Document | Document Title |
---|---|
US11595921B2 |
Methods and apparatus for QCL assumptions for cross carrier multiple DCI
The present disclosure relates to methods and devices for wireless communication including an apparatus, e.g., a UE and/or TRP. In one aspect, the apparatus can receive, on a first CC, first DCI from a first TRP and second DCI from a second TRP, the first DCI indicating one of a first set of TCI states and the second DCI indicating one of a second set of TCI states. The apparatus can also receive, on a second CC, a first PDSCH from the first TRP and a second PDSCH from the second TRP, a first time offset being between the first DCI and the first PDSCH and a second time offset being between the second DCI and the second PDSCH. The apparatus can also determine a QCL assumption based on at least one of the first time offset, the second time offset, and a QCL time duration. |
US11595911B2 |
Method and apparatus for controlling UE transmission power in wireless communication system
The disclosure relates to a communication method and a system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. |
US11595909B2 |
Method for controlling uplink power based on downlink path loss and configuration indicated by base station
A method for uplink (UL) power control of a User Equipment (UE) in a wireless communication system according to one embodiment of the present invention comprises receiving a Downlink (DL) Reference Signal (RS); measuring DL path-loss by using the DL RS; determining transmission power for an UL channel by using the measured path-loss; and transmitting the UL channel, wherein the DL RS used for determining the transmission power for the UL channel is determined based on configuration information indicated by a base station. |
US11595899B2 |
Method and device for determining sidelink transmit power in NR V2X
Provided are a method by which a first device performs wireless communication, and a device for supporting same. The method can comprise the steps of: transmitting one or more reference signals (RSs) to a second device on the basis of first transmit power; receiving, from the second device, information related to a channel state measured on the basis of the one or more RSs; changing the first transmit power to second transmit power on the basis of the information related to the channel state; and transmitting the one or more RSs to the second device on the basis of the second transmit power. |
US11595898B2 |
Paging in vehicle to everything communications for power saving
Various aspects of the present disclosure generally relate to paging in vehicle to everything (V2X) communications for power saving. In some aspects, a user equipment (UE) may monitor for a wake up signal or a paging message from a wireless communication device and monitor for V2X messages from vehicle UEs based at least in part on receiving the wake up signal or the paging message. The UE may receive a V2X message from a vehicle UE based at least in part on the monitoring. Numerous other aspects are provided. |
US11595894B2 |
Method and system for saving power of a battery associated with item/s
Aspects of the invention are directed towards a system and method for saving power of a battery associated with item/s. One or more embodiments of the invention describe the method comprising steps of receiving a location and a charged status of a battery associated with each of one or more items placed inside a container. The method further describes steps of assigning a cluster to a group of items from the one or more items based on the location of each of the one or more items and identifying a master item from the group of items based on the charged status of each item in the cluster. The method also describes steps of transmitting a message to the master item for sensing a parameter for the group of items in the cluster and receiving a sensed parameter from the master item for the group of items. |
US11595881B2 |
Inter-radio access technology (RAT)
Techniques are described for facilitating an inter-Radio Access Technology (RAT) selection or measurement process for a dual-mode or a multi-mode device. For example, a wireless communication method includes a network node transmitting to a communication node a system information block (SIB) that includes information about Radio Access Technologies (RATs). The information includes any one or more of a first carrier priority value and a first threshold value of a serving frequency associated with a RAT, a second carrier priority value and a second threshold value of a serving cell associated with the RAT, an indicator to indicate existence of one or more additional RATs, carrier information for the one or more additional RATs, and access information to access the one or more additional RATs. |
US11595879B2 |
Fine grained access barring of aggressive cellular devices
Fine grained access barring of aggressive cellular devices is provided. A method can include detecting, by a system comprising a processor, a frequency of signaling events transmitted by network equipment operating as part of a communication network; in response to the frequency of the signaling events transmitted by the network equipment being determined to be greater than a frequency threshold, altering, by the system, an access class of the network equipment from a first access class to a second access class that is different from the first access class, wherein the second access class is reserved via the communication network; and in response to the access class of the network equipment being altered to the second access class, causing, by the system, a base station serving the network equipment to deny at least a portion of network access requests transmitted by the network equipment to the base station. |
US11595876B2 |
Method and apparatus for performing device-to-device discovery
Methods and apparatus for performing device-to-device (D2D) discovery are described. A service discovery process may include a discoverable device (e.g., a wireless transmit/receive unit (WTRU)) sending a discovery request, over a wireless connection, for a radio resource for the purpose of performing a transmission for radio frequency (RF) proximity detection for a given service. The WTRU may receive a discovery response including a configuration for RF proximity detection from a network, which configuration may be associated to the service. The configuration for RF proximity may be received by dedicated signaling, (e.g., physical downlink shared channel (PDSCH)), in particular for a discoverable WTRU. The configuration for RF proximity may be received on a broadcast channel, (e.g., a discovery shared channel (DISCH)), in particular for a monitoring WTRU, and may include one or more service identities, each associated with an RF proximity detection configuration, or a validity information and a measurement configuration. |
US11595872B1 |
Selection of rats for handovers from 4G
As described herein, one of a third generation (3G) radio access network (RAN) or a fifth generation (5G) RAN may be selected to receive a handover of a communication session from a fourth generation (4G) RAN. The 3G RAN or 5G RAN may be selected based on at least one of performance measurements for the 3G RAN and the 5G RAN, a preference for the 3G RAN or the 5G RAN, or a performance threshold for the 3G RAN or for the 5G RAN. The handover to the selected one of the 3G RAN or 5G RAN may then be initiated. |
US11595864B1 |
Prediction of handover trigger as basis to control primary-uplink-path switching for dual-connected device
A method and system for controlling uplink-path switching of a user equipment device (UE) when the UE has at least two co-existing air-interface connections including a first air-interface connection with a first access node and a second air-interface connection with a second access node, and where one of the first and second air-interface connections defines a primary uplink path of the UE. An example method includes (i) predicting that a handover trigger for handover of the UE from the first access node to a third access node will occur and (ii) responsive to at least the prediction that the handover trigger will occur, but before the handover trigger occurs, forgoing application of at least a portion of an uplink-path-switch control process for dynamically controlling which of the UE's connections will be set as the UE's primary uplink path. |
US11595862B2 |
Signaling delay handling for handover
A method and apparatus for handling signaling delay for handover is provided. A wireless device transmits a measurement report based on a first event for a first cell, receives a handover command which commands a handover to the first cell, and checks validity of the handover command based on the first event for the first cell and/or a second event for a second cell other than the first cell. |
US11595860B2 |
Intelligent baseband operating mode selection for 5G based device
An accessory device may dynamically determine to transition a cellular connection between mobile-initiated communication only (MICO) mode and non-MICO mode based on a variety of factors. The accessory device may be configured to communicate through a non-cellular network in addition to the cellular network. The accessory device may transition from MICO to non-MICO mode based on one or more of: loss of the non-cellular connection; location of the accessory device; a call, data, or SMS request failure over the non-cellular network; or other factors. |
US11595857B2 |
Method and device in UE and base station used for wireless communication
The present disclosure provides a method and device in a User Equipment (UE) and a base station used for wireless communications. The UE receives first information, the first information being used to indicate a first time-domain resource and a second time-domain resource in a first sub-band, wherein the first time-domain resource is reserved for a first radio signal; performs a first access detection to determine whether to transmit the first radio signal on the first time-domain resource in the first sub-band; and transmits the first radio signal on the first time-domain resource in the first sub-band, and does not transmit any radio signal on a reserved time-domain resource in the first sub-band; or, the UE drops transmitting the first radio signal on the first time-domain resource in the first sub-band. The reserved time-domain resource is located between the first time-domain resource and the second time-domain resource in time domain. |
US11595855B2 |
Systems and methods of recommending a data rate in a wireless communications system
Systems and methods for recommending a data rate on an uplink or downlink communication channel between the network node and a wireless device in a wireless communications system are provided. In one exemplary embodiment, a method performed by a wireless device for recommending a data rate on an uplink or downlink communication channel between the wireless device and a network node in a wireless communications system comprises determining to request that the network node recommend a data rate on the uplink or downlink communication channel for the wireless device. Further, the method includes generating a first information element that indicates the request. Also, the first information element is sent via a protocol layer on the uplink communication channel. |
US11595853B2 |
Redirection mechanism to support network sharing/slicing with CU-DU split
Systems and methods for redirecting Radio Resource Control (RRC) messages in a wireless system that uses Central Unit (CU)/Distributed Unit (DU) splitting and either network sharing or network slicing are disclosed. In some embodiments, a method performed by a shared Distributed Unit (DU) comprises receiving a RRC message from a User Equipment (UE) and sending a first DU-to-Central Unit (CU) message to a first CU, where the first DU-to-CU message comprises the RRC message. The method further comprises either obtaining an indication that the first CU is a wrong CU for the RRC message or determining that the first CU is a wrong CU for the RRC message. The method further comprises sending another DU-to-CU message to a second CU, where the other DU-to-CU message comprises the RRC message or a RRC message related to the RRC message. |
US11595849B2 |
Method and apparatus for generating a protocol data unit
Methods and apparatuses are provided for generating a protocol data unit (PDU). An apparatus may comprise a processor configured to provide a medium access control (MAC) entity and a segmentation entity. The MAC entity may indicate an amount of data associated with the segmentation entity to be multiplexed by the MAC entity. The segmentation entity may segment, based on the indicated amount of data, a service data unit (SDU) into a segment, and the MAC entity may multiplex the segment into a MAC protocol data unit (PDU). The MAC PDU may include a field that indicates whether the segment is included and whether the segment is a last segment. The apparatus may further comprise a transmitter configured to transmit the MAC PDU. |
US11595848B2 |
Method and apparatus for transmission and reception of data in communication system
The disclosure relates to a communication technique for combining an IoT technology with a 5G communication system for supporting a higher data transmission rate than a 4G system, and a system therefor. The disclosure can be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, security and safety-related services, and the like) on the basis of 5G communication technologies and IoT-related technologies. |
US11595847B2 |
Configuration of artificial intelligence (AI) modules and compression ratios for user-equipment (UE) feedback
Certain aspects of the present disclosure provide techniques for feedback compression. Certain aspects provide a method for wireless communication by a user-equipment (UE). The method generally includes receiving, from a base station, a configuration to be used for compressing one or more measurements corresponding to at least one reference signal using an artificial intelligence (AI) encoder; receiving the at least one reference signal; and transmitting a codeword to the base station, the codeword being associated with a compression of the one or more measurements in accordance with the configuration. |
US11595846B2 |
Apparatuses and methods for handling data packets
The present disclosure relates to radio network communication. In one of its aspects, the disclosure presented herein concerns a method for assigning a value representing a length of a data packet to a field. The method is implemented in an apparatus. According to the method, a size of the data packet is determined. Based on the determined size of the data packet, the size of the field is set. The determined size of the data packet is then compared against a value threshold, and based on the comparison and based on the determined size of the data packet, a value representing the length of the data packet is calculated. The calculated value representing the length of the data packet is then assigned to the field. |
US11595845B2 |
Tracking QoS violated events
A method in a network node comprises: detecting a Quality of Service (QoS) Violated Event in respect of a particular QoS flow of a Protocol Data Unit (PDU) session; and sending a corresponding QoS violated event report to any one or more of: a Session Management Function (SMF) of the network; a Policy Control Function (PCF) of the network; an Application Function (AF) of the network; and a third party service provider. |
US11595844B2 |
Plant system and method
A plant system includes: an access node connected to a network; a plurality of controllers configured to perform distributed control on a plurality of field devices provided in a plant; and a wireless communication unit provided in each group of a plurality of groups into which the plurality of controllers are grouped and connected to each controller in the corresponding group via a wired connection, and configured to connect each controller to the access node via a wireless connection. |
US11595843B2 |
Methods and network nodes for handling baseband processing
A first network node, a second network node and methods therein, for handling baseband processing of signals communicated with wireless devices in a wireless network. The first network node communicates a first type of signals with a first wireless device and performs a first part of baseband processing of the first type of signals using a non-GPP implemented processor. The first network node also communicates the first type of signals with the second network node for a second part of baseband processing of the first type of signals using a GPP implemented processor. The first network node further communicates a second type of signals with a second wireless device and performs both of said first and second parts of baseband processing of the second type of signals using the non-GPP implemented processor. |
US11595841B2 |
Method and device for interference measurement
Embodiments of the disclosure generally relate to interference measurement. A device determines an interference measurement pattern indicating distribution of resource elements allocated for interference measurement. Then, the device determines, based on the interference measurement pattern, an interference type for measuring interference on the resource elements. |
US11595834B2 |
Automatic neighbor relation enhancements for dual connectivity
In accordance with an embodiment, an apparatus may include at least one processor and at least one memory including computer program code. The at least one memory and the computer program code can be configured to, with the at least one processor, cause the apparatus to at least transmit a request for one or more cell global identities associated with one or more cells to a network entity. The at least one memory and the computer program code can be further configured to, with the at least one processor, cause the apparatus to at least update one or more neighbor relation tables based upon the received automatic neighbor relation related information. The at least one memory and the computer program code can be further configured to, with the at least one processor, cause the apparatus to at least transmit information based upon the updated one or more neighbor relation tables. |
US11595829B2 |
Method and device for transmitting information element
Provided are a method and a device for transmitting an information element, and a method and a device for transmitting information. The method for transmitting an information element comprises: receiving, by a first communication node, spatial relationship information configured for multiple uplink information elements and transmitted by a second communication node, and transmitting, by the first communication node, the multiple uplink information elements according to the spatial relationship information. Further provided are a terminal, a storage medium and an electronic device. |
US11595828B2 |
Non-line-of-sight (NLOS) coverage for millimeter wave communication
A system, in an active reflector device, adjusts a first amplification gain of each of a plurality of radio frequency (RF) signals received at a receiver front-end from a first equipment via a first radio path of an NLOS radio path. A first phase shift is performed on each of the plurality of RF signals with the adjusted first amplification gain. A combination of the plurality of first phase-shifted RF signals is split at a transmitter front-end. A second phase shift on each of the split first plurality of first phase-shifted RF signals is performed. The plurality of RF signals as a directed beam is transmitted to a second equipment via a second radio path of the NLOS radio path. |
US11595827B2 |
Multi-beam base station antennas having wideband radiating elements
A twin beam base station antenna includes a first array that has a plurality of columns of first frequency band radiating elements, the first array configured to form a first antenna beam that provides coverage throughout a first sub-sector of a three-sector base station. The radiating elements in a first of the columns in the first array have a first azimuth boresight pointing direction and the radiating elements in a second of the columns in the first array have a second azimuth boresight pointing direction that is offset from the first azimuth boresight pointing direction by at least 10°. The radiating elements in the second of the columns in the first array are electrically steered. |
US11595826B2 |
Reference signal update timing for uplink signals
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station may transmit a message, to a user equipment (UE), instructing the UE to activate or update a reference signal (RS) corresponding to an uplink communication transmitted by the UE. The base station may communicate with the UE, after a time period, using a beam configuration of the base station that corresponds to a beam configuration of the UE for transmitting the RS, the time period being based at least in part on a determination of whether the UE identified the beam configuration of the base station. Numerous other aspects are provided. |
US11595825B2 |
Allocating resources to internet of things equipment in a fifth generation (5G) network or other next generation networks
The technologies described herein are generally directed to facilitate allocating resources to zones for IOT equipment in a fifth generation (5G) network or other next generation networks. An example method discussed herein includes identifying, by carrier allocation equipment, carrier transmission information corresponding to transmission of a first carrier signal configured to support Internet of things equipment. The method can further comprise analyzing, by the carrier allocation equipment, the carrier transmission information to determine coverage information corresponding to a potential for coverage, by the first carrier signal, of an Internet of things equipment support zone corresponding to a geographic area. The method can further include, based on the coverage information, facilitating configuring transmission parameter information, representative of a transmission parameter applicable to the coverage of the Internet of things equipment support zone by the first carrier signal. |
US11595823B2 |
Medium reservation using energy detection and receiver assisted clear channel assessment
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a trigger signal indicating that a base station has obtained access to a shared radio frequency spectrum band. The UE may transmit, in response to the trigger signal, a trigger response signal configured to reserve a channel of the shared radio frequency spectrum band for a downlink transmission by the base station, where the trigger response signal is transmitted for a time period extending to a scheduled beginning of the downlink transmission. The UE may receive the downlink transmission after an expiration of the time period and based at least in part on the trigger signal. |
US11595820B2 |
Secure elements broker (SEB) for application communication channel selector optimization
Systems and methods for managing concurrent secure elements on a mobile device to coordinate with an application or “app” running on the mobile device and an appropriate communications protocol for conducting transactions using the mobile device include: informing, by the processor, the reader device of a preferred app and a communication protocol usable by the preferred app; receiving, by the processor, information about which apps and communication protocols are supported by a reader for processing a transaction; locating, by the processor, a secure element supporting an app and a communication protocol supported by the reader; channeling the communication protocol for the specific configuration of the app and the supporting secure element; activating the secure element that supports the app; and processing, with the activated secure element, using the supported app and communication channel, the transaction with the reader. |
US11595816B2 |
System and method to support identity theft protection as part of a distributed service oriented ecosystem
A system and method to support identity theft protection and, in particular, to a system and method for supporting identity theft protection as part of a distributed service oriented ecosystem in Internet protocol (IP) multimedia subsystem (IMS) and non-IMS networks. The system includes an identity session initiation protocol (SIP) application server configured to act as a security assertion markup language (SAML) bridge, which allows an SIP enabled device or a non-SIP enabled device to attach to a telecommunications service provider network. A user may accept or reject an authorization request using the SIP enabled device or non-SIP enabled device. |
US11595812B2 |
Methods for advertising extensible capability feature sets for user equipment (UE)
Embodiments include methods for a user equipment (UE) to advertise capabilities to a network node in a radio access network. Embodiments include transmitting, to the network node, information describing a plurality of feature sets supported by the UE. The information can include one or more InitialFeatureLists and one or more ExtensionFeatureLists, with each each ExtensionFeatureList being associated with a particular InitialFeatureList. Embodiments also include transmitting, to the network node, one or more BandCombination elements, each including a list of frequency bands in which the UE is concurrently operable and a FeatureSetCombination element identifying features supported by the UE within each frequency band included in the list. Some embodiments can also include receiving, from the network node, a configuration (e.g., for dual connectivity and/or carrier aggregation) based on the information describing a plurality of feature sets and the BandCombination elements. Other embodiments include complementary methods performed by a network node. |
US11595810B2 |
Information processing method and apparatus
An information processing method includes: obtaining, by a data analytics network element, terminal behavioral information of a plurality of terminals; determining, by the data analytics network element, network-side expected terminal behavioral information based on the terminal behavioral information; and sending, by the data analytics network element, the network-side expected terminal behavioral information to a user data management network element. |
US11595809B2 |
ESIM profile discovery
Mobile devices are provisioned that do not have a direct communications path to a data network. A proximate device is discovered that is available for connecting to the mobile device via a peer-to-peer connection. The proximate device is determined to be trusted by the mobile device and usable to communicate to the data network A peer-to-peer connection is established with the proximate device. Identification data is provided to the proximate device, and an activation code is received. The mobile device communicates to the mobile network operator indicated by the activation code. Subscription credentials are received for accessing a mobile network operated by the mobile network operator. |
US11595800B2 |
Bluetooth audio streaming passthrough
A Bluetooth audio streaming passthrough, and a method for transmitting an audio stream over a Bluetooth communication link and disclosed. The method is carried out by a source device. An audio codec configuration and a sampling rate of the audio stream are received, the audio stream coming from a streaming application running on the source device. A Bluetooth audio stream between the source device and a sink device is configured using the received audio codec configuration and sampling rate. The first audio stream is received from the streaming application. The received first audio stream is packetized into the Bluetooth audio stream. The Bluetooth audio stream is transmitted to the sink device over the Bluetooth communication link, including the packetized received audio stream. |
US11595799B2 |
System and method for secure pairing of Bluetooth devices
A mobile device includes a Bluetooth transceiver, the Bluetooth transceiver being in an idle power state when not securely paired to a second Bluetooth transceiver of a peripheral device. The mobile device further includes an audio interface, the audio interface coupled to the Bluetooth transceiver, the audio interface configured to connect to a second audio interface of the peripheral device. The mobile device is configured to establish an out-of-band audio communication channel to the peripheral device by connecting the audio interface to the second audio interface, the mobile device configured to exchange Bluetooth authentication data with the peripheral device via the out-of-band audio communication channel in response to transitioning to an operating state, the mobile device configured to initialize the Bluetooth transceiver with the Bluetooth authentication data to establish an authenticated and cryptographically protected in-band Bluetooth communication channel allowing the mobile device to be securely paired with the peripheral device. |
US11595797B2 |
Communication method and network device
A communication method is provided for performance by a first network function entity. The communication method includes determining a service zone ID, transmitting information including the service zone ID to a second network function entity, where the service zone ID is used for the second network function entity to select a service producer instance from a service producer. |
US11595795B2 |
Methods and systems for scheduling the transmission of localization signals and operating self-localizing apparatus
Localization systems and methods for transmitting timestampable localization signals from anchors according to one or more transmission schedules. The transmission schedules may be generated and updated to achieve desired positioning performance. For example, one or more anchors may transmit localization signals at a different rate than other anchors, the anchor transmission order can be changed, and the signals can partially overlap. In addition, different transmission parameters may be used to transmit two localization signals at the same time without interference. A self-localizing apparatus is able to receive the localization signals and determine its position. The self-localizing apparatus may have a configurable receiver that can select to receive one of multiple available localization signals. The self-localizing apparatuses may have a pair of receivers able to receive two localization signals at the same time. A bridge anchor may be provided to enable a self-localizing apparatus to seamlessly transition between two localization systems. |
US11595791B2 |
System and method for provision of dial-requested service to a second line service enabled telecommunications device
A method and system for the leveraging a reserved relationship number by an SLS platform and/or SLS phone module for the purpose of performing special operations other than making an SLS call available for termination at a subscriber TD and/or a third party TD involve associating the SLS phone number of the subscriber, the primary number of the subscriber and a next set of instructions via a common reserved relationship number. |
US11595784B2 |
Monitoring objects capable of wireless communications
A method of monitoring objects capable of wireless communications is provided. The method comprises detecting an activity performed by a user of a wireless communications device, acquiring information identifying an expected set of objects which are associated with the detected activity, determining whether at least one of the objects in the expected set is not in proximity of the wireless communications device, and if so notifying the user that at least one of the objects in the expected set is not in proximity of the wireless communications device. |
US11595783B2 |
Efficient secure phase-based ranging using loopback calibration
A system and method for an efficient secure phase-based ranging using loopback calibration, including receiving, by a reflector during a current timeslot, an incoming constant tone (CT) signal having a phase shift; determining, by the reflector during the current timeslot or a previous timeslot, a phase shift correction value by using a receiver/transmitter (Rx/Tx) loopback path of the reflector; and/or generating, by the reflector, an outgoing CT signal having an updated phase shift by adjusting the phase shift of the incoming CT signal based on the phase shift correction value. |
US11595782B2 |
Integrity of range measurements
A method of assuring integrity of range measurements and position solutions comprises obtaining range measurement statistics between network nodes, performing a snapshot integrity test for the range measurement statistics, and performing a sequential integrity test using the range measurement statistics. The snapshot integrity test comprises using Gram matrices with a current configuration of the nodes; performing a singular value consistency check using the Gram matrices against a user selected threshold; and detecting and excluding range measurement statistics with instantaneous errors that cause the singular value to exceed the threshold. The sequential integrity test comprises formulating main node and sub-node sets using solution separation; implementing filters for the main node and sub-node sets; performing a consistency check using discriminators and decision thresholds; detecting and excluding range measurement statistics with both instantaneous and time-correlated errors; and computing a protection level for relative positions computed from the main node and sub-node sets. |
US11595776B2 |
Interaural time difference crossfader for binaural audio rendering
Examples of the disclosure describe systems and methods for presenting an audio signal to a user of a wearable head device. According to an example method, a first input audio signal is received, the first input audio signal corresponding to a source location in a virtual environment presented to the user via the wearable head device. The first input audio signal is processed to generate a left output audio signal and a right output audio signal. The left output audio signal is presented to the left ear of the user via a left speaker associated with the wearable head device. The right output audio signal is presented to the right ear of the user via a right speaker associated with the wearable head device. Processing the first input audio signal comprises applying a delay process to the first input audio signal to generate a left audio signal and a right audio signal; adjusting a gain of the left audio signal; adjusting a gain of the right audio signal; applying a first head-related transfer function (HRTF) to the left audio signal to generate the left output audio signal; and applying a second HRTF to the right audio signal to generate the right output audio signal. Applying the delay process to the first input audio signal comprises applying an interaural time delay (ITD) to the first input audio signal, the ITD determined based on the source location. |
US11595772B2 |
Information processing device, information processing method, and information processing program
An information processing device (100) according to the present disclosure includes: an acquisition unit (141) configured to acquire a first image including a content image of an ear of a user; and a calculation unit (142) configured to calculate, based on the first image acquired by the acquisition unit (141), a head-related transfer function corresponding to the user by using a learned model having learned to output a head-related transfer function corresponding to an ear when an image including a content image of the ear is input. |
US11595768B2 |
Retention force increasing components
An external component of a prosthesis, including a first module including a functional component and first structure including magnetic material. The first module is configured to be retained against skin via a magnetic field at least partially generated by a magnet implanted in a recipient that interacts with the magnetic material of the first structure, the first module including a skin interfacing surface configured to interact with skin of the recipient when the first module is retained against the skin of the recipient, a second module including a second structure including magnetic material configured to enhance magnetic retention of the external component to skin of a recipient, wherein the second module is removably attached to the first module and visible from an outside of the external component when the second module is attached to the first module and when viewed from a side opposite the skin interfacing side. |
US11595767B1 |
Rechargeable hearing devices and chargers for use with same
A system with a first hearing device including a rechargeable power source, a second hearing device including a rechargeable power source, and a hearing device charger including a charger housing, a power source, charge circuitry operably connected to the power source, a first charge location and a second charge location. The first hearing device, the second hearing device and the hearing device charger may be respectively configured such that the first hearing device will be magnetically attracted to the hearing device charger in response to the first hearing device being positioned at the first charge location, the first hearing device will be magnetically repelled by the hearing device charger in response to the first hearing device being positioned at the second charge location, the second hearing device will be magnetically attracted to the hearing device charger in response to the second hearing device being positioned at the second charge location, and the second hearing device will be magnetically repelled by the hearing device charger in response to the second hearing device being positioned at the first charge location. |
US11595766B2 |
Remotely updating a hearing aid profile
Broadly speaking, the embodiments disclosed herein describe replacing a current hearing aid profile stored in a hearing aid. In one embodiment, the hearing aid profile is updated by sending a hearing aid profile update request to a hearing aid profile service, receiving the updated hearing aid profile from the hearing aid profile service, and replacing the current hearing aid profile in the hearing aid with the updated hearing aid profile. |
US11595765B1 |
Hearing enhancement device
A system and method for improving hearing enhancement solutions across a wide range of hearing devices, particularly for a wide-range of disparate user-provided hearing devices. |
US11595761B2 |
Detecting and localizing acoustic signals with an optical network
An optical network element includes a connection to an optical fiber in an optical line system including a coherent receiver; a microphone configured to detect sound; and circuitry connected to the microphone and configured to cause transmission of information related to sounds detected by the microphone to a receiver at an end of the optical line system, wherein the transmission is over the optical fiber in the optical line system to the coherent receiver. The optical network element can include a polarization controlling device connected to the circuitry and configured to modulate a state-of-polarization (SOP) envelope for the transmission. |
US11595760B2 |
Bone conduction speaker and compound vibration device thereof
The present disclosure relates to a bone conduction speaker and its compound vibration device. The compound vibration device comprises a vibration conductive plate and a vibration board, the vibration conductive plate is set to be the first torus, where at least two first rods inside it converge to its center; the vibration board is set as the second torus, where at least two second rods inside it converge to its center. The vibration conductive plate is fixed with the vibration board; the first torus is fixed on a magnetic system, and the second torus comprises a fixed voice coil, which is driven by the magnetic system. The bone conduction speaker in the present disclosure and its compound vibration device adopt the fixed vibration conductive plate and vibration board, making the technique simpler with a lower cost; because the two adjustable parts in the compound vibration device can adjust both low frequency and high frequency area, the frequency response obtained is flatter and the sound is broader. |
US11595754B1 |
Personalized headphone EQ based on headphone properties and user geometry
Audio processing for a headworn device can include obtaining ear geometry of a user. A frequency response or transfer function can be determined, based on the ear geometry of the user and a model of the headworn device, where the frequency response or transfer function characterizes an effect of a path between a speaker of the headworn device and an ear canal entrance of the user on sound. An equalization filter profile can be generated based on the based on the frequency response or transfer function. The equalization filter profile can be applied to an audio signal, and the audio signal can be used to drive the speaker of the headworn device. |
US11595753B2 |
Sound production using speaker enclosure with reduced internal pressure
Techniques are provided for generating sound using a speaker mounted to an enclosure (e.g., speaker cabinet) wherein a gas pressure level (e.g., air pressure level) inside the enclosure is lower than an ambient air pressure level outside the enclosure. The reduced gas pressure level within the enclosure provides an environment with a reduced pressure level at a back side of a speaker cone of the speaker, which enhances a low frequency response for a given speaker size, while also minimizing resonant frequencies and phase cancellation issues which could otherwise occur with conventional speaker systems in which acoustic sound waves are generated at the back side of the speaker cone. A pressure compensation system is utilized counteract a force applied to the front side of the speaker cone as a result of the gas pressure level inside the enclosure being lower than the ambient air pressure level outside the enclosure. |
US11595752B2 |
Electroacoustic transducer
An electroacoustic transducer includes a housing, one or more partition walls, a diaphragm, and a tube. The one or more partition walls divide an inner space of the housing into a plurality of spaces, such that a volume of a first of the plurality of spaces is different from a volume of a second of the plurality of spaces except the first of the plurality of spaces. The diaphragm is disposed in the housing, such that one surface thereof faces the plurality of spaces. The tube establishes communication between a sound wave emission opening that is open to an outer space of the housing and each of the plurality of spaces. |
US11595751B2 |
Loudspeaker with array of electrostatic card stack drivers
Dipole audio speakers, and more particularly, voice controlled dipole audio speakers having at least one microphone located substantially along the null sound plane of the dipole audio speaker. An improved loudspeaker system that produces an improved audio quality for stereophonic sound. The improved loudspeaker utilizes conventional electro-dynamic drivers in a sealed chamber that produce sound primarily in the 20-300 Hz band coupled with electrostatic card stack drivers placed outside the sealed chamber that cover the remaining 98% of the audio frequency spectrum (300 Hz to 20 kHz). The improved loudspeaker system can also include multiple card stack drivers that are placed at angles with respect to each other to maximize audio fidelity. |
US11595750B2 |
Multi-range speaker containing multiple diaphragms
Embodiments are disclosed of a speaker capable of producing multi-frequency-range sound using bar magnets, multiple diaphragms, and a shared planar voice coil. The planar voice coil is located between the bar magnets and translates a received electric signal into the kinetic energy that vibrates the diaphragms, thus reproducing multi-frequency range sound. In some embodiments, the speaker generates bi-directional sound. |
US11595749B2 |
Systems and methods for dynamic noise reduction
Aspects relate to systems and methods for dynamic active noise reduction including at least a sensor configured to sense a physiological characteristic of a user and transmit a physiological signal correlated to the sensed physiological characteristic, at least an environmental microphone configured to transduce an environmental noise to an environmental noise signal, a processor configured to receive the environmental noise signal, generate a noise-reducing sound signal as a function of the environmental noise signal, and, modify the noise-reducing sound signal as a function of the physiological signal, and a speaker configured to transduce a noise-reducing sound from the modified noise-reducing sound signal. |
US11595748B2 |
Active noise control headphones
Embodiments of active noise control (ANC) headphones and operating methods thereof are disclosed herein. In one example, a headphone includes a speaker, an internal microphone, and a processor. The speaker is configured to play an audio of interest based on an audio source signal. The internal microphone is configured to obtain a mixed audio signal including a noise signal and the audio of interest played by the speaker. The processor is configured to determine a first current system parameter of the headphone based on the mixed audio signal at a first time point, and determine if the first current system parameter of the headphone is higher than a predetermined threshold to determine if the headphone is worn by a user. |
US11595745B2 |
Acoustic output device and buttons thereof
The present disclosure relates to an acoustic output device including an earphone core, a controller, a Bluetooth module, and a button module. The earphone core may include at least one low-frequency acoustic driver configured to output sounds from at least two first guiding holes and at least one high-frequency acoustic driver configured to output sounds from at least two second guiding holes. The controller may be configured to direct the at least one low-frequency acoustic driver to output the sounds in a first frequency range and direct the at least one high-frequency acoustic driver to output the sounds in a second frequency range. The Bluetooth module may be configured to connect the acoustic output device with at least one terminal device. The button module may be configured to implement an interaction between a user of the acoustic output device and the acoustic output device. |
US11595743B2 |
Methods, devices, apparatuses and computer storage media for transmission of a time synchronization message
Embodiments of the present disclosure relate to methods, optical line terminals (OLTs), optical network units (ONUs), apparatuses and computer storage media for transmitting a time synchronization message. In some example embodiments, the OLT is configured to: determine a threshold rate to be N messages per second for transmission of a time synchronization message to an ONU, wherein N being greater than or equal to 0.1; and transmit, to the ONU, a time synchronization message at the threshold rate or a rate above the threshold rate, to enable the ONU to perform time synchronization with the OLT. In some other example embodiments, the OLT is configured to: select a plurality of ONUs for transmitting time synchronization information; and transmit, to the ONUs, a broadcast or multicast message the time synchronization information, to enable the plurality of ONUs to perform time synchronization with the OLT. |
US11595731B2 |
Implementation method and system of real-time subtitle in live broadcast and device
The present disclosure describes techniques of synchronizing subtitles in live broadcast The disclosed techniques comprise obtaining a source signal and a simultaneous interpretation signal in a live broadcast; performing voice recognition on the simultaneous interpretation signal in real-time to obtain corresponding translation text; delaying the simultaneous interpretation signal to obtain a first delayed signal; delaying the source signal to obtain a second delayed signal; obtaining proofreading results of the first delayed signal and the corresponding translation text; determining proofread subtitles based on the proofreading results; and sending the proofread subtitles and the second delay signal to a live display interface. |
US11595730B2 |
Signaling loudness adjustment for an audio scene
Aspects of the disclosure include methods, apparatuses, and non-transitory computer-readable storage mediums for loudness adjustment for an audio scene associated with an MPEG-I immersive audio stream. One apparatus includes processing circuitry that receives a first syntax element indicating a number of sound signals included in the audio scene. The processing circuitry determines whether one or more speech signals are included in the sound signals indicated by the first syntax element. The processing circuitry determines a reference speech signal from the one or more speech signals based on the one or more speech signals being included in the sound signals. The processing circuitry adjusts a loudness level of the reference speech signal of the audio scene based on an anchor speech signal. The processing circuitry adjusts loudness levels of the sound signals based on the adjusted loudness level of the reference speech signal. |
US11595725B2 |
Content recommendations using personas
Systems and methods for generating and displaying groupings of content recommendations using personas are provided. The system determines content for each of the plurality of personas. The determined content for each of the plurality of personas comprises content that shares a common genre or theme for each persona. The system populates each of the plurality of personas using the determined content for each of the plurality of personas. The system then causes display of at least some of the plurality of personas on a viewing device of a user. The at least some of the plurality of personas is selected for the user based on device data corresponding to the user, whereby the device data indicates user preferences and interactions with previous content. |
US11595722B2 |
Systems and methods for dynamically educating users on sports terminology
Systems and methods are described for a media guidance application (e.g., implemented on a user device) that explains sports terminology to a user accessing content that corresponds to a sporting event. The media guidance application may detect terms used in the content, determine the terms are unique to the sport, and display definitions and explanations alongside the terms. |
US11595715B2 |
Recent channels pre-calculation in video delivery
In some embodiments, a method receives a message that identifies an asset being viewed on a video service at a timestamp. The message is associated with a profile identifier and a plurality of messages are received for the profile identifier while using the video service. The method determines a channel identifier for a channel in which the asset is offered during the timestamp and determines whether a channel change occurred based on the channel identifier and a prior channel identifier determined from a prior message in the plurality of messages. When the channel change has occurred, the method stores the channel identifier and timestamp for the profile identifier in a data structure, wherein a list of channels is generated by querying the data structure to determine a set of channel identifiers and timestamps for the profile identifier. |
US11595710B2 |
Upstream sweep test with sweep server signaling
A network test instrument is operable to conduct sweep tests with a cable modem termination system having a distributed architecture. Through signaling performed via a telemetry channel between the network test instrument and a sweep server, the network test instrument can initiate the sweep test. The sweep server communicates with the cable modem termination system to facilitate the sweep test between the network test instrument and the cable modem termination system. |
US11595709B2 |
Method and system for video quality monitoring
Systems, apparatuses, and methods are described for detecting malfunctions of computing devices causing outputs of video content. Partially or fully static content frames may be detected, and, indications may be generated based on the static content frames. The indications may be analyzed to identify computing devices with degraded performance. Diagnostic tests may be run by the identified computing devices and/or other actions performed based on a determination of static content frames. |
US11595705B2 |
Transmission of applications with content
Provided are methods and systems for controlling data such as content and/or application data transmitted to one or more user devices. One method can comprise receiving a request for first content and generating, in response to the request for the first content, a first transport stream comprising the first content and application data relating to a first application. At least a portion of the first transport stream is transmitted to a recipient device. An interruption in the transmission of the first transport stream is detected and a determination is made that only a first portion of the application data has been transmitted to the recipient device. A second transport stream including second content and a second portion of the application data is generated and transmitted. |
US11595704B2 |
Transmission device, transmission method, reception device, reception method, display device, and display method
A reception device is provided. The reception device includes a high definition multimedia interface configured to receive first video data of a first high dynamic range video and first characteristic information for an electro-optical conversion of the first video data, the first characteristic information including a first value for the electro-optical conversion of the first video data when a first high dynamic range curve is to be indicated and a second value for the electro-optical conversion of the first video data when a second high dynamic range curve is to be indicated. The reception device includes reception circuitry configured to receive second video data of a second high dynamic range video and second characteristic information for electro-optical conversion of the second video data. The reception device further includes a video decoder, electro-optical conversion circuitry, and a display. |
US11595703B2 |
Systems and methods for controlling transmission of live media streams
A computer-implemented is disclosed. The method includes: receiving media data of a live media stream; detecting a trigger associated with the media data of the live media stream; in response to detecting the trigger, generating at least one of audio or video overlay content associated with the trigger; and transmitting, to viewer devices, the at least one of audio or video overlay content with the live media stream. |
US11595702B2 |
Data repository for sports and entertainment information
A method, system, apparatus, and computer program product provide/deliver information during a live broadcast. Information feeds (that include attributes and values) are ingested via a plug-in architecture, into an application server. The application server drives the information feeds into a database, and distributes the attributes to a web server. The web server exposes, using a web service, the attributes clients. The web service enables clients to select a set of the attributes and configure, for visual display, the values corresponding to the selected set of the attributes. The values are composited in real-time, based on the configuration, with live audio-video content. The composited elements and live audio-video content are broadcast/streamed live. |
US11595701B2 |
Systems and methods for a video sharing service within controlled environments
A system for a video sharing service for inmates in correctional facilities is disclosed. The system includes an inmate device of an inmate, a database storing inmate profiles, and a video sharing server configured to receive a registration request from the inmate device for registration of an inmate for the video sharing service, the registration request including user credentials of the inmate, retrieve an inmate profile of the inmate from the database, authenticate the inmate based on the user credentials and the inmate profile, create an account for the inmate for the video sharing service in response to authentication of the inmate, receive an upload request to upload a video from the inmate device, analyze the video for restricted content, and assign a rating to the video based on the analysis. |
US11595696B2 |
Subpicture layout and partial output with layers
There is included a method and apparatus comprising computer code configured to cause a processor or processors to perform obtaining video data, parsing a video parameter set (VPS) syntax of the video data, determining whether a value of a syntax element of the VPS syntax indicates a picture order count (POC) value of an access unit (AU) of the video data, and setting at least one of a plurality of pictures, slices, and tiles of the video data to the AU based on the value of the syntax element. |
US11595683B2 |
Priority-based non-adjacent merge design
Devices, systems and methods for constructing low-complexity non-adjacent merge candidates. In a representative aspect, a method for video processing includes receiving a current block of video data, selecting, based on a rule, a first non-adjacent block that is not adjacent to the current block, constructing a first merge candidate comprising motion information based on the first non-adjacent block, identifying a second non-adjacent block that is not adjacent to the current block and different from the first non-adjacent block, based on determining that the second non-adjacent block fails to satisfy the rule, refraining adding a second merge candidate derived from the second non-adjacent block, constructing a merge candidate list based on the first non-adjacent block, and decoding the current block based on the merge candidate list. |
US11595680B2 |
Picture decoding device, picture decoding method, and picture decoding program with history-based candidate selection
Technology for improving coding efficiency by performing a block split suitable for picture coding and decoding is provided. A picture decoding device includes a spatial candidate derivation unit configured to derive a spatial candidate from inter prediction information of a block neighboring a decoding target block and register the derived spatial candidate as a candidate in a first candidate list, a history-based candidate derivation unit configured to generate a second candidate list by adding a history-based candidate included in a history-based candidate list as a candidate to the first candidate list, a candidate selection unit configured to select a selection candidate from candidates included in the second candidate list; and an inter prediction unit configured to perform inter prediction using the selection candidate. The history-based candidate derivation unit switches between whether or not a history-based candidate overlapping a candidate included in the first candidate list is added in accordance with a prediction mode. |
US11595679B1 |
Encoder-side search ranges having horizontal bias or vertical bias
Innovations in encoder-side search ranges having horizontal bias or vertical bias are described herein. For example, a video encoder determines a block vector (“BV”) for a current block of a picture, performs intra prediction for the current block using the BV, and encodes the BV. The BV indicates a displacement to a region within the picture. When determining the BV, the encoder checks a constraint that the region is within a BV search range having a horizontal bias or vertical bias. The encoder can select the BV search range from among multiple available BV search ranges, e.g., depending at least in part on BV values of one or more previous blocks, which can be tracked in a histogram data structure. |
US11595675B2 |
Sample array coding for low-delay
The entropy coding of a current part of a predetermined entropy slice is based on, not only, the respective probability estimations of the predetermined entropy slice as adapted using the previously coded part of the predetermined entropy slice, but also probability estimations as used in the entropy coding of a spatially neighboring, in entropy slice order preceding entropy slice at a neighboring part thereof. Thereby, the probability estimations used in entropy coding are adapted to the actual symbol statistics more closely, thereby lowering the coding efficiency decrease normally caused by lower-delay concepts. Temporal interrelationships are exploited additionally or alternatively. |
US11595670B2 |
Method and apparatus for storage and signaling of sub-sample entry descriptions
Described are methods, apparatuses and computer program products for signaling and storing compressed point clouds. Sub-sample entries associated with sequences of sub-samples within sequences of samples may indicate whether sequences of sub-samples were encapsulated alone in a track, without other sub-samples or additional header data. Sub-sample entry types can be indexed at track-level sub-sample description boxes. Point cloud compression coded bitstream component types may be signaled by including respective point cloud unit header information in a codec-specific parameters-related field of track level sub-sample description boxes. Sub-sample information boxes may indicate sub-sample entry indices for respective sub-samples. A flag in such information boxes may indicate the presence of sub-sample description entry indexes. Description index boxes can contain sub-sample description entry indexes in the same container as sub-sample information boxes. Track fragment header boxes can include sub-sample description entry indices that apply to samples of a track fragment. |
US11595666B2 |
Interactions between decoder-side intra mode derivation and adaptive intra prediction modes
A method of performing intra prediction of a current block of a picture of a video sequence, includes determining whether a first flag indicates that an intra prediction mode corresponding to the current block is a directional mode, and based on the first flag being determined to indicate that the intra prediction mode corresponding to the current block is the directional mode, determining an index of the intra prediction mode in an allowed intra prediction modes (AIPM) list, and performing the intra prediction of the current block, using the intra prediction mode corresponding to the determined index in the AIPM list. |
US11595652B2 |
Explicit signaling of extended long term reference picture retention
A decoder includes circuitry configured to receive a bitstream; store a plurality of long-term reference frames in a reference list; retain a long-term reference frame in the reference list for a length of time based on a retention time; and decode at least a portion of video using the long-term reference frame retained in the reference list. Related apparatus, systems, techniques and articles are also described. |
US11595651B2 |
Use of chroma quantization parameter offsets in deblocking
Innovations in use of chroma quantization parameter (“QP”) offsets when determining a control parameter for deblock filtering. For example, as part of encoding, an encoder sets a picture-level chroma QP offset and slice-level chroma QP offset for encoding of a slice of a picture. The encoder also performs deblock filtering of at least part of the slice, where derivation of a control parameter considers only the picture-level chroma QP offset. The encoder outputs at least part of a bitstream including the encoded content. As part of decoding, a corresponding decoder sets a picture-level chroma QP offset and a slice-level chroma QP offset for decoding of a slice of a picture, but derivation of a control parameter for deblock filtering considers only the picture-level chroma QP offset. |
US11595650B2 |
Optimization of multi-sink Wi-Fi display with intelligent multi-session encoding
Systems, apparatuses, and methods may provide for multi-session encoding to optimize multiple encoding sessions on Wi-Fi display (WFD) source devices when the WFD source devices are connected to multiple sink devices. The multiple encoding sessions may be optimized with encoding hints that are generated by a compositor and transmitted to a pre-encoding checking device. The encoding session that has the highest encoding resolution is subjected to hierarchical motion estimation (HME) processing, and the encoding sessions that have lower resolutions are optimized based on a motion vector prediction hint generated by the encoding session that has the highest encoding resolution and a scaling factor. |
US11595646B2 |
Sliced encoding and decoding for remote rendering
Disclosed herein are related to a device and a method of remotely rendering an image. In one approach, a device divides an image of an artificial reality space into a plurality of slices. In one approach, the device encodes a first slice of the plurality of slices. In one approach, the device encodes a portion of a second slice of the plurality of slices, while the device encodes a portion of the first slice. In one approach, the device transmits the encoded first slice of the plurality of slices to a head wearable display. In one approach, the device transmits the encoded second slice of the plurality of slices to the head wearable display, while the device transmits a portion of the encoded first slice to the head wearable display. |
US11595644B2 |
Method and apparatus for offset in video filtering
Aspects of the disclosure provide methods and apparatuses for video encoding/decoding. In some examples, an apparatus for video decoding includes processing circuitry. For example, the processing circuitry determines a first combination from reconstructed samples of a first color component within a filter support region. Then, the processing circuitry determines, based on a mapping that associates offset values with combinations of possible reconstructed sample values, a first offset value that is associated with the first combination, and applies the first offset value on a to-be filtered sample of a second color component in the filter support region to determine a filtered sample of the second color component. |
US11595643B2 |
Encoding method and decoding method, and device using same
The present invention relates to an encoding method and decoding method, and a device using the same. The encoding method according to the present invention comprises the steps of: specifying an intra prediction mode for a current block; and scanning a residual signal by intra prediction of the current block, wherein the step of scanning the residual signal can determine a scanning type for a luminance signal and a chroma signal of the current block according to an intra prediction mode for a luminance sample of the current block. |
US11595640B2 |
Video or image coding for inducing weight index information for bi-prediction
According to the disclosure of the present document, when the inter prediction type of a current block indicates biprediction, weight index information for candidates in a merge candidate list or a sub-block merge candidate list can be induced or derived, and coding efficiency can be increased. |
US11595639B2 |
Method and apparatus for processing video signals using affine prediction
Disclosed are a method for processing video signals and an apparatus therefor. Specifically, the method for processing video signals on the basis of inter prediction comprises the steps of: inducing a motion vector predictor using motion data of a neighboring block of the current block; parsing layer data indicating the current layer to which a motion vector difference used in inter prediction of the current block belongs, in a previously defined layer structure in which the combination of one or more horizontal and vertical components of motion vector differences are divided into multiple layers; parsing index data indicating a particular combination within the current layer; inducing a motion vector difference of the current block using the layer data and index data; and inducing the motion vector for the current block by adding the motion vector difference to the motion vector predictor. |
US11595634B2 |
Detection and ranging based on a single monoscopic frame
One or more stereoscopic images are generated based on a single monoscopic image that may be obtained from a camera sensor. Each stereoscopic image includes a first digital image and a second digital image that, when viewed using any suitable stereoscopic viewing technique, result in a user or software program receiving a three-dimensional effect with respect to the elements included in the stereoscopic images. The monoscopic image may depict a geographic setting of a particular geographic location and the resulting stereoscopic image may provide a three-dimensional (3D) rendering of the geographic setting. Use of the stereoscopic image helps a system obtain more accurate detection and ranging capabilities. The stereoscopic image may be any configuration of the first digital image (monoscopic) and the second digital image (monoscopic) that together may generate a 3D effect as perceived by a viewer or software program. |
US11595630B2 |
Depth codec for real-time, high-quality light field reconstruction
Techniques to facilitate compression of depth data and real-time reconstruction of high-quality light fields. A parameter space of values for a line, pairs of endpoints on different sides of the line, and a palette index for each pixel of a pixel tile of a depth image is sampled. Values for the line, the pairs of endpoints, and the palette index that minimize an error are determined and stored. |
US11595625B2 |
Mechanical infrared light filter
Apparatus for generating images using a mechanical infrared cut-off switch are disclosed herein. An example apparatus including an optical system for generating images includes a mechanical infrared light filter movable between a first position and a second position. The mechanical infrared light filter may be configured to allow infrared light to pass through the optical system while in the first position and configured to filter out infrared light from the optical system while in the second position. The example apparatus also includes an imaging sensor including imaging pixels and infrared pixels, and may be configured to receive light from the optical system. Additionally, the example apparatus includes a processor configured to receive visible light data and infrared light data from the image sensor. The processor may further be configured to generate a combined image based on the visible light data and the infrared light data. |
US11595623B2 |
Sporting event entry system and method
A system and method for image recognition registration of an athlete into a sporting event. The athlete is registered in the sporting event using image recognition technology. A digital commencement image of the athlete taken by a camera (106) as the athlete crosses a starting line. The digital commencement image is compared with a stored profile image of the athlete to identify the athlete and enter them into the event without the need for the athlete to pre-register for the particular event. Enhanced recognition techniques incorporating pattern recognition may be used to increase identity accuracy. |
US11595621B2 |
Endoscope apparatus, endoscope, and image generation method
An endoscope apparatus includes a compression processing control unit configured to carry out a compression processing of compressing image data by using a compression parameter to generate compressed data, a monitor that is a display unit configured to display a display image corresponding to the image data, an information quantity detection unit configured to detect a quantity of information on an object contained in the image data, and a judgement unit configured to carry out a judgement processing of judging whether or not a judgement value corresponding to the quantity of information is smaller than a predetermined threshold. The image pickup of the object and the generation of the image data are continuously performed multiple times, and the judgement processing is carried out whenever the image data is generated. The compression parameter and the display image are determined based on a result of the judgement processing. |
US11595620B2 |
Method and apparatus for facilitating product sales from a remote location
A method of, and system for, presenting a product to an audience. The method includes the steps of: obtaining a lightbox assembly having a volume in which at least a part of the product to be presented can be placed; placing the at least part of the product in the volume of the lightbox with the lightbox at a first location; illuminating the at least part of the product in the volume of the lightbox; and continuously transmitting images of the at least part of the product illuminated in the volume of the lightbox through a wired or wireless network that are viewed by at least a first user at a second location. |
US11595619B1 |
Autonomous vehicle teleoperations system
A teleoperations system may be used to selectively override conditions detected by an autonomous vehicle to enable the autonomous vehicle to effectively ignore detected conditions that are identified as false positives by the teleoperations system. Furthermore, a teleoperations system may be used to generate commands that an autonomous vehicle validates prior to executing to confirm that the commands do not violate any vehicle constraints for the autonomous vehicle. Still further, an autonomous vehicle may be capable of dynamically varying the video quality of one or more camera feeds that are streamed to a teleoperations system over a bandwidth-constrained wireless network based upon a current context of the autonomous vehicle. |
US11595618B2 |
Enhanced visibility system for work machines
An enhanced visibility system for a work machine includes an image capture device, a sensor, one or more control circuits, and a display. The image capture device is configured to obtain image data of an area surrounding the work machine. The sensor is configured to obtain data regarding physical properties of the area surrounding the work machine. The control circuits are configured to receive the image data and the data regarding the physical properties, and augment the image data with the data regarding the physical properties to generate augmented image data. The display is configured to display the augmented image data to provide an enhanced view of the area surrounding the work machine. |
US11595603B2 |
Solid-state image pickup apparatus, correction method, and electronic apparatus
The present disclosure relates to a solid-state image pickup apparatus, a correction method, and an electronic apparatus, enabled to suppress an apparent uncomfortable feeling of an image output from a solid-state image pickup apparatus in which pixels of different OCL shapes are mounted mixedly. A solid-state image pickup apparatus according to an aspect of the present disclosure includes a pixel array in which a first pixel in which an OCL (On Chip Lens) of a standard size is formed and a second pixel in which an OCL of a size different from the standard size is formed are present mixedly, and a correction section that corrects a pixel value of the first pixel that is positioned in the vicinity of the second pixel among the first pixels on the pixel array. The present disclosure can be applied to, for example, a CMOS image sensor. |
US11595596B2 |
Solid-state image device and imaging apparatus
A solid-state imaging device including a photoelectric conversion film provided over a plurality of pixels, a first electrode electrically coupled to the photoelectric conversion film and provided to each pixel, a second electrode opposed to the first electrode, the photoelectric conversion film being interposed between the second electrode and the first electrode, a first electric charge accumulation section, a reset transistor that is provided to each pixel, and an electric potential generator that applies, during a period in which the signal electric charges are accumulated in the first electric charge accumulation section, an electric potential VPD to the first electrode of each of at least one or more pixels, an electric potential difference between the first electrode and the second electrode when the electric potential VPD is applied to the first electrode being smaller than an electric potential difference when a reset electric potential is applied to the first electrode. |
US11595595B2 |
Verification system for a pharmacy packaging system
A method and verification system for verifying pharmaceuticals packaged within a pouch using a pharmacy packaging system. The method includes activating a first light source to illuminate the pharmaceutical pouch, capturing a first image of the pharmaceutical pouch while illuminated by the first light source, activating a second light source to illuminate the pharmaceutical pouch, and capturing a second image of the pharmaceutical pouch while illuminated by the second light source. The method further includes generating a third image based on the first image and the second image, generating a dashboard to simultaneously display first images, second images, and third images from a plurality of pharmaceutical pouches, providing a number of pills indication of a number of pills detected in the pouch against a number of pills expected in the pouch, and displaying the dashboard. |
US11595592B2 |
Recorded sound thumbnail
Aspects of the present disclosure involve a system and a method for performing operations comprising: displaying, by a messaging application, a sound capture screen that enables a user to record the sound; after the sound is recorded using the sound capture screen, generating, by the messaging application, a visual element associated with the sound; receiving, by the messaging application, selection of the visual element from a displayed list of visual elements representing different sounds; in response to receiving the selection of the visual element, conditionally adding one or more graphics representing the sound to one or more images at a user selected position based on a privacy status of the sound; and playing, by the messaging application, the sound associated with the visual element together with displaying the one or more images. |
US11595591B2 |
Method and apparatus for triggering special image effects and hardware device
The disclosure discloses a method and apparatus for triggering special image effects and a hardware device. The method for triggering special image effects comprises: acquiring an original image from an image source and displaying the original image on a display device; collecting speech in an environment and recognizing the semantics of said speech; triggering a special effects process in response to recognizing predetermined semantics of said speech, the predetermined semantics being preset semantics associated with one or more special effects process; and according to the triggered special effects process, processing the original image to form and display special image effects. According to the method for triggering special image effects in the embodiment of the present disclosure, the image processing effect is triggered by recognition of speech semantics, thereby solving the technical problem in the prior art of inflexible image effect triggering being unable to free up a user's hands. |
US11595589B2 |
Surgical camera system with high dynamic range
An endoscopic camera device having an optical assembly; a first image sensor in optical communication with the optical assembly, the first image sensor receiving a first exposure and transmitting a first low dynamic range image; a second image sensor in optical communication with the optical assembly, the second image sensor receiving a second exposure and transmitting a second low dynamic range image, the second exposure being higher than the first exposure; and a processor for receiving the first low dynamic range image and the second low dynamic range image; wherein the processor is configured to combine the first low dynamic range image and the second dynamic range image into a high dynamic range image using a luminosity value derived as a preselected percentage of a cumulative luminosity distribution of at least one of the first low dynamic range image and the second low dynamic range image. |
US11595587B2 |
Vehicle surroundings object detection in low light conditions
A method performed by a vision control system for supporting in low light conditions in surroundings of a moving vehicle, object detection by at least a first on-board rearward- and/or sideward-facing image capturing device. The vision control system captures a surrounding located rearward and/or sideward of the moving vehicle with support from the at least first image capturing device. The vision control system further determines light conditions in the surrounding. Moreover, the vision control system provides with support from at least a first light source, when the light conditions fulfill insufficient light criteria, a light output illuminating a ground region of the surrounding to facilitate object detection by the at least first image capturing device. The disclosure also relates to a vision control system, a vehicle comprising such a vision control system, and a respective corresponding computer readable storage medium. |
US11595585B2 |
Exposure change control in low light environments
A method includes detecting, based on sensor data from a sensor on a mobile device, an environmental brightness measurement, where the mobile device comprises a display screen configured to adjust display brightness based on environmental brightness. The method further includes determining, based on image data from a camera on the mobile device, an extent to which the detected environmental brightness measurement is caused by reflected light from the display screen. The method additionally includes setting a rate of exposure change for the camera based on the determined extent to which the detected environmental brightness measurement is caused by reflected light from the display screen. |
US11595582B2 |
Dynamic flex circuit for camera with moveable image sensor
Various embodiments include a dynamic flex circuit that may be used in a camera with a moveable image sensor. The dynamic flex circuit may include one or more fixed end portions, a moveable end portion, and an intermediate portion. In some embodiments, the fixed end portion may be connected to another flex circuit of the camera. The moveable end portion may be coupled with the moveable image sensor. The intermediate portion may be configured to allow the moveable end portion to move with the moveable image sensor. Some embodiments include a reinforcement arrangement that reinforces one or more portions of the dynamic flex circuit. |
US11595581B2 |
Actuator of camera module
A camera module actuator includes: a magnet disposed on a lens barrel; a driving coil disposed opposite to the magnet; and a driving device including a comparer that calculates an error value by comparing a target position of the lens barrel with a current position of the lens barrel, a controller IC that generates a control signal by applying control gains to the error value, and a driving circuit that generates a driving signal in response to the control signal. The controller IC determines the control gains based on a friction coefficient between a guide groove guiding movement of the lens barrel and a ball bearing contacting the guide groove. The controller IC provides a detection signal having a gradually increasing level to the driving coil, and determines the friction coefficient based on a level of the detection signal at a point in time of movement of the lens barrel. |
US11595580B2 |
Microvideo system, format, and method of generation
The present disclosure provides systems and methods that use and/or generate image files according to a novel microvideo image format. For example, a microvideo can be a file that contains both a still image and a brief video. The microvideo can include multiple tracks, such as, for example, a separate video track, audio track, and/or one or more metadata tracks. As one example track, the microvideo can include a motion data track that stores motion data that can be used (e.g., at file runtime) to stabilize the video frames. A microvideo generation system included in an image capture device can determine a trimming of the video on-the-fly as the image capture device captures the microvideo. |
US11595575B2 |
Image sensor
An imaging device may code light, passing through an imaging optical lens arranged in a multi-lens array (MLA), and may transmit the light to a sensing element, and the sensing element may restore an image based on sensed information. |
US11595570B2 |
Image capture apparatus, information processing apparatus and control method
An image capture apparatus having a customizing function of assigning a predetermined shooting function to a predetermined operation member, comprises a memory and at least one processor which function as an acquisition unit configured to acquire shot image information obtained by a shooting operation of a user, and an estimation unit configured to estimate an operation member suitable for a customizing function to be recommended to a user as a result of executing an estimation processing based on the shot image information. |
US11595569B2 |
Supplying content aware photo filters
A server includes a photo filter module with instructions executed by a processor to identify when a client device captures a photograph. Photograph filters are selected based upon attributes of the client device and attributes of the photograph. The photograph filters are supplied to the client device. |
US11595566B2 |
Camera switching method for terminal, and terminal
Embodiments relate to the field of terminals and disclose a camera switching method for a terminal, and the terminal. In those embodiments, when the terminal is installed with a plurality of cameras, automatic and dynamic switching between the cameras may be implemented based on a to-be-photographed object, thereby improving a photographing effect of the to-be-photographed object. In those embodiment, the terminal may display, in response to a first operation of enabling a photographing function by a user, a first photographing picture captured by a first camera, where the first photographing picture includes a to-be-photographed object. If the to-be-photographed object cannot be displayed completely in the first photographing picture, the terminal may switch from the first photographing picture to a second photographing picture captured by the second camera, and disabling the first camera, where an FOV of the second camera is larger than an FOV of the first camera. |
US11595565B2 |
Image capturing apparatus, method for controlling the same, and recording medium for automatic image capturing of a subject
An image capturing apparatus performs automatic image capturing of a subject by using an image capturing unit, controls a plurality of images acquired by the automatic image capturing to be recorded in a recording unit, selects deletion candidate images from among the plurality of images recorded in the recording unit, based on a predetermined deletion condition, automatically deletes the deletion candidate images, and performs control so that information about images other than the deletion candidate images, among the plurality of images recorded in the recording unit and including the deletion candidate images before being automatically deleted, is transmitted to an external apparatus via a communication unit before the deletion candidate images are deleted so that the information is displayed on the external apparatus. |
US11595564B2 |
Universal control interface for camera
The present invention relates to a new universal control interface for cameras and other audio-visual recording/using instruments, and more specifically a multi-axis visual interface for simultaneous display and control of aperture (Av), shutter speed (Tv), ISO, and/or other parameters like exposure value (EV). The invention relates to either a triangular, rectangle or clover shape interface where the parameters are visually represented on one of the axis, side or branch of the interface and where the user instead of altering the parameters, will provide intention such as (a) depth-of field, (b) motion blur, (c) granularity, or the composite (d) exposure. The invention further describes how in some cases, one or more of these parameters can be locked or not available based on the technology used for the delay and control interface. |
US11595562B2 |
Image processing apparatus, control method thereof, and storage medium
An autofocus (AF) frame integration unit generates at least two groups, each group including at least one focus detection area based on a comparison between a plurality of focus detection results, the plurality of focus detection results to be obtained corresponding to a specific time. A movement determination unit determines whether an object corresponding to a first group and a second group is moving, based on a focus detection result corresponding to the first group, generated based on a focus detection result corresponding to a first time, and a focus detection result corresponding to the second group, generated based on a focus detection result corresponding to a second time later than the first time. |
US11595558B2 |
Apparatus and method for measuring cracks in wall surface
A crack measuring apparatus includes distance-measuring units, an image pickup unit having pixels the positions of which are identified on an imaging device, an infrared image pickup unit having pixels the positions of which are identified on an imaging device and having sensitivity to infrared rays, driving units, angle-measuring units, and an arithmetic control unit, the arithmetic control unit searches for a cracked portion from a temperature difference in an infrared image by turning the infrared image pickup unit, captures an image of the cracked portion by the image pickup unit and identifies a position of the cracked portion from a density difference in the captured image, measures the position of the cracked portion by the distance-measuring units and the angle-measuring units, and acquires three-dimensional absolute coordinates of the cracked portion. |
US11595557B2 |
Electronic module, electronic equipment, imaging sensor module, imaging apparatus, and display apparatus
An electronic module has a flexible wiring member, a wiring circuit board, and a conductive connection member. The flexible wiring member has a flexible base, a first wiring layer formed on at least one face of the flexible base, and a first electrode formed of the first wiring layer at the end part that is not covered by a first insulating layer. The wiring circuit board has a base provided with a wiring, a second insulating layer having opening formed on at least one face of the base, and a second electrode formed in the opening. The conductive connection member connects the first electrode and the second electrode to each other. The end of the flexible wiring member is arranged above the opening in plan view. |
US11595552B2 |
Dome for surveillance camera
A dome for a surveillance camera comprises an at least partially transparent spherical portion, a front transition portion, a back transition portion, and lateral transition portions. All transition portions extend to a perimeter plane and a tangent to the spherical portion where it connects to the front transition portion has an angle α relative to a normal to the perimeter plane, as measured in a symmetry plane, and a tangent to the spherical portion where it connects to the back transition portion has an angle β relative to a normal to the perimeter plane, as measured in the same plane and the same direction as the angle α. The angle β is equal to or larger than the angle α. |
US11595551B2 |
Camera module, method of manufacturing camera module, imaging apparatus, and electronic apparatus
The present disclosure relates to a camera module capable of achieving a smaller height, a method of manufacturing a camera module, an imaging apparatus, and an electronic apparatus. An imaging device having its imaging surface bonded to a provisional substrate is attached, and the imaging device in that state is joined to a substrate via an electrode having a TSV structure. After the provisional substrate is detached, an IR cut filter (IRCF) on which a light blocking film is printed or jet-dispensed in a region other than the effective pixel region is bonded to the imaging surface via a transparent resin. Because of this, there is no need to provide any sealing glass in the stage before the imaging surface, and the optical length of the lens can be shortened. Thus, a smaller height can be achieved. The present disclosure can be applied to camera modules. |
US11595547B2 |
Characteristics based operation of image forming apparatus
An example image forming apparatus includes a communicator to receive print data, an image forming unit, and a processor to control the image forming unit to perform image processing on the received print data and control the image forming unit to print the image-processed print data. When the received print data is not a scan file, the image processing is performed at a first level and when the received print data is a scan file, the image processing is performed at a second level, the second level being higher than the first level. |
US11595544B1 |
Image forming apparatus
If an image read by an image reading unit is formed by an image forming unit, a control unit synthesizes a first encoded image and a second encoded image with the image formed by the image forming unit to generate a synthetic image, the first encoded image representing encoded data where reading setting information used for the image reading unit to read the image is encoded, the second encoded image representing encoded data where forming setting information used for the image forming unit to form the image is encoded, the first encoded image being synthesized at a position where a direction in which the document is read by the image reading unit is specifiable, and the second encoded image being synthesized at a position where a direction in which the image is formed on the sheet is specifiable. The image forming unit forms the synthetic image on the sheet. |
US11595541B2 |
Sheet discharging apparatus, image reading apparatus, and image forming apparatus
An image forming apparatus includes an image forming portion to form an image on a sheet, a tray on which sheets to be fed are stacked, and a swing member supported by the tray and configured to swing in a case where the swing member is pushed by a discharged sheet. A stacking portion includes a first surface on an upper portion of a first portion, and a moving member in contact with the discharged sheet. The moving member can be positioned at a position downstream of the first surface in the discharge direction, wherein the swing member overlaps with the first surface as viewed in the sheet width direction in a case where the swing member is not in contact with a discharged sheet, and the swing member is arranged such that a lower end of the swing member is not in contact with the stacking portion. |
US11595538B2 |
Image forming apparatus
An image forming apparatus includes a sensor configured to detect a length of a sheet, which is placed on a platen, in a predetermined direction and a controller. The controller is configured to convert an image signal based on a conversion condition, control the image forming unit to form an image based on the converted image signal, and execute calibration in which the conversion condition is generated. The controller is configured, in a case in which the calibration is to be executed, to acquire information related to a size of a sheet on which a test chart is to be formed, select a sheet based on the information, form the test chart on the selected sheet acquire reading data output from the reader, and generate the conversion condition based on the reading data. |
US11595531B2 |
System and method for toner classification from device printouts
A system and method for toner classification from device printouts includes applying machine learning to electronic documents formed from scanned printout images. A training set is formed by scanning documents known to be printed with OEM toner, supplemented by scanning documents known to be printed with non-OEM toner. When new printouts are made, they are scanned and analyzed by an AI/ML server and classified as printed by OEM toner or by non-OEM toner. |
US11595528B2 |
Mediated multi party electronic conference system
An AI based moderator system for an electronic conference. The moderator scores users based on ratings and diversity, and attempts to keep a high rating person talking while maintaining diversity. |
US11595524B2 |
System and method for callback management utilizing smart callbacks
A system and method for callback management, utilizing a callback cloud, a digital ledger, and smart callback contracts, brokering user to user communications and session establishment using an automated workflow built upon extensible root smart contract templates which can be configured to connect various users and brands. The system may comprise callback cloud, that may further comprise a callback manager, a brand interface server, an interaction manager, a media server, one or more blockchain digital ledgers, and various smart contracts which are used to autonomously respond to received user requests. |
US11595519B2 |
Electronic apparatus and processing system
An electronic apparatus and a processing system are disclosed. In one embodiment, an electronic apparatus is an electronic apparatus to be operated by a first user. The electronic apparatus comprises a communication unit and at least one processor. The communication unit is configured to acquire first information related to an other-party apparatus. The at least one processor is configured to determine a movement state of a second user of the other-party apparatus, based on the first information. The at least one processor performs processing based on the determined movement state, in response to a place call command from the first user regarding first phone communication with the other-party apparatus. |
US11595516B1 |
Enhanced caller information
Various media or other related information may be provided during a call between a calling device and a called device. One example method of operation may include initiating a call via an origination device to a recipient device, transmitting a call notification to an enhanced information server responsive to initiating the call, retrieving enhanced information associated with the intended recipient device and/or the origination device, transmitting the enhanced information to the intended recipient device and/or the origination device, and connecting the call between the origination device and the intended recipient device. |
US11595507B2 |
Electronic apparatus and method of selectively applying security mode in mobile device
A mobile device includes a user interface having a display panel and a touch panel, a network interface to communicate with an external network, a memory to store a password and an authorized user, a functional unit to sense a user and a motion of the mobile device during a power saving mode, and a control unit to control operations of the mobile device, and to perform an unlocking operation during the power saving mode to unlock the mobile device. The unlocking operation includes a motion detection process of sensing the motion of the mobile device, a user identification process of determining that a sensed user represents the authorized user, in response to the sensed motion of the motion detecting process, and an unlocking process of unlocking the mobile device according to the determination of the user identification process. |
US11595502B2 |
Methods and systems for layer 7 hardware assist and CPU task offloads
Certain tasks related to processing layer 7 (L7) data streams, such as HTTP data streams, can be performed by an L7 assist circuit instead of by general-purpose CPUs. The L7 assist circuit can normalize URLs, Huffman decode, Huffman encode, and generate hashes of normalized URLs. A L7 data stream, which is reassembled from received network packets, includes an L7 header. L7 assist produces an augmented L7 header that is added to the L7 data stream. The CPUs can use the augmented L7 header, thereby speeding up processing. On the outbound path, L7 assist can remove the augmented L7 header and perform Huffman encoding such that the CPUs can perform other tasks. |
US11595494B1 |
Device, system and method controlling operation of a client device via an intermediation server
A device, system and method controlling operation of a client device via an intermediation server are provided. The server maintains indications of predefined data descriptions, associated with respective provider systems, comprising a subset of given predefined data descriptions to be provided at a client device during implementation of a computing-process flow in conjunction with communicating with the respective provider systems. The server: provides, to the respective provider systems, a communication from the client device received in conjunction with implementing a given step of the computing-process flow; and receives, from a given provider system, a response to the communication. The server provides, to the client device: the response; and a predefined data description associated with the given provider system in the indications, the predefined data description provided at the client device in conjunction with the response causing the client device to implement the predefined data description, according to the computing-process flow. |
US11595493B2 |
System and method for namespace masking in an integration flow
Systems and methods for namespace masking in an integration flow. In order to mitigate issues arising due to application updates impacting integration flows, during the metadata generation phase, all the elements which are available for operation selection can be cloned and replaced with a new namespace. The original elements are deleted from the metadata. The systems and methods can maintain the original namespace and the element name at a predefined place in the metadata (e.g., as an attribute of the cloned Element). The cloned element in addition to all the original fields of the element, can have one additional field which will store the value of the original namespace. |
US11595492B2 |
Conducting investigations under limited connectivity
Systems and methods are provided for obtaining and providing one or more resources for an investigation to be conducted remotely from a server. Resources needed to conduct an investigation may include one or more portions of a database and/or one or more functionalities of a data analysis platform. Based on the investigation to be conducted (e.g., type of investigation, location of investigation, personnel involved, etc.), a computing system may obtain different amounts/types of resources from the server. The investigation may be conducted via a web application that runs on the computing system. The web application may access the resources obtained from the server. The results of the investigation may be sent by the computing system to the server. The computing system may receive updates from the server. The computing system may act as a server for other remote systems that are conducting investigations. |
US11595491B2 |
Notification throttling
An electronic device is configured with a notification throttling system. The notification throttling system obtains a set of priorities for multiple applications that are installed on the electronic device and are enabled for alerting the user via notifications. The set of priorities specifies a relative importance of each particular application among the multiple applications. The notification throttling system throttles application alerts presented by the user device for notifications generated by the applications based on the relative importance of each particular application as specified by the set of priorities. |
US11595489B2 |
Selecting content for high velocity users
Disclosed are systems, methods, and computer-readable storage media to select content to present to a user are disclosed. In one aspect, a method includes determining a content consumption rate of the user, and selectively presenting content to the user based on the content consumption rate. The content consumption rate may be determined based on a number of media content presented to the user over a period of time. If the number is above a threshold, a first type of content may be presented, while if the number is below (or equal) to the threshold, a second type of content, or in some aspects, no content, may be presented. After the selective presentation, additional content may be presented regardless of the content consumption rate. |
US11595486B2 |
Cloud-based, geospatially-enabled data recording, notification, and rendering system and method
A cloud-based, geospatially-enabled data recording, notification, and rendering system. |
US11595485B2 |
Systems and methods for demand-based dynamic service provisioning in an edge computing system
A system described herein may provide a technique for the dynamic selection of edge computing devices, such as Multi-Access/Mobile Edge Computing devices (“MECs”), to provide services to User Equipment (“UEs”) based on factors such as MEC load, services and/or applications available or supported by particular MECs, UE location, service requirements, and/or other factors. One or more devices that are external to a network with which MECs are provided may be able to request services from a suitable MEC and/or identify a suitable MEC to provide such services. In this manner, control over the selection of particular MECs may be provided to devices or systems that are external to the network, thus providing an enhanced level of granular control and dynamism to such external devices or systems with respect to MEC selection. |
US11595484B2 |
Centralized machine learning predictor for a remote network management platform
A remote network management platform is provided that includes an end-user computational instance dedicated to a managed network, a training computational instance, and a prediction computational instance. The training instance is configured to receive a corpus of textual records from the end-user instance and to determine therefrom a machine learning (ML) model to determine the numerical similarity between input textual records and textual records in the corpus of textual records. The prediction instance is configured to receive the ML model and an additional textual record from the end-user instance, to use the ML model to determine respective numerical similarities between the additional textual record and the textual records in the corpus of textual records, and to transmit, based on the respective numerical similarities, representations of one or more of the textual records in the corpus of textual records to the end-user computational instance. |
US11595481B2 |
Multi-agent simulation system
A multi-agent simulation system performs a simulation of a target world in which a plurality of agents interacting with each other exist. The multi-agent simulation system includes: a plurality of agent simulators configured to perform simulations of the plurality of agents, respectively; and a center controller configured to communicate with the plurality of agent simulators. The center controller performs message filtering based on a distance between the agents. Specifically, the center controller sets a delivery frequency of the delivery message to be low between the agent simulators that perform the simulations of the agents distant from each other. A space of the simulation target world is divided into a plurality of partitions, and the message filtering is performed in units of the partition. |
US11595480B2 |
Server system for processing a virtual space
A server system (100) for processing a virtual space, the virtual space comprising a plurality of entities (A-E), the server system (100) comprising: one or more back-end servers (108); and one or more front-end servers (114); wherein each back-end server (108) stores a respective subset of the plurality of entities (A-E); each front-end server (114) is communicatively coupled to each back-end server (108); each front-end server (114) is configured to be communicatively coupled to one or more client devices (106); each front-end server (114) stores one or more entity references (RefA-RefE); and each entity reference (RefA-RefE) comprises a first identifier for identifying a respective entity (A-E) and a second identifier for identifying the back-end server (108) on which the entity (A-E) identified by the first identifier is stored. |
US11595478B2 |
Medical device management
A medical device for use in patient resuscitation and that is configured to communicate with one or more management servers includes a memory, a processor communicably coupled to the memory and configured to store device status information including device-readiness information from a medical device self-test, and store clinical event information observed by the medical device during a use of the medical device during a clinical event, the clinical event information including CPR performance data, and a communication component communicably coupled to the processor and configured to wirelessly transmit the device status information and the clinical event information to the one or more management servers, wherein the medical device includes an external defibrillator, an automated external defibrillator, or a compression assistance device. |
US11595476B2 |
Systems and methods for data distribution using a publication subscriber model with a federation of trusted data distribution networks
Federation of trusted data distribution systems is accomplished by treating an entire data distribution network as either a publisher or subscriber to a feed in another data distribution network. A first data feed is created in a first data feed management subsystem associated with a first data distribution network. A second data feed related to the first data feed is created in a second data feed management subsystem associated with a second data distribution network. A first data access policy is associated with the second data feed and a publisher for the second data feed is created in the second data distribution network. The identity and authentication of a second subscriber to the second data feed in the second data distribution network is managed by referencing the first data access policy. |
US11595473B2 |
Ad hoc decentralized cloud infrastructure
Technologies for establishing and utilizing a decentralized cloud infrastructure using a plurality of mobile computing devices include broadcasting for the formation of the decentralized cloud computing and storage infrastructure and establishing wireless communications between the plurality of mobile computing devices. The plurality of mobile computing devices self-organize and cooperate with one another to establish a structured decentralized cloud infrastructure to expose and sharing resources, services, and/or applications for ad hoc or socially-driven decentralized, cloud computing purposes. |
US11595469B2 |
Balancing data partitions among dynamic services in a cloud environment
A method includes identifying, by a first instance of a service, a first number of data partitions of a data source to be processed by the service and a second number of instances of the service available to process the first number of data partitions. The method further includes separating the first number of data partitions into a first set of data partitions and a second set of data partitions in view of the second number of instances of the service, determining a target number of data partitions from the first set of data partitions to be claimed by each of the second number of instances of the service, and claiming, by the first instance of the service, the target number of data partitions from the first set of data partitions and up to one data partition from the second set of data partitions. |
US11595466B2 |
Computer-implemented systems and methods for a user-controllable parameter
Systems and methods are provided for operating a user-controllable parameter. An item pool is accessed, where the item pool contains a plurality of items, and where each item is associated with a parameter. A baseline position is identified, where the baseline position is associated with a particular value of the parameter. A user-controllable parameter is received, where the user-controllable parameter indicates a user preference for a next item relative to the baseline position. The next item is selected based on the baseline position and the user-controllable parameter, and the next item is provided via a computer network. |
US11595463B2 |
Retrieval of network site data with data storage device utilizing user authentication
A data storage system including a data storage device located on a first network and configured to download data from a network site based on universal resource locator (“URL”) information of the network site, and an electronic device located on a second network different than the first network. The electronic device determines the URL information of the network site, receives user authentication data, receives a network address of the data storage device from a server using the user authentication data, and transmits the URL information to the data storage device using the network address of the data storage device. This causes the data storage device to download data from the network site contingent on correct user authentication being provided. |
US11595460B2 |
Automated real-time data stream switching in a shared virtual area communication environment
Switching real-time data stream connections between network nodes sharing a virtual area is described. In one aspect, the switching involves storing a virtual area specification. The virtual area specification includes a description of one or more switching rules each defining a respective connection between sources of a respective real-time data stream type and sinks of the real-time data stream type in terms of positions in the virtual area. Real-time data stream connections are established between network nodes associated with respective objects each of which is associated with at least on of a source and a sink of one or more of the real-time data stream types. The real-time data stream connections are established based on the one or more switching rules, the respective sources and sinks associated with the objects, and respective positions of the objects in the virtual area. |
US11595457B2 |
System and method for dynamic adjustment of content streaming rates
A system and method dynamically adjusting the rate at which incoming content data is transferred into a media gateway appliance, and the rate at which outgoing content data is provided to one or more client devices by the media gateway appliance. This dynamic adjustment is performed in accordance with a predetermined program and as a function of real-time data streaming rates and predetermined rate parameters and preferences. The system and method enable the provision of an improved viewing and content acquisition experience for users. |
US11595452B1 |
Computer server configured for data meetings with optional participant-selected call-connecting attributes
Consistent with an embodiment of the present disclosure, a server arrangement provides a web-accessible virtual-meeting interface through which participant identifying information and meeting time information is passed for setting up and establishing a primary meeting. In addition to the primary meeting, various selectable options are provided for one or more participants, including merged audio from the established audio connections to the participants, establishing a secondary meeting and/or automatically moving or reverting connections from/to the primary meeting. |
US11595448B1 |
Method and apparatus for automatically creating mirrored views of the video feed of meeting participants in breakout rooms or conversation groups during a videoconferencing session
A mirrored gallery view is provided of a breakout room in an online meeting user interface associated with a videoconferencing session with a session view established in a videoconferencing system. The mirrored gallery view displays video feeds of meeting participants on their respective participant computers. The video feeds are camera-captured views of each of the meeting participants, The videoconferencing system creates a breakout room within the videoconferencing session for a subset of the meeting participants, thereby allowing the subset of the meeting participants to engage with one another within the breakout room during the videoconferencing session. A video processor automatically creates mirrored views of the video feed of each of the subset of meeting participants in the breakout room whose video feed in the videoconferencing session is not currently mirrored. The videoconferencing system generates instructions for a gallery view of the breakout room in the online meeting user interface using only mirrored views of the video feeds of the subset of meeting participants in the breakout room, including the mirrored views created by the video processor, and transmits instructions to display the gallery view of the breakout room in the online meeting user interface to all meeting participants in the breakout room on their respective participant computers. In this manner, all of the meeting participants in the breakout room are displayed as mirrored views of their respective video feeds. A similar process occurs with conversation groups in a virtual space view in an online meeting user interface associated with a videoconferencing session established in a videoconferencing system. |
US11595446B2 |
Identifying suspicious entries in a document management system
A document management system manages documents of an entity. The document management system monitors for entries in a document that are suspicious. Entries in the document are classified by the document management system as a “suspicious entry” or a “non-suspicious entry.” In one embodiment, a suspicious entry is indicative of potentially suspicious activity at the entity. |
US11595445B2 |
Unified authorization with data control language for cloud platforms
Methods, systems, and computer-readable storage media for receiving, by an AMS, a policy definition file defining policies to be enforced during execution of an instance of an application within the cloud platform, providing, by the AMS, an enhanced policy definition file indicating authorizations for roles for a policy of the policy definition file, providing an authentication bundle for execution of policy decisions at the instance, the authentication bundle provided based on the enhanced policy definition file, the authentication bundle distributed to application containers within the cloud platform, and during execution of the instance: transmitting, by the instance, an authorization request from the instance to an ADC, the ADC including an OPA and being executed within the container and executing policy decisions based on the authentication bundle, receiving, by the instance, a policy decision from the ADC and enforcing the policy based on the policy decision. |
US11595443B2 |
System and method for transmitting a data stream in a network
In one embodiment, a method includes receiving, by a network controller and from a first node of a network, information associated with a data stream of the network and determining, by the network controller, a segmentation for the data stream. The segmentation includes a plurality of data segments and the plurality of data segments includes a first data segment. The method further includes determining, by the network controller, a data flow path for each of the plurality of data segments and determining, by the network controller, a first wavelength to assign to the first data segment. The first wavelength is one of a plurality of wavelengths spanning between the first node and a second node of the network. |
US11595440B2 |
Maintaining interactive session continuity in honeypot deployments
Disclosed herein are methods, systems, and processes for provisioning and deploying deception computing systems with dynamic and flexible personalities. A network connection is received from a source Internet Protocol (IP) address at a honeypot. In response to receiving the network connection, a personality state table is accessed and a determination is made as to whether a personality that corresponds to the source IP address exists in the personality state table. If the personality exists, the personality is designated to the source IP address. If the personality does not exist, an attack characteristic of the network connection is determined and an alternate personality that is substantially similar to the attack characteristic is designated to the source IP address. |
US11595439B2 |
Network device detection and verification protocol
Certain embodiments of this disclosure describe techniques for detecting a spoofed network device and preventing the serving of content, such as advertisements, to the spoofed network device. In certain embodiments, a network security system is provided. The network security system can include hardware and/or software programmed to prevent the provision of content to a spoofed client device. The network security system can provide a mechanism for certifying to content providers, such as advertisers, whether or not a client is a legitimate mobile device or a spoofed device. Accordingly, content providers can prevent the delivery of content to fraudulent devices instead of relying on imprecise solutions that detect fraudulent activity after it has occurred. |
US11595422B2 |
Method for preventing electronic control unit from executing process based on malicious frame transmitted to bus
A method for use in a network communication system including a plurality of electronic controllers that communicate with each other via a bus in accordance with a Controller Area Network (CAN) protocol determines whether or not content of a predetermined field in a frame which has started to be transmitted meets a predetermined condition indicating fraud. In a case where the content of the predetermined field meets the predetermined condition, a frame including predetermined consecutive dominant bits for notifying an anomaly is transmitted before an end of the frame is transmitted. A number of times the frame including the predetermined consecutive dominant bits is transmitted is recorded for each identifier (ID) represented by content of an ID field included in a plurality of frames which has been transmitted. A malicious electronic controller is determined in accordance with the number of times recorded for each ID. |
US11595419B2 |
Communication monitoring system, communication monitoring apparatus, and communication monitoring method
An abuse using a legitimate communication used for executing a business sequence is detected.A legitimate communication determination processing unit 22 determines whether or not a communication packet received by a communication destination device is a legitimate communication packet permitted by a monitoring target system 10 based on meta information extracted by a packet collection processing unit 21, a sequence packet identification processing unit 23 determines whether or not the communication packet determined to be the legitimate communication packet by the legitimate communication determination processing unit 22 is a communication packet constituting the business sequence, and a sequence establishment determination processing unit 24 determines whether or not the business sequence related to the communication packet determined to constitute the business sequence by the sequence packet identification processing unit 23 is established. |
US11595417B2 |
Systems and methods for mediating access to resources
The present disclosure relates generally to the field of data processing and electronic messaging systems, and, more particularly, to systems and methods for mediating a user's access to a resource to thereby prevent potential security breaches, including phishing and impersonation, malware, and security issues, particularly with respect to websites and electronic communications. |
US11595415B2 |
Root cause analysis in multivariate unsupervised anomaly detection
Described embodiments provide systems and methods for anomaly detection and root cause analysis. A root cause analyzer receives a plurality of data samples input to an anomaly detection engine, and a corresponding plurality of anomaly labels output from the anomaly detection engine. The root cause analyzer trains a classification model using the plurality of data samples and the corresponding plurality of anomaly labels. The root cause analyzer determines, using the trained classification model and the plurality of data samples, relative contributions of anomalous features in a data sample of the plurality of data samples, to a prediction that the data sample is anomalous. The root cause analyzer provides the relative contributions of anomalous features to a device, to determine an action in response to the prediction that the data sample is anomalous. |
US11595414B2 |
Threat mitigation in a virtualized workload environment using segregated shadow workloads
The technology disclosed herein enables the detection and subsequent mitigation of threats in virtualized workload environments. In a particular embodiment, a method provides, in a workload orchestration platform, managing one or more first logical networks that include a plurality of first workloads and a plurality of shadow workloads. One or more initial processes of the shadow workloads, when instantiated, are known to a security application. The method further includes providing security permissions to the security application that enable the security application to manage the shadow workloads. Also, the method includes providing admin permissions to an administrator application that enable the administrator application to manage the first workloads irrespective of the shadow workloads. |
US11595409B2 |
Method for monitoring an industrial network
A method monitors an industrial network. The industrial network is divided into at least two hierarchical levels each with a different hierarchical stage. At least one network component is respectively included for each hierarchical level. Each hierarchical level has at least one segment. Each segment comprises at least one network component of the respective hierarchical level. At least one component monitoring unit for monitoring at least one network component in the respective segment and/or at least one communication monitoring unit for monitoring communication in the respective segment is/are respectively included for each segment. A central monitoring unit is included in one of the segments in order to evaluate information for detecting attacks. At least one decentralized monitoring unit is respectively included in at least one of the other segments. |
US11595404B2 |
Systems and methods for secure communications for modern workspaces
Systems and methods support workspaces operating on an Information Handling System (IHS), where the workspaces utilize virtualization to operate in isolation from a portion of the hardware and software of the IHS. Resources of the IHS that are available for use by workspaces are registered with an orchestration service that is remote from the IHS and that manages deployment of workspaces on the IHS. A workspace is instantiated on the IHS according to a workspace definition provided by the orchestration service. The orchestration service also provides a handle that allows the workspace to access a particular resource of the IHS, where the handle includes an interface supported by an embedded controller of the IHS for providing access to the IHS resource. The workspace invokes the IHS resource using an interface provided in the handle. The handle thus provides a communication mechanism for workspaces to utilize local resources of the IHS. |
US11595398B1 |
Access control for named domain networking
The disclosure is directed to providing content access control in information centric networking (ICN) networks. Methods and systems include hardware and/or software that perform operations for sending to a content provider of an ICN network an access request for content in response to receiving a first content request from a client. The operations also include receiving from the content provider access control information for the content. The operations further include sending to the client a challenge. Additionally, the operations include receiving from the client an authorization of the content provider that includes information obtained by the client from the content provider based on the challenge. Furthermore, the operations include verifying the authorization received from the client using the access control information received from the content provider. Moreover, the operations include sending to the client the content. |
US11595394B2 |
Information processing system, apparatus, and method for setting a role in an application package
At least one information processing apparatus includes a circuitry that: receives, as a package management unit, a setting of a role, which can assign a usage authority of an application package containing at least one application, with respect to the application package, and permits or restricts, as a user management unit, a user to use the application package in conformity with the role, which is allocated to the user of the application, and the role, which is set in the application package. |
US11595392B2 |
Gateway enrollment for internet of things device management
Disclosed are various examples for enrollment of gateway enrollment for Internet-of-Things (IoT) device management. In one example, the gateway device transmits an enrollment request to a management service. The enrollment request includes enrollment credentials that are entered through a user interface. The gateway device receives gateway credentials that authenticate communications with a management service. Subsequent communications transmitted from the gateway device to the management service are authenticated using the gateway credentials. |
US11595390B2 |
Self-organizing trusted networks
Disclosed examples include during basic discovery, provide information from a local device to a first remote trusted device, the information to indicate the local device supports trusted discovery and to establish the local device as a second remote trusted device; during the trusted discovery, access, by the local device, a trusted discovery message received from the first remote trusted device; in response to verifying security credentials identified in the trusted discovery message for the first remote trusted device: add the first remote trusted device to a trusted network including the local device; and index, by the local device, a first service hosted by the first remote trusted device in a registry, the registry to identify second services available to the local device and corresponding locations of the second services. |
US11595387B2 |
Wireless network access for data appliances
A wireless access point receives data from a data appliance and transfers the data to a distributed ledger function. The distributed ledger function stores the data in a distributed ledger database, determines additional network access for the data appliance, and transfers an instruction indicating the additional network access to the wireless access point. The wireless access point receives the network access instruction, schedules the additional network access for the data appliance per the network access instruction, wirelessly transfers a network access schedule to the data appliance, wirelessly receives additional data from the data appliance per the network access schedule, and transfers the additional data to the distributed ledger function. The distributed ledger function stores the additional data in the distributed ledger database, determines future network access for the data appliance, and transfers another access instruction indicating the future network access for the data appliance to the wireless access point. |
US11595382B2 |
Facial profile password to modify user account data for hands free transactions
An account management system establishes an account for a user. The user enters user account information into the account and the account management system establishes a facial template for the user based on an image of the face of the user. The user requests to change user account information at a merchant POS (POS) device. The merchant POS device captures a facial image of the user and transmits the image the account management system, which generates a facial template and compares the generated facial template against the existing facial template associated with user account. If the generated facial template is less than a threshold difference from the existing facial template, the user may update user account information at the merchant POS device, which communicates the updated user account information to the account management system. The account management system associates the updated user account information with the user account. |
US11595379B2 |
Mechanism of common authentication for both supervisor and guest clusters
This disclosure describes a computer implemented method for receiving authentication credentials identifying a user; identifying computing systems for which the user is authorized access to; and transmitting tokens granting access to the identified computing systems. In some embodiments, no two tokens of the transmitted tokens grants access to the same one of the identified computing systems. The user typically has access to a management tool configured to manage the transmission of the received tokens to the corresponding computing systems, thereby granting the user the ability to have seamless access to any of the computing systems associated with the user's authenticated identity. |
US11595376B2 |
Surveillance camera setting method, method of controlling an installation of a surveillance camera and surveillance camera system
A method of setting a surveillance camera includes the steps of recognizing a readable object in an image captured by the surveillance camera, updating a set value of one or more set items of the surveillance camera associated with the readable object, and transmitting the set value of an at least one set item to an external device in response to receiving a request therefrom. |
US11595375B2 |
Single sign-on for token-based and web-based applications
A method of authenticating a user includes: logging into a first system that includes a token-based authentication system (TBAS); creating, at the TBAS, a cookie based on a token from the TBAS; requesting access, by the user, to a second system that includes at least one windows-hosted web application (WHWA); and decoding and validating the token, thereby granting the user access to the second system based only on the user logging into the first system. |
US11595372B1 |
Data source driven expected network policy control
Techniques for data source driven expected network policy control are described. A policy enforcement service receives, from a compute instance in a virtual network implemented within a service provider system, a request to access data. The policy enforcement service determines that a virtual network security condition of a policy statement is not satisfied. The policy statement was configured by a user for use in controlling access to the data. The virtual network security condition defines a condition of the virtual network that is to be met. The policy enforcement service performs one or more security actions in response to the determination that the virtual network security condition of the policy statement is not satisfied. |
US11595368B2 |
Secure communications using loop-based authentication flow
A first party uses a secret key to encrypt information, which is then sent through an untrusted connection to a second party. The second party, however, cannot decrypt the information on its own, and it relays the encrypted information through a secure network. The secure network includes one or more nodes linking the first and second parties through one or more trusted connections (“hops”); each hop features uses of a shared secret key unique to that hop. The first party's connection to the network (domain) receives the information relayed through the secure network by the second party, it decrypts that information according to the secret key of the first party, and it then retransmits the decrypted information to the second party using the secure hops. Techniques are provided for sharing a private session key, federated credentials, and private information. |
US11595362B2 |
Encryption circuit randomness inspector and method
A baseband processor of a communication device, the baseband processor comprising a multiple encryption manager that utilizes a transmit data stream as an input data stream in the case that the transmit data stream is determined not to already have encryption applied by a higher layer component, and that utilizes a known unencrypted dataset as an input data stream in the case that the transmit data stream is determined to already have encryption applied by a higher layer component, an encryptor block that encrypts the input data stream into an encrypted data stream, and a randomness inspector that is in communication with the encryptor block, the randomness inspector unit accessing the input data stream and the encrypted data stream from the encryptor block and determining a randomness gain by comparing a first randomness measurement associated with the input data stream to a second randomness measurement associated with the encrypted data stream. |
US11595357B2 |
Identifying DNS tunneling domain names by aggregating features per subdomain
In one embodiment, a service computes a plurality of features of a subdomain for which a Domain Name System (DNS) query was issued. The service aggregates the plurality of computed features into a feature vector. The service uses the feature vector as input to a machine learning classifier, to determine whether the subdomain is a DNS tunneling domain name. The service provides an indication that the subdomain is a DNS tunneling domain name, when the machine learning classifier determines that the subdomain is a DNS tunneling domain name. |
US11595356B1 |
Method, apparatus, device and storage medium for processing network request
Embodiments of the present disclosure disclose a method, apparatus, device, and storage medium for processing a network request. The method comprises: activating a domain name server proxy based on local socket service in a preset application; in accordance with a determination that the preset application invokes a preset connect function, acquiring the preset connect function and replacing a destination file path in the preset connect function with a target file path corresponding to the domain name server proxy to establish a connection between the preset application and the domain name server proxy, wherein the target file path is pre-written in the preset application; receiving via the domain name server proxy a network request from the preset application, and parsing a domain name of the network request, and determining a first processing way of the network request based on a result of the parsing of the domain name. With the above technical solution, the domain name server proxy is implemented inside the application, and all network requests are taken over from the parsing of the domain name, which facilitates comprehensive detection and control of network traffic and avoidance of omissions. |
US11595355B1 |
System and method for recovery of data packets transmitted over an unreliable network
A system and method is provided that enables the recovery of data packets transmitted over an unreliable network. The system and method utilize an algorithm for transmitting the data packets with restoration of lost data during data transfer over UDP Protocol encrypted with DTLS Protocol. Advantageously, the algorithm does not require changes to data for either UDP or DTLS packets, but rather a separate, specifically designed packet is transmitted to the recipient to facilitate and ensure the recovery of any lost data packets over the unreliable network. |
US11595343B2 |
Posting content to social medium
A computer-implemented method of posting content to a social medium comprises receiving content posted by a user along with an associated posting time which indicates when the user selected an option to post the content to the social medium; determining that publication of the content posted by the user is dependent on a trigger; and in response to determining that publication of the content is dependent on the trigger, storing the content with the associated posting time and suspending publication of the content until the trigger is satisfied such that the posting time published with the content indicates a time prior to transmission of the content from an electronic device to a server for publishing. |
US11595338B2 |
System and method of embedding rich media into text messages
While texting, a user is able access, share, and control rich media without leaving the texting application. The rich media are provided directly within the executing texting application. The texting application includes an embedded widget for controlling the rich media. Rich media includes, among other things, video clips, streaming audio, a map application, a movie-time application, a social movie-site application, a dynamically controllable image, or promotional media. Different mobile devices executing the texting applications communicate through a server that allows additional functionality, such as syncing the play of video clips and hosting and pushing the promotional media. |
US11595329B2 |
Location based content system for mobile applications
Disclosed are systems and methods for improving interactions with and between computers in content searching, hosting and/or providing systems supported by or configured with devices, servers and/or platforms. The disclosed systems and methods provide a novel framework for providing users with electronic retrieval capabilities that are activated upon the users' determined locations respective to real-world locations associated with a message providing entity. The disclosed technology combines the previously separate systems of mail extraction, geo-fencing and content delivery (e.g., notification) into a single system that efficiently manages a user's inbox in order to provide the user with content the user has expressly indicated is of interest to that user. The disclosed systems and methods effectively realize a location-aware mail experience that provides functionality for delivering location (and timing) specific content to a user when the user is actually capable of acting on/interacting with the content in real-time. |
US11595324B1 |
System for automated cross-network monitoring of computing hardware and software resources
A system is provided for automated cross-network monitoring of computing hardware and software status. In particular, the system may track the status of various computing resources using process automation-based operations to simulate calls made by users to the various resources that the users are authorized to access. Based on said operations, the system may assess whether the authorized pathways to the resources and/or their respective components are properly functioning by capturing information regarding the resource, its associated components, and the current status of the resource. The results of these operations may be aggregated to provide an overview of which resources and/or systems are functioning and which are not. In this way, the system may provide a detailed view of the statuses of the individual resources and components within an entity's complex computing network. |
US11595321B2 |
Cluster capacity management for hyper converged infrastructure updates
Disclosed are various implementations of cluster capacity management for infrastructure updates. In some examples, cluster hosts for a cluster can be scheduled for an update. A component of a datacenter level resource scheduler can analyze cluster specific resource usage data to identify a cluster scaling decision for the cluster. The datacenter level resource scheduler transmits an indication that the resource scheduler is successfully invoked. Cluster hosts can then be updated. |
US11595318B2 |
Ordered sets for high-speed interconnects
A system and apparatus can include a port for transmitting data; and a link coupled to the port. The port can include a physical layer device (PHY) to decode a physical layer packet, the physical layer packet received across the link. The physical layer packet can include a first bit sequence corresponding to a first ordered set, and a second bit sequence corresponding to a second ordered set, the first bit sequence immediately adjacent to the second bit sequence. The first ordered set is received at a predetermined ordered set interval, which can occur following a flow control unit (flit). The first ordered set comprises eight bytes and the second ordered set comprises eight bytes. In embodiments, bit errors in the ordered sets can be determined by checking bits received against expected bits for the ordered set interval. |
US11595315B2 |
Quality of service in virtual service networks
A switch in a slice-based network can be used to enforce quality of service (“QoS”). Agents can run in the switches, such as in the core of each switch. The switches can sort ingress packets into slice-specific ingress queues in a slice-based pool. The slices can have different QoS prioritizations. A switch-wide policing algorithm can move the slice-specific packets to egress interfaces. Then, one or more user-defined egress policing algorithms can prioritize which packets are sent out into the network first based on slice classifications. |
US11595312B2 |
Mobile management system
Mobile management method and system. The method includes receiving from an application on a client a DNS query for a host name; retrieving reputation data associated with the host name from a local cache on the client; determining whether a policy associated with the host name and the reputation data associated with the host name exists; and one of: sending network flows one of: through a VPN tunnel to a server or out a local proxy on the client to a private or public network; or blocking the network flow based on the determined policy for the host name. |
US11595309B2 |
Source network address translation for unique sender identification
Methods, systems and computer program products for tracking, encoding and decoding the code-location of runtime events. The system modifies a request packet to access a resource initiated by a source address to indicate the request packet was sent by an intermediary address. The system injects an identifier pre-allocated for the source address into the request packet. The system updates the modified request packet by replacing the intermediary address with a substitute address that corresponds with the source address' pre-allocated identifier. The system sends the updated request packet to the resource, the updated request packet indicating a response to the updated request packet is to be sent back to the substitute address. |
US11595305B2 |
Device information method and apparatus for directing link-layer communication
A network device has an input configured to receive a message relating to a given device attempting to forward one or more packets across a computer network. The message has given device information relating to the given device. In addition, the routing device also has a selector, operatively coupled with the input, configured to select (after receiving the given data) a given group routing policy from a plurality of group routing policies. Preferably, the selector is configured to select the given group routing policy as a function of the given device information. The routing device also has an output operatively coupled with the selector. The output is configured to cause routing of device communication across the network using link-layer routes specified by the given group routing policy. |
US11595303B2 |
Packet handling in software-defined net working (SDN) environments
Example methods and systems for packet handling in a software-defined networking (SDN) environment are disclosed. One example method may comprise detecting an egress application-layer message from a first logical endpoint supported by a first host; and identifying a second logical endpoint supported by the second host for which the egress application-layer message is destined. The method may also comprise generating an egress packet that includes the egress application-layer message and metadata associated with the second logical endpoint, but omits one or more headers that are addressed from the first logical endpoint to the second logical endpoint. The method may further comprise sending the egress packet to the second host to cause the second host to identify the second logical endpoint based on the metadata, and to send the egress application-layer message to the second logical endpoint. |
US11595301B2 |
Method and system for implementing L3VPN based on two-dimensional routing protocol
A method and system for implementing L3VPN based on a two-dimensional routing protocol. The method includes the following steps of: activating an L3VPN network to obtain a route destined to each user site; sending, by a user in a source user site, a packet to a user in a target user site, and sending the packet to an entry of a first edge routing device; performing encapsulation by the first edge routing device based on a public network IP address of the packet; and forwarding, by means of matching of two-dimensional routing, the encapsulated packet to an exit of the first edge routing device for decapsulation, and forwarding the same to the target user site via an entry of a second edge routing device. |
US11595297B2 |
Multi-VPN multi link traffic routing
A system, method, and computer-readable medium for performing a traffic routing operation. The traffic routing operation includes: establishing a plurality of virtual private network (VPN) connections within an information handling system; obtaining a configuration policy for each of the plurality of VPN connections, the configuration policy for each of the plurality of VPN connections comprising an indication of at least one type of supported link of a plurality of links; configuring a plurality of queues for packets being communicated via the plurality of virtual private network connections, the plurality of queues being greater than the plurality of VPN connections; creating a tunnel indication for each of the plurality of VPN connections; mapping the tunnel indication for each of the plurality of VP connections to a respective queue of the plurality of queues; and, mapping each queue of the plurality of queues to a link of a particular VPN connection. |
US11595295B2 |
System and method for distributing packets in a network
A system and method for distributing packets in a network arc disclosed. The method comprises a step of receiving at least one data packet at a first node front a second node. The method also comprises a step of determining a current set of weights which are applied by the second node to distribute data packets across the first plurality of links. The received data packets are analysed to determine if the current set of weights are to be adjusted (step S102). When it is determined that the current set of weights is to be adjusted, an adjusted set of weights is generated by determining an adjustment factor (step S104). The adjustment factor is applied to the current weight for the selected link and at least one other current w eight in the current set of w eights. |
US11595294B1 |
Satisfying demands in data communication networks
Systems and methods are disclosed for identifying a set of internal edges on a representation of a network that satisfy a set of demands on the network. The disclosed systems and methods perform a multi-step process of selecting the internal edges. In a first step, an initial set of internal edges can be selected using a clique graph (or in another suitable manner). In a second step, a second set of internal edges can be selected using stream graph(s) (or in another suitable manner). The second set of internal edges can be used when determining network paths that satisfy the demands. When the representation of the network has a cut of two, the disclosed systems and methods can identify a set of internal edges providing a degree of protection against link failure. |
US11595292B2 |
Dynamic node cluster discovery in an unknown topology graph
Various example embodiments for supporting dynamic node cluster discovery in a communication network are presented. Various example embodiments for supporting dynamic node cluster discovery in a communication network may be configured to support dynamic node cluster discovery based on circulation of discovery messages within the communication network. Various example embodiments for supporting dynamic node cluster discovery based on the circulation of discovery messages within the communication network may be configured to support dynamic node cluster discovery based on probabilistic forwarding of discovery messages within the communication network. Various example embodiments for supporting dynamic node cluster discovery based on the circulation of discovery messages within the communication network may be configured to support dynamic node cluster discovery based on updating and forwarding of discovery messages within the communication network. Various example embodiments for supporting dynamic node cluster discovery in a communication network may be configured to support dynamic, multi-level node cluster discovery. |
US11595283B2 |
Message bus subscription management with telemetry inform message
In one embodiment, a device maintains a buffer of historical telemetry data of a particular type of telemetry. The device obtains new telemetry data of the particular type of telemetry. The device makes a state evaluation by comparing the new telemetry data to the buffer, to determine whether the new telemetry data is an outlier. The device sends a message indicative of the new telemetry data to a message bus for delivery to a recipient that is not subscribed to receive telemetry data of the particular type of telemetry, when the device determines that the new telemetry data is an outlier. |
US11595266B2 |
Methods and apparatus to detect drift in a hybrid cloud environment
Methods, apparatus, systems and articles of manufacture are disclosed to detect drift in a hybrid cloud environment. An example apparatus to detect drift in a hybrid cloud environment includes a configuration model determiner to, after deployment of a blueprint in the hybrid cloud environment, generate a first model including first relationships of a first plurality of resources corresponding to the blueprint, the blueprint including a plurality of properties in which at least one of the plurality of properties is agnostic of type of cloud, an inventor model determiner to generate a second model including second relationships of a second plurality of resources as deployed in the hybrid cloud environment based on the blueprint, and a drift determiner to determine a drift value based on the first relationships and the second relationships, the drift value representative of a difference between the first relationships and the second relationships. |
US11595265B2 |
Systems and methods for creating priority-based regulated network interlinks between electronic devices
A system and method for creating priority-based regulated network interlinks between electronic devices is disclosed. The system receives a communication request from a first device to communicate with a second device and identifies whether the first device is comprised within a primary affinity group associated with the second device. If the first device is not found in the primary affinity group one or more secondary affinity groups are identified, each secondary affinity group associated with an electronic device different than the first and second devices. Based on scoring of each secondary affinity group, handling criteria for the communication object is determined and used to create a network interlink between the first device and the second device. |
US11595262B2 |
Applying network policies to devices based on their current access network
A server of a distributed computing system that is at least partially hosted on a particular access network receives a plurality of messages from a plurality of devices over a network, each of the messages associated with a corresponding source address. For each of the plurality of devices, a current access network is determined for the device. For each of the devices with a current access network being the particular access network, a first network policy is applied to the device. For each of the devices with a current access network being other than the particular access network, a second network policy is applied to the device, the second network policy defining a second encryption requirement. |
US11595261B2 |
Configuration management for co-management
Various examples for discovering policy bindings between group policy rules in a legacy management framework and unified endpoint management rules that are utilized in a modern mobile device management (MDM) device management framework. A configuration state view can allow an administrator to understand inconsistencies or conflicts between group policy rules and UEM rules. |
US11595258B2 |
Optimal software load delivery systems and methods to network elements
Systems and methods include obtaining a catalog for a “to” software release and details of a controller of a network element operating a “from” software release, wherein the software releases are associated with the network element, and wherein the controller has a file system associated therewith; determining a delivery technique for a software load of the “to” software release based on the catalog and the details of the controller; and causing delivery of the software load to the file system based on the determined delivery technique, wherein the causing is one of automatic and subsequent to a user command. The delivery technique can be one of i) a full delivery, including all files in the catalog, ii) a minimal delivery, including only files in the catalog needed based on modules present in the network element, and iii) a hybrid delivery, between the full and minimal delivery. |
US11595250B2 |
Service insertion at logical network gateway
Some embodiments provide a method for configuring a gateway machine in a datacenter. The method receives a definition of a logical network for implementation in the datacenter. The logical network includes at least one logical switch to which logical network endpoints attach and a logical router for handling data traffic between the logical network endpoints in the datacenter and an external network. The method receives configuration data attaching a third-party service to at least one interface of the logical router via an additional logical switch designated for service attachments. The third-party service is for performing non-forwarding processing on the data traffic between the logical network endpoints and the external network. The method configures the gateway machine in the datacenter to implement the logical router and redirect at least a subset of the data traffic between the logical network endpoints and the external network to the attached third-party service. |
US11595244B2 |
Recovery support apparatus, recovery support method and program
A recovery support apparatus includes an index value calculation means which calculates a predetermined index value with respect to a recovery work sequence on the basis of the recovery work sequence indicating a work procedure for recovery from an abnormality that has occurred in an apparatus group constituting a communication network, and an output means which outputs the index value calculated by the index value calculation means to a predetermined output destination. |
US11595242B2 |
Robotic surgical devices, systems and related methods
Various medical devices and related systems, including robotic and/or in vivo medical devices, and various robotic surgical devices for in vivo medical procedures. Included herein, for example, is a robotic surgical system having a support beam positionable through an incision, and a robotic device having a device body, first and second rotating shoulder components coupled to the device body, and first and second robotic arms coupled to the first and second shoulder components, respectively. |
US11595241B2 |
Systems and methods for managing a security system
A computing device for managing a security system is disclosed. The computing device includes one or more processors. In some embodiments, the one or more processors can receive a number of events occurring in one or more of a number of polling loop networks. The events are monitored by a control device. The one or more processors can determine whether an occurrence frequency of the events exceeds a first threshold, where the occurrence frequency is defined as a number of the events divided by a period of time during which the events occurred. The one or more processors can in response to determining that the occurrence frequency exceeds the first threshold, automatically notify a user of the security system via a web application. |
US11595239B2 |
Transmitter complex- and real-valued in-phase and quadrature mismatch pre-compensators
An in-phase and quadrature mismatch compensator for a quadrature transmitter includes a delay element, a complex-valued filter and an adder. The delay element receives an input transmit signal and outputs a delayed transmit signal. The complex-valued filter receives the input transmit signal and outputs a selected part of a filtered output transmit signal. The adder adds the delayed transmit signal and the selected part of the filtered output transmit signal and outputs a pre-compensated transmit signal. In one embodiment, the selected part of the filtered output transmit signal includes the real part of the complex-valued output transmit signal. In another embodiment, the selected part of the filtered output transmit signal includes the imaginary part of the complex-valued output transmit signal. Two transmit real-valued compensators are also disclosed that combine the in-phase and quadrature signals before being filtered. |
US11595233B2 |
Electronic device supporting muli-band wireless communications and method of controlling same
Disclosed is an electronic device, including a housing, a first communication circuit disposed in the housing and configured to support omnidirectional wireless communication, a second communication circuit disposed in the housing and configured to support directional wireless communication using beamforming, a processor disposed in the housing and operatively coupled to the first communication circuit and the second communication circuit, and a memory disposed in the housing and operatively coupled to the processor. The processor may be configured to receive at least one first radio signal through a communication channel from an external device capable of supporting the omnidirectional wireless communication and the directional wireless communication using the first communication circuit, determine a state of the communication channel based on at least part of the at least one first radio signal, and activate the second communication circuit based on at least part of the determined state of the communication channel wherein the second communication circuit is configured to receive a second radio signal from the external device. |
US11595230B2 |
Signaling of time for communication between integrated circuits using multi-drop bus
Embodiments relate to including information in a data packet transmitted by a transmitting integrated circuit (e.g., SOC) to account for a time delay associated with an unsuccessful arbitration attempt to send the data packet over a multi-drop bus. The unsuccessful arbitration attempt by the integrated circuit may delay the transmission of the data packet until the multi-drop bus becomes available for the integrated circuit to send the data packet. The data packet includes a data field to include time delay information caused by the unsuccessful arbitration attempt. A receiving integrated circuit may determine the time that the data packet would have been sent out from the transmitting integrated circuit absent the unsuccessful arbitration attempt based on the delay information. Embodiments also relate to a synchronization generator circuit in an integrated circuit that generates timing signals indicating times at which periodic events occur at another integrated circuit. |
US11595229B2 |
Subscriber station for a serial bus system, and method for data transmission in a serial bus system
A subscriber station for a serial bus system. The subscriber station encompasses: a communication control device for controlling communication with at least one further subscriber station of the bus system; a transmission/reception device for receiving a message from a bus of the bus system, which message was created by the communication control device or by the at least one further subscriber station of the bus system and is being transferred on the bus; an interference detection unit that is configured to detect interference in the context of transfer of the message on the bus; and an interference processing unit that is configured to evaluate the interference detected by the interference detection unit in terms of the nature and magnitude of the interference, and to adapt communication control by the communication control device to the result of the evaluation of the interference. |
US11595226B1 |
Method and system for collecting sensor data in buildings
A system for collecting building environmental sensor data includes a first data collection device having a first transceiver that is configured to receive data from proximate building environmental sensors and a second transceiver that is configured to communicate with an external service. The device will, upon detecting that the first transceiver is within a receiving range of a first building environmental sensor, communicatively connect with the first building environmental sensor to receive a data stream that comprises sensor data captured by the first building environmental sensor. The device will continue to receive the data stream until the first transceiver either receives all of the sensor data or moves out of the receiving range. The device will repeat this process for additional building environmental sensors. The device will use its second transceiver to transfer the sensor data to the external service. |
US11595221B1 |
Verifying media stream quality for multiparty video conferences
Embodiments are directed to verifying media stream quality for multiparty video conferences. A verification video may be generated based on verification goals for a video provided by a video service. A marker may be embedded in the verification video. A video conference may be established using video stations such that the video conference may be provided by a video service. The verification video may be streamed to a video input of each video station. The video may be streamed to a video output buffer of each video station such that the video provides a view of the video conference and such that the marker that corresponds to each video station may be included in the video. Video information may be captured from the video output buffer of the video stations. The video service may be classified based on the video information from each video station. |
US11595217B2 |
System and method for zero touch provisioning of IoT devices
For zero-touch provisioning of devices at scale using device configuration templates by device type, a secure element, a provisioning wizard, a provisioning client, an enrollment client, an update client, an enrollment service, an update publisher service, signing and encryption certificates, a method including generating device configuration templates for enrollment and update by device type, sending device configuration templates signed with a device owner signing certificate, and a device owner encryption certificate to the device manufacturer, generating a device configuration for a device based on the device configuration templates using a secure element on the device for immutable device identity, an extended configuration for the device, signing the device configuration with a device manufacturer signing certificate and a secure element signing certificate, encrypting the doubly signed device configuration with an owner encryption certificate, configuring bootstrap metadata, and configuring the device provisioning client to autostart at power-on for device enrollment and update. |
US11595214B2 |
Efficient transfer of authentication credentials between client devices
An authentication system facilitates a transfer of enrollment in authentication services between client devices. The authentication system enrolls a client device in authentication services to enable the client device to be used for authenticating requests to access one or more services. As part of enrolling the client device, the authentication system receives authentication enrollment information for the client device that is associated with one or more authentication credentials securely stored on the client device (e.g., a multi-factor authentication (MFA) certificate). The authentication system facilitates one or more processes for transferring the enrollment from an enrolled client device to a non-enrolled client device that limit the number and complexity of actions performed by the user. In particular, the authentication system facilitates transfer of enrollment based on receiving enrollment transfer requests authorized by the enrolled client device using one or more authentication credentials associated with the enrollment of the enrolled client device. |
US11595210B2 |
Accurate, real-time and secure privacy-preserving verification of biometrics or other sensitive information
A facility for performing accurate and real-time privacy-preserving biometrics verification in a client-server environment is described. The facility receives the user's biometrics data such as face, voice, fingerprint, iris, gait, heart rate, etc. The facility then processes and applies various privacy-preserving techniques to this data to complete enrollment and authenticate users, including but not limited to: encrypting data with a key using homomorphic encryption techniques and sending the encryption to the server; the server computes directly on the encryption and returns the result, which is also encrypted under the same key, to the client; the client optionally performs post-processing and decryption (in any order) and obtains the enrollment or authentication result. The facility may repeat this process to increase security level, resulting in more than 1 round trip between the client and the server. Lastly, the facility employs methods that generalize to other privacy-preserving applications beyond biometrics verification. |
US11595208B2 |
Self-service device encryption key access
Disclosed are various embodiments for providing access to a recovery key of a managed device and rotating the recovery key after it has been accessed. In one example, among others, a system includes a computing device and program instructions. The program instructions can cause the computing device to store a first recovery key for a first managed computing device. The first recovery key is configured to access an encrypted data store of the first managed computing device. A request is received for the first recovery key from a second managed computing device. The first recovery key is transmitted for display on the second managed computing device. A key rotation command is generated for a command queue of the first managed computing device to rotate the first recovery key after transmitting the first recovery key. The second recovery key is received from the second computing device. |
US11595204B2 |
Adaptive re-keying in a storage system
Techniques for adaptive re-keying of encrypted data are provided. For example, a method comprises the following steps. Utilization information associated with a storage system is obtained, wherein the storage system comprises a set of storage devices. The method dynamically selects a re-keying process from a plurality of different re-keying processes based on at least a portion of the obtained utilization information. At least a portion of the set of storage devices are re-keyed in accordance with the selected re-keying process. |
US11595203B2 |
Systems and methods for encrypted content management
Systems and methods for encrypted content management are provided and include generating a user private key, a user public key, and a symmetric encryption key. A group private key, a group public key, and a group symmetric encryption key are generated and the group private key is encrypted with the group symmetric encryption key. A first shared-secret key is generated based on the user public key and the group private key using a diffie-hellman exchange algorithm. The group symmetric encryption key is encrypted using the first shared-secret key to generate an escrow key. Plaintext data is encrypted using a content symmetric key. A second shared-secret key is generated based on an ephemeral private key and the group public key using a diffie-hellman exchange algorithm. The content symmetric key is encrypted using the second shared-secret key. |
US11595199B2 |
Secure multi-state quantum key distribution with wavelength division multiplexing
The performance of quantum key distribution by systems and methods that use wavelength division multiplexing and encode information using both wavelength and polarization of photons of two or more wavelengths. Multi-wavelength polarization state encoding schemes allow ternary-coded digits, quaternary-coded digits and higher-radix digits to be represented by single photons. Information expressed in a first radix can be encoded in a higher radix and combined with a string of key values to produce a datastream having all allowed digit values of that radix in a manner that allows eavesdropping to be detected without requiring the sender and receiver to exchange additional information after transmission of the information. |
US11595196B2 |
Quantum key distribution method and device, and storage medium
This application provide quantum key distribution methods, devices, and storage media. In an implementation, a method comprises: determining, based on a first mapping, a first quantum key of N first quantum keys corresponding to an ith node on a target routing path; determining, based on a second mapping, a second quantum key of N second quantum keys corresponding to the ith node; and generating, by the ith node based on the first quantum key corresponding to the ith node and the second quantum key corresponding to the ith node, a third quantum key corresponding to the ith node on the target routing path. |
US11595194B2 |
Secure aggregate sum system, secure computation apparatus, secure aggregate sum method, and program
An aggregate sum is efficiently obtained while keeping confidentiality. A prefix-sum part computes a prefix-sum from a share of a sorted value attribute. A flag converting part converts a format of a share of a flag representing the last element of a group. A flag applying part generates a share of a vector in which a prefix-sum is set when a flag representing the last element of a group is true, and a sum of the whole is set when the flag is false. A sorting part generates a share of a sorted vector obtained by sorting a vector with a permutation which moves elements so that the last elements of each group are sequentially arranged from beginning. A sum computing part generates a share of a vector representing a sum for each group. |
US11595192B2 |
System and method of migrating one or more storage class memories from a first information handling system to a second information handling system
A Computing environment is described to enable an information handling system (IHS) to receive a public encryption key from another IHS; and decrypt with a public encryption key one or more encrypted symmetric encryption keys, encrypted via a private encryption key, to obtain one or more symmetric encryption keys respectively associated with one or more memory address ranges. The IHS may physically receive a memory device that was utilized by the other IHS to store information in an encrypted fashion. The IHS may further decrypt, with a first encryption key of the one or more symmetric encryption keys associated with a first address range of the one or more address ranges, first encrypted data stored by the at least one non-volatile memory medium to obtain first data. |
US11595191B2 |
Encryption key management system and encryption key management method
A storage apparatus sends a request for a key encryption key to a key management server using a storage apparatus ID as a parameter, acquires the key encryption key, for which a request has been sent to the key management server, and its attribute information, and stores the key encryption key and its attribute information in a key encryption key list while eliminating the key encryption key that is duplicated. Then, in the order listed in the key encryption key list, decryption of the encryption key is attempted by the key encryption key stored in the key encryption key list, and the success or failure of the decryption of the encryption key is determined. When the decryption of the encryption key using the key encryption key fails, the decryption of the encryption key is attempted using a key encryption key, which has not been attempted yet, in the key encryption key list. |
US11595190B2 |
Encrypted data storage system
An encrypted data storage system includes a storage system that is configured to store encrypted data, and a first client device that is coupled to the storage system. The first client device performs a hash operation on first data to generate a Data Encryption Key (DEK), and uses the DEK to perform a data encryption operation on the first data to generate encrypted first data. The first client device then uses a first Key Encryption Key (KEK) to perform a first key encryption operation on the DEK to generate a first encrypted DEK, associates the first encrypted DEK with the encrypted first data, and transmits the encrypted first data to the storage system for storage. |
US11595184B2 |
Base station, user equipment and wireless communication method
Provided are a base station, user equipment and wireless communication method related to RS collision cancellation in full duplex communication. A base station comprises: circuitry operative to perform at least one of a first processing and a second processing on downlink signals to be transmitted on a physical resource unit in a full duplex mode corresponding to one Transmission Time Interval (TTI); a transmitter operative to transmit the processed downlink signals on the physical resource unit to a first user NO equipment in a TTI; and a receiver operative to receive uplink signals on the physical resource unit from a second user equipment, wherein the first processing is use to be performed such that Code Division Multiplexing (CDM) is applied between the downlink signal and the uplink signal assigned on each of at least part of collided resource elements in the physical resource unit, each of the collided resource elements being assigned with both a downlink signal and an uplink signal at least one of which is a reference signal, and the second processing comprises suppressing at least part of the downlink signals assigned on the resource elements assigned with uplink reference signals thereon in the collided resource elements. |
US11595178B2 |
Communication apparatus, method of controlling communication apparatus, and non-transitory computer-readable storage medium
A communication apparatus operable to act as a master-AP in a multi-AP (access point) coordination configuration that supports an IEEE802.11 series standard, selects a sounding method which is a method for transmitting a sounding packet for receiving a CSI report as feedback from a terminal apparatus in accordance with a CSI (channel state information) calculation capability in the terminal apparatus that is connected to the communication apparatus. |
US11595175B2 |
Methods and apparatuses for transmitting control information
Embodiments of the present disclosure relate to methods and apparatuses for transmitting control information. In example embodiments, a method implemented in a network device is provided. According to the method, a configuration for PDCCH transmission is determined at least based on a periodicity of a plurality of symbol-based control resource sets (CORESETs) within one slot. The configuration indicates an allocation of a first number of PDCCH candidates to the plurality of symbol-based CORESETs. The first number of PDCCH candidates is less than a second number of PDCCH candidates preconfigured for a slot-based CORESET. The configuration is transmitted to a terminal device served by the network device. Downlink control information (DCI) is transmitted based on the configuration to the terminal device in the plurality of symbol-based CORESETs. |
US11595173B2 |
Long term evolution-assisted NR flexible radio access
A WTRU may determine that a LTE cell at least partially overlaps in frequency with an NR cell. The WTRU may determine that an NR transmission is to be received within a set of resources that are included in at least a portion of the NR cell that at least partially overlaps with the LTE cell. The WTRU may determine a subset of resources within the set of resources that correspond to an LTE common transmission. The WTRU may receive the NR transmission within the set of resources. The NR transmission may not be included in the subset of resources that correspond to the LTE common transmission. The LTE common transmission may include one or more of a common control signal, a cell-specific broadcast signal, cell-specific reference signals, a physical downlink control channel, a primary synchronization signal, a secondary synchronization signal, and/or a channel state information reference signal. |
US11595168B2 |
Communication method and communications device
A method includes: determining first indication information, where the first indication information indicates a resource location of a second synchronization signal block, and the second synchronization signal block is associated with control information; and sending a first synchronization signal block, where a physical broadcast channel in the first synchronization signal block carries the first indication information. |
US11595167B2 |
Method and device for reporting channel state in wireless communication system
A method for reporting a channel state in a wireless communication system according to an embodiment of the present disclosure may comprise the steps of: receiving a channel state report setting including an index of a first bandwidth part (BWP); receiving a trigger of a channel state report for a second BWP other than the first BWP; measuring a channel state in the second BWP in a measurement gap according to the trigger; and transmitting the measured channel state to a base station on an available uplink resource within a first activated BWP after the measurement gap. |
US11595166B2 |
Data transmission method and apparatus
The present invention provides a data transmission method and apparatus. The method includes: transmitting physical downlink channel data according to a first-type reference signal (RS) or a second-type RS or a third-type RS. The method of the present invention ensures a balance between data transmission performance and RS overheads for different NarrowBand-Internet Of Things (NB-IOT) physical downlink channel data, thereby resolving the problem in the related art of not knowing which RS is to be used to transmit NB-IOT physical channel data. |
US11595165B2 |
Node for a radio communication network and operating method
A node for a radio communication network is described, said node being arranged for a communication mechanism comprising the reception of a first transmission and the subsequent sending of a second transmission in response to said first transmission, wherein said node is furthermore arranged to perform a selecting process for selecting a relative timing for sending said second transmission from among a plurality of predetermined relative timing choices. |
US11595162B2 |
Systems and methods of convergent multi-bit feedback
Provided are systems and methods for convergent error vector indexing and retransmission in wireless data verifications. An example method includes transmitting a network packet to a receiver; receiving a further network packet being a copy of the network packet as received by the receiver, determining, based on the network packet and the further network packet, an error vector and locations of errors in the further network packet; sending, to the receiver, a first indexing packet including the locations of the errors; receiving a second indexing packet being a copy of the first indexing packet as received by the receiver; determining, based on the error vector and the second indexing packet, the locations of the errors in the second indexing packet; and sending a third indexing packet including the locations of the errors to the receiver, where the receiver corrects the further network packet using the third indexing packet. |
US11595161B2 |
Techniques for enhanced machine type communication acknowledgment bundling
Techniques and apparatus for hybrid automatic retransmission request (HARQ) acknowledgement (ACK) bundling in half duplex frequency division duplexing (HD-FDD) systems are provided. One technique includes determining ACK parameter(s) to be used for acknowledging a bundled transmission that includes instance(s) of a channel across subframe(s). An indication of the ACK parameter(s) is signaled to a user equipment (UE). The ACK parameter(s) include a first ACK parameter that conveys a size of the bundled transmission and a second ACK parameter that conveys an amount of time for the UE to delay acknowledging a data transmission in an instance of the channel after receiving the data transmission. The UE may acknowledge the bundled transmission in accordance with the ACK parameter(s). |
US11595154B1 |
Instruction-based multi-thread multi-mode PDCCH decoder for cellular data device
A cellular modem processor can include dedicated processing engines that implement specific, complex data processing operations. To implement PDCCH decoding, a cellular modem can include a pipeline having multiple processing engines, with the processing engines including functional units that execute instructions corresponding to different stages in the PDCCH decoding process. Flow control and data synchronization between instructions can be provided using a hybrid of firmware-based flow control and hardware-based data dependency management. |
US11595152B1 |
Forward error correction encoding using binary clustering
Embodiments of the present disclosure relate to a binary clustered forward error correction encoding scheme. Systems and methods are disclosed that define binary clustered encodings of the media packets from which forward error correction (FEC) packets are computed. The different encodings specify which media packets in a frame are used to compute each FEC packet (a frame includes M media packets). The different encodings may be defined based on the quantity of media packets in a frame, M≤floor(2N), where each bit of the binary representation of N is associated with a different cluster pair encoding of the media packets. Each cluster pair includes a cluster for which the bit=0 and a cluster for which the bit=1. Computing FEC packets using at least two cluster pair encodings provides redundancy for each media packet, thereby improving media packet recovery rates. |
US11595150B2 |
Boosted index modulation for noncoherent modulation
Methods, systems, and devices for wireless communications are described. A transmitting device such as a base station and a user equipment (UE), may segment a set of bits within a transport block into a first subset of bits including modulation bits and a second subset of bits including index modulation bits. The transmitting device may map the first subset of bits to a first set of subcarriers, the second subset of bits to a second set of subcarriers, and an additional set of bits to a third set of subcarriers. The transmitting device may generate a signal according to a boosting factor based on mapping the first subset of bits, the second subset of bits, and the additional set of bits, and transmit the generated signal to a receiving device. |
US11595146B2 |
Apparatus, systems, and methods for optical channel management
An apparatus includes a reconfigurable optical add/drop multiplexer (ROADM) having an input port to receive a first optical signal from a second device. The ROADM also includes a first wavelength selective switch (WSS), in optical communication with the input port, to convert the first optical signal into a second optical signal, a loopback, in optical communication with the first WSS, to transmit the second optical signal, and a second WSS, in optical communication with the loopback, to convert the second optical signal to a third optical signal and direct the third optical signal back to the second device via the input port. |
US11595144B2 |
Electronic control apparatus
Based on a count value held by a transmission counter, an information multiplex apparatus forms multiplexed transmission data by selecting or dividing at least part of each of two or more information items, based on the respective sizes of the two or more information items, a counter period of the transmission counter, and a transmission margin degree. |
US11595138B2 |
Monitoring device, motor driving apparatus, and monitoring method
A monitoring device includes: an acquisition unit for acquiring a clock signal output from a communication circuit that outputs the clock signal; and a monitoring unit for analyzing the waveform of the clock signal acquired by the acquisition unit, based on a predetermined reference clock signal having a period equal to or shorter than a period of the clock signal to thereby determine whether or not there is a sign of malfunction in the communication circuit. |
US11595137B1 |
System and method of measuring error vector magnitude in the time domain
an orthogonal frequency division multiplexed (OFDM) output signal produced by a device in response to an OFDM input signal is accessed. The OFDM input signal includes OFDM input symbols in the time domain and the OFDM output signal includes OFDM output symbols in the time domain. The OFDM output symbols are time-aligned to the OFDM input symbols and a phase of the OFDM output signal is de-rotated with respect to the OFDM input signal. A complex equalization filter is applied to the OFDM output symbols in the time domain to obtain an estimate of the OFDM input symbols A distortion signal of the OFDM output signal is determined by subtracting the estimate of the OFDM input symbols. An error vector magnitude (EVM) is determined by dividing a root mean square of the distortion, by a root mean square of the OFDM input signal. |
US11595136B2 |
Communication control device, communication control method and information processing apparatus
A communication control device that acquires first interference information indicating a first interference from communication involving a communication node that is not controlled by the communication control device and second interference information indicating a second interference from communication involving another communication node that is controlled by the communication control device. The communication control device classifies the communication nodes into groups related to a decision of a radio resource that is available for use by a communication node based on the first interference information and the second interference information. |
US11595133B2 |
Non-reciprocal device comprising asymmetric phase transport of waves
A quantum device includes a non-reciprocal transmission structure, wherein the transmission structure is designed such that for first waves traversing the transmission structure in a forward direction the phases of the first waves are at least partially conserved, and for second waves traversing the transmission structure in a backward direction, the phases of the second waves are at least partially replaced by random ones, such that the phase conservation is more pronounced in the forward direction than in the backward direction. |
US11595132B2 |
Signal processing apparatus and optical receiver
An ADC (12) in an optical receiver (1) generates a sample signal composed of time series samples by oversampling a received signal that is an electrical signal converted from an optical signal by a light receiving unit (11). A symbol timing detection unit (132) of a DSP unit (13) detects a symbol timing in the sample signal. When it is determined that a symbol timing is appearing at a longer interval than a predetermined interval based on this detection result, a symbol timing adjusting unit (133) skips one or more samples included in the sample signal to read out samples at the predetermined interval, while when it is determined that the symbol timing is appearing at a shorter interval than the predetermined interval, the symbol timing adjusting unit inserts the same samples as one or more samples included in the sample signal immediately after the one or more samples to read out the samples at the predetermined interval. |
US11595131B1 |
Integration of passive microwave stop-band filter into a radio frequency (RF) interconnect printed circuit board for opto-electronic module RF bandwidth control
An optical device may include an optical subassembly and a digital signal processor (DSP). The optical device may include a radio frequency (RF) interconnect that electrically connects the optical subassembly and the DSP. The optical device may include a passive RF filter on one or more transmission lines of the RF interconnect. |
US11595130B2 |
Method and apparatus for transmitting and receiving client signal in optical transport network
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal in an optical transport network. In the transmission method, a received client signal is mapped into a variable-rate container OTU-N, wherein a rate of the OTU-N is N times as high as a preset reference rate; and then, the variable-rate container OTU-N is split into N optical stab-channel transport units OTUsubs by column, where a rate of each OTUsub equals to the reference rate; next, the N optical sub-channel transport units OTUsubs are modulated onto one or more optical carriers; at last, the one or more optical carriers is transmitted through a fiber. |
US11595125B2 |
Transceiver agnostic GOSNR measurement
There is herein provided a method for measuring the GOSNR that can be implemented using commercial-grade transceivers and which accounts for linear optical impairments (e.g. PMD, PDL and CD) and transceiver intrinsic impairments. The method may be implemented using an Optical Spectrum Analyzer (OSA) and either the system transceivers or other commercial-grade transceivers. The proposed measurement method is based on mixed optical and electronic technologies, using an OSA and a transceiver pair. By measuring a signal quality metric Qm and the OSNR under varied power and ASE noise conditions, a constant value RBW that relates the GOSNR to the signal quality metric Qm is derived. The GOSNR is then obtained from these results. |
US11595124B2 |
Path management for tiered service level agreements in an all-photonics network
An information handling system includes a plurality of network nodes and a processor. Each network node includes an optical link and a reflectometry analyzer. The reflection analyzers provide a plurality of reflectometry results that each provide a characterization of physical properties of the optical link. The processor receives the reflectometry results, analyzes the reflectometry results to define a fingerprint of the physical properties of the optical link, and determines a status for each of the optical links based upon the associated fingerprints. The status for each of the optical links includes one of a plurality of graded statuses. Each graded status represents a qualitative measure of the physical properties of the associated optical link. A first graded status represents a better qualitative measure than a second graded status. The processor further receives a request to route a data flow from a first one of the network nodes to a second one of the network nodes. The data flow is associated with a service level agreement that defines that the data flow is to be routed on optical links that have the first graded status. The processor further determines a path between the first network node and the second network node where each of optical links in the path have the first graded status. |
US11595122B2 |
Identifying link fingerprint anomalies in real-time in an all-photonics network
A data communication network includes a network node and a processor. The network node includes an optical link and a reflectometry analyzer. The reflection analyzer provides a plurality of reflectometry results that each provide a characterization of physical and operational properties of the optical link at the time of the reflectometry result. The processor receives a first set of the reflectometry results, analyzes the first set of reflectometry results to define a fingerprint of the physical and operational properties of the optical link, receives a second set of the reflectometry results, compares the second set of reflectometry results with the fingerprint, and determines whether or not the optical link is secure based upon the comparison of the second set of reflectometry results with the fingerprint. |
US11595121B2 |
Pointing unit
A pointing unit 102 is for use with a free space optical communications terminal 100 including an optical source 104. The pointing unit 102 includes a first portion 106 having a mirrored surface 108, the first portion 106 being orientatable relative to an optical beam 110 produced by the optical source 104 and incident on the mirrored surface 108 in use to direct a reflection 112 of the optical beam 110 from the mirrored surface 108 towards a target 107. The first portion 106 further includes a directional radio frequency antenna 114. |
US11595111B2 |
Phase noise removal in a network of radio frequency (RF) repeaters
A wireless communication system includes a first communication device and a second communication device. The first communication device obtains a plurality of radio frequency (RF) signals corresponding to different communication protocols from a plurality of communication systems. A frequency of each of the plurality of RF signals is upconverted to a different frequency, and a phase noise is introduced in the plurality of RF signals. The plurality of RF signals corresponding to different communication protocols are multiplexed into a mmWave RF signal of a specified frequency and a defined pilot tone along with the mmWave RF signal is transmitted. The second communication device captures the mmWave RF signal having the defined pilot tone over-the-air. At least one RF signal is down converted to a source frequency and the phase noise is estimated in the one extracted RF signal based on the defined pilot tone which is reduced concurrently. |
US11595108B2 |
Wireless communication method, network device, and terminal device
The present disclosure relates to wireless communication methods, network devices, and terminal devices. One example method includes receiving, by a terminal device, configuration information sent by a network device, where the configuration information is used to indicate a beam sweeping type, and determining, by the terminal device, the beam sweeping type based on the configuration information. |
US11595107B2 |
Method and apparatus for validating stored system information
A system for converging fifth generation (5G) communication systems for supporting higher data rates beyond fourth generation (4G) systems with a technology for Internet of things (IoT) is provided. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A system is provided for determining system information validity by acquiring and storing a first system information block and other system information, including information on a public land mobile network (PLMN) identity and a value tag, and determining whether the stored system information is valid for the cell. As another example, a terminal and base station are provided for performing beam failure detection and a recovery procedure using first and second configuration information for beam failure recovery (BFR) and if failure is detected, initiating a first random access (RA) procedure and if second configuration information is received while the first RA procedure is ongoing, terminating the first RA procedure and initiating a second RA procedure based on the second configuration information. |
US11595104B2 |
Dynamically indicating unavailable beams
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a base station, an indication identifying one or more blocked beams that are unavailable to use for uplink or downlink communication. The UE may determine one or more beams to use for communication with the base station based at least in part on the indication identifying the one or more blocked beams. Numerous other aspects are provided. |
US11595099B2 |
Apparatus and method for diversity transmission in a wireless communications system
A communication apparatus of the present disclosure includes a receiver which, in operation, receives a signal that includes a non-legacy preamble and a data field, the non-legacy preamble comprising a first field for indicating a number of spatial streams (Nss) in the data field and a second field for indicating one of a plurality of modulation and coding schemes (MCSs), wherein two or more frequency diversity transmission schemes are supported and one of the two or more frequency diversity transmission schemes is applied based on a value of the Nss; and circuitry which, in operation, decodes the signal. |
US11595098B2 |
Smaller sub-band size for PMI than for CQI
A method performed by a wireless device (510, 700, 1100) is disclosed. The wireless device obtains (601) a configuration for a sub-band channel quality indicator (CQI) granularity and a sub-band precoding matrix indicator (PMI) granularity for the wireless device. The wireless device determines (602) channel state information (CSI) feedback according to the configured sub-band CQI granularity and the sub-band PMI granularity. The sub-band PMI granularity corresponds to a first sub-band size and the sub-band CQI granularity corresponds to a second sub-band size. The first sub-band size is smaller than the second sub-band size. The wireless device transmits (603), to a network node (560, 1000), the determined CSI feedback. |
US11595097B2 |
Partial-bandwidth feedback for beam combination codebook
Methods, systems, and devices for wireless communications are described. In some systems, a user equipment (UE) may perform channel state information (CSI) measurements on one or more reference signal transmissions received from a base station. Based on the CSI measurements, the UE may generate a CSI report, and the UE may transmit the CSI report to the base station. In some cases, the generated CSI report may include a first portion and a second portion. The first portion may indicate whether the second portion of the CSI report includes full-band CSI feedback or partial-band CSI feedback. The second portion may provide the CSI feedback for one or more identified sub-bands. In some cases, the second portion may include a sub-band index indicating the identified sub-bands. Additionally or alternatively, the second portion may include a bitmap indicating a correspondence between multiple CSI feedback values and multiple corresponding sub-band indexes. |
US11595095B2 |
Wireless communication node adapted to radiate antenna beams of different types
A wireless communication node comprising an antenna arrangement that is adapted to radiate at least one radiation beam of a first type and at least one radiation beam of a second type. Said at least one radiation beam of the first type has a first type beamwidth (BT1) and said at least one radiation beam of the second type has a second type beamwidth (BT2) that exceeds the first type beamwidth (BT1). Said at least one radiation beam of the first type is arranged for communication with at least a first other node, and where said at least one radiation beam of the second type is arranged for detection of changes in propagation paths for said other node and/or appearances of further other nodes. |
US11595092B2 |
Signal cancellation in radio frequency (RF) device network
A system, in a programmable active reflector (AR) device associated with a first radio frequency (RF) device and a second RF device, receives a request and associated metadata from the second RF device via a first antenna array. Based on the received request and associated metadata, one or more antenna control signals are received from the first RF device. The programmable AR device is dynamically selected and controlled by the first RF device based on a set of criteria. A controlled plurality of RF signals is transmitted, via a second antenna array, to the second RF device within a transmission range of the programmable AR device based on the associated metadata. The controlled plurality of RF signals are cancelled at the second RF device based on the associated metadata. |
US11595091B2 |
Method of transmitting sounding reference signal and electronic device therefor
A transmission of a sounding reference signal by an electronic device is provided. A method of an electronic device includes transmitting a signal via a first antenna subset including at least one of a plurality of antennas, measuring an emission environment of the plurality of antennas, using the signal, determining at least one antenna to be used for transmitting a sounding reference signal (SRS), based on the emission environment, and transmitting the SRS via the at least one determined antenna. The emission environment includes a strength of a reflected signal that corresponds to the signal and is reflected by the first antenna subset, or a strength of a reception signal that corresponds to the signal and is received by a second antenna subset including at least one remaining antenna. |
US11595089B2 |
CSI reporting and codebook structure for doppler-delay codebook-based precoding in a wireless communications system
A communication device for providing a channel state information, CSI, feedback in a wireless communication system includes a transceiver to receive a radio signal including downlink reference signals. The processor estimates an explicit CSI, selects a Doppler-delay precoder matrix for a composite Doppler-delay-beam three-stage precoder, calculates and reports to the transmitter a CSI feedback. The communication device selects from one or more codebooks a subset of D delay components and/or a subset of F Doppler-frequency components and uses the selected subset of delay components for each polarization and each spatial beam and/or the selected subset of Doppler-frequency components for each polarization, each spatial beam and each delay, when calculating the Doppler-delay precoder matrix. |
US11595087B2 |
Methods and devices for channel state information transmission
Embodiments of the present disclosure relate to methods and devices for channel state information (CSI) transmission. In example embodiments, a method implemented in a terminal device includes performing a channel estimate between the terminal device and a network device across a predetermined frequency range for a set of beams having different spatial directions; determining, based on the channel estimate, first indication information indicating at least one beam selected from the set of beams and second indication information indicating frequency-related information for the at least one selected beam at a plurality of frequency locations in the predetermined frequency range; and transmitting to the network device the first indication information in a first part of a channel state information (CSI) report and the second indication information in a second part of the CSI report. |
US11595075B2 |
Amplifier circuitry for carrier aggregation
An electronic device may include wireless circuitry with a baseband processor, a transceiver circuit, a front-end module, and an antenna. The front-end module may include amplifier circuitry such as a low noise amplifier for amplifying received radio-frequency signals. The amplifier circuitry is operable in a non-carrier-aggregation mode and a carrier aggregation mode. The amplifier circuitry may include an input transformer that is coupled to multiple amplifier stages such as a common gate amplifier stage, a cascode amplifier stage, and a common source amplifier stage. The common gate amplifier stage may include switches for selectively activating a set of cross-coupled capacitors to help maintain input impedance matching in the non-carrier-aggregation mode and the carrier-aggregation mode. The common source amplifier stage may include additional switches for activating and deactivating the common source amplifier stage to help maintain the gain in the non-carrier-aggregation mode and the carrier-aggregation mode. |
US11595073B2 |
Multi-configuration clamp system for electronic device
A support system which allows for the use and mounting of a smart phone, or similar electronic device, in a variety of ways. The support system may be adapted to function as a hand grip while supporting the smart phone during image acquisition, or while watching images on the smart phone. In another configuration, the support system may be adapted to attach to the user's belt. In another configuration, the support system may function as a support stand. In another configuration, the support system may be mounted on a tripod. The support system may include a kit of parts which allow for the modification of support accessories to allow for different configurations. The support system may include a removable shutter which may actuate the camera functions via wireless communication. |
US11595069B2 |
Transimpedance amplifier (TIA) with tunable input resistance
An electronic device may include wireless circuitry with a baseband processor, a transceiver, and an antenna. The transceiver may include a mixer that outputs signals to a transimpedance amplifier. The mixer has an output impedance that varies depending on the frequency of operation. An adjustable resistance can be coupled to the input of the transimpedance amplifier. A control circuit can tune the adjustable resistance to compensate for changes in the output impedance of the mixer as the transceiver operates across a wide range of frequencies. |
US11595068B2 |
Method of demodulation of a stereophonic signal
A method for demodulating a multiplexed stereophonic signal, the signal including a signal called the sum signal, a signal called the difference signal, and a pilot signal, the method including the following steps: removing the pilot frequency from the multiplexed stereophonic signal, the resulting signal being called the pilotless signal, and subtracting the sum signal from the pilotless signal. |
US11595066B2 |
Interference mitigation with multi-band digital pre-distortion
A method comprising determining a plurality of digital pre-distortion engines, determining signals for the pre-distortion engines, determining terms for a matrix and filter the matrix, based on the filtered matrix, determining correlation matrixes, obtaining pre-distorted signals from the digital pre-distortion engines, wherein the pre-distorted signals are pre-distorted based on the determined correlation matrixes, and combining the pre-distorted signals to a combined pre-distorted signal. |
US11595064B2 |
Clock recovery and cable diagnostics for ethernet phy
A receiver circuit includes an analog-to-digital converter (ADC), a decision feedback equalizer (DFE), a slicer, and a timing error detector (TED). The DFE is coupled to the ADC, and includes a first tap and a second tap. The slicer is coupled to the DFE. The TED is coupled to the slicer. The TED is configured to initialize timing of a sampling clock provided to the ADC while initializing the second tap of the DFE and holding the first tap of the DFE at a constant value. |
US11595061B2 |
Methods and devices for operating in beam hopping configuration and under a range of signal to noise ratio conditions
Methods and transceivers transmit communication frames that comprise a sequence of N symbols, ensuing payload header symbols, and ensuing payload message symbols. The sequence of N symbols encodes information according to signal-to-noise ratio associated with the communication frame. |
US11595056B2 |
Encoding device and method, decoding device and method, and program
The present technology relates to an encoding device and method, a decoding device and method, and a program, which are adapted to be capable of improving convenience.The decoding device is provided with: a decoding unit that decodes audio data including an object audio, the audio data being included in an encoded bit stream, and reads metadata of the object audio from an area in which arbitrary data of the encoded bit stream can be stored; and an output unit that outputs the decoded audio data on the basis of the metadata. The present technology can be applied to the decoding device. |
US11595053B2 |
Analog-to-digital converter with interpolation
An analog-to-digital converter (ADC) including: a signal input adapted to receive an analog signal; a first reference voltage input adapted to receive a first reference voltage; a second reference voltage input adapted to receive a second reference voltage, the second reference voltage is different than the first reference voltage; a first delay circuit having a first delay input coupled to the signal input, a second delay input coupled to the first reference voltage input, a first delay output and a second delay output; a second delay circuit having a third delay input coupled to the signal input, a fourth delay input coupled to the second reference voltage input; a third delay output and a fourth delay output; a first comparator having a first comparator input coupled to the first delay output, a second comparator input coupled to the second delay output and a first comparator output; and a second comparator having a third comparator input coupled to the third delay output, a fourth comparator input coupled to the fourth delay output and a second comparator output. |
US11595052B2 |
Pipelined analog-to-digital converter and output calibration method thereof
A pipelined analog-to-digital converter and an output calibration method for the same. The pipelined analog-to-digital converter introduces an error calibration mechanism on the basis of traditional pipelined analog-to-digital converters through a control module, an equivalent gain error extraction module, an error storage module and a coding reconstruction module to compensate for gain errors and setup errors caused by operational amplifiers in a pipelined conversion module, so that the analog-to-digital conversion accuracy is improved, and requirements for the gain and bandwidth of the operational amplifier are relaxed, which can effectively reduce the power consumption of the analog-to-digital converter and the complexity of the corresponding analog circuit; a curve fitting method is adopted to obtain an ideal output sequence and then calculate errors; meanwhile, extraction and calibration of equivalent gain errors are all done in digital ways, and therefore accuracy thereof is high. |
US11595049B1 |
Period error correction in digital frequency locked loops
In some examples, a digital frequency locked loop (DFLL) device includes a phase frequency detector (PFD) configured to receive a reference clock signal and an indicator of a primary clock signal and to determine differences between periods of the reference clock signal and the indicator. The DFLL also includes a controller coupled to the PFD. The controller is configured to store digital signals indicating a first and a second of the differences determined by the PFD, determine a period error by subtracting the second difference from the first difference, and compare the period error to a programmed threshold. The DFLL also includes a digitally controlled oscillator (DCO) coupled to the controller, the DCO configured to provide the primary clock signal having a frequency adjusted based on the comparison. |
US11595041B1 |
Apparatus and method for providing power isolation between a power input and a protected switch
There is provided an apparatus and method, the apparatus comprising a power input and a switch isolation circuit to provide isolation between the power input and a protected switch responsive to a timing signal. The switch isolation circuit comprises a switch isolation charge store, and a buffer circuit to receive power from the switch isolation charge store and coupled between the timing signal and the protected switch. The switch isolation circuit is configured to, in response to the timing signal having the first value, operate in a powered mode in which the switch isolation charge store receives power from the power input; and, in response to the timing signal having the second value, operate in an isolation mode in which the switch isolation charge store is isolated from the power input. |
US11595040B2 |
Air conditioning controller for controlling an air conditioner
An air conditioning controller for controlling an air conditioner by an operation of an operator. The air conditioning controller is convenience to the operator to carry. The air conditioning controller includes a controller unit having an operating part by which the operator operates the air conditioner, a holder holding the controller unit at a predetermined position, and an electrical switch for switching an electrical power supply line between a first position that the controller unit positions outside of the holder and that the electric power from an internal battery is supplied to a controlling part of the controller unit and a second position that the controller unit positions in the holder and that the electric power from an electrical power source is supplied to the controlling part of the controller unit. |
US11595037B2 |
Compensation for air gap changes and temperature changes in a resonant phase detector
A system may include a sensor configured to output a sensor signal indicative of a distance between the sensor and a mechanical member associated with the sensor, a measurement circuit communicatively coupled to the sensor and configured to determine a physical force interaction with the mechanical member based on the sensor signal, and a compensator configured to monitor the sensor signal and to apply a compensation factor to the sensor signal to compensate for changes to properties of the sensor based on at least one of changes in a distance between the sensor and the mechanical member and changes in a temperature associated with the sensor. |
US11595036B2 |
FinFET thyristors for protecting high-speed communication interfaces
Fin field-effect transistor (FinFET) thyristors for protecting high-speed communication interfaces are provided. In certain embodiments herein, high voltage tolerant FinFET thyristors are provided for handling high stress current and high RF power handling capability while providing low capacitance to allow wide bandwidth operation. Thus, the FinFET thyristors can be used to provide electrical overstress protection for ICs fabricated using FinFET technologies, while addressing tight radio frequency design window and robustness. In certain implementations, the FinFET thyristors include a first thyristor, a FinFET triggering circuitry and a second thyristor that serves to provide bidirectional blocking voltage and overstress protection. The FinFET triggering circuitry also enhances turn-on speed of the thyristor and/or reduces total on-state resistance. |
US11595034B2 |
Fault voltage scaling on load switch current sense
A load switch includes a switch input, a switch output, a first field-effect transistor (FET), and a second FET. The switch input is adapted to be coupled to a controller output of a controller. The switch output is adapted to be coupled to a controller input of the controller. The first FET has a gate and a source. The gate of the first FET is coupled to the switch input. The second FET has a gate and a source. The gate of the second FET is coupled to the source of the first FET. The source of the second FET is coupled to the switch output. |
US11595030B2 |
Ramp generator providing high resolution fine gain including fractional divider with delta-sigma modulator
A ramp generator providing ramp signal with high resolution fine gain includes a current mirror having a first and second paths to conduct a capacitor current and an integrator current responsive to the capacitor current. First and second switched capacitor circuits are coupled to the first path. A fractional divider circuit is coupled to receive a clock signal to generate in response to an adjustable fractional divider ratio K a switched capacitor control signal that oscillates between first and second states to control the first and second switched capacitor circuits. The first and second switched capacitor circuits are coupled to be alternatingly charged by the capacitor current and discharged in response to each the switched capacitor control signal. An integrator coupled is to the second path to generate the ramp signal in response to the integrator current. |
US11595026B2 |
Vibration element, manufacturing method of vibration element, physical quantity sensor, inertial measurement device, electronic apparatus, and vehicle
A vibration element includes a base and a vibrating arm extending from the base. The vibrating arm includes an arm positioned between the base and a weight. A weight film is disposed on the weight. The weight has a first principal surface and a second principal surface in a front and back relationship with respect to a center plane of the arm. A center of gravity of the weight is located between the first principal surface and the center plane of the arm. A center of gravity of the weight film is located between the second principal surface and the center plane of the arm. |
US11595024B2 |
Elastic wave device, high-frequency front end circuit, and communication apparatus
An elastic wave device includes a piezoelectric substrate, an IDT electrode on the piezoelectric substrate, and a silicon oxide film arranged on the piezoelectric substrate to cover the IDT electrode. The IDT electrode includes first and second electrode layers laminated on each other, the first electrode layer is made of metal or an alloy with a density higher than a density of metal of the second electrode layer and a density of silicon oxide of the silicon oxide film, the piezoelectric substrate is made of LiNbO3 and θ is in a range of equal to or greater than about 8° and equal to or less than about 32° with Euler Angles (0°±5°, θ, 0°±10°) of the piezoelectric substrate, and the silicon oxide film contains hydrogen atoms, hydroxyl groups, or silanol groups. |
US11595021B2 |
Saw resonator comprising layers for attenuating parasitic waves
The invention relates to a SAW resonator (100) comprising at least: a substrate (102); a layer (108) of piezoelectric material arranged on the substrate; a first attenuation layer (112) arranged between the substrate and the layer of piezoelectric material, and/or, when the substrate comprises at least two different layers (104, 106), a second attenuation layer (114) arranged between the two layers of the substrate; and in which the at least one attenuation layer is/are heterogeneous. |
US11595020B2 |
Heterostructure and method of fabrication
The present invention relates to a heterostructure, in particular, a piezoelectric structure, comprising a cover layer, in particular, a layer of piezoelectric material, the material of the cover layer having a first coefficient of thermal expansion, assembled to a support substrate, the support substrate having a second coefficient of thermal expansion substantially different from the first coefficient of thermal expansion, at an interface wherein the cover layer comprises at least a recess extending from the interface into the cover layer, and its method of fabrication. |
US11595018B2 |
Film bulk acoustic resonator including recessed frame with scattering sides
A film bulk acoustic wave resonator (FBAR) comprises a recessed frame region including an undulating perimeter. |
US11595014B2 |
Filter circuit and filter device
A filter circuit that secures the steepness from a pass range to an attenuation range while maintaining a wide-band transmission characteristic and a filter device including this filter circuit are formed. A filter circuit includes a first filter and a second filter. The first filter is a filter including an LC circuit in which a first frequency band is a pass band and a frequency band not higher than the first frequency band is an attenuation band. The second filter is a filter that attenuates a second frequency band within the first frequency band by using an attenuation pole produced by a resonance or an antiresonance of an acoustic wave resonator. Further, the first filter is placed closer to an antenna terminal than the second filter. |
US11595013B2 |
Multilayer electronic device including a high precision inductor
A multilayer electronic device may include a plurality of dielectric layers and a signal path having an input and an output. An inductor may include a conductive layer formed on one of the plurality of dielectric layers and may be electrically connected at a first location with the signal path and electrically connected at a second location with at least one of the signal path or a ground. The inductor may include an outer perimeter that includes a first straight edge facing outward in a first direction and a second straight edge parallel to the first straight edge and facing outward in the first direction. The second straight edge may be offset from the first straight edge by an offset distance that is less than about 500 microns and less than about 90% of a first width of the inductor in the first direction at the first straight edge. |
US11595009B2 |
Slewing mitigation apparatus for switched capacitor circuit
A slewing mitigation technique is presented where just the right amount of charge is provided at the switching instant to a switch capacitor circuit so that operational transconductance amplifier (OTA) does not need to provide high peak current. This eliminates slewing altogether and allows using OTAs with less static current for the same settling accuracy. |
US11595008B2 |
Low noise amplifiers with low noise figure
Low noise amplifiers (LNAs) with low noise figure are provided. In certain embodiments, an LNA includes a single-ended LNA stage including an input for receiving a single-ended input signal from an antenna and an output for providing a single-ended amplified signal, a balun for converting the single-ended amplified signal to a differential signal, and a variable gain differential amplification stage for amplifying the differential signal from the balun. Implementing the LNA in this manner provides low noise figure, high gain, flexibility in controlling gain, and less sensitivity to ground/supply impedance. |
US11594999B2 |
Solar roof forming element, building, and method of forming a roof
The present teachings relate to a solar roof forming element for forming a solar roof of a building, comprising an extruded, elongate polymer roof plate, element coupling means, at least one solar panel covering the roof plate, panel coupling means for coupling the solar panel to the roof plate, comprising a first coupling part at a first side of the roof plate and a second coupling part at a first side of the solar panel, said coupling parts configured such that they mutually couple as a result of a movement of the solar panel relative to the roof plate, wherein in a coupled state a movement of the solar panel away from the roof plate in a direction perpendicular to the roof plate is blocked. The present teachings further relate to a combination of such solar roof forming elements, to a building, and to a method of forming a roof. |
US11594998B1 |
Systems and methods for mounting solar panels
Mounting a solar panel system includes installing a skirt to a roof in a predetermined position, the predetermined position guiding an alignment for additional components installed in the solar panel system; integrating a solar panel with a flange of the skirt, wherein the skirt supports a portion of the solar panel; determining if a width of the solar panel system will be increased; installing an additional skirt to which an additional solar panel is attached in response to determining that the width of the solar panel system will be increased; determining if a length of the solar panel system will be increased; and integrating an additional solar panel with a flange of a previously installed solar panel via a mount interface in response to determining that the length of the solar panel system will be increased. |
US11594997B2 |
Method and circuit arrangement for determining an incorrect operating state of an electrical machine
The disclosure relates to a method for determining an incorrect operating state of an electrical machine with the aid of an electronic circuit having at least one comparator. The electrical machine is controlled with a pulse width modulation signal. The pulse width modulation signal is demodulated. A first signal, which represents the demodulated pulse width modulation signal, is compared with a second signal. The second signal represents a rotational speed or a rotational angle of the electrical machine and/or a current intensity of the electrical machine. This comparison is carried out with the aid of the at least one comparator. An error signal is generated based on the comparison in order to determine the incorrect operating state of the electrical machine. |
US11594996B2 |
Method and device for maintaining a detected absolute position of an electric motor operating as an actuator during a critical operation
A method for maintaining a detected absolute position of an electric motor operating as an actuator during a critical operation involves the electric motor (2) being controlled by a controller (1) which is supplied with energy from an energy source. In the method, with which an absolute value sensor can be omitted, the absolute position of the electric motor (2) is measured during the operation thereof, wherein rotations of the electric motor (2) are detected. The rotations are counted, and a count value is output to a microprocessor (3) of the controller (1) in order to actuate the electric motor (2), and in the event of a critical operation, the currently detected count value is maintained by means of an independent voltage supply (7). |
US11594994B2 |
Selectable current limiting for power tool
Selectable current limiting for a power tool. One embodiment provides a method for selectable current limiting for a power tool including determining, using a current sensor, an average current and determining whether the average current exceeds a predetermined current threshold. The method also includes determining a deviation of the average current from the predetermined current threshold and reducing a PWM duty ratio proportional to the deviation of the average current from the predetermined current threshold. The PWM duty ratio corresponds to a PWM signal provided to an inverter bridge. |
US11594993B2 |
Rotary machine controller, refrigerant compressor, refrigeration cycle system, and air conditioner
A controller includes: a connection switch that switches a connection state of a winding of a synchronous motor during a rotating operation of the synchronous motor; a current detector that detects a rotary machine current flowing in the synchronous motor; a position/speed estimator that estimates a magnetic pole position and speed of a rotor; a voltage applicator that applies a voltage to the synchronous motor; and a control circuitry that generates a voltage command given to the voltage applicator on the basis of the magnetic pole position and the speed, and outputs a switching operation command for switching the connection state to the connection switch. The control circuitry generates the voltage command to bring the rotary machine current close to zero before the connection state of the winding is switched. |
US11594989B2 |
Method for regulating an electric rotary current machine, and rotary current machine system for such a method
A rotary current machine system and method for controlling an electric rotary current machine, in particular an induction machine, having a rotor, a stator and at least two phase windings is disclosed. At least one electrical signal, in particular a voltage signal, is applied to at least one phase winding, preferably all phase windings, of the rotary current machine, and the current waveform in the at least one phase winding is measured. An intermodulation signal component, induced in the rotary current machine by slotting effects and magnetic saturation effects, which is determined from the current waveform measured in the at least one phase winding, is used for controlling the rotary current machine. |
US11594987B1 |
Degauss time detection in electric motors
Example systems and processes compare sampled values of a floating phase voltage and/or outgoing phase current of an electric motor with a corresponding reference to identify a degauss time period. Post degauss time period identification, sampled values are compared with a threshold to identify a settling time period following the degauss time period. The threshold used to identify the settling time period depends on a slope of a floating phase voltage after the degauss time period, a modulation scheme being used, and a pulse width modulation ON/OFF state of the electric motor. When the threshold comparison test is not met, it is determined whether the slope of the floating phase voltage has inverted. Based on such processing, a back-electromotive force (BEMF) zero-crossing (ZC) is detected or estimated with respect to a floating phase voltage of the electric motor. |
US11594980B2 |
Three-phase series voltage and current regulator/rectifier
Technologies for alternating current regulation controller include a controller configured to determine a voltage duty cycle based on a target voltage, and to determine a delay time based on the voltage duty cycle. The controller is coupled to input phases of an alternating current generator having multiple phases. Each phase is coupled to a silicon controlled rectifier. For each phase, the controller identifies a rising edge asserted on the input phase, waits the delay time after identifying the rising edge, and asserts an output pulse on an output driver coupled to the silicon controlled rectifier coupled to the input phase in response to waiting the delay time. Other embodiments are described and claimed. |
US11594977B2 |
Gain tuning for synchronous rectifiers
A synchronous rectifier includes: an integrator configured to integrate a voltage across a secondary side winding of a transformer over an integral period having an expected zero integral value; a first comparator configured to detect an end of a demagnetization phase of the secondary side winding based on diode detection; and a digital circuit configured to adjust a channel gain of the synchronous rectifier based on an integration error at the end of the integral period, the integration error corresponding to the difference between the integrated voltage at the end of the integral period and the expected zero integral. Corresponding methods of gain tuning and a power converter are also described. |
US11594970B2 |
Overcurrent protection based on zero current detection
A circuit is disclosed. The circuit includes a current detecting FET, configured to generate a current signal indicative of the value of the current flowing therethrough, an operational transconductance amplifier (OTA) configured to output a current in response to the voltage of the current signal, and a resistor configured to receive the current and to generate a voltage in response to the received current, where the generated voltage is indicative of the value of the current flowing through the current detecting FET. The current detecting FET is configured to become nonconductive in response to the generated voltage indicating that the current flowing through the current detecting FET is greater than a threshold. |
US11594967B2 |
Hysteretic current control switching power converter with clock-controlled switching frequency
A hysteretic current control switching power converter with a clock-controlled switching frequency is disclosed. A power converter includes a switching circuit including a high side switch and a low side switch coupled to one another at a switching node, with an inductor being coupled between the switching node and a regulated supply voltage node. The power converter further includes a control circuit configured to alternately cause activation of the high side switch and the low side switch, wherein the control circuit is configured to activate the low side switch in response to a first voltage reaching peak threshold value, the first voltage corresponding to a current through the inductor. A ramp voltage circuit is configured to, in response to a clock signal, generate a ramp voltage, wherein the peak threshold value is based on the ramp voltage. |
US11594965B2 |
Power converter counter circuit with under-regulation detector
Circuits and methods for reducing lagging responses of a power converter to changes in circuit voltages or current, over-shoot/under-shoot when a target output voltage changes faster than the power converter's response, and open loop conditions. Embodiments include scanning a feedback voltage from a load powered by a voltage output by a power converter controlled by a PWM control signal; detecting an under-regulation condition; and, while the under-regulation condition is detected, increasing a clock signal rate to a counter outputting a count value usable to generate the PWM control signal. Embodiments include comparing a target output voltage to a signal representative of an output voltage of the power converter; indicating an under-shoot or over-shoot condition if the voltage difference exceeds a corresponding offset value; and limiting the range of values for an M-bit count value used to generate the PWM control signal to mitigate the under-shoot or over-shoot condition. |
US11594964B2 |
DC-DC converter output regulation systems and methods
A circuit includes a controller circuit configured to receive an output voltage of a converter and adjust a switching frequency of the converter in response to a status of an output load and an output load sensing circuit configured to determine the status of the output load and provide the peak current to the controller circuit. The output load sensing circuit may include a first timer configured to provide a delayed first signal to a peak current control in response to the output load being a heavy load. A second timer may be configured to provide a delayed second signal to the peak current control in response to the output load being a light load. The peak current control may be configured to adjust a peak current based on the received first signal and the second signal and configured to provide the peak current to the controller circuit. |
US11594962B2 |
Techniques to improve current regulator capability to protect the secured circuit from power side channel attack
This disclosure relates to current flattening circuits for an electrical load. The current flattening circuits incorporate randomize various parameters to add noise onto the supply current. This added noise may act to reduce the signal to noise ratio in the supply current, increasing the difficulty of identifying a computational artifact signal from power rail noise. |
US11594961B2 |
Power supply system and control in a dynamic load configuration
An apparatus includes a controller. The controller monitors a magnitude of first current supplied by an output voltage of a first power converter to power a dynamic load. The controller controls a second power converter to supply second current through the dynamic load based on the monitored magnitude of first current. |
US11594957B2 |
Dual-stage boost converter
A dual-stage boost converter is disclosed. The boost converter includes a charge pump and a boost stage. The charge pump is coupled between an input voltage source and the boost stage. The charge pump is coupled to receive the input voltage and configured to generate an intermediate voltage that is greater than the input voltage received from the input voltage source. The boost stage includes an inductor coupled to receive the intermediate voltage and is configured to generate an output voltage that is greater than or equal to the intermediate voltage. |
US11594954B2 |
Soft start method for a single inductor multiple output power supply
A method is provided for soft starting a single inductor multiple output (SIMO) power supply. The method includes selecting operation in a pulse width modulation (PWM) mode. A first pulse frequency modulation (PFM) mode is enabled to supply a first load with a first voltage and the power supply begins to ramp up the output voltage. After the output voltage has reached a desired value in the PFM mode, the PFM mode is disabled. Then, operation is enabled in the PWM mode. The SIMO power supply then supplies a current to one or more loads in the PWM mode. |
US11594952B2 |
Auxiliary power supply device for inverter, inverter, and method for starting the same
An auxiliary power supply device for an inverter with a plurality of power modules connected in parallel is disclosed. The auxiliary power supply device includes: a plurality of soft-start circuits, each coupled to a DC port of a corresponding power module; a plurality of distributed auxiliary power supplies, each having an input terminal coupled to the DC port of the corresponding power module; and a centralized auxiliary power supply having an input terminal coupled to an AC side of the inverter, and an output terminal coupled to a DC side of the inverter. By replacing auxiliary power supplies on the AC sides of all power modules with the centralized auxiliary power supply and omitting soft-start circuits on the AC sides of all power modules, the present invention improves system performance in cost, volume, loss, and electromagnetic compatibility. |
US11594936B2 |
Electric actuator
Provided is an electric actuator, including: a driving motor (2); a motion conversion mechanism (6) configured to convert a rotary motion of the driving motor (2) to a linear motion; a transmission gear mechanism (5) configured to transmit a driving force from the driving motor (2) to the motion conversion mechanism (6); and a speed reduction mechanism (3) configured to reduce a speed of the rotary motion of the driving motor (2), and output the rotary motion reduced in speed to the transmission gear mechanism (5), wherein a side of one end portion of a rotation shaft (18) of a gear (16) of the transmission gear mechanism (5) is rotatably supported by a bearing (19), and a side of another end portion of the rotation shaft (18) of the gear (16) is rotatably supported by the output shaft (2a) of the driving motor (2). |
US11594929B2 |
Axial flux motor with distributed winding
An axial flux motor having reduced spatial harmonics including a rotor with a plurality of magnets. A rotor shaft is coupled to the rotor. A stator faces the rotor and an air gap defined between the rotor and the stator. The stator includes a plurality of electromagnetic components defining a plurality of magnetic poles. The electromagnetic components include a plurality of posts, a plurality of slots, and a plurality of distributed electrically conductive windings disposed in and spanning across nonadjacent slots of the plurality of slots. At least one electrically conductive winding has a winding pitch span of greater than or equal to about 3 to less than or equal to about 20. The axial flux motor may include two rotors and one stator or alternatively two stators and one rotor. Such axial flux motors have short pitch provide desirable reduced spatial harmonics to enhance motor performance. |
US11594922B2 |
Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric vehicle
The present disclosure provides a rotor structure, a permanent magnet auxiliary synchronous reluctance motor and an electric vehicle. A rotor structure includes a rotor body. The rotor body has magnetic steel slot groups. Each of the magnetic steel slot groups includes an outer layer magnetic steel slot including: a first outer layer magnetic steel slot segment, a second outer layer magnetic steel slot segment, a first bent slot, and a second bent slot. The first outer layer magnetic steel slot segment and the second outer layer magnetic steel slot segment are arranged along a radial direction of the rotor body and are opposite to each other. Extended lines of a length directional geometric centerline of the first outer layer magnetic steel slot segment and a length directional geometric centerline of the second outer layer magnetic steel slot segment define a first angle. |
US11594919B2 |
Sensor arrangement for a foreign object detection device
The invention relates to a sensor arrangement (140) for a foreign object detection device which includes a current input (142) and a current output (143), a multitude of detection cells (144.1-144.9), each comprising a sense coil and a capacitive element, forming a resonant tank. The sensor arrangement (140) further has a multitude of inputs leads (148a-148c) and a multitude of output leads (150a-150c), the total number of input and output leads being equal or smaller than the number of detection cells (144.1-144.9). Each detection cell is connected between one of the input leads (148a-148c) and one of the output leads (150a-150c), in a way that each of the detection cells (144.1-144.9) is connected to a different pair of input and output leads (148a-148c, 150a-150c). An input selection circuit (152) allows to selectively establish an electrical connection between the current input (142) and one or more of the input leads (148a-148c) and an output selection circuit to (153) selectively establish an electrical connection between one or more of the output leads (150a-150c) and the current output (143). According to the invention at least one detection cell (144.1-144.9) includes a decoupling element (D1-D9) connected in series to its resonant tank. The invention further relates to foreign object detection device for a wireless power transfer system, a primary part of a wireless power transfer system, a wireless power transfer system and a method for detecting a foreign object. |
US11594918B2 |
Wireless charging transmitter system and method for controlling same
The present disclosure relates to a wireless charging transmitter system and its control method. The system includes at least two transmit coils, configured to simultaneously transmit power; at least two transmit circuits, wherein each of the transmit circuits is electrically connected to each of the transmit coils, and is configured to supply a current to the transmit coil; and at least one decoupling circuit, wherein the decoupling circuit is connected to any two coupled transmit coils of the at least two transmit coils. By controlling N switches in a first compensation circuit and/or M switches in a second compensation circuit in the decoupling circuit, compensation capacitors connected in parallel with two terminals of a first inductor and a second inductor are controlled such that the equivalent mutual-inductance of the decoupling circuit may be adjusted to improve decoupling precision and reduce power loss caused by coupling between transmit coils. |
US11594909B2 |
Control device for power supply circuit, non-transitory computer-readable storage medium for storing power supply circuit control program, and method for controlling power supply circuit
A control device of a power supply circuit includes processing circuitry. The processing circuitry includes a state-of-charge calculator and a target calculator. The state-of-charge calculator calculate a state of charge of the first battery. The target calculator calculates a target voltage range. When an output voltage of the first battery detected by a voltage sensor cannot be acquired and an acquisition failure occurs, after the occurrence of the acquisition failure, the state-of-charge calculator is configured to obtain the state of charge of the first battery, as a held state-of-charge, that was calculated before the occurrence of the acquisition failure. When a pre-charge process is performed in a state in which the acquisition failure is occurring, the target calculator is configured to calculate an estimated output voltage of the first battery from the held state-of-charge and calculate the target voltage range based on the estimated output voltage. |
US11594906B2 |
Battery charging method and charging system for charging a battery with a rest period
The present application relates to a battery charging method and charging system which can prevent degradation of a battery and enhance the lifetime characteristics thereof. In one aspect, the charging method includes charging a battery at a first C-rate higher than a reference C-rate, wherein the C-rate represents charge or discharge current/a rated capacity of the battery. The charging method also includes charging the battery at a second C-rate lower than the reference C-rate. The charging of the battery at the first C-rate includes at least one rest period for temporarily stopping the charging of the battery. |
US11594902B2 |
Circuit for managing multi-band operations of a wireless power transmitting device
Techniques are described for managing operations of a wireless-power-transmitting device, capable of operating in multiple radio-frequency (RF) bands. An example integrated circuit includes (i) an interface to couple with a power amplifier, (ii) an encryption block configured to authorize wireless-power-receiving devices, and (iii) a processing subsystem. The processing subsystem is configured to determine, using the encryption block, that multiple wireless-power-receiving devices are authorized to receive wirelessly-delivered power at multiple distinct frequencies. And after determining that the multiple wireless-power-receiving devices are authorized to receive wirelessly-delivered power, the processing subsystem provides multiple input signals, including signals having different respective frequencies, to the power amplifiers via the interface, to be amplified such that, when the amplified signals are sent to antennas, the antennas transmit RF signals to multiple receivers at multiple frequencies. The processing subsystem, interface, and encryption block are on a single integrated circuit. |
US11594900B2 |
Battery pack having fastening recognition function
A battery pack in accordance with an exemplary embodiment, which is booted when coupled to an external apparatus, includes: a connector which is a member configured to connect the external apparatus and the battery pack; and a booting circuit configured to start operation of the battery pack when the battery pack and the external apparatus are coupled. The connector includes: a (+) output terminal connected to a (+) output terminal of the battery pack; a coupling check terminal configured to check whether the external apparatus and the battery pack are coupled; a data transceiving terminal configured to tranceive data between the external apparatus and the battery pack; and a (−) output terminal connected to a (−) output terminal of the battery pack. |
US11594896B2 |
Charger extension device
A charger extension device has a housing having a top side, a left side, a bottom side, a right side, a rear side, a front side, and an interior, an USB port on the front side of the housing, a port on the rear side of the housing, and a quick charging circuit in the interior between the USB port on the front side of the housing and the port on the rear side of the housing. |
US11594893B2 |
Charging method, apparatus, and system
Embodiments of this application disclose a charging method and related devices. An example charging method includes: sending a charging start request for a packet data unit (PDU) session to a charging function apparatus, where the charging start request carries an indication receiving address; receiving an indication message that is sent by the charging function apparatus based on the indication receiving address, where the indication message carries an indication type; and performing charging processing based on the indication type. |
US11594892B2 |
Battery pack with series or parallel identification signal
Systems and methods are described for managing charging and discharging of battery packs. In one or more aspects, a system and method are provided to minimize overcharging of battery cells of specific battery chemistries while still enabling fast charging cycles. In other aspects, a buck converter may be used to reduce a voltage of power used to charge the cells. In further aspects, a fast overcurrent protection circuit is described to address situations involving internal short circuits of a battery cell or battery pack. In yet further aspects, a bypass circuit is provided in series-connected battery packs to improve the charging of undercharged battery packs while also increasing the efficiency of the overall charging process. In other aspects, a circuit is provided that permits a controller to determine a configuration of battery packs. In yet further aspects, a system may determine a discharge current for a collection of battery packs based on each battery pack's state of health (SOH) and forward that determination to an external device. |
US11594891B2 |
Electrical power systems
Electrical power systems and methods of controlling electrical power systems are described. One such electrical power system comprises: a first ac bus and a first generator set configured to supply the first ac bus with ac electrical power; a second ac bus and a second generator set, configured to supply the second ac bus with ac electrical power; an interconnecting transformer connected between the first and second ac busses; a primary electrical load connected to both the first and second ac busses via a converter arrangement; an auxiliary load connected to the first ac bus; and a controller configured to control the first generator set according to a first droop control profile and to control the second generator set according to a second droop control profile, the first and second droop control profiles relating respective generator operating frequencies of the first and second generator sets to respective output powers of the first and second generator sets. |
US11594889B2 |
Optimized energy interconnection system for urban railway train
Disclosed is an optimized energy interconnection system for an urban railway train in the technical field of urban railway transportation power supply, for addressing the technical problem that distribution of regenerative braking energy flows cannot be accurately determined. The system includes a DC intermediate bus and a multi-port flow controllable energy router. The multi-port flow controllable energy router can comprehensively control a source and a load connected in parallel on the DC intermediate bus and thus can accurately determine the distribution of regenerative braking energy flows, thereby forming a well-developed system for evaluating usage of the braking energy. |
US11594887B2 |
Dynamic and integrated control of total power system using distributed impedance injection modules and actuator devices within and at the edge of the power grid
A system architecture and method for enabling hierarchical intelligent control with appropriate-speed communication and coordination of control using intelligent distributed impedance/voltage injection modules, local intelligence centers, other actuator devices and miscellaneous FACTS coupled actuator devices is disclosed. Information transfer to a supervisory utility control is enabled for responding to integral power system disturbances, system modelling and optimization. By extending the control and communication capability to the edge of the HV power grid, control of the distribution network through FACTS based Demand response units is also enabled. Hence an integrated and hierarchical total power system control is established with distributed impedance/voltage injection modules, local intelligence centers, connected other actuator devices, miscellaneous FACTS coupled devices and utility supervisory all networked at appropriate speeds allowing optimization of the total power system from generation to distribution. |
US11594886B2 |
Powering an information delivery network
Methods and systems are disclosed for leveraging user premises supplied electric power to power active components in an information delivery network. In response to one or more conditions, an active component may switch an input power path from using grid-supplied or battery power to draw power from a user premises. The decision to switch the power path may be based on a number of conditions, for example, whether power is available from the grid, the relative cost of power from the user premises and whether the power from the user premises includes power from a renewable source. |
US11594885B2 |
Photovoltaic grid capacity sensor
In one aspect, a method to determine a capacity of a microgrid includes applying a current test load to the microgrid and measuring a current through an energy storage device, the current indicating a charging status of the energy storage device based on a current load being applied to the microgrid through activated power outlets being served by the microgrid and the current test load, the energy storage device being integrated with the microgrid. The method also includes, responsive to a determination that the measured current based on the current load being applied to the microgrid and the current test load indicates that the energy storage device is discharging, determining the capacity of the microgrid, wherein the capacity is the current load being applied to the microgrid through activated power outlets and a test load applied to the microgrid immediately preceding the current test load. |
US11594881B2 |
Distributed power harvesting systems using DC power sources
A system and method for combining power from DC power sources. Each power source is coupled to a converter. Each converter converts input power to output power by monitoring and maintaining the input power at a maximum power point. Substantially all input power is converted to the output power, and the controlling is performed by allowing output voltage of the converter to vary. The converters are coupled in series. An inverter is connected in parallel with the series connection of the converters and inverts a DC input to the inverter from the converters into an AC output. The inverter maintains the voltage at the inverter input at a desirable voltage by varying the amount of the series current drawn from the converters. The series current and the output power of the converters, determine the output voltage at each converter. |
US11594879B2 |
Multi-power supply monitoring, operation, and control
An apparatus comprises a first power supply, a second power supply, and a controller. The first power supply supplies a first input voltage to power a first input of a load over a first circuit path. The second power supply supplies a second input voltage to power a second input of the load over a second circuit path. The controller controls connectivity of the first circuit path to the second circuit path as a function of the first input voltage and the second input voltage during at least ramp up or ramp down of either or both of the first input voltage and the second input voltage. |
US11594878B2 |
System and method for ESD protection
In accordance with an embodiment, a method for protecting a circuit includes: receiving a stress caused by an electrostatic discharge (ESD) event from a first node; limiting a current using a current limiting element coupled between the first node and a second node connected to the circuit; and limiting a voltage on the second node caused by the ESD event using a protection circuit including at least one MOS transistor having a load path coupled to the second node, where the at least one MOS transistor is disposed in a well, and a bias circuit coupled to a gate and a bulk connection of the at least one MOS transistor and a supply node. |
US11594868B1 |
Small architectural distributed premises automation
A power module is configured to accept power from a cable, wherein the power module may be inserted into a standard wall cavity via a small hole. A processor module coupled to the power module comprises a processor and is configured to accept power from the cable for the processor, wherein the processor module may be inserted into the standard wall cavity via the small hole. A sensor module coupled to the processor module, comprises a sensor and is configured to accept input from the sensor for the processor, wherein the sensor module may be inserted into the small hole. |
US11594858B2 |
Optical resonator with localized ion-implanted voids
A high Q whispering gallery mode resonator with ion-implanted voids is described. A resonator device includes a resonator disk formed of an electrooptic material. The resonator disk includes a top surface, a bottom surface substantially parallel to the top surface, and a side structure between the top surface and the bottom surface. The side structure includes an axial surface along a perimeter of the resonator disk, where a midplane passes through the axial surface dividing the axial surface into symmetrical halves. The whispering gallery mode resonator disk includes voids localized at a particular depth from the top surface. At least one of the voids localized at the particular depth from the top surface is located at an outer extremity towards the perimeter of the resonator disk. The resonator device can further include a first electrode on the top surface and a second electrode on the bottom surface. |
US11594856B2 |
Wavelength drift suppression for burst-mode tunable EML transmitter
A method (900) includes delivering a first bias current (IGAIN) to an anode of gain-section diode (590a) and delivering a second bias current (IPH) to an anode of a phase-section diode (590b). The method also includes receiving a burst mode signal (514) indicative of a burst-on state or a burst-on state, and sinking a first sink current (ISINK) away from the first bias current when the burst mode signal is indicative of the burst-off state. When the burst mode signal transitions to be indicative of the burst-on state from the burst-off state, the method also includes sinking a second sink current away from the second bias current at the anode of the phase-section diode and ceasing the sinking of the first sink current away from the first bias current at the anode of the gain section diode. |
US11594849B2 |
Integrated high frequency connector
High-speed connectors that save space in an electronic device, are simple to connect, and are readily manufactured. One example can provide a high-speed connector having high-speed connections. The high-speed connections can be integrated with low-speed connections in a board-to-board structure to save space in an electronic device. An example can provide high-speed connections that are simple to connect. The board-to-board structure can include a board-to-board plug, where each high-speed connection includes a high-speed contact having a lateral portion. The lateral portion can include right-angle tabs to guide a central conductor of a coaxial cable. The central conductor of each coaxial cable can be soldered to a corresponding lateral portion. Ground contacts for the board-to-board plug can include crimping portions to connect to an outer shield of each coaxial cable. These high-speed connectors can be readily manufactured by utilizing stamped contacts and molded housings. |
US11594846B2 |
Electrical connector with ground terminal and shielding
An electrical connector is used to be electrically connected to a mating component. The electrical connector includes one or more shielding members, forming multiple receiving holes; and multiple terminals, including at least one signal terminal and at least one ground terminal correspondingly accommodated in the receiving holes. The ground terminal has a mating portion upward abutting the mating component, an elastic portion pressed vertically to elastically deform, and a positioning portion having a cross-section in a circular shape. The positioning portion and the shielding members are conductively connected to each other by at least three conductive portions, and the three conductive portions are provided to form a triangle. An insulating block is between the signal terminal and a corresponding shielding member to be accommodated in a corresponding receiving hole. The positioning portion with a circular cross-section has a larger area when the volume of the receiving hole remains unchanged. |
US11594840B2 |
Resin molded product
A resin molded product includes a plate portion having a plate-like shape and having assembly locations in which a mating member is assembled on both surfaces of the plate portion in a plate thickness direction, a reference portion provided on one surface of the plate portion and used for alignment with the mating member, and a through hole which penetrates the reference portion in the plate thickness direction and opens on the both surfaces of the plate portion. The reference portion has a columnar shape extending in the plate thickness direction, and the through hole opens at an extending end of the reference portion and extends in the plate thickness direction to open on the other surface of the plate portion. The plate portion further includes a terminal provided so as to extend in the plate thickness direction at the assembly location on the other surface. |
US11594834B2 |
Electrical connector assembly
An electrical connector assembly that can quickly and easily be secured to two electrically conductive structures, such as a flat flexible conductor having multiple electrically conductive traces and a printed circuit board having multiple electrically conductive traces, without the use of specialized tools and/or methods is disclosed. The electrical connector assembly includes a housing having a plurality of slots defined therein. An electrical contact is disposed within each of the plurality of slots. Each electrical contact includes a first portion engaged with the housing, a second portion adapted to engage the first electrically conductive structure when inserted within the housing, and an intermediate portion located between the first portion and the second portion and adapted to engage the second electrically conductive structure when inserted within the housing. |
US11594833B2 |
Plug connector with secondary lock
The invention relates to a plug connection (1) having a plug connector (2) and a mating plug connector (3). The plug connector (2) and the mating plug connector (3) can be plugged together in order to form the plug connection (1), wherein the plug connector (2) has a contact support (4) with at least one contact chamber for receiving a contact partner, and the contact support (4) is inserted into an outer housing (5) of the plug connector (2). Each contact partner is primarily locked in the contact chamber of the contact partner, and a secondary lock (6) is provided for a secondary locking of the contact partners in the contact chambers thereof. The invention is characterized in that the secondary lock (6) is formed by a longitudinal web (16), at the two ends of which a respective latching element (17) is arranged that interacts with the contact support (4), and at least one force absorbing web (19) is arranged on the upper face of the longitudinal web (16). |
US11594828B2 |
Pressure sealed electrical connection interface
Components and systems include devices for implementing downhole splice connections within a wellbore. In some embodiments, a downhole splice connector includes at least one connector body having an inner diameter defining a cavity within which at least one connector receptacle is disposed, and at least one conductive center pin disposed within the at least one connector receptacle. The downhole splice connector further includes at least one pressure sleeve annularly disposed between an inner diameter of the connector body and an outer diameter of the center pin, such that a pressure barrier is formed between an outer diameter of the pressure sleeve and an inner diameter of the connector body and a pressure barrier is formed between an inner diameter of the pressure sleeve and an outer diameter of the center pin. |
US11594826B2 |
Cable connector including cable holder, and method of manufacturing cable connector
Provided is a cable connector which includes: a housing; and a cable holder capable of holding one end side of the cable. The cable holder includes at least three first to third engagement portions on each of opposing outer side surfaces, in a direction along a lead-out direction where the cable held on the one end side by the cable holder is led out from the cable holder, the first engagement portion is placed on a side far from the cable lead-out side of the cable holder, the second engagement portion is placed on a side near the lead-out side, and the third engagement portion is placed between the first engagement portion and the second engagement portion, the housing includes at least three first to third corresponding engagement portions capable of engaging respectively with the first to third engagement portions, on each of opposing inner side surfaces, it is configured in such a manner that, upon the first to third engagement portions engaging with the first to third corresponding engagement portions, respectively, the cable holder is capable of being placed at least at a first engagement position and a second engagement position with respect to the housing, at the first engagement position, the first and second engagement portions are in engagement with the first and second corresponding engagement portions, respectively, while the third engagement portion has not yet engaged with the third corresponding engagement portion, and at the second engagement position, all the first to third engagement portions are in engagement with the first to third corresponding engagement portions, respectively. |
US11594812B2 |
Directional antenna arrays and methods
Disclosed are devices, systems and methods employing a directional antenna with a single rotational degree of freedom and using multiple signal-quality measurements to define best orientation with respect to a remote communication point and to align the antenna along the highest-signal-quality path. This simplifies alignment upon installation and facilitates higher signal levels, resulting in more reliable communication and higher data throughput. |
US11594810B1 |
Antenna isolation using parasitic element in wireless devices
Disclosed herein includes a wireless device including a first antenna configured to perform wireless communication, a second antenna configured to perform wireless communication, and a parasitic antenna. The first antenna may have a feed connected to a first impedance tuner that is connected to a first ground planes. The second antenna may have a feed connected to a second impedance tuner. The parasitic antenna may be disposed between the first and second antennas, with a feed connected to a third impedance tuner that is connected to a second ground plane. The first, second and third impedance tuners may be adjusted to configure the first, second and parasitic antennas to achieve a same resonant frequency. |
US11594808B2 |
Cellular antenna enclosures
Various base station cellular enclosures are detailed herein. An airfoil enclosure housing may be present that defines a cavity for housing a base station cellular antenna. The housing may have a leading edge and a vent that permits air from external the airfoil enclosure housing to enter the cavity of the airfoil enclosure housing. The enclosure may further include a rotatable coupling that attaches the airfoil enclosure housing to a support structure. The rotatable coupling can allow the airfoil enclosure housing to rotate based on wind such that the leading edge faces into the wind. |
US11594804B2 |
Antenna on glass with air cavity structure
Disclosed is an antenna on glass (AOG) device having an air cavity at least partially formed in a photosensitive glass substrate. An air cavity structure is at least partially encloses the air cavity and wherein the air cavity structure at least partially formed from the photosensitive glass substrate. An antenna is formed from portion of a top conductive layer disposed on a top surface of the air cavity structure and at least partially overlapping the air cavity. A metallization structure is provided having a bottom conductive layer disposed on a bottom surface of the air cavity structure, wherein the bottom conductive layer is electrically coupled to the top metal layer by a conductive pillar disposed through the photosensitive glass substrate. In addition, the AOG device may integrate one or more MIM capacitors and/or inductors that allow for RF filtering and impedance matching. |
US11594803B2 |
Tactical support structure for tracking spherical satellite antenna
An inflatable tracking antenna assembly may include an inflatable antenna. The inflatable antenna may be configurable in a packed configuration and a deployed configuration. In the deployed configuration the inflatable antenna may be generally spherical in shape. The assembly may include an antenna support structure. The support structure may include a plurality of support arms that couple with lateral sides of the inflatable antenna. The support structure may include a base that is coupled with each of the plurality of support arms. The base may include an azimuth actuator that adjusts an azimuth position of the inflatable antenna and an elevation actuator that adjusts an elevation angle of the inflatable antenna. The support structure may include a plurality of support legs that extend outward from the base. |
US11594799B2 |
Waveguide arrangement having a waveguide tube with an outer wall spaced from an inner wall of a jacket by a distance less than 100 μm
A waveguide arrangement for transmitting microwaves, and for measuring a limit level or a filling level, is provided, the waveguide arrangement for transmitting microwaves including a waveguide tube having a rectangular or elliptical inner cavity and an outer wall; and a jacket, an inner wall of which corresponds at least in sections with a shape of the outer wall of the waveguide tube. |
US11594797B2 |
Dually electrically tunable 3-D compact RF phase shifter
An electrically tunable radio frequency phase shifter with compact 3-D structure that integrates both ferromagnetic and ferroelectric materials, and utilizes 3-D structure to increase the tuning efficiency and achieve miniaturization. |
US11594776B2 |
Battery module including heat shrinkable tube
A battery module includes a heat-shrinkable tube serving as a module housing. The battery module includes a cell assembly having a plurality of pouch-type secondary batteries; a bus bar assembly having a bus bar frame and a bus bar mounted to an outer surface of the bus bar frame; and a heat-shrinkable tube formed to be shrunk by heat and configured so that the cell assembly is located therein, the heat-shrinkable tube being provided to surround a side surface of the cell assembly and a portion of the bus bar assembly. |
US11594774B2 |
Method for assembling a battery, battery, and motor vehicle having such a battery
A method for assembling a battery, wherein the battery has a plurality of battery modules each including multiple battery cells, a battery housing at least partially enclosing the battery modules, and a temperature control unit thermally contacted with the battery housing. A thermally conductive cavity filling compound for thermally contacting the battery cells of the respective battery module with the temperature control unit is arranged in a cavity between an outside of a respective battery module inserted into the battery housing and an inside of the battery housing facing toward the outside of the respective battery module. |
US11594773B2 |
Electric cell potting compound and method of making
A battery module comprising an electric cell and a potting compound associated with the electric cell. The potting compound is formed of a flame retardant component; a first component having an isocyanate reactive compound and water; and a second component having an isocyanate compound. The potting compound is a foam. |
US11594771B2 |
Battery packaging material, battery, and method for producing battery packaging material
A battery packaging material that is excellent in electrolytic solution resistance and ink printing characteristics of the surface. A battery packaging material comprising a laminate having at least a protective layer, a base material layer, a barrier layer, and a heat-sealable resin layer in this order, wherein a maximum value A of absorbance detected in an infrared wavenumber range of 2800 to 3000 cm−1 and a maximum value B of absorbance detected in an infrared wavenumber range of 2200 to 2300 cm−1 satisfy the relation: 0.05≤B/A≤0.75, as measured from an outermost surface of the protective layer, using attenuated total reflection Fourier transform infrared spectroscopy. |
US11594766B2 |
Apparatus and method for testing secondary battery
An apparatus and method for testing a secondary battery. The apparatus includes a test path, test terminals provided at two ends of the test path and electrically connected to a positive terminal and a negative terminal of the secondary battery respectively, a sensor unit provided on the test path and configured to measure a discharge current of the secondary battery, a constant voltage generation unit provided on the test path and configured to maintain a constant voltage between the secondary battery and the sensor unit, and a control unit configured to receive data indicating the discharge current from the sensor unit, measure an inflection point on a profile of the discharge current, measure an intensity of the discharge current on the basis of the inflection point, and test a level of self-discharge of the secondary battery based on the intensity of the discharge current. |
US11594764B2 |
All solid battery and manufacturing method of the same
An all solid battery includes a solid electrolyte layer, a first electrode structure that has a structure in which a first electric collector layer of which a main component is a conductive material is sandwiched by two first electrode layers including an active material, and a second electrode structure that has a structure in which a second electric collector layer of which a main component is a conductive material is sandwiched by two second electrode layers including an active material. Roughness of interfaces between the first electric collector layer and the two first electrode layers and/or roughness of interfaces between the second electric collector layer and the two second electrode layers is larger than roughness of interfaces between the solid electrolyte layer, and the first electrode layer and the second electrode layer sandwiching the solid electrolyte layer. |
US11594763B2 |
All-solid lithium battery and method for manufacturing the same
A method for manufacturing an all-solid lithium battery includes: providing a substrate; and forming M rows×N columns of lithium battery cells on the substrate, wherein each of the lithium battery cells includes a positive electrode current collector layer, a positive electrode layer, an electrolyte layer, a negative electrode layer, and a negative electrode current collector layer. |
US11594760B2 |
Electrolyte for an alkali-sulfur battery, alkali-sulfur battery containing the electrolyte, and uses of the electrolyte
The invention relates to an electrolyte, which is provided for an alkali-sulfur battery (e.g. for a Li—S battery). The electrolyte contains a non-polar, acyclic and non-fluorinated ether, a polar aprotic organic solvent, and a conducting salt for an alkali-sulfur battery. It has been found that, when such an electrolyte is used in an alkali-sulfur battery, a high-capacity, a low overvoltage, a high cycle stability, and a high Coulomb efficiency can be achieved in the alkali-sulfur battery and, in addition, as compared with an alkali-sulfur battery which contains a fluorinated ether in the electrolyte, a considerably improved gravimetric energy density is obtained. The invention further relates to a battery comprising the electrolyte according to the invention and to uses of the electrolyte according to the invention. |
US11594749B2 |
Hydrogen/bromine flow battery in which hydrogen is freely exchanged between two cell compartments
A flow battery system includes a first tank including a hydrogen reactant, a second tank including a bromine electrolyte, and at least one cell including a first electrolyte side operably connected to the first tank and a second electrolyte side operably connected to the second tank. The battery system further includes a direct connection line directly connecting the first tank and the second tank and configured such that the hydrogen reactant passes between the first tank and the second tank. |
US11594744B2 |
Hybrid dehydrogenation reaction system
A hybrid dehydrogenation reaction system includes: an acid aqueous solution tank having an acid aqueous solution; an exothermic dehydrogenation reactor including a chemical hydride of a solid state and receiving the acid aqueous solution from the acid aqueous solution tank for an exothermic dehydrogenation reaction of the chemical hydride and the acid aqueous solution to generate hydrogen; an LOHC tank including a liquid organic hydrogen carrier (LOHC); and an endothermic dehydrogenation reactor receiving the liquid organic hydrogen carrier from the LOHC tank and generating hydrogen through an endothermic dehydrogenation reaction of the liquid organic hydrogen carrier by using heat generated from the exothermic dehydrogenation reactor. |
US11594738B2 |
Fuel cell and electrolyzer hotbox module using conductive zirconia stacks
Modular pressurized hotbox for use and substitution in a variety of pressurized electrochemical applications to include reversible solid oxide electrolyzer and fuel cells, energy storage systems, renewable fuel production, solid-state hydrogen pumping and liquefaction, and oxygen transport membranes. This is enabled by mixed electronic and ionic conducting compositions of vanadia-yttria and vanadia-calcia stabilized zirconia and a dry powder method of manufacture for ceramic core stacks. |
US11594737B2 |
Membrane electrode assembly with a catalyst layer including an inorganic oxide catalyst carrier and a highly hydrophobic substance and solid polymer fuel cell using the assembly
A membrane-electrode assembly including a catalyst layer that includes a catalyst-supporting carrier in which a catalyst is supported on a carrier made of an inorganic oxide, and a highly hydrophobic substance having a higher degree of hydrophobicity than the inorganic oxide, the catalyst layer being formed on at least one surface of a polymer electrolyte membrane. It is preferable that, in the membrane-electrode assembly, the degree of hydrophobicity of the highly hydrophobic substance is from 0.5 vol % to 45 vol % at 25° C., the degree of hydrophobicity being defined as a concentration of methanol (vol %) when a light transmittance of a dispersion obtained by dispersing the highly hydrophobic substance in a mixed solution of water and methanol reaches 80%. |
US11594735B2 |
Metal foil for electrochemical element electrode comprising a material, based on ti, c and h
A metal foil including on at least one of its sides a layer of a material including: a metal or a metal alloy, carbon, hydrogen, and optionally oxygen, the atomic percentage of the metal or of the metals of the alloy in the material ranging from 10 to 60%, the atomic percentage of carbon in the material ranging from 35 to 70%, the atomic percentage of hydrogen in the material ranging from 2 to 20%, and the atomic percentage of oxygen if present in the material being less than or equal to 10%. The metal foil can be used in the manufacture of a cathode of a lithium-ion electrochemical cell. The deposition of this layer reduces the internal resistance of the cell. |
US11594734B2 |
Vinylidene fluoride polymer, binder composition, electrode mixture, electrode, and non-aqueous electrolyte secondary battery, and method for producing electrode mixture
As a novel vinylidene fluoride polymer and its use, provided are a binder composition, an electrode mixture, an electrode, and a non-aqueous electrolyte secondary battery including the vinylidene fluoride containing the vinylidene fluoride polymer. The vinylidene fluoride polymer includes a first structural unit derived from vinylidene fluoride and a second structural unit derived from a monomer other than vinylidene fluoride. The monomer to be the second structural unit is a primary amine, a secondary amine, or a tertiary amine having at least one of a hydroxyl group and a carboxyl group, and the content of the second structural unit is from 0.05 to 20 mol % when the total of structural units derived from all the monomers constituting the vinylidene fluoride polymer is 100 mol %. |
US11594731B2 |
Anode active material for lithium secondary battery and lithium secondary battery comprising same
The present invention relates to an anode active material for lithium secondary battery and a lithium secondary battery comprising the same. The anode active material for lithium secondary batteries comprises two kinds of crystalline carbon, with the peak intensity ratio of 3R(101) face to 2H(100) face I3R(101)/I2H(100) ranging from 0.55 to 0.7 in an X-ray diffraction pattern. |
US11594722B2 |
Negative active material for rechargeable lithium battery, and rechargeable lithium battery including same
A negative active material for a rechargeable lithium battery and a rechargeable lithium battery, the negative active material including a composite including silicon particles, metal particles, and a first amorphous carbon; and a second amorphous carbon surrounding on the composite. |
US11594721B2 |
Electrode particles suitable for batteries
The disclosure relates to a carbon-based electrode material that has been graphitized to hold ions in the electrode of a battery and more particularly include carbide or carbide and nitride surfaces that protect the graphite core. The preferred batteries include metal ion such as lithium ion batteries where the carbon-based electrode is the anode although the carbon-based electrode may also serve in dual ion batteries where both electrodes may comprise the graphitized carbon-based electrodes. The electrodes are more amorphous than conventional graphite electrodes and include a carbide or nitride containing surface treatment. |
US11594715B2 |
Devices, systems, and methods for molten fluid electrode apparatus management
An apparatus comprises a reaction chamber and at least one negative electrode reservoir configured to contain a negative electrode material. A heating system is configured to heat negative electrode material within the at least one negative electrode material reservoir and the reaction chamber and to heat positive electrode material in reaction chamber. An electrode material distribution system is configured to manage the transfer of fluid electrode material between the at least one negative electrode reservoir and the reaction chamber. |
US11594708B2 |
Display device
A display device includes first and second sidewall portions and a display module disposed therebetween that is folded with respect to an axis. A moving portion is connected to a first side of the display module and is disposed between the first sidewall portion and the second sidewall portion in a non-expanded mode. A link portion is connected to a second side of the display module. A driving integrated circuit is disposed below the display module and includes a heat discharge plate disposed thereon. The moving portion is configured to move in the first direction to bring the display device into an expansion mode in which the moving portion is farther displaced from the second side of the display module and the link portion is configured to expand in the first direction so that a portion of the link portion overlaps with the heat discharge plate. |
US11594706B2 |
Display panel, preparation method thereof and display device
The disclosure discloses a display panel, a preparation method thereof and a display device. The display panel includes: a base substrate, a plurality of light emitting devices located on the base substrate, and a film packaging structure located on a side, away from the base substrate, of the light emitting devices, wherein the film packaging structure includes a first inorganic packaging film on the side, away from the base substrate, of the light emitting devices, a second inorganic packaging film on the side, away from the light emitting devices, of the first inorganic packaging film, and an organic packaging film between the first inorganic packaging film and the second inorganic packaging film; and the first inorganic packaging film is provided with convex structures at gaps among the light emitting devices, and the organic packaging film is disconnected at the convex structures. |
US11594703B2 |
Display device for preventing separation of black matrix therefrom
An display device includes a cover window including a display area and an attaching area, at least one display panel in the display area of the cover window, a first black matrix in an edge area of the display area and the attaching area, a second black matrix in the attaching area over the first black matrix, and an adhesive on the second black matrix, wherein a first difference of coefficient of thermal expansion between the second black matrix and the adhesive is small than a second difference of coefficient of thermal expansion between the first black matrix and the adhesive. |
US11594699B2 |
Display substrate and method of manufacturing the same, and display apparatus
A display substrate includes: a backplane; a first electrode layer disposed on a side of the backplane; and a light-emitting layer disposed on a side of the first electrode layer away from the backplane. The light-emitting layer includes nanoparticles and a product that is obtained by an electrochemical reaction of electrochemically active groups contained in first organic ligands coordinated to the nanoparticles. The nanoparticles are cross-linked together through the product. |
US11594693B2 |
Display device and method for manufacturing the same
A display device includes a base layer including first and second portions, and a third portion between the first and second portions and configured to be bent, folded, or rolled, a light emitting element layer on one surface of the base layer at the first portion, and including light emitting elements, a circuit board on the one surface of the base layer at the third portion, and electrically connected to the light emitting elements, protective patterns spaced apart from each other on another surface of the base layer, including a resin, and also including first protective patterns spaced apart from each other on the other surface of the base layer at the first portion, and at least one second protective pattern on the other surface of the base layer at the second portion, and at least one of a heat dissipation layer or a cushion layer below the protective patterns. |
US11594691B2 |
Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
Organic light emitting devices (OLEDs) with emissive layers containing both phosphorescent Pt complexes and fluorescent emitters, are described. The devices presented employ both fluorescent and phosphorescent Pt complexes in order to redistribute the excited states to primarily reside on known stable fluorescent emitters to achieve high device operational stability but maintain the high efficiency characteristic of phosphorescent OLEDs. |
US11594689B2 |
Organic light-emitting device
An organic light-emitting device including a first electrode, a second electrode facing the first electrode, and an organic layer disposed between the first electrode and the second electrode, wherein the organic layer includes an emission layer, wherein the emission layer includes a host and a dopant, and wherein the organic light-emitting device satisfies predetermined conditions described in the specification. |
US11594688B2 |
Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters
An organic light emitting diode having a substrate, a first electrode, a hole transporting layer proximate the first electrode, a second electrode, an electron transporting layer proximate the second electrode, and an emissive layer between the hole transporting layer and the electron transporting layer. The emissive layer includes a square planar tetradentate platinum or palladium complex, and excimers formed by two or more of the complexes are aligned such that emitting dipoles of the excimers are substantially parallel to a surface of the substrate. |
US11594685B2 |
Organic light emitting device
The present invention relates to an organic light emitting device comprising a light emitting layer and an electron transport layer which satisfy the following mathematical expressions, EHOMO-ET>EHOMO-BH and ELUMO-ET>ELUMO-GH, and having improved driving voltage, efficiency, and lifetime. |
US11594684B2 |
Condensed-cyclic compound and organic light emitting device including the same
An organic light-emitting device includes a condensed cyclic compound represented by Formula 1, where at least one of X4 to X11 is C(Rx), and Rx is a group represented by Formula 2: The condensed cyclic compound represented by Formula 1 has a planar conformation because of the single bond linking the 8 and 8′ positions of the spirobifluorene moiety. Accordingly, the condensed cyclic compound may provide the organic light-emitting device with suitable hole mobility and thermal stability. |
US11594680B2 |
Method of forming a FinFET device
A method of forming a semiconductor device includes patterning a mask layer and a semiconductor material to form a first fin and a second fin with a trench interposing the first fin and the second fin. A first liner layer is formed over the first fin, the second fin, and the trench. An insulation material is formed over the first liner layer. A first anneal is performed, followed by a first planarization of the insulation material to form a first planarized insulation material. After which, a top surface of the first planarized insulation material is over a top surface of the mask layer. A second anneal is performed, followed by a second planarization of the first planarized insulation material to form a second planarized insulation material. The insulation material is etched to form shallow trench isolation (STI) regions, and a gate structure is formed over the semiconductor material. |
US11594678B2 |
Diffusion barrier layer in programmable metallization cell
Some embodiments relate to a memory device. The memory device includes a bottom electrode overlying a substrate. A data storage layer overlies the bottom electrode. A top electrode overlies the data storage layer. A conductive bridge is selectively formable within the data storage layer to couple the bottom electrode to the top electrode. A diffusion barrier layer is disposed between the data storage layer and the top electrode. |
US11594674B2 |
Tunnel barrier layer, magnetoresistance effect element, method for manufacturing tunnel barrier layer, and insulating layer
A tunnel barrier layer includes a non-magnetic oxide, wherein a crystal structure of the tunnel barrier layer includes both an ordered spinel structure and a disordered spinel structure. |
US11594668B2 |
Thin film laminate, thin film device and multilayer substrate
A thin film laminate comprises a metal layer consisting of a metal, and a thin film laminated on the surface of the metal layer, wherein a first direction is defined as one direction parallel to the surface of the metal layer, and a second direction is defined as one direction parallel to the surface of the metal layer and crossing the first direction; and the metal layer contains a plurality of first metal grains consisting of the metal and extending in the first direction on the surface of the metal layer, and a plurality of second metal grains consisting of the metal and extending in the second direction on the surface of the metal layer. |
US11594663B2 |
Light emitting diode device containing a micro lens array and method of making the same
A light emitting device includes a backplane, light emitting diodes (LEDs) attached to a front side of the backplane, and a micro lens array (MLA) located over the LEDs, the MLA containing unit lenses that have a smaller maximum diameter than a maximum lateral widths of the respective LEDs. |
US11594656B2 |
Quantum light source device and optical communication apparatus including the same
Disclosed are a quantum light source and an optical communication apparatus including the same. The quantum light source device includes a vertical reflection layer disposed on a substrate, a lower electrode layer disposed on the vertical reflection layer, a horizontal reflection layer disposed on the lower electrode layer, a quantum light source disposed in the horizontal reflection layer, and an upper electrode layer disposed on the horizontal reflection layer. |
US11594655B2 |
Method for automatic film expansion, storage medium, and device
A method and device for automatic film expansion and a storage medium are provided. The method includes the following. Perform overall stretching on an expanded film. An interval between each two adjacent LED wafers on the expanded film is monitored in real time. When an interval between two adjacent LED wafers on the expanded film is greater than or equal to a preset target interval, stop performing overall stretching, and search the expanded film for a local region where an absolute difference between an interval between two adjacent LED wafers and the preset target interval is greater than a preset error threshold. When the local region exists on the expanded film, perform local stretching on the local region until an absolute difference between an interval between each two adjacent LED wafers in the local region and the preset target interval is less than or equal to the preset error threshold. |
US11594652B2 |
Interconnection of neighboring solar cells on a flexible supporting film
A method of fabricating a solar cell assembly comprising a plurality of solar cells mounted on a flexible support, the support comprising a conductive layer on the top surface thereof divided into two electrically isolated portions—a first conductive portion and a second conductive portion. Each solar cell comprises a front surface, a rear surface, and a first contact on the rear surface and a second contact on the front surface. Each one of the plurality of solar cells is placed on the first conductive portion with the first contact electrically connected to the first conductive portion so that the solar cells are connected through the first conductive portion. A second contact of each solar cell is then connected to the second conductive portion by an interconnect. The two conductive portions serve as bus bars representing contacts of two different polarities of the solar cell assembly. |
US11594648B2 |
Solar cells with differentiated P-type and N-type region architectures
Methods of fabricating solar cell emitter regions with differentiated P-type and N-type regions architectures, and resulting solar cells, are described. In an example, a solar cell can include a substrate having a light-receiving surface and a back surface. A first doped region of a first conductivity type, wherein the first doped region is disposed in a first portion of the back surface. A first thin dielectric layer disposed over the back surface of the substrate, where a portion of the first thin dielectric layer is disposed over the first doped region of the first conductivity type. A first semiconductor layer disposed over the first thin dielectric layer. A second doped region of a second conductivity type in the first semiconductor layer, where the second doped region is disposed over a second portion of the back surface. A first conductive contact disposed over the first doped region and a second conductive contact disposed over the second doped region. |
US11594646B2 |
Solar module having a plurality of strings configured from a five strip cell
In an example, the present invention provides a method of manufacturing a solar module. The method includes providing a substrate member having a surface region, the surface region comprising a spatial region, a first end strip comprising a first edge region and a first interior region, the first interior region comprising a first bus bar, a plurality of strips, a second end strip comprising a second edge region and a second interior region, the second edge region comprising a second bus bar, the first end strip, the plurality of strips, and the second end strip arranged in parallel to each other and occupying the spatial region such that the first end strip, the second end strip, and the plurality of strips consists of a total number of five (5) strips. The method includes separating each of the plurality of strips, arranging the plurality of strips in a string configuration, and using the string in the solar module. |
US11594645B1 |
Transistor and method for manufacturing the same
Some implementations described herein provide a semiconductor structure. The semiconductor structure includes a first terminal coupled to a substrate of the semiconductor structure. The first terminal comprises a tunneling layer formed on the substrate, a first conductive structure formed on the tunneling layer, and a dielectric structure formed on a top surface and on a first curved side surface of the first conductive structure. The semiconductor structure includes a second terminal coupled to the substrate. The second terminal comprises a second conductive structure formed on an isolation structure. The second conductive structure has a second curved side surface, and the dielectric structure is disposed between the first curved side surface and the second curved side surface. |
US11594643B2 |
Semiconductor device and method for manufacturing the same
An object is to improve field effect mobility of a thin film transistor using an oxide semiconductor. Another object is to suppress increase in off current even in a thin film transistor with improved field effect mobility. In a thin film transistor using an oxide semiconductor layer, by forming a semiconductor layer having higher electrical conductivity and a smaller thickness than the oxide semiconductor layer between the oxide semiconductor layer and a gate insulating layer, field effect mobility of the thin film transistor can be improved, and increase in off current can be suppressed. |
US11594638B2 |
Epitaxial structures for semiconductor devices
The present disclosure describes a semiconductor device and methods for forming the same. The semiconductor device includes nanostructures on a substrate and a source/drain region in contact with the nanostructures. The source/drain region includes epitaxial end caps, where each epitaxial end cap is formed at an end portion of a nanostructure of the nanostructures. The source/drain region also includes an epitaxial body in contact with the epitaxial end caps and an epitaxial top cap formed on the epitaxial body. The semiconductor device further includes gate structure formed on the nanostructures. |
US11594637B2 |
Gate-all-around integrated circuit structures having fin stack isolation
Gate-all-around integrated circuit structures having fin stack isolation, and methods of fabricating gate-all-around integrated circuit structures having fin stack isolation, are described. For example, an integrated circuit structure includes a sub-fin structure on a substrate, the sub-fin structure having a top and sidewalls. An isolation structure is on the top and along the sidewalls of the sub-fin structure. The isolation structure includes a first dielectric material surrounding regions of a second dielectric material. A vertical arrangement of horizontal nanowires is on a portion of the isolation structure on the top surface of the sub-fin structure. |
US11594627B2 |
Semiconductor structure having both enhancement mode group III-N high electron mobility transistors and depletion mode group III-N high electron mobility transistors
An Enhancement-Mode HEMT having a gate electrode with a doped, Group III-N material disposed between an electrically conductive gate electrode contact and a gate region of the Enhancement-Mode HEMT, such doped, Group III-N layer increasing resistivity of the Group III-N material to deplete the 2DEG under the gate at zero bias. |
US11594625B2 |
III-N transistor structures with stepped cap layers
Described herein are III-N (e.g. GaN) devices having a stepped cap layer over the channel of the device, for which the III-N material is orientated in an N-polar orientation. |
US11594622B2 |
Semiconductor device and method of controlling same
A semiconductor device includes a semiconductor part having a first surface and a second surface opposite to the first surface, a first electrode on the first surface, a second electrode on the second surface, first to third control electrodes between the first electrode and the semiconductor part. The first to third control electrodes are biased independently from each other. The semiconductor part includes a first layer of a first-conductivity-type, a second layer of a second-conductivity-type, a third layer of the first-conductivity-type and the fourth layer of the second-conductivity-type. The second layer is provided between the first layer and the first electrode. The third layer is selectively provided between the second layer and the first electrode. The fourth layer is provided between the first layer and the second electrode. The second layer opposes the first to third control electrode with insulating films interposed. |
US11594620B2 |
Semiconductor device and manufacturing method thereof
A semiconductor device includes a non-volatile memory. The non-volatile memory includes a first dielectric layer disposed on a substrate, a floating gate disposed on the dielectric layer, a control gate, a second dielectric layer disposed between the floating gate and the control gate and having one of a silicon oxide layer, a silicon nitride layer and multilayers of silicon oxide and silicon nitride, and an erase gate and a select gate. The erase gate and the select gate include a stack of a bottom polysilicon layer and an upper metal layer. |
US11594618B2 |
FinFET devices and methods of forming
A finFET device and methods of forming a finFET device are provided. The device includes a fin and a capping layer over the fin. The device also includes a gate stack over the fin, the gate stack including a gate electrode and a gate dielectric. The gate dielectric extends along sidewalls of the capping layer. The device further includes a gate spacer adjacent to sidewalls of the gate electrode, the capping layer being interposed between the gate spacer and the fin. |
US11594617B2 |
Vertical reconfigurable field effect transistor
A Vertical Reconfigurable Field Effect Transistor (VRFET) has a substrate and a vertical channel. The vertical channel is in contact with a top silicide region that forms a lower Schottky junction with the vertical channel and a top silicide region that forms an upper Schottky junction with the vertical channel. The lower silicide region and the upper silicide region each form a source/drain (S/D) of the device. A lower gate stack surrounds the vertical channel and has a lower overlap that encompasses the lower Schottky junction. An upper gate stack surrounds the vertical channel and has an upper overlap that encompasses the upper Schottky junction. The lower gate stack is electrically insulated from the upper gate stack. The lower gate stack can electrically control the lower Schottky junction (S/D). The upper gate stack can electrically control the upper Schottky junction (S/D). The control of the lower Schottky junction (S/D) is independent and separate from the control of the upper Schottky junction (S/D). The upper gate stack is stacked above the lower gate stack enabling a reduced device footprint. |
US11594616B2 |
Field effect transistor with negative capacitance dielectric structures
The structure of a semiconductor device with negative capacitance (NC) dielectric structures and a method of fabricating the semiconductor device are disclosed. A method of fabricating the semiconductor device includes forming a fin structure with a fin base portion and a fin top portion on a substrate, forming a spacer structure in a first region of the fin top portion, and forming a gate structure on a second region of the fin top portion. The spacer structure includes a first NC dielectric material and the gate structure includes a gate dielectric layer with a second NC dielectric material different from the first NC dielectric material. |
US11594611B2 |
Transistors, memory cells and semiconductor constructions
Some embodiments include a semiconductor construction having a gate extending into a semiconductor base. Conductively-doped source and drain regions are within the base adjacent the gate. A gate dielectric has a first segment between the source region and the gate, a second segment between the drain region and the gate, and a third segment between the first and second segments. At least a portion of the gate dielectric comprises ferroelectric material. In some embodiments the ferroelectric material is within each of the first, second and third segments. In some embodiments, the ferroelectric material is within the first segment or the third segment. In some embodiments, a transistor has a gate, a source region and a drain region; and has a channel region between the source and drain regions. The transistor has a gate dielectric which contains ferroelectric material between the source region and the gate. |
US11594608B2 |
Method for forming gate-all-around nanowire device
A gate-all-around nanowire device and a method for forming the gate-all-around nanowire device. A first fin and a dielectric layer on the first fin are formed on a substrate. The first fin includes the at least one first epitaxial layer and the at least one second epitaxial layer that are alternately stacked. The dielectric layer exposes a channel region of the first fin. A doping concentration at a lateral surface of the channel region and a doping concentration at a central region of the channel region are different from each other in the at least one second epitaxial layer. After the at least one first epitaxial layer is removed from the channel region, the at least one second epitaxial layer in the channel region serves as at least one nanowire. A gate surrounding the at least one nanowire is formed. |
US11594607B2 |
Gate feature in FinFET device
A semiconductor device includes a substrate; a fin structure formed on a substrate; and a gate feature formed over the fin structure, the gate feature comprising a gate dielectric layer, wherein the gate dielectric layer traverses the fin structure to overlay a central portion of the fin structure and opposite side portions of the fin structure that are located in respective undercuts formed in respective portions of a dielectric layer located adjacent to opposite sidewalls of the gate feature, wherein the undercuts extend beyond respective sidewalls of the gate feature and away from the central portion of the fin structure. |
US11594606B2 |
Method of implanting dopants into a group III-nitride structure and device formed
A method including forming a III-V compound layer on a substrate and implanting a main dopant in the III-V compound layer to form source and drain regions. The method further includes implanting a group V species into the source and drain regions. A semiconductor device including a substrate and a III-V compound layer over the substrate. The semiconductor device further includes source and drain regions in the III-V layer, wherein the source and drain regions comprises a first dopants and a second dopant, and the second dopant comprises a group V material. |
US11594603B2 |
Multigate device having reduced contact resistivity
An exemplary device includes a channel layer, a first epitaxial source/drain feature, and a second epitaxial source/drain feature disposed over a substrate. The channel layer is disposed between the first epitaxial source/drain feature and the second epitaxial source/drain feature. A metal gate is disposed between the first epitaxial source/drain feature and the second epitaxial source/drain feature. The metal gate is disposed over and physically contacts at least two sides of the channel layer. A source/drain contact is disposed over the first epitaxial source/drain feature. A doped crystalline semiconductor layer, such as a gallium-doped crystalline germanium layer, is disposed between the first epitaxial source/drain feature and the source/drain contact. The doped crystalline semiconductor layer is disposed over and physically contacts at least two sides of the first epitaxial source/drain feature. In some embodiments, the doped crystalline semiconductor layer has a contact resistivity that is less than about 1×10−9 Ω-cm2. |
US11594601B2 |
Semiconductor apparatus
A semiconductor apparatus capable of reducing the leakage current in the reverse direction, and keeping characteristics thereof, even when using n type semiconductor (gallium oxide, for example) or the like having a low-loss at a high voltage and having much higher dielectric breakdown electric field strength than SiC is provided. A semiconductor apparatus includes a crystalline oxide semiconductor having a corundum structure as a main component, and an electric field shield layer and a gate electrode that are respectively laminated directly or through other layers on the n type semiconductor layer, wherein the electric field shield layer includes a p type oxide semiconductor, and is embedded in the n type semiconductor layer deeper than the gate electrode. |
US11594600B2 |
Structures with doped semiconductor layers and methods and systems for forming same
Methods and systems for depositing material, such as doped semiconductor material, are disclosed. An exemplary method includes providing a substrate, forming a first doped semiconductor layer overlying the substrate, and forming a second doped semiconductor layer overlying the first doped semiconductor layer, wherein the first doped semiconductor layer comprises a first dopant and a second dopant, and wherein the second doped semiconductor layer comprises the first dopant. Structures and devices formed using the methods and systems for performing the methods are also disclosed. |
US11594582B2 |
Display device and mobile terminal device including the same
Disclosed herein are a display device and a mobile terminal device including the same, wherein the display device includes a display panel including a display area in which a first plurality of pixels are disposed, and a sensing area in which a plurality of photosensors and a second plurality of pixels are disposed. The first plurality of pixels of the display area and the second plurality of pixels of the sensing area may emit light by receiving a data voltage of an input image in a display mode. At least some of the second plurality of pixels in the sensing area may emit light in a fingerprint recognition mode. |
US11594576B2 |
Semiconductor device, memory cell and method of forming the same
A memory cell includes a bottom electrode, a memory element, spacers, a selector and a top electrode. The memory element is located on the bottom electrode and includes a first conductive layer, a second conductive layer and a storage layer. The first conductive layer is electrically connected to the bottom electrode. The second conductive layer is located on the first conductive layer, wherein a width of the first conductive layer is smaller than a width of the second conductive layer. The storage layer is located in between the first conductive layer and the second conductive layer. The spacers are located aside the second conductive layer and the storage layer. The selector is disposed on the spacers and electrically connected to the memory element. The top electrode is disposed on the selector. |
US11594572B2 |
III-nitride multi-wavelength LED for visible light communication
A light emitting diode (LED) array may include a first pixel and a second pixel on a substrate. The first pixel and the second pixel may include one or more tunnel junctions on one or more LEDs. The LED array may include a first trench between the first pixel and the second pixel. The trench may extend to the substrate. |
US11594571B2 |
Stacked image sensor device and method of forming same
A semiconductor device and a method of forming the same are provided. The semiconductor device includes a first logic die including a first through via, an image sensor die hybrid bonded to the first logic die, and a second logic die bonded to the first logic die. A front side of the first logic die facing a front side of the image sensor die. A front side of the second logic die facing a backside of the first logic die. The second logic die comprising a first conductive pad electrically coupled to the first through via. |
US11594568B2 |
Image sensor and electronic device
The present disclosure pertains to an image sensor, including: a first photosensitive layer (2) for sensing blue light; a second photosensitive layer (3) for sensing green light; a third photosensitive layer (4) for sensing red light; and a fourth photosensitive layer (5) for sensing infrared light, wherein the first, second, third and fourth photosensitive layer are stacked on each other and each comprise a Perovskite material. |
US11594567B2 |
Solid-state imaging device and electronic apparatus
A solid-state imaging device includes first through third substrates. The first substrate includes a first semiconductor substrate and a first multi-layered wiring layer stacked thereon. The second substrate includes a second semiconductor substrate and a second multi-layered wiring layer stacked thereon. The third substrate includes a third semiconductor substrate and a third multi-layered wiring layer stacked thereon. A coupling structure for electrically coupling at least two of the first through third substrates includes a via. The via exposes a predetermined wiring line in the second multi-layered wiring layer while exposing a portion of a predetermined wiring line in the first multi-layered wiring layer from a back surface side of the first substrate, or exposes a predetermined wiring line in the third multi-layered wiring layer while exposing a portion of the predetermined wiring line in the first multi-layered wiring layer or the second multi-layered wiring layer from the back surface. |
US11594565B2 |
Image sensor
An image sensor is disclosed. In some implementations, the image sensor includes a substrate including one or more photoelectric conversion elements arranged in the substrate and structured to convert light into electrical signals representing an image carried by the light, and a plurality of metal layers arranged at different distances from a surface of the substrate and located below the one or more photoelectric conversion elements, each of the metal layers including one or more metal patterns. The one or more metal patterns of the plurality of metal layers are arranged in a concave shape facing the photoelectric conversion element such that incident light reflected by metal layers converges toward the photoelectric conversion element. |
US11594557B2 |
Display panel, manufacturing method thereof, and display device
A display panel includes a base substrate, a display area and a non-display area provided on the base substrate; a data line is provided in the display area and a detection line is provided in the non-display area on the base substrate; and the detection line is electrically connected to a data line and is formed by overlapping a plurality of wire segments. A method of manufacturing a display panel, and a display device are further disclosed. |
US11594556B2 |
Thin film transistor substrate, shift register and display device
A thin film transistor substrate can include a buffer layer on a base substrate and having a first buffer layer and a second buffer layer; a semiconductor layer disposed on the buffer layer; a gate insulating film on the semiconductor layer; and a gate electrode spaced apart from the semiconductor layer, at least a part of the gate electrode overlapping with the semiconductor layer. The base substrate, the first buffer layer, the second buffer layer, the semiconductor layer, the gate insulating film and the gate electrode are sequentially stacked, and a surface oxygen concentration of the first buffer layer is higher than a surface oxygen concentration of the second buffer layer. |
US11594553B2 |
Three-dimensional ferroelectric memory device containing lattice-matched templates and methods of making the same
A ferroelectric memory device includes an alternating stack of insulating layers and electrically conductive layers, a memory opening vertically extending through the alternating stack, and a memory opening fill structure located in the memory opening and containing a vertical stack of memory elements and a vertical semiconductor channel. Each memory element within the vertical stack of memory elements includes a crystalline ferroelectric memory material portion and an epitaxial template portion. |
US11594551B2 |
Semiconductor memory device and method for manufacturing semiconductor memory device
A semiconductor memory device according to an embodiment includes: a stacked body alternately stacking first insulating layers and gate electrode layers in a first direction; first to third semiconductor layers in the stacked body extending in the first direction; first to third charge accumulation layers; and a second insulating layer in the stacked body extending in the first direction, the second insulating layer contacting the first semiconductor layer or the first charge accumulation layer in a plane perpendicular to the first direction. A first distance between two end surfaces of the gate electrode layer monotonically increases in the first direction in a first cross section parallel to the first direction. A second distance between two end surfaces of the gate electrode layer monotonically increases in the first direction, decreases, and then monotonically increases in a second cross section parallel to the first direction different from the first cross section. |
US11594548B2 |
Semiconductor device
A semiconductor device includes a substrate, a lower structure on the substrate, the lower structure including a first wiring structure, a second wiring structure, and a lower insulating structure covering the first and second wiring structures, a first pattern layer including a plate portion and a via portion, the plate portion being on the lower insulating structure and the via portion extending into the lower insulating structure from a lower portion of the plate portion and overlapping the first wiring structure, a graphene-like carbon material layer in contact with the via portion and the first wiring structure between the via portion and the first wiring structure, gate layers stacked in a vertical direction perpendicular to an upper surface of the substrate and spaced apart from each other on the first pattern layer, and a memory vertical structure penetrating through the gate layers in the vertical direction. |
US11594547B2 |
Semiconductor device having a pad proximate to a step structure section of an array chip
According to one embodiment, the array chip includes a three-dimensionally disposed plurality of memory cells and a memory-side interconnection layer connected to the memory cells. The circuit chip includes a substrate, a control circuit provided on the substrate, and a circuit-side interconnection layer provided on the control circuit and connected to the control circuit. The circuit chip is stuck to the array chip with the circuit-side interconnection layer facing to the memory-side interconnection layer. The bonding metal is provided between the memory-side interconnection layer and the circuit-side interconnection layer. The bonding metal is bonded to the memory-side interconnection layer and the circuit-side interconnection layer. |
US11594545B2 |
Semiconductor memory device and method of manufacturing semiconductor memory device
A semiconductor memory device includes a substrate, a plurality of first conductive layers, a second conductive layer, a first pillar, and a second pillar. The plurality of first conductive layers are stacked over the substrate in a first direction. The second conductive layer is disposed over the plurality of first conductive layers. The first pillar extends inside the plurality of first conductive layers in the first direction. The first pillar includes a first semiconductor portion including a first semiconductor of single-crystal. The second pillar extends inside the second conductive layer in the first direction. The second pillar includes an insulating portion serving as an axis including an insulator and a second semiconductor portion which is disposed on an outer circumference of the insulating portion in view of the first direction. The second semiconductor portion is in contact with the first semiconductor portion and includes a second semiconductor of poly-crystal. |
US11594542B2 |
Remanent polarizable capacitive structure, memory cell, and methods thereof
According to various aspects, a method of forming one or more remanent-polarizable capacitive structures, the method including forming one or more capacitive structures, each of the one or more capacitive structures includes: one or more electrodes, one or more precursor structures disposed adjacent to the one or more electrodes, wherein each of the one or more precursor structures has a first dimension in a range from about 1 nm to 100 nm and a second dimension in a range from about 1 nm to about 30 nm; and, subsequently, forming one or more remanent-polarizable structures comprising a crystalline remanent-polarizable material based on a crystallization of a precursor material of the one or more precursor structures. |
US11594536B2 |
Integrated assemblies and semiconductor memory devices
Some embodiments include an integrated assembly having a CMOS region with fins extending along a first direction, and with gating structures extending across the fins. A circuit arrangement is associated with the CMOS region and includes a pair of the gating structures spaced by an intervening region having a missing gating structure. The circuit arrangement has a first dimension along the first direction. A second region is proximate to the CMOS region. Conductive structures are associated with the second region. Some of the conductive structures are electrically coupled with the circuit arrangement. A second dimension is a distance across said some of the conductive structures along the first direction. The conductive structures and the circuit arrangement are aligned such that the second dimension is substantially the same as the first dimension. Some embodiments include methods of forming integrated assemblies. |
US11594535B2 |
High performance nanosheet fabrication method with enhanced high mobility channel elements
In a method for forming a semiconductor device, an epitaxial layer stack is formed over a substrate. The epitaxial layer stack includes intermediate layers, one or more first nano layers with a first bandgap value and one or more second nano layers with a second bandgap value. Trenches are formed in the epitaxial layer stack to separate the epitaxial layer stack into sub-stacks such that the one or more first nano layers are separated into first nano-channels, and the one or more second nano layers are separated into second nano-channels. The intermediate layers are recessed so that the first nano-channels and the second nano-channels in each of the sub-stacks protrude from sidewalls of the intermediate layers. Top source/drain (S/D) regions are formed in the trenches and in direct contact with the first nano-channels. Bottom source/drain (S/D) regions are formed in the trenches and in direct contact with the second nano-channels. |
US11594534B2 |
Semiconductor device and manufacturing method thereof
A semiconductor device includes a semiconductor substrate, a plurality of semiconductor fins, a gate stack and an epitaxy structure. The semiconductor fins are present on the semiconductor substrate. The semiconductor fins respectively include recesses therein. The gate stack is present on portions of the semiconductor fins that are adjacent to the recesses. The epitaxy structure is present across the recesses of the semiconductor fins. The epitaxy structure includes a plurality of corners and at least one groove present between the corners, and the groove has a curvature radius greater than that of at least one of the corners. |
US11594533B2 |
Stacked trigate transistors with dielectric isolation between first and second semiconductor fins
A device is disclosed. The device includes a first semiconductor fin, a first source-drain epitaxial region adjacent a first portion of the first semiconductor fin, a second source-drain epitaxial region adjacent a second portion of the first semiconductor fin, a first gate conductor above the first semiconductor fin, a gate spacer covering the sides of the gate conductor, a second semiconductor fin below the first semiconductor fin, a second gate conductor on a first side of the second semiconductor fin and a third gate conductor on a second side of the second semiconductor fin, a third source-drain epitaxial region adjacent a first portion of the second semiconductor fin, and a fourth source-drain epitaxial region adjacent a second portion of the second semiconductor fin. The device also includes a dielectric isolation structure below the first semiconductor fin and above the second semiconductor fin that separates the first semiconductor fin and the second semiconductor fin. |
US11594524B2 |
Fabrication and use of through silicon vias on double sided interconnect device
An apparatus including a circuit structure including a device stratum; one or more electrically conductive interconnect levels on a first side of the device stratum and coupled to ones of the transistor devices; and a substrate including an electrically conductive through silicon via coupled to the one or more electrically conductive interconnect levels so that the one or more interconnect levels are between the through silicon via and the device stratum. A method including forming a plurality of transistor devices on a substrate, the plurality of transistor devices defining a device stratum; forming one or more interconnect levels on a first side of the device stratum; removing a portion of the substrate; and coupling a through silicon via to the one or more interconnect levels such that the one or more interconnect levels is disposed between the device stratum and the through silicon via. |
US11594519B2 |
Semiconductor device
A semiconductor device includes a plurality of semiconductor chips disposed in a vertical form through a spacer, in which a shield layer having a thickness such that an electromagnetic field radiation generated from a generation source of the semiconductor chip can sufficiently be absorbed is disposed between the semiconductor chips. |
US11594518B2 |
Semiconductor package
A semiconductor package and a method for manufacturing a semiconductor package are provided. The semiconductor package includes a first processing element, a first I/O element, a second processing element, and a second I/O element. The first processing element is on a substrate. The first I/O element is on the substrate and electrically connected to the first processing element. The second processing element is on the substrate. The second I/O element is on the substrate and electrically connected to the second processing element. The first I/O element is electrically connected to and physically separated from the second I/O element. |
US11594515B2 |
Method of manufacturing a bonded substrate stack
A method of manufacturing a bonded substrate stack includes: providing a first substrate having a first hybrid interface layer, the first hybrid interface layer including a first insulator and a first metal; and providing a second substrate having a second hybrid interface layer, the second hybrid interface layer including a second insulator and a second metal. The hybrid interface layers are surface-activated by particle bombardment which is configured to remove atoms of the first hybrid interface layer and atoms of the second hybrid interface layer to generate dangling bonds on the hybrid interface layers. The surface-activated hybrid interface layers are brought into contact, such that the dangling bonds of the first hybrid interface layer and the dangling bonds of the second hybrid interface layer bond together to form first insulator to second insulator bonds and first metal to second metal bonds. |
US11594513B2 |
Manufacturing method for semiconductor device
A semiconductor device manufacturing method includes a preparation step and a sinter bonding step. In the preparation step, a sinter-bonding work having a multilayer structure including a substrate, semiconductor chips, and sinter-bonding material layers is prepared. The semiconductor chips are disposed on, and will bond to, one side of the substrate. Each sinter-bonding material layer contains sinterable particles and is disposed between each semiconductor chip and the substrate. In the sinter bonding step, a cushioning sheet having a thickness of 5 to 5000 μm and a tensile elastic modulus of 2 to 150 MPa is placed on the sinter-bonding work, the resulting stack is held between a pair of pressing faces, and, in this state, the sinter-bonding work between the pressing faces undergoes a heating process while being pressurized in its lamination direction, to form a sintered layer from each sinter-bonding material layer. |
US11594507B2 |
Method for manufacturing semiconductor device
A method for manufacturing a semiconductor device includes forming a thermosetting resin film on a first metal layer, forming an opening in the resin film, forming a second metal layer that covers a region from an upper surface of the first metal layer exposed from the opening of the resin film to an upper surface of the resin film, performing heat treatment at a temperature equal to or higher than a temperature at which the resin film is cured after forming the second metal layer, forming a cover film that covers the upper surface of the resin film and a side surface of the second metal layer after performing the heat treatment, and forming a solder on an upper surface of the second metal layer exposed from an opening of the cover film after forming the cover film. |
US11594505B2 |
Semiconductor package substrate and method of manufacturing semiconductor package using the same
Provided in a semiconductor package substrate including a semiconductor chip including a connection pad, an encapsulant encapsulating at least a portion of the semiconductor chip, a connection member disposed on the semiconductor chip and the encapsulant, the connection member including a redistribution layer that is electrically connected to the connection pad, a first passivation layer disposed on the connection member, and an adhesive layer disposed on at least one of a top surface of the encapsulant and a bottom surface of the first passivation layer in a region outside of the semiconductor chip. |
US11594499B2 |
Semiconductor package
A semiconductor package including a package substrate, a connection substrate on the package substrate and having on a lower corner of the connection substrate a recession that faces a top surface of the package substrate, a semiconductor chip on the connection substrate, a plurality of first connection terminals connecting the connection substrate to the semiconductor chip, and a plurality of second connection terminals connecting the package substrate to the connection substrate. The recession is laterally spaced apart from the second connection terminals. |
US11594495B2 |
Microelectronic devices including conductive levels having varying compositions, and related memory devices, electronic systems, and methods
A microelectronic device comprises a stack structure comprising insulative levels vertically interleaved with conductive levels. The conductive levels individually comprise a first conductive structure, and a second conductive structure laterally neighboring the first conductive structure, the second conductive structure exhibiting a concentration of β-phase tungsten varying with a vertical distance from a vertically neighboring insulative level. The microelectronic device further comprises slot structures vertically extending through the stack structure and dividing the stack structure into block structures, and strings of memory cells vertically extending through the stack structure, the first conductive structures between laterally neighboring strings of memory cells, the second conductive structures between the slot structures and strings of memory cells nearest the slot structures. Related memory devices, electronic systems, and methods are also described. |
US11594494B2 |
High density interconnection using fanout interposer chiplet
Multiple component package structures are described in which an interposer chiplet is integrated to provide fine routing between components. In an embodiment, the interposer chiplet and a plurality of conductive vias are encapsulated in an encapsulation layer. A first plurality of terminals of the first and second components may be in electrical connection with the plurality of conductive pillars and a second plurality of terminals of first and second components may be in electrical connection with the interposer chiplet. |
US11594492B2 |
Semiconductor device
According to one embodiment, a semiconductor device includes at least a package substrate, an external electrode, a mounting substrate, and a mounting electrode. A signal connection point of the external electrode is provided at an end portion in a longitudinal direction of the external electrode. A signal connection point of the mounting electrode is provided at an end portion of the mounting electrode. The end portion of the mounting electrode is opposite to the signal connection point of the external electrode facing to the mounting electrode in the longitudinal direction. |
US11594491B2 |
Multi-die interconnect
Disclosed is an apparatus including a molded multi-die high density interconnect including: a bridge die having a first plurality of interconnects and second plurality of interconnects. The apparatus also includes a first die having a first plurality of contacts and a second plurality of contacts, where the second plurality of contacts is coupled to the first plurality of interconnects of the bridge die. The apparatus also includes a second die having a first plurality of contacts and a second plurality of contacts, where the second plurality of contacts is coupled to the second plurality of interconnects of the bridge die. The coupled second plurality of contacts and interconnects have a smaller height than the first plurality of contacts of the first die and second die. |
US11594481B2 |
Package, method for forming a package, carrier tape, chip card and method for forming a carrier tape
A package including a frame having an opening for receiving a sensor module, wherein the frame comprises at least one electrical connection which is directed into the opening and which is arranged on an insulation layer applied to the frame, and wherein the insulation layer is connected to the frame at an insertion side of the frame, from which side the sensor module is to be inserted into the opening, and is bent along the inner side of the frame proceeding from the insertion side, such that the at least one electrical connection directed to the opening is electrically couplable to the associated sensor module connection in an arrangement. |
US11594478B2 |
Wiring substrate, semiconductor package and method of manufacturing wiring substrate
A second wiring layer is connected to a first wiring layer via an insulating layer. The second wiring layer comprises pad structures. Each pad structure includes a first metal layer formed on the insulating layer, a second metal layer formed on the first metal layer, and a third metal layer formed on the second metal layer. The pad structures comprises a first pad structure and a second pad structure. A via-wiring diameter of the first pad structure is different from a via-wiring diameter of the second pad structure. A distance from an upper surface of the insulating layer to an upper surface of the second metal layer of the first pad structure is the same as a distance from the upper surface of the insulating layer to an upper surface of the second metal layer of the second pad structure. |
US11594476B2 |
Plurality of leads between MOSFET chips
A semiconductor device includes: a first chip including first and second electrodes provided at a first surface, and a third electrode provided at a second surface positioned at a side opposite to the first surface; a second chip including fourth and fifth electrodes provided at a third surface, and a sixth electrode provided at a fourth surface positioned at a side opposite to the third surface, wherein the second chip is disposed to cause the third surface to face the first surface; a first connector disposed between the first electrode and the fourth electrode and connected to the first and fourth electrodes; and a second connector disposed between the second electrode and the fifth electrode and connected to the second and fifth electrodes. |
US11594474B2 |
Bondwire protrusions on conductive members
In some examples, a semiconductor package comprises a semiconductor die; a conductive member coupled to the semiconductor die; and a wirebonded protrusion coupled to the conductive member. A physical structure of the wirebonded protrusion is determined at least in part by a sequence of movements of a wirebonding capillary used to form the wirebonded protrusion, the wirebonded protrusion including a ball bond and a bond wire, and the bond wire having a proximal end coupled to the ball bond. The bond wire has a distal end. The package also comprises a mold compound covering the semiconductor die, the conductive member, and the wirebonded protrusion. The distal end is in a common vertical plane with the ball bond and is not connected to a structure other than the mold compound. |
US11594462B2 |
Stacked semiconductor die assemblies with multiple thermal paths and associated systems and methods
Stacked semiconductor die assemblies with multiple thermal paths and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a plurality of first semiconductor dies arranged in a stack and a second semiconductor die carrying the first semiconductor dies. The second semiconductor die can include a peripheral portion that extends laterally outward beyond at least one side of the first semiconductor dies. The semiconductor die assembly can further include a thermal transfer feature at the peripheral portion of the second semiconductor die. The first semiconductor dies can define a first thermal path, and the thermal transfer feature can define a second thermal path separate from the first semiconductor dies. |
US11594461B2 |
Three-dimensional memory devices having hydrogen blocking layer and fabrication methods thereof
Embodiments of three-dimensional (3D) memory devices have a hydrogen blocking layer and fabrication methods thereof are disclosed. In an example, a method for form a 3D memory device is disclosed. An array of NAND memory strings each extending vertically above a first substrate are formed. A plurality of logic process-compatible devices are formed on a second substrate. The first substrate and the second substrate are bonded in a face-to-face manner. The logic process-compatible devices are above the array of NAND memory strings after the bonding. The second substrate is thinned to form a semiconductor layer above and in contact with the logic process-compatible devices. |
US11594459B2 |
Passivation layer for a semiconductor device and method for manufacturing the same
A semiconductor device includes an ultra-thick metal (UTM) structure. The semiconductor device includes a passivation layer including a first passivation oxide. The first passivation oxide includes an unbias film and a first bias film, where the unbias film is on portions of the UTM structure and on portions of a layer on which the UTM structure is formed, and the first bias film is on the unbias film. The passivation layer includes a second passivation oxide consisting of a second bias film, the second bias film being on the first bias film. The passivation layer includes a third passivation oxide consisting of a third bias film, the third bias film being on the second bias film. |
US11594457B2 |
Heterogenous integration for RF, microwave and MM wave systems in photoactive glass substrates
The present invention includes a method for creating a system in a package with integrated lumped element devices and active devices on a single chip/substrate for heterogeneous integration system-on-chip (HiSoC) in photo-definable glass, comprising: masking a design layout comprising one or more electrical passive and active components on or in a photosensitive glass substrate; activating the photosensitive glass substrate, heating and cooling to make the crystalline material to form a glass-crystalline substrate; etching the glass-crystalline substrate; and depositing, growing, or selectively etching a seed layer on a surface of the glass-crystalline substrate on the surface of the photodefinable glass. |
US11594456B2 |
Display module with improved electrical test and manufacturing method of the display module
A display module including a glass substrate; a thin film transistor layer disposed in a first area of the glass substrate; a plurality of connection pads disposed in a second area extending from the first area of the glass substrate and electrically connected to the thin film transistor layer; a plurality of test pads disposed in a third area extending from the second area of the glass substrate and electrically connected to the plurality of connection pads, respectively, and a plurality of connection wirings electrically connecting the plurality of connection pads and the plurality of test pads. |
US11594455B2 |
Semiconductor device and manufacturing method for the same
The present disclosure provides a method for fabricating a semiconductor structure, including forming an inter dielectric layer over a first region and a second region of a substrate, wherein the second region is adjacent to the first region, forming a high-k material over the inter dielectric layer in the first region and the second region, forming an oxygen capturing layer over the high-k material in the first region, and applying oxidizing agent over the oxygen capturing layer. |
US11594449B2 |
Method of making a semiconductor structure
A method of making a semiconductor structure includes depositing a first passivation material between adjacent conductive elements on a substrate, wherein a bottommost surface of the first passivation material is coplanar with a bottommost surface of each of the adjacent conductive elements. The method further includes depositing a second passivation material on the substrate, wherein the second passivation material contacts a sidewall of each of the adjacent conductive elements and a sidewall of the first passivation material, a bottommost surface of the second passivation material is coplanar with the bottommost surface of each of the adjacent conductive elements, and the second passivation material is different from the first passivation material. |
US11594440B2 |
Real time bias detection and correction for electrostatic chuck
A method reduces differences in chucking forces that are applied by two electrodes of an electrostatic chuck, to a substrate disposed atop the chuck. The method includes providing initial chucking voltages to each of the two electrodes, and measuring an initial current provided to at least a first electrode of the two electrodes. The method further includes initiating a process that affects a DC voltage of the substrate, then measuring a modified current provided to at least the first electrode, and determining, based at least on the initial current and the modified current, a modified chucking voltage for a selected one of the two electrodes, that will reduce chucking force imbalance across the substrate. The method also includes providing the modified chucking voltage to the selected one of the two electrodes. |
US11594439B2 |
Frame cassette for holding tape-frames
According to various embodiments, a frame cassette includes a housing and a mounting structure within the housing. The mounting structure includes a plurality of tape-frame slots, each tape-frame slot configured to receive a tape-frame. The housing includes an opening configured to introduce a tape-frame into a tape-frame slot of the plurality of tape-frame slots, or to remove the tape frame from the tape-frame slot of the plurality of tape-frame slots. The housing also includes an electrostatic discharge protection. A corresponding automatic transportation system and method of automatic transportation of semiconductor wafers is also provided. |
US11594438B2 |
Semiconductor manufacturing device to securely hold semiconductor panels for transport and manufacturing processes
A semiconductor manufacturing equipment has an outer case housing including a lower case extension to support a semiconductor panel. The lower case extension is fixed in position within the outer case housing. An inner case housing having an upper case extension is disposed within the outer case housing in proximity to the lower case extension. A mechanism draws the upper case extension toward the lower case extension and locks the semiconductor panel in place between the upper case extension and lower case extension. The mechanism has a cam assembly disposed above the inner case housing and operatable with a handle to rotate the cam assembly and apply pressure to the inner case housing and upper case extension to lock the semiconductor panel in place between the upper case extension and lower case extension. A spring or other elastic mechanism is disposed under the inner case housing to load the pressure. |
US11594435B2 |
Apparatus and methods for testing semiconductor devices
The invention is a cost effective multisite parallel wafer tester that has an array of stationary wafer test sites; a single mobile wafer handling and alignment carriage that holds a wafer handling robot, a wafer rotation pre-alignment assembly, a wafer alignment assembly, a wafer front opening unified pod (FOUP), and a wafer camera assembly; and a robot that moves the wafer handling and alignment carriage to and from each test site. Each test site contains a wafer probe card assembly and a floating chuck. In use, wafers are loaded from a front opening FOUP into a wafer buffer FOUP from which wafers are retrieved by the wafer handling and alignment assembly. The robot positions the wafer handling and alignment carriage and the associated wafer handling robot, the wafer rotation pre-alignment assembly, the wafer alignment assembly, the wafer FOUP, and the wafer camera assembly in front of and inside a given test site and aligns the wafer to be tested with the probe card inside the test site using the floating chuck. |
US11594431B2 |
Wafer bonding apparatus and methods to reduce post-bond wafer distortion
Various embodiments of wafer bonding apparatuses and methods are described herein for reducing distortion in a post-bonded wafer pair. More specifically, the present disclosure provides embodiments of wafer bonding apparatuses and methods to reduce post-bond wafer distortion that occurs primarily within the center and/or the edge of the post-bonded wafer pair. In the present disclosure, post-bonded wafer distortion is reduced by correcting for variations in the pre-bond wafer shapes. Variations in pre-bond wafer shape are corrected, or compensated for, by making hardware modifications to the wafer chuck. Such modifications may include, but are not limited to, modifications to the surface height and/or the temperature of the wafer chuck. Although hardware modifications are disclosed herein for reducing post-bond wafer distortion near the center and/or the edge of the post-bonded wafer pair, similar modifications can be made to reduce post-bond wafer distortion within other areas or zones of the post-bonded wafer pair. |
US11594423B2 |
Forming method of capacitor array and semiconductor structure
The present disclosure provides a method of forming a capacitor array and a semiconductor structure. The method of forming a capacitor array includes: providing a substrate, the substrate including an array region and a non-array region, wherein a base layer and a dielectric layer are formed in the substrate, and a first barrier layer is formed between the base layer and the dielectric layer; forming, on a surface of the dielectric layer, a first array definition layer and a second array definition layer respectively corresponding to the array region and the non-array region; forming a pattern transfer layer on a surface of each of the first array definition layer and the second array definition layer; patterning the dielectric layer and the second array definition layer by using the pattern transfer layer as a mask, and forming a capacitor array located in the array region. |
US11594420B1 |
Semiconductor structure and manufacturing method thereof
A manufacturing method of a semiconductor structure includes at least the following steps. A patterned mask layer with a first opening is formed on a dielectric layer overlying a semiconductor substrate. A portion of the dielectric layer accessibly exposed by the first opening of the patterned mask layer is removed to form a second opening. A first protective film is formed on inner sidewalls of the dielectric layer and the patterned mask layer, where the second opening and the first protective film are formed at the same step. A second protective film is formed on the first protective film to form a protective structure covering the inner sidewalls. A portion of the semiconductor substrate accessibly exposed by the second opening is removed to form a via hole including an undercut underlying the protective structure. The via hole is trimmed and a through substrate via is formed in the via hole. |
US11594416B2 |
Tribological properties of diamond films
Methods to manufacture integrated circuits are described. Nanocrystalline diamond is used as a hard mask in place of amorphous carbon. Provided is a method of processing a substrate in which nanocrystalline diamond is used as a hard mask, wherein processing methods result in a smooth surface. The method involves two processing parts. Two separate nanocrystalline diamond recipes are combined—the first and second recipes are cycled to achieve a nanocrystalline diamond hard mask having high hardness, high modulus, and a smooth surface. In other embodiments, the first recipe is followed by an inert gas plasma smoothening process and then the first recipe is cycled to achieve a high hardness, a high modulus, and a smooth surface. |
US11594415B2 |
PECVD tungsten containing hardmask films and methods of making
Methods of forming a tungsten film comprising forming a boron seed layer on an oxide surface, an optional tungsten initiation layer on the boron seed layer and a tungsten containing film on the boron seed layer or tungsten initiation layer are described. Film stack comprising a boron seed layer on an oxide surface with an optional tungsten initiation layer and a tungsten containing film are also described. |
US11594409B2 |
Systems and methods for depositing low-k dielectric films
Exemplary methods of forming a silicon-and-carbon-containing material may include flowing a silicon-and-carbon-containing precursor into a processing region of a semiconductor processing chamber. A substrate may be housed within the processing region of the semiconductor processing chamber. The methods may include forming a plasma within the processing region of the silicon-and-carbon-containing precursor. The plasma may be formed at a frequency above 15 MHz. The methods may include depositing a silicon-and-carbon-containing material on the substrate. The silicon-and-carbon-containing material as-deposited may be characterized by a dielectric constant below or about 3.0. |
US11594407B2 |
Sample introduction system for mass spectrometry
A surface interaction sample introduction (SISI) system for mass spectrometers is disclosed that improves sensitivity and reduces chemical background. SISI comprises of a settling chamber with an inlet orifice that ions created by an ionization source enter the MS impinging surface that is located in front of the inlet orifice, thereby the high-speed gas jet entering the settling chamber from the inlet orifice impinges on the impinging surface resealing ions and molecules into the settling chamber. The impinging surface can be one of the settling chamber surfaces or an extra surface placed inside the settling chamber. The impinging surface can be orthogonal or angled with respect to the gas jet. The impinging surface is heated to apply thermal energy to the jet to promote the liberation of ionized particles from attached impurities. The released ions and molecules leave the settling chamber from an outlet port towards a mass spectrometer inlet. |
US11594405B2 |
Charge detection mass spectrometer including gain drift compensation
A CDMS may include an ELIT having a charge detection cylinder (CD), a charge generator for generating a high frequency charge (HFC), a charge sensitive preamplifier (CP) having an input coupled to the CD and an output configured to produce a charge detection signal (CHD) in response to a charge induced on the CD, and a processor configured to (a) control the charge generator to induce an HFC on the CD, (b) control operation of the ELIT to cause a trapped ion to oscillate back and forth through the CD each time inducing a charge thereon, and (c) process CHD to (i) determine a gain factor as a function of the HFC induced on the CD, and (ii) modify a magnitude of the portion of CHD resulting from the charge induced on the CD by the trapped ion passing therethrough as a function of the gain factor. |
US11594403B1 |
Predictive test for prognosis of myelodysplastic syndrome patients using mass spectrometry of blood-based sample
A method of predicting whether an MDS patient has a good or poor prognosis uses a general purpose computer configured as a classifier and mass-spectrometry data obtained from a blood-based sample. The classifier assigns a classification label of either Early or Late (or the equivalent) to the patient's sample. Patients classified as Early are predicted to have a poor prognosis or worse survival whereas those patients classified as Late are predicted to have a relatively better prognosis and longer survival time. The groupings demonstrated a large effect size between groups in Kaplan-Meier analysis of survival. Most importantly, while the classifications generated were correlated with other prognostic factors, such as IPSS score and genetic category, multivariate and subgroup analysis showed that they had significant independent prognostic power complementary to the existing prognostic factors. |
US11594400B2 |
Multi zone gas injection upper electrode system
A plasma processing system includes a plasma chamber having a substrate support, and a multi-zone gas injection upper electrode disposed opposite the substrate support. An inner plasma region is defined between the upper electrode and the substrate support. The multi-zone gas injection upper electrode has a plurality of concentric gas injection zones. A confinement structure, which surrounds the inner plasma region, has an upper horizontal wall that interfaces with the outer electrode of the upper electrode. The confinement structure has a lower horizontal wall that interfaces with the substrate support, and includes a perforated confinement ring and a vertical wall that extends from the upper horizontal wall to the lower horizontal wall. The lower surface of the upper horizontal wall, an inner surface of the vertical wall, and an upper surface of the lower horizontal wall define a boundary of an outer plasma region, which surrounds the inner plasma region. |
US11594395B2 |
Pixel shape and section shape selection for large active area high speed detector
Detectors and detection systems are disclosed. According to certain embodiments, a detector comprises a substrate comprising a plurality of sensing elements including a first sensing element and a second sensing element, wherein at least the first sensing element is formed in a triangular shape. The detector may include a switching region configured to connect the first sensing 5 element and the second sensing element. There may also be provided a plurality of sections including a first section connecting a first plurality of sensing elements to a first output and a second section connecting a second plurality of sensing elements to a second output. The section may be provided in a hexagonal shape. |
US11594394B2 |
X-ray micro-beam production and high brilliance x-ray production
An x-ray micro-beam radiation production system is provided having: a source of accelerated electrons, an electron focusing component configured to focus the electrons provided by the source, and a target which produces x-rays when electrons impinge thereon from the source. The electron focusing component is configured to focus the electrons provided by the source such that they impinge at a focal spot having a width δ formed on a surface of the target. The focusing component is configured to move the electron beam relative to the target such that the focal spot moves across the target surface in the width direction, and/or the target is movable relative to the focusing component such that the focal spot moves across the target surface in the width direction, the surface velocity of the focal spot across the target surface in the width direction being greater than vt where:formula (I), k, ρ and c denoting respectively the heat conductivity, the density and the heat capacity of the target material, and d denoting the electron penetration depth in the target material. v t = π k 4 ρ c · δ d 2 , |
US11594393B2 |
X-ray tube, x-ray analysis apparatus, and method of cooling target in x-ray tube
Provided is an X-ray tube, including: an electron-beam emitting unit; a target having a first surface and a second surface; a solid heat diffusion member fixed onto the second surface of the target; and a flow-path forming member, which is arranged on a side of the solid heat diffusion member, the side being opposite to the target, and that is configured to define a film flow path in which a cooling fluid forms a film flow that is parallel to a surface shape of the solid heat diffusion member. A protruding portion protrudes toward the side of the solid heat diffusion member, which is opposite to the target. The film flow path has a shape extending along at least a part of a surface of the protruding portion. |
US11594390B2 |
Self-test mechanisms for end-of-life detection and response for circuit interrupter devices
A circuit for a circuit interrupter is provided. The circuit may in include a first SCR configured to receive a first trigger signal at a gate of the first SCR, a second SCR configured to receive a second trigger signal at a gate of the second SCR, and a third SCR configured to receive a third trigger signal at a gate of the third SCR. A cathode of the first SCR may be connected to an anode of the third SCR. A cathode of the second SCR and a cathode of the third SCR may be connected to a ground. Methods of operating a circuit interrupter and a circuit are also provided. |
US11594386B2 |
Medium voltage switching pole
A medium voltage switching pole includes: a fixed contact of a vacuum interrupter; a movable contact of the vacuum interrupter; a piston; at least one electrical contact; a first terminal; and a second terminal. The fixed contact is fixedly connected to the first terminal. The movable contact is fixedly connected to the piston. The piston moves within the second terminal along an axis. The at least one electrical contact makes an electrical connection between the piston and the second terminal. An outer surface of the piston and an inner surface of the second terminal are arranged such that: when in an open configuration the fixed contact and movable contact are separated, at least one first radial line perpendicular to the axis extends through locations of the at least one electrical contact, and a first distance along the at least one first radial line extends from the outer surface. |
US11594375B2 |
Multilayer capacitor and substrate including the same mounted thereon
A multilayer capacitor includes a capacitor body having an active region, upper and lower cover regions, and width margins on opposing sides of the active region. The width margin includes a first region on an internal side thereof adjacent the first and second internal electrodes and a second region on an external side between the first region and a respective external surface of the capacitor body, and the upper and lower cover regions each include a third region on an internal side thereof adjacent the internal electrodes and a fourth region on an external side between the third region and a respective external surface of the capacitor body. The active region, the second region, and the fourth region have a same dielectric constant A, and the first and third regions have a same dielectric constant B, and A and B are different from each other and satisfy 0.5≤B/A. |
US11594372B2 |
Multilayer ceramic capacitor
A multilayer ceramic capacitor includes a multilayer body including dielectric layers which are stacked and internal electrode layers which are stacked, and external electrodes, each connected to the internal electrode layers. The external electrodes each include a conductive resin layer and a plated layer on the conductive resin layer. The conductive resin layer includes a resin portion, conductive fillers dispersed in the resin portion, and metal particles dispersed unevenly in a distribution differing from that of the conductive fillers in the conductive resin layer. An abundance ratio of the metal particles to the resin portion is higher on a side of the plated layer of the conductive resin layer than on a side of the conductive resin layer close to the multilayer body. |
US11594368B2 |
Assembly for connection to a high-voltage system with adjustable impedance
An assembly for connection to a high-voltage system has multiple single-phase transformers each having a transformer tank which is filled with a fluid and in which a core with at least one winding is situated. At least some of the windings of the single-phase transformers are connected to one another, forming a neutral point. A short-circuit voltage curve or impedance of the assembly can be adapted to different requirements. The windings are each connected to the neutral point via a switchover unit and a choke winding. The choke winding has multiple tappings, and the switchover unit is configured to select the tapping via which the winding in question is connected to the neutral point. |
US11594367B2 |
Choke and test assembly for carrying out high-voltage testing
A choke is used to carry out high-voltage tests. The choke includes: a housing; a coil arranged in an interior of the housing; at least one electrically conductive component arranged between the coil and the housing; and a flux guide configured to guide a magnetic flux that is configured to be generated by the coil. The flux guide includes a ferromagnetic material; and is arranged between the coil and the at least one electrically conductive component in such a way that the magnetic flux that is configured to be generated by the coil is guided past the electrically conductive component. |
US11594364B2 |
Systems and methods for thermal management in inductors
A thermal management includes an inductor, a housing in thermal communication with the inductor, the housing defining a wall, and a conductor. The conductor has a greater heat transfer rate than the wall and is positioned within a groove and/or an aperture formed in the wall. The conductor is configured to transfer heat through the wall more efficiently than if the conductor were not present. A method of manufacturing a thermal management system includes forming a housing by additive manufacturing. The housing defines a wall having at least one of a groove and an aperture defined therein. The method includes positioning a conductor in at least one of the groove and the aperture. The conductor has a greater heat transfer rate than the wall. The method includes positioning an inductor into thermal communication with the housing. |
US11594358B2 |
Differential mode choke coil component
A differential mode choke coil component includes a substantially drum-shaped core, a substantially plate-shaped core, and first and second wires. The plate-shaped core is secured to each of the first and second flanges by using an adhesive with the first major surface facing the top surface of each of the first and second flanges with a spacing. The spacing has a mean value greater than or equal to about 20 μm between the first major surface and the top surface of each of the first and second flanges. |
US11594356B2 |
Magnetic field shielding sheet, method for manufacturing magnetic field shielding sheet, and antenna module using same
Provided are a roll-shaped magnetic field shielding sheet, a method of manufacturing a magnetic field shielding sheet, and an antenna module using the same, which can improve the efficiency of the overall production process by improving a heat treatment process for a thin film magnetic sheet. The magnetic field shielding sheet includes: at least one thin film magnetic sheet; an insulating layer or insulating layers formed on one or either side of the at least one thin film magnetic sheet; and an adhesive layer formed between the insulating layers of the adjacent thin film magnetic sheets to laminate and bond the thin film magnetic sheets, wherein the thin film magnetic sheet is flake-treated to be divided into a plurality of magnetic substance fragments. |
US11594353B2 |
Magnetic powder containing Sm—Fe—N-based crystal particles, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet
A sintered magnet contains Sm—Fe—N-based crystal grains and has high coercivity; and a magnetic powder is capable of forming a sintered magnet without lowering the coercivity even if heat is generated in association with the sintering. A sintered magnet comprises a crystal phase composed of a plurality of Sm—Fe—N-based crystal grains and a nonmagnetic metal phase present between the Sm—Fe—N crystal grains adjacent to each other, wherein a ratio of Fe peak intensity IFe to SmFeN peak intensity ISmFeN measured by an X-ray diffraction method is 0.2 or less. A magnetic powder comprises Sm—Fe—N-based crystal particles and a nonmagnetic metal layer covering surfaces of the Sm—Fe—N crystal particles. |
US11594350B2 |
Thermistor and method for manufacturing thermistor
A thermistor includes a thermistor element, a protective film formed on the surface of the thermistor element, and electrode portions formed on both end portions of the thermistor element, in which the protective film is formed of silicon oxide, and, as a result of observing a bonding interface between the thermistor element and the protective film, a ratio L/L0 of a length L of an observed peeled portion to a length L0 of the bonding interface in an observation field is 0.16 or less. |
US11594346B2 |
Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire
An aluminum alloy contains equal to or more than 0.005 mass % and equal to or less than 2.2 mass % of Fe, and a remainder of Al and an inevitable impurity. In a transverse section of the aluminum alloy wire, a surface-layer void measurement region in a shape of a rectangle having a short side length of 30 μm and a long side length of 50 μm is defined within a surface layer region extending from a surface of the aluminum alloy wire by 30 μm in a depth direction, and a total cross-sectional area of voids in the surface-layer void measurement region is equal to or less than 2 μm2. |
US11594344B2 |
Method for preparing a powder comprising particles of triuranium octoxide and particles of plutonium dioxide
A method for preparing a powder comprising an intimate mixture of U3O8 particles and PuO2 particles and which may further comprise particles of ThO2 or NpO2. The method comprises: preparing, via oxalic precipitations, an aqueous suspension S1 of particles of uranium(IV) oxalate and an aqueous suspension S2 of particles of plutonium(IV) oxalate; mixing the aqueous suspension S1 with the aqueous suspension S2 to obtain an aqueous suspension S1+2; separating the aqueous suspension S1+2 into an aqueous phase and a solid phase comprising the particles of uranium(IV) oxalate and the particles of plutonium(IV) oxalate; and calcining the solid phase to convert (1) the particles of uranium(IV) oxalate to particles of triuranium octoxide and (2) the particles of plutonium(IV) oxalate to particles of plutonium(IV) dioxide, whereby the powder is obtained. |
US11594342B2 |
Evacuated containment vessel for nuclear reactor
A system includes a containment vessel configured to prohibit a release of a coolant, and a reactor vessel mounted inside the containment vessel. An outer surface of the reactor vessel is exposed to below atmospheric pressure, wherein substantially all gases are evacuated from within the containment vessel. |
US11594339B2 |
Fuel assembly arrangement for retaining fuel rod end plug to bottom nozzle
An improved retention system for retaining fuel rods in a fuel assembly is disclosed. The retention system includes a plurality of first engagement surfaces on the bottom nozzle of a fuel assembly. There is at least one engagement surface for each fuel rod. A second engagement surface is formed on the bottom end plug of each fuel rod. The first and second engagement surfaces are configured for engagement with each other for axially and laterally retaining each fuel rod within the fuel assembly. Debris deflectors may also be provided to deflect debris from coolant channels surrounding the fuel rods. |
US11594337B2 |
System and method for advertising in response to diagnostic test results
A system and method are provided for collection and testing of a biologic sample. The system and method comprise collecting by a user of a testing device a biologic sample for use with the testing device, assigning correlative values as test results, and receiving the test results at a server disposed on a network. Some aspects further include presenting advertisements and other messages to users through a mobile application operating on a mobile device. These aspects take into account the results of the self-diagnostic test and present different advertisements to the user based on the results of the test. |
US11594331B1 |
Method and system of remote control and remote monitor in treating respiratory patients
Embodiments provide an oxygen supply device having multiple operational states including a first state and a second state. In the first state, the oxygen supply device is controllable to a local control instruction such that the oxygen supply device can be operated by a user physically located within a proximity of the oxygen supply device. In the second state, the oxygen supply device is only controllable to a remote-control instruction such that the oxygen supply device can be operated by a user remote to the oxygen supply device. For example, the user can be located in an office remote to a location of the oxygen supply device, which, for example, may be placed at a patient's home. In the second state, the user is enabled to control the oxygen supply device from a device associated with the user in the remote location. |
US11594330B2 |
User interfaces for health applications
The present disclosure generally relates to user interfaces for health applications. In some embodiments, exemplary user interfaces for managing health and safety features on an electronic device are described. In some embodiments, exemplary user interfaces for managing the setup of a health feature on an electronic device are described. In some embodiments, exemplary user interfaces for managing background health measurements on an electronic device are described. In some embodiments, exemplary user interfaces for managing a biometric measurement taken using an electronic device are described. In some embodiments, exemplary user interfaces for providing results for captured health information on an electronic device are described. In some embodiments, exemplary user interfaces for managing background health measurements on an electronic device are described. |
US11594329B2 |
Programable, refillable medication package with scheduled metered dispensing and med unit sensor
A programmable, refillable medication dispenser with scheduled metered medication unit dispensing, includes a main housing, a powered CPU with countdown timer, a multi-unit medication removable refillable cartridge with a (first) lock, a medication release control gate positioned at a medication outlet and connected to a (second) lock being a gate control mechanism, and an in-chamber medication unit sensor. A pharmacist will insert a medicine cartridge into the main housing, locking it in, and will program the CPU to permit a patient to activate dispensing according to a predetermined schedule, and then only when a medication unit is sensed in the chamber. A patient may receive the dispenser and activate medication dispensing according to the programmed schedule and dispense by the timer schedule, only when a medication unit is sensed in the chamber. |
US11594328B2 |
Systems and methods for SeVa: senior's virtual assistant
Systems and methods for computer-implemented patient assistance are disclosed. In certain embodiments, the invention contemplates receiving patient data from plurality of sensors at a patient computer, transmitting patient data to a server, monitoring and analyzing the patient data at the server, and outputting recommended actions from the server to a personnel computer. The recommended actions are calculated based on safety considerations, emotional considerations, and/or a patient's treatment plan. |
US11594321B2 |
Radiation dose reduction and improved consistency between sessions in hybrid imaging studies
In a multi-session imaging study, information from a previous imaging session is stored in a Binary Large Object (BLOB). Current emission imaging data are reconstructed into a non-attenuation corrected (NAC) current emission image. A spatial transform is generated aligning a previous NAC emission image from the BLOB to the current NAC emission image. A previous computed tomography (CT) image from the BLOB is warped using the spatial transform, and the current emission imaging data are reconstructed with attenuation correction using the warped CT image. Alternatively, low dose current emission imaging data and a current CT image are acquired, a spatial transform is generated aligning the previous CT image to the current CT image, a previous attenuation corrected (AC) emission image from the BLOB is warped using the spatial transform, and the current emission imaging data are reconstructed using the current CT image with the warped AC emission image as prior. |
US11594320B2 |
Systems and methods for dynamically applying separate image processing functions in a cloud environment
Systems for delivering one or more studies, where each of the one or more studies has a series of digital images associated with only one person and generated by an imaging modality, is disclosed. The systems include a syncing application that is configured to execute within a local area network and that is in data communication with imaging modalities and/or computing devices configured to display images generated by each of the imaging modalities. The systems also include a server adapted to be external to the local area network and in data communication with the syncing application and a client-side viewing application installed on one or more of the computing devices. The client-side viewing application is configured to acquire the studies, including unrendered data representative of the digital images of the series, locally render the unrendered data, and enable a user to manipulate the digital images. |
US11594315B2 |
Systems and methods for automatic activity tracking
Systems and methods for tracking activities from a plurality of multimodal inputs are described. Activity tracking can include receiving a plurality of multimodal inputs, synchronizing the plurality of multimodal inputs, generating segments from the synchronized multimodal inputs, recognizing activities associated with each generated segment by performing a bagged formal concept analysis (BFCA), and recording the recognized activities in a storage. Tracking of activities can include the detection of moments (e.g., eating moments), during which an activity tracking application can prompt a user for information (e.g., a food journal). |
US11594311B1 |
Health care information system providing standardized outcome scores across patients
Health care information for multiple patients is processed to classify patients into categories. Additional data fields related to a category in which a patient is classified are added to the patient record. These data fields are populated in part by automatically processing the existing patient data. Such automatic processing can result in a probability that the underlying data supports having a particular value stored in one of the added data fields, and this probability also can be stored. Over time, additional data can be obtained from patients, caregivers and other sources, for structured data fields based on data entry forms for patient reported outcomes, caregiver reported outcomes, events of interest, survival and resource utilization. A set of factor scores is computed for each patient, for each category in which the patient is classified. An outcome score is computed for each patient for each category in which the patient is classified, using an outcome function defined for that category, as a weighted function of one or more of the factor scores. The outcome function for a category is standardized across all patients classified in that category. |
US11594308B2 |
Method and system for adaptive scheduling of clinical assessments
Methods and systems providing adaptive assessment of a physical subject to efficiently collect assessment data and modify an assessment schedule based on the analyses. The methods and systems can control the timing of each assessment in order to collect data at times and under conditions that are most informative about the physical subject. Such adaptive methods and systems significantly minimize the frequency of data collection without loss in accuracy or precision and can increase test reliability through reduction in redundancy. The ability to estimate an unknown, underlying function using a small number of free parameters that remain constant regardless of the number of data points being estimated substantially reduces the error of the function estimate. Because estimates of the measurement error are achieved with a minimum of sampled assessments, and with great accuracy, the statistical power of clinical trials, for example, can be greatly increased. |
US11594303B2 |
Method and system for normalization of gene names in medical text
A method (100) for standardizing gene nomenclature, comprising: (i) receiving (110) a source; (ii) tokenizing (120) the source; (iii) comparing (130) a first token to a prefix tree structure with a root node, edges, and leaf nodes; (iv) determining (140) which edge extending from the root node to associated first leaf nodes the first token matches; (v) updating (150) an identification pointer with the location of the first leaf node; (vi) determining (160) which of one or more edges that a second token matches; (vii) updating (170) the identification pointer with the location of the second leaf node; (viii) repeating (172) the determining (160) and updating (170) steps with subsequent tokens until a subsequent token fails to match an edge extending from a leaf node or there is no edge extending from the leaf node; and (ix) providing (180) an identification of a canonical gene name. |
US11594300B2 |
Viterbi decoder for microarray signal processing
A system and method for region-based calling utilizes a probability distribution of a phi-transformed logarithmic ratio to determine a set of possible transition paths through markers and marker states, constructs a local evidence matrix for each of the markers and generates a total per-marker value for each segment in a discrete region. |
US11594296B2 |
Memory controller physical interface with differential loopback testing
Systems, apparatus and methods are provided for loopback testing techniques for memory controllers. A memory controller that may comprise loopback testing circuitry that may comprise a first multiplexer having a first input coupled to an output of an input buffer and a second input coupled to a first data output from the memory controller, an inverter coupled to the output of the input buffer, and a second multiplexer having a first input coupled to an output of the inverter and a second input coupled to a second data output from the memory controller. |
US11594295B2 |
Nonvolatile memory device and method of operating the same
A nonvolatile memory device includes a memory block with an unused line connected to dummy cells and used lines connected to normal cells, and a controller which applies an erase voltage to the memory block, applies an unused line erase voltage to the unused line, and applies a word line erase voltage to the used lines during an erase operation. The dummy cells are not programmed during a program operation while the normal cells are programmed, the unused line erase voltage transits from a first voltage to a floating voltage at a first time point, and the controller reads the dummy cells and controls at least one of the magnitude of the first voltage and the first time point based on the result of reading the dummy cells. |
US11594289B2 |
Semiconductor device, memory system and semiconductor memory device
A semiconductor device includes a transmission and reception circuit and a control circuit. The transmission and reception circuit transmits and receives a signal to and from a semiconductor memory device. The control circuit acquires threshold voltage distribution information of a memory element connected to a word line for read disturb detection to which a second voltage higher than a first voltage applied to an adjacent word line adjacent to a read target word line during a read operation is applied and determines an influence of read disturb based on the threshold voltage distribution information. |
US11594286B2 |
Non-volatile memory device and method of operating the same
A method of operating a non-volatile memory device includes performing a first sensing operation on the non-volatile memory device during a first sensing time including a first section, a second section, and a third section. The performing of the first sensing operation includes applying a first voltage level, which is variable according to a first target voltage level, to a selected word line in the first section, applying a second voltage level, which is different from the first voltage level, to the selected word line in the second section, and applying the first target voltage level, which is different from the second voltage level, to the selected word line in the third section. The first voltage level becomes greater as the first target voltage level becomes greater. |
US11594285B2 |
Semiconductor memory device
According to one embodiment, a semiconductor memory device includes first and second memory cells; a first word line connected to the first and second memory cells; a first bit line connected to the first memory cell; a second bit line connected to the second memory cell; a first sense amplifier connected to the first bit line; a second sense amplifier connected to the second bit line; a voltage generation circuit; and a first row decoder which supplies a voltage to the first word line. |
US11594279B2 |
Array device and writing method thereof
An array device and a writing method thereof are provided. A synapse array device includes: a crossbar array, in which a resistive memory element is connected to each intersection of a plurality of row lines and a plurality of column lines; a row select/drive circuit selecting a row line of the crossbar array and applying a pulse signal to the selected row line; a column select/drive circuit selecting a column line of the crossbar array and applying a pulse signal to the selected column line; and a writing part writing to the resistive memory element connected to the selected row line and the selected column line. A first write voltage with controlled pulse width is applied to the selected row line, and a second write voltage with controlled pulse width is applied to the selected column line to perform set writing of the resistive memory element. |
US11594275B2 |
Method for detecting leakage position in memory and device for detecting leakage position in memory
The present disclosure provides a method for detecting a memory and a device for detecting a memory. The memory includes first memory cells, second memory cells, bit lines, complementary bit lines, word lines, and a plurality of sense amplifiers, where each of the sense amplifiers is electrically coupled to a bit line and a complementary bit line; and the method includes: writing storage data into each of the first memory cells and each of the second memory cells; performing a read operation; obtaining a test result based on a difference between real data and the storage data; and obtaining a leakage position of the bit line and the word line or a leakage position the complementary bit line and the word line based on the test result. |
US11594268B2 |
Memory device deserializer circuit with a reduced form factor
A memory device including a memory array operatively coupled to an array data bus and a deserializer circuit operatively coupled with the array data bus. The deserializer circuit includes a first ring counter including a first set of flip-flops to sequentially output a set of rising edge clock signals based on a reference clock input and a second ring counter portion including a second set of flip-flop circuits to sequentially output a set of falling edge clock signals based on the reference clock input. A rising data circuit portion of the deserializer circuit includes a set of flip-flops that each receive a rising data portion from a respective latch circuit in response to a rising edge clock signal. A falling data circuit portion of the deserializer circuit includes a set of flip-flops that each receive a falling data portion from a respective latch circuit in response to a falling edge clock signal. The third set of flip-flops outputs the set of rising data portions and the fourth set of flip-flop circuits outputs the set of falling data portions to generate a synchronized data stream to output to the array data bus in response to a common clock signal. |
US11594265B1 |
Apparatus including parallel pipeline control and methods of manufacturing the same
Methods, apparatuses, and systems related to coordinating a set of timing-critical operations across parallel processing pipelines are described. The coordination may include selectively using (1) circuitry associated with a corresponding pipeline to generate enable signals associated with the timing critical operations when a separation between the operations corresponds to a number of pipelines or (2) circuitry associated with a non-corresponding or another pipeline when the separation is not a factor of the number of pipelines. |
US11594264B1 |
Readout circuit layout structure and method of reading data
The present disclosure relates to the field of semiconductor circuit design, and in particular to a readout circuit layout structure and a method of reading data. The readout circuit layout structure includes: a first readout circuit structure and a second readout circuit structure having identical structures, wherein the first readout circuit structure and the second readout circuit structure each include: a first isolation module, configured to be turned on according to a first isolation signal, electrically connect a bit line and a first readout bit line, and electrically connect a complementary bit line and a first complementary readout bit line; a second isolation module, configured to be turned on according to a second isolation signal, electrically connect the first readout bit line and a second readout bit line, and electrically connect the first complementary readout bit line and a second complementary readout bit line. |
US11594261B1 |
Modular rack sized data storage tape library with hermetically sealed tape compartment
A modular data storage tape library includes a modular frame having a form factor similar to other types of computing racks. The modular data storage tape library includes a hermetically sealed enclosure within the modular frame and a cooling portion within the modular frame. Data storage tapes, data storage drives and robotics for moving the data storage tapes are included within the hermetically sealed enclosure. A heat exchanger transfers heat from the hermetically sealed enclosure to the cooling portion outside of the sealed enclosure through a boundary of the hermetically sealed enclosure without introducing air from the data center into the hermetically sealed enclosure. Because air is neither introduced nor removed from the hermetically sealed enclosure, humidity fluctuations are minimal, if existent, and contaminants are prevented from entering the hermetically sealed enclosure, thus increasing the life spans of the data storage tapes included in the hermetically sealed enclosure. |
US11594258B2 |
System for the automated, context sensitive, and non-intrusive insertion of consumer-adaptive content in video
Described herein is a method and system for automated, context sensitive and non-intrusive insertion of consumer-adaptive content in video. It assesses ‘context’ in the video that a consumer is viewing through multiple modalities and metadata about the video. The method and system described herein analyzes relevance for a consumer based on multiple factors such as the profile information of the end-user, history of the content, social media and consumer interests and professional or educational background, through patterns from multiple sources. The system also implements local-context through search techniques for localizing sufficiently large, homogenous regions in the image that do not obfuscate protagonists or objects in focus but are viable candidate regions for insertion for the intended content. This makes relevant, curated content available to a user in the most effortless manner without hampering the viewing experience of the main video. |
US11594257B2 |
Collaborative media object generation and presentation in improved collaborative workspace
In the present disclosure, a collaborative workspace fosters content creation between users in a synchronous and/or asynchronous manner by enabling automatic generation and management of collaborative media objects that automatically combine content from a plurality of users into a single media object. This is extremely beneficial in technical scenarios where users are creating projects, assignments, presentations, etc., by removing the need for users to manually stitch together and combine content to create a final product. For example, the collaborative workspace is adapted for a video discussion application/service, where users create one or more video clips (e.g., video feeds, live video feeds) in response to a posted topic. In at least one instance, a collaborative workspace for a video discussion application/service may be integrated to display within another type of application/service. However, the present disclosure is extensible to work with any type of application/service and any content type. |
US11594255B2 |
Systems and methods for automated generation of video
Methods, systems, and computer readable medium with instructions for generating a master video, including receiving input from a video creator that initiates a video project, soliciting video file responses from respondents, and receiving video files from respondents, combining the video files into a master video file which corresponds to a master video. The video files correspond with master video segments of the master video. A relative position of each of the master video segments in the master video is based on a formulated sequence. The system may include one or more processors; one or more data storage devices; one or more input devices; one or more output devices; a network interface; and at least one communications bus operably interconnecting the other elements. The one or more data storage devices includes the instructions which are executed by the one or more of the processors. |
US11594253B2 |
Detecting loss of attention during playing of media content in a personal electronic device
A mobile device has at least one media output device for presenting first media content, at least one communication interface that receives signals/data indicative of whether a consumer of the first media content is actively consuming the first media content; and at least one processor executing program code, which enables the mobile device to: during playing of a first media content, receive, via the communication interface, the first data; evaluate, based on a comparison of the first data with comparative data, whether the first data indicates that the consumer is not paying attention to the first media content; and in response to the consumer not paying attention, identify, by the processor, based on a time of receipt of the first data, a first time corresponding to a location within the first media content at which the consumer stopped paying attention during the playback of the first media content. |
US11594251B2 |
Disk device with base and first and second covers
According to one embodiment, a disk device includes a disk-shaped recording medium, a base accommodating the recording medium, the base including a bottom wall, a sidewall on a peripheral portion of the bottom wall, and a rib on a part of an upper surface of the sidewall and extending along an entire circumference of the sidewall, a first cover on a part of the upper surface of the sidewall, and a second cover on a first surface of the rib and above the first cover. The rib includes a first region with a first width, a second region with a second width less than the first width, and the first surface with a fixed width around an entire circumference of the rib. The first region and the second region are located corresponding to a side portion of the recording medium. |
US11594248B1 |
Disk device having ramp that includes protrusion
The disk device according to one embodiment includes magnetic disks, a magnetic head, a ramp, and a suspension. The suspension includes a sliding portion provided on a load beam. The suspension rotates about a second rotation axis between a load position and an unload position. The ramp includes a wall and a protrusion. The wall has a first support surface that supports the sliding portion when the suspension is located in the unload position. The protrusion includes a second support surface and an intermediate portion. The second support surface faces the magnetic head when the suspension is located in the unload position. The intermediate portion is located between the wall and the second support surface. The intermediate portion includes a first portion and a second portion. The second portion is located between the first portion and the first support surface in the radial direction of the second rotation axis. |
US11594245B1 |
Bifunctional turntable
A bifunctional turntable which includes a rotating shaft, a platter, a light sensor module, an audio control module, and a plinth is revealed. The rotating shaft which is driven by a power source to rotate drives the platter to rotate. Then the light sensor module disposed on the rotating shaft detects rotation speed of the platter for playing a record at normal speed. The audio control module is located in the plinth and disposed on a simulated record for detecting changes in the simulated record which is manually operated. Then the audio control module sends signals to a digital audio control system at a rear end for driving the digital audio control system to output audio signals. Thereby the present turntable plays not only vinyl records but also simulated records. |