device associated with capture of the first image, determining, based on the device orientation and a tracking stack associated with the computing device, a rotation angle in which to rotate the first image, rotating the first image to the rotation angle to generate a second image, and generating neural network based estimates associated with the first image and the second image. |
US11676290B2 |
Method, apparatus, and computer program product for ensuring continuity of features between spatially partitioned maps
A method is provided to ensure continuity of features through spatially partitioned maps. Methods may include: identifying a map element extending from a first map tile to a second map tile; determining a first set of continuous features of the map element in the first map tile; determining a second set of continuous features of the map element in the second map tile; identifying a first set of locations in a plane separating the first map tile from the second map tile where the first set of continuous features intersect the plane; identifying a second set of locations where the second set of continuous features intersect the plane; correlating the first set of continuous features with the second set of continuous features; blending the first and second set of continuous features; and updating map data including the first map tile and the second map tile with a blended map element. |
US11676287B2 |
Remote-controlled weapon system in moving platform and moving target tracking method thereof
A remote-controlled weapon system, mounted in a moving platform, includes at least one processor that implements: a first posture calculator that calculates a first pixel movement amount corresponding to a posture change amount of a camera during a time interval between a first image and a second image, received after the first image; a second posture calculator that calculates a second pixel movement amount corresponding to a control command for changing a posture of the camera to match a moving target, detected from the second image, with an aiming point; and a region of interest (ROI) controller that calculates a third pixel movement amount corresponding to vibration of the camera based on the first pixel movement amount and the second pixel movement amount, and estimate a location of an ROI that is to be set on the moving target of the second image, based on the third pixel movement amount. |
US11676286B2 |
Information management apparatus, information management method, and non-transitory recording medium
An information management apparatus includes at least one processor configured to execute a program stored in a storage. The at least one processor acquires sequentially captured frames. The at least one processor acquires a movement state of a position of a light source in an imaging area, based on light source images contained in the acquired frames. The light source transmits information by means of light including an illumination pattern of the light. The at least one processor causes the storage to store the information and the movement state in association with each other. |
US11676285B1 |
System, computing device, and method for document detection
An image of a check is captured by an imaging device and a digital image of the check on a replacement background may be created. The check may be placed on any background while the image of the check is being captured. The replacement background replaces, in the digital image, the background that the check is placed on while its image is being captured. The replacement background may comprise a predetermined image or color(s). The image of the check and the replacement background may be provided into a digital image file that may be transmitted to an institution system for deposit of the check into an account. |
US11676280B2 |
Automated right ventricle medical imaging and computation of clinical parameters
There is provided a method of processing 2D ultrasound images for computing clinical parameter(s) of a right ventricle (RV), comprising: selecting one 2D ultrasound image of 2D ultrasound images depicting the RV, interpolating an inner contour of an endocardial border of the RV for the selected 2D image, tracking the interpolated inner contour obtained for the one 2D ultrasound image over the 2D images over cardiac cycle(s), computing a RV area of the RV for each respective 2D image according to the tracked interpolated inner contour, identifying a first 2D image depicting an end-diastole (ED) state according to a maximal value of the RV area for the 2D images, and a second 2D US image depicting an end-systole (ES) state according to minimal value of the RV area for the 2D images, and computing clinical parameter(s) of the RV according to the identified first and second 2D images. |
US11676276B2 |
Collection and analysis of data for diagnostic purposes
Systems and methods for obtaining diagnostic data of a target are disclosed. The systems include an imaging device and a drape. The imaging device includes at least one excitation light source for fluorescent imaging, and an optical sensor configured to detect signals responsive to illumination of the target with the excitation light. The drape is configured to reduce ambient light surrounding the target during imaging. |
US11676273B2 |
Methods and systems for displaying image
The method for display may include obtaining an image to be displayed by at least one of the one or more display devices. The image may have a first region. The method may also include acquiring image information to be displayed in a second region that is displayed in the at least one of the one or more display devices. The image information may be related to the image. The method may also include acquiring a display standard associated with the image. The method may also include storing the image to at least one of the one or more storage devices. The method may also include generating a first determination that a display of the second region does not satisfy the display standard when storing the image. The method may also include generating a response based on a result of the first determination. |
US11676271B2 |
Dynamic image analysis apparatus extracting specific frames including a detection target from a dynamic image, dynamic analysis system, and storage medium
A non-transitory computer-readable storage medium stores a program that causes a computer to perform an obtaining process, an analyzing process, and an extracting process. In the obtaining process, the computer obtains a radiographic moving image showing a motion of a specific part of an examinee. In the analyzing process, the computer analyzes the radiographic moving image obtained in the obtaining process. In the extracting process, the computer extracts, among frames constituting the radiographic moving image, a specific frame that visibly shows a detection target in the specific part, based on a result of analyzing a dynamic state of the specific part in the analyzing process. |
US11676262B2 |
Methods and systems for determiing part wear using a bounding model
A method for determining part wear, such as using a wear metric, includes receiving, from a sensor, sensor data representing a surface of a wear part. The method further includes determining distances between measured points in the sensor data and points on one or more part models, which part models may include new part models and/or worn or wear limit part models. The method further includes using a bounding model that at least partially envelopes the part model(s) and the measured points to determine a direction along which the distances are measured. The method may also include quantifying wear using the measured distances. |
US11676258B1 |
Method and system for assessing damage to infrastructure
A method and system may survey a property using aerial images captured from an unmanned aerial vehicle (UAV), a manned aerial vehicle (MAV) or from a satellite device. The method may include identifying a commercial property for a UAV to perform surveillance, and directing the UAV to hover over the commercial property and capture aerial images at predetermined time intervals. Furthermore, the method may include receiving the aerial images of the commercial property captured at the predetermined time intervals, detecting a surveillance event at the commercial property, generating a surveillance alert, and transmitting the surveillance alert to an electronic device associated with an owner of the commercial property. |
US11676256B2 |
Absolute geospatial accuracy model for remote sensing without surveyed control points
Estimating absolute geospatial accuracy in input images without the use of surveyed control points is disclosed. For example, the absolute geospatial accuracy of a satellite images may be estimated without the use of control points (GCPs). The absolute geospatial accuracy of the input images may be estimated based on a statistical measure of relative accuracies between pairs of overlapping images. The estimation of the absolute geospatial accuracy may include determining a root mean square error of the relative accuracies between pairs of overlapping images. For example, the absolute geospatial accuracy of the input images may be estimated by determining a root mean square error of the shears of respective pairs of overlapping images. The estimated absolute geospatial accuracy may be used to curate GCPs, evaluate a digital elevation map, generate a heatmap, or determine whether the adjust the images until a target absolute geospatial accuracy is met. |
US11676254B2 |
Systems and methods for positioning vehicles under poor lighting conditions
Embodiments of the disclosure provide methods and systems for positioning a vehicle. The system may include a communication interface configured to receive a set of point cloud data with respect to a scene captured under a first lighting condition by at least one sensor. The system may further include a storage configured to store the set of point cloud data, and a processor. The processor may be configured to simulate illumination of the scene under a second lighting condition different from the first lighting condition based on the set of point cloud data, modify the set of point cloud data based on the simulated illumination of the scene under the second lighting condition, andposition the vehicle under the second lighting condition based on the modified set of point cloud data. |
US11676253B2 |
Systems, methods, and media for hierarchical progressive point cloud rendering
In accordance with some aspects, systems, methods and media for hierarchical progressive point cloud rendering are provided. In some aspects, a method for point cloud rendering is provided, the method comprising: rendering a first image based on point cloud data; requesting point cloud points, first synthetic point cloud points, and an octant of a second synthetic point cloud that intersects a new viewing frustum; reprojecting points used during rendering of the first image into frame buffer objects (FBOs) of different resolutions; replacing reprojected points if a received point corresponding to the same pixel is closer to the camera; determining that a pixel in the highest resolution FBO is unfilled; copying a point that originated in a lower resolution FBO to the gap in the highest resolution FBO; and when the highest resolution FBO is filled, rendering a second image based on the contents. |
US11676252B2 |
Image processing for reducing artifacts caused by removal of scene elements from images
An image processor eliminates a character or object from a sequence of frames and then merges the resulting images with those of nearby frames, both preceding and succeeding, to synthesize the background of the sequence of frames. |
US11676250B1 |
Use motion data to generate higher resolution images
Techniques for using motion data to generate a high resolution output color image from multiple images having sparse color information are disclosed. A camera generates multiple images. The camera's sensor is configured to have a sparse Bayer pattern. While the camera is generating the images, IMU data for each image is acquired. The IMU data indicates a corresponding pose the camera was in while the camera generated each image. The images and the IMU data are fed as input into a motion model. The motion model performs temporal filtering on the images and uses the IMU data to generate a red-only image, a green-only image, and a blue-only image. A high resolution output color image is generated by combining the red-only image, the green-only image, and the blue-only image. |
US11676247B2 |
Method, device, and computer program for improving the reconstruction of dense super-resolution images from diffraction-limited images acquired by single molecule localization microscopy
The invention relates to reconstructing a synthetic dense super-resolution image from at least one low-information-content image, for example from a sequence of diffraction-limited images acquired by single molecule localization microscopy. After having obtained such a sequence of diffraction-limited images, a sparse localization image is reconstructed from the obtained sequence of diffraction-limited images according to single molecule localization microscopy image processing. The reconstructed sparse localization image and/or a corresponding low-resolution wide-field image are input to an artificial neural network and a synthetic dense super-resolution image is obtained from the artificial neural network, the latter being trained with training data comprising triplets of sparse localization images, at least partially corresponding low-resolution wide-field images, and corresponding dense super-resolution images, as a function of a training objective function comparing dense super-resolution images and corresponding outputs of the artificial neural network. |
US11676242B2 |
Image processing apparatus and image processing method
Provided is an image analysis unit that receives an image to be a down-conversion processing target as an input and generate adjacent pixel difference information used to select a pixel to be output to a down-converted image, and an output image generation unit that selects a pixel pair to be an adjacent pixel used for the down-converted image on the basis of the adjacent pixel difference information and generate the down-converted image by executing an adjustment of the selected pixel pair. The image analysis unit calculates a difference of an adjacent pixel pair of a processing block constituent pixel, generates a sorting result of arranging the differences in descending order, and the output image generation unit selects the pixel pair to be used for the down-converted image in descending order of difference values on the basis of the sorting result. |
US11676239B2 |
Sparse optimizations for a matrix accelerator architecture
Embodiments described herein include, software, firmware, and hardware logic that provides techniques to perform arithmetic on sparse data via a systolic processing unit. Embodiment described herein provided techniques to skip computational operations for zero filled matrices and sub-matrices. Embodiments additionally provide techniques to maintain data compression through to a processing unit. Embodiments additionally provide an architecture for a sparse aware logic unit. |
US11676238B2 |
Detecting conflicts between multiple different signals within imagery
This disclosure relates to image signal processing technology including signal encoding. One claim recites a method of detecting plural-bit code conflicts within an image, the image includes at least one color separation. The image includes a first plural-bit code carried by a first symbology, and a second plural-bit code carried by a second symbology, the first symbology and the second symbology comprising different symbology types. The method includes: accessing a subset of the image that comprises the first plural-bit code carried by the first symbology; analyzing the subset of the image to decode the first plural-bit code; analyzing the at least one color separation to spatially locate and decode the second plural-bit code carried by the second symbology; comparing the first plural-bit code and the second plural-bit code; and outputting information if a conflict is identified by said act of comparing, in which the information comprises a spatial location within the image of the conflict. Of course, other claims, features and combinations are described as well. |
US11676237B2 |
Network based rendering and hosting systems and methods utilizing an aggregator
Improved systems and methods for enhancing the performance of network based computerized content rendering and hosting and providing of devices, systems and/or platforms by modifying the capabilities and providing non-native functionality to such devices, systems and/or platforms through a novel and improved aggregator, data processing and networking framework. |
US11676228B2 |
Systems, methods, and program products for facilitating parcel combination
Machine learning systems and methods are described in regard to automating and acting upon evaluations of hypothetical composite project sites of 2+ disparate land parcels so as to allow a developer, owner, or other stakeholder to see and act upon potential land uses that are not reflected in conventional valuations. Some variants include a feature augmentation protocol for speciating one or more detailed structures feasible for development, a pattern matching protocol for identifying viable composite project sites that might suit a developer's requirements, technologies for accommodating latent preferences, proactive virtual development of co-owned disparate parcels, a notification protocol implementing offers to numerous potential sellers whose responses might affect project viability, wise virtual development and prioritization, or other such innovative configurations. |
US11676226B1 |
Systems and methods for executing a customized home search
A home cost analysis server for executing a customized home search may include a processor programmed to define a user's budget constraint and a level of flexibility thereof, including a threshold difference from the budget constraint, retrieve a list of homes and public listing information associated with each home, and determine a monthly cost associated with each home. The processor may also isolate a first subset of homes having a monthly cost that satisfies the budget constraint, and a second subset of homes having a monthly cost within the threshold difference of the budget constraint, and display the first and second subsets along with respective first and second graphical indicators, as well as a third graphical indicator of a first adjustable expense data element, the third graphical indicator recommending reducing the first adjustable data element to move at least one first home from the second subset into the first subset. |
US11676225B1 |
System and method of automated real estate management
Computerized methods of safely providing unattended, self-guided, real estate tours for improved real estate property transactions, evaluation, and remodeling. The system enables prospects (visitors, persons interested in real estate property) to perform unattended real-world tours of various real-world properties safely. In a second embodiment, a computerized method to better analyze how such prospects react to these properties during these tours. Here, visitor smartphone data and/or various sensors on the property automatically monitor and record visitor interactions with multiple property sections. In a third embodiment, a computerized augmented reality method enables such visitors to understand how to customize a property. Here, virtual object, product, and service data may, upon user demand, be downloaded from remote servers and displayed on user devices. This enables prospects and other users to visualize how the virtual objects can integrate with the property and facilitate the acquisition of the actual objects, products or services. |
US11676224B2 |
Interactive serving tray with integrated digital display
An interactive serving tray is adapted to facilitate the delivery of food or beverages in a hospitality environment. The interactive serving tray includes a platter defined by a flat surface encompassed by a perimeter barrier, and a mobile computing device affixed to the platter, the device including at least one processor, memory, a communications adapter and a display. Finally, the interactive serving tray includes a delivery manager module stored in the memory and executing by the processor, and including computer program instructions operable to perform receiving into the memory through the adapter, an order of a food or beverage item and identity information of a customer associated with the order, such as a digital image of the customer, and displaying the identity information in the display. |
US11676221B2 |
Systems and methods for encouragement of data submission in online communities
The invention relates to systems and methods for behavioral modification of users in an online community where users store or share data to help one another reach informed decisions. One aspect of the invention provides a method for encouraging active participation in an online community. The method includes: receiving information from a first user regarding a topic, receiving a request from a second user for additional information desired from the first user, and sending a personalized message to the first user requesting the additional information. Another aspect of the invention provides a computer-readable medium whose contents cause a computer to perform a method for encouraging active participation in an online community. The method includes: receiving information from a first user regarding a topic; identifying additional information desired from the first user; and sending a personalized message to the first user requesting the additional information. |
US11676213B1 |
Vehicle ignition control
A method of encouraging safe driving of a vehicle using a vehicle ignition control is provided. Ignition of the vehicle is prevented until an indication that vehicle insurance for operating the vehicle has been purchased. The insurance rate to charge may be based on driving behaviors detected while operating the vehicle. |
US11676210B2 |
Portfolio optimization and transaction generation
A computer implemented method and associated hardware provides optimization of a delivery or settlement process for a group of portfolios and calculation of a transaction suggestion to one or more participants. Data records, identified in a portfolio data structure, are indicative of obligations between participants. A weighted directed graph data structure is generated and includes vertex data records representing the participants and edge data records representing the obligations between participants. The weighted directed graph structure is analyzed for at least one series of multiple vertex data records or multiple edge data records. A proposed edge associated with a first vertex of the series and a second vertex of the at least one series is identified. A report is generated that describes at least one transaction in response to the proposed edge associated with the first vertex of the series and the second vertex of the series for the at least one of the participants. |
US11676207B2 |
Flexible price-volume indicator
Example methods, apparatus, and computer readable storage media are described and disclosed. An example method includes receiving, by a computing device, market data related to a tradeable object. The example method includes displaying, by the computing device, a flexible price-volume indicator, the flexible price-volume indicators aligned with a specific value level in a value axis. The example method includes updating, by the computing device, a display property associated with the flexible price-volume indicator, the display property reflecting a quantity value determined based on the received market data. The example method includes displaying, by the computing device, the flexible price-volume indicator in a differentiated state based on a change in the market data. |
US11676206B2 |
Method and apparatus for high-speed processing of financial market depth data
A variety of embodiments for hardware-accelerating the processing of financial market depth data are disclosed. A coprocessor, which may be resident in a ticker plant, can be configured to update order books and price books based on financial market depth data at extremely low latency. Such a coprocessor can also be configured to enrich a stream of limit order events pertaining to financial instruments with data from a plurality of updated order and price books. |
US11676194B2 |
Faceted item recommendation system
Methods and systems for generating and presenting item recommendations to a user at a retail website is disclosed. One method includes generating a set of item recommendations based on a selected item from a retail website. The method also includes identifying one or more facets in the set of item recommendations, and, for each of the one or more facets, identifying a subset of items from the set of item recommendations affiliated with the facet. The method also includes generating a user interface including the selected item and a recommendation region displaying at least some of the subset of items affiliated with the facet. |
US11676193B1 |
Optimizing diversity and relevance for catalog items
Methods, systems, and computer-readable media for optimizing diversity and relevance for catalog items are disclosed. Respective target metrics are determined for a plurality of categories comprising a plurality of items in an electronic catalog. First and second categories comprise first and second subsets of the plurality of items, and the respective target metric for the first category is determined using aggregation of individual target metrics for the first subset. Respective similarity scores are determined between pairs of the categories. N item categories are selected from the plurality of categories based at least in part on the respective target metrics and based at least in part on the respective similarity scores. A third subset of the plurality of items is selected from across the N item categories, including the first and second categories. The selected items optimize both category diversity and item relevance. |
US11676188B2 |
Methods of authenticating a user
An online store can transmit an online account token to an electronic device or to a biometric sensing device after a user successfully enters his or her account password. The electronic device or the biometric sensing device can countersign the online account token when the one or more biometric images match reference biometric images and the account password matches user identifier data stored in the electronic device or in the biometric sensing device. The countersigned online account token can then be transmitted to the online store. The user can then make one or more purchases after the online store receives the countersigned online account token. |
US11676186B2 |
Prospective management system for medical benefit prescriptions
The present invention provides an interactive, electronic, knowledge-based ordering process for specialty/biotech pharmaceuticals (medically coded drugs) which results in less waste, improved procedural efficiencies, and greater cost savings than the current ordering systems. The knowledge-base of the system is based on the health plan's clinical policies as well as the status of the patient and their entitled benefits with the health plan, and it is applied in an interactive manner through a web-enabled system which provides a real-time, prospective examination and control over requests for authorization to dispense the medically coded drugs. The system also includes a feedback loop from the specialty pharmacies to provide information on the medicines that have actually been dispensed. The system also provides to the patient, educational material and adherence reminders to affect therapeutic outcomes. |
US11676181B2 |
Systems and methods for resolving advertisement placement conflicts
Systems and methods are described herein for resolving advertisement placement conflicts. Specifically, a number of parameters may be entered into a system in order to distribute advertisements into advertisement slots. In many instances, a combination of these parameters causes a conflict in the system where all the parameters cannot be applied in order to place advertisements into advertisement slots. The conflict may be resolved by using an advertisement assignment model to determine which parameters may be relaxed in order to arrive at an optimal solution that violates a smallest number of parameters having the least priority. When such a solution is found, the advertisement assignment model may be modified and advertisements may be placed into advertisement slots based on the modified advertisement assignment model. |
US11676179B2 |
Personalization of advertisement selection using data generated by IoT devices
A client device can receive, from a data processing system, first data, the first data selected by the data processing system based on second data generated by at least one IoT device with which the client device is associated, and the first data indicating at least one advertisement. The client device can access the at least one advertisement using the first data indicating the at least one advertisement. The client device can add the at least one advertisement to the content accessed by the client device. The client device can present the content with the at least one advertisement added to the content. |
US11676166B1 |
System and method for personalized product communication, conversion, and retargeting
The present disclosure relates to systems and methods for personalized product communication, conversion, and retargeting. In some embodiments, the disclosure is directed to systems and methods that allows users to capture product-specific purchase intent by sending a cellular message containing a picture of a product tag, receiving that product's internet URL in reply via cellular message, and receiving later promotions related to that product from a retailer via cellular messages. In some embodiments, the present inventions allows the unique capability to capture and convert in-store interest with product specific promotions and conversions in a way not previously utilized in the retail space. |
US11676164B2 |
Methods and systems for determining prices
A computer-implemented method for determining auction prices of vehicles may include obtaining wholesale auction price data indicative of wholesale auction prices and vehicle attribute values of a plurality of vehicles; grouping the plurality of vehicles into a plurality of vehicle groups respectively associated with a plurality of characteristics; determining a plurality of regression models respectively based on the plurality of vehicle groups; obtaining information describing a target vehicle; based on the target-vehicle values and values for the one or more economic indicators, determining an estimated wholesale auction price of the target vehicle using an identified regression model of the plurality of regression models; determining a discount factor representing an expected discount of a post-repossession auction price of the target vehicle from the estimated wholesale auction price; and determining an estimated post-repossession auction price of the target vehicle based on the estimated wholesale auction price and the determined discount factor. |
US11676159B2 |
Systems and methods of task cues
A computing system for encouraging the performance of a task comprises association data, a proxy module, a display module, and a reward module. The association data associates tags with stimuli related to performing tasks. The proxy module is configured to receive encoded data, to identify tags in the encoded data that have associated stimuli in the association data, and to generate modified encoded data that includes data representative of at least one of the stimuli. The display module is configured to receive the modified encoded data, to display information based at least in part on the modified encoded data, and to provide at least one mechanism for a user to perform a task related to at least one of the stimuli. The reward module is configured to reward a user for performing tasks related to the stimuli. |
US11676157B2 |
System and method for adjusting custom topical agents
Systems and methods herein are developed which enable modification of an initial customized cosmetic product, wherein the initial customized cosmetic product is created based on an initial customized cosmetic product specification or an existing specification of a non-custom product. One such system and method for making a custom cosmetic product from an existing non-custom cosmetic product is configured to be capable of: characterizing a non-custom product with a known key comprised of at least one search component; providing user interaction to modify at least one of the at least one search components in this key to create a modified key; and using the modified key to produce custom product which may include determining manufacturing instructions. Such systems and methods may incorporate a custom or non-custom product attribute data base for providing product attribute data for modification and adjustment of the user search key using an adjustment service. Also incorporated herein are applications based on user interaction through two-dimensional complexion color maps derived using data associated with skin color, tone, morphology and/or biochemistry from a plurality of users. |
US11676152B2 |
Application-based point of sale system in mobile operating systems
Application-based point of sale systems in mobile operating systems. A first application may generate a first URL directed to a second application, a parameter of the first URL comprising an identifier of the first application. A mobile operating system (OS) may access the first URL to open the second application. The second application may receive, from a server, a virtual account number (VAN). The second application may initiate a server on a port and generate a second URL directed to the first application, a parameter of the second URL comprising the port. The OS may access the second URL to open the first application. The first application may establish a connection with the server using the specified port and receive the VAN from the second application via the connection. The first application may autofill the VAN to a form field of a payment form in the first application. |
US11676145B2 |
Method and apparatus for authenticating and processing secure transactions using a mobile device
A method and apparatus for processing secure transactions of a requested service at a merchant point of sale (POS) using a customer mobile device and a virtual payment gateway (VPG) server, the method comprising an authentication and a transaction. The activation establishes a mobile device transport key (mTK) at the mobile device and a server, and assigns a mobile application identifier (MAID) to a mobile application of the mobile device. The transaction is based on generating a mobile device transport session key (msTK) derived from a server generated session ID and the mobile device transport key (mTK) generated during activation. The transaction of the requested service is initiated by the customer mobile device and is processed without storing confidential data such as financial account data or financial account identification data at the POS and/or the customer mobile. |
US11676144B2 |
Hierarchy-based blockchain
A computer-implemented method comprising receiving a transaction request from a first node within the plurality of nodes, the transaction request corresponding to a pending transaction between the first node and a second node; identifying a blockchain associated with the pending transaction, the blockchain including a first block instance having a hierarchy file indicating a hierarchy among the first node, the second node, and the third node; identifying a second block instance having an executable file to approve the transaction request received from the first node; executing the executable file, wherein the executable file is configured to retrieve data from a data source associated with the third node and analyze data to approve or deny the transaction request; and appending a third block instance comprising the set of transaction attributes to the blockchain. |
US11676143B2 |
Systems and methods for blockchain transaction management
Systems and methods for payment processing using cryptocurrency assets. |
US11676142B2 |
Blockchain architecture, system, method and device for automated cybersecurity and data privacy law compliance with proprietary off-chain storage mechanism
A transaction platform including at least one or more public, public-private and/or private distributed ledgers or blockchains that together enable the secure effectuation and recordation of one or more transactions while maintaining transaction party confidentiality. The private distributed ledgers or blockchains are able to store, maintain and provide information about the parties related to the transactions which the distributed blockchains or databases are able to utilize in order to securely and quickly validate, execute and record the transactions in a manner that is GDPR and other data privacy law complaint. |
US11676136B1 |
Payment vehicle with on and off function
A computer system and method for enabling or disabling a payment vehicle at the request of a payment card holder from a remote device. The computer system comprises a computer having memory and a processor for processing input data received from a remote device. The input data comprises an instruction executable by the processor in a form of a text message or electronic mail received from the remote device, with the instruction to enable or disable a payment card of a payment card holder by changing the status of the payment card. An interactive remote interface computer software application is provided to the payment card holder for use on the remote or other device. |
US11676135B2 |
Blockchain consensus protocol using predictive proof of metrics
Technologies are shown for selecting a provider to service a client service request using a predictive metrics based consensus protocol to select a provider and create a service request transaction block to service the client service request. A client service request is received and forwarded to a set of providers. Proposed transactions are received from the providers and scored based on a predictive metric. A proposal transaction is selected based on the scoring and the selected transaction is written as a block on a service transaction blockchain. The provider for the selected transaction detects the block on the blockchain and performs the requested service. The client detects the block on the blockchain and transfers payment to the provider. Selection can be based on predictive metrics in the providers or macro metrics determined in miner nodes in combination with provider reputation, currency, load sharing, fairness, provisioning, and static and dynamic criteria. |
US11676134B2 |
Transaction interaction analysis and summarization
Embodiments for entity transaction interaction analysis and summarization by a processor. Transaction elements relating to one or more entity transaction interactions may be identifies and extracted from one or more communications. The transaction elements may be combined with one or more transaction opportunities and transaction historical data to provide a transaction summary. |
US11676130B2 |
Controlling a customer's mobile device to selectively perform the functions of a self-checkout (SCO) station
A network node associated with a retail store. |
US11676128B2 |
Device for facilitation of payments
A payment device comprising of a housing, a slot for insertion of a user instrument located on a front surface of the housing, and wherein the housing includes a smart card interface integrated circuit that is configured to read an EMV chip located on the user instrument, and a universal serial bus (USB) type C male connector configured to be inserted into a female connector on a computing device, wherein the USB type C male connector is located on a back surface of the housing, and wherein a size of the USB type C male connector is configured so that when the USB type C male connector is inserted into the female connector on the computing device, the back surface of the housing is within a distance of three centimeters of a surface of the computing device. |
US11676127B2 |
Symbols to indicate which ATM to use
A system and method are disclosed in which a symbol associated with an ATM of a plurality of ATMs is made available to a customer in response to a request for access to the ATM. The symbol identifies the ATM to the user in locations having multiple ATMs, thus avoiding confusion for the user. The symbol may be used for any of the possible transactions between the user and the ATM, such as balance inquiries, deposits, transfers, and cash withdrawals. |
US11676125B2 |
System and method for third-party food and dining ordering control
A system and method for third-party food and dining ordering control, comprising at least one device capable of accessing the internet which may be a mobile device or personal computing device such as a laptop or desktop, a web application, and a point-of-sale system at a restaurant or retailer, wherein users of the web application may deposit funds into an account and set regulations on what they may purchase with the deposited funds, or have an administrator set up an account for them such as a parent setting up an account for a child or a doctor setting up an account for a patient, allowing the parent or doctor or other administrator to regulate what the sub-user such as the child or patient may purchase, in keeping with budget, diet, and lifestyle restrictions, and which may utilize zero-step authentication to allow for seamless use of the service at certain establishments. |
US11676124B2 |
Checkout apparatus
A checkout apparatus includes a memory that stores first information about one or more commodities registered in a registration process, a first interface configured to acquire an image of a predetermined region where registered commodities are to be placed, and a processor configured to identify commodities in the image acquired via the first interface by object recognition, determine whether each of the identified commodities is in the first information stored in the memory, and if one of the identified commodities is not in the first information, output an error signal. |
US11676123B2 |
Network switch and terminal device
An apparatus and a computer implemented method for managing data streams to a terminal device according to peak levels is disclosed. A streaming device (e.g., exchange device) may provide the data streams in response to requests received from the terminal devices. A network device in the communication path between the streaming device and the terminal device may route the data streams. At least one of the exchange device, the network device, and the terminal device is configured to identify an extended time period for a data stream between a streaming device and a terminal device, determine at least one representative time period within the extended time period, determine a quantity of discrete messages for the at least one representative time period, and calculate the coincident value for the streaming device and the terminal device over the extended time period based on the quantity of discrete messages, for the at least one representative time period, from the exchange device to at least the terminal device. |
US11676122B2 |
Operating smart sensors using distributed ledgers
A distributed ledger based utility system architecture may be configured to enable secure payments, data transmission, and meter configuration of smart sensors. The utility system architecture may be a tiered architecture including multiple nodes at different levels of the architecture where each level may contain a different portion of the distributed ledger. As information is added to the distributed ledger, each portion of the distributed ledger may be updated based on whether the information is relevant to that node. The information may include rate contract transactions, meter configuration data transactions, payment transactions, or the like. |
US11676114B2 |
Automated control of distributed computing devices
A method includes receiving a service ticket corresponding to an undesired state of a client device, assigning the service ticket to a technician, and coordinating a remote control session between a technician device and the client device. The method includes obtaining a set of actions performed under remote technician control to transition the client device from the undesired state to a desired state. Each action describes one or more user interface interactions with the client device. The method includes storing a resolution profile (RP) based on the set of actions and textual descriptors. The method includes classifying a second service ticket received from a second client device. The method includes, in response to the classification indicating that the RP is applicable to the second service ticket, selectively instructing a software agent executing on the second client device to programmatically replay the set of actions from the RP without technician intervention. |
US11676113B2 |
Visualization of damage on images
A device may receive images of an object and information identifying the object, process the images using an artificial intelligence technique to identify parts of the object that are depicted in the images, and receive information identifying a location of damage on the object and information regarding the damage on the object. The device may process the information identifying the location of damage to identify a damaged part of the object, identify images depicting the damaged part, and identify, in the images, a location of the damaged part. The device may generate a first content item for display at the location of the damaged part in the images and generate a second content item for display with the images based on user interaction with the first content item, where the second content item includes information based on the information regarding the damage on the object. |
US11676111B1 |
Apparatuses and methods for determining and processing dormant user data in a job resume immutable sequential listing
Aspects relate to apparatuses and methods for determining and processing dormant data records on an immutable sequential listing. An exemplary apparatus includes a processor configured to monitor a plurality of timestamps associated with a plurality of data records stored on the immutable sequential listing, where the data record includes a job resume, detect inactivity in a first data record of the plurality of data records over a predetermined time period as a function of a first timestamp of the first data record, wherein the predetermined time period may be set by the user, tag, as a function of the inactivity, the first data record as an inactive first data record, and process, as a function inactivity, the first data record, wherein processing may include adding additional data or archiving inactive data records from the immutable sequential listing. |
US11676106B2 |
Method and system for managing and sourcing materials and services for energy retrofit projects
A method and system for managing and sourcing materials and services for energy retrofit projects. An electronic energy retrofit project portal provides real-time designing, specifying, searching, pricing, quoting, ordering, and tracking of energy audit project materials and services required for a desired energy retrofit project. The functionality of the electronic energy retrofit project portal is available in real-time directly and from within existing design programs that create and provide energy audits and available as a standalone portal. |
US11676098B2 |
Digital twin management in IoT systems
Managing digital asset representation of physical assets in IoT systems and environments. A digital twin is created, tracked, and modified throughout the physical asset's lifetime using a digital registry having a data record including a unique identifier (optionally encrypted) and a storage device location information for the digital twin. A physical tag is coupled to the physical asset and scanned for read and write operations from and to the digital twin. The digital twin can move to a new storage device across a cloud environment and the registry maintains consistent access. |
US11676096B2 |
Optimized packaging for food delivery and take-out
A system and method for optimized packaging of food delivery and take-out orders. The system is a cloud-based network containing an optimization server, portals for restaurants, customers, and drivers to enter their information, a rules library, a label manager, and a food packaging optimization module which determines optimal packaging groupings and configurations based on a multitude of variables associated with the restaurant, customer preferences, and the available menu. The system may be accessed through web browsers or purpose-built computer and mobile phone applications. |
US11676092B1 |
Graphical user interface with hybrid role-based access control
Disclosed is a system and method for cross-silo acquisition, reporting and analysis of enterprise data. A computer system receives enterprise data related to various vertical units of an enterprise, including machine-generated data and human-generated data. The computer system stores the machine-generated data with associations to at least some of the human generated data, and associates persona data representing a plurality of personas with the plurality of vertical units of the enterprise, such that at least one persona is associated with each of the vertical units. The computer system further associates a plurality of user-defined key performance indicators (KPIs) with the personas, and associates each of a plurality of users with at least one of the personas. The computer system computes the KPIs based on the enterprise data, and controls access by the users to the computed KPIs, based on personas to which the users are assigned. |
US11676087B2 |
Systems and methods for vulnerability assessment and remedy identification
In an illustrative embodiment, systems and methods by which a computerized platform accesses a data set pertaining to system characteristics and delivers the data to models to assist a user in identifying and remedying cyber vulnerabilities may include models for identifying vulnerabilities based on system characteristics and for identifying remedial actions and services to mitigate the vulnerabilities. Models may be created for quantifying composite risk exhibited by the system and may quantify risk on a domain-by-domain basis. The influence that performance of one or more remedial actions may have on the quantified risk profile of the system may be automatically projected. The response of an insurance marketplace as it pertains to offering policies to cover losses arising from cyber vulnerabilities exhibited by the system, either in its status quo or as altered via by enacting one or more remedial actions, may be automatically projected. |
US11676085B2 |
System for detecting and classifying consumer packaged goods
A system is provided for identifying consumer packaged goods (CPGs). The system comprises an imaging device mounted on a mobile platform; a CPG detector which is equipped with a neural network and which (a) utilizes the imaging device to obtain an image containing a plurality of CPGs, (b) detects a set of CPG superclass features in the image, and (c) generates a CPG feature map which maps the location of CPG features in the image, wherein said neural network has been trained on a set of images of CPGs to recognize which of a set of superclasses a detected CPG belongs to; a region proposal network which accepts the CPG feature map as input and which returns a first set of regions in the image where a CPG could be located; a superclassifier which examines each region in the first set of regions to determine if the region contains an instance of a superclass of a CPG, and which outputs a second set of regions containing a CPG; and a superclass proposal layer which operates on each member of the second set of regions and returns a set of superclass proposals for each region. |
US11676081B2 |
Methods, apparatus, and program products for collecting product damage information and generating product repair cost estimates
A method encompasses a damage evaluation session which may be initiated by an evaluation system user using a user device such as a smartphone. The evaluation session allows the user to identify a damaged section of a damaged product, and then displays a properly sized representation of the damaged section at the user device. This displayed representation of the damaged section is associated with a grid which defines a number of grid segments with each grid segment aligned with a respective portion of the representation. The method includes receiving a damage and location information input for one or more of the grid segments. Based upon the damage and location information input for the one or more grid segments, damage estimate data is retrieved from a repair data store and applied to produce an overall repair cost estimate for the damaged section. |
US11676080B1 |
Systems and methods for digital check in at a store location
A method, apparatus, and system of managing digital queues for multiple store locations are disclosed. A method includes receiving, by an enterprise computing system associated with the branch location, a request from a mobile device based on the mobile device navigating to a uniform resource locator (URL) from scanning a code associated with the branch location, in response to the request, causing a graphical user interface (GUI) to display on the mobile device that prompts a user for additional information regarding the request, receiving, from the mobile device via the GUI, the additional information including identity information regarding the user and a reason for the request, identifying a queue specific to the branch location based on the request and additional information, adding the user to the queue, and providing, by the enterprise computing system, a confirmation notification to the user indicating that the user has been added to the queue. |
US11676079B2 |
System and method for generating and providing dispatchable operating reserve energy capacity through use of active load management
A utility employs a method for generating available operating reserve. Electric power consumption by at least one device serviced by the utility is determined during at least one period of time to produce power consumption data, stored in a repository. A determination is made that a control event is to occur during which power is to be reduced to one or more devices. Prior to the control event and under an assumption that it is not to occur, power consumption behavior expected of the device(s) is generated for a time period during which the control event is expected to occur based on the stored power consumption data. Additionally, prior to the control event, projected energy savings resulting from the control event, and associated with a power supply value (PSV) are determined based on the devices' power consumption behavior. An amount of available operating reserve is determined based on the projected energy savings. |
US11676078B2 |
Neural trees
A predictor has a memory which stores at least one example for which an associated outcome is not known. The memory stores at least one decision tree comprising a plurality of nodes connected by edges, the nodes comprising a root node, internal nodes and leaf nodes. Individual ones of the nodes and individual ones of the edges each have an assigned module, comprising parameterized, differentiable operations, such that for each of the internal nodes the module computes a binary outcome for selecting a child node of the internal node. The predictor has a processor configured to compute the prediction by processing the example using a plurality of the differentiable operations selected according to a path through the tree from the root node to a leaf node. |
US11676075B2 |
Label reduction in maintaining test sets
A computer-implemented method, a computer program product, and a system for reducing labeled sample quantities required to update test sets. The computer-implemented method includes inputting a portion of unlabeled production data into a base model and generating labeled output relating to the unlabeled production data. The computer-implemented method also includes inputting the labeled output into a performance predictor. The performance predictor is a meta model of the base model that is trained with another portion of the unlabeled production data, a training set used to train the base model, and a test set portioned from the training set. The computer-implemented method further includes outputting, by the performance predictor, a performance metric relating to the labeled output produced by the trained base model. The performance metric can be any metric capable of measuring the output performance of the base model. |
US11676074B2 |
Heterogeneous processing system for federated learning and privacy-preserving computation
A heterogeneous processing system for federated learning and privacy-preserving computation, including: a serial subsystem configured for distributing processing tasks and configuration information of processing tasks, the processing task indicating performing an operation corresponding to computing mode on one or more operands; and a parallel subsystem configured for, based on the configuration information, selectively obtaining at least one operand of the one or more operands from an intermediate result section on the parallel subsystem while obtaining remaining operand(s) of the one or more operands with respect to the at least one operand from the serial subsystem, and performing the operation on the operands obtained based on the configuration information. |
US11676071B2 |
Identifying and ranking anomalous measurements to identify faulty data sources in a multi-source environment
Techniques for identifying anomalous multi-source data points and ranking the contributions of measurement sources of the multi-source data points are disclosed. A system obtains a data point including a plurality of measurements from a plurality of sources. The system determines that the data point is an anomalous data point based on a deviation of the data point from a plurality of additional data points. The system determines a contribution of two or more measurements, from the plurality of measurements, to the deviation of the data point from the plurality of additional data points. The system ranks the at least the two or more measurements, from the plurality of measurements, based on the respective contribution of each of the two or more measurements to the deviation of the anomalous data point from the plurality of prior data points. |
US11676069B2 |
Synthetic data generation using anonymity preservation in computer-based reasoning systems
Techniques for synthetic data generation in computer-based reasoning systems are discussed and include receiving a request for generation of synthetic data based on a set of training data cases. One or more focal training data cases are determined. For undetermined features (either all of them or those that are not subject to conditions), a value for the feature is determined based on the focal cases. In some embodiments, the generated synthetic data may be checked for similarity against the original data, and if similarity conditions are met, it may be modified (e.g., resampled), removed, and/or replaced. |
US11676066B2 |
Parallel model deployment for artificial intelligence using a primary storage system
Example artificial intelligence systems and methods provide parallel storage of data to primary storage and notification to a model server supported by the primary storage. A primary storage system receives operations on a training data set from a model trainer and sends a model instance of a computational model to a model server. When a new data element is received by a data ingester, the model server is initiated to evaluate the new data element using the model instance while the primary storage system stores the new data element in parallel. |
US11676062B2 |
Dynamically evolving hybrid personalized artificial intelligence system
A method, an electronic device, and non-transitory machine-readable medium are provided. The method includes receiving, on an electronic device, a request to perform an action. The method also includes deriving an aggregated predicted confidence level using one or more confidence levels. The one or more confidence levels are based on usage information and context of the electronic device. The method further includes determining an execution engine to process the request based on the aggregated predicted confidence level. The method additionally includes providing at least a portion of the request to the execution engine for processing. |
US11676060B2 |
Digital content interaction prediction and training that addresses imbalanced classes
Digital content interaction prediction and training techniques that address imbalanced classes are described. In one or more implementations, a digital medium environment is described to predict user interaction with digital content that addresses an imbalance of numbers included in first and second classes in training data used to train a model using machine learning. The training data is received that describes the first class and the second class. A model is trained using machine learning. The training includes sampling the training data to include at least one subset of the training data from the first class and at least one subset of the training data from the second class. Iterative selections are made of a batch from the sampled training data. The iteratively selected batches are iteratively processed by a classifier implemented using machine learning to train the model. |
US11676056B2 |
Calculating excited state properties of a molecular system using a hybrid classical-quantum computing system
A method for calculating excited state properties of a molecular system using a hybrid classical-quantum computing system includes determining, using a quantum processor and memory, a ground state wavefunction of a combination of quantum logic gates. In an embodiment, the method includes forming a set of excitation operators. In an embodiment, the method includes forming a set of commutators from the set of excitation operators and a Hamiltonian operator. In an embodiment, the method includes mapping the set of commutators onto a set of qubit states, the set of qubit states corresponding to a set of qubits of the quantum processor. In an embodiment, the method includes evaluating, using the quantum processor and memory, the set of commutators. In an embodiment, the method includes causing a quantum readout circuit to measure an excited state energy from the set of computed commutators. |
US11676054B2 |
Computer-readable recording medium recording learning program and learning method
A non-transitory computer-readable recording medium stores therein a learning program for causing a computer to execute a process comprising: referring to, at time of learning a computation model that is a target of deep learning and has a plurality of nodes, a storage unit in which route information that indicates a calculation route followed by a tensor in each stage of learning prior to the time of learning, and statistical information regarding a position of a decimal point used in the calculation route are associated with each other; acquiring, when executing each piece of calculation processing set in each of the plurality of nodes at the time of learning, the statistical information corresponding to the route information that reaches each of the plurality of nodes; and executing the each piece of calculation processing using the position of the decimal point specified by the acquired statistical information. |
US11676052B2 |
Apparatuses and methods for inference processing on edge devices
Embodiments of the disclosure are drawn to apparatuses, systems, methods for an internet of things (IoT) system to include edge devices that perform at least some functions without communicating with a cloud computing system. An edge device may include a memory with on-memory pattern matching capabilities. The edge device may perform pattern matching operations on data collected by the edge device or sensors in communication with the edge device. Based on results of the pattern matching operations, the edge device may perform various functions, such as transmitting data to the cloud computing system, activating an alarm, and/or changing a frequency at which data is transmitted. |
US11676050B2 |
Systems and methods for neighbor frequency aggregation of parametric probability distributions with decision trees using leaf nodes
A method, system, and computer-usable medium are disclosed for, comprising: examining pairs of samples in each leaf node of a plurality of decision trees and for each pair of samples, determining a neighbor frequency of each pair of samples as a frequency of how often such pair of samples are filtered into a particular leaf node of the plurality of decision trees and for each leaf node of the plurality of decision trees, determining a neighbor frequency of the leaf node as an average of the neighbor frequencies of the samples of the leaf node. |
US11676049B2 |
Enhanced model updating using vector space transformations for model mapping
The present disclosure relates to systems and methods for updating static machine-learning models (e.g., a Doc2Vec model) without needing to retrain the models. More particularly, the present disclosure relates to systems and methods that can be used to add new data to a base model by training a client model using the new data, and transforming the vector space of the client model to align with the vector space of the base model. The base model can then be updated using the realigned client model. As such, the base model can be updated with the new data without needing to retrain the base model, which can be burdensome to processing resources, insecure, and time consuming. |
US11676048B2 |
Systems and methods for validation of artificial intelligence models
Systems and methods are described which relate to machine learning model validation. A first machine learning model may be trained to dependent variable data for a first population. A second machine learning model may be trained to simulate dependent variable data for the first population. The second machine learning model may then be applied to student activity data of a second population having different characteristics from the first population to produce simulated dependent variable data. The first machine learning model may then generate predictions for the second population, which may be validated via comparison to the simulated dependent variable data. A given simulated dependent variable value may be generated by the second machine learning model at a specific time TX, where some features input to the machine learning model may be derived from datapoints occurring before TX and others being derived from datapoints occurring after TX. |
US11676044B1 |
Systems and methods for generating a chatbot
Systems and methods for generating a chatbot are disclosed. Source data is identified. A first chunk of the source data is also identified. A first machine learning model is executed for automatically generating a first candidate question associated with the first chunk. A determination is made as to whether the first candidate question satisfies a criterion. The first candidate question is output as training data for training the chatbot in response to the determination. |
US11676037B1 |
Disparity mitigation in machine learning-based predictions for distinct classes of data using derived indiscernibility constraints during neural network training
A system and method includes generating approximate distributions for distinct classes of data samples; computing a first partial Jensen-Shannon (JS) divergence and a second partial JS divergence based on the approximate distribution of the disparity affected class of data samples with reference to the approximate distribution of the control class of data samples; computing a disparity divergence based on the first partial JS divergence and the second partial JS divergence; generating a distribution-matching term based on the disparity divergence, wherein the distribution-matching term mitigates an inferential disparity between the control class of data samples and the disparity affected class of data samples during a training of an unconstrained artificial neural network; constructing a disparity-constrained loss function based on augmenting a target loss function with the distribution-matching term; and transforming the unconstrained ANN to a disparity-constrained ANN based on a training of the unconstrained ANN using the disparity-constrained loss function. |
US11676028B2 |
Neural network quantization parameter determination method and related products
The present disclosure relates to a neural network quantization parameter determination method and related products. A board card in the related products includes a memory device, an interface device, a control device, and an artificial intelligence chip, in which the artificial intelligence chip is connected with the memory device, the control device, and the interface device respectively. The memory device is configured to store data, and the interface device is configured to transmit data between the artificial intelligence chip and an external device. The control device is configured to monitor the state of the artificial intelligence chip. The board card can be used to perform an artificial intelligence computation. |
US11676026B2 |
Using back propagation computation as data
Computer-implemented, machine-learning systems and methods relate to a neural network having at least two subnetworks, i.e., a first subnetwork and a second subnetwork. The systems and methods estimate the partial derivative(s) of an objective with respect to (i) an output activation of a node in first subnetwork, (ii) the input to the node, and/or (iii) the connection weights to the node. The estimated partial derivative(s) are stored in a data store and provided as input to the second subnetwork. Because the estimated partial derivative(s) are persisted in a data store, the second subnetwork has access to them even after the second subnetwork has gone through subsequent training iterations. Using this information, subnetwork 160 can compute classifications and regression functions that can help, for example, in the training of the first subnetwork. |
US11676022B2 |
Systems and methods for learning for domain adaptation
A method for training parameters of a first domain adaptation model. The method includes evaluating a cycle consistency objective using a first task specific model associated with a first domain and a second task specific model associated with a second domain, and evaluating one or more first discriminator models to generate a first discriminator objective using the second task specific model. The one or more first discriminator models include a plurality of discriminators corresponding to a plurality of bands that corresponds domain variable ranges of the first and second domains respectively. The method further includes updating, based on the cycle consistency objective and the first discriminator objective, one or more parameters of the first domain adaptation model for adapting representations from the first domain to the second domain. |
US11676021B1 |
Multi-model training pipeline in distributed systems
A first worker node of a distributed system computes a first set of gradients using a first neural network model and a first set of weights associated with the first neural network model. The first set of gradients are transmitted from the first worker node to a second worker node of the distributed system. The second worker node computes a first set of synchronized gradients based on the first set of gradients. While the first set of synchronized gradients are being computed, the first worker node computes a second set of gradients using a second neural network model and a second set of weights associated with the second neural network model. The second set of gradients are transmitted from the first worker node to the second worker node. The second worker node computes a second set of synchronized gradients based on the second set of gradients. |
US11676019B2 |
Machine learned single image icon identification
Systems, devices, media, and methods are presented for graphical icon identification within an image or video stream. The systems and methods receive an image including a graphical icon. The systems and methods identify a set of proposed regions of the image, at least one proposed region of the set of proposed regions containing the graphical icon and extract a set of semantic features for each proposed region of the set of proposed regions. Based on the set of semantic features of the set of proposed regions, the systems and methods identify a set of proposed icons corresponding to the graphical icon included in the image and determine a match between the graphical icon and at least one proposed icon of the set of proposed icons. |
US11676010B2 |
Memory sub-system with a bus to transmit data for a machine learning operation and another bus to transmit host data
A system includes a memory component to store host data from a host system and to store a machine learning model and input data. A controller includes an in-memory logic to perform a machine learning operation by applying the machine learning model to the input data to generate an output data. A bus can receive additional host data from the host system and provide the additional host data to the memory component. An additional bus can receive machine learning data from the host system and provide the machine learning data to the in-memory logic that is to perform the machine learning operation. |
US11676004B2 |
Architecture optimized training of neural networks
An example a method of optimizing a neural network having a plurality of layers includes: obtaining an architecture constraint for circuitry of an inference platform that implements the neural network; training the neural network on a training platform to generate network parameters and feature maps for the plurality of layers; and constraining the network parameters, the feature maps, or both based on the architecture constraint. |
US11676001B2 |
Learning graph representations using hierarchical transformers for content recommendation
Knowledge graphs can greatly improve the quality of content recommendation systems. There is a broad variety of knowledge graphs in the domain including clicked user-ad graphs, clicked query-ad graphs, keyword-display URL graphs etc. A hierarchical Transformer model learns entity embeddings in knowledge graphs. The model consists of two different Transformer blocks where the bottom block generates relation-dependent embeddings for the source entity and its neighbors, and the top block aggregates the outputs from the bottom block to produce the target entity embedding. To balance the information from contextual entities and the source entity itself, a masked entity model (MEM) task is combined with a link prediction task in model training. |
US11676000B2 |
Drill bit repair type prediction using machine learning
The subject disclosure provides for a mechanism implemented with neural networks through machine learning to predict wear and relative performance metrics for performing repairs on drill bits in a next repair cycle, which can improve decision making by drill bit repair model engines, drill bit design, and help reduce the cost of drill bit repairs. The machine learning mechanism includes obtaining drill bit data from different data sources and integrating the drill bit data from each of the data sources into an integrated dataset. The integrated dataset is pre-processed to filter out outliers. The filtered dataset is applied to a neural network to build a machine learning based model and extract features that indicate significant parameters affecting wear. A repair type prediction is determined with the applied machine learning based model and is provided as a signal for facilitating a drill bit operation on a cutter of the drill bit. |
US11675998B2 |
System and method for performing small channel count convolutions in energy-efficient input operand stationary accelerator
Disclosed herein includes a system, a method, and a device for receiving input data to generate a plurality of outputs for a layer of a neural network. The plurality of outputs are arranged in a first array. Dimensions of the first array may be compared with dimensions of a processing unit (PE) array including a plurality of PEs. According to a result of the comparing, the first array is partitioned into subarrays by the processor. Each of the subarrays has dimensions less than or equal to the dimensions of the PE array. A first group of PEs in the PE array is assigned to a first one of the subarrays. A corresponding output of the plurality of outputs is generated using a portion of the input data by each PE of the first group of PEs assigned to the first one of the subarrays. |
US11675997B2 |
Device and method for processing convolution operation using kernel
Provided are a method and apparatus for processing a convolution operation in a neural network. The apparatus may include a memory, and a processor configured to read, from the memory, one of divided blocks of input data stored in a memory; generate an output block by performing the convolution operation on the one of the divided blocks with a kernel; generate a feature map by using the output block, and write the feature map to the memory. |
US11675990B2 |
Image processing apparatus, image processing method, and storage medium
An image processing apparatus including a first obtaining unit configured to obtain first image data to be printed, a second obtaining unit configured to obtain second image data indicating a subject identical to that of the first image data and expressed by a geometric condition different from that of the first image data, and a determination unit configured to determine ink amounts of respective inks including a first ink that reflects light in a normal reflection and a second ink that is different from the first ink and has a ratio of an intensity of light reflected in the normal reflection direction to an intensity of light reflected in the diffuse direction smaller than that of the first ink in a case where light based on brightness at each position of the first image data and the second image data. |
US11675986B2 |
Virtual-frame preprocessing for optical scanning
An optical scanner captures a plurality of images from a plurality of image-capture devices. In response to the activation signal, an evaluation phase is executed, and in response to the evaluation phase, an acquisition phase is executed. In the evaluation phase, a first set of images is captured and processed to produce a virtual frame comprising a plurality of regions, with each region containing a reduced-data image frame that is based on a corresponding one of the plurality of images. Also in the evaluation phase, attributes of each of the plurality regions of the virtual frame are assessed according to first predefined criteria, and operational parameters for the acquisition phase are set based on a result of the assessment. In the acquisition phase, a second set of at least one image is captured via at least one of the plurality of image-capture devices according to the set of operational parameters. |
US11675983B2 |
Implementing text generation
A method for implementing text generation, a device and a medium are provided. The method includes: determining a target task type of a target text generation task from multiple task types supported by a pre-trained general text generation model; determining, based on a requirement of the target text generation task for a target output text, a first target output text attribute for the target text generation task from multiple output text attributes supported by the general text generation model; and fine tuning the general text generation model based on a target training data set associated with the target text generation task to obtain a task-specific text generation model, by taking task indication information for the target task type and first attribute indication information for the first target output text attribute as at least part of an input of the general text generation model. |
US11675979B2 |
Interaction control system and interaction control method using machine learning model
A computer-implemented interaction control method includes determining, based on a first requirement, a first category from one or more categories estimated from each of a plurality of pieces of information input by a user, selecting, based on the determined first category, a first conversation topic for interaction with the user from conversation topics, executing, by using the first conversation topic, the interaction with the user via a user interface, determining, when detecting that the first conversation topic is inappropriate in accordance with a result of the interaction executed by using the first conversation topic, based on a second requirement, a second category from the one or more categories, selecting, based on the determined second category, a second conversation topic for the interaction with the user from the conversation topics, executing, by using the second conversation topic, the interaction with the user via the user interface. |
US11675972B2 |
Digital processing systems and methods for digital workflow system dispensing physical reward in collaborative work systems
Systems, methods, and computer-readable media for providing physical rewards from disbursed networked dispensers are disclosed. The systems and methods may involve at least one processor configured to: maintain and cause to be displayed a workflow table having rows, columns and cells; track a workflow milestone via a designated cell configured to maintain data indicating that the workflow milestone is reached; access a data structure storing a rule containing a condition associated with the designated cell and a conditional trigger associated with at least one dispenser; receive an input via the designated cell; compare the input with the condition to determine a match; and activate the conditional trigger to cause at least one dispensing signal to be transmitted over a network to the at least one dispenser to cause the at least one dispenser to dispense a physical item as a result of the milestone being reached. |
US11675964B2 |
Management of remote access user application layouts
Methods and systems for modifying display of applications displayed on local computing devices are described herein. A local computing device may request, from a remote application server, one or more remote applications. The local computing device, user of the remote computing device, and/or the one or more applications may be associated with layout preferences. The layout preferences may be based on a location of the local computing device, a device type and/or device properties of the local computing device, or other similar context information. Display of the one or more remote applications may be modified based on the layout preferences. A user may alter display of the one or more remote applications, and the layout preferences may be modified. |
US11675961B2 |
Engineering change order cell structure having always-on transistor
A semiconductor cell structure includes four pairs of conductive segments, a first gate-strip, and a second gate-strip. A first conductive segment is configured to have a first supply voltage, and a second conductive segment is configured to have a second supply voltage. Each of the first gate-strip and the second gate-strip intersects an active zone over a channel region of a transistor. The first gate-strip is conductively connected to the second conductive segment. The semiconductor cell structure also includes a first dummy gate-strip and a second dummy gate-strip. The first dummy gate-strip separates from the first gate-strip by one CPP. The second dummy gate-strip separates from the second gate-strip by one CPP. The first gate-strip and the second gate-strip are separated from each other by two CPPs. The dummy gate-strip and the second dummy gate-strip are separated from each other by four CPPs. |
US11675960B2 |
Machine learning based layout nudging for design rule compliance
Embodiments of a system and method for generating integrated circuit layouts are described herein. A computer implemented method for generating integrated circuit layouts includes receiving a first layout for an integrated circuit, segmenting the first layout into a plurality of different patches, each patch of the plurality of patches describing a discrete portion of the first layout, identifying a non-compliant patch of the plurality of patches, the non-compliant patch violating a design rule governing the manufacture of the integrated circuit, generating a transformation of the non-compliant patch using a machine learning model, and generating a second layout using the transformation and the first layout, where the second layout is compliant with the design rule. |
US11675954B2 |
Method of designing a device
A method of designing a device includes identifying a pin to be inserted into a first layer of the device, wherein the first layer has a plurality of first routing tracks, and each of the plurality of first routing tracks extend in a first direction. The method further includes identifying a blocking shape on a second layer different from the first layer, wherein the second layer has a plurality of second routing tracks, and each of the plurality of second routing tracks extends in a second direction different from the first direction. The method further includes determining at least one candidate location for the pin in the first layer based on the plurality of first routing tracks of the first layer. The method further includes setting a location for the pin in the first layer based on the determined at least one candidate location. |
US11675942B2 |
Optimization of parameters for synthesis of a topology using a discriminant function module
A tool is disclosed that includes a discriminant module. The discriminant module finds one configuration, which is selected from many different possible and legal configurations, that is optimal. The optimal configuration is translated into a set of optimized parameters (identified from the library of parameters that the user can select from) and provided to the designer. The designer reviews (and can manually revise or change) the optimized parameters. The optimized parameters are translated into engineering parameters. The engineering parameters are passed, as an input, to the RTL generation module. The RTL generation module produces the RTL description of the hardware function that is optimal and meets the designer's defined requirements. |
US11675941B2 |
Modeling fluid flow in a wellbore for hydraulic fracturing pressure determination
A method for modeling fluid flow in a wellbore is provided. Hydraulic fracturing is an effective technique to improve well productivity by forming high permeable pathways for hydrocarbons to flow from the rock formation to the wellbore. Fluid flow for hydraulic fracturing is modeled using separated flow components, including a wellbore component (modeling the wellbore(s)), a perforation component (modeling the perforations(s)), a fracture component (modeling the fracture(s)) and a rock component (modeling the rock). Each respective component may be selected independently from a plurality of available components. Further, the respective components may be coupled to one another only at their interfaces, such as at a wellbore-perforation interface, a perforation-fracture interface, and a fracture-rock interface, for continuity of fluid kinematics and properties (such as pressure and density). In this way, the modeling of the subsurface may be tailored to the respective components in order to effectively predict the fracturing treatment. |
US11675938B2 |
Optimal path planning for directional drilling
A system, method and a computing architecture, for well path planning that can be used in directional drilling and provides for optimal path planning in directional drilling operations. One method includes receiving information about the planned drilling path, target-zone location and planned path changes, and real-time drill-bit location measurements. The method estimates the current state of the geometric location of the drill-bit in the earth during directional drilling operations, and the characteristics of the bottom-hole assembly before and after receiving drill bit location measurements. Such a method preferably determines a time optimal path, such as a Dubins path between the current state of the drill-bit location and the user-provided target-zone. |
US11675937B2 |
Method for simulation-based analysis of a motor vehicle
The invention relates to a method for simulation-based analysis and/or optimization of a motor vehicle, preferably having the following working steps: simulating (SIOI) a driving operation of the motor vehicle (I) on the basis of a model (M) with at least one manipulated variable for acquiring values of at least one simulated variable which is suitable for characterizing an overall vehicle behaviour, in particular a driving capability, of the motor vehicle (I), wherein the model has at least one partial model, in particular a torque model, and wherein the at least one partial model is based on a function and preferably characterizes the operation of at least one component, in particular of an internal combustion engine of the motor vehicle (I); and—outputting (S I03) the values of the at least one simulated variable. |
US11675933B2 |
Client authorization mechanisms to access native services
An information handling system includes a memory to cache a manifest that has authorized programming interfaces of a client application after the manifest was retrieved from the client application. A native service may receive a connection request from the client application, and verify that a digital signature of the client application is valid and untampered. The native service may also retrieve the manifest from the client application, receive an application programming interface request from the client application, and validate whether the application programming interface request is authorized based on the manifest. If the application programming interface request is authorized, then the application programming interface request is processed. |
US11675931B2 |
Creating vendor-neutral data protection operations for vendors' application resources
Creating vendor-neutral data protection operations for vendors' application resources is described. Capabilities specified for data protection operations by a vendor of an application are input from a host of the application. Any capabilities specified for the data protection operations are used to create a vendor-neutral version of a data protection operation for a resource of the application. The vendor-neutral version of the data protection operation for the application resource is output to the host. A result of performing the vendor-neutral version of the data protection operation on the application resource is input from the host. |
US11675927B2 |
System and method for external users in groups of a multitenant system
Content management systems are implemented according to a multitenant architecture by which software and its supporting architecture serves multiple customers of a service. Each tenant may be given a share of the application's data, configuration, user management, and other aspects of the application. Each tenant's data is isolated and typically remains invisible to other tenants so that tenants do not share or see each other's data. Embodiments described herein provide mechanisms by which a tenant can delegate administrator rights to an external user such that the external user can grant other users access to the tenant's content while the tenant controls the level of access that is provided to the external users. |
US11675924B2 |
Content aggregation system for intelligent searching of indexed content based on extracted security identifiers
Systems and methods are provided for a content aggregation system for intelligent searching of indexed content based on extracted security identifiers. An example method includes obtaining content items from content providers based on authorization information associated with one or more users. Collectors are configured to transform content items into articles representing a normalized form associated with a content item. The method includes obtaining a plurality of articles and storing them in one or more databases. The method includes assigning security identifiers to the articles. A security identifier represents an abstraction of a discrete access right or permission associated with user access to an article. The method includes generating respective indexing messages for execution. The indexing messages are included in a queue and each indexing message includes a reference to an article. A method includes indexing the articles referenced in the indexing messages to enable searching of the indexed articles. |
US11675923B2 |
Secure in-memory database in container
In an example embodiment, a hardware mechanism for protecting user-level software from privileged system software is leveraged to protect in-memory databases in container implementations in a cloud. This hardware mechanism takes the form of an enclave. An enclave is a portion of a CPU that shields application code and data from accesses by other software, including higher-privileged software. Memory pages belonging to an enclave reside in the enclave page cache (EPC), which cannot be accessed by code outside of the enclave. This helps ensure that (1) applications built on top of in-memory database are securely trusted, (2) and a trusted path architecture is provided for enclaves allowing in-memory databases to run securely on top of untrusted cloud platform. |
US11675921B2 |
Device and method for secure private data aggregation
A computing system for enabling the analysis of multiple raw data sets whilst protecting the privacy of information within the raw data sets, the system comprising a plurality of synthetic data generators and a data hub. Each synthetic data generator is configured to: access a corresponding raw data set stored in a corresponding one of a plurality of raw data stores; produce, based on the corresponding raw data set, a synthetic data generator model configured to generate a synthetic data set representative of the corresponding raw data set; and push synthetic information including at least one of the corresponding synthetic data set and the synthetic data generator model to the data hub. The data hub is configured to store the synthetic information received from the synthetic data generators for access by one or more clients for analysis. The system is configured such that the data hub cannot directly access the raw data sets and such that the synthetic data information can only be pushed from the synthetic data generators to the data hub. |
US11675919B2 |
Separation of managed and unmanaged data in a computing device
Techniques are disclosed relating to securely storing data at a computing device that is managed by an external entity. In some embodiments, a computing device maintains a first file system volume having data that is accessible to a user of the computing device and that is not managed by an entity external to the computing device. The computing device receives, from the entity external, a first request to configure the computing device to store data that is accessible to the user and managed by the external entity. In response to the first request, the computing device creates a second distinct file system volume to store the data managed by the external entity. In response to a second request from the external entity, the computing device subsequently removes the second file system volume. |
US11675918B2 |
Policy-based user device security checks
A collaboration system manages a plurality of content objects that are shared by multiple users at corresponding user devices in corresponding computing environments. Policies that govern interactions over the plurality of content objects are established. A content object upload request from a first user belonging to a first enterprise is processed by the collaboration system and then the content object is shared with a second user of a second enterprise. Security characteristics pertaining to the second user, and/or the second enterprise, and/or the second user's devices are initially unknown or unverified. As such, upon receiving interaction events raised by a user device of the second user, a set of interaction attributes associated with the interaction events are gathered. One or more trust policies are applied to the interaction attributes to evaluate security conditions that correspond to the interaction events. A response is generated based on the evaluated security conditions. |
US11675906B1 |
Simultaneous multi-processor (SiMulPro) apparatus, simultaneous transmit and receive (STAR) apparatus, DRAM interface apparatus, and associated methods
Infection by viruses and rootkits from data memory devices, data messages and data operations are rendered impossible by construction for the Simultaneous Multi-Processor (SiMulPro) cores, core modules, Programmable Execution Modules (PEM), PEM Arrays, STAR messaging protocol implementations, integrated circuits (referred to as chips herein), and systems composed of these components. Greatly improved energy efficiency is disclosed. A system implementation of an Application Specific Integrated Circuit (ASIC) communicating with a DRAM controller interacting with a DRAM array is presented with this resistance to virus and rootkit infection, and simultaneously capable of 1 Teraflop (Tflop) FP16, 1 TFlop FP32 and 1 Tflop FP64 performance while accessing 1 Tbyte of DRAM with a power budget comparable to today's desktop or notebook computers accessing 8 Gbytes of DRAM. Innovations to the STAR communication apparatus will enable the optical communication between chips to carry at least ½ Tbit/second data to and from DRAMs, and each other. |
US11675904B1 |
Systems and methods for protecting against malware attacks using signature-less endpoint protection
Disclosed herein are embodiments of systems, methods, and products providing real-time anti-malware detection and protection. The computer uses artificial intelligence techniques to learn and detect new exploits in real time and protect the full system from harm. The computer trains a first machine learning model for executable files. The computer trains a second machine learning model for non-executable files. The computer trains a third machine learning model for network traffic. The computer identifies malware using the various machine learning models. The computer restores to a clean, uncorrupted state using virtual machine technology. The computer reports the detected malware to a security server, such as security information and even management (SIEM) systems, by transmitting detection alert message regarding the malware. The computer interacts with an administrative system over an isolated control network to allow the system administrator to correct the corruption caused by the malware. |
US11675902B2 |
Security detection system with privilege management
A system and method of de-elevating a process created in a computing device of a computer system are disclosed. In certain aspects, a method includes detecting a user login within a login session of a computing device in the computer system, the login session having a default security context. The method also includes creating a de-elevated security context for the login session, wherein the de-elevated security context has fewer privileges than the default security context. The method also includes detecting a process being created within the login session. The method further includes determining that the process is potentially malicious by comparing an intended state and a digital profile of the computing device. The method also includes launching the process using the de-elevated security context. |
US11675900B2 |
Generating suggested courses of actions for incidents based on previous incident handling
The technology presented herein improves incident handling in an IT environment. In a particular example, a method provides identifying a first incident in the IT environment. From incident handling information that indicates how a plurality of previous incidents were handled by one or more users, the method provides identifying first information of the incident handling information corresponding to one or more first previous incidents of the plurality of previous incidents that are similar to the first incident. The method further provides determining a suggested course of action from the first information and presenting the suggested course of action to a user of the information technology environment. |
US11675899B2 |
Hardware mitigation for Spectre and meltdown-like attacks
Aspects include circuitry that includes a first global generation counter (GGC) that is increased upon decoding of a branch instruction and a second GGC that is increased upon a completion of the branch instruction. Upon a triggered rollback, the first GGC is reset. The circuitry also includes a generation tag memory associated with a register that receives loads during a side-channel attacks which is set to the first GGC upon a first load, and a determination unit to determine, for a second load from an address depending on the register of the first load, a generation tag value associated with the register of the second load as a function of the first GGC, the second GGC, and the generation tag value associated with the register of the first load. A wait queue is configured to block the second load, if the generation tag is larger than the second GGC. |
US11675897B2 |
Process identifier transition monitoring and assessment
A process identifier transition monitor captures and assesses activities associated with a microprocessor or a microcontroller. Monitoring and assessment is performed by detection of process identifier transitions, which may be driven by an occurrence of one or more activities, such as execution of application software, system hardware mechanisms, or processor-internal mechanisms. Process identifier transitions are assessed to determine whether such transitions were expected. If a detected process identifier transition was not expected, then a system alert may be transmitted or some other appropriate response taken within the system. |
US11675896B2 |
Using multimodal model consistency to detect adversarial attacks
A method, apparatus and computer program product to defend learning models that are vulnerable to adversarial example attack. It is assumed that data (a “dataset”) is available in multiple modalities (e.g., text and images, audio and images in video, etc.). The defense approach herein is premised on the recognition that the correlations between the different modalities for the same entity can be exploited to defend against such attacks, as it is not realistic for an adversary to attack multiple modalities. To this end, according to this technique, adversarial samples are identified and rejected if the features from one (the attacked) modality are determined to be sufficiently far away from those of another un-attacked modality for the same entity. In other words, the approach herein leverages the consistency between multiple modalities in the data to defend against adversarial attacks on one modality. |
US11675895B2 |
Method and device for processing information, equipment, and storage medium
A starting instruction directed at a target application (APP) is detected. The starting instruction is adapted to starting the target APP. APP information of the target APP is sent to a server according to the starting instruction. A transmission risk detection result returned by the server according to the APP information is received. The transmission risk detection result indicates whether an operation that transmits data out of a secure region is performed while the target APP is running. The transmission risk detection result is displayed. |
US11675894B2 |
Automated access data change detection
A user may conduct a plurality of access requests with a plurality of resource provider computers. A processor server computer may determine whether resource provider computers store access data associated with the user in various ways, including detecting patterns in sets of a plurality of access requests conducted between the user and each of the plurality of resource provider computers. Upon detecting that access data has changed, the processor server computer may automatically send the updated access data to each of the identified resource provider computer. |
US11675890B2 |
Just-in-time user provisioning framework in a multitenant environment
A method of provisioning organization users in a multi-tenant database system includes receiving a request via a single sign-on protocol from an organization user to create a new multi-tenant database user account for access to the multi-tenant database system. The method retrieves rules that specify how to derive user permissions for access to the multi-tenant database system from stored user attributes of the organization user. The method continues with applying the rules to the stored user attributes to determine permissions for the users to access particular objects in the multi-tenant database system, and creating the new user account with the determined user permissions for access to the multi-tenant database system. |
US11675888B2 |
Systems and methods for authenticating a user at a public terminal
Systems and methods for authenticating a user to access a public terminal are described. Disclosed embodiments may include reading, using the physical credential reader, a user identifier from the physical credential device. Disclosed embodiments may also include transmitting the public terminal identifier and the user identifier to a secure server. Further, disclosed embodiments may include receiving, after completing the transmission, a unique code from the secure server. Disclose embodiments may additionally include displaying the unique code on the display device. Disclosed embodiments may include receiving, after displaying the unique code, an authentication message from the secure server. Disclosed embodiments may further include, responsive to receiving the authentication message, authorizing the user to use a terminal command at the public terminal. |
US11675884B2 |
Authentication of a person using a virtual identity card
A method and system for authenticating a user based on a human-recognizable visual representation of biometric data of the user is captured using the digital camera, wherein a biometric feature descriptor is generated from the captured biometric data of the user, and the feature descriptor, together with a user selected user profile, is transmitted to an inspection server adapted for validating whether the transmitted biometric feature descriptor corresponds to a centrally stored biometric feature descriptor of biometric data of the user. If this is the case, the inspection server transmits an “authentication approved” signal together with user personalization data specified in the selected user profile to the inspection terminal. |
US11675882B2 |
Enhanced task scheduling for data access control using queue protocols changing a personality of a ticketing interface
A system and method for scheduling tasks associated with changing a personality of a ticketing interface. One or more processors generate interaction scores for each of the plurality of user devices based on receiving interactions between the ticketing engine and a plurality of user devices. The system further generate interaction patterns for each of the plurality of user devices that include a relation between the interaction scores generated for each of the plurality of user devices with the interactions from the plurality of user devices. The system further classify each of the plurality of user devices based on the generated interaction patterns to identify whether a user device from the plurality of user devices is a fraudulent or a non-fraudulent user device and modify interface of the ticketing engine based on the classification of each of the plurality of user devices. |
US11675880B2 |
Securing webpages, webapps and applications
A method for securing a webpage or a webapp processed by a browser executing on a client system, the method comprising the browser executing an instance of white-box protected code, wherein execution of the instance of white-box protected code causes the client system to: generate a message comprising message data for use by a control system to perform one or more security tests, the control system communicably connected to the client system via a network; send the message to the control system to enable the control system to perform the one or more security tests using the message data; receive a response from the control system based, at least in part, on the message; and process the response. |