Document Document Title
US11582108B2 Method and system for automatic creation of trust communities
A method of automatically creating trust communities in a fleet of devices. The method includes finding candidate devices in a fleet of devices via one or more candidate discovery techniques and generating device-related data based on the candidate devices that are found, analyzing the device-related data via an analytics engine and creating one or more fleet orchestrator device lists based on the analysis of the device-related data, and automatically creating one or more new trust communities or suggesting joining one or more previously existing trust communities based at least on the one or more fleet orchestrator device lists for the candidate devices, wherein the one or more new trust communities or previously existing trust communities include at least a sub-set of the devices in the fleet, and wherein at least one of the managed devices in the sub-set of devices is configured as a root device to publish files via a file sharing function.
US11582106B2 Automatic discovery of cloud-based infrastructure and resources
A discovery computing system may receive an account identifier (ID) and a set of credentials required to access a first service account. The discovery computing system may transmit a first API query to a remote computing system. The discovery computing system may receive an organization identifier (ID) of the organization from the remote computing system. The discovery computing system may further transmit a second API query to the remote computing system. The discovery computing system may be further configured to receive information about a set of projects, in the organization, from the remote computing system. The discovery computing system may further generate a set of service accounts and further determine the set of resources, in the remote computing system, associated with each of the generated set of service accounts. The discovery computing system may further store the determined set of resources, as configuration items in a persistent storage.
US11582105B2 Telemetry-based network switch configuration validation
Methods, apparatuses, and computer program products for telemetry-based network switch configuration validation are disclosed. An analytics engine captures a first network snapshot including telemetry data received from one or more network switches in a first state. Upon receiving a notice indicating that a network configuration change has been applied, the analytics engine initiates a timer in response to receiving the notice. The analytics engine captures, in response to expiration of the timer, a second network snapshot including telemetry data received from the one or more network switches in a second state and compares the first network snapshot and the second network snapshot. In dependence upon the comparison of the first network snapshot to the second network snapshot, the analytics engine validates the network configuration change.
US11582102B2 Systems and methods for integrating network switch management with computing resource management
A networking system may include a switch coupled to a computing resource. A resource management system may control the computing resource. A controller may be coupled to the switch. The controller may include a resource management interface that is coupled to the resource management system via a communications link. The resource management interface may receive computing resource information for the computing resource via the communications link. The controller may provide control data to the switch to update a cloud network for the computing resource based on the received computing resource information.
US11582097B2 Network equipment operation adjustment system
A network equipment operation adjustment system is provided herein that is configured to improve the performance of a telecommunications network by generating a network score representing the performance of a telecommunications network within a geographic region, determining one or more network equipment parameter adjustments using the network score, and causing the adjustments to occur. The network equipment operation adjustment system can further display the network score and other network scores for other geographic regions in an interactive user interface to efficiently allow a network operator to view the network performance of a telecommunications network by geographic region and/or to view how the network performance in each of the geographic regions is changing over time.
US11582094B2 Terminal apparatus, method, and integrated circuit
A terminal apparatus for communicating with one or more base station apparatuses, the terminal apparatus including: a receiver configured to receive an RRC reconfiguration message including a DRB configuration from the one or more base station apparatuses, the DRB configuration including a DRB identity and an EPS bearer identity; and a processing unit configured to associate a DRB established with the EPS identity in a case that the DRB identity is not part of a current configuration of the terminal apparatus, and the DRB was configured for the EPS bearer identity.
US11582089B2 Method and apparatus for transmitting uplink channel in unlicensed band
Provided are a method and an apparatus for transmitting an uplink channel in an unlicensed band. The method includes configuring an interface for an uplink channel based on interlacing information determined according to subcarrier spacing (SCS) of an unlicensed band; and transmitting the uplink channel by applying the interlace.
US11582084B1 Systems and methods for operations, administration and maintenance (OAM) in the physical coding sublayer (PCS)
Systems and methods described herein provide a method for operation, administration and maintenance (OAM) of data message transmission. The method comprises reading a transmit register of a transmitter associate with a first management entity to determine a transmit status of the transmit register. The method further comprises loading a data message into the transmit register when the transmit status of the transmit register indicates availability. The method further comprises embedding the data message as an out-of-band message with physical code sublayer modulation, and transmitting the out-of-band message on the physical code sublayer to a receiver associated with a second management entity. A transmit state machine of the transmitter and a receive state machine of the receiver establish a handshake to allow the out-of-band message to be passed asynchronously.
US11582081B2 Reference signal sending method, reference signal receiving method, and apparatus
A reference signal sending method, a reference signal receiving method, and an apparatus are provided. A first network device determines a first resource. The first network device generates a reference signal corresponding to the first resource. The reference signal includes M parts, and all of the M parts are the same. The first resource does not carry a cyclic postfix of the reference signal. Alternatively, the first resource carries a cyclic prefix of the reference signal and the cyclic prefix corresponding to the reference signal is located only at the start of the 1st part in the M parts. M is a positive integer. The first network device sends the reference signal to a second network device on the first resource.
US11582076B2 Techniques for configuring a preamble in wireless local area network system
According to various embodiments, a receiving station (STA) may receive a physical protocol data unit (PPDU). The PPDU may include a legacy signal field, a repeated legacy signal field, a first signal field, and a second signal field. The receiving STA may determine a type of the PPDU and a format of the PPDU, based on the legacy signal field, the repeated legacy signal field, the first signal field, and the second signal field.
US11582075B2 Communication devices, systems, software and methods employing symbol waveform hopping
Systems, devices, and methods of the present invention facilitate secure communication by altering the set of symbol waveforms that may be in use in particular symbol times defined herein as Symbol Waveform Hopping. SWH may be enabled by selecting two or more modulation formats that have sufficiently comparable communication performance (e.g., occupied bandwidth and signal power efficiency), but characterized by symbol waveform alphabet that include different symbol waveform, so that the overall transmission/communication performance of data stream in a signal transmission channel of the system is not significantly affected by switching between modulation formats. Some or all of the symbol waveforms in each alphabet may not be present in other alphabets.
US11582070B2 Method and system for controlling downlink transmit power
Aspects of the subject disclosure may include, for example, obtaining channel cross correlation data relating to multiple user equipment (UEs) being served in a cell, wherein the channel cross correlation data comprises a correlation coefficient associated with a first UE of the multiple UEs and a second UE of the multiple UEs, identifying that the first UE is experiencing decreasing throughput, responsive to the identifying that the first UE is experiencing decreasing throughput, determining whether the correlation coefficient associated with the first UE and the second UE satisfies a correlation threshold, and, based on a first determination that the correlation coefficient does not satisfy the correlation threshold, adjusting a downlink (DL) transmit power allocation for transmissions directed to the first UE. Other embodiments are disclosed.
US11582068B2 Scalable mechanism for optimized application performance in SD-WAN
The present disclosure is directed to a mechanism for optimized application performance in SD-WAN, and includes the steps of receiving initial traffic packets at a first site for transmission to a second site; determining whether a direct tunnel is established between the first site and the second site based on a state of the second site, the state comprising an active state indicating that a direct tunnel is established between the first and second sites or an inactive state indicating that the direct tunnel is not established between the first and second sites; and in response to determining that the direct tunnel is not established, determining that the initial packets satisfy a configured trigger; forwarding the initial packets to the second site via a backup path; establishing the direct tunnel between the first and second sites; and forwarding subsequent traffic packets to the second site via the established direct tunnel.
US11582066B2 Techniques for extending a cellular quality of service bearer through an enterprise fabric
Techniques are described for extending a cellular quality of service bearer through an enterprise fabric network. In one example, a method obtaining, by a first switch of a network, a packet to be delivered to a client connected to the network via a cellular access point; identifying quality of service (QoS) bearer information associated with the packet, wherein the QoS bearer information is associated with a radio access bearer for the client and the QoS bearer information comprises a bearer indicator and a QoS class identifier; providing a fabric tunnel encapsulation for the packet, wherein the bearer indicator and the QoS class identifier are included within the fabric tunnel encapsulation of the packet; and forwarding the packet within the fabric tunnel encapsulation toward a second switch of the network via a fabric tunnel, wherein the cellular access point is connected to the network via the second switch.
US11582065B2 Systems and methods for device communication
Embodiments include a device comprising an interface module for interfacing with proprietary legacy systems. The interface module comprises a data interface for interfacing with a processing component of the legacy system, where the processing component uses a proprietary protocol for processing data of the legacy system. The interface module includes a protocol module that comprises a protocol corresponding to the proprietary protocol of the legacy system, and the interface module uses the protocol to exchange data with the processing component. The interface module includes a communication device that communicates with a remote system via a wireless channel. The interface module controls communications that include passing commands from the remote system to the legacy system, and passing event data of the legacy system to the remote system.
US11582064B1 Secure ethernet and transmission control protocol
Methods and systems are provided for providing secure Ethernet transmissions. In some aspects, an autonomous vehicle system is provided and can include a first system-on-chip being configured to provide data to a second system-on-chip via an Ethernet harness, a first switch being configured to: receive the data from the first system-on-chip, and provide the data to a first transceiver for transmission to the second system-on-chip, the first switch being configured to provide first transmission data to the first transceiver and to prohibit receipt of retrieval data from the second system-on-chip, and the first transceiver configured to communicate with the second system-on-chip via the Ethernet harness.
US11582059B2 External microcontroller communications
Messaging between an ultra-tag and external microcontroller. In an embodiment, a transmitting device is communicatively connected to a receiving device by a clear-to-communicate line and request line. When data to be transmitted has normal priority, the transmitting device detects whether the clear-to-communicate line indicates that the receiving device is available, indicates a request to transmit on the request line if so, waits until the receiving device is available and then indicates a request to transmit on the request line if not, after indicating a request to transmit, transmits the data when the clear-to-communicate line indicates that the receiving device is unavailable, and, after transmitting the data, releases the indication of the request to transmit on the request line. On the other hand, when the data has high priority, the transmitting device indicates a request to transmit on the request line, regardless of an indication on the clear-to-communicate line.
US11582057B2 Multi-services gateway device at user premises
An application gateway including application service programming positioned at a user premises can provide voice controlled and managed services to a user and one or more endpoint devices associated with the application gateway. The application gateway can be controlled remotely by the application service provider through a service management center and configured to execute an application service provided from the application service provider. The application gateway can execute the application service at the user premises upon voice command by a user and independent of application services executing on the application service provider's network. An application service logic manager can communicate with an application service enforcement manager to verify that the request conforms with the policy and usage rules associated with the application service in order to authorize execution of the application service on the application gateway, either directly or through endpoint devices.
US11582055B2 Methods and apparatus for wireless device attachment in a managed network architecture
Methods and apparatus for enhancing connectivity for a device backhauled by a wireline communication network. In one embodiment, the device comprises a small-cell or other wireless base station that is backhauled by a DOCSIS system within a managed HFC network, and the method and apparatus enable enhanced connection of user devices serviced by the base station (such as 3GPP UE or CBRS FWA) to a core entity for e.g., authentication and packet session establishment. In one implementation, enhanced Cable Termination System (CMTS) and cable modem (CM) devices coordinate to allocate prioritized service flows to traffic sourced from the base station. These service flows can selectively bypass extant DOCSIS protocols which might otherwise increase connection latency (including connection failure) such as AQM (active queue management) and packet dropping algorithms. In some variants, upstream service flow data rates can also be enhanced through temporary utilization of higher-order modulation and/or coding schemes.
US11582053B2 Data multicast implementation method, apparatus, and system
A data multicast implementation method, apparatus, and system are provided. In some embodiments, a transmission device receives a standby forwarding path establishment request, where the standby forwarding path establishment request includes a device identifier, has a destination address being an address of a multicast source device, and is used to request to establish a standby forwarding path between a multicast destination device identified by the device identifier and the multicast source device. In those embodiments, when determining, based on the device identifier in the standby forwarding path establishment request, that the transmission device is located on an active forwarding path between the multicast destination device and the multicast source device, the transmission device skips using the transmission device as a device on the standby forwarding path between the multicast destination device and the multicast source device, and skips forwarding the standby forwarding path establishment request.
US11582052B2 Method, system, and non-transitory computer readable record medium for managing messages based on context
A message management method includes receiving, by at least one processor of a computer system, a share request for a message group that includes at least one message among messages in a chatroom; and forwarding, by the at least one processor, based on receiving the share request, information about the message group to a server which stores the information about the message group in association with the chatroom and shares the message group with users in the chatroom.
US11582048B2 Bi-directional power over ethernet for digital building applications
In one or more embodiments, a system includes a plurality of network devices comprising a plurality of ports, a power bus connecting the network devices, wherein power is shared between the network devices over the power bus, and a controller for identifying available power and allocating power to the ports. The ports include a plurality of PSE (Power Sourcing Equipment) PoE (Power over Ethernet) ports each operable to transmit power to a device connected to one of the PSE PoE ports, a plurality of PD (Powered Device) PoE ports each operable to receive power from a device connected to one of the PD PoE ports, and a plurality of bi-directional PoE ports each configurable to operate as a PSE PoE port to transmit power to a device connected to one of the bi-directional PoE ports or as a PD PoE port to receive power from the connected device.
US11582047B2 Isolation in power-over-ethernet powered devices
One embodiment is directed a powered device that comprises a connector to connect a multi-conductor cable to the powered device and device circuits partitioned into a first partition and a second partition. The powered device is configured to receive power from a first cable circuit and a second cable circuit provided over the multi-conductor cable. The powered device is configured to separately power the first partition using power received from the first cable circuit and power the second partition using power received from the second cable circuit and to power isolate the first cable circuit from the second cable circuit. The powered device further comprises at least one isolation device coupled to the first partition and the second partition and configured to enable information to be communicated between the first partition and the second partition. Other embodiments are disclosed.
US11582044B2 Systems and methods to timestamp and authenticate digital documents using a secure ledger
Systems and methods to timestamp and authenticate digital documents using a secure ledger are described. Some implementations can include computer-implemented method to timestamp and authenticate electronic documents. The method can include receiving, by a timestamp and authentication server and from a user device, a unique hash value that is generated at the user device based on a source document and a device identifier of the user device, and verifying, by the timestamp and authentication server, the device identifier. The method can also include, upon verifying the device identifier, inserting, by the timestamp and authentication server, the hash value and the device identifier into a secure ledger, and upon successful insertion into the secure ledger, transmitting, from the timestamp and authentication server to the user device, a success status message including a location in the secure ledger where the hash value was inserted.
US11582034B2 Secure, decentralized, automated platform and multi-actors for object identity management through the use of a block chain technology
Secure management of keys and identities of an object manufactured by a manufacturer having a manufacturer key pair, and a client having a client key pair, the management being carried out using a decentralized blockchain database. The method includes generation of a manufacturing key pair; and publication and recording, in the blockchain, of the decentralized object identifier used to obtain the public key of the object. When a client purchases the object from the manufacturer, the method includes providing, by the object manufacturer, the object identifier, and the public manufacturing key to the client; and updating the blockchain. When the object is switched on for the first time, the object enrolls itself by generation of a utilization key pair; auto-enrollment using the manufacturing key pair; and replacement, in the blockchain, of the public manufacturing key associated with the object identifier with the public utilization key associated with the object identifier.
US11582030B2 Secure distribution of entropy
Techniques are disclosed for securely distributing entropy in a distributed environment. The entropy that is distributed may be quantum entropy that is generated by a quantum entropy generator or source. The true random entropy generated by a trusted entropy generator can be communicated securely among computer systems or hosts using secure communication channels that are set up using a portion of the entropy. The distribution techniques enable computer systems and hosts, which would otherwise not have access to such entropy generated by the trusted entropy source, to have access to the entropy.
US11582028B1 Sharing grouped data in an organized storage system
A method including determining, by a device, a sharing decryption key based at least in part on an assigned private key associated with the device and a group access public key associated with a group; decrypting, by the device, a group access private key associated with the group by utilizing the sharing decryption key; and decrypting, by the device, encrypted content included in a folder associated with the group based at least in part on utilizing the group access private key associated with the group. Various other aspects are contemplated.
US11582020B2 Homomorphic encryption offload for lightweight devices
Disclosed are systems, methods, devices, and computer-readable media for offloading lattice-based cryptographic operations to hybrid cloud computing system. In one embodiment, a method is disclosed comprising receiving a first network request from a client device via a secure application programming interface (API), the request including unencrypted data; encrypting the unencrypted data using an algorithm that generates homomorphically encrypted data; issuing a second network request to a second API of a cloud platform, the second network request including the encrypted data; receiving a response from the cloud platform in response to the second network request; and transmitting, in response to the first network request, a result to the client device based on the response, the result obtained by decrypting an encrypted output returned by the cloud platform.
US11582019B2 Receiving apparatus, receiving method and program
A reception apparatus includes a detection unit that detects occurrence of a phase slip in phase estimation values of time-series received symbol data, and determines an inclination of the phase slip, a delay processing unit that generates first received signal data obtained by delaying received signal data obtained from the time-series received symbol data by one symbol time interval, a phase shift unit that generates second received signal data by performing phase shift according to the inclination, only in a period in which one symbol time interval elapses, on only the received signal data of a symbol time at which the occurrence of the phase slip is detected among pieces of the received signal data, and a remainder processing unit that derives a remainder of a difference between the second received signal data and the first received signal data.
US11582015B2 Enhancement for bandwidth part (BWP) operation towards secondary cell (SCELL) dormancy indication
A method for enhancing Bandwidth Part (BWP) operation towards Secondary Cell (SCell) dormancy indication is proposed. A User Equipment (UE) detects a Downlink Control Information (DCI) format including an SCell dormancy indication that indicates an active BWP change for a serving cell. The UE performs BWP switching for the serving cell in response to the DCI format. The UE stops transmission or reception in the serving cell during a time duration from a slot containing a last symbol of the DCI format, wherein the time duration includes a first period of time of delay for the BWP switching and a second period of time of interruption to other active serving cells.
US11582010B2 Method for determining spectrum utilization
According to certain embodiments, a method in a network node (100A) for determining spectrum utilization for a plurality of numerologies transmitted within an allocated bandwidth includes selecting one or more of the plurality of numerologies. For each of the one or more selected numerologies, a spectrum utilization is determined. The spectrum utilization is based on the spectrum utilization that would be achieved if the selected numerology was transmitted across the allocated bandwidth. A physical resource block (PRB) allocation is calculated based on the allocated bandwidth and the spectrum utilization.
US11582008B2 Downlink PPDU sending method and apparatus, and downlink PPDU receiving method and apparatus
A radio physical layer protocol data unit (PPDU) sending method includes: obtaining, a radio physical layer protocol data unit (PPDU), wherein the PPDU includes a high efficiency-signal field A (HE-SIG-A) and a high efficiency-signal field B (HE-SIG-B), the HE-SIG-A includes a field indicating a quantity of orthogonal frequency division multiplexing (OFDM) symbols in the HE-SIG-B, and wherein a value of the field indicates one of the following: that the quantity of OFDM symbols included in the HE-SIG-B is greater than or equal to 16, or the quantity of OFDM symbols included in the HE-SIG-B; and sending the PPDU.
US11582005B2 Device, network, and method for wideband LTE single OFDM symbol uplink transmission
An embodiment method for managing uplink transmission includes dividing, by a network controller, frequency resources in a single OFDM symbol into two sets of frequency resources. The method further includes signaling, by the network controller, to a UE to transmit data in a first set of the frequency resources and to transmit a pilot signal in a second set of the frequency resources.
US11582002B2 Coordination for partial reciprocity estimation
Methods, systems, and devices for wireless communications are described. A first device may receive a first reference signal from a second device and may generate a channel status feedback message based on the first reference signal. The first device may bundle the second reference signal and the channel status feedback message and may transmit the second reference signal and the channel status feedback to the second device. The first device may initiate a data transfer with the second device based on transmitting the second reference signal and the channel status feedback message.
US11581999B2 Reference signal design for wireless communications
Methods, systems, and devices are described for reference signal design in wireless communications. A base station may select a reference signal density scheme from a set of available density schemes associated with a port count. The reference signal density scheme may also be selected based on the category of the mobile device receiving the reference signal transmissions. The reference signal density scheme may be a higher density reference signal density scheme or a lower density reference signal density scheme, where the higher density reference signal density scheme includes more reference signal resource elements per subframe. The mobile device may determine the reference signal density scheme based on characteristics of a channel. The higher density reference signal density scheme may provide additional channel estimation opportunities for the mobile device. In some cases, the mobile device sends the channel estimated based on the received reference signals to the base station.
US11581998B2 Configuration method and device for data transmission structure
Provided are a configuration method and apparatus for a data transmission structure, which include: acquiring a transmission data parameter group, and configuring, according to a preset configuration order, the transmission data parameter group to obtain a transmission unit, where the preset configuration order is a configuration order determined based on a demand of a transmission service. By the present invention, the problem of unable to transmit uplink control due to an unsuccessful CCA in the related art may be solved, thereby improving the frequency spectrum efficiency.
US11581993B2 Reception timing configuration method and communications device
A reception timing configuration method and a communications device are provided. The method includes: configuring, by a first communications device for a second communications device, a reception timing parameter corresponding to transmission, where the reception timing parameter includes at least two timing points respectively corresponding to at least two transmission points, and the at least two transmission points are configured to transmit downlink data to the terminal device cooperatively; and sending, by the first communications device, indication information to the second communications device, where the indication information is used to indicate the reception timing parameter. According to the method, there may be a plurality of corresponding reception timings when different data is sent by using a same frequency.
US11581991B2 Communication apparatus, method of controlling communication apparatus, and non-transitory computer-readable storage medium
A communication apparatus determines, in a case where one or more other communication apparatuses are capable of performing coordinated communication by using a predetermined frequency band, whether or not performing high-speed connection with the one or more other communication apparatuses each operating as an access point is possible, and selects a Joint Transmission communication method on the basis that it is determined that it is possible to perform high-speed connection with the one or more other communication apparatuses each operating as an access point.
US11581985B2 Method and apparatus for handling sidelink reception in a wireless communication system
A method and apparatus are disclosed. In an example from the perspective of a User Equipment (UE), if sidelink packet duplication is configured or enabled for a Sidelink Radio Bearer (SLRB), a first Packet Data Convergence Protocol (PDCP) Protocol Data Unit (PDU), corresponding to a first PDCP Service Data Unit (SDU), and a duplicate of the first PDCP PDU, are transmitted. A first PDCP Sequence Number (SN) of the first PDCP PDU is set based upon one or more state variables used for sidelink transmission on the SLRB. If the sidelink packet duplication is de-configured or disabled for the SLRB, a second PDCP PDU, corresponding to a second PDCP SDU, is transmitted. Noduplicate of the second PDCP PDU is transmitted. A second PDCP SN of the second PDCP PDU is set based upon the one or more state variables used for sidelink transmission on the SLRB.
US11581984B2 Retransmission technique with compressed feedback in a wireless communication system
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for a retransmission protocol that utilizes compressed feedback. Various implementations relate generally to a compressed feedback technique for hybrid automatic repeat request (HARQ). Upon receiving a compressed feedback value, a sending device may generate a retransmission codeblock. The retransmission codeblock may be derived from multiple codeblocks in a set of codeblocks. A receiving device can use the retransmission codeblock to obtain any failed codeblock in the set of codeblocks based on all other previously decoded codeblocks in the set of codeblocks. Thus, the receiving device does not need to indicate which codeblock in the set failed, but only needs to send a compressed feedback value that indicates which sets of codeblocks have had a single codeblock failure.
US11581974B1 Techniques for using reflecting nodes to cancel interfering signals in wireless communications
Aspects described herein relate to identifying an aggressor node that transmits interfering signals that cause interference to signals received at the node, communicating a configuration for applying a phase shift to the interfering signals for forwarding to the node from a reflecting node with the phase shift applied, and communicating, from the reflecting node, the interfering signals with the phase shift applied to at least partially cancel the interference to the signals received at the node.
US11581967B2 Wireless channel scenario identification method and system
The disclosure provides a wireless channel scenario identification method and system. The method includes: simulating different wireless channel scenarios to obtain a channel scenario baseband signal y(t)pq; extracting a feature parameter of y(t)pq, extracting an autocorrelation function Ah(t)pq and performing a Fourier transform thereon to obtain a power spectral density function S(t)pq; normalizing S(t)pq to obtain a normalized channel scenario power spectral density function S(t)pq; designing a deep learning network and inputting S(t)pq and a category label pair to train the deep learning network; and for a system with a channel scenario to be identified, collecting a passband signal at its receiving end, obtaining the normalized scenario power spectral density function Ŝ(t)pq, and using Ŝ(t)pq as an input of the trained classifier, the output of the classifier being a label sequence of the channel scenario, and the channel scenario is effectively determined.
US11581966B2 Chip configuration for an antenna array
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a device may receive layout information that identifies a configuration of an antenna array of antennas, wherein the antenna array is to include a plurality of antenna subarrays and a plurality of antenna chips, wherein each antenna chip is communicatively coupled to antennas of an associated antenna subarray; determine, based at least in part on a phase shift characteristic associated with the antennas, a set of phase differences between antenna subarrays; determine, based at least in part on the set of phase differences, a chip position of each antenna chip relative to the associated antenna subarray; and generate, based at least in part on the chip position of each antenna chip, a layout of an antenna package to receive the antenna array and the plurality of antenna chips. Numerous other aspects are provided.
US11581965B2 Processing communications signals using a machine-learning network
Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for processing communications signals using a machine-learning network are disclosed. In some implementations, pilot and data information are generated for a data signal. The data signal is generated using a modulator for orthogonal frequency-division multiplexing (OFDM) systems. The data signal is transmitted through a communications channel to obtain modified pilot and data information. The modified pilot and data information are processed using a machine-learning network. A prediction corresponding to the data signal transmitted through the communications channel is obtained from the machine-learning network. The prediction is compared to a set of ground truths and updates, based on a corresponding error term, are applied to the machine-learning network.
US11581963B2 Systems and methods for in-line interference detection in point-to-point radio links
An interference detection system comprises memory storing computer instructions to cause a processor to perform gathering a temporal snapshot of radio parameter values associated with a first site of a point-to-point radio system, the radio parameter values including at least a receive signal level (RSL) value and at least one other radio parameter value correlated with signal degradation; determining whether the RSL value is greater than an RSL threshold; determining whether the other radio parameter value indicates a threshold level of signal degradation; when the RSL is greater than the RSL threshold and the other parameter indicates a threshold level of signal degradation during the temporal snapshot, determining that external interference is present during the temporal snapshot; when the RSL is not greater than the RSL threshold, determining that the external interference is not present; and performing a responsive action to a determination of the external interference being likely present.
US11581961B2 Network assisted antenna calibration
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless communication device may transmit a set of reference signals to an assisting device; and receive, from the assisting device, a set of feedback signals corresponding to the set of reference signals, wherein the set of feedback signals is to facilitate calibration of at least one antenna element on at least one panel associated with the wireless communication device. Numerous other aspects are provided.
US11581960B2 Translation device, test system including the same, and memory system including the translation device
A translation device, a test system, and a memory system are provided. The translation device includes plural first input/output (I/O) circuits that respectively transmit and receive first signals through plural pins based on a pulse amplitude modulation (PAM)-M mode, a second I/O circuit that transmits and receives a second signal through one or more pins based on a PAM-N mode, and a translation circuit that translates the first signals into the second signal and translates the second signal into the first signals. M and N are different integers of 2 or more.
US11581957B2 Testing and calibration of phased array antennas
Testing apparatuses, and methods for using such apparatuses to calibrate and test an antenna, include a chamber that includes a lining, the lining being made from a material that is absorptive to radiation at a test wavelength. An adjustable platform is positioned at a first side of the chamber, the adjustable platform being rotatable to change an orientation of a device under test. A probe is positioned at a second side of the chamber, opposite to the first side of the chamber, that measures electromagnetic radiation from the device under test. A vector network analyzer communicates with the device under test and the probe to determine calibration information for the device under test.
US11581952B2 Optical channel plan process
Methods for configuring an optical link in which a distribution of transmission data rates and line rates are configured for a predetermined amount of optical bandwidth to maximize transmission capacity. In these methods, a controller of an optical network obtains input parameters that include a signal-to-noise ratio (SNR) for optical signals and an allocated bandwidth of the optical link, further obtains, for each line rate, a mapping of transmission data rates along a frequency spectrum of the allocated bandwidth compatible with the SNR, and generates a channel plan in which a number of traffic modes and a distribution of a plurality of channels in the allocated bandwidth are set to maximize transmission capacity. The plurality of channels is used for transmitting the signals on the optical link. The controller configures at least one optical network element in the optical network to establish the optical link based on the channel plan.
US11581951B1 Apparatuses and methods of far-end transmitter skew monitoring in digital subcarrier multiplexing systems
Apparatuses and methods for far-end monitoring of transmitter IQ skew in a DSCM system are described. Soft symbols for a given subchannel and a corresponding mirror subchannel are used as joint inputs to a MIMO equalizer. The hard decision symbols for the given subchannel and mirror subchannel are used as references to compute the equalizer coefficients. An estimated phase or estimated transmitter IQ skew is computed for at least the given subchannel using the equalizer coefficients. The computation is repeated to obtain estimated phase or estimated transmitter skew for all subchannels. The transmitter IQ skew is computed using the estimates from all subchannels. The computation is performed for each polarization. The computed transmitter IQ skew is communicated back to the transmitter via optical path (for correcting the skew).
US11581948B2 Adaptive constellation diagram reducing the impact of phase distortions
Disclosed herein is a method of encoding and/or decoding data for optical data transmission along a transmission link, as well as corresponding transmitters and receivers. The data is encoded based on an adaptive constellation diagram in a 2-D plane, said constellation diagram including a first and a second pair of symbols, wherein the symbols of the first pair of symbols are located at opposite sides of the origin of the 2-D plane at a first distance di from each other, and wherein the symbols of the second pair of symbols are located at opposite sides of the origin of the 2-D plane at a second distance d2 from each other. The method comprises a step of adapting the constellation diagram by varying the ratio of the first and second distances d1, d2 such as to minimize or nearly minimize a bit error rate in the transmitted data.
US11581947B2 Underwater communications system having selectable beam and associated methods
An underwater communications system may include a first device and a second device being movable relative to one another. The first device may include a first laser transmitter configured to generate a first laser beam having a selectable spatiotemporal beam shape from among a plurality thereof, and a first controller coupled to the first laser transmitter and configured to select a spatiotemporal beam shape for the first laser beam from among the spatiotemporal beam shapes. The second device may include a second laser receiver configured to receive the first laser beam, and a second controller coupled to the second laser receiver.
US11581943B2 Queues reserved for direct access via a user application
A storage controller includes a processing device to send a Non-Volatile Memory Express over Fibre Channel (NVMe/FC) command to a submission queue without routing the NVMe/FC command through a kernel space, the submission queue being reserved for direct access by an initiator device to a user space of the storage controller.
US11581942B2 Selecting a non-access stratum period based on a non-terrestrial access network type
A wireless device receives access network information indicating an access network type. Based on the access network type, a non-access stratum (NAS) period is selected among: a first value associated with a geostationary earth orbit (GEO) non-terrestrial network (NTN) access network type; and a second value associated with a low earth orbit (LEO) NTN access network type. A NAS procedure is initiated by sending a NAS request message. A start of the NAS period is based on the sending. The NAS procedure is aborted based on an expiry of the NAS period.
US11581940B2 Communication method and system that uses low latency/low data bandwidth and high latency/high data bandwidth pathways
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of data with a lower latency across a substantial portion of the earth's surface. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
US11581939B2 Method and apparatus for transmission and reception in backhaul link in a wireless communication system
A method and apparatus are disclosed from the perspective of a first network node served by a second network node. In one embodiment, the method includes the first network node performs a transmission to the second network node with a timing advance, wherein the timing advance is set to transmission delay between the first network node and the second network node or is set to the transmission delay with a timing reduction.
US11581935B2 Techniques to enhance user equipment (UE) beam scan
A wireless communication device can expedite beam scans for beam management. The wireless communication device can perform a beam scan using a first beam reference signal of a synchronization signal block (SSB) and a second beam reference signal associated with a physical broadcast control channel (PBCH) of the SSB. For each synchronization signal block (SSB) index (e.g., transmit beam) monitored by the wireless communication device, the wireless communication device can obtain a respective beam quality metric on each of two or more respective receive beams using at least the first and second beam reference signals. Other aspects, features, and embodiments are also claimed and described.
US11581932B2 Techniques for channel state information processing unit occupancy determination for layer 1 signal to interference plus noise ratio reporting
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a channel state information (CSI) reporting configuration for a CSI report, wherein the CSI reporting configuration indicates that the CSI report is to include a layer 1 signal to interference plus noise ratio (L1-SINR). The UE may determine a number of CSI processing units (CPUs) occupied for processing of the CSI report that is to include the L1-SINR. Numerous other aspects are provided.
US11581929B2 Method and apparatus for beam management
Beam measurement and reporting by a user equipment (UE) includes receiving configuration information for a channel state information (CSI) framework from a base station (BS) and identifying reporting settings and resource settings configured for the UE based on the received configuration information. The reporting settings configure a beam measurement and reporting configuration. The resource settings configure one or more reference signal (RS) resources for beam measurement. Each of the RS resources represents a transmit (Tx) beam. The method further includes performing beam measurement based on the identified reporting and resource settings, generating a CSI report based on the identified reporting and resource settings, and transmitting the generated CSI report to the BS.
US11581920B2 Multiple transmission panels and non-ideal backhaul links
A method of configuring a multichannel uplink transmission (199) comprising multiple channels (151, 152, 159, 451, 452) between a wireless communication device (102) and multiple receive panels (1013-1, 1013-2) of at least one network node (101) is provided. The multiple receive panels (1013-1, 1013-2) and the at least one network node (101) are connected via backhaul links (1018-1, 1018-2). The method is carried out by the wireless communication device (102). The method comprises receiving, from the at least one network node (101), a downlink message encoding control data (4001) for the multichannel uplink transmission (199), the control data (4001) being associated with the backhaul links. The method further comprises configuring the multichannel uplink transmission (199) based on the control data (4001).
US11581917B2 Method and apparatus adapted to a characteristic of an outer surface of a transmission medium for launching or receiving electromagnetic waves
Aspects of the subject disclosure may include, a system that facilitates receiving a first electromagnetic wave propagating along a transmission medium, detecting, according to the first electromagnetic wave, an obstruction on a first portion of an outer surface of the transmission medium, responsive to the detecting the obstruction, configuring a material to have similar properties to the obstruction, the material being positioned along a second portion of the outer surface of the transmission medium, and generating a second electromagnetic wave that propagates along the transmission medium without relying on an electrical return path to facilitate propagation of the second electromagnetic wave along the transmission medium, the material facilitating propagation of the second electromagnetic wave from the second portion of the outer surface of the transmission medium to the first portion of the transmission medium affected by the obstruction. Other embodiments are disclosed.
US11581911B2 Apparatus and methods for phase noise mitigation in wireless systems
Apparatus and methods for phase noise mitigation in wireless systems and networks. In one embodiment, the apparatus and methods provide enhanced wireless services which provide enhanced performance to 5G millimeter wave system entities base stations (gNodeBs) and their backhaul in support of low-latency and high-throughput operation of these components and the network as a whole. In one variant, an enhanced phase noise mitigation mechanism is provided which has a robust performance in operating in very high frequencies such as millimeter wave spectrum. In yet other implementations, the methods and apparatus described herein can be utilized with respect to mobile devices such as between 5G NR millimeter-wave capable UEs and corresponding gNBs.
US11581910B2 Techniques for self-interference cancelation
Methods, systems, and devices for wireless communications are described. A first wireless node may transmit, to a control node, an indication of a capability of the first wireless node to perform one or more self-interference cancelation (SIC) procedures between a first antenna array of the first wireless node and a second antenna array of the first wireless node. The first wireless node may receive, from the control node in response to the indication of the capability, a configuration for the first wireless node to use to perform a SIC procedure of the one or more SIC procedures for full-duplex communications. The first wireless node may then communicate, according to the received configuration, with the control node, a control node, or any combination thereof, using the first antenna array and the second antenna array.
US11581908B2 Radio frequency module and communication device
A radio frequency module includes a first terminal, a second terminal, a third terminal, a first switching circuit, a bandpass filter, a first band elimination filter, and a first wiring conductor. The first switching circuit switches between a connection between a first switch terminal and a second switch terminal and a connection between the first switch terminal and a third switch terminal. The bandpass filter is disposed on a first signal path connecting the first terminal to the first switch terminal, and has a first passband. The first band elimination filter is disposed on a second signal path connecting the second switch terminal to the second terminal, and has a first elimination band included in the first passband. The first wiring conductor forms a third signal path connecting the third switch terminal to the third terminal.
US11581906B1 Hierarchical error correction code decoding using multistage concatenated codes
Hierarchical coding architectures and schemes based on multistage concatenated codes are described. For instance, multiple encoder and decoder hierarchies may be implemented along with use of corresponding stages of concatenated codes. The coding scheme generally includes an inner coding scheme (e.g., a polar coding scheme, such as a hybrid polar code or Bose Chaudhuri and Hocquenghem (BCH) code), an outer coding scheme (e.g., a Reed-Solomon (RS) coding scheme), and one or more middle coding schemes. The inner coding scheme is based on a polarization transformation (e.g., polar codes with cyclic redundancy check (CRC) codes, polar codes with dynamic freezing codes, polarization-adjusted convolutional (PAC) codes, etc.) which allows for embedding parity data from an outer code inside a codeword along with the user data. The outer coding scheme has a similar concatenated structure (e.g., of an inner RS code with an outer RS code).
US11581896B2 Analog-to-digital converter
An analog-to-digital converter includes: a voltage-current converter receiving an analog input voltage, generating a first digital signal from the analog input voltage, and outputting a residual current remaining after the first digital signal; a current-time converter converting the residual current into a current time in a time domain; and a time-digital converter receiving the residual time, and generating a second digital signal from the residual time, wherein the first digital signal and the second digital signal are sequences of digital codes representing respective signal levels of the analog input voltage.
US11581892B2 Method of driving a capacitive load, corresponding circuit and device
A method includes pre-charging a parasitic capacitance of a control node that is coupled to a control terminal of first and second transistors that have respective current paths that form a switched current path coupled between a load node and a storage node. Pre-charging the parasitic capacitance includes: making conductive a first auxiliary transistor that has a current path coupled between the storage node and the control node, or making conductive a second auxiliary transistor that has a current path coupled between the load node and the control node. The method further includes, after pre-charging the parasitic capacitance, making the switched current path conductive to couple the load node to the storage node.
US11581886B2 Current detection circuit, current detection method, and semiconductor module
There is provided a current detection circuit including: a current detection unit that detects a control current flowing between a control terminal of a semiconductor element of voltage-controlled type having a current detection terminal, and a drive circuit; an overcurrent detection unit that detects an overcurrent based on a result of comparing a sense voltage with a sense reference voltage, the sense voltage corresponding to a sense current flowing through the current detection terminal; and an adjustment unit that adjusts the sense reference voltage based on a detection result of the current detection unit.
US11581879B2 Arbitrary microwave waveform generator using lasers in close thermal and mechanical proximity
The disclosure relates in some aspects to providing miniature power-efficient agile photonic generators of microwave waveforms. Illustrative examples use chip lasers integrated in close thermal proximity with one another to provide a miniature microwave arbitrary waveform generator (AWG). Due to the small size of the lasers and the close integration, common ambient fluctuations from the environment or other sources can be efficiently reduced, yielding improved spectral purity of generated radio-frequency (RF) signals. Tight physical integration also permits a small device footprint with minimal acceleration sensitivity. The lasers may be locked to cavities or other resonators to allow efficient decoupling of the frequency and amplitude modulation of the lasers to provide flexibility to the waveform generator. Exemplary devices described herein can produce frequency chirped signals for radar applications. The frequency chirp may be linear and/or nonlinear. Tuning methods are also described herein.
US11581876B1 Feedback oscillator with multiple switched capacitors
A signal generator includes a first voltage generator, a second voltage generator, an operational amplifier, and an oscillator. The first voltage generator generates a first voltage, and the second voltage generator generates a second voltage. The operational amplifier generates an amplified error signal based on the first voltage and the second voltage, and the oscillator generates a periodic signal based on the amplified error signal. The first voltage generator and the second voltage generator are configured to generate their respective voltages based on the periodic signal. As a result, frequency deviation in the periodic signal may be corrected, for example, without increasing the source current of the oscillator or the gain of the operational amplifier. Also, improved phase noise performance may also be achieved through an increase in loop gain.
US11581874B2 Method and an apparatus for sampling rate conversion
A signal conversion from an input signal to an output signal where the filter used is factorized so that the conversion comprises determining 1) only a first factor at each sampling time of the input signal, where this first factor is independent on the sampling times of the output signal, and 2) only a second factor at each sampling time of the output signal, where this second factor is independent of the sampling times of the input signal. This reduces the computational load for this conversion. In addition, for most filters, the factors may be calculated recursively further increasing the computational load and also reducing the storage requirements. This allows for instantaneous changes in the sampling rates or non-uniform sampling rates with low computational requirements and low memory usage.
US11581871B1 Nonlinear acoustic medium
Nonlinear acoustic media and related methods are described herein. The nonlinear acoustic media are configured to generate higher harmonic output signals from a single-frequency input signal. The higher harmonic output signals can be generated through the coupling of an acoustic dielectric medium to a nonlinear piezoelectric medium having four ports.
US11581868B2 Acoustic wave device
An acoustic wave device includes an acoustic wave substrate including a first main surface and a second main surface, IDT electrodes provided on the first main surface, and sealing resin covering at least the second main surface of the acoustic wave substrate. A hollow is provided in a region where the IDT electrodes on the first main surface of the acoustic wave substrate is located. The sealing resin has through-holes each extending from a top surface 13B of the sealing resin to the second main surface of the acoustic wave substrate. The acoustic wave substrate is made of silicon or includes a layer made of silicon.
US11581867B2 Bulk acoustic wave filter and manufacturing method thereof, communication device
A bulk acoustic wave filter, a manufacturing method thereof, and a communication device are disclosed. The bulk acoustic wave filter includes a first filter substrate and a second filter substrate; the first filter substrate includes a first base substrate and a first resonator, a first electrode pad and a first auxiliary pad arranged on the first base substrate; the second filter substrate includes a second base substrate and a second resonator, a second electrode pad and a second auxiliary pad arranged on the second base substrate, the first filter substrate is arranged opposite to the second filter substrate, the first electrode pad and the second auxiliary pad are in contact with each other, and the second electrode pad and the first auxiliary pad are in contact with each other.
US11581865B2 Audio system with compressor sidechain frequency-biasing filter for switched-mode power supply overboost energy utilization
An audio system has an amplifier for driving an audio actuator and includes a switched-mode power supply that draws power from a power source (e.g., battery) to supply power to the amplifier, a capacitor charged by the switched-mode power supply to supply power to the amplifier, and a feed-forward compressor that performs dynamic range compression of an audio input to provide an audio output for amplification by the amplifier. The compressor includes a sidechain frequency-biasing filter that generates a frequency-biased version of the audio input that is attenuated as frequency increases which causes the compressor to decrease the compression as frequency increases. A control block limits current drawn from the battery by the switched-mode power supply independent of audio input frequency, but the frequency-biasing filter enables the amplifier to service audio power transients greater than the current-limited power supply can supply by advantageously concurrently sourcing extra power from the capacitor.
US11581863B2 Semiconductor device
According to one embodiment, a semiconductor device includes the following configuration. A detection circuit detects a state of a clock signal. An amplification circuit changes a gain based on the state of the clock signal detected by the detection circuit. An amplification circuit amplifies a first voltage with the gain and outputs a second voltage obtained as a result of amplification. A conversion circuit converts the second voltage output from the amplification circuit to first data. An isolation circuit includes a driver and a receiver electrically isolated from the driver. The driver transmits a signal corresponding to the first data to the receiver. The receiver outputs second data corresponding to the signal transmitted from the driver. The output circuit outputs the second data output from the isolation circuit.
US11581862B2 Passive sub-audible room path learning with noise modeling
Frequency domain compensation is provided for spectral impairment resulting from the audio path characteristics for a given audio device in a given listening space. Selected segments of an audio stream are recorded at a listener position to measure degradation in the audio path and to update compensation filter characteristics of the audio device. Recorded transmitted and received audio sequences are aligned based and compared in the frequency domain. The difference between the aligned transmitted and received sequences represents the frequency domain degradation along the acoustic path due to the speaker, the physical attributes of the room, and noise. A dynamically updated noise model is determined for adjusting compensation filter characteristics of the audio device, which can be updated during use of the audio device. A compensation curve is derived which can adapt the equalization of the audio device passively during normal usage.
US11581860B2 Apparatus and method for canceling receiver input offset in distance sensing system
An apparatus for canceling an input offset of a receiver including a differential amplification unit and a differential comparison unit in a distance sensing system includes: an output monitoring unit selectively monitoring differential outputs of the differential comparison unit and the differential amplification unit; a current type digital-analog conversion unit connected to each of an input terminal of the differential comparison unit and the input terminal of the differential amplification unit; and a control unit controlling the current type digital-analog conversion unit to reduce a difference in differential output of the differential comparison unit according to a comparison result for the difference of the monitored differential output of the differential comparison unit and controlling the current type digital-analog conversion unit to reduce the difference in differential output of the differential amplification unit according to the comparison result for the difference of the monitored differential output of the differential amplification unit.
US11581857B2 Apparatus and method for power amplifier surge protection
Components of a power amplifier controller may support lower voltages than the power amplifier itself. As a result, a surge protection circuit that prevents a power amplifier from being damaged due to a power surge may not effectively protect the power amplifier controller. Embodiments disclosed herein present an overvoltage protection circuit that prevents a charge-pump from providing a voltage to a power amplifier controller during a detected surge event. By separately detecting and preventing a voltage from being provided to the power amplifier controller during a surge event, the power amplifier controller can be protected regardless of whether the surge event results in a voltage that may damage the power amplifier. Further, embodiments of the overvoltage protection circuit can prevent a surge voltage from being provided to a power amplifier operating in 2G mode.
US11581855B2 Power amplifier circuitry
Disclosed is power amplifier circuitry having a bipolar junction power transistor with a base, a collector, and an emitter. The power amplifier circuitry includes bias correction sub-circuitry configured to generate a compensation current substantially opposite in phase and substantially equal in magnitude to an error current passed by a parasitic base-collector capacitance inherently coupled between the base and collector, wherein the bias correction sub-circuitry has a compensation output coupled to the base and through which the compensation current flows to substantially cancel the error current.
US11581848B2 Method of diagnosing malfunctioning of bypass diode in solar photovoltaic battery
A method of diagnosing malfunctioning of a bypass diode in a solar photovoltaic battery system is provided. The method may include: collecting solar photovoltaic battery operation information indicating a solar photovoltaic battery operation state, from a signal of a solar photovoltaic battery detection unit, while maximum power point tracking control is performed with the solar photovoltaic battery system in operation; and determining whether or not the bypass diodes based on the collected solar photovoltaic battery operation information.
US11581847B2 Photovoltaic and electromagnetic powered mobile electric vehicle charging station
A mobile charging station generating electricity by an Enclosed Photovoltaic Device and electromagnetic energy receiving unit, mounted on top of an Electric Vehicle Platform or chassis, housing a power storage system, inverters, power outlets and wireless power transmitters to provide electricity to the electric vehicle platform and other electric vehicles. This mobile charging station is configured to be autonomously driven to any location where vehicles can be recharged at any time.
US11581846B2 Photovoltaic module deflection limiter
A deflection pad may include a body including two peaks, and a recess in the body between the two peaks, the recess may be sized to accommodate a fastener such that when deployed, the fastener is below a height of the two peaks within the recess. The deflection pad may include arms projecting in a direction generally opposite the two peaks, the arms biased inward towards the recess. The deflection pad may be included in a system that includes a torsion beam and one or more support racks to which multiple PV modules may be attached, where the support are racks attached to the torsion beam. One or more deflection pads may be positioned on the support racks to be below the PV modules.
US11581844B2 Height adjustable solar panel mounting system
A solar panel mounting system including a rail and a clip. When a first notch of the rail receives a portion of a rib of the rail, the clip is positioned on the rail to receive an end of a first solar panel having a first thickness, and when a second notch of the rail receives the portion of the rib, the clip is positioned on the rail to receive an end of a second solar panel having a second thickness different than the first thickness of the first solar panel.
US11581841B2 Electrical system having boost converter functionality
An electrical system can include a rechargeable energy storage system (RESS) and a power inverter connected to the RESS. The power inverter can be configured to provide electrical power to a traction motor. The electrical system includes a plurality of machine windings connected between a plurality of first switches and the traction motor. Each switch of the plurality of first switches is configured to transition between a closed state to allow current flow between the power inverter and the traction motor. The electrical system includes a plurality of inductor windings connected between a plurality of second switches and an off-board power source. Each switch of the plurality of second switches is configured to transition between a closed state to allow current flow between the off-board power source and the power inverter to charge the RESS.
US11581831B2 Method for braking permanent magnet synchronous motor and related device
The present disclosure discloses a method for braking a permanent magnet synchronous motor and a related device. The method is applied to an electronic speed controller and includes: receiving a signal for braking the permanent magnet synchronous motor sent by a flight controller; sending a first control signal to the permanent magnet synchronous motor, the first control signal being used to control the permanent magnet synchronous motor to decrease its rotational speed to a preset rotational speed range within a first preset time period; and after the first preset time period ends, sending a second control signal to the permanent magnet synchronous motor, the second control signal being used to control the permanent magnet synchronous motor to stop rotating within a second preset time period. According to the method, consistency of shutdown of multiple motors is ensured, and use experience of a drone is improved.
US11581828B2 Electromagnetic vibration and energy harvester having vibrating body, magnets and stationary magnet and hinge
An electromagnetic energy harvester for converting vibrations of a body to electricity that includes a coil with two ends that is wound along a longitudinal axis of a ferromagnetic core, a magnet, and a suspending device that its first end is designed to be fixed to the body and its second end is designed to be fixed to the magnet. The first end of the core is design to be at close proximity to the magnet and the longitudinal axis of the core is designed to be substantially aligned vertically to the magnetic axis of the magnet. The vibrations of the body can cause a relative alternating movement between the core and the magnet that can create alternating voltage between the ends of the coil.
US11581825B2 Acoustic device with a piezoelectric element
An acoustic device includes a piezoelectric element, an attachment member to which the piezoelectric element is attached, and a spacer. The piezoelectric element includes first and second principal surfaces opposing each other. The attachment opposes the first principal surface. The spacer is disposed between the piezoelectric element and the attachment member in such a manner as to form an acoustic space between the piezoelectric element and the attachment member. The spacer includes an adhesive layer including a principal surface in contact with the first principal surface and a principal surface in contact with the attachment member.
US11581822B2 Circuit arrangement for a converter, method for operating a converter and aircraft having a circuit arrangement of this type
The invention relates to a circuit arrangement of a converter (1) for the electrical supply of a multi-phase electric motor (2). The arrangement comprises multiple DC-voltage-supplied (+DC, −DC) phase intermediate circuits (13) and multiple inverter circuits (5) that are electrically connected to each phase intermediate circuit (13), wherein a respective phase intermediate circuit (13) and inverter circuit (5) are provided for each phase, together forming a commutation cell (14). The invention also relates to an aircraft having a circuit arrangement of this type, and an operating method with a circuit arrangement of this type.
US11581819B2 Switch-mode power converters using hall effect sensors and methods thereof
System and method for transmitting and receiving. For example, the system includes a transmitter, one or more wires, and a receiver connected to the transmitter through the one or more wires. The transmitter is configured to generate a first current, and the receiver is configured to receive the first current. The receiver includes a coil, a Hall effect sensor, and a comparator, and the Hall effect sensor includes a first electrode and a second electrode. The coil is electrically isolated from the Hall effect sensor and configured to generate a magnetic field based at least in part on the first current flowing through the coil, and the Hall effect sensor is configured to sense the magnetic field and generate a first voltage at the first electrode and a second voltage at the second electrode. The comparator includes a first input terminal and a second input terminal.
US11581818B2 DC voltage conversion circuit and power supply device
A direct-current voltage conversion circuit having on/off control with a dead-time period performed alternately on a first switch and a second switch included in a direct-current voltage conversion circuit. When alternating current flows in a series circuit part including two transformers magnetically independent, current flows in an output circuit including a secondary side of one transformer, and energy is accumulated in the other transformer. The permeabilities of the magnetic cores in the first and second transformers is between 15 and 120.
US11581815B2 Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
System controller and method for regulating a power converter. For example, the system controller includes a first controller terminal and a second controller terminal. The system controller is configured to receive an input signal at the first controller terminal and generate a drive signal at the second controller terminal based at least in part on the input signal to turn on or off a transistor in order to affect a current associated with a secondary winding of the power converter. Additionally, the system controller is further configured to determine whether the input signal remains larger than a first threshold for a first time period that is equal to or longer than a first predetermined duration.
US11581814B2 Integrated current sharing schemes for multiplying power stages support of a multiphase controller
Methods and apparatuses for controlling an apparatus comprising a controller integrated in a first slave device. In an example, the controller can detect a sensed current of the first slave device. The controller can receive a voltage signal associated with a second slave device connected to the first slave device. The controller can generate a correction current based on the sensed current of the first slave device and the voltage signal. The controller can modulate a pulse width modulation (PWM) signal received by the first slave device using the correction current. The controller can control a power converter using the modulated PWM signal.
US11581813B2 Digital current mode control for multi-phase voltage regulator circuits
A voltage regulator circuit included in a computer system may include multiple phase circuits each coupled to a regulated power supply node via a corresponding inductor. The phase circuits may modify a voltage level of the regulated power supply node using respective control signals generated by a digital control circuit that processes multiple data bits. An analog-to-digital converter circuit may compare the voltage level of the regulated power supply node to multiple reference voltage levels and sample the resultant comparisons to generate the multiple data bits.
US11581812B2 Multi-phase power converter, control circuit and control method thereof
A method of controlling a multi-phase power converter having a plurality of power stage circuits coupled in parallel, can include: obtaining a load current of the multi-phase power converter; enabling corresponding power stage circuits to operate in accordance with the load current, such that a switching frequency is maintained within a predetermined range when the load current changes; and controlling the power stage circuits to operate under different modes in accordance with the load current, such that the switching frequency is maintained within the predetermined range when the load current changes.
US11581810B2 Voltage regulation circuit
A voltage regulation circuit includes a switching output terminal, a high-side output transistor, a low-side output transistor, a high-side replica transistor, a low-side replica transistor, and a comparator circuit. The high-side output transistor is configured to drive the switching output terminal. The low-side output transistor is configured to drive the switching output terminal. The high-side replica transistor is coupled to the high-side output transistor. The low-side replica transistor is coupled to the high-side replica transistor and the low-side output transistor. The comparator circuit is coupled to the high-side replica transistor and the low-side replica transistor, and is configured to compare a signal received from both the high-side replica transistor and the low-side replica transistor to a ramp signal.
US11581808B2 Driver circuit for a buck converter, related integrated circuit, electronic buck converter and method
An embodiment buck converter control circuit comprises an error amplifier configured to generate an error signal based on a feedback signal and a reference signal, a pulse generator circuit configured to generate a pulsed signal having switching cycles set to high and low as a function of the error signal, a driver circuit configured to generate a drive signal for an electronic switch of the buck converter as a function of the pulsed signal, a variable load, connected between two output terminals of the buck converter, configured to absorb a current based on a control signal, and a detector circuit configured to monitor a first signal indicative of an output current provided by the buck converter and a second signal indicative of a negative transient of the output current, and verify whether the second signal indicates a negative transient of the output current.
US11581805B2 Pole compensation in reconfigurable power converter
In a power converter that includes a switched-capacitor circuit connected to a switched-inductor circuit, reconfiguration logic causes the switched-capacitor circuit to transition between first and second switched-capacitor configurations with different voltage-transformation ratios. A compensator compensates for a change in the power converter's forward-transfer function that would otherwise result from the transition between the two switched-capacitor configurations.
US11581804B1 Combined current sense and capacitor voltage sense for control of a resonant converter
Various embodiments relate to a converter controller configured to control a resonant converter, including: an integrator configured to receive a current measurement signal from a current measurement circuit in the resonant converter and to produce a capacitor voltage signal indicative of the voltage at the resonant capacitor; a control logic configured to produce a high side driver signal, a low side driver signal, a symmetry error signal based upon the capacitor voltage signal and the current measurement signal; and a symmetry controller configured to produce a symmetry correction signal based upon the symmetry error signal, wherein the symmetry error signal is input into the integrator to control the duty cycle of the high side driver signal and the low side driver signal, wherein the high side driver signal and the low side driver signal control the operation of the resonant converter.
US11581803B2 Driving circuit with EMI reduction
A driving circuit providing a driving signal at a driving terminal to drive a power switch. The driving signal has a first driving period and a second driving period. Both the first driving period and the second driving period have a first driving time interval. The driving circuit has a first equivalent on resistor established during the first driving time interval and located between a first voltage node and the driving terminal. The first equivalent on resistor has a first equivalent on resistance during the first driving time interval of the first driving period and has a second equivalent on resistance during the first driving time interval of the second driving period. The first equivalent on resistance and the second equivalent on resistance are not equal.
US11581802B2 Power factor correction circuit
The invention relates to a power factor correction (PFC) circuit (20), comprising an inductor (21) which is configured to provide a discharge current, a capacitor (23) which is connected to the inductor (21) via a switch (24) and which can be charged with said discharge current, a control unit (14) which is configured to alternately switch the switch (24) on and off based on a feedback control, wherein the control unit (14) has an input interface (42) for receiving a feedback signal (ZXCS) which represents a discharge voltage of the inductor (21), wherein the control unit (14), in a DCM mode, is further configured to calculate a switch on time (Ton) of the switch (24) which is after a first local minimum of the discharge voltage, and wherein, after switching off the switch (24), the control unit is configured to: either switch on the switch (24) at a next or closest local minimum of the inductor voltage after Ton, in case Ton is less than a directly or indirectly set reference time (Tref), or close the switch (24) at Ton, in case Ton is equal to or exceeds Tref.
US11581797B2 Multiple outputs universal serial bus travel adaptor and control method thereof
A multiple output universal serial bus travel adaptor includes: at least one AC-DC converter for converting an AC power to a first DC power; at least one DC-DC converter for providing a second DC power according to the first DC power; plural switches which are coupled to the AC-DC converter and/or the DC-DC converter to provide the first DC power or the second DC power to corresponding connectors according to operation signals; and a protocol controller configured to generate the operation signals according to at least one of the following parameters: a) the types of the connectors; b) whether there is a mobile device connected with the connectors; c) a first command from the mobile device; d) the power consumed by the mobile devices; e) the currents flowing through the connectors; and f) the voltages at the connectors.
US11581793B2 Condition monitoring device having a power switch between an integrated energy harvester and a method for operating said power switch
Condition monitoring device including a condition monitoring sensor configured to acquire vibration signals produced by the system and an integrated power supply having an energy harvester for providing power energy to the condition monitoring sensor and having an electromagnetic coil and a permanent magnet. The integrated power supply includes a system power switch between the energy harvester and the condition monitoring sensor and configured to be switched between at least a first high impedance position providing power energy of the energy harvester to the sensor and a second low impedance position where no power is transmitted to the sensor. Also, a system for restricting movement of the energy harvester configured to be connected across the electromagnetic coil in the low impedance passive position of the system power switch.
US11581790B2 Wiring method of stator of rotating electric machine
A wiring method of a stator of a rotating electric machine includes: winding m-th layer of a first coil in a first direction from an outer-diameter side toward an inner-diameter side of the stator; winding (m+1)-th layer of the first coil in a second direction opposite to the first direction, a closest distance between n-th layer of the first coil and a centerline is less than a threshold; winding m-th layer of a second coil in the first direction; winding (m+1)-th layer of the second coil in the second direction, the turns of n-th layer of the second coil is equal to the turns of the n-th layer of the first coil minus two; sequentially winding from (n+1)-th layer of the second coil to a final layer of the second coil so as to fill the first wiring region and/or the second wiring region.
US11581787B2 Resolver assembly for hybrid module
A hybrid module comprising a housing, a torque converter, and a resolver assembly is provided. The torque converter comprises a turbine having a turbine shell including at least one blade attached thereto; an impeller having an impeller shell including at least one blade attached thereto; and an impeller hub attached to a radially extending end of the impeller shell. The resolver assembly comprises a rotor connected to an outer surface of the impeller hub and a stator connected to the housing.
US11581786B2 Rotary electric machine
The rotary electric machine includes a motor unit, and an inverter unit having a power module, a field module, and a cooler. The cooler includes a heat transfer member having, on the one-side surface, a channel groove recessed toward the other side, a lid member, a sealing agent, and a coolant supply/discharge unit; and the lid member is fixed to the heat transfer member with a screw hole, a through hole, and a screw; and, at a position between the screw hole and the through hole, and the channel groove, a recess is provided on one or both of the one-side surface of the heat transfer member and the other-side surface of the lid member, and the sealing agent is applied on the side closer to the channel groove than the recess while no sealing agent is applied on the side closer to the screw hole than the recess.
US11581784B2 Heat sink for an electric machine
A heat sink (30) for cooling an electric machine (10), includes: a first part of the heat sink (32) in the form of a hollow cylinder, wherein an inner lateral surface includes a groove (34) extending helically with respect to a central axis of the hollow cylinder; a second part of the heat sink (36) in the form of a hollow cylinder, which includes a radially internal fin (38); and a third part of the heat sink (40) in the form of a hollow cylinder, which includes a connecting section (52), in order to accommodate an output shaft (12) of the machine in a rotationally fixed manner. The second part of the heat sink is accommodated, at least partially, in the first part of the heat sink, so that a radially external surface of the second part of the heat sink rests against the groove.
US11581781B2 Linear actuator, actuator system, piece of furniture and method for controlling a linear actuator
A linear actuator for adjusting a piece of furniture comprises a motor having a motor shaft, a conversion arrangement coupled to the motor shaft and adapted to convert a rotational movement generated by the motor shaft into an elongation of the linear actuator, and a locking arrangement coupled directly or indirectly to the motor shaft and adapted to selectively cause rotation locking of the motor shaft by means of a locking element. The locking arrangement comprises an inner part with at least one inner chamber and an outer part radially surrounding the inner part and having at least one outer chamber. The outer part and the inner part are rotatable relative to each other in such a way that the at least one inner chamber and the at least one outer chamber can be aligned with each other. The rotation locking is activated by clamping the locking element between the at least one inner chamber and the at least one outer chamber by means of rotation of the inner part and the outer part relative to each other.
US11581780B2 Dual speed motor controller and method of operation
A two-speed motor is mounted in a housing with an end cap. The end cap has a tubular structure defining an interior space, including an open first end connectable to the motor casing. The second end includes at least one planar surface and at least one air grate configured to permit airflow into and/or out of the interior space. A dual speed pump controller includes a motor controller for operating the dual speed motor. The controller includes an operating speed circuit for operating the motor in one of a first speed or a second speed, the first speed being greater than the second speed; an event circuit for operating the motor at the first speed before a predetermined event and operating the pump at the second speed after the predetermined event.
US11581778B2 Motor and rotating shaft cooling device thereof
A motor and a rotating shaft cooling device thereof are disclosed. A rotating shaft of the motor is formed with an annular space. A shaft has a front end and a rear end. The shaft is a blind tube formed with a channel communicating with the annular space through a plurality of nozzles. The distance between the nozzles and the rear end is less than one-half of the length of the shaft. A cooling fluid flows through the nozzles to form a jet array to impinge on the inner wall of the rotating shaft to cool the rotating shaft, and flows back in the annular space to enhance the cooling effect, increase the heat exchange area, and improve the cooling effectiveness of the rotating shaft.
US11581769B2 Stator winding heat sink configuration
In one possible implementation, a motor is provided including a rotor and a stator. Front cooling fins are thermally coupled to a front of the stator, and rear cooling fins are thermally coupled to a rear portion of the stator. The winding is between the front and rear cooling fins.
US11581765B2 Inferior permanent magnet electric motor and rotor included therein
An interior permanent magnet electric motor forms a buried angle of a left permanent magnet of a slot part of a rotor differently from a buried angle of a right permanent magnet of the slot part of the rotor, so as to reduce torque ripple while sufficiently maintaining motor efficiency as compared to an I-type rotor to effectively improve noise, vibration, and harshness performance.
US11581760B2 Wireless power transfer
A wireless power transfer system comprises at least one power receiver (105) for receiving a power transfer from the power transmitter (101) via a wireless inductive power transfer signal. Configurers (207, 306) of the power transmitter and receiver may perform a configuration process to determine a set of power transfer parameter values which are used in a first power transfer. The power transfer parameter values and a first identity for the first power receiver (105) are stored. After a detection of an absence of the power receiver by a first controller (211), a detector (213) may detect a presence of a candidate power receiver. If the candidate power receiver is detected within a given duration and has an identity matching the first identity, an initialization processor (215) initializes a second power transfer using the set of stored parameter values. Otherwise it discards the set of stored parameter values.
US11581759B2 Power reception apparatus, control method, and storage medium
A power reception apparatus performs device authentication on a power transmission apparatus, and performs control to request first power of the power transmission apparatus in a case where the power transmission apparatus fails the device authentication and to request second power higher than the first power of the power transmission apparatus in a case where the power transmission apparatus successfully passes the device authentication. In addition, the power reception apparatus sets a setting to permit requesting the second power of a power transmission apparatus which does not have a function for responding to the device authentication.
US11581755B2 Efficiency gains through magnetic field management
A resonant induction wireless power transfer coil assembly designed for low loss includes a wireless power transfer coil, a non-saturated backing core layer adjacent the wireless power transfer coil, an eddy current shield, a gap layer between the backing core layer and the eddy current shield, and an enclosure that encloses the wireless power transfer coil, backing core layer, gap layer and eddy current shield. The gap layer has a thickness in a thickness range for a given thickness of the backing core layer where eddy current loss in the eddy current shield is substantially flat over the thickness range. A thickness of the backing core layer and a thickness of the gap layer are selected where a total power loss comprising power loss in the backing core layer plus eddy current loss over the gap layer is substantially minimized.
US11581752B2 Battery charging system, charging device, information processing device, battery charging method, program, and storage medium
A battery charging system includes a battery removably mounted on an electric power device using electric power, a charging device configured to charge the battery using renewable power which is electric power generated from renewable energy, and a server configured to communicate with the charging device. The charging device is configured to control charging of the battery accommodated in an accommodation unit on the basis of reception information received from the server. The server is configured to compare receivable power, which is the renewable power capable of being received by the charging device, with a threshold value and configured to transmit transmission information for causing the charging device to control the charging of the battery to the charging device on the basis of a result of comparing the receivable power with the threshold value.
US11581751B2 Power control method and related charging system
A power control method for a charging system includes: detecting a power signal and an input voltage of the power signal; determining a charging protocol supported by the power signal; and determining whether to conduct a power switching circuit or not according to the input voltage of the power signal and the charging protocol supported by the power signal to provide power for an amplifier chip of the charging system.
US11581749B2 Electronic device and charging method of electronic device
An electronic device includes a display module including a first region exposed to an outside in first and second modes and a second region extending from the first region, where the second region is partially opposite to the first region in the first mode or is partially exposed in the second mode, the second region includes a curved region in the first mode and a flat region extending from the curved region and opposite to the first region, a supporting member disposed below the display module, a case which contains the display module and the supporting member, where the first and second modes are determined based on a sliding motion of the case, and a wireless charging coil which is contained in the case and shielded by the supporting member in the first mode, and does not overlap the supporting member in the second mode.
US11581745B2 Fast charging method and system, terminal, and charger
A terminal and a fast charging method includes sending, by the terminal, instruction information to a charger connected to the terminal in order to instruct the charger to adjust an output voltage and an output current, converting, by the terminal, the output voltage of the charger into 1/K times the output voltage, and converting the output current of the charger into K times the output current such that a charging circuit between two sides of a battery charges the battery with the 1/K times the output voltage and the K times the output current, where K is a conversion coefficient of a conversion circuit with a fixed conversion ratio in the terminal and is a constant value, and K is any real number greater than one.
US11581744B2 Electrical architecture of an aircraft
An electrical architecture of an aircraft includes a plurality of primary generators each associated with a propulsion engine of the aircraft, a plurality of primary electrical networks each associated with a primary generator in nominal operating mode, a single-part secondary electrical network, an electrical energy accumulation device connected directly to the secondary network, a first electrical energy converter arranged between the secondary electrical network and a first of the primary electrical networks, allowing energy to be transferred from the first of the primary electrical networks to the secondary electrical network, the first electrical energy converter being intended to supply electrical energy to the electrical energy accumulation device in nominal operating mode, a second electrical energy converter arranged between the secondary electrical network and a second of the primary electrical networks, allowing energy to be transferred from the secondary electrical network to the second of the primary electrical networks.
US11581743B2 Method for starting a hydraulic turbine
The invention concerns a method for coupling to the grid a hydraulic unit having a synchronous generator, a runner, and wicket gates. The method includes a step of increasing the flow of water into the runner from a time t0 to a time t1 so that the rotation frequency of the rotor of the synchronous generator is, at time t1 equal to the frequency of the grid, and closing the circuit breaker at time t1. A sub-interval from a time t2 to time t1 is defined, with t0<=t2
US11581740B2 Method, system and storage medium for load dispatch optimization for residential microgrid
The present invention provides a method, system and storage medium for load dispatch optimization for residential microgrid. The method includes collecting environmental data and time data of residential microgrid in preset future time period; obtaining power load data of residential microgrid in future time period by inputting environmental data and time data into pre-trained load forecasting model; obtaining photovoltaic output power data of residential microgrid in future time period by inputting environmental data and time data into pre-trained photovoltaic output power forecasting model; determining objective function and corresponding constraint condition of residential microgrid in future time period, where optimization objective of objective function is to minimize total cost of residential microgrid; obtaining load dispatch scheme of residential microgrid in future time period by solving objective function with particle swarm algorithm. The invention can provide load dispatch scheme suitable for current microgrid and reduce operating cost of residential microgrid.
US11581739B2 Power distribution on a vessel
An arrangement for power distribution on a vessel, having: a first DC bus operating at a first medium voltage; at least one second DC bus operating at a second medium voltage and having no direct connection with the first DC bus; a first AC bus operating at a low voltage; a first inverter coupled between the first DC bus and the first AC bus for allowing power flow from the first DC bus to the first AC bus in a first operation mode; a second AC bus operating at the low voltage; a second inverter coupled between the second DC bus and the second AC bus for allowing power flow from the second DC bus to the second AC bus in the first operation mode; a low voltage connection system for selectively connecting or disconnecting the first AC bus and the second AC bus.
US11581738B2 Systems and methods for flexible renewable energy power generation
The present disclosure provides systems and methods for flexible renewable energy power generation. The present disclosure also provides systems and methods for firming power generation from multiple renewable energy sources.
US11581736B2 Method and system for evaluating inertia of power system and storage medium
A method and a system for evaluating inertia of a power system and a storage medium. The method includes: injecting a cosine active power disturbance into the power system by small-disturbance injection, and obtaining frequency response at a node where the disturbance is injected, where the active power disturbance can be an energy storage, wind power, or photovoltaic power; acquiring an evaluation framework of inertia and frequency regulation capability of the power system according to relative characteristics of a frequency response function; and constructing a mathematical relationship between the impedance and frequency response characteristics according to a relationship among active power disturbance, frequency fluctuation and impedance.
US11581735B2 Method and apparatus for dynamically controlling electrical loads, storage medium and electronic apparatus
Provided are a method and apparatus for dynamically controlling electrical loads, a storage medium and an electronic apparatus. The method includes that: a current capacity balance of a user sub-region is acquired from an intelligent electricity monitoring and metering terminal through a mobile terminal; when the current capacity balance is smaller than a load power of an electric consumption device to be started in the user sub-region, a regional coordination control apparatus or a server is requested through the mobile terminal to adjust and increase a capacity allocated for the user sub-region, such that a capacity balance will be greater than or equal to the load power; and whether to allow to start the electric consumption device is determined according to a decision replied by the regional coordination control apparatus or the server.
US11581734B2 Methods and systems for adjusting power consumption based on a dynamic power option agreement
Examples relate to adjusting load power consumption based on a power option agreement. A computing system may receive power option data that is based on a power option agreement and specify minimum power thresholds associated with time intervals. The computing system may determine a performance strategy for a load (e.g., set of computing systems) based on a combination of the power option data and one or more monitored conditions. The performance strategy may specify a power consumption target for the load for each time interval such that each power consumption target is equal to or greater than the minimum power threshold associated with each time interval. The computing system may provide instructions the set of computing systems to perform one or more computational operations based on the performance strategy.
US11581733B2 System state estimation with asynchronous measurements
The present disclosure provides techniques for estimating network states using asynchronous measurements by leveraging network inertia. For example, a device configured in accordance with the techniques of the present disclosure may receive electrical parameter values corresponding to at least one first location within a power network and determine, based on the electrical parameter values and a previous estimated state of the power network, an estimated value of unknown electrical parameters that correspond to a second location within the power network. The device may further cause at least one device within the power network to modify operation based on the estimated value of the unknown electrical parameters. The leveraging of network inertia may obviate the need for probabilistic models or pseudo-measurements.
US11581731B2 Test and control apparatus, system and method for wind farm
A test and control apparatus, system and method for a wind farm, are provided. The test and control apparatus includes a first communication interface, a second communication interface, and a processor card. The processor card receives, via the first communication interface, a frequency regulation instruction issued by the grid scheduling server, receives operation information of the wind power generation unit via the second communication interface, and calculates, based on the operation information of the wind power generation unit, a first frequency regulation capability of the wind power generation unit performing a frequency regulation without using the first energy storage battery. The processor card sends the frequency regulation instruction to the wind power generation unit without using the first energy storage battery, in a case that the first frequency regulation capability of the wind power generation unit satisfies a requirement of the frequency regulation instruction.
US11581727B2 Assembly for monitoring a winding threshold temperature
A temperature monitoring device for protecting the winding of an electronically commutated electric motor from being heated over a specified limit temperature TG regardless of the rotational speed includes a phase current detection device for detecting the phase current IWinding for the motor windings, an overcurrent switch-off device for switching off the electric motor if a maximum permissible phase current IShutdown is exceeded, and an overcurrent monitoring device, which is connected to the overcurrent switch-off device, in order to transmit to it a switch-off signal if the detected phase current IWinding exceeds the maximum permissible phase current IShutdown ascertained by a detection and computing device, wherein an algorithm in which the measured ambient temperature TU is incorporated is used when ascertaining the maximum permissible phase current IShutdown.
US11581724B2 Controlled switching of a circuit breaker
A method for controlled switching of a circuit breaker is described. The method includes initiating operation of the circuit breaker at an initiation time derivable from an initiation time function by calculating a value of the initiation time function with respect to a command instant. The initiation time function is a sum of the command instant and a command delay time. The initiation time function depends on a first parameter and a second parameter. At least one of: the partial derivative of the initiation time function with respect to the first parameter is dependent on the second parameter or the partial derivative of the initiation time function with respect to the second parameter is dependent on the first parameter. Further, a system for controlled switching according to the method and a circuit breaker including the system are described.
US11581720B2 Assembly comprising a cable and a support for said cable
The present disclosure relates to an assembly having a cable support and a cable inserted in the support, the latter may include: at least one base, made of a rigid material, having at least one receptacle provided with a longitudinal axis and, of which the inner dimension Dint is given, and at least one strap, made of a material more flexible than that of the base, having at least two lips on the one hand arranged opposite one another to define a slot for the passage of a cable between the lips and on the other hand, shaped to define an orifice, wherein the cable is inserted, this orifice, provided with a longitudinal axis, communicating with the slot along this longitudinal axis of the orifice, the lips having, together, an outer dimension D′ext equal or greater than the inner dimension of the receptacle.
US11581719B2 Electrical box cable connector
An electrical box assembly and cable connector are provided. The cable connector includes a connector housing and a cable retaining member that releasably secures an electrical cable within the connector housing. The electrical box assembly includes an electrical box and a cable connector. The electrical box assembly may also include a box separator.
US11581717B1 Mountable electrical enclosure with conduit passthrough
A junction box mountable on a roof surface, comprising a housing unit and an enclosing unit, the housing unit and enclosing unit combining to form a waterproof assembly. The housing unit is mountable to a roof surface via a flashing having a continuous, raised waterproofing track that mates with a waterproofing recess in a bottom surface of the housing unit to create a waterproofing zone inside the housing unit. At least one bottom pass through is located within the waterproofing zone and provides a channel from the internal housing area through the roof surface.
US11581716B2 Routing structure of shielded electric wire
A routing structure of a shielded electric wire, the shielded electric wire including an electric wire and a resin tube is routed in a state of being bent, the resin tube including a shield layer, an inner-side resin and an outer-side resin, the shield layer being interposed between the inner-side resin and the outer-side resin, is provided. A tensile strength of the inner-side resin and the outer-side resin is greater than a bending stress to be generated when the shielded electric wire is bent with a minimum bend radius in the routing structure. The shield layer has a shield resistance equal to or smaller than 103.8 mΩ/m and a shield density equal to or greater than 50%, the shield density being a ratio of an area of a surface of the electric wire covered by the shield layer to an area of the surface of the electric wire.
US11581715B2 Corrugated tube mounting structure
A corrugated tube mounting structure includes: a corrugated tube into which an electric wire is inserted, formed with a slit into which the electric wire can be inserted, the slit being formed along a length direction of the corrugated tube; and a protector includes a main body inside which the electric wire is arranged and an outlet portion from which the electric wire is drawn out. The outlet portion is provided with a cover configured to close an opening into which the corrugated tube can be inserted. The cover is provided with a pressing portion configured to press the electric wire, which is exposed from an end of the corrugated tube on a main body side, toward the inside of the corrugated tube.
US11581713B2 Methods and apparatuses for robotic breaker racking
Methods of operating a robotic breaker-racking apparatus are provided. A method of operating a robotic breaker-racking apparatus includes controlling a motor to drive the robotic breaker-racking apparatus to a first circuit breaker. The method includes accessing the first circuit breaker via remote or autonomous control of the robotic breaker-racking apparatus. Moreover, the method includes visually inspecting, via a camera of the robotic breaker-racking apparatus, a first relay of the first circuit breaker and/or a second relay of a second circuit breaker. Related robotic breaker-racking apparatuses are also provided.
US11581712B2 Robot for unmanned operation and maintenance in an indoor medium or high voltage switch-gear station
A switch-gear or control-gear system for medium or high voltage use includes an external housing containing the switch-gear or control-gear system, which is configured for unmanned operation and maintenance. The switch-gear or control-gear system is configured for unmanned operation and maintenance with a robotic system or manipulator and the robotic system or manipulator is provided with a camera system and an image recognition system. The robotic system is provided with a data network or an external data communication interface.
US11581705B2 Vertical-cavity surface-emitting laser with dense epi-side contacts
An emitter may include a substrate, a conductive layer on at least a bottom surface of a trench, and a first metal layer to provide a first electrical contact of the emitter on an epitaxial side of the substrate. The first metal layer may be within the trench such that the first metal layer contacts the conductive layer within the trench. The emitter may further include a second metal layer to provide a second electrical contact of the emitter on the epitaxial side of the substrate, and an isolation implant to block lateral current flow between the first electrical contact and the second electrical contact.
US11581701B2 Nitride semiconductor laser element and illumination light source module
Provided is a nitride semiconductor laser element which includes: a stacked structure including a plurality of semiconductor layers including a light emitting layer, the stacked structure including a pair of resonator end faces located on opposite ends; and a protective film including a dielectric body and disposed on at least one of the pair of resonator end faces. The protective film includes a first protective film (a first emission surface protective film), a second protective film (a second emission surface protective film), and a third protective film (a third emission surface protective film) disposed in stated order above the stacked structure. The first protective film is amorphous, the second protective film is crystalline, and the third protective film is amorphous.
US11581699B2 Semiconductor device and method of manufacturing the semiconductor device
A semiconductor device includes: a package including: a lower surface, at least one first metal surface at an outer periphery of the lower surface, and at least one second metal surface at the lower surface at a location different from the at least one first metal surface; a mounting substrate disposed below the package and including: an upper surface, at least one first metal pattern disposed at the upper surface below the at least one first metal surface, and at least one second metal pattern disposed at the upper surface below the at least one second metal surface; a first bonding member containing a metal material and bonding the at least one first metal surface and the at least one first metal pattern; and a second bonding member containing a metal material and bonding the at least one second metal surface and the at least one second metal pattern.
US11581698B2 Optical device, lighting apparatus, measuring apparatus, part-inspecting apparatus, robot, electronic device, and movable object
An optical device includes: a substrate having a first surface, and a second surface opposite of the first surface; a plurality of surface emitting laser elements provided on the first surface of the substrate and configured to emit light in a direction intersecting the first surface; a plurality of optical elements disposed on the second surface so as to respectively correspond to the plurality of surface emitting laser elements; and an anti-reflection structure between the substrate and the plurality of optical elements.
US11581695B2 High-frequency-reproducibility laser frequency stabilization method and device based on multi-point acquisition of laser tube temperature
The disclosure provides a high-frequency-reproducibility laser frequency stabilization method and device based on multi-point acquisition of laser tube temperature. The laser frequency stabilization device includes: a frequency stabilization control circuit. The frequency stabilization control circuit includes a polarizing beam splitter, an optical power conversion circuit, an A/D conversion circuit, a temperature measuring circuit, a microprocessor, a D/A converter and a heating film driver. The polarizing beam splitter is disposed outside any one of laser transmitting holes. The optical power conversion circuit is disposed on reflection and refraction optical paths of the polarizing beam splitter. The optical power conversion circuit, the A/D conversion circuit, the microprocessor, the D/A converter, the heating film driver and a plurality of groups of heating films are sequentially in one-way connection. Temperature sensors, the temperature measuring circuit and the microprocessor are sequentially in one-way connection.
US11581694B1 Nanocavities, and systems, devices, and methods of use
Disclosed are dielectric cavity arrays with cavities formed by pairs of dielectric tips, wherein the cavities have low mode volume (e.g., 7*10−5λ3, where X is the resonance wavelength of the cavity array), and large quality factor Q (e.g., 106 or more). Applications for such dielectric cavity arrays include, but are not limited to, Raman spectroscopy, second harmonic generation, optical signal detection, microwave-to-optical transduction, and as light emitting devices.
US11581690B2 Robot apparatus for producing electronic apparatus
A robot apparatus includes a clamp mechanism; a transport mechanism; and a control unit. The clamp mechanism includes a first finger that has a first support surface and a housing portion and a second finger. The first support surface supports an aligned wire group that includes a plurality of wires, the housing portion includes a guide wall that is connected to the first support surface and regulates an amount of movement of the band member in a width direction. The second finger has a second support surface facing the first support surface and a facing portion being connected to the second support surface and facing the housing portion. The transport mechanism is capable of moving the clamp mechanism. The control unit controls a grip force of the clamp mechanism and a direction of movement of the clamp mechanism by the transport mechanism.
US11581689B2 Bonding resistance and electromagnetic interference management of a surface mounted connector
A first component, such as an electrical connector, can be mechanically connected to a second component, such as a surface, and separately electrically bonded to the second component using a third component, such as foil. The third component can be ultrasonically welded to the first component and separately ultrasonically welded to the second component. In some cases, multiple third components can be utilized to cover a seam between the first and second components.
US11581688B2 High-speed connector
A high-speed connector includes an insulating housing, and a first terminal assembly mounted in the insulating housing. The first terminal assembly includes a plurality of first terminals including a plurality of first grounding terminals, a first base body, and a first shielding plate disposed under the first base body. The plurality of the first terminals are fastened to the first base body. The first shielding plate has a first base plate, a first metal layer and a plurality of first ribs. Several portions of a top surface of the first base plate extend upward to form the plurality of the first ribs. The first metal layer is a pattern with a plurality of pores. Several of the first grounding terminals contact with the first metal layer which is attached to top surfaces of the plurality of the first ribs to form a grounding structure.
US11581685B2 Telecommunications device
The present disclosure relates to a telecommunications jack including a housing having a port for receiving a plug. The jack also includes a plurality of contact springs adapted to make electrical contact with the plug when the plug is inserted into the port of the housing, and a plurality of wire termination contacts for terminating wires to the jack. The jack further includes a circuit board that electrically connects the contact springs to the wire termination contacts. The circuit board includes a multi-zone crosstalk compensation arrangement for reducing crosstalk at the jack.
US11581678B2 Connector with a locator to position and properly bend a cable during assembly
A connector comprises a locator configured to position a cable. The locator has a front-end surface, a first surface and a second surface and is formed with a positioning groove. The first surface and the second surface are located at opposite sides of the locator, respectively, in the upper-lower direction (Z-direction). The positioning groove has a front groove, a rear groove and a coupling groove. The front groove is recessed rearward from the front-end surface and extends from the first surface to the coupling groove along the upper-lower direction. The rear groove is recessed from the second surface along the upper-lower direction and extends rearward from the coupling groove. When the locator positions the cable, the front groove receives a front regulated portion of the cable, and the rear groove receives a rear regulated portion of the cable.
US11581677B2 Connector protection member and connector
Provided is a connector protection member for protecting a connector. The connector includes a housing having a center raised portion including a raised portion end wall, a raised portion end side wall, and a raised portion end upper surface connecting the raised portion end wall, and the raised portion end side wall. A raised portion side surface protection portion of the connector protection member includes: a side portion covers part of the raised portion end wall and part of the raised portion end side wall, and a transition portion formed continuously to the side portion covers a three-surface connection portion formed by an end wall connection portion between the raised portion end wall and the raised portion end upper surface and a side wall connection portion between the raised portion end side wall and the raised portion end upper surface.
US11581666B2 Sleeve and shield terminal manufacturing method
A sleeve (11) is a hollow cylindrical member provided in a shield terminal (10), and pressable by a wire barrel (18) by being arranged between an insulating portion (63) and a shield portion (62) of a shielded cable (60). A convex portion (36) shaped to bulge radially outward over an entire circumference is provided at an intermediate position of the sleeve (11) in an axial direction. The convex portion (36) is crushed and elongated by the wire barrel (18) of an outer conductor terminal (13). The insulating portion (63) can be prevented from being excessively compressed.
US11581665B2 Coaxial connector having an outer conductor engager
A connector for a coaxial cable includes a coupler configured to engage another coaxial cable connector, a body configured to be disposed at least partially within the coupler, and an outer conductor engager made of a conductive material disposed within the body and the coupler. An interior of the body includes a biasing element, and a compression sleeve is disposed at an opposite axial side of the outer conductor engager relative to the biasing element. The compression sleeve, the outer conductor engager, and the body are configured such that opposite axial forces applied to the compression sleeve and the outer conductor engager cause the outer conductor engager to move axially relative to one another and to cause the outer conductor engager to move axially relative to the body when the connector is coupled to the coaxial cable. The outer conductor engager is configured to be compressed by the biasing member when the outer conductor engager portion moves relative to the body such that an interior surface of the outer conductor engager portion is compressed radially inward against an outer conductor of the coaxial cable.
US11581664B2 Multiband antennas
An antenna is described. The antenna includes a first plurality of first elements. Each of the first elements is dual polarized and configured to support a first set of bands and a second set of bands that is mutually exclusive from the first set of bands. The antenna also includes a second plurality of second elements. Each of the second elements is dual polarized and configured to support the second set of bands. The second plurality of second elements is interleaved with the first plurality of first elements.
US11581662B2 Electronic device including antenna
An electronic device includes a housing including a front plate and a rear plate disposed opposite the front plate, and a display disposed in a space between the front plate and the rear plate, and disposed at least partially along the front plate. The electronic device further includes a first antenna structure disposed in the space and configured to transmit or receive a first signal in a first frequency band, wherein the first antenna structure includes at least one first conductive pattern. The electronic device also includes a second antenna structure disposed in the space without being overlapped with the first conductive pattern when viewed from above the rear plate, and configured to transmit or receive a second signal in a second frequency band different from the first frequency band. In addition, the electronic device includes a conductive sheet disposed in the space and on the rear plate. The conductive sheet is physically separated from the first conductive pattern, and at least partially overlapped with the first conductive pattern when viewed from above the rear plate.
US11581660B2 High performance folded dipole for multiband antennas
Disclosed is a radiator assembly configured to operate in the range of 3.4-4.2 GHz. The radiator assembly comprises a folded dipole with four dipole arms that radiate in two orthogonal polarization planes, whereby the signal of each polarization orientation is radiated by two opposite radiator arms that radiate the signal 180 degrees out of phase from each other. The radiator assembly has a balun structure that includes a balun trace that conductively couples to a ground element on the same side of the balun stem plate. The combination of the shape of the folded dipole and the balun structure reduces cross polarization between the two polarization states and maintains strong phase control between the opposing radiator arms.
US11581659B2 Antenna device
An antenna device includes: a pair of first elements that are arranged on a first plane; and a pair of second elements that are arranged on a second plane parallel to the first plane such that a polarized wave direction of the pair of second elements is orthogonal to that of the pair of first elements. Each element of the pair of first elements and the pair of second elements includes a portion that acts as a self-similarity antenna or an antenna that acts based on similar operating principle to the self-similarity antenna. In one embodiment, each element of the pair of first elements and the pair of second elements includes two arms that extend in a direction away from each other from a proximal end portion to which a feed point is connectable.
US11581658B2 Antenna system and method
A device comprising a plurality of metallic conical radiators, said conical radiators substantially hollow having a vertex end and a base end, a first cylindrical portion disposed annularly about the base end of the conical portion, a metallic second cylindrical portion coupled to the vertex of the conical portion, said cylindrical portion having a threaded aperture, and an antenna feed coupled to the threaded aperture. The device may have patches disposed on a substrate as a one or multi-dimensional array. An RF feed may be coupled to the radiators.
US11581656B2 Wide frequency range dual polarized radiating element with integrated radome
A low-profile array and a low-profile radiating element including: a stripline feed layer; a High Order Floquet (HOFS) part layer; and a radome layer in direct contact with the HOFS part layer, where the HOFS part layer is disposed between the stripline feed layer and the radome layer, and the radome layer includes a high dielectric constant (dk) environmentally robust material.
US11581652B2 Spiral antenna and related fabrication techniques
The concepts, systems, circuits and techniques described herein are directed toward a spiral antenna which may be provided using additive manufacturing technology so as to provide an antenna capable of operation at frequencies which are higher than spiral antennas manufactured using standard photo-etch or printed circuit board (PCB) manufacturing processes.
US11581642B2 Sealing material composition, liquid crystal cell and scanning antenna
The sealing material composition of the disclosure includes an unsaturated carbonyl compound having at least two unsaturated carbonyl groups and a curing agent that is thermally reactive with the unsaturated carbonyl compound and contains a compound having at least two of one or more kinds of functional groups selected from the group consisting of a mercaptan group, a hydroxyl group, and a secondary amine group.
US11581641B2 Adjustable unequal power combiner and switch
A single stage unequal power combiner is proposed. Instead of conventional combiner plus impedance transformer of 2-stage unequal combiner, the single stage combiner gets rid of the input impedance transformer. The single stage combiner supports adjustable transmission line impedance and reasonable mismatch loss, assuming the that power ratio of the input signals is within a certain range. The single stage combiner also has an adjustable isolation resistor for different power ratios. A structure of switchable branch characteristic impedance, switchable isolation resistor for the unequal combiner is proposed as the preferred embodiment. In one advantageous aspect, broader coverage angle in a single array module can be realized via an antenna diversity switch.
US11581640B2 Phased array antenna with metastructure for increased angular coverage
The disclosed structures and methods are directed to antenna systems configured to transmit and receive a wireless signal in and from different directions. An antenna for transmission of electromagnetic (EM) waves comprises a phased array and a metastructure. The phased array has radiated elements configured to radiate the EM waves. The metastructure is located at a phased array distance from the phased array to receive the EM waves at the first angle and to transmit the EM waves at a second angle, the second angle being larger than the first angle. The metastructure comprises three impedance layers arranged in parallel to each other and each impedance layer comprising a plurality of metallization elements. Each metallization element has a first dipole and a pair of first capacitance arms located on each end of the first dipole approximately perpendicular to the first dipole.
US11581639B2 Field-assembled modular phased array SATCOM terminal
A field-assembled satellite communications terminal has a plurality of discrete, modular aperture blocks. Each aperture block contains an electrically steered antenna aperture, and a plurality of interconnection ports for power and data communications between the plurality of aperture blocks. The plurality of interconnection ports are removably connectable by the end user in the field. The terminal further has a signal processing system for receiving, processing, and generating signals to and from the apertures. The aperture blocks are connected to each other in the field and self-configure to form an electrically-steered antenna.
US11581636B2 Base station antenna with frequency selective surface
A base station antenna comprises a plurality of columns of first radiating elements configured for operating in a first operational frequency band, each column of first radiating elements comprising a plurality of first radiating elements arranged in a longitudinal direction and an isolation wall positioned between adjacent columns of first radiating elements and extending in the longitudinal direction. The isolation wall comprises a frequency selective surface configured such that electromagnetic waves within the first operational frequency band are substantially blocked by the isolation wall.
US11581631B2 Base station antennas having radomes that reduce coupling between columns of radiating elements of a multi-column array
A base station antenna includes an internal radome and a multi-column antenna array antenna. The internal radome can be configured with a plurality of columns, each having an outwardly projecting peak segment and each neighboring column of the internal radome can be separated by a valley. Each outwardly projecting peak segment(s) is oriented to project toward a front of the base station antenna and is positioned medially aligned over a respective column of the multi-column antenna array to thereby reduce mutual coupling of respective elements and/or columns of elements and/or provide a common near field environment for each element and/or each column.
US11581630B2 Convertible strand and pole small cell mounts and assemblies
The present disclosure describes strand mounts for small cell radios. A strand mount may include a top plate, a bottom plate, and opposing side plates that form a housing having an interior cavity dimensioned to fit around one or more small cell radios, a plurality of mounting members, each mounting member coupled to the top and bottom plates within the interior cavity and configured such that a small cell radio can be mounted thereto, and one or more mounting brackets. The strand mount has the dual-capability of being mounted either horizontally on a cable strand or vertically on a pole. Alternative strand mounts and strand mount assemblies are also provided.
US11581629B2 Coupling structures for electronic device housings
A housing for an electronic device is disclosed. The housing comprises a first component and a second component separated from the first component by a gap. The housing also includes a first molded element disposed at least partially within the gap and defining at least a portion of an interlock feature, and a second molded element disposed at least partially within the gap and mechanically engaging the interlock feature. The first component, the second component, and the second molded element form a portion of an exterior surface of the housing. A method of forming the housing is also disclosed.
US11581623B1 Anti-skewing load pull tuner with rotating probe
A low-profile slide screw impedance tuner with rotating disc-shaped tuning probes uses a mechanical arrangement for correcting the skewing of the reflection factor response of the rotating tuning probes. As the axis of the control motor turns, a protruding pin pushes against a fixed limit stop block and shifts the motor and its axis, and by that the tuning probe, in the opposite direction of the rotation shift. This corrects for the skewing phase rotation.
US11581616B2 Cylindrical secondary battery having adhesion unit including gas-generating matertial
A cylindrical secondary battery configured to have a structure to which an adhesion unit, including an adhesive material, a conductive material, and a gas-generating material, is provided. The adhesion unit is configured to couple a cap assembly, which functions as a positive electrode terminal of the cylindrical secondary battery, and a positive electrode tab of a jelly-roll type electrode assembly to each other.
US11581612B2 Electrolyte separators including lithium borohydride and composite electrolyte separators of lithium-stuffed garnet and lithium borohydride
Set forth herein are compositions comprising A.(LiBH4).B.(LiX).C.(LiNH2), wherein X is fluorine, bromine, chloride, iodine, or a combination thereof, and wherein 0.1≤A≤3, 0.1≤B≤4, and 0≤C≤9 that are suitable for use as solid electrolyte separators in lithium electrochemical devices. Also set forth herein are methods of making A.(LiBH4).B.(LiX).C.(LiNH2) compositions. Also disclosed herein are electrochemical devices which incorporate A.(LiBH4).B.(LiX).C.(LiNH2) compositions and other materials.
US11581608B2 Battery and connection apparatus
A battery includes: a casing that includes a plurality of exterior faces having outer faces facing mutually-different directions and has an arrangement concave part formed; a cell that is housed inside the casing; and a connector that includes a connection terminal connected to an electrode terminal of a connection apparatus and is arranged in the arrangement concave part, in which a face forming the arrangement concave part of the casing is formed as a concave part forming face, and the concave part forming face is present between the exterior faces and the connector.
US11581598B2 Ventilation system of energy storage container and energy storage container
An energy storage container ventilation system and an energy storage container are provided according to the present disclosure. The ventilation system includes an air conditioner, an air duct, and multiple columns of battery racks, and each battery rack includes multiple lines of battery boxes, and an air outlet of the air conditioner is communicated with the air duct, a communicating part of each battery box and the air duct is provided with a ventilation plate with the same structure or different structures. The energy storage container ventilation system of the present disclosure uses an air conditioner to dissipate heat. Ventilation plates are provided at communicating parts of the air duct and each battery box. The structure of each ventilation plate is the same or different, so as to control an air intake volume flowing into each battery box.
US11581585B2 Methods and electronic devices for obtaining information on a battery pack
Methods and electronic devices for estimating state of charge (SOC) of a battery pack. Various embodiments provide a model comprising an (electrical) equivalent circuit model, an electrochemical (thermal) model, and a (convective) thermal model. The model estimates parameters pertaining to each cell of the battery pack individually, and determines the variations in the values of the parameters among each of the cells of the battery pack. The parameters include capacity, temperature current, voltage, and SOC. The parameters are computed based on at current drawn by the battery pack, electrochemical parameters, thermal parameters, and cell internal and connection resistances of the individual cells. Various embodiments compute battery pack uptime, chargeable capacity of the battery pack and SOC of the battery pack, based on the values of the parameters.
US11581584B2 Data transmission techniques associated with a battery pack
A battery including a first control circuit and a plurality of modules arranged in series between first and second terminals, each module including electric cells and switches coupling the cells to third and fourth terminals and a second switch control circuit. The battery includes a first data transmission bus coupling the first control circuit to each second control circuit and a second data transmission bus coupling the first control circuit to each second control circuit. The first control circuit is capable of transmitting first data to the second control circuits over the first bus at a first rate and is capable of transmitting second data to the second control circuits over the second bus at a second rate smaller than the first rate.
US11581580B2 Electrolyte for lithium ion secondary battery, lithium ion secondary battery, and module
The disclosure provides an electrolyte solution that enables a lithium ion secondary battery to have reduced initial resistance, a small increase in resistance at high-temperature cycles, and reduced gas generation at high temperature. The electrolyte solution for a lithium ion secondary battery contains lithium difluorophosphate, an oxalic acid ion, and a compound (1) represented by the following formula (1): wherein R1 and R2 are each independently a methyl group, an ethyl group, a propyl group, or a butyl group.
US11581579B2 Lithium ion secondary battery
The present application discloses a lithium ion secondary battery comprising a positive electrode plate, a negative electrode plate, a separator and an electrolyte, wherein the positive electrode plate comprises a positive electrode current collector and a positive electrode film provided on at least one surface of the positive electrode current collector, and the positive electrode film comprises a first positive electrode active material represented by chemical formula Li1+xNiaCobMe1-a-bO2-yAy and a second positive electrode active material represented by chemical formula Li1+zMncN2-cO4-dBd; the positive electrode plate has a resistivity r of 3500 Ω·m or less; and the electrolyte comprises a fluorine-containing lithium salt type additive. The lithium ion secondary battery provided by the present application is capable of satisfying high safety performance, high-temperature storage performance and cycle performance simultaneously.
US11581578B2 Composition for gel polymer electrolyte including siloxane oligomer and styrene-based oligomer, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the same
The present invention provides a composition for a gel polymer electrolyte, the composition including a first oligomer represented by Formula 1, a second oligomer including a first repeating unit represented by Formula 2a derived from a styrene monomer, a polymerization initiator, a lithium salt, and a non-aqueous solvent. The present invention also provides a gel polymer electrolyte prepared using the same, and a lithium secondary battery.
US11581562B2 Z-scheme microbial photoelectrochemical system (MPS) for wastewater-to-chemical fuel conversion
A wastewater to chemical fuel conversion device is provided that includes a housing having a first chamber and a second chamber, where the first chamber includes a bio-photoanode, where the second chamber includes a photocathode, where a backside of the bio-photoanode abuts a first side of a planatized fluorine doped tin oxide (FTO) glass, where a backside of the photocathode abuts a second side of the FTO glass, where a proton exchange membrane separates the first chamber from the second chamber, where the first chamber includes a wastewater input and a reclaimed water output, where the second chamber includes a solar light input and a H2 gas output, where the solar light input is disposed for solar light illumination of the first chamber and the second chamber.
US11581561B2 Cell, cell stack device, module, and module housing device
A cell includes an element portion including a first electrode layer, a solid electrolyte layer that contains Zr and that is located above the first electrode layer, an intermediate layer that contains CeO2 containing a rare earth element other than Ce and that is located above the solid electrolyte layer, and a second electrode layer located above the intermediate layer. The intermediate layer includes a first intermediate layer and a second intermediate layer that contains Zr and Ce and that is located at at least a portion between the first intermediate layer and the solid electrolyte layer. In a plan view from the second electrode layer, the second intermediate layer located at an outer peripheral portion of the intermediate layer includes a portion with a thickness greater than the second intermediate layer overlapping a center of the second electrode layer. A cell stack device, a module, and a module housing device include a plurality of the cells.
US11581551B2 Elastomeric cell frame for fuel cell, manufacturing method of the same and unit cell using the same
An elastomeric cell frame for a fuel cell includes an insert which includes: a membrane electrode assembly including a polymer electrolyte membrane and a pair of electrode layers respectively disposed on opposite sides of the polymer electrolyte membrane; and a pair of gas diffusion layers disposed and bonded on upper and lower surfaces of the membrane electrode assembly, respectively. The insert further includes an elastomeric frame disposed in an external region of the insert. The elastomeric frame surrounds one of opposite edge surfaces of the insert and a side surface of the insert, the elastomeric frame being interface-bonded, through thermal bonding, to portions of the polymer electrolyte membrane and the electrode layers exposed at the one of opposite edge surfaces of the insert and the side surface of the insert.
US11581548B2 Manufacturing method of support for catalyst of fuel cell
Disclosed herein is a method of manufacturing a support for a catalyst of a fuel cell. The method may include preparing an admixture including a carbon material and a cerium precursor into a reactor, providing the admixture in a reactor, raising a temperature of the reactor to a predetermined temperature, and introducing water vapor into the reactor to perform an activation reaction of the carbon material.
US11581544B2 Energy storage device and energy storage device production method
An energy storage device includes a current collector (negative electrode current collector), electrode body that includes a body portion and a tab projecting from the body portion, and a leading plate (negative electrode leading plate) that connects the current collector and the tab. In the leading plate, first and second plates and facing each other are continuously connected at end portions thereof in the first plate, the current collector is fixed to a first principal surface on the opposite side to the second plate. In the second plate, the tab is fixed to a second principal surface on the opposite side to the first plate.
US11581542B2 Organic small-molecule cathode material of lithium-ion battery and fabricating method thereof, and lithium-ion battery
A cathode material of a lithium-ion battery and a fabricating method thereof, and a lithium-ion battery are described. The cathode material of the lithium-ion battery has hexaazatriphenylene embedded quinone (HATAQ) and/or its derivative small molecules, which have multiple redox-active sites and can form intermolecular hydrogen bonds to form a graphite-like layered structure. When HATAQ and/or its derivative small molecules are used as a cathode material, a stable structure can be maintained during a charge and discharge process and during lithium ions entering and exiting.
US11581535B2 High-nickel positive electrode active material, producing method thereof, positive electrode and lithium secondary battery comprising the same
A method for producing a positive electrode active material, a positive electrode active material produced thereby, and a positive electrode and a lithium secondary battery including the same are provided. The method includes preparing a nickel-manganese-aluminum precursor having an atomic fraction of nickel of 90 atm % or greater in all transition metals, and mixing the nickel-manganese-aluminum precursor, a cobalt raw material, and a lithium raw material and heat treating the mixture.
US11581533B2 Lithium secondary battery
A lithium secondary battery includes a cathode formed of a cathode active material including a lithium metal oxide particle having a concentration gradient, and a coating formed on the lithium metal oxide particle, the coating including aluminum, titanium and zirconium, an anode, and a separator interposed between the cathode and the anode. The cathode active material includes 2,000 ppm to 4,000 ppm of aluminum, 4,000 ppm to 9,000 ppm of titanium and 400 ppm to 700 ppm of zirconium, based on the total weight of the cathode active material. The performance of the secondary battery may be maintained under a high temperature condition.
US11581529B2 Submicron sized silicon powder with low oxygen content
A submicron sized Si based powder having an average primary particle size between 20 nm and 200 nm, wherein the powder has a surface layer comprising SiOx, with 0
US11581527B2 Ethyl cellulose as a dispersant for lithium ion battery cathode production
The process of making a lithium ion battery cathode comprises the step of forming a slurry of an active material, a nano-size conductive agent, a binder polymer, a solvent and a dispersant. The solvent consists essentially of one or more of a compound of Formula 1, 2, or 3, and the dispersant comprises an ethyl cellulose.
US11581525B2 Secondary battery electrode manufacturing method and secondary battery manufacturing method
One of the objects of the present invention is to suppress mixing of a first layer and a second layer while forming the second layer before drying the first layer when manufacturing the electrode for the secondary battery in which the first layer and the second layer are laminated on the current collector. A method for manufacturing an electrode used as a positive electrode and a negative electrode of a secondary battery according to the present invention comprises applying a first layer slurry to a surface of a current collector, applying a second layer slurry on the first layer slurry before the first layer slurry is dried, and drying the first layer slurry and the second layer slurry after applying the first layer slurry and the second layer slurry to obtain a laminated structure in which a first layer and a second layer are laminated in this order on the current collector. A viscosity of the first layer slurry is 12000 mPa·s or more, and/or a viscosity of the second layer slurry is 4000 mPa·s or more when the viscosities of the first layer slurry and the second layer slurry are measured at 25° C. with a shear rate of 1/sec.
US11581524B2 Lithium-sulfur battery cathode, method for making the same and lithium-sulfur battery using the same
The present disclosure relates to a lithium-sulfur battery cathode. The lithium-sulfur battery cathode comprises a carbon nanotube sponge and a plurality of sulfur nanoparticles. Wherein the carbon nanotube sponge comprises a plurality of micropores. The plurality of sulfur nanoparticles are uniformly distributed in the plurality of micropores. The present disclosure also relates a method for making the lithium-sulfur battery cathode and a lithium-sulfur battery using the lithium-sulfur battery cathode.
US11581520B2 Notching apparatus and method for secondary battery
The present invention relates an electrode notching apparatus. The electrode notching apparatus comprises: a notching unit shaping an electrode into a predetermined pattern; a heating unit drying the electrode processed by the notching unit; and a collecting unit collecting the electrode dried by the heating unit, wherein the heating unit comprises: a heating body having a drying space through which the electrode supplied by the notching unit passes; and heating members directly heating a surface of the electrode passing through the drying space to dry moisture remaining on the electrode.
US11581515B2 Touch display device
Embodiments of the present disclosure relate to a touch display device, and more particularly, provide a touch display device with improved brightness owing to including an insulating film having a concave portion and a planarization layer having a microlens unit.
US11581514B2 Display device having a rear cover layer
A display device includes: a substrate; an insulating layer on a top surface of the substrate; a plurality of light-emitting diodes on the insulating layer and including two light-emitting diodes spaced apart from each other and having a transmission area therebetween; an encapsulation member covering the plurality of light-emitting diodes; and a rear cover layer located on a rear surface of the substrate and including a first portion located in the transmission area, wherein the first portion includes a transparent material.
US11581499B2 Display device and method of manufacturing the same
A display device has a first non-foldable area, a second non-foldable area spaced apart from the first non-foldable area, and a foldable area disposed between the first non-foldable area and the second non-foldable area. The display device includes: a support member; a first adhesive layer disposed on the support member; a buffer member disposed on the first adhesive layer; a second adhesive layer disposed on the buffer member; and a flexible display panel disposed on the second adhesive layer. At least one of the support member and the buffer member includes a first area overlapping the foldable area having at least one first uneven area to facilitate bending, the at least one first uneven area being formed on a surface of the first area.
US11581497B2 Materials for organic electroluminescent devices
The present invention relates to compounds, which are suitable for use in electronic devices, and to electronic devices, in particular organic electroluminescent devices, containing said compounds.
US11581492B2 Organic electroluminescence device and polycyclic compound for organic electroluminescence device
An organic electroluminescence device of an embodiment includes a first electrode, a second electrode, and an emission layer disposed between the first electrode and the second electrode, and the emission layer includes a polycyclic compound represented by Formula 1. The organic electroluminescence device may exhibit high luminous efficiency and/or service life characteristics:
US11581490B2 Organic light emitting diode
The present specification relates to an organic light emitting device.
US11581489B2 White light emitting material, preparation method thereof, and application thereof
A white light emitting material having a chemical structural formula represented by formula (I), a preparation method thereof and application thereof. The preparation method comprises subjecting tris(4-iodophenyl)amine and 4-methoxyphenylacetylene or tris(4-iodophenyl)amine and methyl 4-ethynylbenzoate to a coupling reaction under protection of a protective gas and catalysis of a Pd/Cu mixed catalyst, to obtain the white light emitting material. A novel temperature-sensitive light emitting material is synthesized through a one-step method. The material is applied to the field of diode luminescence based on the temperature-sensitive characteristic. White light luminescence can be finally realized only by reasonably controlling the temperature and duration time during heating a substrate. Compared with the existing art, the method greatly saves raw material costs and manufacturing process costs, and provides a novel idea and strategy for use of a white organic light emitting diode.
US11581487B2 Patterned conductive coating for surface of an opto-electronic device
An opto-electronic device includes: (1) a substrate including a first region and a second region; and (2) a conductive coating covering the second region of the substrate. The first region of the substrate is exposed from the conductive coating, and an edge the conductive coating adjacent to the first region of the substrate has a contact angle that is greater than about 20 degrees.
US11581486B2 Electronic device and method of fabricating the same
An electronic device including a semiconductor memory is provided. The semiconductor memory includes a plurality of first lines extending in a first direction; a plurality of second lines over the first lines, the second lines extending in a second direction crossing the first direction; a plurality of memory cells disposed at intersection regions of the first lines and the second lines between the first lines and the second lines in a third direction perpendicular to the first and second directions; and a heat sink positioned between two memory cells adjacent to each other in a diagonal direction with respect to the first and second directions.
US11581481B2 Optical surface cleaning with directed energy waves
A vehicle sensor assembly includes an optical sensor surface, at least two transducers arranged to input energy into the optical surface to produce an energy wave through the optical sensor surface and sense an attribute of an energy wave within the optical sensor surface. A controller arranged to drive the at least two transducers to input energy into the optical surface to produce an energy wave within the optical sensor surface to dislodge debris from the optical sensor surface.
US11581476B2 Semiconductor structure and method for manufacturing thereof
A semiconductor structure is provided. The semiconductor structure includes a substrate, a first piezoelectric layer, and a first dummy layer. The first piezoelectric layer is over the substrate, and the first piezoelectric layer has a first top surface. The first dummy layer is over the first piezoelectric layer, and the first dummy layer has a second top surface. And an average roughness of the first top surface is greater than an average roughness of the second top surface. A method for manufacturing the semiconductor structure is also provided.
US11581474B2 Electrical leads for trenched qubits
Techniques for forming quantum circuits, including connections between components of quantum circuits, are presented. A trench can be formed in a dielectric material, by removing a portion of the dielectric material and a portion of conductive material layered on top of the dielectric material, to enable creation of circuit components of a circuit. The trench can define a regular nub or compensated nub to facilitate creating electrical leads connected to the circuit components on a nub. The compensated nub can comprise recessed regions to facilitate depositing material during evaporation to form the leads. For compensated nub implementation, material can be evaporated in two directions, with oxidation performed in between such evaporations, to contact leads and form a Josephson junction. For regular nub implementation, material can be evaporated in four directions, with oxidation performed in between the third and fourth evaporations, to contact leads and form a Josephson junction.
US11581467B2 Thermoelectric elements and devices with enhanced maximum temperature differences based on spatially varying distributed transport properties
Provided herein is a thermoelectric element that includes a cold end, a hot end, and a p-type or n-type material having a length between the hot end and the cold end. The p-type or n-type material has an intrinsic Seebeck coefficient (S), an electrical resistivity (ρ), and a thermal conductivity (λ). Each of two or more of S, ρ, and λ generally increases along the length from the cold end to the hot end. The thermoelectric element may be provided in single-stage thermoelectric devices providing enhanced maximum temperature differences. The single-stage thermoelectric devices maybe combined with one another to provide multi-stage thermoelectric devices with even further enhanced maximum temperature differences.
US11581466B2 Thermoelectric generator
A thermoelectric generator consists of circuits arranged in parallel rows, in which thermocouples in adjacent rows are facing each other by the same-named junctions, forming alternating narrow zones of hot and cold junctions. At least one of the layers is a layer of thermal energy thermocouples, the repeatability of the rows of circuits of which is two times less than the repeatability of the rows of circuits of thermocouples generating electricity. Hot and cold zones between the rows of thermocouple circuits of all layers of thermocouples generating electricity and hot and cold junctions of the rows of thermocouple circuits of thermal energy are superimposed, respectively, by tight contact on each other by junctions and substrates, ensuring internal heat exchange between them. In addition, the generator is provided with an external heat supply circuit to the hot zone area and a heat removal circuit from the cold zone area.
US11581462B2 Display device with metal layer with uneven surface
A display device includes a substrate, an interlayer insulating layer over the substrate, a metal layer over the interlayer insulating layer, and a light emitting element over the metal layer. The interlayer insulating layer includes a plurality of a first depressed portions. The metal layer includes a first region bonding to the light emitting element and a second region surrounding the first region. The second region, a plurality of second depressed portions is provided along the plurality of first depressed portions.
US11581461B2 Display substrate, preparation method thereof, and display device
A display substrate includes a drive substrate and a welding pad provided on the drive substrate and electrically connected with the drive substrate. The display substrate further includes an insulating construction layer provided on the welding pad. The insulating construction layer is provided with a groove for exposing the welding pad. A bonding material is accommodated in the groove, and a micro light emitting diode is electrically connected with the welding pad through the bonding material.
US11581458B2 Base member for light emitting device
A base member for a light emitting device includes a bottom part and a frame part. The frame part has an upper surface, a lower surface, and a step portion. The frame part has a bonding surface bonded to the bottom part, and defining a planar surface of the step portion at a lower surface side, first and second inner surfaces, a first planar surface defining a planar surface of the step portion at an upper surface side, and first and second electrode layers electrically connected to each other, the second electrode layer being disposed on the first planar surface while the first electrode layer being not disposed on the first planar surface. The step portion extends along an entire periphery of the frame part in a bottom view, and the step portion does not extend along the entire periphery of the frame part in a top view.
US11581457B1 Reduction of surface recombination losses in micro-LEDs
Disclosed herein are systems and methods for reducing surface recombination losses in micro-LEDs. In some embodiments, a method includes increasing a bandgap in an outer region of a semiconductor layer by implanting ions in the outer region of the semiconductor layer and subsequently annealing the outer region of the semiconductor layer to intermix the ions with atoms within the outer region of the semiconductor layer. The semiconductor layer includes an active light emitting layer. A light outcoupling surface of the semiconductor layer has a diameter that is less than twice an electron diffusion length of the semiconductor layer. The outer region of the semiconductor layer extends from an outer surface of the semiconductor layer to a central region of the semiconductor layer that is shaded by a mask during the implanting of the ions.
US11581455B2 Solar cell module manufacturing method and solar cell module
First, first cell wiring members from the first solar cell and second cell wiring members from the second solar cell are sandwiched between a wiring member film and a second bridge wiring member. Subsequently, the first cell wiring members and the second cell wiring members are connected to the second bridge wiring member by applying heat to at least the first cell wiring members, the second cell wiring members, and the second bridge wiring member by induction heating.
US11581454B1 Solar cell, manufacturing method thereof, and photovoltaic module
Provided are a solar cell, a manufacturing method thereof, and a photovoltaic module. The solar cell includes: a semiconductor substrate, in which a rear surface of the semiconductor substrate having a first texture structure, the first texture structure includes two or more first substructures at least partially stacked on one another, and in a direction away from the rear surface and perpendicular to the rear surface, a distance between a top surface of an outermost first substructure and a top surface of an adjacent first substructure being less than or equal to 2μm; a first passivation layer located on a front surface of the semiconductor substrate; a tunnel oxide layer located on the first texture structure; a doped conductive layer located on a surface of the tunnel oxide layer; and a second passivation layer located on a surface of the doped conductive layer.
US11581448B2 Photoconductive semiconductor switch laterally fabricated alongside GaN on Si field effect transistors
An integrated circuit structure comprising a substrate having an upper surface; a gallium nitride layer disposed on the upper surface of the substrate; and a photoconductive semiconductor switch laterally disposed alongside a transistor on the gallium nitride layer integrated into the integrated circuit structure wherein a regrown gallium nitride material is disposed on the photoconductive semiconductor switch and operatively coupled with the wafer.
US11581442B2 Solar cell
Discussed is a solar cell including a first conductive region positioned at a front surface of a semiconductor substrate and containing impurities of a first conductivity type or a second conductivity type, a second conductive region positioned at a back surface of the semiconductor substrate and containing impurities of a conductivity type opposite a conductivity type of impurities of the first conductive region, a first electrode positioned on the front surface of the semiconductor substrate and connected to the first conductive region, and a second electrode positioned on the back surface of the semiconductor substrate and connected to the second conductive region. Each of the first and second electrodes includes metal particles and a glass frit.
US11581441B2 Floating gate isolation
A semiconductor device includes a substrate, a tunneling oxide layer, a floating gate, an isolation layer and a control gate. The tunneling oxide layer is over the substrate. The floating gate is over the tunneling oxide layer. The isolation layer covers a top of the floating gate and peripherally encloses the tunneling oxide layer and the floating gate. The control gate is over a top of the isolation layer.
US11581438B2 Fin structure for fin field effect transistor and method for fabrication the same
The invention provides a fin structure for a fin field effect transistor, including a substrate. The substrate includes a plurality of silicon fins, wherein a top of each one of the silicon fins is a round-like shape in a cross-section view. An isolation layer is disposed on the substrate between the silicon fins at a lower portion of the silicon fins while an upper portion of the silicon fins is exposed. A stress buffer layer is disposed on a sidewall of the silicon fins between the isolation layer and the lower portion of the silicon fins. The stress buffer layer includes a nitride portion.
US11581432B2 Small pitch super junction MOSFET structure and method
The present invention provides semiconductor devices with super junction drift regions that are capable of blocking voltage. A super junction drift region is an epitaxial semiconductor layer located between a top electrode and a bottom electrode of the semiconductor device. The super junction drift region includes a plurality of pillars having P type conductivity, formed in the super junction drift region, which are surrounded by an N type material of the super junction drift region.
US11581426B2 Semiconductor device and manufacturing method thereof
In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed over a bottom fin structure. A sacrificial gate structure having sidewall spacers is formed over the fin structure. A source/drain region of the fin structure, which is not covered by the sacrificial gate structure, is removed. The second semiconductor layers are laterally recessed. Dielectric inner spacers are formed on lateral ends of the recessed second semiconductor layers. The first semiconductor layers are laterally recessed. A source/drain epitaxial layer is formed to contact lateral ends of the recessed first semiconductor layer. The second semiconductor layers are removed thereby releasing the first semiconductor layers in a channel region. A gate structure is formed around the first semiconductor layers.
US11581423B2 Integrated circuit devices including an element having a non-linear shaped upper surface and methods of forming the same
Integrated circuit devices and methods of forming the same are provided. The methods may include sequentially forming an underlying mask layer and a preliminary first mask layer on a substrate, forming a first mask structure by removing a portion of the preliminary first mask layer, and then forming a preliminary second mask layer. The preliminary second mask layer may enclose the first mask structure in a plan view. The methods may also include forming a second mask structure by removing a portion of the preliminary second mask layer and forming a vertical channel region including a portion of the substrate by sequentially etching the underlying mask layer and the substrate. The second mask structure may be connected to the first mask structure, and etching the underlying mask layer may be performed using the first and the second mask structures as an etch mask.
US11581421B2 Semiconductor device and method of manufacturing the same
A semiconductor device and a method of manufacturing the same are disclosed. The semiconductor device includes semiconductor wires disposed over a substrate, a source/drain epitaxial layer in contact with the semiconductor wires, a gate dielectric layer disposed on and wrapping around each channel region of the semiconductor wires, a gate electrode layer disposed on the gate dielectric layer and wrapping around the each channel region, and dielectric spacers disposed in recesses formed toward the source/drain epitaxial layer.
US11581419B2 Heterogeneous metal line compositions for advanced integrated circuit structure fabrication
Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a first plurality of conductive interconnect lines in and spaced apart by a first ILD layer, wherein individual ones of the first plurality of conductive interconnect lines comprise a first conductive barrier material along sidewalls and a bottom of a first conductive fill material. A second plurality of conductive interconnect lines is in and spaced apart by a second ILD layer above the first ILD layer, wherein individual ones of the second plurality of conductive interconnect lines comprise a second conductive barrier material along sidewalls and a bottom of a second conductive fill material, wherein the second conductive fill material is different in composition from the first conductive fill material.
US11581417B2 Improper ferroelectric active and passive devices
A capacitor is provided which comprises: a first structure comprising metal; a second structure comprising metal; and a third structure between the first and second structures, wherein the third structure comprises an improper ferroelectric material. In some embodiments, a field effect transistor (FET) is provided which comprises: a substrate; a source and drain adjacent to the substrate; and a gate stack between the source and drain, wherein the gate stack includes: a dielectric; a first structure comprising improper ferroelectric material, wherein the first structure is adjacent to the dielectric; and a second structure comprising metal, wherein the second structure is adjacent to the first structure.
US11581415B2 Multi-layer channel structures and methods of fabricating the same in field-effect transistors
A semiconductor structure includes a first stack of semiconductor layers disposed over a semiconductor substrate, where the first stack of semiconductor layers includes a first SiGe layer and a plurality of Si layers disposed over the first SiGe layer and the Si layers are substantially free of Ge, and a second stack of semiconductor layers disposed adjacent to the first stack of semiconductor layers, where the second stack of semiconductor layers includes the first SiGe layer and a plurality of second SiGe layers disposed over the first SiGe layer, and where the first SiGe layer and the second SiGe layers have different compositions. The semiconductor structure further includes a first metal gate stack interleaved with the first stack of semiconductor layers to form a first device and a second metal gate stack interleaved with the second stack of semiconductor layers to form a second device different from the first device.
US11581410B2 Semiconductor device and method
In an embodiment, a device includes: a first nanostructure over a substrate, the first nanostructure including a channel region and a first lightly doped source/drain (LDD) region, the first LDD region adjacent the channel region; a first epitaxial source/drain region wrapped around four sides of the first LDD region; an interlayer dielectric (ILD) layer over the first epitaxial source/drain region; a source/drain contact extending through the ILD layer, the source/drain contact wrapped around four sides of the first epitaxial source/drain region; and a gate stack adjacent the source/drain contact and the first epitaxial source/drain region, the gate stack wrapped around four sides of the channel region.
US11581406B2 Method of fabricating CMOS FinFETs by selectively etching a strained SiGe layer
Techniques and methods related to strained NMOS and PMOS devices without relaxed substrates, systems incorporating such semiconductor devices, and methods therefor may include a semiconductor device that may have both n-type and p-type semiconductor bodies. Both types of semiconductor bodies may be formed from an initially strained semiconductor material such as silicon germanium. A silicon cladding layer may then be provided at least over or on the n-type semiconductor body. In one example, a lower portion of the semiconductor bodies is formed by a Si extension of the wafer or substrate. By one approach, an upper portion of the semiconductor bodies, formed of the strained SiGe, may be formed by blanket depositing the strained SiGe layer on the Si wafer, and then etching through the SiGe layer and into the Si wafer to form the semiconductor bodies or fins with the lower and upper portions.
US11581402B2 Lateral semiconductor device and method of manufacture
A method and apparatus include an n-doped layer having a first applied charge, and a p−-doped layer having a second applied charge. The p−-doped layer may be positioned below the n-doped layer. A p+-doped buffer layer may have a third applied charge and be positioned below the p−-doped layer. The respective charges at each layer may be determined based on a dopant level and a physical dimension of the layer. In one example, the n-doped layer, the p−-doped layer, and the p+-doped buffer layer comprise a lateral semiconductor manufactured from silicon carbide (SiC).
US11581401B2 Pin diode including a conductive layer, and fabrication process
A diode is formed by a polycrystalline silicon bar which includes a first doped region with a first conductivity type, a second doped region with a second conductivity type and an intrinsic region between the first and second doped regions. A conductive layer extends parallel to the polycrystalline silicon bar and separated from the polycrystalline silicon bar by a dielectric layer. The conductive layer is configured to be biased by a bias voltage.
US11581399B2 Gate implant for reduced resistance temperature coefficient variability
Methods and semiconductor circuits are described in which a polysilicon resistor body is formed over a semiconductor substrate. A first dopant species is implanted into the polysilicon resistor body at a first angle about parallel to a surface normal of a topmost surface of the polysilicon resistor body. A second dopant species is implanted into the polysilicon resistor body at a second angle greater than about 10° relative to the surface normal. The combination of implants reduces the different between the temperature coefficient (tempco) of resistance of narrow resistors relative to the tempco of wide resistors, and brings the tempco of the resistors closer to a preferred value of zero.
US11581396B2 Display panel including a signal line having a two-layer structure, and method for manufacturing the same
A display panel includes a base layer, a signal line which is disposed on the base layer and includes a first layer including aluminum and a second layer disposed directly on the first layer and consisting of niobium, a first thin film transistor connected to the signal line, a second thin film transistor disposed on the base layer, a capacitor electrically connected to the second thin film transistor, and a light emitting element electrically connected to the second thin film transistor.
US11581395B2 Display device and electronic device
A display device and electronic device are disclosed. In one example, a display device includes a pixel array portion including pixels arrayed in a matrix having a row direction and a column direction. The pixels each respectively including a light emission unit. A fixed potential line surrounds the pixel array portion in a frame portion outside the pixel array portion, and a pixel portion auxiliary cable is arranged to extend across the pixel array portion. The pixel portion auxiliary cable is interlayer connected to the fixed potential line at a location in the frame portion outside the pixel array portion.
US11581390B2 Display device and manufacturing method thereof
A display device including: a substrate; an active layer, and including channel and conductive regions; a first conductive layer including a driving gate electrode and a scan line in a first direction; a second conductive layer including a storage line; a third conductive layer including a first connecting member above the storage line; an insulating layer between the storage line and the first connecting member; and a data line and a driving voltage line crossing the scan line in a second direction, wherein the first connecting member electrically connects the driving gate electrode and a conductive region, the driving voltage line overlaps the first connecting member, the insulating layer includes first and second sub-insulating layers, and an edge of the second sub-insulating layer substantially overlaps an edge of the first connecting member in a thickness direction of the display device.
US11581383B2 Array substrate and manufacturing method thereof, display panel and display device
The present disclosure provides an array substrate and a manufacturing method thereof, a display panel and a display device. The array substrate according to an embodiment of the present disclosure includes: a base substrate, and a plurality of pixel units located on the base substrate; each pixel unit at least includes a driving transistor and a light-emitting device; the array substrate further includes: a shielding layer located between a layer where a gate of a driving transistor in each of the pixel units is located and a layer where a first electrode of the light-emitting device is located.
US11581382B2 Display device and capacitor plates including different size holes
A display device includes a scan line extending in a direction, a data line and a driving voltage line extending in another direction, a transistor electrically connected to the driving voltage line and including a first gate electrode and a first semiconductor layer, a second transistor electrically connected to the scan and data lines and including a second gate electrode and a second semiconductor layer, a first capacitor electrically connected to the first transistor and including first and second capacitor plates, and a second capacitor including a third capacitor plate electrically connected to the first transistor and a fourth capacitor plate electrically connected to the second transistor. The second capacitor plate includes a first hole overlapping the first capacitor plate, the fourth capacitor plate includes a second hole overlapping the third capacitor plate, and a size of the second hole is different from that of the first hole.
US11581378B2 Display apparatus having pixel electrodes arranged on a planarization layer
A display apparatus includes first and second subpixel electrodes on a planarization layer including first and second via holes. The first subpixel includes a first pixel definition layer including a first opening exposing a portion of a first pixel electrode corresponding to a first emission portion. The first pixel electrode is connected to a first pixel circuit through the first via hole. The second subpixel includes a second pixel definition layer including a second opening exposing a portion of a second pixel electrode corresponding to a second emission portion. The second pixel electrode is connected to a second pixel circuit through the second via hole. A second distance defined as a shortest distance from an inner surface of the second opening to the second via hole is greater than a first distance defined as a shortest distance from an inner surface of the first opening to the first via hole.
US11581376B2 Method of manufacturing display apparatus
A method of manufacturing a display apparatus includes forming a thin-film transistor on a substrate and forming a planarization layer to cover the thin-film transistor, forming, on the planarization layer, a pixel electrode electrically connected to the thin-film transistor and a pixel defining layer exposing at least a center portion of the pixel electrode, and defining at least one groove having a closed curve shape at a location corresponding to a second non-display area. When the thin-film transistor is formed, a voltage line is also formed at a location corresponding to a first non-display area. When the at least one groove is formed, a portion of the planarization layer disposed between the pad area and the display area is simultaneously removed such that a portion of the voltage line between the pad area and the display area is exposed.
US11581370B2 Photoelectric conversion element and imaging device
A photoelectric conversion element according to an embodiment of the present disclosure includes: a first electrode including a plurality of electrodes independent from each other; a second electrode disposed to be opposed to the first electrode; an n-type photoelectric conversion layer including a semiconductor nanoparticle, the n-type photoelectric conversion layer being provided between the first electrode and the second electrode; and a semiconductor layer including an oxide semiconductor material, the semiconductor layer being provided between the first electrode and the n-type photoelectric conversion layer.
US11581366B2 Memory cell device with thin-film transistor selector and methods for forming the same
A memory structure, device, and method of making the same, the memory structure including a surrounding gate thin film transistor (TFT) and a memory cell stacked on the GAA transistor. The GAA transistor includes: a channel comprising a semiconductor material; a source electrode electrically connected to a first end of the channel; a drain electrode electrically connected to an opposing second end of the channel; a high-k dielectric layer surrounding the channel; and a gate electrode surrounding the high-k dielectric layer. The memory cell includes a first electrode that is electrically connected to the drain electrode.
US11581361B2 Packaging methods of semiconductor devices
Disclosed herein is a method comprising: forming a first electrically conductive layer on a first surface of a substrate of semiconductor, wherein the first electrically conductive layer is in electrical contact with the semiconductor; bonding, at the first electrically conductive layer, a support wafer to the substrate of semiconductor; thinning the substrate of semiconductor.
US11581358B2 Optical sensor device
According to one embodiment, an optical sensor device includes an insulating substrate, a first conductive layer and an optical sensor element disposed between the insulating substrate and the first conductive layer. The optical sensor element is electrically connected to the first conductive layer and covered by the first conductive layer. The optical sensor element includes a first semiconductor layer formed of an oxide semiconductor and controls an amount of charge flowing to the first conductive layer according to an amount of incident light to the first semiconductor layer.
US11581357B2 Image sensor comprising entangled pixel
A depth sensor includes a first pixel including a plurality of first photo transistors each receiving a first photo gate signal, a second pixel including a plurality of second photo transistors each receiving a second photo gate signal, a third pixel including a plurality of third photo transistors each receiving a third photo gate signal, a fourth pixel including a plurality of fourth photo transistors each receiving a fourth photo gate signal, and a photoelectric conversion element shared by first to fourth photo transistors of the plurality of first to fourth photo transistors.
US11581352B2 Increased optical path for long wavelength light by grating structure
Some aspects of the present disclosure relate to a method. In the method, a semiconductor substrate is received. A photodetector is formed in the semiconductor substrate. An interconnect structure is formed over the photodetector and over a frontside of the semiconductor substrate. A backside of the semiconductor substrate is thinned, the backside being furthest from the interconnect structure. A ring-shaped structure is formed so as to extend into the thinned backside of the semiconductor substrate to laterally surround the photodetector. A series of trench structures are formed to extend into the thinned backside of the semiconductor substrate. The series of trench structures are laterally surrounded by the ring-shaped structure and extend into the photodetector.
US11581350B2 Semiconductor optical sensor for visible and ultraviolet light detection and corresponding manufacturing process
A semiconductor optical sensor (1) is provided with: a substrate (2) integrating a plurality of photodetector active areas (4); and a CMOS layer stack (6) arranged on the substrate (2) and including a number of dielectric (6a) and conductive (6b) layers. UV conversion regions (10) are arranged above a number of first photodetector active areas (4) to convert UV light radiation into visible light radiation towards the first photodetector active areas (4), so that the first photodetector active areas (4) are designed to detect UV light radiation. In particular, the first photodetector active areas (4) are alternated to a number of second photodetector active areas (4), designed to detect visible light radiation, in an array (15) of photodetection units (16) of the optical sensor (1), defining a single image detection area (15′), sensitive to both UV and visible light radiation with a same spatial resolution.
US11581349B2 Backside refraction layer for backside illuminated image sensor and methods of forming the same
Photosensors may be formed on a front side of a semiconductor substrate. An optical refraction layer having a first refractive index may be formed on a backside of the semiconductor substrate. A grid structure including openings is formed over the optical refraction layer. A masking material layer is formed over the grid structure and the optical refraction layer. The masking material layer may be anisotropically etched using an anisotropic etch process that collaterally etches a material of the optical refraction layer and forms non-planar distal surface portions including random protrusions on physically exposed portions of the optical refraction layer. An optically transparent layer having a second refractive index that is different from the first refractive index may be formed on the non-planar distal surface portions of the optical refraction layer. A refractive interface refracts incident light in random directions, and improves quantum efficiency of the photosensors.
US11581344B2 Image sensors
Image sensors are provided. The image sensors may include a substrate including first, second, third and fourth regions, a first photoelectric conversion element in the first region, a second photoelectric conversion element in the second region, a third photoelectric conversion element in the third region, a fourth photoelectric conversion element in the fourth region, a first microlens at least partially overlapping both the first and second photoelectric conversion elements, and a second microlens at least partially overlapping both the third and fourth photoelectric conversion elements. The image sensors may also include a floating diffusion region and first, second and third pixel transistors configured to perform different functions from each other. Each of the first, second and third pixel transistors may be disposed in at least one of first, second, third and fourth pixel regions. The first pixel transistor may include multiple first pixel transistors.
US11581342B2 Array substrate, manufacturing method thereof, and display apparatus
An array substrate includes a substrate, a protection layer, and a photodiode. The protection layer is disposed over the substrate, has a single layer-structure, and is provided with a through-hole therein. The photodiode includes a lower electrode, a PN junction and an upper electrode, which are sequentially over the substrate. The PN junction is within the through-hole. The protection layer and the PN junction of the photodiode have a substantially same thickness. The array substrate further includes a thin-film transistor over the substrate. An orthographic projection of an active layer of the thin-film transistor on the substrate does not overlap with an orthographic projection of the PN junction of the photodiode on the substrate.
US11581338B2 Optimization of semiconductor cell of vertical field effect transistor (VFET)
A vertical field effect transistor (VFET) cell implementing a VFET circuit over a plurality of gate grids includes: a 1st circuit including at least one VFET and provided over at least one gate grid; and a 2nd circuit including at least one VFET and provided over at least one gate grid formed on a left or right side of the 1st circuit, wherein a gate of the VFET of the 1st circuit is configured to share a gate signal or a source/drain signal of the VFET of the 2nd circuit, and the 1st circuit is an (X−1)-contacted poly pitch (CPP) circuit, which is (X−1) CPP wide, converted from an X-CPP circuit which is X CPP wide and performs a same logic function as the (X−1)-CPP circuit, X being an integer greater than 1.
US11581337B2 Three-dimensional memory device and manufacturing method thereof
A memory device includes a first stacking structure, a second stacking structure, a plurality of first isolation structures, gate dielectric layers, channel layers and channel layers. The first stacking structure includes a plurality of first gate layers, and a second stacking structure includes a plurality of second gate layers, where the first stacking structure and the second stacking structure are located on a substrate and separated from each other through a trench. The first isolation structures are located in the trench, where a plurality of cell regions are respectively confined between two adjacent first isolation structures of the first isolation structures in the trench, where the first isolation structures each includes a first main layer and a first liner surrounding the first main layer, where the first liner separates the first main layer from the first stacking structure and the second stacking structure. The gate dielectric layers are respectively located in one of the cell regions, and cover opposing sidewalls of the first stacking structure and the second stacking structure as well as opposing sidewalls of the first isolation structures. The channel layers respectively cover an inner surface of one of the gate dielectric layers. The conductive pillars stand on the substrate within the cell regions, and are laterally surrounded by the channel layers, where at least two of the conductive pillars are located in each of the cell regions, and the at least two conductive pillars in each of the cell regions are laterally separated from one another.
US11581332B2 Three-dimensional memory devices and fabrication methods thereof
Embodiments of a three-dimensional (3D) memory device are provided. The 3D memory device includes a stack structure over a substrate. The stack structure includes a plurality of conductor layers insulated from one another by a gate-to-gate dielectric structure. The gate-to-gate dielectric structure includes a gate-to-gate dielectric layer between adjacent conductor layers along a vertical direction perpendicular to a top surface of the substrate. The 3D memory device also includes a channel structure extending in the stack structure. The channel structure includes a memory layer that protrudes towards the gate-to-gate dielectric layer.
US11581331B2 Semiconductor memory device and method of fabricating the same
A semiconductor memory includes metallic lines on a substrate and including an uppermost metallic line, a semiconductor conduction line on the uppermost metallic line, a vertical structure penetrating the semiconductor conduction line and metallic lines, and including a vertical structure that includes an upper channel film, a first lower channel film, and an upper connection channel film connecting the upper channel film and the first lower channel film between a bottom of the semiconductor conduction line and a bottom of the uppermost metallic line, and a first cutting line through the metallic lines and the semiconductor conduction line, and including a first upper cutting line through the semiconductor conduction line, and a first lower cutting line through the plurality of metallic lines, a width of the first upper cutting line being greater than a width of an extension line of a sidewall of the first lower cutting line.
US11581330B2 Memory array and method used in forming a memory array comprising strings of memory cells
A memory array comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Dummy pillars extend through the insulative tiers and the conductive tiers. A lowest of the conductive tiers comprises conducting material and dummy-region material that is aside and of different composition from that of the conducting material. The channel-material strings extend through the conducting material of the lowest conductive tier. The dummy pillars extend through the dummy-region material of the lowest conductive tier. Other embodiments, including method, are disclosed.
US11581327B2 Three-dimensional flash memory with reduced wire length and manufacturing method therefor
A three-dimensional flash memory is provided, and technique to suppress interference caused by an inter-cell insulation layer in a vertical cell and to form a stable vertical channel layer, a technique to reduce a length of wire than a conventional three-dimensional flash memory for overcoming problems of deterioration of chip characteristics such as operation speed and power consumption and difficulty of wiring technique in the manufacturing process, and a technique to improve horizontal density of channel layers and ONO layers are proposed.
US11581326B2 Three-dimensional semiconductor memory device
A three-dimensional semiconductor memory device is disclosed. The device may include a substrate including a cell array region and a connection region provided at an end portion of the cell array region, an electrode structure extending from the cell array region to the connection region, the electrode structure including electrodes sequentially stacked on the substrate, an upper insulating layer provided on the electrode structure, a first horizontal insulating layer provided in the upper insulating layer and extending along the electrodes, and first contact plugs provided on the connection region to penetrate the upper insulating layer and the first horizontal insulating layer. The first horizontal insulating layer may include a material having a better etch-resistive property than the upper insulating layer.
US11581324B2 Charge storage apparatus and methods
Methods of forming multi-tiered semiconductor devices are described, along with apparatus and systems that include them. In one such method, an opening is formed in a tier of semiconductor material and a tier of dielectric. A portion of the tier of semiconductor material exposed by the opening is processed so that the portion is doped differently than the remaining semiconductor material in the tier. At least substantially all of the remaining semiconductor material of the tier is removed, leaving the differently doped portion of the tier of semiconductor material as a charge storage structure. A tunneling dielectric is formed on a first surface of the charge storage structure and an intergate dielectric is formed on a second surface of the charge storage structure. Additional embodiments are also described.
US11581314B2 Integrated circuits and manufacturing methods thereof
An integrated circuit includes a first diffusion area for a first type transistor. The first type transistor includes a first drain region and a first source region. A second diffusion area for a second type transistor is separated from the first diffusion area. The second type transistor includes a second drain region and a second source region. A gate electrode continuously extends across the first diffusion area and the second diffusion area in a routing direction. A first metallic structure is electrically coupled with the first source region. A second metallic structure is electrically coupled with the second drain region. A third metallic structure is disposed over and electrically coupled with the first and second metallic structures. A width of the first metallic structure is substantially equal to or larger than a width of the third metallic structure.
US11581311B2 Semiconductor device
A semiconductor device includes a fin-type pattern extending in a first direction, a device isolation film surrounding the fin-type pattern, while exposing an upper portion of the fin-type pattern, a gate electrode extending on the device isolation film and the fin-type pattern in a second direction intersecting the first direction, a gate isolation film isolating the gate electrode in the second direction, and including a first material and on the device isolation film, an interlayer insulating film filling a side surface of the fin-type pattern and including a second material different from the first material.
US11581307B2 Semiconductor device
The object is to provide a semiconductor device that prevents a snapback operation and has excellent heat dissipation. The semiconductor device includes a semiconductor substrate, transistor portions, diode portions, a surface electrode, and external wiring. The transistor portions and the diode portions are provided in the semiconductor substrate and are arranged in one direction parallel with the surface of the semiconductor substrate. A bonding portion of the external wiring is connected to the surface electrode. The transistor portions and the diode portions are provided in a first region and a second region and alternately arranged in the one direction. A first transistor width and a first diode width in the first region are smaller than a width of the bonding portion. A second transistor width and a second diode width in the second region are larger than the width of the bonding portion.
US11581303B2 Electronic circuit
An electronic circuit includes a first electronic component formed above a buried insulating layer of a substrate and a second electronic component formed under the buried insulating layer. The insulating layer is thoroughly crossed by a semiconductor well. The semiconductor well electrically couples a terminal of the first electronic component to a terminal of the second electronic component.
US11581302B2 Interconnected vertical diode group
An ESD protection diode in a semiconductor device includes: a semiconductor substrate; a diode group that has a plurality of grouped VNW diodes, each of the VNW diodes having a VNW having a lower end and an upper end, that are formed on the semiconductor substrate and have a semiconductor material; and a top plate that is formed above the diode group and is a conductive layer electrically connected to the upper ends of the VNWs of the respective VNW diodes, and there is fabricated the semiconductor device that is capable of, even when large current flows through the VNW diode, suppressing current concentration and preventing damage of the VNW diode.
US11581296B2 Light emitting substrate, light emitting motherboard, method for obtaining light emitting substrate, and displaying device
A light emitting substrate, a light emitting motherboard, a method for obtaining a light emitting substrate, and a displaying device. The light emitting substrate comprises a substrate and multiple light emitting units, wherein the substrate is provided with a light emitting region and a bind region located on one side of the light emitting region; each light emitting unit comprises a light zone provided with at least one light emitting diode and a drive circuit provided with multiple pins, and the multiple light emitting units are arranged on the substrate in an array; a direction pointing from the light emitting region to the bind region is a first direction; and in the first direction, the drive circuit of at least one light emitting unit in the last row of the light emitting units is connected to an address line.
US11581293B2 Light emitting device
A light emitting device is provided. The light emitting device includes a light emitting assembly having a first light emitting diode package structure and a second light emitting diode package structure. The light emitting assembly can generate a mixed light source having a spectral deviation index. The first light emitting diode package structure can generate a first light source having a first spectral deviation index. The second light emitting diode package structure can generate a second light source having a second spectral deviation index. When the first light source and the second light source are within a range from 460 to 500 nm, a sum of the first spectral deviation index and the second spectral deviation index is within a range from −0.3 to 0.3, and a difference between the first spectral deviation index and the second spectral deviation index is at least greater than 0.2.
US11581288B2 RF devices with enhanced performance and methods of forming the same
The present disclosure relates to a radio frequency device that includes a transfer device die and a multilayer redistribution structure underneath the transfer device die. The transfer device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion and a transfer substrate. The FEOL portion includes isolation sections and an active layer surrounded by the isolation sections. A top surface of the device region is planarized. The transfer substrate including a porous silicon (PSi) region resides over the top surface of the device region. Herein, the PSi region has a porosity between 1% and 80%. The multilayer redistribution structure includes a number of bump structures, which are at a bottom of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die.
US11581287B2 Chip scale thin 3D die stacked package
Embodiments disclosed herein include an electronics package comprising stacked dies. In an embodiment, the electronics package comprises a first die that includes a plurality of first conductive interconnects extending out from a first surface of the first die. In an embodiment, the first die further comprises a keep out zone. In an embodiment, the electronic package may also comprise a second die. In an embodiment, the second die is positioned entirely within a perimeter of the keep out zone of the first die. In an embodiment, a first surface of the second die faces the first surface of the first die.
US11581283B2 Flip chip package and circuit board thereof
A flip chip package includes a circuit board, a chip and a solder layer. The chip is mounted on an inner bonding area of the circuit board. The solder layer is located between the circuit board and the chip for bonding bumps to inner leads and a T-shaped circuit unit is on the inner bonding area. The T-shaped circuit unit has a main part, a connection part, and a branch part. The connection part is connected to the main and branch parts, respectively. The main part extends along a lateral direction and the branch part extends outwardly along a longitudinal direction. The connection part is narrower than the main part in width so as to inhibit solder shorts caused by solder overflow on the branch part.
US11581278B2 Semiconductor device and method of forming the same
A semiconductor device includes a first layer including a plurality of wirings arranged in line and space layout and a second layer including a pad electrically connected to at least one of the wirings, wherein the wirings and the pads are patterned by different lithographic processes.
US11581272B2 Contactless high-frequency interconnect
Embodiments may relate to a multi-chip microelectronic package that includes a first die and a second die coupled to a package substrate. The first and second dies may have respective radiative elements that are communicatively coupled with one another such that they may communicate via an electromagnetic signal with a frequency at or above approximately 20 gigahertz (GHz). Other embodiments may be described or claimed.
US11581271B2 Methods to pattern TFC and incorporation in the ODI architecture and in any build up layer of organic substrate
Embodiments include semiconductor packages. A semiconductor package includes a plurality of build-up layers and a plurality of conductive layers in the build-up layers. The conductive layers include a first conductive layer and a second conductive layer. The first conductive layer is over the second conductive layer and build-up layers, where a first via couples the first and second conductive layers. The semiconductor package also includes a thin film capacitor (TFC) in the build-up layers, where a second via couples the TFC to the first conductive layer, and the second via has a thickness less than a thickness of the first via. The first conductive layer may be first level interconnects. The build-up layers may be dielectrics. The TFC may include a first electrode, a second electrode, and a dielectric. The first electrode may be over the second electrode, and the dielectric may be between the first and second electrodes.
US11581265B2 Semiconductor device including paired marks and method for manufacturing semiconductor device
A semiconductor device of an embodiment includes a plurality of chip regions, each including a memory region in which a plurality of memory cells is arranged, and a kerf region disposed between the chip regions and surrounding each chip region. Paired marks are arranged in a vicinity of the memory region of one of the plurality of chip regions and in a common hierarchical layer in the kerf region, and the paired marks are disposed over upper and lower hierarchical layers.
US11581257B2 Semiconductor package
A semiconductor package is provided. The semiconductor package includes a lower structure including an upper insulating layer and an upper pad; and a semiconductor chip provided on the lower structure and comprising a lower insulating layer and a lower pad. The lower insulating layer is in contact with and coupled to the upper insulating layer and the lower pad is in contact with and coupled to the upper pad, and a lateral side of the semiconductor chip extends between an upper side and a lower side of the semiconductor chip and comprises a recessed portion.
US11581255B2 Comparison circuit including input sampling capacitor and image sensor including the same
A comparison circuit that includes an input sampling capacitor and an image sensor including the same are provided. The comparison circuit includes an amplifier configured to receive a pixel signal and a ramp signal to perform a correlated double sampling operation, a first pixel capacitor connected to the amplifier through a first floating node and configured to transmit the pixel signal, a first ramp capacitor connected to the amplifier through a second floating node and configured to transmit the ramp signal, a second pixel capacitor connected in parallel to the first pixel capacitor, and a second ramp capacitor connected in parallel to the first ramp capacitor, wherein the second pixel capacitor is formed between the first floating node and first peripheral routing lines, and the second ramp capacitor is formed between the second floating node and second peripheral routing lines.
US11581252B2 Semiconductor module and wire bonding method
A semiconductor module includes at least two semiconductor elements connected in parallel; a control circuit board placed between the at least two semiconductor elements; a control terminal for external connection; a first wiring member that connects the control terminal and the control circuit board; and a second wiring member that connects a control electrode of one of the at least two semiconductor elements and the control circuit board, wherein the second wiring member is wire-bonded from the control electrode towards the control circuit board, and has a first end on the control electrode and a second end on the control circuit board, the first end having a cut end face facing upward normal to a surface of the control electrode and the second end having a cut end face facing sideways parallel to a surface of the control circuit board.
US11581248B2 Semiconductor package
A semiconductor package includes a base substrate; an interposer substrate including a semiconductor substrate having a first surface facing the base substrate and a second surface, opposing the first surface, and a passivation layer on at least a portion of the first surface; a plurality of connection bumps between the base substrate and the interposer substrate; an underfill resin in a space between the base substrate and the interposer substrate; and a first semiconductor chip and a second semiconductor chip on the interposer substrate. The interposer substrate has a first region, in which the plurality of connection bumps are included, and a second region and a third region adjacent a periphery of the first region, and the passivation layer is in the second region and includes a first embossed pattern in the second region.
US11581247B2 Semiconductor device resistant to thermal cracking and manufacturing method thereof
The semiconductor device includes: a heat spreader; a semiconductor element joined to the heat spreader via a first joining member; a first lead frame joined to the heat spreader via a second joining member; a second lead frame joined to the semiconductor element via a third joining member; and a mold resin. In a cross-sectional shape obtained by cutting at a plane perpendicular to a one-side surface of the heat spreader, an angle on the third joining member side out of two angles formed by a one-side surface of the semiconductor element and a straight line connecting an end point of a joining surface between the third joining member and the semiconductor element and an end point of a joining surface between the third joining member and the second lead frame, is not smaller than 90° and not larger than 135°.
US11581246B2 Semiconductor device package and semiconductor device
A semiconductor device package is disclosed. The package according to one example includes a base having a main surface made of a metal, a dielectric side wall having a bottom surface facing the main surface, a joining material containing silver (Ag) and joining the main surface of the base and the bottom surface of the side wall to each other, a lead made of a metal joined to an upper surface of the side wall on a side opposite to the bottom surface, and a conductive layer not containing silver (Ag). The conductive layer is provided between the bottom surface and the upper surface of the side wall at a position overlapping the lead when viewed from a normal direction of the main surface. The conductive layer is electrically connected to the joining material, extends along the bottom surface, and is exposed from a lateral surface of the side wall.
US11581245B2 Power electronic switching device with a three-dimensionally preformed insulation molding and a method for its manufacture
A power electronic switching device has a substrate facing in a normal direction with a first and a second conductive track, and a power semiconductor component is arranged on the first conductive track by an electrically conductive connection. The power semiconductor component has a laterally surrounding edge and an edge region and a contact region on its first primary side facing away from the substrate, and with a three-dimensionally preformed insulation molding that has an overlap segment, a connection segment and an extension segment, wherein the overlap segment, starting from the edge partially overlaps the edge region of the power semiconductor component.
US11581243B2 CPU cooling system with direct spray cooling
There is described a spray chamber for cooling a computer processor on a circuit board. The spray chamber comprises: a wall assembly for sealable mounting on an exposed cooling surface of the computer processor defining an enclosure having a top opening and a bottom opening which opens on the top surface of the computer processor; and a lid for covering the top opening of the wall assembly in a sealable manner, the lid having a nozzle which sprays coolant that impinges on the exposed cooling surface of the computer processor.
US11581240B2 Liquid thermal interface material in electronic packaging
An integrated circuit package that includes a liquid phase thermal interface material (TIM) is described. The package may include any number of die. The liquid phase TIM can be sealed in a chamber between a die and an integrated heat spreader and bounded on the sides by a perimeter layer. The liquid phase TIM can be fixed in place or circulated, depending on application. A thermal conductivity of the liquid phase TIM can be at least 15 Watts/meter-Kelvin, according to some embodiments. A liquid phase TIM eliminates failure mechanisms present in solid phase TIMs, such as cracking due to warpage and uncontained flow out of the module.
US11581239B2 Lead-free solder paste as thermal interface material
Some implementations of the disclosure are directed to a thermal interface material. In some implementations, a method comprises: applying a solder paste between a surface of a heat generating device and a surface of a heat transferring device to form an assembly; and reflow soldering the assembly to form a solder composite, wherein the solder composite provides a thermal interface between the heat generating device and the heat transferring device, wherein the solder paste comprises: a solder powder; particles having a higher melting temperature than a soldering temperature of the solder paste, wherein the solder paste has a volume ratio of solder powder to high melting temperature particles between 5:1 and 1:1.5; and flux.
US11581234B2 Semiconductor package with improved heat dissipation
A semiconductor package including a semiconductor chip, an interposer on the semiconductor chip, and a molding layer covering at least a portion of the semiconductor chip and at least a portion of the interposer may be provided. The interposer includes a interposer substrate and a heat dissipation pattern penetrating the interposer substrate and electrically insulated from the semiconductor chip. The heat dissipation pattern includes a through electrode disposed in the interposer substrate and an upper pad disposed on an upper surface of the interposer substrate and connected to the through electrode. The molding layer covers at least a portion of a sidewall of the upper pad and the upper surface of the interposer substrate. At least a portion of an upper surface of the upper pad is not covered by the molding layer.
US11581233B2 Semiconductor device and method of forming electrical circuit pattern within encapsulant of SIP module
A semiconductor device has an electronic component assembly with a substrate and a plurality of electrical components disposed over the substrate. A conductive post is formed over the substrate. A molding compound sheet is disposed over the electrical component assembly. A carrier including a first electrical circuit pattern is disposed over the molding compound sheet. The carrier is pressed against the molding compound sheet to dispose a first encapsulant over and around the electrical component assembly and embed the first electrical circuit pattern in the first encapsulant. A shielding layer can be formed over the electrical components assembly. The carrier is removed to expose the first electrical circuit pattern. A second encapsulant is deposited over the first encapsulant and the first electrical circuit pattern. A second electrical circuit pattern is formed over the second encapsulant. A semiconductor package is disposed over the first electrical circuit pattern.
US11581229B2 Power semiconductor module with adhesive filled tapered portion
Provided is a power semiconductor module that can secure insulating properties. A semiconductor element is mounted on a resin-insulated base plate including a circuit pattern, a resin insulating layer, and a base plate. A case enclosing the resin-insulated base plate is bonded to the resin insulating layer with an adhesive. The resin insulating layer and the case are bonded together with a region enclosed by the resin insulating layer and a tapered portion of the case formed closer to the resin insulating layer being filled with the adhesive made of a material identical to that of the sealing resin. Air bubbles in the adhesive appear in the tapered portion opposite to the resin insulating layer.
US11581228B2 Display panel
A display panel is provided. The display panel includes a plurality of signal lines and a testing circuit. The testing circuit includes a plurality of transistors electrically connected to the plurality of signal lines. The plurality of transistors are disposed in at least two groups, and a number of transistors of each group of the at least two groups is less than a total number of the plurality of signal lines. Therefore, the testing circuit of the display panel of the disclosure can reduce the circuit placement space in the horizontal direction.
US11581224B2 Method for forming long channel back-side power rail device
A method of forming a semiconductor transistor device. The method comprises forming a fin-shaped channel structure over a substrate and forming a first source/drain epitaxial structure and a second source/drain epitaxial structure on opposite endings of the fin structure. The method further comprises forming a metal gate structure surrounding the fin structure. The method further comprises flipping and partially removing the substrate to form a back-side capping trench while leaving a lower portion of the substrate along upper sidewalls of the first source/drain epitaxial structure and the second source/drain epitaxial structure as a protective spacer. The method further comprises forming a back-side dielectric cap in the back-side capping trench.
US11581219B2 Semiconductor structure and forming method thereof
The present disclosure relates to the field of semiconductor packaging processes, and provides a semiconductor structure and a forming method thereof. The forming method includes: providing a semiconductor substrate, where a surface of the semiconductor substrate is provided with an exposed conductive structure; forming a passivation layer on the surface of the semiconductor substrate and a surface of the exposed conductive structure; etching the passivation layer to form a recess, where a bottom of the recess exposes one end of the conductive structure; forming an adhesion layer on a surface of the recess; and etching to form a hole in the bottom of the recess.
US11581218B2 Etch profile control of gate contact opening
A method comprises forming a gate structure between gate spacers; etching back the gate structure to fall below top ends of the gate spacers; forming a gate dielectric cap over the etched back gate structure; performing an ion implantation process to form a doped region in the gate dielectric cap; depositing a contact etch stop layer over the gate dielectric cap and an ILD layer over the contact etch stop layer; performing a first etching process to form a gate contact opening extending through the ILD layer and terminating prior to reaching the doped region of the gate dielectric cap; performing a second etching process to deepen the gate contact opening, wherein the second etching process etches the doped region of the gate dielectric cap at a slower etch rate than etching the contact etch stop layer; and forming a gate contact in the deepened gate contact opening.
US11581216B2 Semiconductor device structure with multiple liners and method for forming the same
The present disclosure provides a semiconductor device structure with a silicon-on-insulator (SOI) region and a method for forming the semiconductor device structure. The semiconductor device structure also includes a well region disposed in a semiconductor substrate, a first shallow trench isolation (STI) structure extending into the well region. The first STI structure comprises a first liner contacting the well region; a second liner covering the first liner and contacting the pad oxide layer and the pad nitride layer; a third liner covering the second liner, wherein the first liner, the second liner and the third liner are made of different materials; and a first trench filling layer disposed over the third liner and separated from the second liner by the third liner.
US11581214B2 Enhanced automatic wafer centering system and techniques for same
Systems and techniques for determining and correcting inter-wafer misalignments in a stack of wafers transported by a wafer handling robot. An enhanced automatic wafer centering system is provided that may be used to determine a smallest circle associated with the stack of wafers, which may then be used to determine whether or not the stack of wafer meets various process requirements and/or if a centering correction can be made to better align the wafers with a receiving station coordinate frame.
US11581207B2 Transport system
A transportation system for semiconductor module base plates includes a plurality of spacer elements. Each spacer element includes a distance holding element, a first pin on a first side of the distance holding element, and a second pin on a second side of the distance holding element. Each spacer element is configured to be arranged between two of a plurality of semiconductor module base plates. Each of the first pin and the second pin is configured to engage with a corresponding counterpart of one of the semiconductor module base plates when the corresponding spacer element is arranged between two of the semiconductor module base plates.
US11581203B2 Systems for integrating load locks into a factory interface footprint space
The disclosure describes devices, systems, and methods for integrating load locks into a factory interface footprint space. A factory interface for an electronic device manufacturing system can include an interior volume defined by a bottom, a top and a plurality of sides, a first load lock disposed within the interior volume of the factory interface, and a first factory interface robot disposed within the interior volume of the factory interface, wherein the first factory interface robot is configured to transfer substrates between a first set of substrate carriers and the first load lock.
US11581200B2 Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
There is provided a technique that includes: etching a portion of a first film formed on a surface of a substrate by performing a cycle a predetermined number of times, the cycle including: supplying an etching gas into a process chamber while raising an internal pressure of the process chamber in a state in which the substrate having the first film formed on the surface of the substrate is accommodated in the process chamber; and lowering the internal pressure of the process chamber by exhausting an interior of the process chamber in a state in which supply of the etching gas into the process chamber is stopped.
US11581197B2 Method for producing semiconductor device and intermediate for semiconductor device
This method for producing a semiconductor device comprises: a first step wherein a plurality of semiconductor chips are affixed onto a supporting substrate such that circuit surfaces of the semiconductor chips face the supporting substrate; a second step wherein a plurality of sealed layers are formed at intervals by applying the sealing resin onto the semiconductor chips by three-dimensional modeling method, each sealed layer containing one or more semiconductor chips embedded in a sealing resin; a third step wherein the sealed layers are cured or solidified; and a fourth step wherein sealed bodies are obtained by separating the cured or solidified sealed layers from the supporting substrate.
US11581195B2 Semiconductor package having wettable lead flank and method of making the same
A semiconductor package comprises a lead frame, a chip, and a molding encapsulation. The lead frame comprises one or more die paddles, a first plurality of leads, and a second plurality of leads. A respective end surface of each lead of the first plurality of leads and the second plurality of leads is plated with a metal. A first respective window on a first side of each lead of the first plurality of leads and the second plurality of leads is not plated with the metal. A second respective window on a second side of each lead of the first plurality of leads and the second plurality of leads is not plated with the metal. A method for fabricating a semiconductor package comprises the steps of providing a lead frame array, mounting a chip, forming a molding encapsulation, and applying a cutting process or a punching process.
US11581194B2 Sintering method using a sacrificial layer on the backside metallization of a semiconductor die
An electronic device comprises a semiconductor die, a layer stack disposed on the semiconductor die and comprising one or more functional layers, wherein the layer stack comprises a protection layer which is an outermost functional layer of the layer stack, and a sacrificial layer disposed on the protection layer, wherein the sacrificial layer comprises a material which decomposes or becomes volatile at a temperature between 100° and 400° C.
US11581192B2 Etching method and etching apparatus
An etching method is provided. In the etching method, a protective film-forming gas including an amine gas is supplied to a substrate having a surface on which a first film and a second film are formed, the first film and the second film having respective properties of being etched by an etching gas, and a protective film is formed to cover the first film such that the first film is selectively protected between the first film and the second film when the etching gas is supplied. Further, the second film is selectively etched by supplying the etching gas to the substrate after the protective film is formed.
US11581191B2 Semiconductor device structure and manufacturing method thereof
A semiconductor device structure and a manufacturing method thereof are provided. The semiconductor device structure includes a semiconductor substrate having an active component region and a non-active component region, a first dielectric layer, a second dielectric layer, high resistivity metal segments, dummy stacked structures and a metal connection structure. The high resistivity metal segments are formed in the second dielectric layer and located in the non-active component region. The dummy stacked structures are located in the non-active component region, and at least one dummy stacked structure penetrates through the first dielectric layer and the second dielectric layer and is located between two adjacent high resistivity metal segments. The metal connection structure is disposed on the second dielectric layer, and the high resistivity metal segments are electrically connected to one another through the metal connection structure.
US11581190B2 Method of fabricating semiconductor fins by differentially oxidizing mandrel sidewalls
A method of fabricating semiconductor fins, including, patterning a film stack to produce one or more sacrificial mandrels having sidewalls, exposing the sidewall on one side of the one or more sacrificial mandrels to an ion beam to make the exposed sidewall more susceptible to oxidation, oxidizing the opposite sidewalls of the one or more sacrificial mandrels to form a plurality of oxide pillars, removing the one or more sacrificial mandrels, forming spacers on opposite sides of each of the plurality of oxide pillars to produce a spacer pattern, removing the plurality of oxide pillars, and transferring the spacer pattern to the substrate to produce a plurality of fins.
US11581189B2 Controlled hardmask shaping to create tapered slanted fins
Embodiments described herein relate to methods forming optical device structures. One embodiment of the method includes exposing a substrate to ions at an ion angle relative to a surface normal of a surface of the substrate to form an initial depth of a plurality of depths. A patterned mask is disposed over the substrate and includes two or more projections defining exposed portions of the substrate or a device layer disposed on the substrate. Each projection has a trailing edge at a bottom surface contacting the device layer, a leading edge at a top surface of each projection, and a height from the top surface to the device layer. Exposing the substrate to ions at the ion angle is repeated to form at least one subsequent depth of the plurality of depths.
US11581185B2 Field effect transistor using transition metal dichalcogenide and a method for forming the same
In a method of forming a two-dimensional material layer, a nucleation pattern is formed over a substrate, and a transition metal dichalcogenide (TMD) layer is formed such that the TMD layer laterally grows from the nucleation pattern. In one or more of the foregoing and following embodiments, the TMD layer is single crystalline.
US11581182B2 Wafer cleaning apparatus, method for cleaning wafer and method for fabricating semiconductor device
A wafer cleaning apparatus, a method of cleaning wafer and a method of fabricating a semiconductor device are provided. The method of fabricating the semiconductor device includes disposing a wafer on a rotatable chuck, irradiating a lower surface of the wafer with a laser to heat the wafer, and supplying a chemical to an upper surface of the wafer to clean the wafer, wherein the laser penetrates an optical system including an aspheric lens array, the laser penetrates a calibration window, which includes a first window structure including a first light projection window including first and second regions different from each other, a first coating layer covering the first region of the first light projection window, and a second coating layer covering the second region of the first light projection window, and the first coating layer and the second coating layer have different light transmissivities from each other.
US11581178B2 Anomaly detection of gas flow parameters in mass spectrometry
A mass spectrometry (MS) apparatus is provided. The MS apparatus includes a mass spectrometer, an ionization source coupled to the mass spectrometer, and a flow injection system (FIS) coupled to the ionization source. The ionization source is configured to provide an ionized gas flow of an analyte towards an entrance of the mass spectrometer. The ionization source is further configured to provide a second gas flow of a second gas. The MS apparatus is configured to measure a mass spectrometer (MS) signal of the analyte. The MS apparatus is further configured to analyze a dependency of the MS signal of the analyte versus a parameter of the second gas flow or a state of the second gas flow and to determine a condition of the apparatus based on the analyzed dependency.
US11581177B2 System for introducing particle-containing samples to an analytical instrument and methods of use
Systems and methods for use in introducing samples to an analytical instrument. The systems and methods are adaptable to process either a liquid sample or a gaseous sample, including samples containing particle contaminants, for subsequent analysis using an analytical instrument.
US11581173B2 Apparatus for analysing ions
An apparatus for analysing ions, including a first mass analyser configured to eject groups of ions in a predetermined sequence during different time windows; an ion transport device having a plurality of electrodes arranged around a transport channel; control means configured to control voltages applied to the electrodes to generate a transport potential in a transport channel, the transport potential having a plurality of potential wells configured to move along the transport channel such that each group of ions received by the ion transport device is respectively transported along the transport channel by one or more selected potential; fragmentation means configured to fragment precursor ions in each group of ions so as to produce product ions; and a second mass analyser configured to produce a respective mass spectrum using each group of ions after the group of ions has been fragmented and transported.
US11581172B2 Method for mass spectrometry and mass spectrometer
In order to suppress a charge-up in an ion source configured to ionize a component contained in a sample gas, a mass spectrometer according to the present invention is provided with an ion source (3) including: an ionization chamber (30) having an ion ejection opening (301) and internally having a space substantially separated from an outside area; a repeller electrode (31), located within the ionization chamber, for creating an expelling electric field which acts on an ion generated within the ionization chamber to expel the ion through the ion ejection opening to the outside area; and a voltage generator (7) configured to selectively apply, to the repeller electrode, a first voltage for creating the expelling electric field and a second voltage for creating a charge-up-removing electric field, where the second voltage is a positive voltage having a larger absolute value than the first voltage.
US11581170B2 Plasma processing apparatus and processing method
A plasma processing apparatus includes: a first electrode on which a substrate is placed; a plasma generation source that generates plasma; a bias power supply that supplies bias power to the first electrode; a source power supply that supplies source power to the plasma generation source; and a controller. The controller performs a control such that a first state and a second state of the source power are alternately applied in synchronization with a high frequency cycle of the bias power, or a phase within one cycle of a reference electrical state indicating any one of a voltage, a current and an electromagnetic field measured in a power feed system of the bias power, and performs a control to turn OFF the source power at least at a negative side peak of the phase within one cycle of the reference electrical state.
US11581164B2 Metal plating of grids for ion beam sputtering
Provided herein are deposition systems utilizing coated grids in an ion deposition process which provide more predictable erosion of the coating rather than erosion of the grid itself. Further, coatings may be utilized in which the coating material does not act as a contaminant to the deposition process, thereby eliminating contamination of the sample surface due to deposition of unwanted grid material. Also provided are methods of refurbishing a coated grid by periodically replacing the coating material thus protecting the grid itself and allowing a grid to be used indefinitely.
US11581161B2 Systems and methods for etching a substrate
A method of processing a workpiece may include forming a first layer on a first side of a base layer. The base layer may be part of a substrate including a plurality of layers. The method may also include forming a second layer on the first layer. A material of the second layer may include metal. The method may also include forming an opening in the second layer, forming an opening in the first layer by etching, and removing the second layer. The method may include dry etching of the first layer.
US11581160B2 Methods and systems for x-ray tube with texturing
Various methods and systems are provided for a cathode cup having a surface texturing to aid in adherence of emitter deposited films. In one embodiment, a method may include chemically and/or mechanically texturing a surface of a cathode cup to form a plurality of features with a higher than threshold depth of each feature, the surface of the cathode cup facing an emitter coupled to the cathode cup.
US11581159B2 Circuit interrupters with ground fault modules and related methods
Circuit interrupter devices have a first housing with a circuit interrupter, a second housing coupled to the first housing, a ground fault circuit and current transformer in the second housing. The current transformer has an open channel. The circuit interrupter devices also include at least one power conductor having a rigid or semi-rigid body with opposing first and second end portions extending between the first and second housings. The second end portion of the at least one power conductor extends through the open channel in the current transformer and terminates in a breaker load collar(s).
US11581155B1 Rotary button
A rotary button is provided, including: a housing, a rotating member and an indicating mechanism. The housing includes at least one reference portion. The rotating member defines an axial direction and is non-rotatably disposed on the housing. The rotating member is movable relative to the housing in the axial direction and includes a threaded portion configured to be screwed with a threaded rod. The indicating mechanism is disposed on the housing and is axially interferable with the rotating member. The indicating mechanism includes at least one indicating portion. When the housing is rotated to drive the rotating member to move relative to the threaded rod and be abutted against an external object, the rotating member is axially interfered with the indicating mechanism and drives at least one said indicating portion to correspond to at least one said reference portion.
US11581152B2 Systems and methods for a disconnect switch assembly having a reversible fuse support block
A reversible fuse support block includes a molding, a terminal, and a fuser interface. The molding may be installed within a housing in a first position and a second position, wherein the second position is rotated 180 degrees relative to the first position. The terminal couples to the molding and includes a plurality of apertures disposed in a pattern. The fuse interface receives a first end of a fuse. The fuse interface couples to the terminal in a first arrangement and a second arrangement such that when the fuse interface is installed in the first arrangement and the molding is installed in the first position, the fuse interface is disposed in substantially the same position relative to a corresponding fuse interface on a fuse support block as when the fuse interface is installed in the second arrangement and the molding is installed in the second position.
US11581147B2 Electronic component
An electronic component includes: an ESD discharge member including a substrate having first and second surfaces opposing each other, first and second through-holes penetrating through the substrate, and first and second conductors; and a multilayer capacitor disposed on the first surface of the substrate, in which the multilayer capacitor may include: a capacitor body; and first and second external electrodes disposed outside the capacitor body and connected to the first and second conductors, respectively, and the first and second conductors may include first and second via electrodes coated on inner walls of the first and second through-holes, respectively.
US11581143B2 Multilayer ceramic capacitor and manufacturing method for same
A multilayer ceramic capacitor (10) has a laminate body (20) constituted by dielectric layers (17) and internal electrode layers (18) stacked alternately. The dielectric layers (17) contain (Ba(1-x-y)CaxSry)m(Ti(1-z)Zrz)O3, where 0.03≤x≤0.16, 0≤y≤0.02, 0
US11581137B2 Multilayer ceramic electronic component and electrically conductive paste for resin electrode
A multilayer ceramic capacitor includes a ceramic base body including ceramic layers and internal electrode layers, which are stacked on each other, and a pair of external electrodes provided on the end surfaces of the ceramic base body and electrically connected to the internal electrode layers. Each of the external electrodes includes an underlying electrode layer and a resin external electrode layer stacked on the underlying electrode layer. The resin external electrode layer includes a thermosetting resin, a metal powder, and an alkyl-based silane coupling agent.
US11581136B2 Capacitor carrier assembly with housing having expansion features
A carrier includes first and second container portions that are assembled together to provide a structure the supports and retains a capacitor. The first container portion and the second container portion are assembled together in a configuration in which the edges of the first wall structures face corresponding ones of the edges of the second wall structures, and the edges of the first wall structures are overlapping with respect to the corresponding ones of the edges of the second wall structures when the carrier is viewed in side view.
US11581132B2 Magnetic conductive substrate and coil assembly
A magnetic conductive substrate is provided and is used for wireless charging or wireless communication. The magnetic conductive substrate includes a first magnetic conductive layer, a second magnetic conductive layer, and a third magnetic conductive layer. The first magnetic conductive layer has a first magnetic permeability, the second magnetic conductive layer has a second magnetic permeability, and the third magnetic conductive layer has a third magnetic permeability. The second magnetic conductive layer is disposed between the first magnetic conductive layer and the third magnetic conductive layer, the first magnetic permeability is different from the second magnetic permeability, and the second magnetic permeability is different from the third magnetic permeability.
US11581131B2 Asymmetric 24-pulse autotransformer rectifier unit for turboelectric propulsion, and associated systems and methods
Asymmetric AC to DC autotransformer for turboelectric propulsion, and associated systems and methods are described herein. In one embodiment, an asymmetric AC to DC autotransformer includes: a first coil, a second coil and a third coil of a delta winding Each coil is energized at its corresponding input phase. A first plurality of correction windings coupled to the first coil, a second plurality of correction windings coupled to the second coil, and a third plurality of correction windings coupled to the third coil. A bridge rectifier having a plurality of rectifiers is coupled to respective individual correction windings. Phases of the individual correction windings are asymmetric such that individual phase voltages are controlled relative to the opposite input phase. Voltages are unbalanced relative to neutral.
US11581130B2 Internal thermal fault diagnosis method of oil-immersed transformer based on deep convolutional neural network and image segmentation
The disclosure provides an internal thermal fault diagnosing method for an oil-immersed transformer based on DCNN and image segmentation, including: 1) dividing an internal area of a transformer, and using fault areas and normal status as labels of DCNN; 2) through lattice Boltzmann simulation, randomly obtaining multiple feature images of the internal temperature field distribution of the transformer under normal and various fault state modes, and the fault area serves as a label to form the underlying training sample set; 3) obtaining historical monitoring information of the infrared camera or temperature sensor, and forming its corresponding fault diagnosis results into labels; 4) combining all monitoring information contained in each sample into one image, and then extracting the same monitoring information from the samples in the sample set to form a new image; 5) segmenting image sample and then inputting the same into DCNN for training to obtain diagnosis results.
US11581115B2 Superconducting coil module
A superconducting coil module includes: a first coil composed of a superconducting wire material wound multiple times; and a first heating device coupled to one surface of the first coil and including at least one first heating pattern controlling a threshold current for each turn of the first coil as a minimum threshold current, wherein at least one first heating pattern is disposed on a path according to a predetermined ratio between the inner and outer boundaries of the first coil.
US11581114B2 Magnetic powder and coil component comprising the same
A magnetic powder contains a magnetic metal particle comprising iron (Fe) and an insulating coating layer disposed on a surface of the magnetic metal particle and comprising tin (Sn), phosphorous (P) and oxygen (O), and a coil component contains such a magnetic powder.
US11581109B2 Suspended superconducting transmission lines
Power transmission systems with cooling mechanisms, and methods of operating the same, are described. A power transmission system can include multiple support tower assemblies. Each of the support tower assemblies includes a support tower. One or more of the support tower assemblies includes a termination (i.e., a connection point via which electrical current and/or coolant can enter the transmission line and/or exit the transmission line). The power transmission system also includes multiple conductor assemblies suspended above a surface of the earth. Each conductor assembly includes an electrical conductor and is positioned between, and mechanically supported by, a pair of the support towers. The power transmission system also includes a coolant supply system that delivers a coolant fluid, during operation of the power transmission system, to at least one of the terminations, for cooling of the conductor assemblies.
US11581103B2 Purification process for the preparation of non-carrier added copper-64
Compositions comprising high levels of high specific activity copper-64, and process for preparing said compositions. The compositions comprise from about 2 Ci to about 15 Ci of copper-64 and have specific activities up to about 3800 mCi copper-64 per microgram of copper. The processes for preparing said compositions comprise bombarding a nickel-64 target with a low energy, high current proton beam, and purifying the copper-64 from other metals by a process comprising ion exchange chromatography or a process comprising a combination of extraction chromatography and ion exchange chromatography.
US11581099B1 Automated home system for senior care
An improved home automation system is provided to facilitate senior care, as well as to facilitate care for individuals suffering from Alzheimer's disease or other dementias. A home control unit is provided that is connected to, and interfaces with, a combination of health equipment, smart home appliances, a smart medicine cabinet, a smart pantry, wearable sensors, motion detectors, video cameras, microphones, video monitors, speakers, smart thermostat, lighting, floor sensors, bed sensors, smoke detectors, glass breakage detectors, door sensors, and other perimeter sensors. A distributed computational architecture is provided having a CPU associated with each video camera and an associated proximate microphone and speaker, wherein speech detection and processing, and video processing, is performed by each such CPU in conjunction with its associated video camera, microphone, and speaker. Remote backup for such distributed speech processing is selectively provided by a remote server based upon confidence scopes generated by each such CPU. The distributed computational architecture is also utilized for video processing to facilitate peer-to-peer video conferencing communication using industry standard formats and to reduce latency and response times that would otherwise be encountered using remote servers.
US11581093B2 Automatic detection of mental health condition and patient classification using machine learning
Methods and systems are provided for detecting a mental health condition. Structured and unstructured information is analyzed using natural language processing to extract information including clinical data values and medical concepts pertaining to a user. Reference medical information is evaluated using natural language processing to correlate medical data with mental health conditions. A classification for a mental health condition of the user is determined using a machine learning model and based on the extracted information and correlations, wherein the extracted information includes blood analysis for the user. The user is assigned to a segment of users based on the extracted information. A treatment for the mental health condition of the user is indicated based on the classification and the assigned segment of users.
US11581085B1 Systems and methods for generating personalized nutrition prescriptions and modifying the personalized nutrition prescriptions based on feedback
System and method for generating personalized nutrition prescriptions and modifying the personalized nutrition prescriptions based on feedback. Exemplary implementations may: receive user input defining biometric information, physique goals associated with individual users, and/or other information; provide the nutrition prescriptions to the individual users based on the biometric information and the physique goals; provide the nutrition prescriptions to the individual users; obtain feedback from the individual users; modify the nutrition prescriptions based on comparison between the obtained feedback and projected progress towards the physique goals associated with the individual users; provide the modified nutrition prescriptions to the individual users; and/or other exemplary implementations.
US11581084B2 Systems and methods for generating an alimentary plan for managing skin disorders
A system for generating an alimentary plan is disclosed. The system comprises a computing device which is configured to receive an input that includes physiological data related to a skin sample. Computing device is configured to extract a plurality of biological indicators related to disease state from the physiological data. Computing device is configured to determine a biological indicator score for each biological score for each biological indicator of the plurality of biological indicators. Computing device is configured to generate a skin disorder classifier by receiving skin disorder training data. The computing device is configured to classify, using the skin disorder classifier, the at least one biological indicator and the biological indicator score to a positive result for a skin disorder. Computing device is configured to generate an alimentary plan as a function of the positive result. A method for generating an alimentary plan is also disclosed.
US11581083B2 Intra-aortic pressure forecasting
Aspects of the present disclosure describe systems and methods for predicting an intra-aortic pressure of a patient receiving hemodynamic support from a transvalvular micro-axial heart pump. In some implementations, an intra-aortic pressure time series is derived from measurements of a pressure sensor of the transvalvular micro-axial heart pump and a motor speed time series is derived from a measured back electromotive force of a motor of the transvalvular micro-axial heart pump. Furthermore, in some implementations, machine learning algorithms, such as deep learning, are applied to the intra-aortic pressure and motor speed time series to accurately predict an intra-aortic pressure of the patient. In some implementations, the prediction is short-term (e.g., approximately 5 minutes in advance).
US11581079B1 System and method for virtual review of a pharmaceutical product filling process
Image based and network controlled, security systems and methods are disclosed herein for securely dispensing pharmaceutical products onsite at a physical location. A server receives scanned prescription image corresponding to a prescription of a user and determines a pharmaceutical product and a pharmaceutical product amount of the pharmaceutical product. The server receives, from a pharmaceutical product imaging device positioned within a physically secured pharmacy area, images of the pharmaceutical product, and then transmits, to a visualization user interface application executing on a network computer positioned outside the physically secured pharmacy area, a visual confirmation of the pharmaceutical product and the pharmaceutical product amount. The server receives, from the visualization user interface application, a verification of the visual confirmation, and updates, based on the verification, the user account with a ready state corresponding to the prescription, wherein the ready state indicates that the user may receive the pharmaceutical product.
US11581078B2 Associating an information reader and a medical device
A device agent including an information accessor for accessing association information obtained via an information reader. The association information includes medical device information for uniquely identifying the medical device, and device agent information for facilitating in an association between the medical device and the information reader. The device agent also includes an associator for associating the medical device and the information reader based on the association information.
US11581075B2 Systems and methods for detecting documentation drop-offs in clinical documentation
In clinical documentation, mere documentation of a condition in a patient's records may not be enough. To be considered sufficiently documented, the patient's record needs to show that no documentation drop-offs (DDOs) have occurred over the course of the patient's stay. However, DDOs can be extremely difficult to detect. To solve this problem, the invention trains time-sensitive deep learning (DL) models on a per condition basis using actual and/or synthetic patient data. Utilizing an ontology, grouped concepts can be generated on the fly from real-time hospital data and used to generate time-series data that can then be analyzed by trained time-sensitive DL models to determine whether a DDO for a condition has occurred during the stay. Non-time-sensitive models can be used to detect all the conditions documented during the stay. Outcomes from the models can be compared to determine whether to notify a user that a DDO has occurred.
US11581074B2 Whisker and paw web application
Methods and apparatus of a smart electronic health records platform for veterinarians and human providers are disclosed. The platform integrates clinical IT systems with patient tracking whiteboards, billing processes and artificial intelligence software to increase efficiency of the patient treatment process. By aggregating many services into one platform, interaction and communication between clinics and patients will be enhanced and streamlined.
US11581070B2 Electronic medical record summary and presentation
Methods, devices, and systems (for outputting a case summary) receive an electronic medical record (EMR) (and generally electronic records) for the medical patient, extract medical data from the EMR, provide a list of medical problems relevant to the EMR, identifying relations between the medical problems and the medical data using a question-answering (QA) system, and output the clinical summary for the EMR. The clinical summary comprises the list of medical problems, the medical data, and the relations.
US11581069B2 Intelligent generation of customized questionnaires
Embodiments for intelligent generation of customized questions or questionnaires by a processor. One or more customized questions or questionnaires may be generated according to a user profile, similar profiles of alternative users, one or more historical interactions with the alternative users, one or more goals defined by a domain experts, domain knowledge, historical questions or questionnaires, or a combination thereof using a machine learning operation.
US11581068B2 Visualizing the documentation and coding of surgical procedures
Among other things, methods, systems and computer program products for providing visual indication of documentation and coding of medical procedures may include providing a choice of medical codes associated with a medical procedure. A user selection of one of the medical codes is detected. Based on the detection, a visual indication of the user selection is generated on one or more anatomical diagrams.
US11581063B2 Analysis of fragmentation patterns of cell-free DNA
Factors affecting the fragmentation pattern of cell-free DNA (e.g., plasma DNA) and the applications, including those in molecular diagnostics, of the analysis of cell-free DNA fragmentation patterns are described. Various applications can use a property of a fragmentation pattern to determine a proportional contribution of a particular tissue type, to determine a genotype of a particular tissue type (e.g., fetal tissue in a maternal sample or tumor tissue in a sample from a cancer patient), and/or to identify preferred ending positions for a particular tissue type, which may then be used to determine a proportional contribution of a particular tissue type.
US11581059B2 Method of predicting graft versus host disease
Embodiments of the invention describe to methods of diagnosing, classifying, and/or identifying a patient's risk of developing graft versus host disease, including severe or lethal graft versus host disease, after receiving hematopoietic cellular transplantation, a transfusion or a transplantation, but before the onset of clinical symptoms.
US11581057B2 Memory device and method of operating the same
A memory device includes a system block for storing test information and includes a data block including memory cells connected to a plurality of low bank column lines and a plurality of high bank column lines. The memory device also includes a column repair controller configured to detect, based on the test information, a concurrent repair column line in which a low bank column line among the plurality of low bank column lines and a high bank column line the plurality of high bank column lines corresponding to the same column address are concurrent repaired.
US11581055B2 Memory system
A memory system includes a memory device and a controller. The controller is coupled to the memory device through input/output (I/O) lines. The controller includes an interface component and a dummy power consumption component. The interface component performs a signal training operation for adjusting a timing of a clock signal, to which test data is synchronized. The dummy power consumption component performs a dummy power consumption operation while the signal training operation is performed.
US11581053B2 Memory device test mode access
A system includes a memory device and a processing device coupled to the memory device. The processing device is configured to switch an operating mode of the memory device between a test mode and a non-test mode. The system further includes a test mode access component that is configured to access the memory device while the memory device is in the test mode to perform a test mode operation.
US11581052B2 Memory system and method
According to one embodiment, a memory system includes a non-volatile memory and a controller. The memory includes a plurality of storage areas. Each of the storage areas includes a plurality of memory cells to which threshold voltages are set in accordance with data. The controller acquires a first threshold voltage distribution of memory cells in a first storage area of the storage areas. The controller acquires a second threshold voltage distribution of memory cells in a second storage area of the storage areas. The controller detects non-normalcy in the first storage area or the second storage area from a first divergence quantity between the first threshold voltage distribution and the second threshold voltage distribution.
US11581050B2 Memory device and method of operating the memory device
The present technology relates to an electronic device. A memory device that controls a voltage applied to each line to prevent or mitigate a channel negative boosting phenomenon during a sensing operation includes a memory block connected to a plurality of lines, a peripheral circuit configured to perform a sensing operation on selected memory cells connected to a selected word line among the plurality of lines, and control logic configured to control voltages applied to drain select lines, source select lines, and word lines between the drain select lines and the source select lines among the plurality of lines, during the sensing operation and an equalizing operation performed after the sensing operation. The control logic controls a voltage applied to an unselected drain select line according to whether a cell string is shared with a selected drain select line among the drain select lines, during the sensing operation.
US11581047B2 Iterative read calibration enhanced according to patterns of shifts in read voltages
A memory sub-system configured to use first values of a plurality of optimized read voltages to perform a first read calibration, which determines second values of the plurality of optimized read voltages. A plurality of shifts, from the first values to the second values respectively, can be computed for the plurality of optimized read voltages respectively. After recognizing a pattern in the plurality of shifts that are computed for the plurality of voltages respectively, the memory sub-system can control and/or initiate a second read calibration based on the recognized pattern in the shifts.
US11581046B2 Storage device and reading method
According to one embodiment, a storage device includes a nonvolatile memory and a controller. The controller is configured to read data from the nonvolatile memory by applying a read voltage to the nonvolatile memory. The controller is configured to correct the read voltage based on a difference between a measured value of a bit number obtained when the data is read from the nonvolatile memory by applying the read voltage to the nonvolatile memory and an expected value of the bit number.
US11581043B2 Memory device and method of operation
Discussed herein are systems and methods for charging an access line to a non-volatile memory cell during a standby state, such as to prevent or mitigate standby-state charge loss. An embodiment of a memory device comprises a memory cell, a string driver circuit, and a charging circuit. The string driver circuit is coupled to the memory cell via a local word line, and has a common p-well. The charging circuit, in response to a voltage of a global word line of the memory device falling below a reference voltage during a standby state, couple a supply voltage to the common p-well of the string driver circuit to charge the global word line to a positive bias potential. The memory device includes a leakage compensation circuit to compensate for the junction leakage.
US11581040B2 Semiconductor memory apparatus, operation method of the semiconductor memory apparatus and system including the semiconductor memory apparatus
A semiconductor memory apparatus may include a memory bank, a global buffer array, and an input and output circuit. The memory bank includes a local data circuit, and the global buffer array includes a global data circuit. The local data circuit is operably coupled to the global data circuit. The global buffer array may be operably coupled to the input and output circuit. The memory bank is disposed in a core region, and the global buffer array and the input and output circuit may be disposed in a peripheral region separated from the core region.
US11581039B2 Methods of controlling PCRAM devices in single-level-cell (SLC) and multi-level-cell (MLC) modes and a controller for performing the same methods
Various embodiments provide methods for configuring a phase-change random-access memory (PCRAM) structures, such as PCRAM operating in a single-level-cell (SLC) mode or a multi-level-cell (MLC) mode. Various embodiments may support a PCRAM structure being operating in a SLC mode for lower power and a MLC mode for lower variability. Various embodiments may support a PCRAM structure being operating in a SLC mode or a MLC mode based at least in part on an error tolerance for a neural network layer.
US11581035B2 Systems, devices, and methods for efficient usage of IO section breaks in memory devices
A memory device may include a memory array having a plurality of memory cells and a first column plane having multiple column select lines. The first column select lines of the first column plane may access a first set of the memory cells associated with the first column plane. Additionally, the memory device may include a second column plane having a multiple column select lines to access a second set of the memory cells associated with the second column plane. The memory device may also include a column select line shared between the first column plane and the second column plane. The column select line may access a third set of the memory cells associated with the first column plane and a fourth set of the memory cells associated with the second column plane.
US11581034B1 Sense amplification circuit and method of reading out data
The present disclosure provides a sense amplification circuit and a method of reading out data, including: a first PMOS transistor; a first NMOS transistor; a second PMOS transistor; a second NMOS transistor; a first control MOS transistor configured to provide a bias voltage to the first PMOS transistor according to a control signal; a second control MOS transistor configured to provide the bias voltage to the second PMOS transistor according to the control signal; a first offset cancellation MOS transistor configured to electrically connect an initial bit line to a first complementary readout bit line according to an offset cancellation signal; and a second offset cancellation MOS transistor configured to electrically connect an initial complementary bit line to a first readout bit line according to the offset cancellation signal.
US11581031B2 Memory with partial bank refresh
Memory with partial bank refresh is disclosed herein. In one embodiment, a memory system includes a memory controller and a memory device operably connected to the memory controller. The memory device includes (i) a memory array having a memory bank with a plurality of memory cells arranged in a plurality of memory rows and (ii) circuitry. In some embodiments, the circuitry is configured to disable at least one memory row of the memory bank from receiving refresh commands such that memory cells of the at least one memory row are not refreshed during refresh operations of the memory device. In some embodiments, the memory controller is configured to track memory rows that include utilized memory cells and/or to write data to the memory rows in accordance with a programming sequence of the memory device.
US11581029B2 Low standby power with fast turn on method for non-volatile memory devices
Systems and methods for driving a non-volatile memory device in a standby operating condition are disclosed. A standby detection circuit detects whether the non-volatile memory system is in a standby condition. In response to determining that the non-volatile memory system is in a standby condition, a bias control circuit provides bias currents to drivers of the non-volatile memory system in a standby mode.
US11581027B2 Memory sense amplifier trimming
A memory device, such as an MRAM memory, includes a memory array with a plurality of bit cells. The memory array is configured to store trimming information and store user data. A sense amplifier is configured to read the trimming information from the memory array, and a trimming register is configured to receive the trimming information from the sense amplifier. The sense amplifier is configured to receive the trimming information from the trimming register so as to operate in a trimmed mode for reading the user data from the memory array.
US11581026B2 Data receiving devices, memory devices having the same, and operating methods thereof
A data receiving device of a memory device comprises a first pre-amplifier configured to receive previous data, a first reference voltage, and input data, and to output differential signals by comparing the input data with the first reference voltage in response to a clock, when the first pre-amplifier is selected in response to the previous data, a second pre-amplifier configured to receive inverted previous data, a second reference voltage, different from the first reference voltage, and the input data, and outputting a common signal in response to the clock, when the second pre-amplifier is unselected in response to the previous data; and an amplifier configured to receive the differential signals and the common signal, and to latch the input data by amplifying the differential signals.
US11581018B2 Systems and methods for mixing different videos
There are provided methods and systems for media processing, comprising: providing at least one media asset source selected from a media asset sources library, the at least one media asset source comprising at least one source video, via a network to a client device; receiving via the network or the client device a media recording comprising a client video recorded by a user of the client device; transcoding the at least one source video and the client video which includes parsing the client video and the source video, respectively, to a plurality of client video frames and a plurality of source video frames based on the matching; segmenting one or more frames of the plurality of source video frames to one or more character frames; detecting one or more face images in one or more frames of the plurality of client video frames and provide face markers; resizing the one or more character frames according to the face markers compositing the resized character frames with the background frames using one or more blending methods to yield a mixed media asset frames; and encoding the mixed media asset frames to yield a mixed media asset video.
US11581014B2 Magnetic recording medium
The present technology provides a tape-shaped magnetic recording medium including a magnetic layer, an underlayer, a base layer, and a back layer. The magnetic recording medium has an average thickness tT of 5.4 μm or less, when a thermomechanical analysis is performed on the magnetic recording medium in a temperature range of 40° C. to 150° C. at a temperature rise rate of 1° C./minute, a switching temperature for switching from thermal expansion to thermal contraction is 70° C. or more, and a contraction start temperature is 90° C. or more at which a length in a longitudinal direction is shorter than the length at 40° C., and a Poisson's ratio is 0.40 or less.
US11581012B1 Data storage device with multi-actuator drive with cross-actuator alignment
Various illustrative aspects are directed to a data storage device. The data storage device comprises a first actuator; a second actuator; a first set of disks, comprising one or more disks configured to correspond with the first actuator; a second set of disks, comprising one or more disks configured to correspond with the second actuator; and one or more processing devices. The one or more processing devices are configured to: write final spirals on the first set of disks; determine a time delta to implement cross-actuator alignment between the first set of disks and the second set of disks; and apply the time delta in writing final spirals for the second set of disks.
US11581011B2 Audio playout report for ride-sharing session
In one aspect, an example method to be performed by a computing device includes (a) determining that a ride-sharing session is active; (b) in response to determining the ride-sharing session is active, using a microphone of the computing device to capture audio content; (c) identifying reference audio content that has at least a threshold extent of similarity with the captured audio content; (d) determining that the ride-sharing session is inactive; and (e) outputting an indication of the identified reference audio content.
US11581010B2 Drone assisted setup for building specific sound localization model
Techniques and systems are described for generating and using a sound localization model. A described technique includes obtaining for a building a sound sensor map indicating locations of first and second sound sensor devices in respective first and second rooms of the building; causing an autonomous device to navigate to the first room and to emit, during a time window, sound patterns at one or more frequencies within the first room; receiving sound data including first and second sound data respectively from the first and second sound sensor devices that are observed during the time window; and generating and storing a sound localization model based on the sound sensor map, autonomous device location information, and the received sound data, the model being configured to compensate for how sounds travels among rooms in at least a portion of the building such that an origin room of a sound source is identifiable.
US11581007B2 Preventing audio delay-induced miscommunication in audio/video conferences
Embodiments for delay-induced miscommunication reduction are provided. The embodiment may include capturing data streams transmitted between participants in an A/V exchange; translating, on a sender device prior to transmission to a recipient device, an audio stream within the data streams to text; timestamping, on a sender device prior to transmission to the recipient device, each word in the translated audio stream; transmitting the audio stream and the sender-side translated and timestamped audio stream to the recipient device; translating, on the recipient device, the transmitted audio stream to text; timestamping, on the recipient device, each word in the translated audio stream; determining a lag exists in the A/V exchange based on a comparison of each timestamp for corresponding words on the sender-side translated and timestamped audio stream and the recipient-side translated and timestamped audio stream; and generating a true transcript of an intended exchange between the participants based on the comparison.
US11581005B2 Methods and systems for improved signal decomposition
A method for improving decomposition of digital signals using training sequences is presented. A method for improving decomposition of digital signals using initialization is also provided. A method for sorting digital signals using frames based upon energy content in the frame is further presented. A method for utilizing user input for combining parts of a decomposed signal is also presented.
US11581002B2 Communication method, apparatus, and system for digital enhanced cordless telecommunications (DECT) base station
The present disclosure provides a communication method, apparatus, and system for a digital enhanced cordless telecommunications (DECT) base station. The method includes: determining, based on a communication connection request sent by a handset, whether a base station satisfies a wideband (WB) voice communication requirement of the handset, and returning communication acknowledgment information; and enabling the base station to perform WB voice communication with the handset if the communication acknowledgment information is a positive acknowledgment, or enabling the base station to perform narrowband (NB) voice communication with the handset if the communication acknowledgment information is a negative acknowledgment. The present disclosure can implement WB voice communication between a DECT base station and more than six handsets.
US11580999B2 Method and apparatus for encoding and decoding audio signal to reduce quantization noise
An audio signal encoding method performed by an encoder includes identifying an audio signal of a time domain in units of a block, generating a combined block by combining i) a current original block of the audio signal and ii) a previous original block chronologically adjacent to the current original block, extracting a first residual signal of a frequency domain from the combined block using linear predictive coding of a time domain, overlapping chronologically adjacent first residual signals among first residual signals converted into a time domain, and quantizing a second residual signal of a time domain extracted from the overlapped first residual signal by converting the second residual signal of the time domain into a frequency domain using linear predictive coding of a frequency domain.
US11580998B2 Method and device for encoding a high frequency signal, and method and device for decoding a high frequency signal
A method for encoding a high frequency signal includes determining a signal type of a high frequency signal of a current frame, smoothing and scaling time envelopes of the high frequency signal of the current frame and obtaining time envelopes of the high frequency signal of the current frame that require to be encoded when the high frequency signal of the current frame is a non-transient signal and a high frequency signal of the previous frame is a transient signal, and quantizing and encoding the time envelopes of the high frequency signal of the current frame that require to be encoded, and frequency information and signal type information of the high frequency signal of the current frame.
US11580996B2 Signal processing method and device
A signal processing method and device includes obtaining spectral coefficients of a current frame of an audio signal, in which N sub-bands of the current frame comprises at least one of the spectral coefficients. A total energy of M successive sub-bands of the N sub-bands, a total energy of K successive sub-bands of the N sub-bands, and an energy of a first sub-band are obtained to determine whether to modify original envelope values of the M sub-bands. When the original envelope values of the M sub-bands are modified, encoding bits are allocated to each of the N sub-bands according to the modified envelope values of the M sub-bands.
US11580994B2 Speech recognition
A method includes receiving acoustic features of a first utterance spoken by a first user that speaks with typical speech and processing the acoustic features of the first utterance using a general speech recognizer to generate a first transcription of the first utterance. The operations also include analyzing the first transcription of the first utterance to identify one or more bias terms in the first transcription and biasing the alternative speech recognizer on the one or more bias terms identified in the first transcription. The operations also include receiving acoustic features of a second utterance spoken by a second user that speaks with atypical speech and processing, using the alternative speech recognizer biased on the one or more terms identified in the first transcription, the acoustic features of the second utterance to generate a second transcription of the second utterance.
US11580993B2 Keyword determinations from conversational data
Topics of potential interest to a user, useful for purposes such as targeted advertising and product recommendations, can be extracted from voice content produced by a user. A computing device can capture voice content, such as when a user speaks into or near the device. One or more sniffer algorithms or processes can attempt to identify trigger words in the voice content, which can indicate a level of interest of the user. For each identified potential trigger word, the device can capture adjacent audio that can be analyzed, on the device or remotely, to attempt to determine one or more keywords associated with that trigger word. The identified keywords can be stored and/or transmitted to an appropriate location accessible to entities such as advertisers or content providers who can use the keywords to attempt to select or customize content that is likely relevant to the user.
US11580992B2 Intelligent voice recognizing method, apparatus, and intelligent computing device
An intelligent voice recognition method, voice recognition apparatus and intelligent computing device are disclosed. An intelligent voice recognition method of a voice recognition apparatus according to an embodiment of the present invention detects a voice of a user, receives an authentication request from the user, and performs authentication for the user on the basis of a result of determination of whether authentication for the user has recently been performed and a result of recognition of the voice of the user, thereby reducing a time and the quantity of calculations necessary for user authentication. One or more of the voice recognition apparatus and the intelligent computing device can be associated with artificial intelligence (AI) modules, unmanned aerial vehicle (UAV) robots, augmented reality (AR) devices, virtual reality (VR) devices, 5G service related devices, etc.
US11580991B2 Speaker based anaphora resolution
A speech-processing system configured to determine entities corresponding to ambiguous words such as anaphora (“he,” “she,” “they,” etc.) included in an utterance. The system may associate incoming utterances with a speaker identification (ID), device ID, and other data. The system then tracks entities referred to in utterances so that if a later utterance includes an ambiguous entity reference, the system may take the speaker ID, device ID, etc. from the ambiguous reference, along with the text of the utterance and other data, and compare that information to previously mentioned entities (or other entities that may be relevant) to identify the entity mentioned in the ambiguous statement. Once the entity is determined, the system may then complete command processing of the utterance using the identified entity.
US11580985B2 Transcription of communications
A method to transcribe communications may include obtaining, at a first device, an audio signal that originates at a remote device during a communication session. The audio signal may be shared between the first device and a second device. The method may also include obtaining an indication that the second device is associated with a remote transcription system and in response to the second device being associated with the remote transcription system, directing the audio signal to the remote transcription system by one of the first device and the second device instead of both the first device and the second device directing the audio signal to the remote transcription system when the second device is not associated with the remote transcription system.
US11580976B2 Device and method for activating with voice input
An information processing apparatus that detects a voice command via a microphone in order to activate the device and execute certain applications. The apparatus comprises a digital signal processor (DSP) and a host controller which are responsible for processing the voice commands. The DSP recognizes and processes voice commands intermittently while the host processor is in a sleep state, thereby reducing the overall power consumption of the apparatus. Further, when the DSP is configured to recognize voice commands intended, only to activate the device, a memory having a sufficiently lower storage capacity suffices.
US11580974B2 Method for exiting a voice skill, apparatus, device and storage medium
A method for exiting a voice skill, an apparatus, a device, and a storage medium are provided by embodiments of the present disclosure, wherein a user voice instruction is received; a target exit intention corresponding to the user voice instruction is identified according to the user voice instruction and a grammar rule of a preset exit intention; and a corresponding operation is executed on a current voice skill of a device according to the target exit intention. The embodiments of the present disclosure refine and expand the user's exit intention. After the target exit intention to which the user voice instruction belongs is identified, the corresponding operation is executed according to the target exit intention so as to meet the users' different exit requirements for the voice skills, enhance the fluency and convenience of user interaction with the device and improve the user's exit experience when using the voice skills.
US11580970B2 System and method for context-enriched attentive memory network with global and local encoding for dialogue breakdown detection
A method, an electronic device and computer readable medium for dialogue breakdown detection are provided. The method includes obtaining a verbal input from an audio sensor. The method also includes generating a reply to the verbal input. The method additionally includes identifying a local context from the verbal input and a global context from the verbal input, additional verbal inputs previously received by the audio sensor, and previous replies generated in response to the additional verbal inputs. The method further includes identifying a dialogue breakdown in response to determining that the reply does not correspond to the local context and the global context. In addition, the method includes generating sound corresponding to the reply through a speaker when the dialogue breakdown is not identified.
US11580969B2 Artificial intelligence device and method of operating artificial intelligence device
An artificial intelligence device includes a microphone configured to receive a speech command, a speaker, a communication unit configured to perform communication with an external artificial intelligence device, and a processor configured to receive a wake-up command through the microphone, acquire a first speech quality level of the received wake-up command, receive a second speech quality level of the wake-up command input to the external artificial intelligence device from the external artificial intelligence device through the communication unit, output a notification indicating that the artificial intelligence device is selected as an object to be controlled through the speaker, when the first speech quality level is larger than the second speech quality level, receive an operation command through the microphone, acquire an intention of the received operation command and transmit the operation command to an external artificial intelligence device which will perform operation corresponding to the operation command according to the acquired intention through the communication unit.
US11580965B1 Multimodal based punctuation and/or casing prediction
Techniques for predicting punctuation and casing using multimodal fusion are described. An exemplary method includes processing generated text by: tokenizing the generated text into sub-words, and generating a sequence of lexical features for the sub-words using a pre-trained lexical encoder; processing audio of the audio by: generating a sequence of frame level acoustic embeddings using a pre-trained acoustic encoder on the audio, and generating task specific embeddings from the frame level acoustic embeddings; performing multimodal fusion of the sub-word level acoustic embeddings and the sequence of lexical features by: aligning the task specific embeddings to the sequence of lexical features, and combining the sequence of lexical features and aligned acoustic sequence; predicting punctuation and casing from the combined sequence of lexical features and aligned acoustic sequence; concatenating the sub-words of the text, and applying the predicted punctuation and casing; and outputting text having the predicted punctuation and casing.
US11580959B2 Improving speech recognition transcriptions
An approach to correcting transcriptions of speech recognition models may be provided. A list of similar sounding phonemes from associated with the phonemes of high frequency terms may be generated for a particular node associated with a virtual assistant. An utterance may be transcribed and receive a confidence score regarding the correctness of the transcription based on audio metrics and other factors. The phonemes of the utterance can be compared to the phonemes of the high frequency terms from the list and a score for the matching phonemes and similar sounding phonemes can be determined. If it is determined the sounds similar score for a term from the high frequency term list is above a threshold, the transcription can be replaced with the term, providing a corrected transcription.
US11580956B2 Emitting word timings with end-to-end models
A method includes receiving a training example that includes audio data representing a spoken utterance and a ground truth transcription. For each word in the spoken utterance, the method also includes inserting a placeholder symbol before the respective word identifying a respective ground truth alignment for a beginning and an end of the respective word, determining a beginning word piece and an ending word piece, and generating a first constrained alignment for the beginning word piece and a second constrained alignment for the ending word piece. The first constrained alignment is aligned with the ground truth alignment for the beginning of the respective word and the second constrained alignment is aligned with the ground truth alignment for the ending of the respective word. The method also includes constraining an attention head of a second pass decoder by applying the first and second constrained alignments.
US11580952B2 Multilingual speech synthesis and cross-language voice cloning
A method includes receiving an input text sequence to be synthesized into speech in a first language and obtaining a speaker embedding, the speaker embedding specifying specific voice characteristics of a target speaker for synthesizing the input text sequence into speech that clones a voice of the target speaker. The target speaker includes a native speaker of a second language different than the first language. The method also includes generating, using a text-to-speech (TTS) model, an output audio feature representation of the input text by processing the input text sequence and the speaker embedding. The output audio feature representation includes the voice characteristics of the target speaker specified by the speaker embedding.
US11580951B2 Speaker identity and content de-identification
One embodiment of the invention provides a method for speaker identity and content de-identification under privacy guarantees. The method comprises receiving input indicative of privacy protection levels to enforce, extracting features from a speech recorded in a voice recording, recognizing and extracting textual content from the speech, parsing the textual content to recognize privacy-sensitive personal information about an individual, generating de-identified textual content by anonymizing the personal information to an extent that satisfies the privacy protection levels and conceals the individual's identity, and mapping the de-identified textual content to a speaker who delivered the speech. The method further comprises generating a synthetic speaker identity based on other features that are dissimilar from the features to an extent that satisfies the privacy protection levels, and synthesizing a new speech waveform based on the synthetic speaker identity to deliver the de-identified textual content. The new speech waveform conceals the speaker's identity.
US11580949B2 Systems and methods for communicating information
Systems and methods for communicating information related to a wearable device are disclosed. Exemplary information includes audio information.
US11580948B2 Soundproof system
A soundproof system includes a tube structure having one or more opening ends and a soundproof structure having an opening portion or a radiation surface. The following Expression (1) is satisfied in a case in which a phase difference between sound incident on the soundproof structure and sound re-radiated from the soundproof structure is defined a phase difference as θ1; for one or more maximum values of the pressure of sound formed in the tube structure, a distance between the opening portion or the radiation surface and a position where the sound pressure has a maximum value in the tube structure is L; a wavelength of the incident sound is λ; and a phase difference θ2 is defined as 2π×2L/λ: |θ1−θ2|≤π/2  (1). The soundproof system with a small size can obtain high transmission loss in a wide band.
US11580947B2 Soundproof member
A soundproof member is provided. The soundproof member includes a structural element, and a first composite film which is disposed on the bottom surface of the structural element. The structural member includes at least one through hole and the through hole passes through the structural element. The first composite film includes a polymer material and an inorganic nanoscale material, wherein the inorganic nanoscale material is a one-dimensional inorganic nanoscale material or a two-dimensional inorganic nanoscale material.
US11580945B2 Confinement or movement of an object using focused ultrasound waves to generate an ultrasound intensity well
A method includes transmitting a focused ultrasound wave into a medium to form (i) an ultrasound intensity well within the medium that exhibits a first range of acoustic pressure and (ii) a surrounding region of the medium that surrounds the ultrasound intensity well and exhibits a second range of acoustic pressure that exceeds the first range of acoustic pressure. The method further includes confining an object within the ultrasound intensity well. Additionally, an acoustic lens is configured to be acoustically coupled to an acoustic transducer. The acoustic lens has a varying longitudinal thickness that increases proportionally with respect to increasing azimuth angle of the acoustic lens. Another acoustic lens is configured to be acoustically coupled to an acoustic transducer. The acoustic lens includes a plurality of segments. Each of the plurality of segments has a varying longitudinal thickness that increases proportionally with respect to increasing azimuth angle of the segment.
US11580944B2 Method and electronic device for adjusting accompaniment music
A method for adjusting accompaniment music is disclosed. The method transposes the musical key of at least one section of the accompaniment music such that a song will have different musical key transpositions for different sections of the accompaniment music, so that singers whose vocal ranges are narrow can sing songs after the adjustment.
US11580943B2 Musical sound processing apparatus, musical sound processing method, and storage medium
A musical sound processing apparatus, a musical sound processing method, and a storage medium capable of generating musical sound full of interest are provided. The musical sound processing apparatus includes a first control unit configured to control a timing of sounding of a first tone in steps that come with an interval therebetween and a second control unit configured to control a timing of sounding of a second tone following or overlapping the first tone according to a first tempo, wherein the first control unit is configured to control the timing of sounding of the first tone according to the first tempo when timing information has not been acquired from outside and control the timing of sounding of the first tone according to a second tempo which is based on the timing information and different from the first tempo when the timing information has been acquired.
US11580942B2 Systems, methods, smart musical instruments, computer readable media for music score matching
The present disclosure relates to a system and method for matching performance with score. The method may include acquiring performance information in a preset time period, wherein the performance information is related to a musical device. The method may also include analyzing the performance information and obtaining a played music score in the preset time period, wherein the played music score contains the performance information. The method may further include comparing the played music score with one or more standard music scores. The method may still further include identifying a standard music score from the one or more standard music score based on the comparison of the played music score with the one or more standard music scores, wherein a matching degree between the played music score and the identified standard music score reaches a preset value.
US11580939B2 Head mounted display and setting method
In a head mounted display 100, a memory 71 stores an application. An image pickup unit 74 takes an image of a site of a user 1, and a position specifying unit 73 specifies a position and a direction of the head mounted display 100. A detector 75 detects a position indicated by the user 1 on the basis of the image taken by the image pickup unit 74, and a setting unit 76 sets a position indicating a home position on the basis of a result detected by the detector 75 and the position and the direction specified by the position specifying unit 73.
US11580938B2 Methods and systems for energy or resource management of a human-machine interface
A computer implemented method for energy or resource management of a human-machine interface comprises the following steps carried out by computer hardware components of the human-machine interface: determining a level of attention of a user of the human-machine interface to the human-machine interface; and setting an energy and/or resource utilization related setting of the human-machine interface based on the determined level of attention.
US11580936B2 Display device and electronic device
A display device whose aspect ratio can be changed is provided. The display device includes a plurality of display units and a plurality of driver circuit units. The plurality of display units each include a light-emitting portion and a connection region. The plurality of driver circuit units each include a driver circuit portion and a connection region. The connection regions of the adjacent units overlap with each other and one shaft passes through the connection regions. The adjacent units are electrically connected to each other with the one shaft. With such a structure, an angle between the adjacent units electrically connected to each other with one shaft can be changed, which enables the aspect ratio of the display device to be changed.
US11580934B2 Display with localized brightness adjustment capabilities
An electronic device may have a display with an array of pixels. The device may have an array of components such as an array of light sensors for capturing fingerprints of a user through an array of corresponding transparent windows in the display. A capacitive touch sensor, proximity sensor, force sensor, or other sensor may be used by control circuitry in the device to monitor for the presence of a user's finger over the array of light sensors. In response, the control circuitry can direct the display to illuminate a subset of the pixels, thereby illuminating the user's finger and causing reflected light from the finger to illuminate the array of light sensors for a fingerprint capture operation. The display may have display driver circuitry that facilitates the momentary illumination of the subset of pixels with uniform flash data while image data is displayed in other portions of the display.
US11580933B1 System and method for luminance compensation for local and global dimming displays
A system and method is provided for adjusting an input image based on a perceived appearance of the input image on a target display and on an ideal display. The method includes: receiving an input image; determining a target display perceived appearance of the input image, wherein the target display perceived appearance represents a perceived appearance of the input image according to a target display; determining an ideal display perceived appearance of the input image, wherein the ideal display perceived appearance represents a perceived appearance of the input image according to an ideal display; and adjusting the input image based on the target display perceived appearance and the ideal display perceived appearance.
US11580932B2 Display device and display method
A display device, includes: a first processor configured to increase or decrease values of color components representing three colors and included in a first video signal, in accordance with values corresponding to the values of the color components representing three colors; a second processor configured to convert a second video signal into a third video signal, the second video signal including the color components representing three colors and having the values increased or decreased by the first processor, and the third video signal including color components representing four colors; and a display configured to display the third video signal including the color components representing four colors.
US11580929B2 Systems and methods for driving a display
An image system dynamically updates drive sequences in an image system. Drive sequences are image display settings or display driving characteristics with which a display is operated. The image system may determine the drive sequence at least partially based on input from one or more sensors. For example, the image system may include sensors such as an inertial measurement unit, a light sensor, a camera, a temperature sensor, or other sensors from which sensor data may be collected. The image system may analyze the sensor data to calculate drive sequence settings or to select a drive sequence from a number of predetermined drive sequences. Displaying image content on a display includes providing the display with image data and includes operating the display with various drive sequences.
US11580928B2 Circuit of controlling common voltage of liquid crystal panel
The present disclosure relates to a circuit of controlling a common voltage of a liquid crystal panel. According to an embodiment of the present disclosure, a voltage control circuit is configured to provide a common voltage to a common electrode of a liquid crystal panel. The liquid crystal panel includes M rows and N columns of pixel units. Each pixel unit is coupled to the common electrode. The voltage control circuit includes an operational amplifier arranged in a negative feedback configuration. The operational amplifier includes: an input stage, a gain stage and an output stage. The output stage includes a second NMOS transistor and a second PMOS transistor. A gate of the second NMOS transistor receives a first control signal, a drain of the second NMOS transistor is coupled to a gate of a first PMOS transistor, and a source of the second NMOS transistor is coupled to a second reference voltage. A gate of the second PMOS transistor receives a second control signal, a drain of the second PMOS transistor is coupled to a gate of a first NMOS transistor, and a source of the second PMOS transistor is coupled to a third reference voltage.
US11580927B2 Systems and methods for low power common electrode voltage generation for displays
A system, circuit, and method for implementing a low power common electrode voltage for a display (e.g., LCoS display) having transistors with low to moderate breakdown voltages may include a first and a second low voltage amplifier, wherein the first amplifier generates a pixel voltage and the second amplifier generates a predetermined voltage. The circuit may include a common electrode circuit coupled to the first and second amplifier to generate a common electrode voltage. Particularly, the circuit may include a control circuit coupled to the common electrode circuit, wherein, during a first phase, the control circuit selectively controls the common electrode circuit to generate a low common electrode voltage based upon a negative value of the predetermined voltage. Further, during a second phase, the control circuit selectively controls the common electrode circuit to generate a high common electrode voltage based upon the sum of the predetermined voltage and the pixel voltage.
US11580925B2 Display panel and manufacturing method thereof, control method and display apparatus
Provided are a display panel and manufacturing method thereof, control method and display apparatus. The display panel includes a first substrate including first base substrate and driving structure layer, and a second substrate including second base substrate and black matrix layer, driving structure layer includes multiple switching transistors, the display panel includes multiple pixel units, each pixel unit includes a switching transistor. One side of black matrix layer close to first substrate is provided with multiple groove structures corresponding to multiple pixel units one-to-one. Orthographic projection of black matrix layer on first base substrate covers those of multiple switching transistors on first base substrate, and orthographic projection of the groove structure on first base substrate at least partially overlaps with that of a channel region of switching transistor in corresponding pixel unit on first base substrate to enable light meeting preset wavelength condition to be incident into the display panel.
US11580922B2 Display latency reduction
A display device dynamically determines pixel settle times to reduce a display latency. The display device includes a backlight unit (BLU) for providing light for displaying an image, a plurality of pixels for modulating the light provided by the BLU, and a controller circuit for controlling the BLU and the plurality of pixels. The controller circuit determines a settle time from display data for a current display frame and display data for a previous display frame, and turns on the BLU based on the determined settle time. The determined settle time corresponding to an expected amount of time for the plurality of pixel to transition from a first state corresponding to the display data for the previous display frame to a second state corresponding to the display data for the current display frame.
US11580921B2 Liquid crystal display and driving method to compensate a deformation area thereof
A liquid crystal display (LCD) and a driving method thereof are disclosed. The LCD includes: an LCD panel, a grayscale voltage output portion and a grayscale voltage adjusting portion. The LCD panel includes a deformation area formed by bonding of a driver integrated circuit, and the deformation area includes a first subpixel. The grayscale voltage output portion is configured to output a first grayscale voltage to the first subpixel. The grayscale voltage adjusting portion is configured to adjust the first grayscale voltage into a second grayscale voltage, so that a brightness of the first subpixel at the second grayscale voltage is less than a brightness of the first subpixel at the first grayscale voltage.
US11580919B2 Driving method of display device
The display device includes at least one pixel having a first capacitive element having a first terminal and a transistor connected to the first terminal and having a second terminal and a gate electrode. A driving method of the display device including in a first frame, a signal with a first pulse width is supplied to the gate electrode of the transistor, and a first voltage is written from the second terminal to the first terminal. In the second frame after the first frame, a signal with a second pulse width is supplied to the gate electrode, and the first terminal holds the first voltage. In the third frame after the second frame, a signal with a third pulse width is supplied to the gate electrode, and the second voltage is written from the second terminal to the first terminal.
US11580918B2 Display for pump
This document discusses, among other things, an apparatus comprising a pump configured to deliver insulin, a processor, and a user interface including a bistable display. A display element of the bistable display is placed in one of two stable orientations upon application of a biasing voltage and stays in the stable orientation when the biasing voltage is removed. The processor includes a display module configured to display a non-blank reversion display screen on the bistable display when no input is received at the user interface after a specified time duration, and to recurrently change the reversion display screen until input is received at the user interface.
US11580910B2 Display device
A display device includes a display panel including a first display area; a second display area protruding in a first direction from the first display area; and a first non-display area adjacent to a side of the second display area. Each of the first display area and the second display area includes subpixels that display an image and scan lines electrically connected to the subpixels. The first non-display area includes dummy pixels; a common scan line electrically connected to the dummy pixels; load matching switch elements respectively disposed between the scan lines and the common scan line; and a load matching driving circuit that outputs load matching control signals to control turn-on and turn-off of the load matching switch elements.
US11580904B2 Transparent display panels and display panels
A transparent display panel and a display panel. The transparent display panel includes a transparent display area. The transparent display area includes a plurality of first pixel units. Each of the first pixel units includes a plurality of first sub-pixels. Each of the first sub-pixels includes: a first electrode being light-transmitting; a first light-emitting structural block located on the first electrode; and a second electrode located on the first light-emitting structural block. At least one pixel driving circuit for driving the first sub-pixels to emit light is arranged outside of the transparent display area. A separating area is arranged between an area where the at least one pixel driving circuit is arranged and the transparent display area.
US11580902B2 Driving method and apparatus of a display panel
The present disclosure relates to the technical field of display panels, in particular to a driving method and driving apparatus of a display panel. The driving method may include in response to detecting that the display panel is switched from a dynamic picture to a static picture, generating a refresh rate adjustment instruction; according to the refresh rate adjustment instruction, switching the picture refresh rate of the display panel from a first picture refresh rate to a second picture refresh rate and generating a voltage adjustment instruction; obtaining a target cathode power supply voltage matching the second picture refresh rate; and based on the voltage adjustment instruction and the target cathode power supply voltage, adjusting the display panel to change a working current of each pixel in the display panel.
US11580901B2 Ambient light sensor
Techniques are described for portable computing devices and other apparatus that include an ambient light sensor. The techniques can be particularly advantageous for situations in which the ambient light sensor is disposed behind a display screen of a host device such that ambient light detected by the sensor passes through the light emitting display before being detected by the sensor.
US11580900B1 Pixel driving circuit and method, and display device
Disclosed are a pixel driving circuit and method, and a display device. The pixel driving circuit includes: the first port of the operation module is electrically connected via the first switch unit to the compensation wire connected to the pixel driving module, the second port of the operation module is electrically connected to the compensation wire through the second switch unit; the first switch unit is configured to transmit the driving data provided by the pixel driving module to the operation module in the self-discharge phase, and the operation module is configured to perform the calculation on the driving data in the self-discharge phase to obtain compensation data; the second switch unit is configured to write the compensation data into the pixel driving module through the compensation wire in the data writing stage.
US11580899B1 Display device
Provided is a display device including a controller and a display. The controller may perform tone mapping for adjusting luminance of input image data, and the display may display an image according to an output image data, in which luminance is adjusted by the tone mapping. The controller may generate a base mapping curve from the input image data, analyze depth map information of the input image data, generate a mapping curve, to which the depth map information is reflected, from the base mapping curve, and perform the tone mapping using the mapping curve.
US11580896B2 Electroluminescence display apparatus for compensating luminance deviation
An electroluminescence display apparatus includes a display panel including a first pixel and a second pixel, a first current integrator connected to the first pixel through a first sensing channel to sense a first current from the first pixel to generate a first output voltage, a second current integrator connected to the second pixel through a second sensing channel to sense a second current from the second pixel to generate a second output voltage, and a sampling capacitor connected to an output terminal of the first current integrator at one electrode thereof and connected to an output terminal of the second current integrator at the other electrode thereof, thereby sampling the first output voltage and the second output voltage.
US11580892B2 Organic light emitting display panel
An OLED panel may include a substrate including a first region and a second region disposed along a first direction. A plurality of first pixels are disposed in the first region on the substrate, the first pixels each having a first area, the first pixels each comprising a first unit pixel, a second unit pixel disposed along a second direction from the first unit pixel, and a transmission portion disposed along the first direction from the first unit pixel and the second unit pixel. A plurality of second pixels are disposed in the second region on the substrate, the second pixels each having a second area less than the first area, the second pixels each comprising a third unit pixel. The first unit pixel, the second unit pixel, and the third unit pixel may have substantially the same shape as each other.
US11580889B2 Electronic device, method, and computer-readable medium for displaying screen in deformable display panel
An electronic device is provided. The electronic device includes a deformable display panel, a sensor, a display driving circuit operatively coupled to the deformable display panel and the sensor, and comprising a graphical random access memory (GRAM), and a processor operatively coupled to the display driving circuit and the sensor, wherein the display driving circuit can be configured to, while the size of a displayable area of the deformable display panel is changed, store, in the GRAM, data for displaying an image of a first size received from the processor, receive, from the sensor, a signal for indicating that the size of the displayable area is a second size smaller than the first size, after the data is stored, and scan part of the data in response to the reception of the signal, thereby displaying an image of the second size through the deformable display panel.
US11580885B2 Tamper proof seal assembly
A tamper proof locking mechanism incorporating a first fixture for attachment to an index protective cover, a second fixture for attachment to an instrument, and a third fixture for connecting the first fixture to the second fixture. The first fixture may have a receptacle, the second fixture may have a plate with an opening, and the third fixture may have a protrusive structure that fits into the receptacle of the first fixture and into the opening in the plate to connect the first fixture to the second fixture. The protrusive structure may have a rivet that is partially embedded with a plastic-like material that reveals tampering when an attempt is made to break a connection between the first fixture and the second fixture.
US11580880B2 Braille writing device
Braille writing devices and systems, and corresponding methods of writing braille characters on a tape medium are described herein. The devices and systems emboss tactile dots on different types of tape medium to enable braille character writing and advance the tape medium to create accurate and repeatable spacing of the braille characters. The devices and systems may be comprised of simply molded plastic parts that snap together using elastically averaging precision alignment features.
US11580878B2 Real time sports motion training aid
A sports training aid comprising a body unit, attachable to a person's body or the person's sports implement, is provided with a positioning sensor module; a feedback stimulator; and a processor. The sports training aid is configured to provide instantaneous feedback on motion faults of a studied sports motion, and the body unit is intended to be attached to a person's body (or a person's sports implement) at a representative location, the location being bound to travel a path representative of the studied sports motion, and the positioning sensor module comprises acceleration sensors and gyro sensors. The processor is configured to determine a still position corresponding to an event wherein the body unit is determined to be still, to keep track of the sensor module's movements relative to the still position, and to activate the feedback stimulator in real time, upon detection of a sports motion fault.
US11580876B2 Methods and systems for automatic creation of in-application software guides based on machine learning and user tagging
In one aspect, A computerized method for implementing a virtualized training session user interface (UI) with respect to a production software UI includes the step of providing a production software application. The method includes displaying a guide on a production software UI. A workflow and a tutorial content of the guide is determined dynamically using one or more specified machine-learning algorithms. The method includes displaying the guide as a set of images with a virtual lab placed on top of each image of the guide. The method includes receiving a user input comprising a learning-related data inside a virtual environment of the guide.
US11580875B2 Cleanup support system, cleanup support method, and recording medium
A cleanup support system that supports a cleanup behavior includes: a first obtaining unit configured to obtain first information indicating a level of interest of a target person in cleanup; a second obtaining unit configured to obtain second information indicating a level of achievement of the cleanup performed by the target person; a determination unit configured to determine a content of control corresponding to the first information obtained and the second information obtained, with reference to a rule which associates the level of interest in the cleanup and the level of achievement of the cleanup with a content of control performed on a device; and a control unit configured to control the device according to the content of control determined.
US11580874B1 Methods, systems, and computer readable media for automated attention assessment
The subject matter described herein includes methods, systems, and computer readable media for automated attention assessment. According to one method, a method for automated attention assessment includes obtaining head and iris positions of a user using a camera while the user watches a display screen displaying a video containing dynamic region-based stimuli designed for identifying a neurodevelopmental and/or psychiatric (neurodevelopmental/psychiatric) disorder; analyzing the head and iris positions of the user to detect attention assessment information associated with the user, wherein the attention assessment information indicates how often and/or how long the user attended to one or more regions of the display screen while watching the video; determining that the attention assessment information is indicative of the neurodevelopmental/psychiatric disorder; and providing, via a communications interface, the attention assessment information, a diagnosis, or related data.
US11580873B2 Augmented reality for vehicle operations
A method, includes saving in-flight data from an aircraft during a simulated training exercise, wherein the in-flight data includes geospatial locations of the aircraft, positional attitudes of the aircraft, and head positions of a pilot operating the aircraft, saving simulation data relating to a simulated virtual object presented to the pilot as augmented reality content in-flight, wherein the virtual object was programmed to interact with the aircraft during the simulated training exercise and representing the in-flight data from the aircraft and the simulation data relating to the simulated virtual object as a replay of the simulated training exercise.
US11580871B2 Assessment system and assessment method
An assessment system is provided for assessing a performance of at least one autonomous actor in a dynamic environment. The system includes a computer program which, when operating on a data processing system, retrieves input selected from digital information, sensor data and a combination thereof, for detecting and classifying the at least one autonomous actor present in the dynamic environment; sets up a virtual reality simulation of the environment, and synchronizes the simulation with the environment. The program evaluates behavior of the actor in the environment, including measuring, analyzing and classifying actions and reactions of the actor in the simulation while the actor performs at least one predefined procedure in the environment; compares the behavior of the actor with a curriculum including at least one documented procedure and at least one documented performance value of the at least one predefined procedure; and outputs a qualification for the performance.
US11580870B2 Systems and methodologies for providing training on warnings in a vehicle
Methods and systems are provided for providing training on a vehicle. The method includes acquiring, using processing circuitry, one or more alert modes associated with a vehicle. Further, the method includes controlling one or more alert devices as a function of a first alert mode. The first alert mode is selected from the one or more alert modes. The method includes outputting information to a user associated with the first alert mode via one or more output devices.
US11580866B2 UAV (unmanned aerial vehicle) logistics operation and air traffic control method based on blockchain technology
The present disclosure aims to implement UAV (unmanned aerial vehicle) logistics operation and air traffic control in flyable airspace technically through a UAV task planning system, which depends on blockchain technology to carry out UAV air traffic surveillance on flight segments in a predetermined barrier-free airway and optimize air traffic according to a safe separation distance for fewest UAV operators, air traffic controllers, communications links and airborne loads.
US11580859B1 Vehicle lane change
Systems and methods for vehicle lane change control are described. Some implementations may include determining a kinematic state of a vehicle moving in an origin lane; detecting, based on data from one or more sensors of the vehicle, objects that are moving in a target lane of the road; determining a headway constraint in terms of a preparation time, a preparation acceleration to be applied to the vehicle during the preparation time, and an execution time during which the vehicle is to transition from the origin lane to the target lane; determining values of the preparation time, the execution time, and the preparation acceleration subject to a set of constraints including the headway constraint; and determining a motion plan that will transition the vehicle from the origin lane to the target lane based at least in part on the preparation time, the execution time, and the preparation acceleration.
US11580857B2 Apparatus and method for safety improvement by collaborative autonomous vehicles
An apparatus for safety collaboration in computer-assisted or autonomous driving (CA/AD) vehicles includes an input interface to obtain sensor data from one or more sensors of a CA/AD vehicle, an output interface, and an analyzer coupled to the input and output interfaces to process the sensor data to identify an emergency condition of the CA/AD vehicle, and in response to the identified emergency condition, cause a communication interface of the CA/AD vehicle, via the output interface, to broadcast a request for assistance to be received by one or more nearby CA/AD vehicles. The apparatus may be disposed in the CA/AD vehicle.
US11580852B2 Electrical data processing system for monitoring or affecting movement of a vehicle using a traffic device
Systems and methods are disclosed for monitoring or affecting movement of a vehicle using a traffic device. An event data source may have a processor and/or a transceiver. The event data source may transmit, via the transceiver and to a vehicle and infrastructure computing device, information indicative of an event affecting a portion of road. The vehicle and infrastructure computing device may comprise a vehicle and infrastructure control computer. The vehicle and infrastructure computing device may receive, from the event data source, the information indicative of the event affecting the portion of road. The computing device may determine one or more traffic devices associated with the portion of road and configured to control traffic for the portion of road. Based on the information indicative of the event affecting the portion of road, the computing device may send, to the one or more traffic devices associated with the portion of road, instructions to change one or more characteristics of the one or more traffic devices.
US11580850B2 Method, apparatus and computer program product for determining lane status confidence indicators using probe data
A method, apparatus and computer program product are provided to determine lane status confidence indicators of lane status predictions such as closures and/or shifting. Lane statuses and corresponding confidence indicators are determined based on probe data, such as probe data collected from vehicle and/or mobile devices traveling along a road segment. Probe data may be partitioned into clusters and compared to partitioned subsets of the probe data. Cluster stability for the segment and corresponding lane status confidence indicators can be determined based on the comparison. Accordingly, determinations of whether to transmit predicted lane statuses to another system, service, and/or user device may be made.
US11580848B2 Self-testing fire sensing device
Devices, methods, and systems for a self-testing fire sensing device are described herein. One device includes an adjustable particle generator and a variable airflow generator configured to generate an aerosol density level, an optical scatter chamber configured to measure a rate at which the aerosol density level decreases after the aerosol density level has been generated, and a controller configured to compare the measured rate at which the aerosol density level decreases with a baseline rate, and determine whether the self-testing fire sensing device requires maintenance based on the comparison of the measured rate at which the aerosol density level decreases and the baseline rate.
US11580847B2 Processing alarm signals
Methods, systems, computer-readable media, and apparatuses for processing alarm signals are presented. In some embodiments, a mobile device may be registered with a security system that is installed at a premises. Subsequently, an alarm trigger associated with the security system may be received. Based on receiving the alarm trigger, the location of the mobile device may be determined. A response to the alarm trigger then may be determined based on the location of the mobile device.
US11580841B2 Device and method for alarm detection
An alarm detection device includes: a sound receiver for receiving an external sound to output a first signal; a signal processing circuit coupled to the sound receiver, for receiving the first signal to output a second signal; and an alarm decision circuit coupled to the signal processing circuit, during a time range, when a number of the second signals meeting a trigger criteria is equal to a predetermined value, the alarm decision circuit outputting an alarm signal.
US11580838B1 System and method for pre-drowning and drowning detection
System and method for detection of pre-drowning and drowning events based on underwater images are disclosed.
US11580832B2 Motion detection system and method
A motion detection method includes providing a buffer including a first buffer associated with a background image and a second buffer associated with a foreground image; checking first similarity between the gray level of an input pixel and the first gray level of the first buffer; determining the input pixel as a still pixel if the first similarity is true; checking second similarity between the gray level and the second gray level of the second buffer; determining the input pixel as a moving pixel if the second similarity is false; determining the input pixel as the moving pixel if the second count value is less than the first count value; and determining the input pixel as the still pixel and swapping the first buffer with the second buffer, if the second count value is not less than the first count value.
US11580827B2 Signal displays
A method for determining and providing signal displays is provided. The method can include receiving data characterizing signal values. The data can be received from a sensor monitoring an asset, such as a rotating machinery asset. The method can also include receiving data characterizing a threshold trigger level associated with the asset. The method can further include determining a signal display for the asset. The method can also include providing the signal display in a graphical user interface. Monitoring systems for monitoring industrial assets and providing signal displays corresponding to an operation of the industrial assets are also provided.
US11580825B2 System and method for deposit and withdrawal service using automated teller machine and computer program for the same
A deposit and withdrawal service system using Automated Teller Machine (ATM) includes a communication module configured to receive a transaction request associated with a customer's asset managed by an institution from the ATM, and transmit a processing result received from the institution in response to the transaction request to the ATM, and a statement conversion module configured to convert the transaction request received from the ATM into aggregated details data that is independent from the ATM, and convert the processing result received from the institution into statement details data corresponding to the ATM having requested the transaction. The communication module is further configured to transmit the aggregated details data to the institution, receive the processing result from the institution, and transmit the processing result to the ATM as the statement details data. According to the deposit and withdrawal service system, it is possible to standardize a task structure between the ATM operating institution and the institution, and deposit and withdraw the customer's points or loans managed by the institution such as a Fintech institution or a card company via the ATM through a relaying function provided by the deposit and withdrawal service system.
US11580819B2 Electronic gaming system and method for managing funds transfer based upon proximity of a mobile device to a geofenced zone
A gaming system includes an electronic gaming machine (EGM) located within a defined zone of a gaming venue, a transmitter configured to output a first unique identifier, and a server including a processor and a memory storing instructions, where the instructions cause the processor to receive, in connection with a request at a mobile terminal to transfer funds to a gaming wallet accessible at the EGM, a communication from the mobile terminal including the first unique identifier, determine, based on the received first unique identifier, whether the mobile terminal is within the defined zone, and transmit, in response to determining whether the mobile terminal is within the defined zone, a signal to the mobile terminal indicating whether the mobile terminal is within the defined zone.
US11580816B2 Gaming machine button deck filler with lighting effects
Gaming machine button decks are connected with a button deck filler for connecting between two adjacent gaming machines to provide continuity between button decks and to provide lighting effects between the gaming machines. Light sources may be controlled by a multimedia server operating to control various presentation interfaces for a group of adjacent gaming machines.
US11580808B2 System and method for cryptographic choice mechanisms
The present invention provides an improved system and method for using cryptography to secure computer-implemented choice mechanisms. In several preferred embodiments, a process is provided for securing participants' submissions while simultaneously providing the capability of validating their submissions. This is referred to as a random permutation. In several other preferred embodiments, a process is provided for securing participants' advance instructions while simultaneously providing the capability of validating their advance instructions. This is referred to as a secure advance instruction. Applications include voting mechanisms, school choice mechanisms, and auction mechanisms.
US11580803B2 Locking device with multiple authentication devices
A locking device with a bolt movable between a locked position and an unlocked position. The locking device includes an electronic controller for selectively controlling movement of the bolt between the locked and unlocked position. At least two input devices are provided, such as a keypad, a biometric input, etc., which communicate an authentication code to the controller. The controller controls movement of the bolt based on a valid authentication code received from any of the at least two input devices.
US11580801B2 Access control system with dynamic access permission processing
Aspects of the disclosure relate to electronic access control. An electronic key can access a set of one or more electronic locks according to scheduled access permissions. Access schedules may define one or more authorized time periods during which access to an electronic lock is permitted. Access schedules can be generated based on user input received via a user interface. A key configuration corresponding to an access schedule is transmitted from a server to the electronic key. The set of electronic locks includes at least one lock designated as a conditional access lock. The conditional access lock is associated with access control information including at least one of environment data or personnel data. Responsive to determining that the access control information does not meet one or more criteria, the server automatically adjusts access schedules and generates a corresponding key configuration for the electronic key.
US11580796B1 Automatic problem detection from sounds
A system and a method for diagnosing a problem with a motor vehicle using sound. Ambient noise information for the motor vehicle is determined. Current sound information is received, and whether there is a variation in sound between the current sound information and the ambient noise information is determined. The ambient noise information is subtracted from the current sound information if the variation has been identified, to identify a sound anomaly. A sound anomaly signal is extracted and compared with predetermined anomaly signal information stored in a database. The predetermined anomaly signal information is associated with diagnostic information.
US11580793B2 Sensor for emitting signals and for receiving reflected echo signals, and system including a control unit and such a sensor
A sensor, including at least one transducer for emitting signals and for receiving reflected echo signals, the transducer being set up to output an analog measuring signal, an analog-to-digital converter for converting the analog measuring signal into a digital measuring signal, an evaluation unit for evaluating the digital measuring signal, and a communication unit for transmitting a measuring result of the evaluation via a digital communication interface. The communication unit is equipped to receive a request for diagnostic data via the digital communication interface, and is also equipped to switch the sensor to diagnostic operation and to transmit requested diagnostic data via the digital communication interface. The communication unit is set up to communicate with at least two different data rates via the digital communication interface, a higher data rate being used for transmitting the diagnostic data than for transmitting the measuring result during normal operation of the sensor.
US11580792B1 Vehicle diagnostics
Computing systems for vehicle diagnostics are provided. In accordance with some aspects, a computing system may receive, from a vehicle (e.g., from a computing device installed in and/or at the vehicle), a diagnostic code generated by an on-board diagnostic (OBD) system of the vehicle. The computing system may determine an issue with the vehicle based on the diagnostic code and may determine, based on the issue, a remedial action for addressing the issue and a timeframe for performing the remedial action. The computing system may store data identifying the issue, the remedial action, and the timeframe in a record associated with the vehicle.
US11580778B2 Video analysis for obtaining optical properties of a face
Disclosed is a system and method for obtaining optical properties of skin on a human face through face video analysis. Video of the face is captured, landmarks on the face and tracked, regions-of-interest are defined and tracked using the landmarks, some measurements/optical properties are obtained, the time-based video is transformed into an angular domain, and additional measurements/optical properties are obtained. Such optical properties can be measured using video in real-time or video that has been pre-recorded.
US11580776B2 Under-screen fingerprint sensing device and fingerprint sensing method
An under-screen fingerprint sensing device and fingerprint sensing method are provided. The under-screen fingerprint sensing device includes a fingerprint sensor and a processor. The processor performs a first FFC on a first color original value, a second color original value, and a third color original value provided by the fingerprint sensor to determine whether a target object is a real finger. When the processor determines that the target object is an unreal finger, the processor performs a second FFC on the first color original value, the second color original value, and the third color original value to determine again whether the target object is the real finger.
US11580771B2 Image capturing apparatus
The present disclosure provides an image capturing apparatus, including: a light source module having a first surface and a second surface opposite to each other along a thickness direction; an LCD module having a first surface and a second surface opposite to each other along the thickness direction; a light-transmitting cover plate having a first surface and a second surface opposite to each other along the thickness direction, wherein the first surface of the light-transmitting cover plate is configured to contact with an object to be captured, and the second surface of the light-transmitting cover plate is configured to face the first surface of the LCD module; and a sensor module configured to collect an incident light reflected by the light-transmitting cover plate. The present disclosure can realize image capturing based on the principle of total reflection under an LCD screen, optimize imaging effect, and improve imaging clarity.
US11580769B2 Display panel and display apparatus
Provided are a display panel and a display apparatus. The display panel includes a back panel, and a fingerprint identification unit, a specular reflection film layer and a touch unit which are disposed on the back panel, wherein the fingerprint identification unit includes a fingerprint identification electrode layer, the touch unit includes a touch electrode layer; and the fingerprint identification electrode layer, the specular reflection film layer and the touch electrode layer are disposed in a same layer.
US11580767B2 Fingerprint sensor
A fingerprint sensor includes a die, a plurality of conductive structures, an encapsulant, a plurality of conductive patterns, a first dielectric layer, a second dielectric layer, and a redistribution structure. The die has an active surface and a rear surface opposite to the active surface. The conductive structures surround the die. The encapsulant encapsulates the die and the conductive structures. The conductive patterns are over the die and are electrically connected to the die and the conductive structures. Top surfaces of the conductive patterns are flat. The first dielectric layer is over the die and the encapsulant. A top surface of the first dielectric layer is coplanar with top surfaces of the conductive patterns. The second dielectric layer covers the first dielectric layer and the conductive patterns. The redistribution structure is over the rear surface of the die.
US11580758B2 Method for processing image, electronic device, and storage medium
An image processing method for identifying text on production line components obtains an image to be recognized and a standard image for reference and extracts a first text area of the image to be recognized. A second text area of the standard image is obtained, and a text window is extracted based on the second text area. The method further obtains a target text area of the image to be recognized based on the first text area and the text window, and obtains a first set of first text sub-areas, and obtains a second set of second text sub-areas, by dividing the second text area into sub-windows of the text window. The method further marks the image to be recognized as a qualifying image when each first text sub-area of the first set is the same as a corresponding second text sub-area of the second set.
US11580757B2 Fatigue state detection method and apparatus, medium, and electronic device
Disclosed are a fatigue state detection method and apparatus, a medium and a device. The method includes: obtaining image blocks containing an organ area of a target object from a plurality of video frames collected by a camera apparatus disposed in a mobile device, to obtain an image-block sequence that is based on the organ area; determining a fatigue state type of the target object based on the image-block sequence of the organ area; sending the image-block sequence to a cloud server if the fatigue state type meets a first preset type, and rendering the cloud server to detect a fatigue level of the target object based on the image-block sequence; and receiving fatigue level information about the target object that is returned by the cloud server. The present disclosure may improve accuracy of fatigue state detection, thereby helping to improve driving safety of the mobile device.
US11580756B2 System and method for determining probability that a vehicle driver is associated with a driver identifier
A method for driver identification including recording a first image of a vehicle driver; extracting a set of values for a set of facial features of the vehicle driver from the first image; determining a filtering parameter; selecting a cluster of driver identifiers from a set of clusters, based on the filtering parameter; computing a probability that the set of values is associated with each driver identifier of the cluster; determining, at the vehicle sensor system, driving characterization data for the driving session; and in response to the computed probability exceeding a first threshold probability: determining that the new set of values corresponds to one driver identifier within the selected cluster, and associating the driving characterization data with the one driver identifier.
US11580754B2 System and method for large-scale lane marking detection using multimodal sensor data
A system and method for large-scale lane marking detection using multimodal sensor data are disclosed. A particular embodiment includes: receiving image data from an image generating device mounted on a vehicle; receiving point cloud data from a distance and intensity measuring device mounted on the vehicle; fusing the image data and the point cloud data to produce a set of lane marking points in three-dimensional (3D) space that correlate to the image data and the point cloud data; and generating a lane marking map from the set of lane marking points.
US11580752B2 Method for supporting a camera-based environment recognition by a means of transport using road wetness information from a first ultrasonic sensor
A method and an apparatus for supporting a camera-based environment recognition by a means of transport using road wetness information from a first ultrasonic sensor. The method includes: recording a first signal representing an environment of the means of transport by the first ultrasonic sensor of the means of transport; recording a second signal representing the environment of the means of transport by a camera of the means of transport; obtaining road wetness information on the basis of the first signal; selecting a predefined set of parameters from a plurality of predefined sets of parameters as a function of the road wetness information; and performing an environment recognition on the basis of the second signal in conjunction with the predefined set of parameters.
US11580750B2 Recording apparatus, recording method, and non-transitory computer-readable medium
A recording apparatus includes: a captured data acquisition unit configured to acquire captured data captured by a camera that captures an image of an outside of a vehicle; an event detection unit configured to detect an event with respect to the vehicle; an attachment/detachment detection unit configured to detect an attachment/detachment state of the recording apparatus with respect to the vehicle; and a recording controller configured to store, when the event detection unit has detected the event, captured data for a predetermined period of time due to the detected event as first event recording data, invalidate, when it is detected by the attachment/detachment detection unit that the recording apparatus has been detached from the vehicle, the detection of the event by the event detection unit after the detection of the detachment, and store captured data after the detection of the detachment as second event recording data.
US11580749B2 Tracking positions using a scalable position tracking system
A scalable tracking system processes video of a space to track the positions of people within a space. The tracking system determines local coordinates for the people within frames of the video and then assigns these coordinates to time windows based on when the frames were received. The tracking system then combines or clusters certain local coordinates that have been assigned to the same time window to determine a combined coordinate for a person during that time window.
US11580746B2 System and method for automated table game activity recognition
Some embodiments relate to a system for automated gaming recognition, the system comprising: at least one image sensor configured to capture image frames of a field of view including a table game; at least one depth sensor configured to capture depth of field images of the field of view; and a computing device configured to receive the image frames and the depth of field images, and configured to process the received image frames and depth of field images in order to produce an automated recognition of at least one gaming state appearing in the field of view. Embodiments also relate to methods and computer-readable media for automated gaming recognition. Further embodiments relate to methods and systems for monitoring game play and/or gaming events on a gaming table.
US11580744B2 Information processing apparatus, information processing method, and program
An information processing apparatus includes a frame image acquisition section adapted to acquire a plurality of consecutive frame images included in a moving image displayed on a screen, and a matching process section adapted to perform, for each of the plurality of acquired frame images, a matching process of detecting an area that matches a template image representing appearance of a display element to be detected. An area in which the display element is being displayed on the screen is identified on a basis of a result of performing the matching process on the plurality of frame images.
US11580743B2 System and method for providing unsupervised domain adaptation for spatio-temporal action localization
A system and method for providing unsupervised domain adaption for spatio-temporal action localization that includes receiving video data associated with a source domain and a target domain that are associated with a surrounding environment of a vehicle. The system and method also include analyzing the video data associated with the source domain and the target domain and determining a key frame of the source domain and a key frame of the target domain. The system and method additionally include completing an action localization model to model a temporal context of actions occurring within the key frame of the source domain and the key frame of the target domain and completing an action adaption model to localize individuals and their actions and to classify the actions based on the video data. The system and method further include combining losses to complete spatio-temporal action localization of individuals and actions.
US11580742B2 Target character video clip playing method, system and apparatus, and storage medium
Provided are a target character video clip playing method, system and apparatus, and a storage medium. The method comprises: using image recognition technology to perform target character recognition on an entire video, positioning a plurality of video clips containing target characters, and obtaining a first playing time period set corresponding to the video clips; according to audio clips corresponding to each character marked within the entire video, obtaining a second playing time period set corresponding to the audio clips of the various characters; merging the time periods included in the playing time period sets, and obtaining a sum playing time period set of the target characters; according to a sorting of various playing timelines within the sum playing time period set, performing video playing of the target characters.
US11580735B2 On demand visual recall of objects/places
Aspects of the subject disclosure may include, for example, observing a plurality of objects viewed through a smart lens, wherein the plurality of objects are in a frame of an image viewed by the smart lens, determining an identification for an object of the plurality of objects, assigning tag information for the object based on the identification, storing the tag information for the object and the frame in which the object was observed, receiving a recall request for the object, retrieving the tag information for the object and the frame responsive to the receiving the recall request, and displaying the tag information and the frame. Other embodiments are disclosed.
US11580734B1 Distinguishing real from virtual objects in immersive reality
Aspects of the subject disclosure may include, for example, a camera positioned to capture image information of an immersive experience presented to one or more users engaged in the immersive experience and located in an immersive experience space, a processing system and a memory that stores executable instructions to facilitate performance of operations including receiving the image information from the camera, detecting objects located in the immersive experience space with the one or more users, the objects including at least one virtual object created by the immersive experience, determining the at least one virtual object is a projected virtual object of the immersive experience, generating a signal indicating the at least one virtual object is a projected virtual object, and a projector, responsive to the signal, to provide a visual indication in the immersive experience space to identify the projected virtual object as a virtual object to the one or more users engaged in the immersive experience. Other embodiments are disclosed.
US11580733B2 Augmented reality content selection and display based on printed objects having security features
Systems, methods and techniques for automatically recognizing two-dimensional real world objects with an augmented reality display device, and augmenting or enhancing the display of such real world objects by superimposing virtual images such as a still or video advertisement, a story or other virtual image presentation. In non-limiting embodiments, the real world object includes visible features including visible security features and a recognition process takes the visible security features into account when recognizing the object and/or displaying superimposed virtual images.
US11580729B2 Agricultural pattern analysis system
A pattern recognition system including an image gathering unit that gathers at least one digital representation of a field, an image analysis unit that pre-processes the at least one digital representation of a field, an annotation unit that provides a visualization of at least one channel for each of the at least one digital representation of the field, where the image analysis unit generates a plurality of image samples from each of the at least one digital representation of the field, and the image analysis unit splits each of the image samples into a plurality of categories.
US11580728B2 Electrical power grid modeling
Methods, systems, and apparatus, including computer programs encoded on a storage device, for electric grid asset detection are enclosed. An electric grid asset detection method includes: obtaining overhead imagery of a geographic region that includes electric grid wires; identifying the electric grid wires within the overhead imagery; and generating a polyline graph of the identified electric grid wires. The method includes replacing curves in polylines within the polyline graph with a series of fixed lines and endpoints; identifying, based on characteristics of the fixed lines and endpoints, a location of a utility pole that supports the electric grid wires; detecting an electric grid asset from street level imagery at the location of the utility pole; and generating a representation of the electric grid asset for use in a model of the electric grid.
US11580723B2 Scene-aware object detection
Embodiments described herein provide systems and processes for scene-aware object detection. This can involve an object detector that modulates its operations based on image location. The object detector can be a neural network detector or a scanning window detector, for example.
US11580722B2 Calibration method for fingerprint sensor and display device using the same
Provided herein are a calibration method for a fingerprint sensor and a display device using the calibration method, where, in the calibration method for a fingerprint sensor, the fingerprint sensor includes a substrate, a light-blocking layer located on a first surface of the substrate and having openings formed in a light-blocking mask, a light-emitting element layer located on the light-blocking layer and having a plurality of light-emitting elements, and a sensor layer located on a second surface of the substrate and having a plurality of photosensors; and the calibration method includes generating calibration data through white calibration and dark calibration, and applying offsets to the plurality of photosensors using the calibration data.
US11580721B2 Information processing apparatus, control method, and program
The information processing apparatus (2000) includes a feature point detection unit (2020), a determination unit (2040), an extraction unit (2060), and a comparison unit (2080). A feature point detection unit (2020) detects a plurality of feature points from the query image. The determination unit (2040) determines, for each feature point, one or more object images estimated to include the feature point. The extraction unit (2060) extracts an object region estimated to include the object in the query image in association with the object image of the object estimated to be included in the object region, on the basis of the result of the determination. The comparison unit (2080) cross-checks the object region with the object image associated with the object region and determines an object included in the object region.
US11580719B2 Dynamic quantization for deep neural network inference system and method
A method for dynamically quantizing feature maps of a received image. The method includes convolving an image based on a predicted maximum value, a predicted minimum value, trained kernel weights and the image data. The input data is quantized based on the predicted minimum value and predicted maximum value. The output of the convolution is computed into an accumulator and re-quantized. The re-quantized value is output to an external memory. The predicted min value and the predicted max value are computed based on the previous max values and min values with a weighted average or a pre-determined formula. Initial min value and max value are computed based on known quantization methods and utilized for initializing the predicted min value and predicted max value in the quantization process.
US11580718B2 Plant group identification
A farming machine moves through a field and includes an image sensor that captures an image of a plant in the field. A control system accesses the captured image and applies the image to a machine learned plant identification model. The plant identification model identifies pixels representing the plant and categorizes the plant into a plant group (e.g., plant species). The identified pixels are labeled as the plant group and a location of the pixels is determined. The control system actuates a treatment mechanism based on the identified plant group and location. Additionally, the images from the image sensor and the plant identification model may be used to generate a plant identification map. The plant identification map is a map of the field that indicates the locations of the plant groups identified by the plant identification model.
US11580716B2 Device for a color-based detection of image contents computing device, and motor vehicle including the device
An apparatus for color-dependent detection of image contents includes a light input coupling apparatus, carrier medium, measuring region, output coupling region, and camera apparatus. The light input coupling apparatus includes a light source to emit light at a first wavelength. The carrier medium receives the light and transmits the light by internal reflection to the measuring region. The measuring region includes a first diffraction structure that outputs light at the first wavelength. The first diffraction structure is formed as a multiplex diffraction structure to input light in a second wavelength range. The output coupling region includes a second diffraction structure formed as a multiplex diffraction structure that outputs light at the first wavelength and the second wavelength range. The camera apparatus captures light output from the carrier medium to the camera apparatus, and provides the light in a form of image data which correlates with the light.
US11580714B2 Methods and systems for displaying virtual objects from an augmented reality environment on a multimedia device
Methods and systems are disclosed for displaying an augmented reality virtual object on a multimedia device. One method comprises detecting, in an augmented reality environment displayed using a first device, a virtual object; detecting, within the augmented reality environment, a second device, the second device comprising a physical multimedia device; and generating, at the second device, a display comprising a representation of the virtual object.
US11580711B2 Systems and methods for controlling virtual scene perspective via physical touch input
Systems, methods, and non-transitory computer readable media for controlling perspective in an extended reality environment are disclosed. In one embodiment, a non-transitory computer readable medium contains instructions to cause a processor to perform the steps of: outputting for presentation via a wearable extended reality appliance (WER-appliance), first display signals reflective of a first perspective of a scene; receiving first input signals caused by a first multi-finger interaction with the touch sensor; in response, outputting for presentation via the WER-appliance second display signals to modify the first perspective of the scene, causing a second perspective of the scene to be presented via the WER-appliance; receiving second input signals caused by a second multi-finger interaction with the touch sensor; and in response, outputting for presentation via the WER-appliance third display signals to modify the second perspective of the scene, causing a third perspective of the scene to be presented via the WER-appliance.
US11580708B2 Interactive virtual reality system
Provided herein are method, apparatus, and computer program products for generating a first and second three dimensional interactive environment. The first three dimensional interactive environment may contain one or more engageable virtual interfaces that correspond to one or more items. Upon engagement with a virtual interface the second three dimensional interactive environment is produced to virtual simulation related to the one or more items.
US11580704B2 Blending virtual environments with situated physical reality
Various embodiments are provided herein for tracking a user's physical environment, to facilitate on-the-fly blending of a virtual environment with detected aspects of the physical environment. Embodiments can be employed to facilitate virtual roaming by compositing virtual representations of detected physical objects into virtual environments. A computing device coupled to a HMD can select portions of a depth map generated based on the user's physical environment, to generate virtual objects that correspond to the selected portions. The computing device can composite the generated virtual objects into an existing virtual environment, such that the user can traverse the virtual environment while remaining aware of their physical environment. Among other things, the computing device can employ various blending techniques for compositing, and further provide image pass-through techniques for selective viewing of the physical environment while remaining fully-immersed in virtual reality.
US11580698B2 Rendering 3D captions within real-world environments
Aspects of the present disclosure involve a system comprising a computer-readable storage medium storing at least one program and method for rendering three-dimensional captions (3D) in real-world environments depicted in image content. An editing interface is displayed on a client device. The editing interface includes an input component displayed with a view of a camera feed. A first input comprising one or more text characters is received. In response to receiving the first input, a two-dimensional (2D) representation of the one or more text characters is displayed. In response to detecting a second input, a preview interface is displayed. Within the preview interface, a 3D caption based on the one or more text characters is rendered at a position in a 3D space captured within the camera feed. A message is generated that includes the 3D caption rendered at the position in the 3D space captured within the camera feed.
US11580690B1 Horizon-based navigation
Systems, devices, methods, and computer-readable media for horizon-based navigation. A method can include receiving image data corresponding to a geographical region in a field of view of an imaging unit and in which the device is situated, based on the received image data, generating, by the processing unit, an image horizon corresponding to a horizon of the geographical region and from a perspective of the imaging unit, projecting three-dimensional (3D) points of a 3D point set of the geographical region to an image space of the received image data resulting in a synthetic image, generating, by the processing unit, a synthetic image horizon of the synthetic image, and responsive to determining the image horizon sufficiently correlates with the synthetic image horizon, providing a location corresponding to a perspective of the synthetic image as a location of the processing unit.
US11580685B2 Physics engine with collision detection neighbor welding
A computing device is provided, comprising a processor configured to execute a physics engine. The physics engine is configured to, during narrowphase collision detection of a collision detection phase, identify a set of convex polyhedron pairs, each including a first convex polyhedron from a first rigid body and a second convex polyhedron from a second rigid body. The physics engine is further configured to, for each convex polyhedron pair, determine a separating plane. The physics engine is further configured to perform neighbor welding on pair combinations of the convex polyhedron pairs during the narrowphase collision detection to thereby modify the separating planes of at least a subset of the convex polyhedron pairs. The physics engine is further configured to determine collision manifolds for the convex polyhedron pairs, including for the subset of convex polyhedron pairs having the modified separating planes.
US11580684B2 Displaying items of interest in an augmented reality environment
Computer program products, methods, systems, apparatus, and computing entities are provided for an augmented reality display using an actual image of the item. Additionally, the present disclosure provides for a proportionally dimensioned representation of the item in the augmented reality display. In some aspects, a beacon/tag/sensor-based approach may be used. In some aspects, a marker-based approach may be used.
US11580682B1 Messaging system with augmented reality makeup
Systems, methods, and computer readable media for messaging system with augmented reality (AR) makeup are presented. Methods include processing a first image to extract a makeup portion of the first image, the makeup portion representing the makeup from the first image and training a neural network to process images of people to add AR makeup representing the makeup from the first image. The methods may further include receiving, via a messaging application implemented by one or more processors of a user device, input that indicates a selection to add the AR makeup to a second image of a second person. The methods may further include processing the second image with the neural network to add the AR makeup to the second image and causing the second image with the AR makeup to be displayed on a display device of the user device.
US11580679B2 Information processing apparatus, information processing method, and non-transitory computer readable medium
An information processing apparatus (10) is for supporting work by a user who uses drawings for a plant. The information processing apparatus (10) includes a controller (15). The controller (15) is configured to convert a drawing including elements configuring the plant into an abstract model represented by element information indicating the elements and connection information indicating a connection relationship between the elements. The controller (15) is configured to generate display information, when it is judged that a difference exists between one abstract model based on one drawing and another abstract model based on another drawing, for displaying the differing portion in a different form than another portion.
US11580678B2 Systems and methods for interpolation with resolution preservation
Various methods and systems are provided for artifact reduction with resolution preservation. In one example, a method includes obtaining projection data of an imaging subject, identifying a metal-containing region in the projection data, interpolating the metal-containing region to generate interpolated projection data, extracting high frequency content information from the projection data in the metal-containing region, adding the extracted high frequency content information to the interpolated projection data to generate adjusted projection data, and reconstructing one or more diagnostic images from the adjusted projection data.
US11580673B1 Methods, systems, and computer readable media for mask embedding for realistic high-resolution image synthesis
The subject matter described herein includes methods, systems, and computer readable media for mask embedding for realistic high-resolution image synthesis. According to one method for mask embedding for realistic high-resolution image synthesis includes receiving, as input, a mask embedding vector and a latent features vector, wherein the mask embedding vector acts as a semantic constraint; generating, using a trained image synthesis algorithm and the input, a realistic image, wherein the realistic image is constrained by the mask embedding vector; and outputting, by the trained image synthesis algorithm, the realistic image to a display or a storage device.
US11580672B2 Angular mode simplification for geometry-based point cloud compression
A method of decoding point cloud data comprises obtaining a bitstream that includes an arithmetically encoded syntax element indicating a vertical point position offset within a node of a tree that represents 3-dimensional positions of points in a point cloud represented by the point cloud data; and decoding the vertical point position offset, wherein decoding the vertical point position offset comprises: determining a laser index of a laser candidate in a set of laser candidates, wherein the determined laser index indicates a laser beam that intersects the node; determining a context index based on whether the laser beam is above a first distance threshold, between the first distance threshold and a second distance threshold, between the second distance threshold and a third distance threshold, or below the third distance threshold; and arithmetically decoding a bin of the vertical point position offset using a context indicated by the determined context index.
US11580666B2 Localization and mapping method and moving apparatus
A localization and mapping method is for localizing and mapping a moving apparatus in a moving process. The localization and mapping method includes an image capturing step, a feature point extracting step, a flag object identifying step, and a localizing and mapping step. The image capturing step includes capturing an image frame at a time point of a plurality of time points in the moving process by a camera unit. The flag object identifying step includes identifying whether the image frame includes a flag object among a plurality of the feature points in accordance with a flag database. The flag database includes a plurality of dynamic objects, and the flag object is corresponding to one of the dynamic objects. The localizing and mapping step includes performing localization and mapping in accordance with the image frames captured and the flag object thereof in the moving process.
US11580658B2 Spatial construction using guided surface detection
Described herein are a system and methods for efficiently using depth and image information for a space to generate a 3D representation of that space. In some embodiments, an indication of one or more points is received with respect to image information, which is then mapped to corresponding points within depth information. A boundary may then be calculated to be associated with each of the points based on the depth information at, and surrounding, each point. Each of the boundaries are extended outward until junctions are identified as bounding the boundaries in a direction. The system may determine whether the process is complete or not based on whether any of the calculated boundaries are currently unlimited in extent in any direction. Once the system determines that each of the boundaries is limited in extent, a 3D representation of the space may be generated based on the identified junctions and/or boundaries.
US11580655B2 Systems and methods for manipulating virtual shapes in three-dimensional space
Examples disclosed herein may involve a computing system that is operable to (i) present, via a visual interface, a virtual shape associated with a three-dimensional (3D) coordinate system, (ii) present, via the visual interface, a visual indicator positioned in proximity to the virtual shape and indicating that a specified spatial parameter of the virtual shape will be modified along a specified dimension of the 3D coordinate system in response to a given type of user input associated with the visual indicator, (iii) while presenting the visual indicator, detect an instance of the given type of user input associated with the visual indicator, and (iv) after detecting the instance of the given type of user input, update the virtual shape that is presented via the visual interface by modifying the specified spatial parameter of the virtual shape along the specified dimension.
US11580653B2 Method and device for ascertaining a depth information image from an input image
A method for ascertaining a depth information image for an input image. The input image is processed using a convolutional neural network, which includes multiple layers that sequentially process the input image, and each converts an input feature map into an output feature map. At least one of the layers is a depth map layer, the depth information image being ascertained as a function of a depth map layer. In the depth map layer, an input feature map of the depth map layer is convoluted with multiple scaling filters to obtain respective scaling maps, the multiple scaling maps are compared pixel by pixel to generate a respective output feature map in which each pixel corresponds to a corresponding pixel from a selected one of the scaling maps.
US11580652B2 Object detection using multiple three dimensional scans
One exemplary implementation facilitates object detection using multiple scans of an object in different lighting conditions. For example, a first scan of the object can be created by capturing images of the object by moving an image sensor on a first path in a first lighting condition, e.g., bright lighting. A second scan of the object can then be created by capturing additional images of the object by moving the image sensor on a second path in a second lighting condition, e.g., dim lighting. Implementations determine a transform that associates the scan data from these multiple scans to one another and use the transforms to generate a 3D model of the object in a single coordinate system. Augmented content can be positioned relative to that object in the single coordinate system and thus will be displayed in the appropriate location regardless of the lighting condition in which the physical object is later detected.
US11580651B2 System and method for predictive fusion
An image fusion system provides a predicted alignment between images of different modalities and synchronization of the alignment, once acquired. A spatial tracker detects and tracks a position and orientation of an imaging device within an environment. A predicted pose of an anatomical feature can be determined, based on previously acquired image data, with respect to a desired position and orientation of the imaging device. When the imaging device is moved into the desired position and orientation, a relationship is established between the pose of the anatomical feature in the image data and the pose of the anatomical feature imaged by the imaging device. Based on tracking information provided by the spatial tracker, the relationship is maintained even when the imaging device moves to various positions during a procedure.
US11580647B1 Global and local binary pattern image crack segmentation method based on robot vision
A global and local binary pattern image crack segmentation method based on robot vision comprises the following steps: enhancing a contrast of an acquired original image to obtain an enhanced map; using an improved local binary pattern detection algorithm to process the enhanced map and construct a saliency map; using the enhanced map and the saliency map to segment cracks and obtaining a global and local binary pattern automatic crack segmentation method; and evaluating performance of the obtained global and local binary pattern automatic crack segmentation method. The present application uses logarithmic transformation to enhance the contrast of a crack image, so that information of dark parts of the cracks is richer. Texture features of a rotation invariant local binary pattern are improved. Global information of four directions is integrated, and the law of universal gravitation and gray and roundness features are introduced to correct crack segmentation results, thereby improving segmentation accuracy. Crack regions can be segmented in the background of uneven illumination and complex textures. The method has good robustness and meets requirements of online detection.
US11580646B2 Medical image segmentation method based on U-Net
A medical image segmentation method based on a U-Net, including: sending real segmentation image and original image to a generative adversarial network for data enhancement to generate a composite image with a label; then putting the composite image into original data set to obtain an expanded data set, and sending the expanded data set to improved multi-feature fusion segmentation network for training. A Dilated Convolution Module is added between the shallow and deep feature skip connections of the segmentation network to obtain receptive fields with different sizes, which enhances the fusion of detail information and deep semantics, improves the adaptability to the size of the segmentation target, and improves the medical image segmentation accuracy. The over-fitting problem that occurs when training the segmentation network is alleviated by using the expanded data set of the generative adversarial network.
US11580644B2 Information processing method, storage medium, and information processing apparatus
The album creation application of the present disclosure displays image data, to which trimming is performed, and a template, which includes a slot in which the image data is arranged, so that a slot and image data to be arranged in the slot are selected by use of an input device. Position information of a point of interest in the image to be arranged in the slot is obtained. Composition patterns applicable to the image with designation of the point of interest are presented to the user, and the composition pattern to be applied, which is selected by the user from among the presented composition patterns, is obtained. Trimming is performed based on the point of interest and the selected composition pattern selected. The trimmed images are listed, so that multiple trimmed images are presented to the user as trimming proposals.
US11580640B2 Identifying the quality of the cell images acquired with digital holographic microscopy using convolutional neural networks
A system for performing adaptive focusing of a microscopy device comprises a microscopy device configured to acquire microscopy images depicting cells and one or more processors executing instructions for performing a method that includes extracting pixels from the microscopy images. Each set of pixels corresponds to an independent cell. The method further includes using a trained classifier to assign one of a plurality of image quality labels to each set of pixels indicating the degree to which the independent cell is in focus. If the image quality labels corresponding to the sets of pixels indicate that the cells are out of focus, a focal length adjustment for adjusting focus of the microscopy device is determined using a trained machine learning model. Then, executable instructions are sent to the microscopy device to perform the focal length adjustment.
US11580633B2 Control device and method of sectors for the assembly of the turbine stators of a turbine
A control device controls sectors for the assembly of turbine stators of a turbine. Each turbine stator is formed of an assembly of sectors juxtaposed to one another, and each sector has a reference. The control device includes an automated system for identifying the sector with means for reading the sector reference, a database of the references of the sectors that form the turbine stators of the turbine, and means for associating the read reference of the sector with a determined turbine stator of the turbine.
US11580631B2 Platform and methods for dynamic thin film measurements using hyperspectral imaging
Dynamic thin film interferometry is a technique used to non-invasively characterize the thickness of thin liquid films that are evolving in both space and time. Recovering the underlying thickness from the captured interferograms, unconditionally and automatically is still an open problem. A compact setup is provided employing a snapshot hyperspectral camera and the related algorithms for the automated determination of thickness profiles of dynamic thin liquid films. The technique is shown to recover film thickness profiles to within 100 nm of accuracy as compared to those profiles reconstructed through the manual color matching process. Characteristics and advantages of hyperspectral interferometry are discussed including the increased robustness against imaging noise as well as the ability to perform thickness reconstruction without considering the absolute light intensity information.
US11580628B2 Apparatus and methods for augmented reality vehicle condition inspection
Methods, apparatus, systems and articles of manufacture are disclosed for augmented reality vehicle condition inspection. An example apparatus disclosed herein includes a location analyzer to determine whether a camera is at an inspection location and directed towards a first vehicle in an inspection profile, the inspection location corresponding to a location of the camera relative to the first vehicle, an interface generator to generate an indication on a display that the camera is at the inspection location, the indication associated with an inspection image being captured, and an image analyzer to compare the inspection image captured at the inspection location with a reference image taken of a reference vehicle of a same type as the first vehicle, and determine a vehicle part condition or a vehicle condition based on the comparison of the inspection image and the reference image.
US11580624B2 Image processing system, image processing apparatus, and non-transitory computer readable medium
An image processing apparatus includes a processor configured to extract a component related to luminance of each of a sample image and a processing target image that is to undergo image processing to match an impression of the processing target image to the sample image, extract feature values of the processing target image and the sample image by attaching to a pixel value of each pixel forming the processing target image and the sample image a weight responsive to the component related to the luminance, and make adjustment to match the feature value of the processing target image to the feature value of the sample image.
US11580620B2 Image processing apparatus, image processing method, and non-transitory computer-readable medium
There is provided with an image processing apparatus. A noise reduction unit generates a noise-reduced image in which noise is reduced from an input image in which a plurality of types of pixels that represent mutually different types of color information are arranged in one plane. An extraction unit generates a high-frequency emphasized image in which a high-frequency component of the input image is emphasized. A demosaicing unit generates a demosaiced image having a plurality of planes that each represent one type of color information by demosaicing processing to the noise-reduced image. A generation unit generates an output image by correcting the demosaiced image by using the high-frequency emphasized image.
US11580619B2 Method of managing display data
A compositor receives, from each of a plurality of originating devices, compressed and/or encrypted image data portions of a frame of image data, together with portion metadata for each of the compressed and/or encrypted image data portions. Frame metadata for the frame of image data. The compositor then composites the image data portions without decompressing and/or decrypting them, based on the portion and frame metadata, by generating composited frame metadata for the composited image frame and amending the portion metadata for each of the compressed and/or encrypted image data portions to indicate a location of the compressed and/or encrypted image data portions in the composited image frame. The compressed and/or encrypted image data portions, the composited frame metadata and the amended portion metadata are then transmitted by the compositor to a display control device.
US11580617B2 Method of matching images to be merged and data processing device performing the same
Each input image from a plurality of input images is divided into a plurality of image tiles. A feature point map including a plurality of feature point tiles respectively corresponding to the plurality of image tiles is generated by extracting feature points included in each image tile of the plurality of image tiles. A descriptor map including a plurality of descriptor tiles respectively corresponding to the plurality of feature point tiles is generated by generating descriptors of feature points included in the feature point map. Mapping information containing matching relationships between feature points included in different input images of the plurality of input images is generated based on a plurality of descriptor maps respectively corresponding to the plurality of input images. Image merging performance may be enhanced by dividing the input image into the plurality of image tiles to increase distribution uniformity of the feature points.
US11580616B2 Photogrammetric alignment for immersive content production
A method of content production includes generating a survey of a performance area that includes a point cloud representing a first physical object, in a survey graph hierarchy, constraining the point cloud and a taking camera coordinate system as child nodes of an origin of a survey coordinate system, obtaining virtual content including a first virtual object that corresponds to the first physical object, applying a transformation to the origin of the survey coordinate system so that at least a portion of the point cloud that represents the first physical object is substantially aligned with a portion of the virtual content that represents the first virtual object, displaying the first virtual object on one or more displays from a perspective of the taking camera, capturing, using the taking camera, one or more images of the performance area, and generating content based on the one or more images.
US11580615B2 Routing a mobile vehicle based on rider characteristics
An information processing apparatus according to the present application includes an acquiring unit and a deciding unit. The acquiring unit acquires attribute information on a user. The deciding unit decides, based on the attribute information acquired by the acquiring unit, a placement position in which a virtual riding point that corresponds to a riding point that is used for the user to ride in a moving vehicle and that is virtually set is placed.
US11580614B2 Systems and methods for delivering products via autonomous ground vehicles to restricted areas designated by customers
In some embodiments, methods and systems are provided that provide for facilitating delivery, via autonomous ground vehicles, of products ordered by customers of a retailer to customer-specified restricted areas accessible by an entryway openable via an access code.
US11580605B2 Feedback loop in mobile damage assessment and claims processing
Systems and methods provide for an automated system for analyzing damage and processing claims associated with an insured item, such as a vehicle. An enhanced claims processing server may analyze damage associated with the insured item using photos/video transmitted to the server from a user device (e.g., a mobile device). The mobile device may receive feedback from the server regarding the acceptability of submitted photos/video, and if the server determines that any of the submitted photos/video is unacceptable, the mobile device may capture additional photos/video until all of the data are deemed acceptable. To aid in damage analysis, the server may also interface with various internal and external databases storing reference images of undamaged items and cost estimate information for repairing previously analyzed damages to similar items. Further still, the server may generate a payment for compensating a claimant for repair of the insured item.
US11580604B1 Autonomous vehicle operation feature monitoring and evaluation of effectiveness
Methods and systems for monitoring use and determining risks associated with operation of a vehicle having one or more autonomous operation features are provided. According to certain aspects, operating data may be recorded during operation of the vehicle. This may include information regarding the vehicle, the vehicle environment, use of the autonomous operation features, and/or control decisions made by the features. The control decisions may include actions the feature would have taken to control the vehicle, but which were not taken because a vehicle operator was controlling the relevant aspect of vehicle operation at the time. The operating data may be recorded in a log, which may then be used to determine risk levels associated with vehicle operation based upon risk levels associated with the autonomous operation features. The risk levels may further be used to adjust an insurance policy associated with the vehicle.
US11580602B2 Darkpool matching of orders with price discretion
Various embodiments are directed to systems and methods for processing a discretion order in a dark pool matching environment. A first order to buy or sell a trading product is received from a computer of a first trader. The first order has a first price and a first size. A second order to buy or sell the trading product that is contra to the first order is received from a second trader. The second order defines a second quantity and a price range of possible prices at which the second order can be executed. The price range comprises at least a second price. The second quantity of the trading product is reserved in an OMS of the second trader such that the second quantity of the second order is permitted by the OMS to be executed at any price within the price range. The second order is received before or after the first order is received. A processor determines that the first price of the first order is within the price range of the second order. Responsive to the determination, two items are output to the second trader: (1) the price of the first order and (2) an execution indicia selectable by the second trader to cause at least a portion of the second order to be executed against at least a portion of the first order. The first price of the first order and the execution indicia are not output or otherwise disclosed to the second trader prior to the act of determining that the first price of the first order is within the price range of the second order.
US11580601B1 Secure multi-server interest rate based instrument trading system and methods of increasing efficiency thereof
The SECURE MULTI-SERVER INTEREST RATE BASED INSTRUMENT TRADING SYSTEM AND METHODS OF INCREASING EFFICIENCY THEREOF AND ASSOCIATED INTEREST RATE BASED FINANCIAL INSTRUMENT (“IRFI”) provides efficient, secure instrument transactions. The IRFI provides increased trading system security and efficiency for an interest-rate based instrument exchange utilizing a server-based trading platform. The IRFI receives a user selection of a contract including associated characteristic parameters. The IRFI receives user-selected number of contracts to trade associated with a basis point for the contract. An artificial neural network, including at least one input layer, a hidden layer and an output layer, can determine a risk hedging amount based on the basis point for the contract and the selected number of contracts to cover a risk in an auction. The IRFI receives pricing data associated with an auction system, the pricing data including settlement yield and delivery price and determines a delivery amount for the contract.
US11580595B2 System and method for virtual currency remittance
[Object] The object is to present a technical solution for a bank to disclose information on a deposit account directly to a third party.[Solution Means] The owner of a virtual currency address or real-currency deposit account provides a disclosure key to a disclosee (third party). The third party accesses a disclosure server 6 by operating a disclosee terminal 7, and transmits a disclosure request with the disclosure key. The disclosure server 6 accesses to an opener bank server 1, 8, acquires the virtual currency address owner information or the instant real-currency deposit account balance information, transmits it to the disclosee terminal 7, and make it browsable on the disclosee terminal 7.
US11580590B2 Systems and methods to extract and utilize textual semantics
Systems and methods to extract and utilize textual semantics are described. The system receives item information that describes an item for sale on a network-based marketplace and analyzes the item information to generate application information that identifies a plurality of applications. The plurality of applications includes a first application that further includes the item as a first component of the first application. The system stores a listing in a database that includes the application information and the item information and publishes the listing on the network-based marketplace to sell the item via the network-based marketplace.
US11580580B2 Customer review and ticket management system
The present disclosure provides for a method, comprising: importing customer reviews from a plurality of external sources, wherein importing customer reviews comprises of performing a scheduled job at a pre-determined frequency that makes a functional call with property identifiers to an application programming interface operating as an individual importer; categorizing each imported customer review into a designated one or more categories; displaying each of the imported customer reviews through one or more widgets on a user interface of a management system; importing work orders generated at individual properties, wherein each work order is assigned a ticket number; importing emails transmitted to a specific email address; and generating a work order from an imported email.
US11580572B2 Digital advertising platform with demand path optimization
A digital advertising system includes at least one processor configured to execute a plurality of functional modules including an analytics module to receive and analyze client attributes associated with a website visitor and a requested website to define an analytics event. The analytics module ingests and enriches data within the analytics event and provides it to a machine learning module that generates prediction models for potential bids. A management platform receives the bidding prediction and generates candidate configs. An optimization module receives the candidate configs and applies weights and additional features to select a config and generate an optimized script for the selected config. A deployment module receives the optimized script and delivers the script to the website visitor.