Document | Document Title |
---|---|
US11553633B2 |
Mounting device, information processing device, mounting method, and information processing method
A mounting device comprises: a mounting head having multiple pickup members configured to pick up components; a mounting control section configured to cause a second component to be picked up later when a first component, held by the mounting head at a predetermined height, and the second component, held by the mounting head at a lowered position lower than the predetermined height, are picked up with the mounting head; the mounting control section being configured to cause the second component to be released earlier when the mounting head, having picked up the first component and the second component, releases a component. |
US11553631B2 |
Systems and methods for removing an adhesively-attached component from a circuit board assembly
Apparatus and associated methods relate to removing an adhesively-attached component from a circuit board assembly. A complementary pair of high-permeability members are positioned on opposite sides of the circuit board assembly about the adhesively-attached component. Then, a magnetic field is induced within the complementary pair of high permeability members via a coil driver generating an AC current in an inductive coil circumscribing a central pedestal of the complementary pair of high-permeability members. The magnetic field induced is directed through the adhesively-attached component via a central pedestal located proximate the adhesively-attached component. A return path for the magnetic field is provided about a periphery of the adhesively-attached component via a peripheral pedestal. |
US11553629B2 |
Shielding member and electronic device including the same
An electronic device including a shielding member for performing an electromagnetic interference (EMI) shielding function is provided. The electronic device includes a printed circuit board including a first area in which first electronic components having a first frequency as a driving frequency are mounted, and a second area in which second electronic components having a second frequency as a driving frequency are mounted, a shielding film disposed to cover the first area and the second area of the printed circuit board and attached to a first ground portion of the printed circuit board, and at least one conductive member formed to extend in a direction perpendicular to an extending direction of the printed circuit board. The at least one conductive member includes a first end that contacts the shielding film, and a second end that contacts a second ground portion of the printed circuit board, the second end being disposed between the first area and the second area of the printed circuit board. |
US11553628B2 |
Power conversion apparatus, and method of manufacturing power conversion apparatus
A power conversion apparatus includes a case having a heat-dissipation property, and including a housing part formed to surround a predetermined space, a resin material having a thermal conductivity, the resin material being provided in the predetermined space, a coil disposed in the predetermined space, a coil case having a shape that fits with the housing part, the coil case being configured to house the coil, and a power semiconductor device disposed along a side wall of the coil case. The power semiconductor device is pressed and fixed between a side wall of the housing part and the side wall of the coil case in a state where a heat dissipation surface is in contact with the side wall of the housing part. |
US11553621B2 |
Heat dissipation base
A heat dissipation base includes a fixing plate and a metal heat conduction block. The fixing plate includes a plurality of heat pipe partitions and a plurality of heat pipe fixing openings, and the heat pipe fixing openings are formed between the heat pipe partitions. The metal heat conduction block is fixed to the fixing plate, and the fixing plate further includes a plurality of supporting portions to support shear surfaces at two ends of the heat conduction block. |
US11553619B2 |
Control device and control method
A processing executing unit of a control device is configured to set the number of blocks to be read indicating the number of blocks to be read from a storage unit per unit time and a fan rotational speed of a fan motor in accordance with the amount of allowable machining error or a feed rate of a table that is inputted by an operator, and further configured to read a machining program from the storage unit block by block at the set number of blocks to be read and cause a fan control unit to perform a process to drive the fan motor at the set fan rotational speed. |
US11553616B2 |
Module with power device
The present disclosure provides a module including a circuit board, a first component and a second component. The circuit board includes a first side and a second side opposite to each other and includes a first plane and second plane disposed on the first side. A first height difference is formed between the first plane and the second plane. The first component and the second component are disposed on the first plane and the second plane, respectively. The first component and the second component include a first contact surface and a second contact surface, respectively. The first contact surface and the second contact surface are coplanar with a first surface of the module. It benefits to reduce the design complexity of a heat-transfer component, and enhance the heat dissipation capability and the overall power density of the module simultaneously. |
US11553614B2 |
Electronic device including flexible display
An electronic device comprises a first structure including a first plate providing a first surface and a second surface and a second structure coupled to surround at least a portion of the first structure and configured to guide the first structure in a direction parallel with the first surface or the second surface. The device also includes a roller mounted on an edge of the second structure and a flexible display including a first area mounted on the first surface and a second area extending from the first area. The device also includes at least one support sheet mounted on the roller and wound around the roller as the roller rotates. The support sheet is wound around the roller when the second area is received inside the second structure, and is unfolded inside the second area when the second area is exposed to the outside of the second structure. |
US11553609B2 |
Reel and display device
A reel and a display device are provided. The display device includes the reel, the reel includes a reel body, and the reel body is cylindrical. The reel body is provided with a first ring mounting groove along an extending direction of a length of a cylinder, and a depth of the first ring mounting groove corresponds to a thickness of a flexible display screen to be mounted. |
US11553607B2 |
Electronic device
An electronic device includes: a circuit board having a wiring board on which wiring is formed, and an electronic component that is electrically and mechanically connected to the wiring via a first solder. A base is provided to accommodate the circuit board, and has a side wall that faces a side surface of the wiring board. A leaf spring arranged on the circuit board, and is configured to be contactable with the base. The leaf spring includes a fixing portion arranged on the circuit board and a pressing portion extending from and connected to the fixing portion and pressing the side wall, and the pressing portion in a biased state toward a housing establishes a contact thereto when the circuit board is put in and accommodated by the base. |
US11553606B2 |
Display device
According to one embodiment, a display device includes a first submodule having a display panel, a second submodule having a cover member located on the display panel, and a first decoupling layer located between the first submodule and the second submodule, and each of the first submodule and the second submodule has a single neutral plane. |
US11553603B2 |
Method of manufacturing circuit board and circuit board
A method includes preparing a first substrate member in which a cavity is formed. Moreover, the method includes preparing a magnetic member having a plurality of magnetic pieces. The magnetic member is placed in the cavity, and the second substrate member is placed on the first substrate member to close the cavity. The cavity is defined at least in part by a pair of wall surfaces facing each other in a lateral direction and opens upward in an up-down direction perpendicular to the lateral direction. The magnetic pieces are coupled with each other by positioning members so as to be arranged at regular intervals in a predetermined direction. The placing of the magnetic member in the cavity is carried out so that the predetermined direction coincides with the lateral direction or a front-rear direction perpendicular to both of the lateral direction and the up-down direction. |
US11553600B2 |
Device for manufacturing conductive film
Provided is a device configured to manufacture a conductive film including a rotating member, a first syringe, and a second syringe. The rotating member rotates about an axis extending in a first direction. The first syringe is disposed over a first portion of the rotating member, and is configured to discharge a first polymer and conductive balls. The second syringe is adjacent to the first syringe, and is configured to discharge a second polymer. |
US11553598B2 |
Integrated electro-optical flexible circuit board
An integrated electro-optical circuit board comprises a first flexible substrate having a top side and a bottom side, at least one first optical circuit on the bottom side of the first flexible substrate connected to the top surface through a filled via, at least one first metal trace on the top side of the first flexible substrate, an optical adhesive layer connecting the bottom side of the first flexible substrate to a top side of a second flexible substrate, and at least one second metal trace on a bottom side of the second flexible substrate connected by a filled via through the second flexible substrate, the optical adhesive layer, and the first flexible substrate to the at least one first metal trace. |
US11553595B2 |
Printed circuit board comprising a plurality of power transistor switching cells in parallel
A printed circuit board comprises N power switching cells operating in parallel and respectively comprising a transistor leg, at least one decoupling capacitor and a gate driver circuit. Each transistor leg comprises respective first and second transistors in series, a drain of the first transistor being connected to a positive DC line, a source of the second transistor being connected to a negative DC line, a source of the first transistor being connected to a drain of the second through a connection middle-point connected to an output terminal. Each gate driver circuit controls respective switching ON and OFF of the corresponding first and second transistors. The N transistor legs of the corresponding N power switching cells are positioned to substantially form a convex polygon having N edges of substantially the same length, each one of the N transistor legs being positioned along one of the edges of the convex polygon. |
US11553594B2 |
Wireless machine condition monitoring device
A condition monitoring device configured to be mounted on a machine for sensing, for example, vibrations produced by the machine during operation, includes a base, a printed circuit board assembly lying in a first plane, and first and second fasteners, each having a longitudinal axis, lying in a second plane perpendicular to the first plane, the first and second fasteners extending through the printed circuit board assembly and into the base. A third plane is perpendicular to the first and second planes and is located halfway between the longitudinal axes of the first and second fasteners. An integrated power supply is connected to the printed circuit board assembly, and at least two active sensing cells, such as vibration sensors, are arranged symmetrically relative to the second plane and/or symmetrically relative to the third plane. |
US11553590B2 |
Electronic device
The present disclosure relates to an electronic device, and the electronic device may include a circuit board provided within a main body of the electronic device, on which a conductive layer made of a conductive material and a dielectric layer made of an insulating material are alternately laminated; at least one or more patch antennas disposed on the circuit board; a core layer located at a central portion inside the circuit board, and configured with any one of the dielectric layers; a ground layer disposed below the core layer; and an EBG structure located inside the circuit board in a symmetrical shape at the top and bottom with respect to the core layer, and the EBG structure restricts operating frequency signals radiated from the respective patch antennas from being interfered with each other. |
US11553589B2 |
Backplane footprint for high speed, high density electrical connectors
A printed circuit board includes a plurality of layers including attachment layers and routing layers; and columns of via patterns formed in the plurality of layers, wherein via patterns in adjacent columns are offset in a direction of the columns, each of the via patterns comprising: first and second signal vias forming a differential signal pair, the first and second signal vias extending through at least the attachment layers; and at least one conductive shadow via located between the first and second signal vias of the differential pair. In some embodiments, at least one conductive shadow via is electrically connected to a conductive surface film. |
US11553588B2 |
Transmission line board, and joint structure of transmission line board
A transmission line board includes an insulating substrate including a first principal surface, first and second signal lines, first and second signal electrodes, which are provided at the insulating substrate. The first signal electrode is connected to the first signal line, and is connected by capacitive coupling to a different circuit board. The second signal electrode is connected to the second signal line, and is connected to the different circuit board via a conductive binder. The first signal line is provided to transmit a signal in a first frequency band, and the second signal line is provided to transmit a signal in a second frequency band lower than the first frequency band. |
US11553587B2 |
Display panel with internal traces proofed against electromagentic interference
A display panel with display and non-display regions has pixel units in the display region. The non-display region defines a bonding region in which there are traces and driving chips. The driving chips are bonded in a flexible printed circuit, and electrically connect with the pixel units. The traces include high-speed signal traces, power traces, and grounding traces. The grounding traces are adjacent to the power traces and so disposed as to shield against electromagnetic interference affecting the signal and power traces, the grounding traces serving as reference ground to the power traces, and form a shield against electromagnetic interference. |
US11553582B2 |
Optical isolation module
An optical source for a photolithography tool includes a source configured to emit a first beam of light and a second beam of light, the first beam of light having a first wavelength, and the second beam of light having a second wavelength, the first and second wavelengths being different; an amplifier configured to amplify the first beam of light and the second beam of light to produce, respectively, a first amplified light beam and a second amplified light beam; and an optical isolator between the source and the amplifier, the optical isolator including: a plurality of dichroic optical elements, and an optical modulator between two of the dichroic optical elements. |
US11553579B2 |
Three-way switch
A multiway switching device may comprise a wireless device in communication with a relay and a manual switch of the device. A toggle state of the relay may be indicative of an electrical configuration between conductors and rectifier circuits of the multiway switching device. The wireless device may receive, from the manual switch or from an external device, a signal indicative of a modification to the toggle state of the relay. Based on the signal, the wireless device may cause the modification to the toggle state of the relay. The wireless device may cause output of a status signal indicative of the modification to the toggle state of the relay. |
US11553578B2 |
Light device and a lighting system
A lighting device comprising a controller arranged to convey a cryptographic message to a load indicative of an instruction for said load to consume an amount of power during a selected time-interval; determine the power consumed during said selected time-interval and determine a condition indicative of an unauthorized load when said determined power is different from one which is expected. |
US11553565B2 |
Method of manufacturing semiconductor device, substrate processing apparatus, and non-transitory computer-readable recording medium
A substrate processing technology including: transferring a substrate to a process chamber and mounting the substrate on a substrate holder; heating the substrate with a heating device to perform predetermined substrate processing; determining the number of times of the predetermined substrate processing that has been performed that the predetermined substrate processing has been performed a preset number of times or more, determining whether it is necessary to adjust a mounting position at which the substrate is mounted on the substrate holder; and when it is determined that a mounting position adjustment is necessary, determining the mounting position by comparing the substrate temperature measured at the performing the predetermined substrate processing with a premeasured temperature of the substrate which corresponds to the mounting position and is stored in a memory. |
US11553564B2 |
Method for a cooktop
In a method for a cooktop, in particular for producing and/or operating the cooktop, which has at least one variable cooking surface, the cooking surface is partitioned in an operating mode along a partitioning direction into a plurality of heating zones to which at least one heating parameter is assigned in each case in a location-dependent manner in order to heat a cooking utensil that is deposited on the heating zone. In order to ensure flexible production and/or flexible operation of the cooktop, during partitioning of the cooking surface into the heating zones in at least one peripheral region of the cooking surface, at least one cooking utensil characteristic is taken into account. |
US11553562B2 |
Aerosol delivery device having a resonant transmitter
An aerosol delivery device is provided that comprises a control body and an aerosol source member. The aerosol delivery device includes a resonant transformer comprising a resonant transmitter and a resonant receiver. The aerosol source member includes an inhalable substance medium at least a portion of which is positioned proximate the resonant transmitter. The resonant transmitter is configured to generate an oscillating magnetic field and induce an alternating voltage in the resonant receiver when exposed to the oscillating magnetic field, such that the alternating voltage causes the resonant receiver to generate heat and thereby vaporize components of the inhalable substance medium to produce an aerosol. In some implementations, the resonant receiver comprises part of the control body. In other implementations, the resonant receiver comprises part of the aerosol source member. |
US11553560B2 |
Apparatus and method for supporting continuity of edge computing service in mobile network
Methods and an apparatus for providing an edge computing service to a UE in a mobile communication network and. The method comprises: receiving, from an AMF, a PDU session modification command including first information instructing modification of a PUD session for the MEC service and valid time of the PDU session; transmitting, to the AMF, a PDU session modification command NACK message including second information indicating a wait until transmission of an ACK, when relocation of an application context corresponding to the PDU session is possible within the valid time of the PDU session; transmitting, to an MEC system providing the service, an application context relocation request message; and transmitting, to the AMF, a PDU session modification command ACK in response to receiving an application context relocation complete message from the MEC system, wherein the PDU session modification command and the PDU session modification command NACK message are NAS messages. |
US11553559B2 |
Session management function derived core network assisted radio access network parameters
Apparatuses, methods, and systems are disclosed for session management function derived core network assisted radio access network parameters. One method includes receiving session management function derived core network assisted radio access network parameters from a session management function. The method includes storing the session management function derived core network assisted radio access network parameters in a protocol data unit session level context. The method includes using the session management function derived core network assisted radio access network parameters to determine an expected session activity behavior parameter set. |
US11553557B2 |
Method and apparatus for performing cooperative communication in wireless communication system
In a wireless communication system, a user equipment (UE) transmits, to a base station (BS), UE capability information comprising whether the UE supports cooperative communication for receiving physical downlink shared channels (PDSCHs) from a plurality of transmission reception points (TRPs) in a particular time-frequency resource, obtains, via radio resource control (RRC), information about whether the cooperative communication is to be applied from the BS, identifies a format of a medium access control (MAC) control element (CE) received from the BS based on whether the BS is to apply the cooperative communication, and determines transmission configuration indication (TCI) states according to the respective TRPs, based on the identified format of the MAC CE. |
US11553555B2 |
Methods and apparatuses for faster radio frequency activation
Systems, methods, apparatuses, and computer program products for faster radio frequency (RF) activation are provided. One method may include transmitting by a network node, or receiving by a user equipment, a connection release message for the user equipment, wherein the connection release message comprises an indication for the user equipment to start measuring secondary cells after connection release. The method may then include during or immediately after connection setup or connection resume, receiving by the network node or transmitting by the user equipment, an indication of availability of measurements of the secondary cells. |
US11553553B2 |
Configuring discontinuous reception on a sidelink
Certain aspects of the present disclosure provide a method of wireless communications, including: receiving, at a first user equipment from a network, a sidelink discontinuous reception (DRX) configuration; configuring a sidelink DRX cycle at the first user equipment based on the sidelink DRX configuration; receiving, at the first user equipment from the network, data for a second user equipment; and sending, from the first user equipment to the second user equipment on a sidelink in accordance with the sidelink DRX cycle, the data for the second user equipment. |
US11553552B2 |
Communication terminal, control device, communication system, and communication method
To provide a communication terminal that ensures the coincidence of Paging timing between a UE and a control device when an eDRX parameter is updated in a control device, a communication terminal (10) according to the present disclosure includes a receiving unit (11) for receiving a Tracking Area Registration Accept message or a Location Registration Accept message sent from a control device (30), and a sending unit (12) for sending a Tracking Area Registration Complete message or a Location Registration Complete message to the control device (30) when a first eDRX (Extended Idle Mode DRX) parameter is contained in the Tracking Area Registration Accept message or the Location Registration Accept message. |
US11553551B2 |
Method and device for supporting double connection of RRC inactivation mode in next generation mobile communication system
Disclosed are: a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security, and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. Disclosed are a method and a device for supporting the connection of a terminal operating in an RRC inactivation mode. |
US11553550B2 |
Method and apparatus for supporting security in RRC inactive state in wireless communication system
A method and apparatus for supporting security in a radio resource control (RRC) inactive state in a wireless communication system is provided. A user equipment (UE) receives information on multiple security variables, of which each variable is mapped to each of multiple counter values, respectively. The UE calculates a security parameter and/or updating a UE identifier (ID) based on a security variable among the security variables which is mapped to a corresponding counter value among the multiple counter values, and transmits a radio resource control (RRC) resume request message including the calculated security parameter and/or the updated UE ID. The counter value may be increase whenever a timer expires or an RRC reject message is received as a response to the RRC resume request message. |
US11553548B2 |
Intelligent cellular channel management
Various arrangements for performing intelligent cellular channel management are presented herein. A physical cellular communication channel may be established between a user equipment (UE) and a cellular network for sending a short message service (SMS) message in response to a cellular service request from the UE. One or more characteristics of the UE, the SMS message, or both may be analyzed. A duration of time for which the physical cellular communication channel is kept active may be based on the analyzed one or more characteristics. A channel maintenance instruction may be transmitted to keep the physical cellular communication channel active based on a cellular network messaging controller determining to adjust the duration of time for which the physical cellular communication channel is kept active. |
US11553541B2 |
Wi-fi connection method and device
A Wi-Fi connection method and a device is provided. The method includes: searching an ambient environment of a device for a Wi-Fi access point, to obtain a list of Wi-Fi access points; determining a target access point in the list of Wi-Fi access points; sending a connection request to a device in which the target access point resides; receiving feedback information that is returned, according to the connection request, by the device in which the target access point resides, where the feedback information indicates whether the target access point is a portable Wi-Fi hotspot; and if the feedback information indicates that the target access point is a portable Wi-Fi hotspot, outputting prompt information, where the prompt information is used to remind a user of the device that the target access point is a portable Wi-Fi hotspot. |
US11553539B2 |
Communication apparatus and communication method
In a communication apparatus on a network where communication apparatuses perform direct communication with each other, a network management apparatus for managing the network based on message information transmitted and received on the network is determined. When the communication apparatus itself is determined as the network management apparatus, the apparatus collects information indicating device capabilities from other communication apparatuses. On the other hand, the communication apparatus receives information indicating device capabilities from another communication apparatus when the other communication apparatus is determined as the network management apparatus. |
US11553536B2 |
Channel coordination method and apparatus
Provided are a channel coordination method and apparatus. The method may be used by a first access point (AP) that is currently serving a terminal. In response to determining that a channel needs to be configured for a real-time service initiated by the terminal, the first AP detects a second AP that requires channel coordination. The first AP sends channel coordination request signalling to the second AP, wherein the channel coordination request signalling comprises a designated channel that the first AP requests to coordinate. In response to receiving first channel coordination feedback signalling, which is used for indicating to agree to coordinate the designated channel, sent from the second AP, the first AP determines, according to the first channel coordination feedback signalling, that the second AP agrees to coordinate the designated channel. |
US11553534B2 |
Handling collisions due to multiple radio resource control (RRC) connection requests
Disclosed are techniques for handling collisions between multiple radio resource control (RRC) connection establishment procedures for multiple connection events, such as mobile terminating pages and tracking area updates. |
US11553533B2 |
Efficient transmission of a response signal for a random access preamble transmitted from legacy or extension carrier capable devices
In order to provide a transmission device and transmission method with which a response signal for random access preamble transmitted from a preamble transmission device is efficiently transmitted, setting unit in base station sets a first resource candidate group, which enables terminal capable of receiving a latch response transmitted by demodulation reference signal (DMRS) transmission to be selected, and a second resource candidate group, which enables terminal incapable of receiving a latch response transmitted by DMRS transmission but capable of receiving a latch response transmitted by cell-specific reference signal (CRS) transmission to be selected. Control unit selects DMRS transmission as the latch response transmission method when a resource in which latch preamble has been received is included in the first candidate group, but selects CRS transmission as the latch response transmission method when the resource is included in the second resource candidate group. |
US11553532B2 |
Delay reduction method and apparatus
This application discloses a delay reduction method and apparatus, applied to a random access process. The method includes: sending, by a terminal device, a message 1 to a network device, where the message 1 is a random access preamble; receiving, by the terminal device, a message 2 sent by the network device; and sending, by the terminal device, a message 3 to the network device, where a time gap between receiving the message 2 and sending the message 3 is set by the terminal based on a timing advance (TA) value. In an embodiment, the TA value is related to a message 1 format of the terminal device and a cell radius or subcarrier spacing supported by the message 1. In this solution, a TA value is reduced, and random access efficiency is improved. |
US11553519B2 |
Method for configuring contention free random access resource, user equipment and network device
A method and a device for configuring a contention free random access resource are provided. The method includes: transmitting target resource indication information to a user equipment based on a pre-defined mapping relationship; where the target resource indication information is used to determine a physical random access channel transmission occasion (RO) resource, the target resource indication information includes at least one of a physical random access channel (PRACH) mask index or an RO resource index, and the pre-defined mapping relationship includes a correspondence between a value range of the target resource indication information and the RO resource. |
US11553513B2 |
Methods and apparatuses for determining a placement and duration of a transient period of an on/off time mask for uplink transmission
A method in a wireless device is disclosed. The wireless device receives an uplink grant from a network node, the uplink grant scheduling one or more uplink transmissions by the wireless device. The wireless device selects an ON/OFF time mask to use for transmitting the one or more uplink transmissions. The wireless device determines, based on the received uplink grant, an allowed placement of a transient period of the selected ON/OFF time mask and a duration of the transient period to use for the one or more uplink transmissions. |
US11553510B2 |
Multi-slot transport block configurations
In some aspects, multi-slot transport block (TB) configurations for communicating data between wireless devices, such as between a base station and a user equipment (UE), in a wireless communication system are described. Some examples of multi-slot configurations enable the communication of large payloads. For example, an application of a wireless device may jointly process data from a large file or other large set of packets. In such examples, the wireless device transmitting the large file may utilize a multi-slot TB including multiple TB segments corresponding to respective slots of a transmission. Similarly, a wireless device receiving the large file may utilize the multi-slot TB configuration for receiving the data. |
US11553509B2 |
Enhanced PUCCH format 0 and format 1 design for new radio unlicensed spectrum operation
An apparatus (e.g., a user equipment (UE)) maps a plurality of mutually orthogonal sequences to each of a plurality of physical resource blocks (PRBs) within an interlace. The apparatus then performs a physical uplink control channel (PUCCH) transmission in a New Radio unlicensed spectrum (NR-U). The apparatus also receives an assignment of a set of sequences for each PRB of the plurality of PRBs from a wireless network. In response, the apparatus performs an uplink control information (UCI) transmission via the PUCCH in the NR-U. |
US11553505B2 |
Method and apparatus for determining transmission direction and transmission channel and computer storage medium
This application discloses a method for determining transmission direction performed at a terminal and an associated computer-readable storage medium. The method includes: obtaining, by the terminal, first configuration signaling, wherein the first configuration signaling indicates that one or more symbols in a slot are used to transmit data in a first transmission direction; obtaining, by the terminal, second configuration signaling, wherein the second configuration signaling indicates that at least one of the one or more symbols in the slot is used to transmit data in a second transmission direction; determining, by the terminal, transmitting data on the one or more symbols in the first transmission direction, and not transmitting data on the at least one of the one or more symbols in the second transmission direction, wherein the first configuration signaling is cell-specific radio resource control (RRC) signaling. |
US11553503B2 |
Prioritized messaging and resource selection in vehicle-to-vehicle (V2V) sidelink communication
Embodiments of a Generation Node-B (gNB), User Equipment (UE) and methods for communication are generally described herein. The gNB may allocate a resource pool of physical resource blocks (PRBs) and sub-frames for vehicle-to-vehicle (V2V) sidelink transmissions. The gNB may receive, from a UE, an uplink control message that indicates that the UE requests a V2V sidelink transmission of a prioritized message. The gNB may select, for the V2V sidelink transmission of the prioritized message, one or more PRBs and one or more sub-frames. The gNB may transmit, to the UE and to other UEs, a downlink control message that indicates: the selected PRBs, the selected sub-frames, and that the other UEs are to mute sidelink transmissions in the selected PRBs in the selected sub-frames to enable the V2V sidelink transmission of the prioritized message. |
US11553502B2 |
Recalibrating resource profiles for network slices in a 5G or other next generation wireless network
The technologies described herein are generally directed to facilitating the allocation, scheduling, and management of network slice resources. According some embodiments, a system can facilitate performance of operations. The operations can include, based on a request for a network service type that was received from a user device, allocating a network slice of a network to the user device, with the network slice being previously assigned a capacity of a resource of the network in accordance with a resource profile. Further, operations include monitoring performance of the network slice, resulting in monitored slice performance compared to a performance requirement of the network service type. Another operation includes, based on the monitored slice performance, facilitating recalibration of the resource profile in accordance with a condition associated with the network service type, resulting in a modification of the capacity of the resource assigned to the network slice. |
US11553496B2 |
Method and system for provisioning signalling in integrated access backhaul (IAB) network
Accordingly embodiments herein achieve signaling method and system (2000) for provisioning signalling in an Integrated Access Backhaul (IAB) network (1000). The method includes providing a set of modifications in uplink and downlink signaling for an IAB node (100). The modifications either help to reduce the control channel payload or enable more flexible signaling of resources, improve efficient control channel scheduling and also avoid conflicts that might arise due to discrepancies between semi static and dynamic resource allocation. |
US11553495B2 |
Method and device for sending uplink channel, and method and device for receiving uplink channel
Provided are a method and device for sending an uplink channel and a method and device for receiving an uplink channel. The method includes that a terminal device determines a first transmission resource on a first time unit on a first carrier. The first transmission resource is configured to transmit a first uplink channel. The first transmission resource is allocated with N frequency domain units on a frequency domain, where N is a positive integer, and N≥2. The method also includes that the terminal device transmits the first uplink channel by the first transmission resource. By means of the uplink channel transmission method in embodiments of the present disclosure, a terminal device can utilize a transmission power more efficiently. |
US11553491B2 |
User terminal and radio communication method
The present invention is designed so that it is possible to communicate adequately depending on user terminal-specific capabilities, in a system where wide frequency bands are supported. A user terminal has a receiving section that receives band information, which indicates a prospective downlink (DL) band, which is a band where a DL signal might be allocated, and/or a prospective uplink (UL) band, which is a band where a UL signal might be allocated, and a control section that configures the DL band candidate and/or the UL band candidate in a user terminal-specific manner based on the band information. |
US11553488B2 |
Physical downlink shared channel reference signal puncturing
Methods, systems, and devices for wireless communications are described. According to one or more aspects, a user equipment (UE) may identify, for a set of time periods associated with a reference signal associated with a physical downlink shared channel, an overlap between a first set of frequency resources allocated for the reference signal and a second set of frequency resources that are scheduled to puncture the first set of resources and that are unavailable for scheduling on the physical downlink shared channel. The UE may determine a remaining set of frequency resources from the first set of frequency resources based on the overlap, and a subset of frequency resources from the remaining set of frequency resources based on a reference signal processing configuration. The UE may then process the reference signal in the subset of frequency resources based on the reference signal processing configuration. |
US11553486B2 |
Information transmission method, network device, and terminal
An information transmission method, a network device and a terminal are provided. The method includes: sending configuration information of a first configuration of a physical uplink shared channel or a physical downlink shared channel; determining RVs corresponding to TOs in a second configuration of the physical uplink shared channel or the physical downlink shared channel according to the configuration information, wherein, RVs corresponding to TOs overlapped in time domain in the first configuration and in the second configuration are the same; transmitting the physical uplink shared channel or the physical downlink shared channel according to the RVs. |
US11553483B2 |
Measuring a signal from a neighboring device
A disclosure of the present specification provides a method for performing measurements. The method may performed by a user equipment (UE) comprise: performing, by the UE, measurements; based on that (i) the measurements are for measuring a cross link interference (CLI) and (ii) that the measurements are performed on a sounding reference signal (SRS) from a neighboring UE in a neighboring cell, adjusting a time error between a downlink reference timing in a serving cell and a SRS arrival timing from the neighboring UE. The adjustment is performed based on offset. |
US11553473B2 |
Terminal, radio communication method, and base station
A terminal is disclosed including a receiver that receives information comprising a first indicator regarding a search space set categorization and a second indicator regarding a search space set index, the first indicator and the second indicator corresponding to each of one or more search space sets; and a processor that controls a monitoring of downlink control channel candidates allocated to each of the search space sets based on the search space set categorization and the search space set index. In other aspects, a radio communication method and a base station are also disclosed. |
US11553470B2 |
Beam management for high-pathloss mode operations
Methods, systems, and devices for wireless communications are described. When operating in a high-pathloss mode, wireless devices in a network may transmit or receive downlink control information (DCI) that schedules a transmission time interval (TTI) for a physical shared channel (such as a physical uplink shared channel (PUSCH) or a physical downlink shared channel (PDSCH)). A wireless device may determine one or more intervals that correspond to a periodic signal that collides with portions of the TTI. Based on the identified intervals, the wireless device may communicate over the physical shared channel during the TTI. In such cases, the TTI may overlap in time with the one or more intervals to allow communication of the periodic signal during the portions of the TTI. For instance, a periodic signal may be transmitted or received during each of the one or more intervals. |
US11553468B2 |
Control channel configuration
A wireless device may receive at least one radio resource control (RRC) message comprising a field indicating a starting symbol for an enhanced physical downlink control channel (ePDCCH). The wireless device may receive an ePDCCH signal. The ePDCCH may start from the starting symbol plus an offset value. |
US11553465B2 |
Channel configuration method, communication node, and storage medium
A channel configuration method, a communication node and a storage medium are disclosed. The method includes: determining information about a correspondence between a first channel set and a second channel set; determining a second transmission mode set corresponding to the second channel set according to the information about the correspondence between the first channel set and the second channel set and a first transmission mode set corresponding to the first channel set; and transmitting or receiving a channel in the second channel set according to the second transmission mode set. |
US11553462B2 |
Wireless communication device and corresponding apparatus, method and computer program
Embodiments of the present disclosure relate to wireless communication devices, systems comprising wireless communication devices, and to an apparatus, a method and a computer program for a wireless communication device. The apparatus comprises a transceiver module for transmitting and receiving wireless transmissions. The apparatus comprises a processing module that is configured to control the transceiver module. The processing module is configured to communicate with a further wireless communication device via the transceiver module. The communication with the further wireless communication device is based on a transmission of data frames between the wireless communication device and the further wireless communication device. Each data frame is based on a two-dimensional grid in a time-frequency plane having a time dimension resolution and a frequency dimension resolution. The processing module is configured to select a communication mode from a plurality of communication modes for the communication between the wireless communication device and the wireless communication device. The communication mode defines a combination of a frequency dimension resolution and a time dimension resolution of the two-dimensional grid in the time-frequency plane. |
US11553459B2 |
Resource allocation method and device for supporting vehicle communication in next generation mobile communication system
Disclosed are: a communication technique for merging, with IOT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security, and safety-related services, and the like) based on 5G communication technology and IoT-related technology. A method of a terminal in a wireless communication system, according to the present invention, comprising: receiving system information including a V2X parameter; receiving a data packet based on the V2X parameter; and updating a state variable on the data packet when the data packet is related to a new service, wherein a sequence number included in the state variable is updated based on a sequence number of a data packet received for the first time. |
US11553457B2 |
Coordination between multicast/broadcast communication and unicast communication
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a configuration for a shared physical downlink shared channel (PDSCH). The UE may receive a first communication via the shared PDSCH and a first bearer based at least in part on the configuration, the first communication being one of a unicast communication or a multicast/broadcast communication. The UE may receive a second communication via the shared PDSCH and the first bearer or a second bearer based at least in part on the configuration, the second communication being the other of the unicast communication or the multicast/broadcast communication. Numerous other aspects are provided. |
US11553456B2 |
RAN area ID configuration
A method comprising configuring a user equipment in a low activity state to operate within a radio access network wherein a radio access network notification area for the user equipment is defined based on a list of logically associated radio access network paging areas, wherein each of the logically associated radio access network paging areas is a subset of a core network tracking area identified by a paging area code value which is unique within the core network associated tracking area. |
US11553453B2 |
Active geo-location for orthogonal frequency division multiplex wireless local area network devices using additive correlation in the time domain
A method in a wireless device (WD) is described. The method is performed for determining a geo-location of a target station using round-trip times (RTTs) of a plurality of signals transmitted by the WD to the target station and a plurality of response signals received from the target station. The method includes determining expected time domain symbols of an expected response signal, and, for each transmitted signal of the plurality of signals, determining a first time, opening a reception window for receiving a response signal, receiving the response signal within the reception window, frequency shifting the expected time domain symbols, and cross-correlating the time domain symbols with the frequency shifted expected time domain symbols. In addition, the method includes determining a peak correlation value, a second time, and the RTT for each one of the transmitted plurality of signals based at least on the first time and the second time. |
US11553452B2 |
Positioning control method and device, positioning system and storage medium
A positioning control method includes: determining a position of a positioning object; determining, based on the position of the positioning object, at least one target positioning beacon whose distance to the positioning object satisfies a predetermined condition; and sending a prompt message to the target positioning beacon, wherein the prompt message is intended to instruct a positioning beacon to switch a broadcast frequency from a first frequency to a second frequency which is greater than the first frequency. |
US11553450B2 |
Methods and apparatus for locating mobile devices using wireless signals in mixed mode
Methods, apparatus, systems and articles of manufacture are disclosed for locating mobile devices using wireless signals in mixed mode. A disclosed method includes generating an access point signal matrix based on signal strength values based on first signal data collected at a mobile device corresponding to first signals received from a plurality of access points for a first period of time, and based on second signal data collected at the plurality of access points corresponding to second signals received from the mobile device and the plurality of access points for a second period of time, determining a first group of contour perimeters corresponding to first ones of the signal strength values in the access point signal matrix that satisfy a first threshold, the first group of contour perimeters including an obstructed contour perimeter corresponding to second ones of the signal strength values in the access point signal matrix that do not satisfy the first threshold, determining a second group of contour perimeters by replacing the obstructed contour perimeter with a corrected contour perimeter, and determining a location of the mobile device based on the second group of contour perimeters including the corrected contour perimeter. |
US11553448B2 |
Method and apparatus for restricting use of a beamforming node for positioning purposes
A method, apparatus and computer program product are provided to identify a particular wireless communication node of one or more wireless communication nodes as a beamforming node. The method, apparatus and computer program product also restrict use of the particular wireless communication node for positioning purposes relative to another one of the wireless communication nodes that has not been identified as a beamforming node. In relation to restricting the use of a beamforming node for positioning purpose, the use of a beamforming node may be restricted in relation to the generation or updating of a radio map and/or in relation to the determination of a position of a mobile device. |
US11553445B2 |
Method for transmitting/receiving signal in wireless communication system and device supporting same
Various embodiments relate to a next generation wireless communication system for supporting a higher data transfer rate and the like beyond 4th generation (4G) wireless communication systems. Provided according to various embodiments are a method for transmitting/receiving a signal in a wireless communication system and a device supporting same, and various other embodiments may also be provided. |
US11553441B2 |
Uplink transmission power control method and device in wireless cellular communication system
Disclosed are a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security, and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. A power control method for uplink transmission in a wireless cellular communication system is disclosed. |
US11553439B2 |
Online power control in D2D networks
Embodiments of a method of operation of a power control coordinator to control transmission power of a plurality of Device-to-Device (D2D) pairs that co-exist with a Cellular User Equipment (CUE) that communicates with a base station of a cellular communications network comprises obtaining, for a particular time slot, delayed Network State Information (NSI) feedback from at least some of the plurality of D2D pairs. The method further comprises computing transmission powers for the D2D pairs, respectively, for the particular time slot using On-Line Convex Optimization (OCO) to solve an optimization problem that maximizes a weighted sum data rate of D2D pairs with a constraint of maximum expected interference to the base station. The method further comprises providing, to each D2D pair, an indication of the computed transmission power for the D2D pair for the particular time slot. |
US11553438B2 |
Encoding and transmit power control for downsized uplink trigger-based PPDU transmissions in next-generation WLAM systems
Various schemes pertaining to encoding and transmit power control for downsized trigger-based (TB) physical-layer protocol data unit (PPDU) transmissions in next-generation WLAN systems are described. A station (STA) receives a trigger frame indicating an allocated resource unit (RU) of a first size. The STA performs channel sensing responsive to receiving the trigger frame. In response to detecting at least one subchannel being busy from the channel sensing, the STA performs a downsized trigger-based (TB) transmission with a downsized RU or multi-RU (MRU) of a second size smaller than the first size by utilizing downsized RU or MRU allocation information while maintaining a value of each of one or more parameters unchanged in an encoding process to perform the downsized TB transmission. |
US11553433B2 |
User equipment power-saving method and device, user equipment and base station
A user equipment power-saving method includes: determining a second signaling on the basis of a first signaling, wherein the second signaling is a radio resource control (RRC) connection request signaling and carries a signaling element that characterizes a cause value for requesting to establish an RRC connection as a discontinuous reception (DRX) cycle update; and sending the second signaling. |
US11553432B2 |
Method and device for communication device to sense or transmit WUS signal in wireless communication system
The present invention discloses various embodiments of a method and a device by which a terminal senses a wake up signal (WUS) in a wireless communication system. Disclosed are a method and a device by which a terminal senses a WUS signal in a wireless communication system, the method including: a step for receiving, from a base station, WUS setting information related to a first WUS resource and a second WUS resource; a step for specifying the first WUS resource on the basis of the WUS setting information; and a step for sensing a WUS signal from the specified first WUS resource, wherein, when the WUS signal is a group WUS signal, the first WUS resource is specified to be continuous with the second WUS resource in a time domain. |
US11553431B2 |
Time slotted scan receiver
In one embodiment, an apparatus of a wireless communication device includes control circuitry to cause receiver circuitry of the wireless communication device to switch between an on-mode and an off-mode. The apparatus also includes synchronizing circuitry to: perform a correlation on signals of a packet received by the receiver circuitry when in the on-mode to detect a pattern in the received signals, and cause the control circuitry to hold the receiver circuitry in the on-mode based on detection of the pattern in the received signals. The apparatus further includes demodulation circuitry to process additional signals of the packet received by the receiver circuitry when held in the on-mode. |
US11553426B2 |
Method for operating communication node supporting low power mode in wireless LAN
Disclosed is a method for operating a communication node supporting a low power mode in a wireless LAN. A method for operating a station, which includes a PCR and a WURx, comprises the steps of: allowing the WURx, which operates in a wake-up state, to receive a wake-up packet from an access point; transitioning an operating state of the PCR from a sleep state to the wake-up state when the wake-up packet is received; allowing the PCR, which operates in the wake-up state, to receive a data frame from an access point; and allowing the PCR to transmit, to the access point, a response to the data frame. |
US11553423B2 |
Signaling indication to reduce power consumption for MTC devices
A method for a user equipment, a method for a network equipment, a user equipment and a network equipment is disclosed. The network equipment transmits a signal pertaining to if control information is present in a first time period while the user equipment determines if a signal pertaining to control information is present in a first time period. The network equipment transmits control information to a UE in accordance with the transmitted signal while the user equipment decides whether to attempt to decode the control information depending on the determination. |
US11553420B2 |
Method and apparatus for handling channel state information reporting regarding sidelink discontinuous reception in a wireless communication system
A method and apparatus are disclosed. In an example from the perspective of a first device configured to discontinuously monitor one or more sidelink control channels, the first device performs a first sidelink transmission to a second device. In response to the first sidelink transmission, the first device starts or restarts a timer. The first device monitors a first sidelink control channel, from at least the second device, when the timer is running. |
US11553419B2 |
Timer processing method and terminal device
A timer processing method includes: receiving, by a terminal device, a first message sent by a network device, and starting or restarting a timer based on a scrambling identifier of the first message, wherein the timer is a timer used by the terminal device to switch from an active downlink BWP to a default downlink BWP, or is a timer used by the terminal device to activate a default downlink BWP and deactivate an active downlink BWP; or if an active BWP pair of the terminal device is not a default BWP pair, starting or restarting, by the terminal device, a timer based on a scrambling identifier of the first message, wherein the timer is a timer used by the terminal device to switch from the active BWP pair to the default BWP pair, or is a timer used by the terminal device to activate the default BWP pair. |
US11553417B2 |
PDCCH monitoring after DRX configuration or reconfiguration
A method and apparatus for a user equipment (UE) operating based on a DRX (Discontinuous Reception) configuration are disclosed. According to these, the UE receives a message including configuration or reconfiguration of DRX; and monitors a PDCCH (Physical Downlink Control Channel) during an active time according to the configuration or reconfiguration of DRX. Here, the active time includes a time period during a PDCCH indicating a new transmission has not been received after receiving the message including configuration or reconfiguration of DRX. |
US11553416B1 |
Dynamic memory reallocation and offload channel state information (CSI) processing for device power savings
Technologies directed to dynamic memory reallocation and offload channel state information (CSI) processing for device power savings are described. A method includes receiving, by a radio, first data from a processing device. The first data is sent to a second wireless device over a wireless channel. The method measures, by the radio, first CSI values that represent channel properties of the wireless channel. The method sends, by the radio, the first CSI values to the processing device with a first periodicity. The method receives, by the radio from the processing device, second data that specifies a transfer interval and an amount of memory to reserve in a memory buffer for second CSI values measured during the transfer interval. The method measures, by the radio, the second CSI values and sends the second CSI values to the processing device at the end of the transfer interval. |
US11553414B1 |
Modified synchronization signal block for network energy saving
Aspects presented herein may enable a transmitting entity, such as a base station, to indicate to one or more receiving entities that SSBs of one or more cells (which may include the transmitting entity) are to be transmitted with modified configurations. The method may also enable the transmitting entity to transmit modified SSBs to enable network energy saving. In one aspect, a base station configures one or more cells of a plurality of cells with one or more modified SSBs associated with an ES mode. The base station transmits an indication of the one or more cells associated with a transmission of the one or more modified SSBs, the transmission of the one or more modified SSBs corresponding to an ES mode at the one or more cells, the one or more cells being associated with the base station or at least one other base station. |
US11553413B2 |
User equipment controlled mobility in an evolved radio access network
Briefly, in accordance with one or more embodiments, a user equipment (UE) may enter into an E-UTRAN Routing Area Paging Channel state, and is configured with an E-UTRAN Routing Area and an Anchor identifier to identify an anchor evolved Node B (eNB) for the UE. The UE selects to a new cell without performing a handover procedure, and performs a cell update procedure. The UE also may enter into a Cell Update Connected state, and is configured with an Anchor identifier. The UE selects to a new cell, performs a cell update procedure, performs a buffer request procedure, and performs a cell update procedure to download buffered data and to perform data transmission with the new cell. |
US11553410B2 |
Method and apparatus for access point discovery in dense WiFi networks
Systems, devices, and methods for access point discovery in a wireless network are provided. An access point device embeds into a preamble of a transmission packet discovery information including modifications determined by passing in-phase quadrature (IQ) symbols through a finite impulse response (FIR) filter to introduce a phase shift in selected ones of the IQ symbols. The phase shifts are encoded into bits in selected ones of a plurality of subcarriers, bounded by a maximum phase shift and a maximum number of the subcarriers to limit the packet error rate. A convolutional neural network can learn channel state and other information to determine the maximum phase shift and number of subcarriers. A client device can select from among a plurality of modified transmission packets to send a discovery request. |
US11553409B2 |
Method executed by user equipment and user equipment
The present invention provides a method executed by a user equipment and a user equipment, and the method comprises: receiving a radio resource control (RRC) message; determining, according to one or more information elements (IEs) or a portion of one information element (IE) in the RRC message, indication information related to a control region in a subframe and/or an access to a cell; and performing, according to the indication information, processing related to the access to the cell and/or processing related to resource mapping, so as to make the user equipment speed up cell selection and save power consumption. |
US11553404B2 |
Method and apparatus for reporting UE capability of terminal in next-generation mobile communication system
A communication technique for merging, with internet of things (IoT) technology, a fifth generation (5G) communication system for supporting a higher data rate, subsequent to a fourth generation (4G) system, and a system thereof are provided. The disclosure can be applied to an intelligent service (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety-related services, and the like), based on a 5G communication technology and an IoT-related technology. A method for reporting user equipment (UE) capability of a terminal and a device thereof are provided. |
US11553403B2 |
Apparatus and method for transmitting and receiving device to device discovery message in wireless communication system supporting device to device scheme
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). The present disclosure relates to a method of an evolved node B (eNB), comprising: transmitting at least one of first information as information on at least one first type-discovery resource pool including first type-discovery resources and second information as information on at least one second type-discovery resource pool including second type-discovery resources, or transmitting discovery resource information on at least one discovery resource which corresponds to a discovery resource type requested from a user equipment (UE). |
US11553401B2 |
Serving node update method and device
Embodiments of this disclosure provide a serving node update method and a device. The method includes: sending a first message to a target node; receiving, from the target node, a second message used for responding to the first message; and sending a third message to a terminal device when the second message indicates that the target node rejects a multi-connectivity serving node update, where the third message is used to indicate the terminal device to perform a serving node update in a legacy serving node update manner. |
US11553393B2 |
Transmission control method and device
A transmission control method includes sending or receiving, by a first device, first data to or from a second device through a first communication connection, detecting, by the first device when sending or receiving the first data to or from the second device through the first communication connection, that an error has occurred on the first communication connection, and sending, by the first device, error information of the first communication connection to the second device through a second communication connection, where the second communication connection is different from the first communication connection, and the error information indicates that the error has occurred on the first communication connection. |
US11553391B2 |
Wireless communication handover responsive to uplink interference at a serving cell
In a wireless User Equipment (UE), a serving radio wirelessly exchanges data with a serving cell over a serving radio band. The wireless UE wirelessly receives serving signaling that indicates serving uplink interference for the serving radio band at the serving cell. A neighbor radio in the UE wirelessly receives neighbor signaling. UE circuitry determines serving signal strength and the serving uplink interference for the serving cell. The UE circuitry determines neighbor signal strength for the neighbor cell. The UE circuitry compares the serving uplink interference and the serving signal strength to the neighbor signal strength, and in response, generates a handover request for the neighbor cell. The serving radio wirelessly transfers the handover request to the serving cell, and in response, the neighbor radio wirelessly exchanges additional data with the neighbor cell over the neighbor radio band. |
US11553389B2 |
Method for controlling terminal to use wireless network and related device
This application provides a method for controlling a terminal to use a wireless network, a system, and a related device. The method includes: obtaining, by a network decision device, service information of a terminal, constructing network use indication information, and delivering the network use indication information to a network trigger device; and triggering, by the network trigger device based on the network use indication information, the terminal to use a wireless network corresponding to the service information. According to the method, an operator can assign, based on a service requirement of the operator, the terminal to use a specific wireless network, so that the terminal can use in time a wireless network that is consistent with a requirement of the operator. This helps improve network use efficiency for the operator, and can prevent a service of the terminal from being affected. |
US11553388B2 |
Device and method of handling mobility between long-term evolution network and fifth generation network
A communication device for handling mobility from a long-term evolution (LTE) network to a fifth generation (5G) network comprises a storage device storing instructions of transmitting a first LTE Non-Access Stratum (NAS) message to the LTE network; receiving a second LTE NAS message in response to the first LTE NAS message, from the LTE network; and transmitting a message to the 5G network, after determining to communicate with the 5G network instead of the LTE network, wherein the message comprises a slice information, and the slice information is comprised in the first LTE NAS message or in the second LTE NAS message. |
US11553386B2 |
Systems and methods of managing communication endpoints
In one embodiment, a method includes receiving a trigger to dynamically modify a serving site of a communication endpoint, wherein the communication endpoint is registered to receive digital communication service from a first serving site. The method further includes determining a stored serving-site selection policy applicable to the communication endpoint. The method also includes selecting a second serving site for the communication endpoint based, at least part, on a stored serving-site selection policy. Also, the method includes determining endpoint-configuration requirements of the second serving site. Furthermore, the method includes dynamically generating endpoint configurations that satisfy the endpoint-configuration requirements of the second serving site. Moreover, the method includes writing the generated endpoint configurations to the communication endpoint. Additionally, the method includes causing the communication endpoint to register to receive digital communication service from the second serving site in place of the first serving site. |
US11553385B2 |
Data transmission method performed by base station in wireless communication system, and apparatus using same
Provided are a data transmission method performed by a base station in a wireless communication system, and an apparatus using the method. The base station transmits a message requesting information for data transmission to a second base station and receives, from the second base station, a response message to the message requesting the information for data transmission, wherein the information for data transmission is to transmit data on a terminal in a light connection state. |
US11553382B2 |
Key change procedure
There is provided mechanisms for configuring use of keys for security protecting packets communicated between a wireless device and a network node. A method is performed by the wireless device. The method comprises exchanging key use information with the network node in conjunction with performing a key change procedure with the network node during which a first key is replaced with a second key. The key use information indicates which of the packets are security protected using which of the first key and the second key. |
US11553378B2 |
Network slicing with multiple slice instance variation types
One or more network devices create, in a network, a network slice with multiple network slice instances (NSIs) having multiple slice instance variations, where each of the multiple slice instance variations services a slice variation type and one of multiple slice variation levels. The slice variation type corresponds to a first performance characteristic of one or more performance characteristics met by the network slice while servicing sessions and the multiple slice variation levels sub-divide the slice variation type into multiple different levels of service within the slice variation type. The one or more network devices allocate, instantiate, and provision virtual resources for each of the multiple NSIs; and services User Equipment (UE) sessions via one of the multiple slice instance variations based on UE selection of one of the multiple slice variation levels of the slice variation type. |
US11553377B2 |
System, device, and method of cellular congestion management without cell awareness
System, device, and method of cellular congestion management without cell awareness. A system defines applications as important or non-important. The system measures and monitors parameters related to cellular traffic, and remotely generates an estimate that a first User Equipment (UE) is experiencing cellular traffic congestion. A Deep Packet Inspection (DPI) Engine determines that the first UE is utilizing a first communication flow associated with an Important Application, and is also utilizing a second communication flow associated with a Non-Important Application. Filtering pass-through bitrate limits are enforced, selectively and remotely, on communication flows of the first UE, by enforcing a reduced bitrate limit on the second communication flow that is associated with a Non-Important Application, and by not enforcing a reduced bitrate limit on the first communication flow that is associated with an Important Application. |
US11553376B2 |
Communication link selection for non-RSRP based association in wireless industrial internet-of-things
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a network node may receive an indication of a first set of parameters that corresponds to a direct communication link between an industrial internet-of-things (IIoT) device and a first controller; receive an indication of a second set of parameters that corresponds to an indirect communication link between the IIoT device and the first controller through a second controller; and schedule a communication on at least one of the direct communication link or the indirect communication link based at least in part on the first set of parameters and the second set of parameters. Numerous other aspects are provided. |
US11553373B2 |
Wireless terminal, wireless base station, and transmission method of buffer status report
A wireless terminal for a wireless communication, the wireless terminal includes: a memory that includes a buffer configured to store uplink data, wherein the uplink data is configured to be transmitted; and a controller configured to transmit a buffer status report, the buffer status report including a first index, wherein the first index is one of a plurality of buffer status indices and corresponds to a buffer size indicating a size of the uplink data stored in the buffer, wherein the memory is configured to store a buffer status table in which a range from a minimum value of the buffer to a maximum value of the buffer is divided into a plurality of subranges, the plurality of subranges being associated with a part of the plurality of buffer status indices, and a rest of the plurality of buffer status indices are associated with one or more reserved fields. |
US11553371B2 |
Quality of service (QOS) flow management for optimizing use of QOS resources and supporting QOS guarantees in a private 5G network
In one illustrative example, a user plane function (UPF) may detect initial traffic for an application for a user equipment (UE) for which no current dedicated Quality of Service (QoS) flow is established. In response, the UPF may send, to a control plane function, a message which indicates a request for creating a dedicated QoS Flow for traffic for the application for the UE. The message may include flow metadata and an application identifier obtained in detecting the initial traffic. A QoS Flow may then be created for the traffic based on a selected QoS policy associated with the application identifier. Subsequently, the UPF may determine that a measured time period of traffic inactivity for the QoS Flow is outside a limit set by a threshold. Based on the determining, the UPF may send, to the control plane function, a message which indicates a request for deleting the QoS Flow. |
US11553365B2 |
Method for reporting measurement result by user equipment transceiving data by first radio access technology and second radio access technology, and device therefor
The present disclosure relates to a communication technique for combining, with an IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and to a system therefor. The present disclosure may be applied to intelligent services (e.g., a smart home, a smart building, a smart city, a smart car or connected car, healthcare, digital education, retail business, security and safety-related service, etc.), based on a 5G communication technology and an IoT-related technology. A method for a user equipment in a first communication system according to the present invention comprises a user equipment in an inactive state: transmits a paging area update request message; checks whether a timer associated with a paging area update has expired; and transitions into an idle state if a response message for the paging area update request message has not been received until the timer expired. |
US11553364B2 |
System and method for reporting beam information
A method for reporting beam information includes setting, by a user equipment (UE), a report type of a beam information report, wherein the beam information report includes beam indices of communications beams being reported, a reference beam quality measurement of one of the communications beams reported, and a report type field conveying the report type, and sending, by the UE to an access node, the beam information report. |
US11553363B1 |
Systems and methods for assessing vehicle data transmission capabilities
A computer system for evaluating the communication performance of an autonomous vehicle is provided. The vehicle may have a vehicle controller including at least one processor in communication with at least one memory device. The processor may be programmed to receive, from a standard data transmission location network device, an evaluation data packet. The processor may be programmed to decode the evaluation data packet and initiate a diagnostic test of the vehicle based upon the decoded evaluation data packet. The processor may also be programmed to record measurements of the vehicle during the diagnostic test, and transmit the measurements to the standard data transmission location network device. |
US11553357B2 |
Efficient adaptable wireless network system with agile beamforming
Beamforming for adapting wireless signaling beams in an adaptive and agile manner is contemplated. The beamforming may be characterized by adaptively constructing beam form parameters to provide wireless signaling in a manner that maximizes efficiency and bandwidth according to device positioning relative to a responding base station. |
US11553356B2 |
Determining beam settings for beam management
There is provided mechanisms for determining beam settings for beam management. A method is performed by a first radio transceiver device. The method comprises obtaining information about expected distribution of second radio transceiver devices in a network coverage region of the first radio transceiver device in which the beam management is to be performed. The method comprises determining beam settings for a first set of beams and a second set of beams. The first set of beams and the second set of beams are to be used for the beam management. There are fewer beams in the first set of beams than in the second set of beams. The beams in the first set of beams collectively cover all beams in the second set of beams. The beam settings for the beams in the first set of beams are determined according to the obtained information. |
US11553352B2 |
Complex composite tokens
Technologies are shown for trust delegation that involve receiving a first request from a subject client and responding by sending a first token having first permissions to the subject client. A second request from a first actor includes the first token and responding involves linking the first actor to the subject client in a trust stack and sending a second token to the first actor with second permissions, the second token being a first complex token that identifies the subject client and the first actor. A third request from a second actor includes the second token and responding to the third request involves linking the second actor to the first actor in the trust stack, and sending a third token to the second actor partner with third permissions, the third token being a second complex token that identifies the first actor and the second actor. |
US11553349B2 |
Communication apparatus, control method, and computer-readable storage medium
A communication apparatus receives a signal that is transmitted from a partner apparatus using a first communication scheme, and establishes, on the basis that the signal received includes information indicating that parameter exchange processing is to be executed, a connection with the partner apparatus using a second communication scheme, wherein the second communication scheme has a higher communication rate and consumes more power than the first communication scheme. In addition, the communication apparatus exchanges, by using the second communication scheme, information to be used in communication for the parameter exchange processing with the partner apparatus, and executes the parameter exchange processing using the information by using the second communication unit scheme. |
US11553341B2 |
Authorization assignment on field devices
A gateway for assigning an access authorization for a mobile operating device to a field device, including a first interface that wirelessly communicates with the mobile operating device, a second interface that communicates with an authorization assignment device, a memory device that stores an access authorization of the mobile operating device transmitted by the authorization assignment device, authorization assignment circuitry that reads the access authorization of the mobile operating device from the memory device and transmits the access authorization to the mobile operating device via the first interface. |
US11553340B2 |
Network identifier and authentication information generation for building automation system controllers
Generating network identifier information and authentication information for wireless communication with a controller includes accessing, by the controller, identity information associated with the controller. The controller obfuscates the identity information and generates the network identifier information and the authentication information associated with the controller using the obfuscated identity information. The controller is configured for wireless communication using the generated network identifier information and the generated authentication information. |
US11553339B2 |
Method for accessing serving network and communications apparatus
A method for accessing a serving network includes: obtaining, by a user plane network element, an access message, where the access message is for a terminal accessing a serving network, and where the access message includes authentication information of the terminal in the serving network; and sending, by the user plane network element, the access message to the serving network. The method for accessing serving network and the communications apparatus that are provided in the embodiments of this application enable a terminal to access a serving network using an access network, and expand a usage scenario of the serving network. |
US11553336B2 |
System and method for processing of private beacons in a mesh network
A mesh device for receiving and processing a private beacon message, which can be represented by one or more Bluetooth Low Energy mesh packets. Upon receiving the private beacon message, the mesh device decrypts a first portion of the private beacon by using a first encryption key corresponding to a first subnet, wherein the first portion comprises an initialization vector (IV), in the form of an index or other indicator. The decrypting using the first encryption key results in a first decrypted value for the IV index. The mesh device then determines whether the first decrypted value for the IV index is valid or invalid. If the mesh device determines the first decrypted value to be valid, the mesh device proceeds with authenticating the data contained in the private beacon message. |
US11553334B1 |
User equipment (UE) identification in a wireless communication network
In a wireless communication network, Unified Data Repositories (UDRs) determine initial User Equipment Identifiers (UE IDs). The UDRs successfully synchronize the initial UE IDs and serve the initial UE IDs to network elements that use the initial UE IDs to serve wireless data communications to UEs. The UDRs determine additional UE IDs. The UDRs unsuccessfully synchronize the additional UE IDs and serve the additional UE IDs to the network elements. In response to the unsuccessful synchronization of the additional UE IDs, a UDR recovery system reallocates the additional UE IDs. The UDR recovery system successfully synchronizes the reallocated-additional UE IDs. The network elements use the initial UE IDs and the reallocated-additional UE IDs to serve the wireless data communications. |
US11553333B2 |
Method of reporting received signal strength on per frame basis in wi-fi network
Aspects of the present disclosure are drawn to a client device for use with an access point device. The client device includes: a memory; and a processor configured to execute instructions stored on the memory to cause the client device to: obtain a value associated with a capability of the client device, create a response including a header and a payload, the header including a reserved field including a bit reporting that the payload of the response includes the value associated with the capability, and transmit the response to the APD. |
US11553329B2 |
System and method for compatibility analysis and performance verification
A method (200) for compatibility analysis and performance verification. Profile data is received (210) for a first profile from a first device and for other profiles from other devices, including a profile received from a second device. A request is received (215) from the first device to identify a profile with profile data compatible with the profile data of the first profile. The profile data of the first profile is compared (220) with profile data of the other profiles to identify compatibility, and the compatible profiles are reported to the first device. A selection of a compatible profile is received (225) from the first device. A request for an item is received (315) from the first device. An instruction is sent regarding the item (320) to the third device. A confirmation regarding the instruction is received (330) from the fourth device. The item is enabled (335). |
US11553328B2 |
Methods, devices, and computer programs for provisioning or controlling operator profiles in terminals
Methods are disclosed for provisioning and/or controlling operator profiles in terminals, each having an integrated circuit card identified by an integrated circuit card identifier. According to one aspect, a discovery server is configured with an authorization table including associations of integrated circuit card identifier, service provider identifier, and operator identifier(s). The discovery server receives, from a data preparation node, an event registration request that includes a number of elements. The discovery server determines whether the event is authorized. If so, the event is registered. This enables a terminal to seek to retrieve the event, to contact the data preparation node, and to eventually perform the profile operation. Some embodiments enable the network-initiated provisioning and/or controlling of operator profiles in machine-to-machine devices. |
US11553326B2 |
Communication device and communication method for transmitting notifications to communicate with first and second softwares and to cause second software to be on standby and to cancel being on standby
An electronic clock which is a communication device includes: a transceiver configured to communicate with another communication device including first software and second software; and at least one processor. The processor: controls the transceiver to perform a certain communication with the first software; and causes, after the certain communication ends, the transceiver to transmit a notification for notifying the second software of the end of the certain communication. |
US11553325B2 |
Communication system for monitoring process units
A communication system for monitoring process units includes at least one process unit operably connected to an associated peripheral communication unit via a communication interface in order to transmit process variables to the associated peripheral communication unit. The process variables which are transmitted to the associated peripheral communication unit are configurable. Each peripheral communication unit is configured to receive the configured process variables from the corresponding process unit and to emit them as advertising packets. The communication system further includes a central communication unit configured to receive the advertising packets from each peripheral communication unit. |
US11553324B2 |
Apparatus and method of system information transmission and reception on a carrier supporting multiple bandwidth parts
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The method for transmitting system information by a base station in a wireless communication system, the method comprising identifying whether an active downlink (DL) bandwidth part (BWP) of a user equipment (UE) is configured with common search space, and transmitting, to the UE, an updated system information in a dedicated signaling when the active DL BWP of the UE is not configured with the common search space. |
US11553323B2 |
Computer-readable recording medium, information processing method, and information processing device
Information for determining whether to evacuate or not is provided to a user by a computerized process. The process includes: acquiring a number of evacuees for each of a plurality of targets corresponding to a predetermined user; selecting a target of the plurality of targets based on the acquired numbers of evacuees for the plurality of targets and importance levels respectively set for the plurality of targets; and associating information on the selected target with information on the acquired number of evacuees for the selected target and outputting the information on the selected target and the information on the acquired number of evacuees for the selected target to the predetermined user. |
US11553319B2 |
Evaluating vehicle-to-everything (V2X) information
Embodiments include methods performed by vehicle-to-everything (V2X) system for evaluating V2X information. Some embodiments may include receiving from a V2X entity a length value and width value of the V2X entity, determining whether the received length value and width value are reliable, and performing a position overlap check using the received length value and width value in response to determining that the received length value and width value are reliable. |
US11553316B2 |
Method and apparatus for storing and sending a computer location
A method and apparatus for storing a computer location including the steps of initiating, by a user of a device, a capture sequence, wherein the device includes a processor and a display screen, obtaining, by the processor, visual data corresponding to an image displayed on the display screen at the time of the initiating step, obtaining, by the processor, location data corresponding to a computer location accessed by the device, and storing, by the processor, the visual data and the location data as associated data such that the visual data and the location data are associated with each other. A method and apparatus for sending the computer location further including the step of sending, by the first device, the associated data to a second device, wherein the second device includes a second processor and a second display screen. |
US11553315B2 |
Method and system for configuring caller line identification for short message service
A method performed by, and a system embedded within, a communication device operating in a communication network, performing the steps of: obtaining a plurality of caller identification codes for the caller device, where each of the caller identification codes identifies the caller device in a network; obtaining at least one rule for selecting a caller identification code from the plurality of caller identification codes according to a characteristic of the called device; obtaining a characteristic of the called device; selecting a caller identification code from the plurality of caller identification codes according to the characteristic of the destination telephone identification, or caller environment or destination environment parameters, or caller decision on the time of making the call; and forwarding the selected caller identification code to any of another communication network and a terminal device of a communication network. |
US11553314B2 |
Method and system for providing interoperability for rich communication suite (RCS) messaging with local and remote applications with e-commerce and data collection
A method and system for providing interoperability for Rich Communications Suite/Systems (RCS) messaging. If a target network device cannot directly receive RCS messages, electronic messages are modified on an RCS message application to include different types of electronic links to remote or local RCS interoperability applications. The local or remote RCS interoperability applications independently provides seamless, rich multi-media RCS functionality to the target network device including e-commerce and data collection when the electronic link is activated in the modified electronic message. The local or remote RCS interoperability applications provide two-way RCS message communications between target network devices without RCS functionality and target network devices with RCS functionality. |
US11553313B2 |
Clench activated switch system
Systems and methods for operating a controlled device via an activation accessory that includes a vibration motor, a wearable module including a clench-detection sensor (e.g., a Hal effect sensor), and a communication element. The sensor is coupled to a controller, which has an output coupled to a control signal interface and another output coupled to the vibration motor. The controller is programmed to receive and evaluate input signals from the sensor to determine whether or not they represent a command for the controlled device by assessing the input signals for a signal pattern indicative of a plurality of volitional jaw clench actions of a wearer of the wearable module. If/when the processor determines that the input signals represent the command, then it decodes the command and transmits an associated control signal to the controlled device via the control signal interface as well as an activation signal to the vibration motor. |
US11553312B2 |
Concurrent multi-level broadcast and unicast for small unmanned aerial vehicles and V2X systems
Systems, methods, and instrumentalities are disclosed for processing a multi-level transmission sent on a common set of resources using superposition coding, comprising determining a first group radio network temporary identifier (GRNTI), wherein the GRNTI is associated with a broadcast transmission to a plurality of wireless transmit/receive units (WTRUs), determining a second GRNTI, wherein the second GRNTI is associated with a transmission to a subset of the plurality of WTRUs that received the first GRNTI, receiving the multi-level transmission, wherein the multi-level transmission comprises a first level message and a second level message, decoding the first level message from the multi-level transmission using the first GRNTI and preconfigured control information, and decoding the second level message from the multi-level transmission using the second GRNTI. |
US11553309B2 |
Indoor and outdoor seamless positioning switching device including domains and actors
An indoor and outdoor seamless positioning transition device according to an embodiment of the present disclosure includes a personal domain providing information related to a user, a IoT domain providing information related to a vehicle, an infrastructure domain that provides information related to an infrastructure, a sensor domain collecting information for data exchange between domains, and a positioning domain calculating positioning of the user or the vehicle using data transmitted from the domain. The indoor and outdoor seamless positioning may be calculated through data exchange between the respective domains and a cloud server. |
US11553306B2 |
Tracking velocity information
Systems and methods for tracking velocity information. One system includes an application execution server providing an application layer. The application execution server is configured to receive a request including metadata. The application execution server is also configured to generate and transmit a response to the request. The application execution server is also configured to enrich the metadata by structuring the metadata for further processing by a data processing layer, where the further processing includes determining velocity information associated with the metadata, and by supplementing the metadata with available historical velocity information. The application execution server is also configured to transmit the enriched metadata for further processing by the data processing layer. |
US11553305B2 |
Method of and apparatus for access geographical location information service
The invention provides a solution to accessing for a geographical location information-based service in a server of a machine type communication based communication system, where firstly a server broadcasts or multicasts a content request message, the content request message comprising information on requested content and information on a target geographical location; then the server receives a response message from at least one user equipment, the response message indicating that the at least one user equipment possesses the requested content and the at least one user equipment being located within the target geographical location; and finally the server acquires the requested content from the at least one user equipment. |
US11553304B2 |
Geo-based connectivity awareness for better productivity
A server includes a network interface to interface with mobile computing devices operating within a geographical area, with at least one of the mobile computing devices providing a request for navigation instructions between two geo-locations based on prompting the user to select an optimized connectivity route prompt. A processor is coupled to the network interface and is configured to generate a network connectivity map based on varying cellular network connectivity metrics for the geographical area, and generate, based on the user-selected optimized connectivity route prompt, the navigation instructions between the two geo-locations to be provided to the at least one mobile communications device via said network interface. The navigation instructions are generated based on the network connectivity map to provide a single route that is optimized to include areas with strong cellular network connectivity metric values. |
US11553303B2 |
Vehicle control system and vehicle control method
The vehicle control system includes a first position measuring unit measuring a position of a mobile terminal by performing first position measuring processing, a second position measuring unit measuring a position of the mobile terminal by performing second position measuring processing having less power consumption in a vehicle by wireless communication than that of the first position measuring processing, and a position measurement control unit handling, as monitoring areas, a first area outside the vehicle and a second area outside the first area and, if the position of the mobile terminal is within the second area, continuing measurement of a position of the mobile terminal by the second position measuring unit, and, after the position of the mobile terminal comes into the first area, switching to measurement of a position of the mobile terminal by the first position measuring unit. |
US11553300B2 |
Lighting for biomechatronically enhanced organism
Examples of lighting equipment provide services to and on behalf of a biomechatronically enhanced organism and/or a biomechatronic component of the organism. Such services include charging, communications, location-related services, control, optimization, client-server functions and distributed processing functionality. The biomechatronically enhanced organism and/or biomechatronic component utilize such services provided by and/or via the lighting equipment to enable, enhance or otherwise influence operation of the organism. |
US11553297B1 |
Method and apparatus to generate a six dimensional audio dataset
This patent includes a method to generate a six dimensional audio dataset. When listening to the six dimensional audio dataset with an advanced headset disclosed in this patent, a user will enable a user to have precision sound localization and maximize the listening experience. For example, when the audio file is registered to a living room, a user would be able to sit in the “middle of the band” and if desired, reposition the instruments to different locations within the living room to change the audio experience. |
US11553291B2 |
Hearing device with printed circuit board assembly and output transducer
Disclosed is a hearing device configured to be worn in an ear of a user. The hearing device is configured to provide an audio signal to the user. The hearing device comprises a circuit assembly. The circuit assembly comprises a printed circuit board assembly. The printed circuit board assembly comprises: a first circuit board; a second circuit board; and a third circuit board interconnected with the first circuit board and the second circuit board. The circuit assembly comprises a battery, and an output transducer for providing the audio signal, wherein the printed circuit board assembly is folded about the battery and the output transducer. |
US11553290B2 |
Implantable sound sensors with non-uniform diaphragms
Presented herein are implantable sound sensors that include a non-uniform diaphragm mechanically coupled to a vibrating structure of a recipient's middle or inner ear. The non-uniform diaphragm includes a central region and a peripheral region, where the thickness of the central region is greater than the thickness of the peripheral region. |
US11553285B2 |
Hearing device or system for evaluating and selecting an external audio source
A hearing system comprises a hearing device worn on the head, or fully or partially implanted in the head, of a user, and external audio transmitters. The hearing system allows wireless communication to be established between the hearing device and the audio transmitters. The hearing device comprises microphones providing respective electric input signals; a beamformer filter providing a beamformed signal from the electric input signals; and an output unit. The hearing system further comprises a selector/mixer for selecting and possibly mixing one or more of the electric input signals or the beamformed signal and external electric signals from the audio transmitters, and providing a current input sound signal based thereon for presentation to the user. The selector/mixer is controlled by a source selection processor, which determines the source selection control signal based on a comparison of the beamformed signal and the external electric sound signals or processed versions thereof. |
US11553279B1 |
Electromagnetic transducer and loudspeaker
An electromagnetic transducer includes a yoke, a first magnet, a second magnet, and a spacer. The yoke is disposed along a vertical axis. The first magnet is magnetically coupled to the yoke and has a polarization in a first orientation with respect to the vertical axis. The second magnet is magnetically coupled to the yoke and has a polarization in the first orientation with respect to the vertical axis. The spacer is disposed between the first magnet and the second magnet and is extended along the vertical axis. |
US11553278B2 |
Display apparatus
A display apparatus includes: a display panel configured to display an image; a housing module including a roller configured to have the display panel wound or unwound in the housing module; a rolling module including a structure connected to an upper portion of the display panel, and configured to wind or unwind the display panel according to a folding or unfolding of the structure; a plurality of beams on one surface of display panel that extends in a first direction, and arranged in a second direction vertical to the first direction; and a vibration generating device in a portion of each of the plurality of beams, wherein the vibration generating device includes a plurality of sound generating modules configured to vibrate the display panel when the display panel is unwound from the roller and the structure is unfolded. |
US11553274B2 |
Autoregressive based residual echo suppression
The present application relates to a system and method for providing autoregressive based residual echo suppression in the STFT domain in a bidirectional vehicle communications system including receiving, from a communications processor, a speaker signal for coupling to a speaker, receiving, from a microphone, a microphone signal wherein the microphone signal includes a voice signal and a residual echo signal, transforming the signals to the STFT domain generating an estimated power spectral density of the residual echo signal in response to a prior power spectral density of a prior residual echo signal, isolating the voice signal from the microphone signal by multiplying the estimated residual echo gain generated using the estimated power spectral density of the residual echo signal with the microphone signal, transforming the signals back to the time domain and coupling the voice signal to the communications processor. |
US11553271B2 |
Speaker apparatus and acoustic system
Provided is a speaker apparatus including a first speaker having a first surface communicating with an interior and a second surface not communicating with the interior; a second speaker having a first surface communicating with an exterior and a second surface not communicating with the exterior; and a cabinet having boundary surfaces that form an enclosed space. The second surface of the first speaker and the second surface of the second speaker are arranged on the boundary surfaces and are facing the enclosed space. |
US11553268B2 |
Wireless headset
A wireless headset includes a first headset part and a second headset part. The first headset part includes a first earplug, a battery box, and a first part of a cable control box. The first part of the cable control box includes a first interface, a first wireless chip configured to receive and send a wireless signal, and a processor configured to process the wireless signal. The battery box includes a first battery. The second headset part includes a second earplug and a second part of the cable control box, and the second part of the cable control box includes a second interface. The first interface is detachably connected to the second interface. When the first interface is electrically connected to the second interface, a data path is formed between the second earplug and the processor, and the first battery supplies power to the second earplug. |
US11553267B2 |
Dual zone discharge of rechargeable batteries
The technology described in this document can be embodied in a method of using a silver-zinc rechargeable battery to power a device. The method includes drawing, in a first mode of operation of a power management circuit, a first current from the battery to power the device. The first current is selected such that a target percentage of a capacity of the battery is discharged in a predetermined time of use of the device. The method also includes switching to a second mode of operation after the target percentage of the capacity of the battery is discharged. In the second mode of operation, a second current is drawn from the battery, wherein the second current is less than the first current. The method further includes powering the device using the second current. |
US11553264B2 |
Surround for pipeline inspection equipment
A surround for protecting an acoustic device for sending and/or receiving acoustic signals positioned therein from impact as the surround is rolled along an interior surface of a fluid-containing pipeline, the surround comprising: a shell comprising an exterior segment configured to roll along the interior surface, the exterior segment defining at least one acoustic aperture configured to allow the passage of acoustic signals therethrough; and a lattice configured between the exterior segment and the acoustic device, the lattice comprising a plurality of unit cells, each unit cell defining an opening, wherein the plurality of unit cells are interconnected and define a plurality of openings, wherein the plurality of openings allow fluid to move between the interior of the surround and the exterior of the surround and enable the passage of the acoustic signals transmitted and/or received by the acoustic device such that the surround reduces the diminution of the quality and/or strength of the acoustic signals. |
US11553258B2 |
Apparatus, a method and a computer program for video coding and decoding
A method comprising: authoring a first section of a first media format, wherein the first section comprises type and length fields of the first section, wherein the type value of the first section of the first media format is such that allows parsers of the first media format ignore the first section; one or more entire sections complying with a second media format; and a section header of a bridge section complying with the second media format, wherein the section header comprises type and length fields; authoring a second section of the first media format, comprising type and length fields of the second section; and data complying with the second media format; and setting the content of the first section to be such that it allows parsers of the second media format ignore the type and length fields of the second section. |
US11553257B2 |
Systems and methods for IP-based asset package distribution for provisioning targeted advertisements
Embodiments are related to faster provisioning of targeted advertisements at a set-top box (STB) via an Internet Protocol (IP) connection between the STB and a remote server. The disclosed IP-based advertisement distribution system enables targeted advertisements to be pulled from the remote server efficiently, causing the advertisements to be made available within a short time frame (e.g., less than one day from the time when the advertisements are available). The disclosed methods enables a STB to determine whether to retain existing targeted advertisements, discard them, or provision newly-available advertisements. The targeted advertisements can depend on various factors such as demographic information of an owner of the STB, lifestyle information of the owner of the STB, etc. |
US11553255B2 |
Systems and methods for real time fact checking during stream viewing
The present disclosure relates to systems and methods for fact-checking contemporary and/or live video streams. In one aspect, the disclosed systems and methods may provide fact-checked commentary and annotations to enhance the enjoyment and engagement with the streaming media. In one aspect, the systems and methods nay generate an overlay for the streaming media that includes fact-checked annotations and comments about statements or assertions made during the live streaming media. |
US11553253B2 |
System and method for direct operator to set-top box communication
A system and method implements communications between a TV operator's infrastructure and set-top boxes (STBs) through a TV operator's infrastructure, wherein the infrastructure includes at least one Conditional Access System (CAS), a messaging engine and a Set Top Box (STB), the STB including a unique identification value. The method comprises receiving a structured message in the messaging engine; computing a stream out of multiple received structured messages by the messaging engine and sending to the multiplexor; including the stream of structured messages in a broadcasted signal transmitted through the TV operator's infrastructure; receiving the broadcasted signal by the STB and extracting a structured message; and comparing addressing information in the extracted structured message with a unique identification of the STB. Messages directed to the STB can be displayed. |
US11553250B2 |
Updating application code
A system and method for updating a settop box (STB) architecture that can be used to immediately update a device without requiring the device to be reset/restarted. The device may be any type of device that simultaneously supports multiple applications. The architecture may be used to update one of the applications with new functionality in a seamless manner that allows the applications including the one application to continue to operate without interruption. |
US11553249B1 |
Audio/video receiving device and wireless display system
An Audio/Video (A/V) receiving device may include a display, a Radio Frequency (RF) receiving module configured to receive an RF packet from an A/V transmitting device, the RF receiving module including a plurality of antennas, and a microcomputer configured to obtain a distance between the A/V transmitting device and A/V receiving device and when the obtained distance is changed, display a first message indicating that a number of antennas to be turned among the plurality of antennas is changed according to the change of the distance. |
US11553248B2 |
System and method for the access and routing of content on the basis of facial recognition
A system and method for controlling the display of video content upon one or more displays as a function of user identity as determined by facial recognition. The system and method provide for the video content to be transferred between multiple screens so as to provide a user with a substantially continuous video experience as the user travels between screen locations. User images captured by both video and still image cameras can be utilized for purposes of user recognition. One or more media hubs may be utilized in performing and supporting the disclosed technology. |
US11553244B2 |
Downstream plant capacity
An amplification system for amplifying a service of a cable television network that includes a first amplifier receiving the service and providing a first output signal having a first frequency band with a first maximum downstream frequency to a first customer and a second amplifier. The amplification system includes the second amplifier receiving the first output signal and providing a second output signal having a second frequency band with a second maximum downstream frequency to a second customer, wherein the second maximum downstream frequency is less than the first maximum downstream frequency. |
US11553242B2 |
Video production system
A system may perform operations including displaying a graphical user interface (GUI) on a display screen of a web client; displaying a first content prompt on a prompt screen comprised in the GUI, wherein the prompt screen is disposed on the GUI at least one of proximate or adjacent to a camera of the web client; recording a first video clip while displaying the first content prompt; displaying a second content prompt on the prompt screen in response to the recording the first video clip being completed; recording a second video clip while displaying the second content prompt; and/or concatenating the first video clip and the second video clip into a video. |
US11553234B2 |
System and method for supporting multiple identities for a secure identity device
A multiple-identity secure device (MISD) persistently may store an identification code. The identification code may be stored in an integral memory of the device, or on an interchangeable card received in a physical interface of the MISD. The MISD may generate one or more unique identities (e.g., network addresses) from the stored identification code. The generated identities may be dynamically generated or may be securely stored in the MISD for subsequent retrieval. The generated identities may generates in accordance with an addressing scheme, a global/network setting, or as determined from a received data transmission. |
US11553233B2 |
Systems and methods for modifying the display of inputs on a user input device
Systems and methods are described for adapting a second user input device to resemble a first user input device while preserving new functionalities not available in the first user input device. The systems and methods may identify, based on identifiers of the first and second user input devices, a first and second set of device functionalities provided by the devices. The systems and methods may compare the sets of device functionalities to determine a set of common device functionalities and, in response, modify the display of an input of the second user input device to correspond to visual attributes of an input of the first user input device. |
US11553231B2 |
Remote controller, screen projection receiving component, television, screen projection system and screen projection method
A remote controller, includes: a first interface; and a first wireless portion connected with the first interface, wherein the first interface is connected with a screen projection device, the first wireless portion is wirelessly connected with a display device, and the first wireless portion receives data to be projected by the screen projection device through the first interface, and sends the data to be projected to the display device for displaying. |
US11553225B2 |
Transport stream automatic change over
A device, system, and method perform an automatic change over for transport streams. The method is performed at an output server. The method includes selecting a first transport stream. The method includes generating a first portion of an output based on the first transport stream. The method includes selecting a second transport stream. The method includes determining a frametime to synchronize first packets of the first transport stream to second packets of the second transport stream. The frametime is based on a start time of a content item included in the first transport stream and the second transport stream and a completed progression of the content item using the first transport stream. The method includes determining a location in the second transport stream based on the frametime. The method includes generating a second portion of the output based on the second transport stream starting at the location. |
US11553219B2 |
Event progress detection in media items
One or more frames sampled from a media item of an event that is concurrently being streamed to one or more users of a content delivery platform are received. The one or more frames are analyzed to identify one or more candidate event clocks within the one or more frames. Whether a candidate event clock of the one or more candidate event clocks satisfies one or more conditions for each of the one or more frames is determined. Responsive to determining that the candidate event clock of the one or more candidate event clocks satisfies the one or more conditions, the candidate event clock is identified as an actual event clock used to time the event and mapping data that maps the actual event clock to a timestamp associated with a respective frame of the one or more frames of the media item is generated. |
US11553214B2 |
Thermostat and system and method for use of same
A thermostat and system and method for use of the same are disclosed. In one embodiment, multiple wireless transceivers are located within a housing, which also interconnectively includes a processor and memory. To improve convenience, the thermostat may establish a pairing with a proximate wireless-enabled interactive programmable device having a display. Virtual remote control functionality for various amenities may then be provided. To improve safety, the thermostat may be incorporated into a geolocation and safety network. |
US11553213B2 |
Method and apparatus for video coding
Aspects of the disclosure provide methods and apparatuses for video encoding/decoding. In some examples, an apparatus for video decoding includes processing circuitry. The processing circuitry can receive coded information of pictures in a coded video sequence. The coded information can include a coding tree unit (CTU) size information that indicates a CTU size selected for the pictures. The CTU size information can be encoded using a truncated unary code. The processing circuitry can determine the selected CTU size based on the CTU size information encoded using the truncated unary code. The processing circuitry can reconstruct samples in the pictures based on the selected CTU size. The selected CTU size can be 32×32, 64×64, or 128×128 luma samples. |
US11553208B2 |
Method and system of video coding using a subset of available intra prediction modes for multiple reference lines
A video decoding method includes obtaining a bitstream including a plurality of coded frames of a video signal; decoding each of the plurality of coded frames into a plurality of CTUs and each of the plurality of CTUs into a plurality of residual blocks; recovering a coding block for each of the plurality of residual blocks based on multiple reference line intra prediction flags and reference samples included in each coded frame, wherein a subset of all available intra prediction modes, is determined for each of the multiple reference lines selected for intra prediction based on coding efficiency and compression performance, and each of the multiple reference lines is identified by an index number; reconstructing each frame of the video signal by storing the recovered coding block for each of the plurality of residual blocks in a frame buffer; and continuously outputting the reconstructed frames to restore the video signal. |
US11553206B2 |
Bl-prediction for video coding
Systems, methods, and instrumentalities may be provided for determining whether to bypass bi-directional optical flow (BDOF) if BDOF is used in combination with bi-prediction with coding unit (CU) weights (e.g., generalized bi-prediction (GBi)). A coding system may combine coding modes, coding techniques, and/or coding tools. The coding system may include a wireless transmit/receive unit (WTRU). For example, the coding system may combine BDOF and bi-prediction with GU weights (BCW). BDOF may include refining a motion vector associated with a current CU based at least in part on gradients associated with a location in the current CU. The coding system may determine that BDOF is enabled, and/or that bi-prediction with CU weights is enabled for the current CU. The coding system's determination that bi-prediction with CU weights is enabled and/or that BDOF is enabled may be based on one or more indications. |
US11553204B2 |
Encoding method, decoding method, encoder, and decoder
An encoder includes circuitry and memory. Using the memory, the circuitry performs a primary transform on a derived prediction error, performs a secondary transform on a result of the primary transform, quantizes a result of the secondary transform, and encodes a result of the quantization as data of an image. When a current block to be processed has a predetermined shape, the encoder performs the secondary transform using, among secondary transform basis candidates that are secondary bases usable in the secondary transform, only a secondary transform basis candidate having a size that is not largest size containable in the current block. |
US11553203B2 |
Signaling of in-loop reshaping information using parameter sets
A method for video processing is provided to include performing a conversion between a current video block of a video region of a video and a coded representation of the video, wherein the conversion uses a coding mode in which the current video block is constructed based on a first domain and a second domain and/or chroma residue is scaled in a luma-dependent manner, and wherein a parameter set in the coded representation comprises parameter information for the coding mode. |
US11553201B2 |
Decoder side motion vector derivation
A method for processing a video includes performing a conversion between a current block of visual media data and a corresponding coded representation of the visual media data, wherein the conversion of the current block includes determining whether a use of one or both of a bi-directional optical flow (BIO) technique or a decoder-side motion vector refinement (DMVR) technique to the current block is enabled or disabled, and wherein the determining the use of the BIO technique or the DMVR technique is based on a cost criterion associated with the current block. |
US11553200B2 |
Applications for decoder-side modeling of objects identified in decoded video data
Techniques are disclosed for coding and decoding video data using object recognition and object modeling as a basis of coding and error recovery. A video decoder may decode coded video data received from a channel. The video decoder may perform object recognition on decoded video data obtained therefrom, and, when an object is recognized in the decoded video data, the video decoder may generate a model representing the recognized object. It may store data representing the model locally. The video decoder may communicate the model data to an encoder, which may form a basis of error mitigation and recovery. The video decoder also may monitor deviation patterns in the object model and associated patterns in audio content; if/when video decoding is suspended due to operational errors, the video decoder may generate simulated video data by analyzing audio data received during the suspension period and developing video data from the data model and deviation(s) associated with patterns detected from the audio data. |
US11553196B2 |
Media storage
A user of a storage system can upload files for a media asset, which can include a high quality media file and various related files. As part of the upload process, the storage system can extract metadata that describes the media asset. The user can specify one or more lifecycle policies to be applied for storage of the asset, and a rules engine can ensure the application of the one or more policies. The rules engine can also enable the use of simple media processing workflows. A filename hashing approach can be used to ensure that the segments and files for the asset are stored in a relatively random and even distribution across the partitions of the storage system. As part of the lifecycle for the asset, the high quality media file can be moved to less expensive storage once transcoding of the asset or another such action occurs. |
US11553195B2 |
Encoder for encoding information of sub-bitstreams having mutually different frame rates
An encoder includes circuitry, and memory coupled to the circuitry. The circuitry, in operation, for each of a plurality of sub-bitstreams having mutually different frame rates, encodes identification information into a header of a bitstream including the plurality of sub-bitstreams, the identification information indicating a temporal ID that is an identifier of a temporal layer related to a temporal scalability and corresponds to the sub-bitstream, and encodes level information indicating a conformance level of the sub-bitstream. |
US11553194B2 |
Parameter derivation in cross component mode
A method for visual media processing, including performing a conversion between a current chroma video block of visual media data and a bitstream representation of the current chroma video block, wherein, during the conversion, a chroma residual of the current chroma video block is scaled based on a scaling coefficient, wherein the scaling coefficient is derived at least based on luma samples located in predefined positions. |
US11553191B2 |
Tile group assignment for raster scan and rectangular tile groups in video coding
A video coding mechanism is disclosed. The mechanism includes partitioning a picture into a plurality of tiles. A number of the tiles are included in a tile group. The mechanism determines whether the tile group is a raster scan tile group or a rectangular tile group. The number of tiles in the tile group is determined based on whether the tile group is the raster scan tile group or the rectangular tile group. The tiles are encoded into a bitstream based on the tile group. The bitstream is stored for communication toward a decoder. |
US11553190B2 |
Extensions of motion-constrained tile sets SEI message for interactivity
An extension to the motion-constrained tile sets SEI message provides functionality to signal all tiles are independently decodable and to signal the ROIs that may have more than one tile per ROI. With this extension, the functionality to redefine any independently decodable region-of-interest in a CVS at a coding tree unit level based on user interactivity is enabled. The extension supports the interactivity utilized in various applications such as interactive Ultra High Definition Television (UHDTV), dynamic high-quality zoom-in application, interactive on-demand, e-learning, smart surveillance and many other applications. Additionally, the temporal MCTS SEI message is able to be used by an encoder for tiled streaming to signal explicitly to the decoder that the decoder need only to display the ROI. |
US11553186B2 |
In-loop filtering method according to adaptive pixel classification standard
The in-loop filtering method performed by a video decoding apparatus includes: classifying reconstructed samples according to an absolute classification standard or relative classification standard; acquiring offset data on the basis of results of classifying the reconstructed samples; adding an offset value to the reconstructed samples by referencing the acquired offset data; and outputting the offset value-added reconstructed samples. Accordingly, errors in the reconstructed image can be corrected. |
US11553184B2 |
Hybrid digital-analog modulation for transmission of video data
A method for encoding video data comprises generating coefficients based on video data; generating coefficient vectors, wherein each of the coefficient vectors includes n of the coefficients; for each of the coefficient vectors, determining an amplitude value for the coefficient vector based on a mapping pattern, wherein for each respective allowed coefficient vector in a plurality of allowed coefficient vectors: the mapping pattern maps the respective allowed coefficient vector to a respective amplitude value in a plurality of amplitude values, and the respective amplitude value is adjacent in an n-dimensional space to at least one other amplitude value in the plurality of amplitude values that is adjacent to the respective amplitude value in a monotonic number line of the amplitude values; and modulating an analog signal based on the amplitude values for the coefficient vectors. |
US11553177B2 |
Buffer management in subpicture decoding
A method of video processing includes performing a conversion between a video comprising a picture that includes multiple sub-pictures and a coded representation of the video using a coding mode according to a rule. The rule specifies that certain stored information about a previous sub-picture is reset prior to processing each next sub-picture of the multiple sub-pictures. |
US11553175B2 |
Method and apparatus for candidate list pruning
Video signal coding and decoding functions can generate lists of potential candidates to use in coding and decoding, for example, predictors. Video signal coding component candidate undergo operations before potential inclusion in candidate lists. The candidates are checked after being modified by the operations to see if other equal candidates are already in the candidate list. If equal candidates are not in the list, the modified candidates are added to the candidate list. If equal candidates are already in the list, the modified candidates are not added to the list. Operations that can be performed comprise rounding and clipping. |
US11553174B2 |
Method of intra predicting a block of a picture
The present disclosure provides methods and devices of intra predicting a block of a picture. The method comprises for a sample of the block: obtaining a predicted sample value from one or more reference sample values by performing intra-prediction using a DC intra-prediction mode; multiplying the predicted sample value by a sample weighting factor to produce a weighted predicted sample value; adding an additional value to the weighted predicted sample value to produce a non-normalized predicted sample value; and normalizing the non-normalized predicted sample value by an arithmetic right shift; wherein the sample weighting factor is ((2<
|
US11553166B2 |
Method, system, and non-transitory computer readable record medium for exposing personalized background using chroma key in broadcast viewing side
Disclosed is a broadcast providing method implemented at an electronic device including processing circuitry. The broadcast providing method includes receiving, by the processing circuitry, a broadcast image from a broadcast server, and generating, by the processing circuitry, a final image by synthesizing the broadcast image with a personalized background image using a chroma key, the personalized background image being personalized for a user of the electronic device. |
US11553163B1 |
Method and system for eyebox expansion in display systems
A method includes receiving a light beam propagating along an optical path, converting, using a first diffractive element, a first portion of the light beam into a first circularly polarized beam, and a second portion of the light beam into a second circularly polarized beam. The method also includes converting, using a second diffractive element, the first circularly polarized beam into a first circularly polarized output beam, and the second circularly polarized beam into a second circularly polarized output beam. |
US11553160B1 |
Systems and methods for imaging communication and control
A telesurgical mentoring platform with a wheeled base, a lower rack mounted on the base, an upper rack extending vertically from the lower rack, a compactly foldable articulated arm that is configured to extend horizontally outward away from the upper rack and configured to connect to a connector piece holding an end effectuator at its distal end, a tablet personal computer; the console configured to be readily mobilized on the floor of an existing operating room and is capable of providing a connectivity point for communication, audiovisual, and data transfer services in an operating room. |
US11553156B2 |
Systems and methods for video splicing and displaying
The present disclosure relates to a system and method for synchronous video display on at least one display. The method may comprises receiving a channel of video signal from each data acquisition port of a plurality of data acquisition ports during a time interval, each channel of video signal comprising a plurality of video frames captured during the time interval. The method may also comprises assigning a count value for each video frame of the channel of video signal as synchronization information for each video frame of the channel of video signal to form a pool of video frames each corresponding to a count value. The method may further comprises selecting video frames with the same count value from the pool of video frames as synchronized video frames, and transmitting, through the plurality of output ports, the synchronized video frames for synchronous display on the at least one display. |
US11553147B2 |
Imaging device and imaging system
An imaging device including pixels including a first pixel and a second pixel, the pixels arranged in rows and columns, the first pixel belonging to a first column, the second pixel belonging to a second column adjacent the first column; a first signal path through which a signal from the first pixel flows; and a second signal path through which a signal from the second pixel flows, a first circuit including first and second lines, a first voltage being applied to the first lines, a second voltage different from the first voltage applied to the second lines. The first signal path is located in a region closer to one of the first lines than any of the second lines in a plan view, and the second signal path is located in a region closer to one of the second lines than any of the first lines in the plan view. |
US11553146B2 |
Image signal processor and image processing system
An image processing system includes: an image sensor suitable for generating an RYYB (Red Yellow Yellow Blue) bayer image by applying an RYYB color filter array; an interpolation logic suitable for generating a Y image at a position of an R image portion in the RYYB bayer image by interpolating a YY image portion in the RYYB bayer image; and a guided filtering logic suitable for guided-filtering the R image portion in the RYYB bayer image by using, as a guide image, the Y image at the position of the R image portion. |
US11553144B2 |
Imaging unit, imaging apparatus, and computer-readable medium having stored thereon a control program
Provided is an imaging unit including an imaging section that includes a pixel capable of performing charge accumulation a plurality of times in response to an imaging instruction for generating one frame of image data; a storage section that stores a pixel signal based on output from the pixel; an updating section that updates the pixel signal already stored in the storage section by performing an integration process to integrate the pixel signal output from the pixel as a result of a new charge accumulation and the pixel signal already stored in the storage section; and a control section that controls whether the updating section performs the update, for each of a plurality of pixel groups that each include one or more pixels. |
US11553140B2 |
Vehicular vision system with multiple cameras
A vehicular vision system includes first and second cameras disposed at a vehicle and having respective overlapping fields of view that include a road surface of a road along which the vehicle is traveling. Image data captured by the cameras is provided to an image processor and is processed to determine relative movement of a road feature present in the captured image data. The determined movement of the road feature relative to the vehicle in first image data captured by the first camera is compared to the determined movement of the road feature relative to the vehicle in second image data captured by the second camera, and at least a rotational offset of the second camera at the vehicle relative to the first camera at the vehicle is determined and the image data are remapped to at least partially accommodate misalignment of the second camera relative to the first camera. |
US11553139B2 |
Video frame synthesis using tensor neural networks
A method for implementing video frame synthesis using a tensor neural network includes receiving input video data including one or more missing frames, converting the input video data into an input tensor, generating, through tensor completion based on the input tensor, output video data including one or more synthesized frames corresponding to the one or more missing frames by using a transform-based tensor neural network (TTNet) including a plurality of phases implementing a tensor iterative shrinkage thresholding algorithm (ISTA), and obtaining a loss function based on the output video data. |
US11553138B2 |
Signal processing device, signal processing method, camera system, video system, and server
To enable HDR video signals of a plurality of signal interfaces to be satisfactorily handled.[Solution] A processing unit processes a linear high dynamic range video signal and obtains a high dynamic range video signal that has undergone a grayscale compression process. The processing unit is able to perform grayscale compression processes of a plurality of signal interfaces. For example, when a grayscale compression process of another signal interface other than a reference signal interface is performed, the processing unit further performs a process of adding characteristics of system gamma of the reference signal interface and a process of cancelling out characteristics of system gamma of the other signal interface. |
US11553137B2 |
High dynamic range processing on spherical images
Image signal processing includes obtaining two or more image signals from a first hyper-hemispherical image sensor, where each of the two or more image signals has a different exposure and obtaining two or more image signals from a second hyper-hemispherical image sensor, where each of the two or more image signals has a different exposure. Image signal processing includes generating an exposure compensated image based on a gain value applied to an exposure level of a first image and a gain value applied to an exposure level of a second image. Image signal processing further includes performing high dynamic range (HDR) processing on the exposure compensated image. The HDR processing may be performed on a high a frequency portion of the exposure compensated image. |
US11553136B2 |
Subject tracking device, subject tracking method, and storage medium
In order to provide a subject tracking device capable of reducing erroneous tracking of a subject, the subject tracking device includes an image acquisition unit configured to sequentially acquire images, a tracking unit configured to track a subject which is detected from the images acquired by the image acquisition unit by comparison between images over a plurality of images which are sequentially acquired by the image acquisition unit, and a switching unit configured to switch a time for continuing tracking in the tracking unit in accordance with a type of the subject detected from the images. |
US11553135B2 |
Display control apparatus including an eye approach detector and a sightline detector and a control method for starting image display
A display control apparatus comprises a first display unit capable of being viewed via an eyepiece part, a second display unit capable of being viewed without the eyepiece part, an eye approach detection unit configured to detect an eye approaching to the eyepiece part, a sight line detection unit configured to detect a sight line of the eye that is viewing the first display unit via the eyepiece part, and a control unit configured to perform control to stop display of the first display unit if a sight line is not detected by the sight line detection unit within a first time period in a state where the eye approaching is being detected by the eye approach detection unit. |
US11553134B2 |
Image stabilizing apparatus and image pickup apparatus
An image stabilizing apparatus includes a first wireless communication unit, a second wireless communication unit configured to communicate with the first wireless communication unit and disposed to face the first wireless communication unit, a first substrate mounted with the first wireless communication unit, a second substrate mounted with the second wireless communication unit, a third substrate provided opposite to the first substrate with respect to the second substrate in an optical axis direction and mounted with an image sensor, and an electromagnetic shield member provided between the second substrate and the third substrate. The image stabilizing apparatus provides an image stabilization by moving the second and third substrates relative to the first substrate in planes formed in directions different from the optical axis. |
US11553132B2 |
Method of correcting position detecting signal and position detecting device
The position detecting device of the present invention is a device for detecting the position of a movable detection target within a predetermined movable range. The position detecting device comprises: a first magnet (13A) and a second magnet (13B) which are arranged so as to move integrally with the movement of the detection target; a first magnetic detecting circuit (20A) that detects the magnetic field of the first magnet (13A) and a second magnetic detecting circuit (20B) that detects the magnetic field of the second magnet (13B), which are arranged at positions outside the movable range; and a differential amplifier (8) that amplifies the difference between the detection signals of the magnetic field output from the first magnetic detecting circuit (20A) and the second magnetic detecting circuit (20B), and that outputs the amplified difference of the signal as a position detecting signal of the detection target. |
US11553130B2 |
Method and apparatus for reconstructing 360-degree image according to projection format
Disclosed are methods and apparatuses for image data encoding/decoding. A method for decoding a 360-degree image includes the steps of: receiving a bitstream obtained by encoding a 360-degree image; generating a prediction image by making reference to syntax information obtained from the received bitstream; adding the generated prediction image to a residual image obtained by dequantizing and inverse-transforming the bitstream, so as to obtain a decoded image; and reconstructing the decoded image into a 360-degree image according to a projection format. Therefore, the performance of image data compression can be improved. |
US11553125B2 |
Camera system and cables
A camera head unit including an image sensor configured to generate an image signal, a main unit configured to perform a signal process to the image signal, and first and second cables are included. Further, a determining section configured to determine whether a connection state is in a first connection state in which the camera head unit and the main unit are connected with each other via a first cable without a second cable or a second connection state in which the camera head unit and the main unit are connected with each other via the first cable and the second cable, and a transmission section configured to transmit the image signal between the camera head unit and the main unit at least via the first cable according to a determination result determined by the determining section are included. |
US11553118B2 |
Imaging apparatus, manufacturing method therefor, and electronic apparatus
An imaging apparatus with reduced flare includes an imaging structure including a solid state imaging element (1) and a transparent substrate (2) disposed on the imaging element. The imaging apparatus includes a circuit substrate (7) including a circuit, a spacer (10) including at least one fixing portion (11) that guides the imaging structure to a desired position on the circuit substrate (7) when the imaging structure is mounted on the circuit substrate, and a light absorbing material (13) disposed on at least one side surface of the imaging structure such that that light absorbing material (13) is between the imaging structure and the at least one fixing portion. |
US11553117B2 |
Image pickup control apparatus, image pickup apparatus, control method for image pickup control apparatus, and non-transitory computer readable medium
To reduce power consumption in an image pickup apparatus that captures a plurality of pieces of image data.An image pickup apparatus includes a signal processing unit and a control unit. The signal processing unit executes, in accordance with a predetermined control signal, either compound-eye processing for synthesizing a plurality of pieces of image data by carrying out signal processing on each of the plurality of pieces of image data or monocular processing for carrying out the signal processing on any one of the plurality of pieces of image data. The control unit supplies the predetermined control signal to the signal processing unit and causes one of the compound-eye processing and the monocular processing to be switched to the other one of the compound-eye processing and the monocular processing, on a basis of a result of a comparison between a measured predetermined physical amount and a predetermined threshold value. |
US11553101B2 |
Computer-readable medium, information processing device, and system for setting up program on each terminal device
A non-transitory computer-readable medium stores computer-readable instructions that are executable by a processor of a first terminal device compatible with a first platform. The instructions are configured to, when executed by the processor, cause the first terminal device to accept selection of an image processing apparatus from among one or more devices connected with the first terminal device, obtain setting information from the selected image processing apparatus, install, into the first terminal device, a first program compatible with the image processing apparatus and the first platform, display access information on a display of the first terminal device, the access information being based on an address of a web page representing a site of a supply source for a second program that is compatible with the image processing apparatus and a second platform, and display the setting information on the display. |
US11553100B2 |
Image processing apparatus and method of communicating with an external apparatus
An image processing apparatus capable of fax communication and a method of controlling the image processing apparatus are described. The image processing apparatus has a user interface capable of accepting from a user, in advance of receiving by a network interface a shutdown request, a setting of whether or not to perform shutdown processing based on the received shutdown request when the image processing apparatus is in a state of being connected to a fax line and when fax communication is possible. The image processing apparatus executes, in accordance with the setting accepted in advance from the user by the user interface, the shutdown processing of the image processing apparatus based on the shutdown request received from the external apparatus. |
US11553080B2 |
Detecting fraud using machine-learning and recorded voice clips
A system and method are disclosed for training a machine-learning model to detect characteristics of fraudulent calls. The machine-learning model is trained using audio clips, voice recognition, call handler feedback and general public knowledge of commercial risks to detect and divert fraudulent calls, thereby alleviating the burdens otherwise placed on call center service representatives. |
US11553076B1 |
Method and apparatus for automatically setting alarms and notifications
A processor-based personal electronic device (such as a smartphone) is programmed to automatically respond to data sent by various sensors from which the user's activity may be inferred. One or more alarms on the device may be temporarily disabled when sensor data indicates that the user is asleep. One or more of the sensors may be worn by the user and remote from the device. A wireless communication link may be used by the device to obtain remote sensor data. Data from on-board sensors in the device—such as motion sensors, location sensors, ambient light sensors, and the like—may also be used to deduce the user's current activity. User data (such as calendar entries) may also be used to determine likely user activity and set alarms accordingly. Biometric data from a second, nearby person may also be used to automatically select certain alarm modes on a first person's device. |
US11553073B2 |
Methods and systems for recalling second party interactions with mobile devices
Systems and methods are presented for identifying individuals through facial recognition, voice recognition, or the like, recalling past recorded conversations with the identified individuals, and recording and inventorying conversations with the individuals with mobile devices. In some embodiments, a method is presented. The method may include identifying, at a device, an individual through facial recognition, voice recognition, or a unique RFID. The method may also include recording a conversation with the identified individual, and recalling past relevant recorded conversations based on the identification of the individual, and transmitting the recording of the conversation to a display system configured to display the recording of the event. |
US11553072B2 |
Electronic apparatus and method of selectively applying security mode in mobile device
A mobile device is configured to photograph an object and includes a user interface having a display panel to display an image and a touch panel to receive a user command, a network interface to wirelessly communicate with an external network, a memory to store a password and data for operations of the mobile device, and a control unit to control the user interface, the network interface, and the memory to perform a first process during a normal mode, and to perform a second operation during a power saving mode. The first process includes setting an area condition and a wireless communication condition. The second process includes unlocking the mobile device according to the area condition and the wireless communication condition. |
US11553064B2 |
Methods and nodes for facilitating a PDU session procedure in interworking networks
A method at an Access and mobility Management Function (AMF) for facilitating a Protocol Data Unit (PDU) session procedure for a User Equipment (UE) in a 5th Generation System (5GS) network, wherein the 5GS network is interworking with an Evolved Packet System (EPS) network, and a Packet Data Network Gateway Control plane Function+Session Management Function (PGW-C+SMF) supporting the interworking is selected for managing the PDU session. The method comprises determining whether the PDU session supports interworking with the EPS network, based on at least one of a capability of the UE and a subscription data of the UE; and sending an indication which indicates whether the PDU session supports interworking with the EPS network to the PGW-C+SMF. |
US11553063B2 |
System and method for selecting and providing available actions from one or more computer applications to a user
A computing system can be configured to input model input that includes context data into a machine-learned model and receive model output that describes one or more semantic entities referenced by the context data. The computing system can be configured to provide data descriptive of the semantic entity or entities to the computer application(s) and receive application output(s) respectively from the computing application(s) in response to providing the data descriptive of semantic entity or entities to the computer application(s). The application output(s) received from each computer application can describe available action(s) of the corresponding computer application with respect to the semantic entity or entities. The computing system can be configured to provide at least one indicator to a user that describes the available action(s) of the corresponding computer applications with respect to the semantic entity or entities. |
US11553060B2 |
Programmable delivery network
A system and method are provided for provisioning code snippets for programming a content delivery network. The method includes receiving a first client code snippet from a first client. The first client code snippet includes identity information of origin servers, standard responses for network requests, and configuration parameters to configure programmable content delivery nodes to respond to the one or more network requests. The method also includes publishing the first client code snippet to a snippet library, and indexing the first client code snippet in the snippet library. The method also includes receiving, from a second client, a request for a second client code snippet. The method also includes selecting a subset of client code snippets stored in the snippet library. The method also includes rendering identification information for the subset of client code snippets, and outputting a selected client code snippet from the subset of client code snippets. |
US11553056B2 |
Publishing and synchronization techniques
Upon detection of a change in value to a data asset, customized rules are processed to publish the change and other information pertaining to the data asset with one or more services/devices. In an embodiment, the change and other information are dynamically pushed to a mobile device when the mobile device is in a predefined geographical area as defined by the customized rules. |
US11553055B2 |
Automated communication-based intelligence engine
A system that creates and automatically builds one or more entity models that are derived from communication-based information received over a network. Building the entity models uses machine learning, a user interface, a sentiment analyzer, a communication monitoring agent and an automated bot. Bots are created based on a bot template. New communication-based information is analyzed and processed to improve the entity model, to keep the bot up-to-date, and to update other services and products that the entity relies on. The system enables a business to cluster other entities together to assist in identifying competitors. The system provides analytical information about how users journey through an entity model. The system automatically maintains listings such as frequently asked questions. The system works in a networked environment, which may be a distributed network. |
US11553050B2 |
Event notification method and device, apparatus and computer storage medium
An event notification method, an apparatus, a server device, and a computer storage medium are disclosed. An event notification method includes receiving an event subscription request from a subscriber, the event subscription request including one or more notified parties; dividing the one or more notified parties into one or more groups, each group of the one or more groups including one or more notified parties; and sending an event notification to notified parties in at least one group of the one or more groups. |
US11553041B2 |
Systems and methods for filtering messages
A recording system may use the information stored in a list to determine whether to receive and/or respond to messages transmitted by notice systems. The source of the information for the list includes a server and/or the recording system itself. A server that provides the list may use data provided by an agency to determine a relationship between a people, recording devices and notice systems. The associations between people, recording devices and notice devices may be used to determine what information is in the list. A recording device that forms the list may receive messages from any notice system, detect the session identifier, store the session identifiers from received messages, and receive and/or respond to messages in accordance with the list formed by the recording system. |
US11553040B2 |
Relay apparatus and relay method
To provide a relay apparatus and a relay method by which an app can be flexibly connected to a device and various apps can be connected to various devices to realize stable operation. The invention is a relay method for mediating a connection between an app and a device, and the relay method includes: when an input specification of data required for an app whose use is to be started is input, comparing an output specification held by each processing node provided in an existing data processing path with a data item included in the input specification; connecting an output of the data processing path to the app whose use is to be started if the existing processing node and the existing data processing path are able to satisfy the input specification; adding a new processing node and comparing an output specification of the new processing node with the input specification if the existing data processing path is not able to satisfy the input specification; and connecting an output of the new processing node to the app whose use is to be started if the new processing node is able to satisfy the input specification. |
US11553037B2 |
Systems and methods for providing load balancing as a service
The present disclosure is directed generally to systems and methods for providing load balancing as a service. A load balancer executing on a device intermediary to a server and a plurality of clients can receive a request from an agent executing on the server. The request can be to initiate establishment of a transport layer connection. The load balancer can accept the request to establish the transport layer connection with the server. The load balancer can receive a request to access the server from a client of the plurality of clients. The load balancer can forward the request to the server via the transport layer connection established between the load balancer and the server responsive to the request of the server. |
US11553036B2 |
System and method for cloud security monitoring
The invention relates to a computer-implemented system for security monitoring of Member accounts in a cloud environment. The Member accounts are provided as instances of cloud services in one or more monitored clouds by one or more cloud service providers. The system is programmed to automatically deploy software agents to the Member accounts. The software agents are configured to monitor activities in the Member accounts and to push security and operations data to a SIEM platform. The security and operations data may comprise alerts and activity logs for the Member accounts, public internet protocol (IP) addresses used by the Member accounts, and identifying information for individuals and information technology (IT) assets associated with the Member accounts. The system includes a user interface to define customized alerts based on the security and operations data, and the system generates and sends the customized alerts to a system administrator or security analyst. |
US11553032B2 |
System and method for toolchain integration in application availability monitoring
Various methods, apparatuses/systems, and media for implementing a smart toolchain integration module are disclosed. A processor detects an issue in connection with performance and/or operation of an application and creates an event, in response to detecting the issue, with required parameters. The processor causes the event to be consumed with the required parameters in an event automation platform and triggers a corresponding microservice which stores a code to be utilized for replicating and interpreting the issue in response to consuming the event. The processor also replicates the issue by running a check through hypertext transfer protocol (HTTP) POST request by the microservice to a corresponding application programming interface (API) based on the code; interprets the issue by sending a HTTP secure (HTTPS) GET request by the microservice to the corresponding API based on the code; and automatically remediates the issue based on the required parameters. |
US11553027B2 |
Methods and systems for improving performance of streaming media sessions
A method for improving performance of a streaming media session between a plurality of communicating entities. Observation reports are collected from a plurality of monitoring entities. Each observation report includes information pertaining to events observed and recorded at a corresponding monitoring entity. A size of at least one window to be used for analyzing the observation reports is determined. The observation reports are analyzed using the at least one window of the determined size, to determine a correlation between the events across the observation reports. A problem encountered during the streaming media session is identified, based upon the correlation between the events. A notification is sent to at least one of the monitoring entities, based upon the problem. The notification is sent during the streaming media session. |
US11553024B2 |
Systems and methods for dynamic weighting of branched video paths
Systems and methods for dynamically weighting media segments and paths in a structured media presentation are disclosed. The structured media presentation can be, for example, a video tree representing a branching video presentation and defining multiple branches, each defining a path of one or more video content segments. Different portions of the video tree are associated with weights, and during playback of the branching video presentation, a video content segment is automatically selected for presentation based on one or more of the associated weights. |
US11553022B2 |
Signaling of a request to adapt a voice-over-IP communication session
A method, receiver device and terminal for signaling an adaptation request to adapt a coding/decoding of real-time signals of a real-time communication session, from a receiver device to a sender device. The method is such that the adaptation request relates to a demand for aggregation and/or redundancy of frames, that it is generated according to the existence of a signaling parameter arising from a phase of negotiation of codecs used during initialization of the communication session and in that it is transported via a real-time protocol of RTP type. |
US11553021B2 |
Media downlink transmission control method and related device
A media downlink transmission control method and a related device, the method including receiving a remote media reception message sent by an authorized terminal, where the remote media reception message includes a target user identifier, determining a first target media stream based on the remote media reception message, and sending the first target media stream to a destination terminal corresponding to the target user identifier. |
US11553019B2 |
Method, apparatus, electronic device and storage medium for acquiring programs in live streaming room
The disclosure relates to methods, apparatuses, electronic devices, and storage media for acquiring programs in a live streaming room. The method includes acquiring a program acquisition condition and triggering to save live streaming room data of a user account as a target program in response to detecting that a live streaming behavior of the user account meets the program acquisition condition, to provide the target program to an associated user account of the user account. |
US11553018B2 |
Dynamically switched multicast delivery
According to some aspects, methods and systems may include receiving, by computing device from one or more client devices, a plurality of requests for one or more content items formatted in a first format and determining whether to multicast the one or more content items based on a data structure configured with one or more conditions associated with multicasting content. The methods and systems may also include transmitting, to the one or more client devices, the one more content items via one or more multicast streams if the requests meet a first condition of the one or more conditions. The methods and systems may also include formatting the one or more content items in a second format prior to the transmitting if network resources fail to meet a second condition of the one or more conditions. |
US11553012B2 |
System and method of intelligently sharing conference content
A computer-implemented method for sharing conference content is provided. The method comprises receiving a share input from a first device corresponding to a participant of a conference session, determining content for sharing using communication information associated with the participant, determining that the content is available through a second device and sharing the content using the second device. |
US11553011B1 |
Methods and systems for facilitating a collaborative work environment
The present disclosure describes techniques for facilitating a collaborative work environment. The techniques comprise receiving a request from a first client computing device associated with a first user in the plurality of users to establish a communication with a second user in the plurality of users, the request specifying information associated with the communication; generating and transmitting data to a second client computing device associated with the second user for display of a user interface on the second client computing device, wherein the user interface indicates an invite of communication from the first user, and the user interface comprises information about the first user, the information associated with the communication, and selectable interface elements for accepting or declining the invite; and in response to receiving an indication of acceptance by the second user, establishing a communication channel between the first user and the second user. |
US11553010B2 |
Systems and methods for remote control in information technology infrastructure
Systems and methods of the present disclosure are directed to providing remote control capabilities in information technology infrastructure. In particular, systems and methods of the present disclosure can provide remotely control capabilities to facilitate the management, configuration, or maintenance of information technology infrastructure. |
US11553004B2 |
Methods and apparatus to facilitate end-user defined policy management
Methods, apparatus, systems and articles of manufacture are disclosed to facilitate end-user defined policy management. An example apparatus includes an edge node interface to detect addition of a networked user device to a service gateway, and to extract publish information from the networked user device. The example apparatus also includes a device context manager to identify tag parameters based on the publish information from the networked user device, and a tag manager to prohibit unauthorized disclosure of the networked user device by setting values of the tag parameters based on a user profile associated with a type of the networked user device. |
US11553002B2 |
Cloud router platform for SDN networks
A system is described whereby a cloud router may allow routing as a service in a cloud-like manner. In an example, an apparatus may include a processor and a memory coupled with the processor that effectuates operations. The operations may include receiving first routing information associated with a first customer edge device; adding the first routing information to network routing information of the apparatus, wherein the network routing information comprises a network routing table with routes for a plurality of networks; and propagating the network routing information to a software defined network (SDN) controller, wherein, based on the network routing information, the SDN controller sends a forwarding information base (FIB) to a provider edge device connected with the first customer edge device. |
US11553001B2 |
End user security manager
In one embodiment, a client device accesses an online application via a browser executed by the client device. The client device makes an assessment as to whether the online application uses Hypertext Transfer Protocol (HTTP) security headers that satisfy a security header policy. The client device generates scoring for the webpage based on the assessment. The client device presents the generated scoring to a user of the client device. |
US11552997B2 |
Secure request authentication for a threat protection service
A client application manages a resolver configuration and sends DNS requests to a threat protection service when a mobile device operating the client application is operating off-network. The client application detects network conditions and automatically configures an appropriate system-wide DNS resolution setting. DNS requests from the client identify the customer and the device to threat protection (TP) service resolvers without introducing a publicly-visible customer or device identifier. The TP system applies the correct policy to DNS requests coming from off-network clients. In particular, the TP resolver recognizes the customer for requests coming from such clients and applies the customer's policy. The resolver is also configured to log the customer and the device associated with requests from the TP off-net client. Request logs from the TP resolver are provided to a cloud security intelligence platform for threat intelligence analytics and customer visible reporting. |
US11552996B2 |
Automated and adaptive model-driven security system and method for operating the same
A system and method for managing implementation of policies in an information technologies system receives at least one policy function, at least one refinement template and at least one available policy function from the at least one memory, receives a policy input indicating a high-level policy for the IT system where the policy input is compliant with the at least one policy function and is received in a format that is not machine-enforceable at an enforcement entity of the IT system, based on the received policy input, automatically or semi-automatically generates a machine-enforceable rule and/or configuration by filling the at least one refinement template, where the machine-enforceable rule and/or configuration includes the at least one available policy function and being compliant with the received policy input, and distributes the machine-enforceable rule and/or configuration to the at least one memory of the IT system or another at least one memory to thereby enable implementation of the policies. |
US11552994B2 |
Methods and nodes for handling LLDP messages in a communication network
Transmitting node (120) and receiving node (121) for handling LLDP messages in a communication network (100). The transmitting node (120) transmits a LLDP message to the receiving node (121), which LLDP message comprises security related information enabling to verify authenticity of the transmitting node (120). The receiving node (121) receives one or more LLDP messages, at least one comprising security related information enabling to verify authenticity of the transmitting node (120; 124) that transmitted the LLDP message. |
US11552992B2 |
Systems and methods for artificial model building techniques
Embodiments disclosed describe a security awareness system may adaptively learn the best design of a simulated phishing campaign to get a user to perform the requested actions, such as clicking a hyperlink or opening a file. In some implementations, the system may adapt an ongoing campaign based on user's responses to messages in the campaign, along with the system's learned awareness. The learning process implemented by the security awareness system can be trained by observing the behavior of other users in the same company, other users in the same industry, other users that share similar attributes, all other users of the system, or users that have user attributes that match criteria set by the system, or that match attributes of a subset of other users in the system. |
US11552991B2 |
Systems and methods for performing a simulated phishing attack
Systems and methods for performing a simulated phishing attack are provided. A simulated attack server can send a simulated attack email including a unique identifier to a target. The simulated attack server can receive a reply email including the unique identifier from the target. The simulated attack server can extract the unique identifier from the reply email. The simulated attack server can determine a match between the unique identifier and an identity of the target. The simulated attack server can record a target failure, responsive to determining the match between the unique identifier and the identity of the target. |
US11552990B2 |
Message management platform for performing impersonation analysis and detection
Aspects of the disclosure relate to detecting impersonation in email body content using machine learning. Based on email data received from user accounts, a computing platform may generate user identification models that are each specific to one of the user accounts. The computing platform may intercept a message from a first user account to a second user account and may apply a user identification model, specific to the first user account, to the message, so as to calculate feature vectors for the message. The computing platform then may apply impersonation algorithms to the feature vectors and may determine that the message is impersonated. Based on results of the impersonation algorithms, the computing platform may modify delivery of the message. |
US11552988B2 |
Creating malware prevention rules using malware detection and prevention system
Aspects of the present disclosure involve systems and methods computing devices to access a public network posing as a user to the network to detect one or more malware programs available for downloading through the network. More particularly, a malware detection control system utilizes a browser executed on a computing device to access a public network, such as the Internet. Through the browser, sites or nodes of the public network are accessed by the control system with the interactions with the sites of the public network designed to mimic or approximate a human user of the browser. More particularly, the control system may apply the one or more personality profiles to the browser of the computing device to access and interact with the nodes of the public network. Further, the control system may monitor the information retrieved from the network sites to detect the presence of malware within the nodes. |
US11552985B2 |
Method for predicting events using a joint representation of different feature types
A method for predicting one or more events includes generating, for features of each of at least two feature types, an intermediate representation using a representation learning model for the at least two feature types. The intermediate representations of the at least two feature types are analyzed using a neural network and at least one neural network model so as to provide a joint representation for predicting certain events. One or more actions to be taken can be determined based on the one or more events predicted by the joint representation. |
US11552982B2 |
Systems and methods for effective delivery of simulated phishing campaigns
Systems and methods are described for verifying whether simulated phishing communications are allowed to pass by a security system of an email system to email account of users. One or more email accounts of the email system with the security system may be identified to use for a delivery verification campaign. Further, one or more types of simulated phishing communications may be selected from a plurality of types of simulated phishing communications. The delivery verification campaign may be configured to include the selection of the one or more types of simulated phishing communications from the plurality of types of simulated phishing communications. The selected one or more types of simulated phishing communications of the delivery verification campaign may be communicated to the one or more email accounts. Further, whether or not each of the one or more types of simulated phishing communications was allowed by the security system to be received unchanged at the one or more email accounts. |
US11552978B2 |
Disaster security calculation method, and user terminal and non-transitory medium implementing same
A disaster security resource calculation method includes obtaining disaster prevention data of a place to be evaluated and loss assessment data of the place in a disaster scenario, and determining disaster security resources required by the place to be evaluated in the disaster scenario using a preset calculation model according to the disaster prevention data and the loss assessment data. The disaster prevention data includes environmental information, item information, and personnel information. |
US11552973B2 |
Network malicious behavior detection method and networking system using same
A network malicious behavior detection method, including: checking each piece of network packet to determine whether a protocol payload contained therein matches an element in a predetermined protocol payload set, marking each piece of the network packet as a suspicious network packet if the check result is true, and transferring each piece of the network packet to a target device if the check result is false; and performing a malicious behavior checking process on at least one piece of the suspicious network packet, blocking the transfer of at least one piece of the suspicious network packet to the target device if the check result is true, and enabling the transfer of at least one piece of the suspicious network packet to the target device if the check result is false. |
US11552969B2 |
Threat detection platforms for detecting, characterizing, and remediating email-based threats in real time
Conventional email filtering services are not suitable for recognizing sophisticated malicious emails, and therefore may allow sophisticated malicious emails to reach inboxes by mistake. Introduced here are threat detection platforms designed to take an integrative approach to detecting security threats. For example, after receiving input indicative of an approval from an individual to access past email received by employees of an enterprise, a threat detection platform can download past emails to build a machine learning (ML) model that understands the norms of communication with internal contacts (e.g., other employees) and/or external contacts (e.g., vendors). By applying the ML model to incoming email, the threat detection platform can identify security threats in real time in a targeted manner. |
US11552968B2 |
System and methods for detecting and mitigating golden SAML attacks against federated services
A system and methods for detecting and mitigating golden SAML attacks against federated services is provided, comprising an authentication object inspector configured to observe a new authentication object generated by an identity provider, and retrieve the new authentication object; and a hashing engine configured to create a security cookie for each valid authentication session; wherein subsequent access requests accompanied by authentication objects are validated by checking for a valid security cookie. |
US11552964B2 |
Detecting man-in-the-middle attacks in adaptive streaming
Systems and methods for adaptively streaming video content to a wireless transmit/receive unit (WTRU) or wired transmit/receive unit may include obtaining a media presentation description that comprises a content authenticity, requesting a key for a hash-based message authentication code; receiving the key for the hash-based message authentication code, determining a determined hash for a segment of the media presentation description, requesting a reference hash for the segment from a server, receiving the reference hash for the segment from the server, and comparing the reference hash to the determined hash to determine whether the requested hash matches the determined hash. |
US11552961B2 |
System, method and computer readable medium for processing unsolicited electronic mail
An internet service provider (ISP) is configured to analyze a subscriber's sent e-mail packets to determine a subscriber identity associated with the e-mail packets. A database is then queried to determine a current sending rate of e-mails by the subscriber. A sending rate above an allowed threshold causes the upstream transmission of the e-mail packets to be blocked by injecting connection destroying packets. A subscriber remains blocked from upstream transmission of e-mails until the sending rate as determined by the ISP drops below a second, more stringent threshold. This automatic process is also accompanied by automated messaging to the subscriber with information as to the measures taken and remedial options. |
US11552957B2 |
Resource access control with dynamic tag
In a device including a processor and a memory, the memory includes executable instructions that, when executed by the processor, cause the processor to control the device to perform functions of receiving an access control setting for granting access to an access-controlled resource and a dynamic tag characterizing a member group subject to the access control setting; accessing a data source storing member data including an attribute associated with each member, the attribute including a parameter related to a time or time period. The dynamic tag is mapped to the member data based on (1) the parameter of the attribute and (2) a time or time period associated with the dynamic tag, to identify mapped members forming the member group, wherein the mapped members identified based on a same dynamic tag vary depending on the time or time period associated with the dynamic tag, to identify the member group. |
US11552956B2 |
Secure resource authorization for external identities using remote principal objects
Methods of secure resource authorization for external identities using remote principal objects are performed by systems and devices. An external entity creates a user group and defines entitlements to an owning entity's secure resource as a set of permissions for the group. An immutable access template with the permissions and an access policy for the secure resource are provided to the owning entity for approval. On approval, a remote principal object is created in the owner directory according to the permissions and access policy. A remote principal that is a group member requests access via an interface to the owner domain using external domain credentials. The identity of the remote principal is verified against the remote principal object by a token service. Verification causes generation and issuance of a token, with the enumerated entitlements, to the remote principal interface affecting a redirect for access to the secure resource. |
US11552954B2 |
Private cloud control
Management of IoT devices through a private cloud. An IoT device is coupled to a gateway. A request from the IoT device to connect to a private cloud, wherein the private cloud is used to manage IoT devices, is received at a private cloud control center agent. An identification of the IoT device is determined. The IoT device is onboarded, using the identification, for management through the private cloud. A device profile of the IoT device is generated. The flow of data to and from the IoT device is regulated through application of IoT rules according to the device profile of the IoT device. |
US11552950B2 |
Blockchain interoperability
A system supports asset transfers among blockchains of differing distributed ledger technologies using interop circuitry. The interop circuitry may receive asset permissions from origin and target participant circuitry. The asset permissions may support transfer of an asset from an origin blockchain to a target blockchain. The interop circuitry, acting on behalf of the origin and target participant circuitry, locks an asset on the origin blockchain. Then the interop circuitry creates the asset on the target blockchain. The locking of the asset on the origin blockchain may prevent a double-expend opportunity, where the asset can be redeemed on the origin blockchain and on the target blockchain. |
US11552949B2 |
Shared terminal that authenticates a user based on a terminal identifier
A shared terminal includes: circuitry to control a display to display an image to a plurality of users, the plurality of users sharing a use of the shared terminal, and obtain, from a first privately-owned terminal owned by a first user of the plurality of users, first terminal identification information for identifying the first privately-owned terminal; a transmitter to transmit, to a terminal management server, an authentication request for authenticating the first privately-owned terminal to allow login of the first user into the shared terminal, the authentication request including the first terminal identification information of the first privately-owned terminal; and a receiver to receive an authentication result indicating whether the first privately-owned terminal is authenticated to allow login of the first user, from the terminal management server. When the authentication result indicates that the first privately-owned terminal is a legitimate terminal and login of the first user is successful, the circuitry controls the display to display a screen for allowing the plurality of users including the first user to draw an image. When the authentication result indicates that the first privately-owned terminal is not a legitimate terminal and login of the first user fails, the circuitry controls the display to display a screen with an error message. |
US11552947B2 |
Home realm discovery with flat-name usernames
Methods, systems, apparatuses, and computer program products are provided for automatically determining a home realm. An authentication request receiver interface may receive a request to access a resource and a device identifier from a client device. An authenticator may be enacted in response to receiving the request to access the resource that includes a home realm discoverer and an authentication user interface (UI) provider. The home realm discoverer may determine, based at least on the device identifier, the home realm from a plurality of realms. The authentication UI provider may provide, to the client device, an authentication UI via which a flat-name username can be submitted. Based at least on a flat-name user name and the determined home realm, access to the resource may be granted. In this manner, a user may input a flat-name username during sign-in, rather than inputting a realm or an entire e-mail address. |
US11552942B2 |
Using sound to verify location
Method, apparatus, and computer program product are provided for verifying location using sound. In some embodiments, location data representing an unverified location of a first electronic device are received. Audio data generated based on sound detected by a sensor of the first electronic device during a predetermined time are received, as well as audio data generated based on trusted sound detected by a sensor of a second electronic device during the predetermined time, wherein the second electronic device is located near the unverified location of the first electronic device, and wherein the trusted sound includes one or more frequencies inaudible to humans (e.g., infrasonic and/or ultrasonic sound). The audio data generated by the first and second electronic devices are analyzed and a similarity score representing a similarity between the respective audio data is generated. The unverified location of the first electronic device may be verified based on the similarity score. |
US11552938B2 |
Device and method for mediating configuration of authentication information
Facilitate configuration of authentication information for a service provided over IP network when there is no shared authentication information between IoT device and service provider device for a service used by IoT device, an intermediary device capable of authenticating legitimate access mediates between devices. An example: a cipher key CK stored in intermediary device and IoT device, as a result of SIM authentication of the SIM of the IoT device, is used as master key for services used by IoT device. By generating unique application key for a service used by IoT device on the intermediary device and IoT device on the basis of master key, and sending it to service provider apparatus from intermediary device by secure connection, common keys are set as authentication information to IoT device and service provider apparatus. A SIM authentication process for generating cipher key can suppress SQN attack based on a bad request. |
US11552937B2 |
Distributed authentication and authorization for rapid scaling of containerized services
The disclosed technology provides solutions for performing rapid authentication and authorization for distributed containerized microservices. In some aspects, a process of the technology can include steps for: associating a service type with a set of microservices or service pods, detecting deployment of a first microservice on a first host, and receiving an authentication and authorization state from a first virtual network edge (VNE) of the first host. In some aspects, the process can further include steps for distributing the authentication state to a second VNE on a second host, wherein the authentication state is configured to facilitate authentication of one or more subsequent microservices instantiated on the second host by the second VNE. Systems and machine readable media are also provided. |
US11552936B2 |
Management of dynamic credentials
In an embodiment, a method comprises intercepting, from a first computer, a first set of instructions that define one or more original operations, which are configured to cause one or more requests to be sent if executed by a client computer; modifying the first set of instructions to produce a modified set of instructions, which are configured to cause a credential to be included in the one or more requests sent if executed by the client computer; rendering a second set of instructions comprising the modified set of instructions and one or more credential-morphing-instructions, wherein the one or more credential-morphing-instructions define one or more credential-morphing operations, which are configured to cause the client computer to update the credential over time if executed; sending the second set of instructions to a second computer. |
US11552932B1 |
Identifying virtual private network servers for user devices
A VPN servers request is transmitted from a user device to a central server. A first VPN server is received from the central server at the user device. Responsive to the user device failing to establish a first encrypted tunnel with the first VPN server, a request for another VPN server is transmitted from the user device to the central server. A second VPN server is received from the central server. A second encrypted tunnel is established with the second VPN server. An encrypted communication is obtained by encrypting a communication directed to a network server. The encrypted communication is transmitted from the user device to the VPN second server. |
US11552931B2 |
Multipoint mesh virtual private network (MMVPN)
The disclosure is directed to a method and system including a first node that stores a first multipoint mesh VPN database including a plurality of underlay addresses in an underlay network for a plurality of nodes, respectively, and a plurality of VPN addresses in a multipoint mesh VPN for the plurality of nodes, respectively. The first node also receives a second multipoint mesh VPN database from a second node, the second multipoint mesh VPN database including underlay and VPN addresses for the third node. The first node further receives a third multipoint mesh VPN database from the third node, the third multipoint mesh VPN database including underlay and VPN addresses for the second node. The first node additionally compares the databases to determine if underlay addresses and VPN addresses are missing from the first multipoint mesh VPN database. |
US11552926B2 |
Method related to sending management IP address and system
A method includes a second system that determines a type of a first management Internet Protocol (IP) address, and sends, to a first system, first information used to indicate the type of the first management IP address; the first system determines the first management IP address based on the type of the first management IP address indicated by the first information, and releases a first correspondence between system identification information and the first management IP address to an advertisement system; the advertisement system sends the first correspondence to a network management system; and the network management system manages the first system based on the first correspondence. |
US11552924B2 |
Obscured routing
Systems and techniques are provided for obscured routing. A computing device may send stacks of identifiers to neighbor computing devices in a network. Each stack of identifiers may include a unique identifier for the neighbor computing device to which it is sent. The computing device may send a notification identifying a destination computing device to the neighbor computing devices. The computing device may receive stacks of identifiers from the neighbor computing devices. The received stacks of identifiers may include completed routes to the destination computing device. Each completed route may be specified by unique identifiers added to the stack of identifiers by computing devices in the network. A unique identifier in each stack of identifiers may not be resolvable to an address by the computing device. The computing device may send a message a neighbor computing device based on a unique identifier in a chosen stack of identifiers. |
US11552923B2 |
Whitelist domain name registry
Systems and methods for managing domain name registrations in accordance with rules and regulations of a domain name verification system are disclosed. The disclosed technology enables a domain name verification system to regulate the registration of domain names in accordance with its own domain name registration policies. This disclosed system uses a “whitelist” domain name registry to register “whitelist domain names” once pre-approval to register a corresponding target domain name has been granted. In this manner, the whitelist domain name registry system acts as a repository for pre-approved domain name registrations and enables pre-qualified registrants (including potential or prospective registrants) to then register a target domain name. |
US11552922B2 |
Enhancing online contents based on digital alliance data
One or more non-transitory storage media storing instructions which, when executed by one or more computing devices, cause performance of a method of enhancing online contents based on digital alliance data are disclosed. The method comprising receiving from a web server a webpage at a first user device associated with a first user and a first user account managed by a communication data management server; extracting a type of data of a plurality types of data from a body or metadata of the webpage; and determining that the type of data matches certain data regarding an organization. The method further comprises updating the webpage with specific data related to one or more members or contacts of an alliance network of the first user account that are associated with the organization; and causing displaying the updated webpage by the first user device. |
US11552918B2 |
System and method of a relay server for managing communications and notification between a mobile device and application server
Providing a mobile device with web-based access to data objects is disclosed. Authentication information is sent from a mobile device to a relay server. The relay server executes a connection application to establish a connection to a web access server. The authentication information is provided to the web access server associated with a data store hosting a data object. Upon authentication, the data object is provided to the relay server from the data store. The data object is then provided to the mobile device. |
US11552916B2 |
Indexing and searching content behind links presented in a communication
Among other disclosures, a method may include identifying content in an electronic communication, the content including a link. The method may include characterizing content associated with the link and storing the characterization. Upon detecting a match of a characterization, presenting one or more of the communication or portion thereof, the link or content associated with the link. |
US11552912B2 |
Process for optimizing the storage space on a messaging server and associated system
A process for optimizing storage space of a messaging server that stores electronic messages. Sets of messages may be processed to identify redundant elements, such as common text clauses or attachments, that appear in multiple messages. These redundant elements may be stored and removed from the associated messages. When a message is read, the removed elements may be replaced in the message at their original positions to reconstruct the original message. |
US11552908B2 |
Method and system for reliable and deterministic data transmission
The present invention relates to a data transmission system including a data exchange unit; wherein, to transmit a data frame, it passes successively at least through an interface module that is configured to receive said data frame from outside the transmission system; an analysis and filtering module responsible for processing said data frame which is received from the interface module before encapsulation; and an encapsulation module responsible for encapsulating said data frame processed by the analysis and filtering module, wherein two successive modules through which said data frame passes are connected to one another by an interconnection device each including a temporary memory for storing said frame and the read and write accesses to said memory being frequency-independent. |
US11552906B2 |
Hard zoning of virtual local area networks in a fibre channel fabric
A network where FC and Ethernet storage traffic share the underlying network. The network extends FC SAN storage specific attributes to Ethernet storage devices. The network is preferably formed of FC switches, so each edge switch acts as an FCoE FCF, with internal communications done using FC. IP packets are encapsulated in FC packets for transport. Preferably, either each outward facing switch port can be configured as an Ethernet or FC port, so devices can be connected as desired. FCoE devices connected to the network are in particular virtual LANs (VLANs). The name server database is extended to include VLAN information for the device and the zoning database has automatic FCOE_VLAN zones added to provide a mechanism for enhanced soft and hard zoning. Zoning is performed with the conventional zoning restrictions enhanced by including the factor that any FCoE devices must be in the same VLAN. |
US11552904B2 |
Architecture for high performing data plane applications with smart network interface on compute servers
A system for processing data, comprising a compute node having a first processor that is configured to receive a digital data message containing a request for computing services and to allocate processing resources on a network as a function of the request. A smart network interface controller (NIC) having a second processor that is configured to interface with the network and to send and receive data over the network associated with the computing services as a function of one or more policies. The smart NIC configured to receive policy update data and to implement the policy update data and to process the data that is sent and received over the network in accordance with the policy data. |
US11552902B2 |
Managing connection retries due to access class barring
In some implementations, a method includes receiving a connection request from a user application. A service request is sent to a radio resource control (RRC) module. An indication of failure of or a rejection to the service request due to access class barring is received from the RRC module. A retry of the user application connection request is prevented until expiration of an access-class-barring timer of the RRC module that resulted in the access class barring. |
US11552901B2 |
Automated decision techniques for controlling resource access
A durability assessment system may receive a request, from a computing system, for a durability index describing an entity. The durability assessment system may determine the durability index based on information about the resource usage by the entity, such as a resource availability score or a resource allocation score. The durability assessment system may compare the obtained resource availability score and resource allocation score to ranges associated with a set of durability indices. Based on the comparison, the durability assessment system may determine a durability index for the entity. The durability index may indicate an ability of the entity to return accessed resources. In some cases, the durability assessment system may provide the durability index to an allocation computing system that is configured to determine whether to grant access to resources based on the durability index. |
US11552899B2 |
Automatic scaling for consumer servers in a data processing system
A system and method for automatically scaling consumer servers in a data processing system. To build an automatic scaling system, the present disclosure allows consumers to obtain additional information, e.g., the number of events that await to be read from an aggregator when receiving an event from the aggregator. This additionally obtained number provides a direct gauge for the data processing system to determine when the consumers are over-provisioned, i.e., when the number of events left to be read is close to zero, as well as when the consumers are under-provisioned, e.g., when the number of events left to be read continues to increase. As a result, the consumers can be automatically scaled to handle the dynamic data processing demand while providing optimal resource allocation. |
US11552894B2 |
Method for regulating traffic of TCP flow
A method for regulating traffic of a Transmission Control Protocol (TCP) flow includes: deciding, based on a ratio of current bucket level to bucket size, a value of an Explicit Congestion Notification (ECN) bit of a packet; setting a field of a meter tag of the packet based on a packet length of the packet, the value of the ECN bit, and a current bucket level; updating the current bucket level based on the field of the meter tag; calculating an actual transmission rate; and determining an adjustment value based on a difference between the actual transmission rate and a target rate, and adjusting a rate of change of bucket level based on the adjustment value. |
US11552892B2 |
Dynamic control of latency tolerance reporting values
An endpoint processing device is provided for dynamically controlling latency tolerance reporting (LTR) values. The endpoint processing device comprises memory configured to store data and a processor. The processor is configured to execute a program and send, to a root point processing device via a peripheral component interconnect express (PCIe) link, a plurality of messages each comprising a memory access request and a LTR value indicating an amount of time to service the memory access request. The processor is also configured to, for each of the plurality of messages, determine, during execution of the program, a LTR value setting and set the LTR value as the determined LTR value setting. |
US11552890B2 |
Enhanced entropy for a converged interconnect network
Systems, methods, and computer-readable media are provided for introducing entropy in a Converged Interconnect Network. For instance, a remote physical layer device (RPD) can receive a first plurality of Internet Protocol (IP) addresses that are assigned to the RPD. The RPD can receive, from a Converged Cable Access Platform Core (CCAP-Core) device, a first data packet having a first destination IP address selected from the first plurality of IP addresses. The RPD can receive, from the CCAP-Core device, a second data packet having a second destination IP address selected from the first plurality of IP addresses. In some examples, a difference between the first destination IP address and the second destination IP address can cause a router disposed between the CCAP-Core device and the RPD to select a first route for the first data packet and a second route for the second data packet. |
US11552889B1 |
Layer three instances for a cloud-based services exchange
In general, this disclosure describes a programmable network platform for dynamically programming a cloud exchange to provide a layer three (L3) routing instance as a service to customers of the cloud exchange. In one example, a cloud exchange comprises an L3 network located within a data center and configured with an L3 routing instance for an enterprise; and for the L3 routing instance, respective first and second attachment circuits for first and second cloud service provider networks co-located within the data center, wherein the L3 routing instance stores a route to a subnet of the second cloud service provider network to cause the L3 routing instance to forward packets, received from the first cloud service provider network via the first attachment circuit, to the second cloud service provider network via the second attachment circuit. |
US11552888B2 |
Communication apparatus and communication method
A communication device includes a processor. The processor updates, when a port which is received a packet is connected to a first path or a second path, an identifier assigned to the packet from a value according to the path to a first value or a second value. The processor learns a correspondence relationship between a destination address of the packet and a transmission port by flooding the packet, and determines the transmission port based on the correspondence relationship. The processor updates, when the transmission port is connected to the first path or the second path, the identifier assigned to the packet of which the transmission port is determined to a value according to the first path or the second path. The processor discards the packet of which the identifier is updated to the second value by the first process and the transmission port is connected to the second path. |
US11552884B1 |
Efficient core routing
A method for managing traffic in a computerized system that may include routers and at least one edge device, the method may include performing traffic management operations for controlling traffic related to the routers while executing a first traffic management operations by the at least one edge device, and executing second traffic management operations by the routers. |
US11552878B1 |
Managing replay windows in multipath connections between gateways
Described herein are systems, methods, and software to manage replay windows in multipath connections between gateways. In one implementation, a first gateway may receive a packet directed toward a second gateway and identify a path from a plurality of paths to the second gateway. Once identified, the first gateway may increment a sequence number associated with the path and encapsulate the packet with a unique identifier for the path in the header with the incremented sequence number. The first gateway the communicates the encapsulated packet to the second gateway. |
US11552877B2 |
Systems and methods for modeling and optimizing a telecommunications network
Aspects of the present disclosure include systems, methods, computing devices, computer-implemented methods, and the like for modeling and/or simulating performance of a telecommunications network during one or more failure scenarios that reduces computational time and/or power over previous simulation techniques. Modeling and simulating the network may include generating an initial network model from network data information and applying one or more transformations to the initial network model to reduce the size of the model. Following transformation, simulation methods may be applied to the generated network model based on routing characteristics of the components of the network. To reduce the computations utilized to simulate such components and/or routing decisions in the network, one or more simulation algorithms may be applied to the transformed network model to reduce the number of routing decisions simulated. |
US11552875B2 |
Communication support system and method
From among a U-plane and a C-plane, the U-plane is installed in a first user site which has a base station, and the C-plane is installed in a C-plane site (any site that is not a user site). A system sets a U-plane inter-site path which is an inter-site communication path that connects a first user site with a second user site via a wide area network, and a C-plane inter-site path which is an inter-site communication path that connects a C-plane site with the first user site via the wide area network. In addition, the system sets an in-site communication path which is a communication path within the first user site and which connects to an inter-site communication path. A U-plane inter-site path is an inter-site communication path via which data is transmitted or received by a U-plane. A C-plane inter-site path is an inter-site communication path via which a signal is transmitted or received by a C-plane. |
US11552874B1 |
Methods, systems and computer readable media for proactive network testing
The subject matter described herein includes methods, systems, and computer readable media for proactive network testing. One method for proactive network testing includes receiving, by a test controller and via a network tap, at least one metric associated with live network traffic; determining, by the test controller and using the at least one metric and a threshold value associated with the at least one metric, that a network test is to be performed; configuring, by the test controller, a first test agent to execute the network test; and executing, by the first test agent, the network test. |
US11552873B2 |
Debugging arrangement for active ethernet cable
A cable, a manufacturing method, and a usage method, each facilitate product development, testing, and debugging. An illustrative embodiment of a cable manufacturing method includes: connecting a first connector plug to a first data recovery and re-modulation (DRR) device and to a first controller device; and coupling electrical signal conductors to the first DRR device to convey electrical transit signals to and from a second DRR device, the second DRR device being connected to a second connector plug. The first controller device is operable in response to a host command to initiate a debug dump by the first DRR device and to store the debug dump in a nonvolatile memory. |
US11552869B2 |
Robust suspension and resumption of desktop virtualization
A method for suspending and resuming a connection for desktop virtualization between two computing devices. In response to a client computing device shutting down, suspending, hibernating, or losing network connectivity during virtualization, the server computing device may itself shut down, suspend, or hibernate, or may pause or suspend the operation of one or more applications currently hosted by the server computing device. The server may detect that connectivity has been restored and resume operation of hosted applications. Alternatively, the client may transmit a command to the server indicating that the client is ready to resume virtualization. The client may also be configured to transmit a command that may cause the server to resume a powered-on state after the server was shut down or in a state of hibernation. |
US11552853B2 |
Service chain accomodation apparatus and service chain accommodation method
A service chain accommodation device includes an influence coefficient calculation unit that calculates an influence coefficient indicating that an influence at the time of processing failure of a service chain is greater for a VNF located in a subsequent stage of a service chain and a VNF shared among a plurality of service chains, a residual resource calculation unit that corrects an amount of residual resources that can be accommodated for each of the VNFs through which the service chain passes, and an accommodation design unit that assigns a new service chain on the basis of the amount of the residual resources. |
US11552843B2 |
Playback devices and bonded zones
Systems, methods, apparatus, and articles of manufacture to facilitate configuration and naming of a multimedia playback device on a local playback network are disclosed. An example method includes identifying and analyzing local network topology to identify playback device(s) connected to the network at location(s). The example method includes analyzing a playback device to be added and comparing the playback device to be added to the playback device(s) already connected to the network. The example method includes displaying available option(s) to name the playback device to be added based on the analysis of the network, the already connected playback device(s) and the playback device to be added to the network. The example method includes naming the playback device to be added based on a selected available option. |
US11552842B2 |
Flexible interface between a baseband controller and remote units of a C-RAN
In one embodiment, a method comprises determining which functional splits between processing performed in a baseband controller and processing performed in a remote unit are supported by each remote unit served by the baseband controller. The method further comprises determining at least one functional split in the processing performed in the baseband controller and the processing performed in the remote units to use. The method further comprises, for each said at least one functional split and each remote unit associated with that functional split, configuring the processing performed in the baseband controller and the processing performed in that remote unit are configured to use that functional split and configuring a respective interface between the baseband controller and that remote unit are configured for communicating front-haul data therebetween using that functional split. |
US11552841B2 |
Method and apparatus for configuring service
This application provides a method and an apparatus for configuring a service, which help to implement automatic configuration of a service and improve efficiency. The method provided in this application includes: obtaining, by an NaaS device, a contract of a service, where the contract includes identifier information and a condition, the identifier information is used to identify a first device group, the first device group includes a device that provides the service, and the condition is a communication requirement corresponding to the service; obtaining, by the NaaS device, information about a network device group according to the identifier information and the condition; obtaining, by the NaaS device, a first forwarding rule according to the condition, where the first forwarding rule corresponds to the network device group; and sending, by the NaaS device, the first forwarding rule and the information about the network device group to a controller. |
US11552838B2 |
Techniques for interfacing between web services and interface description language (IDL)-based remote procedure call (RPC) services and an optical communication system implementing same
An embodiment of the present disclosure includes an RPC architecture that includes a central manager gateway with a client-facing side that allows for client access via web services protocols such as SOAP and REST. The central manager gateway further includes a server-facing side that can communicate with a plurality of network elements, with each network element implementing a common IDL architecture and RPC manager instance. Each of the network elements, and in particular their RPC manager instance, may communicate with other RPC manager instances to ‘learn’ the network topology for the system and maintain a topology database for purposes of exposing a naming service, e.g., a CORBA naming service. The network elements may elect one master element while the others remain as slaves. The central manager gateway may automatically locate the master network element and forward client requests to the same for servicing. |
US11552836B1 |
Systems and methods for calculating beamforming weights used in wireless network discovery, synchronization, and reference signal waveform identification
Physical layer processing methods for network acquisition by remote nodes in wireless communication systems are described herein. New methods for wireless network discovery and synchronization by remote nodes are described herein that utilize spatial (e.g., antenna array) processing algorithms which may achieve enhanced functioning in challenging radio frequency environments, such as those containing interference and multipath distortion effects. These methods may include advantageous use of spatial whiteners and associated pluralities of adaptive beamformers to detect network reference and synchronization signals and estimate their parameters. |
US11552835B2 |
Allocation-based distortion function selection
A radio transmitter circuit (10) for transmitting signals within an uplink or sidelink frequency band of a cellular communications system is disclosed. It comprises a signal-generation circuit (20) configured to generate a transmission signal to be transmitted, and a radio front-end circuit (30), connected to the signal-generation circuit (20) at an input of the radio front-end circuit (30), for receiving the transmission signal, and configured to be connected to an antenna (40) at an output of the radio front-end circuit and to transmit the transmission signal to a remote node via said antenna (40). The signal-generation circuit (20) is configured to select a distortion function (D1, D2) based on a location of an allocated radio frequency resource, within said uplink or sidelink frequency band, for the transmission signal. Furthermore, the signal-generation circuit (20) is configured to generate an intermediate transmission signal, based on information to be transmitted in the transmission signal. Moreover, the signal-generation circuit (20) is configured to generate the transmission signal by applying the distortion function (D1, D2) to the intermediate transmission signal. |
US11552833B2 |
Receiver for data signal based on pulse amplitude modulation and electronic device including the same
A receiver includes an interface configured to receive a data signal based on an n-level pulse amplitude modulation (PAM-n) in which n is an integer equal to or greater than 4. The interface may include an analog-digital converting circuit configured to adjust a reference voltage, for distinguishing second bit data from the data signal in a second section, based on first bit data converted from the data signal in a first section and the first bit data converted from the data signal in the second section, the second section being after the first section. |
US11552831B1 |
Systems and methods for equalizer correction
A method for equalizer correction in a communication network includes (a) obtaining raw equalizer coefficients in a frequency domain, (b) removing time delay from the raw equalizer coefficients to generate corrected equalizer coefficients in a time domain such that a direct current (DC) corrected equalizer coefficient of the corrected equalizer coefficients has a phase of zero, and (c) converting the corrected equalizer coefficients from the time domain to the frequency domain. |
US11552830B2 |
Low power receiver with equalization circuit, communication unit and method therefor
A low power receiver having a feedforward equalization, FFE, based continuous time linear equalizer, CTLE. The FFE CTLE comprises: an input for receiving an input signal; a main first path operably coupled to the input and comprising a source-follower transistor arranged to apply a scaling factor to the received input signal; a second path operably coupled to the input and comprising a delay arranged to apply a delay to the received input signal and a common source transistor common source transistor arranged to apply a scaling factor to the received delayed input signal, wherein the source-follower transistor and the common source, CS, transistor are connected as a single SF-CS stage whose output is arranged to subtract the output of the common source transistor from an output of the source-follower transistor. |
US11552829B2 |
Method and system for adjusting line width and line gap of differential signal pair
A method for adjusting a line width and a line gap of a differential signal pair includes performing a new parameter setting step, a distance difference of center calculating step, a reference polygon generating step and a differential signal pair adjusting step. The new parameter setting step is performed to set a new line width and a new line gap of the new differential signal line pair. The distance difference of center calculating step is performed to calculate a difference between an original center distance of the original differential signal line pair and a new center distance of the new differential signal line pair. The reference polygon generating step is performed to generate a reference polygon from an original center line of the original differential signal line pair. The differential signal pair adjusting step is performed to adjust the reference polygon to the new differential signal line pair. |
US11552828B2 |
Beamformer solicited sounding
Example implementations are directed to methods and systems employing a solicited sounding protocol that includes receiving, by a second access point, a sounding trigger broadcast by a first access point. The methods and systems also include receiving, by the second access point, a dedicated training signal from a first station in response to the sounding trigger broadcast by the first access point, and generating, by the second access point, channel characteristics of a channel based on the first dedicated training signal, the channel including a forward channel between the second access point and the first station. |
US11552826B2 |
Method for the operation and expansion of a network of lights
Method for the operation and expansion of a network of lights Described herein is method for the operation and the expansion of a network of lights, each light in the network including a control module which is assigned to a group, each control module being in communication with a group controller as well as control modules in the same group. The network can be expanded by installing new lights with their associated control modules (19), and each new control module scans its environment and transmits environmental information to a central server (20) where the environmental information is analysed and the new control modules are allocated into groups (21). After allocation to a group in which control modules may be moved from one group to another or a new group is formed, the new control modules are available for normal operation. This process is repeated for each new light and associated control module. |
US11552820B2 |
Prioritized serial communication
An electric system for transmitting serial communication messages with different priorities over a communication link. The data to be transmitted is arranged in serial communication messages comprising a start of packet (SOP) symbol and data symbols. The ongoing transmission of a first message is interrupted if a SOP symbol of a second message is sent before the first message has been completed. Transmission of the first message is continued only after the second message has been sent. |
US11552815B2 |
Method of and devices for supporting selective forwarding of messages in a network of communicatively coupled communication devices
A gateway device and a configuration client for supporting selective forwarding of messages published to a group address or a virtual address in a wireless mesh network of communicatively coupled communication devices, such as a Bluetooth Mesh system. The configuration client maintains a mapping between unicast addresses of communication devices and group and virtual addresses in the network. The gateway device receives, from the configuration client, unicast addresses of those communication devices collectively identified by the group or virtual address in a received message. When the retrieved unicast addresses are all serviced by the gateway device, the message is transmitted by the gateway device on all interfaces corresponding to the communication devices addressed by the retrieved unicast addresses. When the retrieved unicast addresses are not all serviced by the gateway device, the message is transmitted by the gateway device on all except one of the interfaces. |
US11552811B2 |
Conferencing with error state HID notification
A conferencing system may include a data input port and an ingest system to receive signals through the data input port from a separate conference data source. The ingest system may include a notification subsystem to: identify an error state with respect to the signals received through the data input port; and output a human interface device (HID) notification to a conferencing application, wherein the HID notification includes the identified error state. |
US11552810B2 |
PUF with dissolvable conductive paths
The generation of “fingerprints”, also called challenge-response pairs (CRPs) of Physically Unclonable Functions (PUFs), can often stress electronic components, leaving behind traces that can be exploited by crypto-analysts. A non-intrusive method to generate CRPs based on Resistive RAMs may instead be used, which does not disturb the memory cells. The injection of small electric currents (magnitude of nanoAmperes) in each cell causes the resistance of each cell to drop abruptly by several orders of magnitudes through the formation of temporary conductive paths in each cell. A repeated injection of currents into the same cell, results in an almost identical effect in resistance drop for a single cell. However, due to the small physical variations which occur during manufacturing, the cells are significantly different from each other, in such a way that a group of cells can be used as a basis for PUF authentication. |
US11552809B1 |
Gesture-extracted passwords for authenticated key exchange
A method for gesture-based multi-factor authentication includes mapping a gesture password to a first substitution string, generating a cryptographic key using the first substitution string as an input to a password authenticated key exchange protocol, encrypting a challenge response with the cryptographic key to generate an encrypted challenge response, and transmitting, to a relying party computing system, a first authentication message comprising the encrypted challenge response and a user identifier identifying a user. |
US11552804B1 |
Code sign white listing (CSWL)
A system and method for efficiently managing an executable environment involving multiple code-sign certificate chains. The system and method include receiving, by one or more processors and from a client device, a request for information to verify an authorization of a code bundle, the code bundle associated with a first signed code segment and a second signed code segment. The system and method include generating, by one or more processors, a list of certificates associated with the code bundle. The system and method include transmitting, by the one or more processors and to the client device, a message comprising the list of certificates, the message causing the client device to verify the code bundle based on the list of certificates. |
US11552802B2 |
Stateless mutual authentication between services
A server computing system generates a universally unique identifier (UUID) associated with a first application, the UUID to be encrypted using a private key associated with the first application to generate a first digital signature. The server computing system generates a first session key associated with the first application, the first digital signature to be encrypted using the first session key to generate a first encrypted digital signature. The server computing system encrypts the first session key using a public key associated with a second application to generate a first encrypted session key, wherein the first application and the second application are deployed with the PaaS associated with the server computing system. The server computing system transmits the UUID, the first encrypted digital signature, and the first encrypted session key to the second application using hypertext transfer protocol (HTTP) to enable the second application to authenticate the first application. |
US11552799B1 |
Storage architecture providing improved modification of access rights for stored data
A storage architecture and associated usage techniques are described for providing efficient modification and use of access rights for stored data. The access rights may be associated with data stored on blockchain storage, and a separate ledger storage system may be used to provide improvements for modifying access rights for such stored data. For example, groups of data may be created and stored on blockchain storage before access to the stored data groups is made available to end users, and additional information related to those stored data groups (e.g., about their access rights) may be stored in a separate ledger storage system. When a particular user later requests access rights for one of those previously stored data groups, corresponding modifications may be quickly made to the separate ledger storage system to provide the user with substantially immediate access to that stored data group. |
US11552798B2 |
Method and system for authenticating a secure credential transfer to a device
A method for authenticating a secure credential transfer to a device includes verifying user identity and device identity. In particular, the method includes verifying user identity by requesting and receiving a user identification input at a first client device and verifying device identity of a second client device by (i) determining a security status of the second client device from hardware of the second client device, (ii) invoking an identifier related to the security status of the second client device to an authentication server, and (iii) obtaining certification from the authentication server for the second client device based on the invoked identifier. After verifying the user identity and the device identity, the method includes establishing a secure channel between the first client device and the second client device for the secure credential transfer using one or more tokens generated by the authentication server. |
US11552796B2 |
Cryptographic processing events for encrypting or decrypting data
A cryptographic method is provided. The cryptographic method comprises an initialisation phase for determining a provisional generator point G′ equal to a first product G′=[d′]G, where d′ is a first random scalar forming a secret key of N bits and G is a generator point of an elliptical curve, and determining a provisional key Q′ equal to a second product Q′=[d′]Q, where Q is a point of the elliptical curve forming a public key. During an encryption phase a second random scalar forming a second secret key k of M bits, with M |
US11552795B2 |
Key recovery
Generating a private key recovery seed based on random words extracted from an input memory of a user and using the recovery seed to recover the private key. An input that is related to a specific memory of a user is received. The specific memory was previously entered and used to generate random words that are related to each other by being included in the specific memory. The random words are extracted from the received input. The random words are associated with a first private key recovery mechanism for recovering a private key. The random words are input into the first private key recovery mechanism to generate a recovery seed. The recovery seed is input into a second private key recovery mechanism. The second private key recovery mechanism generates a recovered private key upon performing a recovery operation on the private key recovery seed. |
US11552794B2 |
Deterministic random blinding
Systems and methods include determination of a first value to be blinded, determination of a first key value, generation of a first composite value based on the first value and the first key value, performance of a hash operation on the first composite value to generate a first hash value, seeding of a pseudorandom generator with the first hash value to generate a first pseudorandom value, truncation of the first hash value based on the first pseudorandom value to generate a first truncated value, and generation of a blinded value associated with the first value based on a blinding function comprising the first value and the first truncated value. |
US11552792B2 |
Systems and methods for generating signatures
System and method for digitally signing messages using multi-party computation. |
US11552789B2 |
System for an encoded information transmission
The invention relates to a system for transmitting encoded information over radio channels and wired communication lines, including the Internet. The system includes a transmitting side and a receiving side each comprising various software/hardware modules for generating/displaying the output/received information of the transmitting side, cryptographic calculations of the transmitting side, service information of the transmitting side, a module for generating a set key of the transmitting side, a module for generating a computed key of the transmitting/receiving side, a module of transmitting side communication channel, macroblocks for blocking computer brute-force search including at least three software/hardware modules for information encoding/cryptographic transformations, a module for random numbers generation, and modules for a degree of the setting polynomial. These modules of the transmitting and receiving sides are connected to each other within their respective sides, as well as to each other across a communication channel. |
US11552786B2 |
System and method for authenticating data while minimizing bandwidth
Systems and methods for data authentication can comprise processing a first secret element to generate a first encrypted secret element, processing a second secret element to generate a non-secret element, and processing the first encrypted secret element and the non-secret element to generate an encrypted data block. |
US11552774B2 |
Indication techniques for narrowband system information block type 1 (SIB1-NB) transmission on a carrier
Embodiments described herein relate to time division duplexing (TDD) support for in-band, guard band, and standalone operation modes of narrowband internet-of-things (NB-IoT) systems. At least one example is directed to an indication technique for transmission of a narrowband system information block type 1 (SIB1-NB) on a carrier. |
US11552765B2 |
Resource selection method and terminal
A resource selection method includes monitoring, by a first terminal, a first subframe, where a quantity of the first subframes is less than or equal to a quantity of second subframes; receiving, by the first terminal, indication information in the first subframe; determining, by the first terminal, a first resource in the second subframe according to the indication information; and selecting, according to the first resource, a resource in the second subframe for the first terminal to send data. There may be one or more first subframes; the second subframe may be a candidate subframe, and there may be one or more candidate subframes. The indication information includes information that can indicate a resource reserved by a second terminal, that is, indication information that can indicate a resource excluded by the second terminal. |
US11552764B2 |
Method for transmitting DMRS for PSCCH in connection with NR V2X, and synchronization
A method for performing wireless communication by a first device is proposed in an embodiment. The method may comprise the steps of: selecting a synchronization source on the basis of a sidelink synchronization priority; acquiring synchronization on the basis of the synchronization source; transmitting a sidelink-synchronization signal block (S-SSB) to a second device on the basis of the acquired synchronization; transmitting, to the second device, information related to a pattern of a physical sidelink shared channel (PSSCH) demodulation reference signal (DMRS) for decoding a PSSCH through sidelink control information (SCI) on a physical sidelink control channel (PSCCH); mapping the PSSCH DMRS onto a time resource related to the PSSCH on the basis of the information related to the pattern of the SSCH DMRS and an interval of a time resource scheduled for transmission of the PSSCH related to the PSCCH; and transmitting the PSSCH DMRS to the second device through the PSSCH. |
US11552761B2 |
Method and apparatus for SS/PBCH block frequency location indication
A UE in a wireless communication system is provided. The UE comprises a transceiver configured to receive, from a BS, a SS/PBCH block including the PBCH using a first frequency location (GSCN-Current) over downlink channels, GSCN-Current being based on a set of predefined synchronization rasters that is determined by a global synchronization channel number (GSCN). The UE further comprises a processor operably connected to the transceiver, the processor configured to determine the SS/PBCH block, identify content of a PBCH included in the determined SS/PBCH block, determine a configuration for at least one of the SS/PBCH block that is associated with a PDCCH including scheduling information for RMSI on the GSCN-Current or the SS/PBCH block that is not associated with the PDCCH including the scheduling information for the RMSI on the GSCN-Current. |
US11552757B2 |
Terminal, radio communication method, and base station
A terminal is disclosed including a processor that generates a sequence for a demodulation reference signal based on a symbol index and a slot index. The terminal further includes a transmitter that transmits the demodulation reference signal. In other aspects, a radio communication method and a base station are also disclosed. |
US11552756B2 |
Electronic device, method and apparatus for wireless communication system for channel estimation
An electronic device and method for wireless communication system, and a storage medium. In the method, reference signal are carried merely on a part of communication sources for channel estimation, channel states on the communication resources carrying the reference signal are estimated, and conditions of channel paths from a transmitter to a receiver are estimated by using the estimated channel states of the communication resources. Thereby, channel states on other communication resources from the transmitter to the receiver can be obtained from the estimated channel path conditions. |
US11552755B2 |
Method and apparatus for determining resource for reference signal, and device
A method for determining a resource for a reference signal includes: determining, according to positions of N channel resource units used by a physical channel, R channel resource units from the N channel resource units, where both R and N are integers and 0≤R |
US11552753B2 |
Enablement of simultaneous beam update across component carriers
Aspects relate to wireless communication on multiple component carriers. In some examples, a user equipment (UE) may selectively apply transmission configuration indicator (TCI) information and/or spatial relation information received via a medium access control—control element (MAC-CE) to component carriers. In some examples, a UE may apply the TCI information and/or spatial relation information included in a MAC-CE to multiple component carriers if the UE has been configured with a list that includes the component carriers (and, optionally, if a component carrier identified by the MAC-CE is a member of the list of component carriers). If the above condition is (or conditions are) not met, the UE applies the TCI information and/or spatial relation information included in the MAC-CE to the component carrier identified by the MAC-CE. |
US11552751B2 |
Method and apparatus for determining slot format in a wireless communication system
A method and apparatus are disclosed from the perspective of a network. In one embodiment, the method includes the network configuring a DL (Downlink) BWP (Bandwidth Part) and an UL (Uplink) BWP in a first serving cell to a UE (User Equipment). The method also includes the network configuring a paired spectrum operation in the first serving cell to the UE. The method further includes the network transmitting a first DCI (Downlink Control Information) to the UE, wherein the first DCI comprises a slot format combination indicating one or more slot format values for the DL BWP and one or more slot format values for the UL BWP. In addition, the method includes the network prevents from setting an amount of slot format values in the slot format combination in the first DCI to be not divided by a first number, wherein the first number is associated with an absolute value of a difference of a first SCS (Subcarrier Spacing) configuration and a second SCS configuration. |
US11552745B2 |
Systems and methods for removal of duplicated packets for transmission
According to certain embodiments, a method in a wireless device (110) includes transmitting a protocol data unit (PDU) or segment of a PDU on a first link and transmitting the PDU or the segment of the PDU on a second link. One or more retransmissions of the PDU or the segment of the PDU are scheduled on the second link. A positive acknowledgment is received from a receiver. The positive acknowledgement indicates a successful receipt of the PDU or the segment of the PDU on the first link. In response to receiving the positive acknowledgement, the one or more retransmissions of the PDU or the segment of the PDU on the second link are cancelled. |
US11552740B2 |
Methods and apparatuses for transmitting and receiving uplink information
Embodiments of the present disclosure relate to a method and apparatus of transmitting uplink (UL) information and a method and apparatus of receiving UL information. In one embodiment of the present disclosure, the method of transmitting UL information comprises transmitting a reference signal using a first sequence; and transmitting UL control information using a second sequence; wherein a reference signal and the UL control information are staggered-multiplexed in frequency domain. With embodiments of the present disclosure, the uplink information can be transmitted in reduced uplink symbols so as to adapt for a proposed subframe structure with reduced uplink symbols and thus, the transmission latency can be reduced greatly. |
US11552739B2 |
Identification of hybrid ARQ (HARQ ID) and repetition window for autonomous repeated uplink transmissions
Embodiments include methods for a user equipment (UE) to transmit control information in association with a plurality of data packet repetitions. Such methods include selecting, from a plurality of configured starting transmit positions, a starting transmit position for an initial repetition of the plurality. Such methods include selecting a sequence of cyclic shift (CS) values from a plurality of configured CS values. The plurality of configured CS values are less than the plurality of repetitions and/or the plurality of configured starting transmit positions. The sequence is selected based on the plurality of repetitions, and on an identifier associated with the data packet and/or the selected starting transmit position. Such methods include transmitting the data packet repetitions beginning at the starting transmit position, wherein at least a subset of the repetitions are transmitted in association with demodulation reference signals (DMRS) that are cyclic-shifted according to CS values of the selected sequence. |
US11552732B2 |
Polar coding system and parallel computation method for polar coding system
The invention refers to the parallel calculation method for polarization coding (PCPE) for channel coding technique in 5th next generation mobile communication systems which includes to split N-bits input sequence into X parallel streams, each stream has Y bits; to multiply Y bits at each stream by the columns of the Kronecker matrix GY, the results are displayed in rows according to the principle of bit elimination; and to multiply the matrix obtained with the columns of the Kronecker matrix GX according to the sample repeat and scalar multiplication. In addition, the invention also refers to the polarization coding system according to the Parallel Computation for Polarization Encoding (PCPE) for the channel coding technique in the 5th next generation mobile communication system. |
US11552731B2 |
Learning in communication systems by updating of parameters in a receiving algorithm
An apparatus, method and computer program is described comprising receiving data at a receiver of a transmission system; using a receiver algorithm to convert data received at the receiver into an estimate of the first coded data, the receiver algorithm having one or more trainable parameters; generating an estimate of first data bits by decoding the estimate of the first coded data, said decoding making use of an error correction code of said encoding of the first data bits; generating a refined estimate of the first coded data by encoding the estimate of the first data bits; generating a loss function based on a function of the refined estimate of the first coded data and the estimate of the first coded data; updating the trainable parameters of the receiver algorithm in order to minimise the loss function; and controlling a repetition of updating the trainable parameters by generating, for each repetition, for the same received data, a further refined estimate of the first coded data, a further loss function and further updated trainable parameters. |
US11552730B2 |
Transmitter transmitting signals to channels, receiver receiving signals from channels, and semiconductor system including the transmitter and the receiver
Disclosed is a transmitter which includes an encoder and a transmission interface circuit. The encoder receives data bits and generates conversion bits, a number of is the conversion bits being more than a number of the data bits, based on the number of the data bits. The encoder detects a risk pattern of the conversion bits to generate detection data and converts the risk pattern into a replacement pattern based on the detection data to generate code bits, a number of is the code bits being equal to the number of the conversion bits. |
US11552726B2 |
Modulation and coding for multiple resource units in wireless network
Methods and devices for transmitting data in an Orthogonal Frequency-Division Multiple Access (OFDMA) wireless local area network, comprising: selecting, for a first resource unit assigned to the target station, a first modulation type; selecting, for a second resource unit assigned to the target station, a second modulation type different from the first modulation type; and modulating coded data and mapping the modulated data onto subcarriers associated with the assigned resource units based on the respective modulation types selected for each of the assigned resource units. |
US11552722B2 |
Precision time protocol using a coherent optical DSP frame
A coherent optical modem includes an optical interface; and circuitry connected to the optical interface and configured to detect a first timing reference point in a transmit Digital Signal Processor (DSP) frame in a transmit direction from a first node to a second node, and detect a second timing reference point in a receive DSP frame in a receive direction from the second node to the first node, wherein the first timing reference point and the second timing reference point are determined based on a pattern in any DSP frame field including i) padding area, ii) a reserved area, and iii) a DSP Multi-Frame Alignment Signal (MFAS) area. The pattern can be input in select DSP frames for a time period that is greater than a time period for each DSP frame. |
US11552719B2 |
Reception apparatus and data processing method
The present technology relates to a reception apparatus and a data processing method that ensure reliable reproduction of content.The reception apparatus receives content, and controls reproduction of the content on the basis of time correspondence information associating first time information provided from a transmission side of the content with second time information generated on a reception side of the content by a time axis according to the first time information corresponding to the second time information. The present technology can be applied to a television receiver compatible with ATSC 3.0, for example. |
US11552717B2 |
Active array antenna with sub-arrays and a method for its calibration
The present disclosure relates to manufacture of an active array antenna from a combination of modular sub-arrays, nominally of equal size; each sub-array being associated with a separate receiver and/or transmitter.A solution to calibrating a modular array is the inclusion of a calibration manifold having multiple 1st ports that connect to respective sub-arrays between their passive network and their respective receiver and/or transmitter.Each of the first ports communicate with a common second port through which a signal can be introduced in order to be received at each element of each sub array, or through which a signal from any element of any sub-array can be received. This allows any element of the sub array to be calibrated at any time including during operation. |
US11552713B1 |
Optical transmission systems, receivers, and devices, and methods of combining and receiving optical signals
Optical systems, receivers, devices, and methods including a free space beam combining and polarization splitting prism to receive local oscillator light and optical signals in substantially parallel input paths that are in the same plane and output two orthogonally polarized beams in substantially parallel output paths that are substantially perpendicular to the plane of the input paths. Light in one of the incoming paths is reflected toward a combining surface that combines the local oscillator light and the optical signal. The combined beam then encounters a polarization splitting surface that splits the combined beam into two orthogonally polarized beams. One of the polarized beam may be reflected 90 degrees in plane and then both orthogonally polarized beams are reflected 90 degrees of out of plane to output each orthogonally polarized beam into substantially parallel optical output paths. |
US11552709B2 |
Data transceiving electronic device and method for data transceiving thereof
Data transceiving electronic device (100), configured to permit the establishment of at least a communication with at least an electronic device (301; 302) remotely positioned with respect to the data transceiving electronic device (100), said data transceiving electronic device (100) comprises a radio frequency module (105) configured to receive and transmit electronic data on a wireless channel according to at least a predefined first wireless communication standard, and an optical transceiver module (108) in turn comprising at least an optical transmitter (109) and an optical receiver (110); said data transceiving electronic device (100) being configured to select said optical transceiver module (108) as the preferential priority module for the establishment of said communication with said at least one electronic device (301; 302). |
US11552704B1 |
Transport data structure useful for transporting information via a free space optical link using a pulsed laser
Synchronizing a pulse position modulation (PPM) signal. A method includes performing a first synchronization operation by receiving a first series of symbols. The symbols in the first series are transmitted with a pulse in a known slot, such that the symbols comprise pulses that are substantially equally spaced in time from adjacent symbols. The first synchronization operation includes identifying when each pulse is received for each of the symbols and using information identifying when each pulse is received for each of the symbols in the first series of symbols to identify symbol and slot boundaries for the pulse position modulation signal. The method further includes performing a second synchronization operation by receiving a second series of symbols transmitted in a known pattern, and identifying the known pattern in the received second series of symbols to identify a frame boundary. |
US11552701B2 |
Handover coordination for large area coverage
A method for performing a handover operation includes using one or more processors of a non-terrestrial node to initiate communication with a first terrestrial node of a network, the terrestrial node having a first unique node identifier and a cell identifier and store a mapping that associates the first unique node identifier with the cell identifier. The method also includes using the one or more processors to receive an indicator that the mapping is subject to change and update the mapping to associate a second unique node identifier of a second terrestrial node of the network with the cell identifier based on the received indicator. |
US11552693B2 |
Dynamic inter-beam-interference indication, configuration and communication in wireless networks
A radio network element includes at least one processor and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the radio network element to: configure a quasi-co-location-type information entry included in a transmission configuration indication state (S604) for a downlink transmission beam between the radio network element and a user equipment based on at least one beam report, the at least one beam report including at least one transmission parameter for the downlink transmission beam, and the quasi-colocation-type information entry being indicative of one or more sources of inter-beam-interference on the downlink transmission beam at the user equipment; and transmit the transmission configuration indication state including the quasi-co-location-type information entry to the user equipment (S606). |
US11552689B2 |
State-based beam switching
Methods, systems, and devices for wireless communications are described. Beam pair link (BPLs) may be associated with a state of a wireless device. For example, a first wireless device may communicate with a second wireless device using a set of BPLs, and the second wireless device may operate using a predetermined movement sequence, where different movements may correspond to the second wireless device using respective states. In some examples, a BPL may be selected for each state of the second wireless device and used to communicate with the first wireless device, where the BPL that corresponds to a particular state may be determined through beam training procedures. In some cases, BPLs associated with respective states may experience decreased link quality and the first wireless device may transmit a configuration that modifies the communications between the first and second wireless devices based on the affected BPLs. |
US11552683B2 |
Communications method and apparatus
A communications method and apparatus to implement radio frequency link sharing, improve radio frequency link utilization, and increase an uplink transmission rate. The method includes a terminal that receives first configuration information and second configuration information from a first network device. The first configuration information is used to indicate a first reference signal resource of a first antenna port, and the second configuration information is used to indicate a second reference signal resource of a second antenna port; or the first configuration information is used to indicate a third reference signal resource of a first quantity of antenna ports, and the second configuration information is used to indicate a fourth reference signal resource of a second quantity of antenna ports. The terminal sends a first reference signal based on the first configuration information and sends a second reference signal based on the second configuration information. |
US11552680B2 |
Apparatus, system and method of communicating a single-user (SU) multiple-input-multiple-output (MIMO) transmission
Some demonstrative embodiments include apparatuses, systems and/or methods of communicating a Single-User (SU) Multiple-Input-Multiple-Output (MIMO) transmission. For example, a first wireless communication station may be configured to transmit a Request to Send (RTS) to a second wireless communication station via a plurality of SU MIMO Transmit (Tx) sectors of the first wireless communication station, the RTS to establish a Transmit Opportunity (TXOP) to transmit an SU-MIMO transmission to the second wireless communication station, a control trailer of the RTS including an indication of an intent to transmit the SU-MIMO transmission to the second wireless communication station; and to transmit the SU-MIMO transmission to the second wireless communication station, upon receipt of a Clear to Send (CTS) from the second wireless communication station indicating that the second wireless communication station is ready to receive the SU-MIMO transmission. |
US11552669B2 |
Precision array processing using semi-coherent transceivers
A system and method for precision array processing using semi-coherent transceivers are disclosed. |
US11552668B1 |
Modular customizable ruggedized protective case for mobile device
A modular ruggedized protective case for a mobile communications device is disclosed. In embodiments, the protective case includes a flexible (e.g., rubberized) primary housing partially enclosing the mobile device and itself partially surrounded or enclosed by a rigid secondary housing. The secondary housing includes port protectors for concealing or shielding connector ports (e.g., USB, HDMI, AC, other like power/data inputs) of the mobile device. The protective case includes an adapter for a type cover keyboard, e.g., capable of partially covering the display surface of the mobile device when closed and serving as a keyboard or other input device when opened; the type cover adapter attached to a connection port and provides for transmission of control input from the type cover to the mobile device when the mobile device is enclosed in the protective case. |
US11552666B1 |
Low loss impedance matching circuit network having an inductor with a low coupling coefficient
A wireless transceiver circuit with an impedance matching network within an integrated circuit is disclosed. In some embodiments, the impedance matching network utilizes an inductor, having two portions, disposed on two different metal layers of the integrated circuit. The first end of the first portion of the inductor is in communication with an antenna. The second end of the second portion is in communication with a low noise amplifier for receiving signals and a power amplifier for transmitting RF signals. The second end of the first portion is connected to the first end of the second portion using a via. In another embodiment, the two portions are disposed on the same metal layer, wherein one portion is disposed within the other with a gap separating the two portions. These configurations require less space than using two separate inductors and also have a low coupling coefficient. |
US11552662B1 |
Method for improving detection in multipath channels
A system for receiving multipath signals is disclosed. The system includes an equalizer that includes an input for a received data signal, wherein the received data comprises a first multipath component and a second multipath component. The equalizer further includes a channel impulse response estimator coupled to the input configured to determine one or more channel impulse response (CIR) estimates for the first multipath component and the second multipath component. The equalizer further includes a statistical estimation module coupled to the channel impulse response estimator configured to estimate a state of the first multipath component and the second multipath component based on the one or more channel impulse response estimates. The equalizer further includes a detector coupled to the statistical estimation module configured to detect data from the received data signal based on an estimated future state of the first multipath component and the second multipath component. |
US11552661B2 |
Interference detection in radio access network
This document discloses a solution for detecting interference in a radio access network. According to an aspect, a method includes as performed by a network node of the radio access network: acquiring a first equalized signal representing a signal received by a first radio head serving a terminal device, the first equalized signal including a signal received by the first radio head from the terminal device; acquiring a second equalized signal representing a signal received by a second radio head not serving the terminal device, wherein the second radio head is spatially distant from the first radio head; cross-correlating the first equalized signal with the second equalized signal and determining, on the basis of said cross-correlating, whether or not the second equalized signal also includes a signal received from the terminal device; and as a result of the second equalized signal being determined to include the signal received from the terminal device, causing execution of an interference management action. |
US11552659B2 |
Transmission circuit and transmission system adopting reduced number of interfaces
A transmission circuit includes a data input pin, a serial-to-parallel converter, an interface decoder, a parallel-to-serial converter, and a processor circuit. The serial-to-parallel converter is electrically coupled to the data input pin. The serial-to-parallel converter converts a plurality of data signals received by the first data input pin into a set of parallel data signals. The interface decoder is electrically coupled to the serial-to-parallel converter. The interface decoder decodes the set of parallel data signals to generate a set of decoded data signals for parallel transmission. The parallel-to-serial converter is electrically coupled to the interface decoder. The parallel-to-serial converter converts the set of decoded data signals into a plurality of input data signals for serial transmission. The processor circuit is electrically coupled to the parallel-to-serial converter. The processor circuit receives and processes the plurality of input data signals. |
US11552649B1 |
Analog-to-digital converter-embedded fixed-phase variable gain amplifier stages for dual monitoring paths
A delta-sigma modulator may include a loop filter, a quantizer, an input gain element having a programmable input gain and coupled between an input of the delta-sigma modulator and an input of the loop filter, a feedforward gain element having a programmable feedforward gain and coupled between the input of the delta-sigma modulator and an output of the loop filter, and a quantizer gain element having a quantizer gain and coupled between the output of the loop filter and an input of the quantizer. The programmable input gain is controlled in order to control a variable gain of the delta-sigma modulator. The programmable feedforward gain is controlled to be equal to the ratio of the programmable input gain and the quantizer gain such that the delta-sigma modulator has a fixed phase response. |
US11552647B2 |
Ramp signal output circuit and photoelectric conversion apparatus
A ramp signal output circuit includes a first reference current source transistor to which a current is supplied from a current source, a first line connecting a gate of the first reference current source transistor and a gate of a first current source transistor, a branch point where a second line branches from the first line, a first ramp signal generation unit connected to the first current source transistor, and a second ramp signal generation unit connected to a second current source transistor, wherein the second line is connected to a gate of the second current source transistor. |
US11552645B2 |
Apparatus for mitigating wandering spurs in a fractional-N frequency synthesizer
The present invention provides a fractional-N frequency synthesizer comprising a divider controller comprising a multistage noise Shaping (MASH) digital delta-sigma modulator comprising L error feedback modulator (EFM) stages, wherein the jth EFM stage is configured to receive as an input the sum of the error of the preceding EFM stage and a high amplitude dither signal derived from the error of the kth EFM stage, where 1≤j≤k≤L. |
US11552636B2 |
Method and device for controlling fountain solution thickness on an imaging surface using a capacitive proximity sensor
An ultra-high resolution capacitive sensor affixed above an imaging member surface measures the thickness of fountain solution on the imaging member surface in real-time during a printing operation. The sensor is considered ultra-high resolution with a resolution high enough to detect nanometer scale thicknesses. The capacitive sensor would initially be zeroed to the imaging member surface. As fluid is added, the capacitive sensor detects the increase and can measure and communicate with the image forming device to adjust fountain solution flow rate to the imaging member surface and correct for any anomalies in thickness. This fountain solution monitoring system may be fully automated. The capacitive sensor may have a resolution (e.g., as low as about 1 nm resolution) of about 0.001% of the distance/gap that the capacitive sensor is mounted away from the imaging member surface. |
US11552633B1 |
Driver circuit with enhanced control for current and voltage slew rates
An integrated circuit (IC) includes: an input terminal; an output terminal; a first reference voltage terminal and a second reference voltage terminal; a high-side power switch coupled between the first reference voltage terminal and the output terminal; a low-side power switch coupled between the output terminal and the second reference voltage terminal; a first combinational logic and a second combination logic that are coupled to the input terminal; a first driver coupled between the first combinational logic and the high-side power switch; a second driver coupled between the second combinational logic and the low-side power switch; and first comparators coupled to the second combinational logic, where the first comparators are configured to compare a voltage difference between load path terminals of the high-side power switch with a first threshold and a second threshold. |
US11552631B2 |
Voltage comparator
A circuit arrangement is disclosed for controlling the switching of a field effect transistor (FET). A current controlled amplifier may be configured to amplify a current in a current sense device to generate an amplified current, wherein the current in the current sense device indicates a current through the FET. A comparator may be coupled to the current sense amplifier to compare a voltage corresponding to the amplified current with a voltage reference and to generate a comparator output based on the comparison, wherein the comparator output controls whether the FET is on or off. |
US11552621B2 |
Processing system, related integrated circuit and method
A processing system comprising a first sub-circuit configured to be powered by a first supply voltage and a second sub-circuit configured to be powered by a second supply voltage. The first sub-circuit comprises a general-purpose input/out register. The second sub-circuit comprises: a storage circuit configured to selectively store configuration data from the general-purpose input/out register; an input/output interface, at least one peripheral and a selection circuits to exchange signals of the peripherals, and the stored configuration data with the input/output interface. A power management circuit is configured to manage a normal operating mode, and a low-power mode during which the configuration data are maintained stored and the first sub-circuit is switched off. The power management circuit activates the low-power mode in response to receiving a command, and resumes the normal operating mode in response to a wake-up event. |
US11552619B2 |
Adaptive hysteretic control for a power converter
An apparatus includes a first control circuit having an output and including a first comparator and a second control circuit coupled to the output of the first control circuit. The second control circuit includes a second comparator configured to: compare a first value to a reference frequency value, the first value indicating a frequency of a signal at the output of the first control circuit; and provide an adjustment value to change a hysteresis window of the first comparator. |
US11552617B2 |
Microwave dielectric component and manufacturing method thereof
A microwave dielectric component (100) comprises a microwave dielectric substrate (101) and a metal layer, the metal layer being bonded to a surface of the microwave dielectric substrate (101). The metal layer comprises a conductive seed layer and a metal thickening layer (105). The conductive seed layer comprises an ion implantation layer (103) implanted into the surface of the microwave dielectric substrate (101) and a plasma deposition layer (104) adhered on the ion implantation layer (103). The metal thickening layer (105) is adhered on the plasma deposition layer (104). A manufacturing method of the microwave dielectric component (100) is further disclosed. |
US11552614B2 |
Laterally excited bulk wave device with acoustic mirrors
A laterally excited bulk acoustic wave device is disclosed. The laterally excited bulk acoustic wave device can include a first solid acoustic mirror, a second solid acoustic mirror, a piezoelectric layer that is positioned between the first solid acoustic mirror and the second solid acoustic mirror, an interdigital transducer electrode on the piezoelectric layer, and a support substrate arranged to dissipate heat associated with the bulk acoustic wave. The interdigital transducer electrode is arranged to laterally excite a bulk acoustic wave. The first solid acoustic mirror and the second solid acoustic mirror are arranged to confine acoustic energy of the bulk acoustic wave. The first solid acoustic mirror is positioned on the support substrate. |
US11552613B2 |
Resonator shapes for bulk acoustic wave (BAW) devices
A resonator circuit device. The present invention provides for improved resonator shapes using egg-shaped, partial egg-shaped, and asymmetrical partial egg-shaped resonator structures. These resonator shapes are configured to give less spurious mode/noise below the resonant frequency (Fs) than rectangular, circular, and elliptical resonator shapes. These improved resonator shapes also provide filter layout flexibility, which allows for more compact resonator devices compared to resonator devices using conventionally shaped resonators. |
US11552612B2 |
Impedance adjustment device and impedance adjustment method
A high frequency power supply alternately outputs a first AC voltage and a second AC voltage to a plasma generator. The amplitudes of the first AC voltage and the second AC voltage are different from each other. An impedance adjustment device is disposed in midway of the transmission line of the first AC voltage and the second AC voltage. When the AC voltage output from the high frequency power supply is switched to a first AC voltage, a microcomputer changes the capacitance of a variable capacitor circuit to a first target value. When the AC voltage output from the high frequency power supply is switched to a second AC voltage, the microcomputer changes the capacitance of the variable capacitor circuit to a second target value. |
US11552608B2 |
Wideband distributed power amplifiers and systems and methods thereof
A distributed power amplifier includes radio frequency (RF) input and output terminals. A first field effect transistor (FET) is coupled at a first gate terminal to the RF input terminal and at a first drain terminal to the RF output terminal. The first FET has a first periphery and a first source terminal electrically connected to ground potential. A second FET has a second periphery smaller than the first periphery. The second FET has a second gate terminal electrically coupled to the first gate terminal through a first inductor, a second drain terminal electrically coupled to the first drain terminal through a second inductor, and a second source terminal electrically connected to the ground potential. A drain voltage terminal, which excludes a resistive element, is electrically coupled to a drain bias network through which a drain bias voltage is applied to the first drain terminal and the second drain terminal. |
US11552603B2 |
Amplifier circuit and method for operating an amplifier circuit
An amplifier circuit acting as a line driver in a line between a central station and field devices connected thereto comprising: a DC/DC converter integrated in the circuit as a power stage comprising a DC/pulse converter with two electrically isolated switching stages; a logic block preceding the converter, generating control signals for the switches from a PWM signal and feeding them into the converter in an electrically isolated manner using drivers; a priority block generating the PWM signal; a first and a second controller. The priority block forwards output from the first or second controller. The first controller generates a fault signal based on a voltage limit and an output voltage fed back within the amplifier circuit via a feedback path. The second controller generates a fault signal based on a current limit and the output current. The central station defines the current limit and the voltage limit. |
US11552601B2 |
Power amplifier circuit
A power amplifier circuit includes an input-stage power amplifier configured to receive a radio-frequency input signal, an output-stage power amplifier configured to output an amplified radio-frequency output signal, and an intermediate-stage power amplifier disposed between the input-stage power amplifier and the output-stage power amplifier. The intermediate-stage power amplifier includes a first transistor, a second transistor, and a capacitor having a first end connected to an emitter of the first transistor and a second end connected to a collector of the second transistor. The intermediate-stage power amplifier receives a signal at a base of the second transistor thereof and outputs an amplified signal from a collector of the first transistor thereof. |
US11552596B2 |
Odd harmonic generation device and method
An odd harmonic generation device is provided. The odd harmonic generation device includes an even harmonic generation unit and a mixer. In this context, the even harmonic generation unit is configured to generate two even harmonic signals on the basis of a fundamental signal. In addition to this, the mixer is configured to mix the fundamental signal with the two even harmonic signals to generate a desired odd harmonic signal. |
US11552594B2 |
Oscillator frequency range extension using switched inductor
An inductive switch comprises an inductor that has a primary metallic winding having a boundary configured in shape of a figure eight, such as in two loops, and a plurality of secondary metallic windings arranged within the boundary of the primary metallic winding. The inductive switch includes a plurality of switches, each switch arranged in series with a respective one of the plurality of secondary metallic windings. An equal number of the secondary windings is arranged within each loop. A tunable inductor comprises at least one main metallic loop and at least one secondary metallic loop, wherein the at least one secondary metallic loop comprises a switch that is arranged to configure the at least one secondary metallic loop into at least one shorted metallic loop or at least one closed metallic loop. The at least one shorted loop is floating. |
US11552592B2 |
Manufacturing a concentrating sub-module comprising a heat-dissipating material
A method for manufacturing a concentrating photovoltaic solar sub-module equipped with a reflective face having a concave predefined geometric shape, wherein it includes laminating, in a single step, a multi-layer assembly comprising in succession: a structural element equipped with a reflective first face and a second face, opposite the first; a layer of a material of good thermal conductivity, higher than that of the material from which the structural element is composed, the layer being placed on the second face of the structural element; a layer of encapsulant or of adhesive; a photovoltaic receiver, the layer of encapsulant or of adhesive being placed between the layer of a material of good thermal conductivity and the receiver; a layer made of transparent encapsulating material, covering at least the entire surface of the photovoltaic receiver; and a transparent protective layer covering the layer made of transparent encapsulating material; and during the lamination, the reflective face of the structural element is shaped by being brought into contact with a convex surface of a counter-mold, in order to obtain the reflective face of concave predefined geometric shape. |
US11552581B2 |
Board and electronic apparatus including board
A board includes a first motor driver control circuit, a first connector, and a second connector. The first motor driver control circuit includes a first H-bridge and a second H-bridge. The first connector includes at least the following: a first pin to which a first output of the first H-bridge is input, a second pin to which a second output of the first H-bridge is input, and a third pin. The second connector is disposed apart from the first connector and includes at least the following: a first pin to which a first output of the second H-bridge is input, a second pin to which a second output of the second H-bridge is input, and a third pin of the second connector. |
US11552576B2 |
Power apparatus including interlock
A power apparatus includes a first power bus bar provided at a first power part, a second power bus bar provided at a second power part coupled to the first power part while communicating internally with the first power part, the second power bus bar being fastened to the first power bus bar, a first interlock bus bar provided at the first power part while being connected to an interlock terminal of a controller disposed within the first power part, a second interlock bus bar provided at the second power part while being fastened to the first interlock bus bar, and a safety cover fastened to a fastening portion between the first interlock bus bar and the second interlock bus bar while covering a fastening portion between the first power bus bar and the second power bus bar. |
US11552575B1 |
System and method for operating multi-level power converter using multiple deadtimes
A method for operating a multi-level bridge power converter includes providing a plurality of switching devices of the power converter in one of a neutral point clamped topology or an active neutral point clamped topology. The method also includes providing a plurality of deadtimes for the switching devices. Further, the method includes selecting one of the deadtimes for each of the switching devices such that at least two of the switching devices operate according to different deadtimes. Moreover, the method includes operating the switching devices at the selected deadtimes to allow a first group of the switching devices to switch slower than a second group of the switching devices such that the first group of the switching devices satisfy safe operating requirements while the second group of the switching devices switch faster than the first group. |
US11552574B2 |
Interleaved three phase Y-delta connected power converter
An interleaved three-phase Y-Delta connected power converter is provided. The interleaved three-phase Y-Delta connected power converter includes an input voltage source, an input capacitor, a first converter module, a second converter module, an output circuit, and a control circuit. The control circuit calculates a phase shift amount and an operating frequency through voltage and current feedbacks to generate a plurality of switch signal groups for controlling the first converter module and the second converter module, respectively. |
US11552572B2 |
Critical load management in secondary winding in auxiliary power supply
Embodiments include systems for regulating windings in a power supply. Aspects include a transformer comprising a first primary winding and a first secondary winding, a DC to DC converter, a saturable reactor coupled to an output of the first secondary winding and an input to the DC to DC converter, and a controlled current source coupled to a node between the saturable reactor and the input of the DC to DC converter, wherein the controlled current source is configured to provide a current rate based on an output voltage of the DC to DC converter, wherein a first filter inductor of the DC to DC converter is magnetically coupled to a second filter inductor of a second DC to DC converter. |
US11552571B1 |
Right half plane zero compensation for DC-DC converter circuits
The present document relates to a power converter configured to convert an input voltage at an input of the power converter into an output voltage at an output of the power converter. The power converter may comprise a power stage, a voltage controlled voltage source VCVS, a first feedback path and a second feedback path. The power stage may be coupled to the output of the power converter. The VCVS may be configured to generate, at an output of the VCVS, an error voltage by comparing a reference voltage with a feedback voltage indicative of the output voltage. The first feedback path may extend from the output of the power converter, via the VCVS, via the power stage, to the output of the power converter. The second feedback path may extend from the output of the VCVS to the output of the power converter. |
US11552555B2 |
Circuit electromagnetic interference control
In some examples, a circuit includes a state machine. The state machine is configured to operate in a buck state in which the state machine is configured to control a power converter to operate in a buck mode of operation at a first frequency. The state machine is configured to determine that a switch time of the power converter has decreased to within a threshold amount of a minimum switch time for the power converter. The state machine is configured to, responsive to the switch time of the power converter having decreased to within the threshold amount of the minimum switch time for the power converter, transition from the buck state to a reduced frequency buck state in which the state machine is configured to control the power converter to operate in the buck mode of operation at a second frequency that is less than the first frequency. |
US11552553B2 |
Load abnormality detecting circuit for inverter and inverter apparatus
A load abnormality detecting circuit for an inverter to detect abnormality of a load during an operation of the inverter which has a switching element and a phase synchronizing loop controlling an output frequency to be a resonance frequency of the load, the load abnormality detecting circuit includes a phase shift detection part that detects a phase shift between an output voltage and an output current which are applied from the inverter to the load and sends an abnormal load signal based on the detected phase shift. The switching element including a self-arc-extinguishing element and a reflux diode connected in reversely parallel to the self-arc-extinguishing element. The phase shift detection part detects advance and delay of a phase of the output current with respect to the output voltage. |
US11552551B2 |
Method of control of a system comprising a single-phase three-level T type quasi-Z source inverter connected to an LC filter which is in turn connected to a load
A method relating to control of a system including a single-phase three-level quasi-Z type source inverter connected to an LC filter which is in turn connected to a load, the inverter including first and second bridge arms, each including a plurality of switches, the method including the steps of (a) for each of a plurality of consecutive sampling periods (i) determining the duration of a shoot-through period for the next sampling period during which the inverter is in shoot-through mode; (ii) choosing a configuration of the switches for the next sampling period (iii) at the end of the sampling period setting the switches in the chosen configuration for the next sampling period; and (b) at a time during the next sampling period and for the duration of the shoot-through period setting the switches such that the inverter is in shoot-through mode. |
US11552545B2 |
Power converter having negative current detection mechanism
A power converter with a negative current detection mechanism is provided. A negative current detecting circuit includes a first operational amplifier, a first transistor and a second transistor. A non-inverting input terminal of the first operational amplifier is connected to a second terminal of a sense resistor. An inverting input terminal of the first operational amplifier is connected to a first terminal of a first capacitor. Control terminals of the first and second transistors are connected to an output terminal of the first operational amplifier. A first terminal of the first transistor is connected to the second terminal of the sense resistor. A second terminal of the first transistor is grounded. A first terminal of the second transistor is connected to the inverting input terminal of the first operational amplifier and the first terminal of the first transistor. A second terminal of the second transistor is grounded. |
US11552543B2 |
Input voltage selecting auxiliary circuit for power converter circuit
Circuits and methods encompassing a power converter that can be started and operated in a reversed unidirectional manner or in a bidirectional manner while providing sufficient voltage for an associated auxiliary circuit and start-up without added external circuitry for a voltage booster and/or a pre-charge circuit—that is, with zero external components or a reduced number of external components. Embodiments include an auxiliary circuit configured to selectively couple the greater of a first or a second voltage from a power converter to provide power to the auxiliary circuit. Embodiments include an auxiliary circuit configured to select a subcircuit coupled to the greater of a first or a second voltage from a power converter to provide an output for the auxiliary circuit. Embodiments include a charge pump including a gate driver configured to be selectively coupled to one of a first voltage node or second voltage node of the charge pump. |
US11552538B2 |
Method for removing an electromagnetic module from an electrical machine
In a first aspect, a method for removing an electromagnetic module from an electrical machine is provided. The electrical machine comprises a plurality of electromagnetic modules having an electromagnetic material. The electromagnetic modules comprise base and a support extending from the base and supporting the electromagnetic material. The base comprises a bottom surface and a first side surface. The first side surface comprises an axially extending groove defining a cooling channel with an axially extending groove of a first side surface of an adjacent electromagnetic module. The method comprises inserting a rod in a cooling channel formed by the groove of the electromagnetic module to be removed and a groove of an adjacent electromagnetic module; releasing the electromagnetic module to be removed from a structure of the electrical machine; and sliding the electromagnetic module to be removed along the rod. |
US11552535B2 |
Device for reducing harmful bearing voltages
The invention relates to a device for reducing harmful bearing voltages in an electrical machine (M) fed by a DC link voltage of a DC link, said electrical machine comprising a stator (3), which has windings (7) and is insulated from ground (GND), and a rotor (2) and a motor shaft, wherein furthermore a rotor-side bearing (LAR) and a stator-side bearing (LAS) are each insulated from the ground (GND) and the rotor (2) and the stator (3) are electrically connected to each other by means of a bypass capacitance (CBypass) having a predefined capacitance. |
US11552534B2 |
Resolver device and rotating electrical machine with resolver device
In order to improve the angle detection accuracy, when an exciting order is 2, a double axial angle is 5, and the number of resolver teeth is 8, an inner diameter deformation order is one of 4, 6, 7, 8, or 9, when the exciting order is 5, the double axial angle is 4, and the number of resolver teeth is 10, the inner diameter deformation order is one of 3, 5, 7, 9 or 10, when the exciting order is 3, the double axial angle is 4, and the number of resolver teeth is 12, the inner diameter deformation order is one of the 2, 3, 5, 6, 7, 9, 10, 11 or 12, and the resolver stator is fixed to the resolver device mounting part by the number of fixing points corresponding to any one of the inner diameter deformation order. |
US11552530B1 |
Ordinary and compact charger device
Disclosed is a system for dramatically increasing the capacity of onboard power source through internal electricity generation. The internal electricity generation is accomplished using a propulsion device connected to a shaft. A shaft contains wire winding on its opposite end that are embedded within a stator winding. Thus, the motion of the propulsion device create the rotation necessary to create current within the stator and enables an onboard power source to be recharged therefrom. |
US11552526B2 |
Electric actuator assembly with a brush card assembly
An electric actuator assembly is proposed. The electric actuator assembly includes: a brush card assembly provided with a brush card part in which a plurality of terminals is molded through insert injection molding; a motor assembly coupled to the brush card assembly and electrically connected thereto; a housing provided with a coupling part into which the brush card assembly is inserted, having a circuit board provided with a connector, and having a gear assembly for receiving power from the motor assembly and transmitting the power to outside, the circuit board and the gear assembly being installed in the housing, wherein terminal holes through which the plurality of terminals passes and a coupling hole into which a part of the brush card part is inserted are separately provided in the coupling part. |
US11552525B2 |
Rotating electrical machine including a refrigerant passage
A rotating electrical machine such that a power supply unit can be efficiently cooled, with no increase in size in an axial direction of the rotating electrical machine, is provided. A rotating electrical machine main body and a power supply unit are integrally fixed, and a refrigerant passage is provided on the rotating electrical machine main body side of a metal frame configuring the power supply unit. The refrigerant passage and a control part that controls power supplied to the rotating electrical machine main body are disposed in the same plane in an axial direction of the rotating electrical machine main body, and the refrigerant passage is disposed farther to a radial direction outer side of the rotating electrical machine main body than the control part. |
US11552521B2 |
System, method and apparatus for alternator for electric machine
A stator for an electric machine includes a generally cylindrical stator core having a plurality of circumferentially-spaced and axially-extending core teeth that define a plurality of circumferentially-spaced and axially-extending core slots in a surface thereof, a main winding having a plurality of coils, each of the coils including a plurality of turns occupying the plurality of slots in the stator core, and a tertiary excitation winding having a plurality of coils, each of the coils including a single turn occupying at least a subset of the plurality of slots in the stator core. The coils of the main winding are unevenly arranged in the plurality of slots. |
US11552518B2 |
Armature segment, armature and methods for assembling them
The present disclosure relates to armature segments for an armature for an electrical machine. An armature segment may comprise a plurality of coils and an electrically insulating supporting structure providing structural support to the plurality of coils. An armature may comprise a plurality of armature segments. The present disclosure further relates to methods for assembling such armature segments and armature. |
US11552515B2 |
Rotor, motor, fan, and air conditioner
A rotor includes a rotor core. A permanent magnet constitutes a first magnetic pole, and a part of the rotor core constitutes a second magnetic pole. In the second magnetic pole, a plurality of slits is symmetrically formed with respect to a magnetic pole center line connecting a pole center of the second magnetic pole and the center axis. On one side of the magnetic pole center line in a circumferential direction about the center axis, the plurality of slits has a first slit closest to the magnetic pole center line and a second slit adjacent to the first slit in the circumferential direction. A minimum distance L1 from the first slit to the outer circumference of the rotor core and a minimum distance L2 from the second slit to the outer circumference of the rotor core satisfy L1 |
US11552513B2 |
Rotor and rotating machine
Provided is a rotor 10 capable of avoiding an increase in cost due to use of a high-performance winding machine and an increase in cost due to molding of the entire rotor 10 with an insulator, and a rotating machine including the rotor 10. The rotor 10 includes a rotor core 11 that rotates around a rotary axis A. The rotor core 11 includes a plurality of unit through holes 11a that individually accommodate each of a plurality of winding units 12. Each of the plurality of winding units 12 includes an iron core, a field winding wound around the iron core, and an insulating sealing resin that seals the iron core and the field winding, and is accommodated in the unit through hole 11a in a posture extending in a direction of the rotary axis A. |
US11552511B2 |
Stator assembly, electrical motor, wind power generator set and method for cooling stator assembly
A stator assembly, an electrical motor having the stator assembly, a wind power generator set and a method for cooling a stator assembly are provided. The stator assembly includes a stator support and a stator core mounted on the stator support, wherein the stator support includes a support enclosure plate, a first axial air flow channel is formed between the support enclosure plate of the stator support and a radial side surface of the stator core, and the first axial air flow channel is used for receiving a first cold air flow, so that the cold air flow can flow in the axial direction. The stator assembly can introduce a cold air flow from the other side, opposite an air gap, of a stator during the operation of an electrical motor, so that two radial sides of the stator can be cooled at the same time. |
US11552509B2 |
Apparatus and method for measuring vehicle position based on low frequency signals
A position alignment method performed by a ground assembly for wireless power transfer includes measuring, through at least one low frequency (“LF”) receiver of the ground assembly, a first magnetic flux density for a magnetic field emitted from at least one LF transmitter of a vehicle assembly; measuring, through the at least one LF receiver, a second magnetic flux density for a magnetic field emitted from the at least one LF transmitter; configuring a received signal measurement based on a comparison result of the first magnetic flux density and the second magnetic flux density; and providing the configured received signal measurement to a vehicle. |
US11552505B1 |
Multi-coil wireless power system
A wireless power system for an implantable device is described. The system includes multiple inductive charging coils to increase an effective area for receiving an electromagnetic charging field from a wireless charging device. The multiple inductive charging coils produce different alternating current signals in response to receiving the electromagnetic charging field. The system includes a rectifying circuit for rectifying the alternating current signals into direct current signals. The system also includes a current combination circuit for combining the multiple direct current signals into a single direct current for powering an operation of the implantable device. Methods and devices for implementing the power system in an implantable device are also described. |
US11552503B2 |
Terminal device and charging control method
The present disclosure provides a terminal device and a charging control method. The terminal device includes a receiving coil, a wireless charging module, an inverter circuit and a transmitting coil. The receiving coil is configured to receive a wireless charging signal. The wireless charging module is configured to perform a wireless charging to a battery based on the wireless charging signal received by the receiving coil. The inverter circuit is configured to generate an alternating current signal based on a power supply voltage provided by the battery. The transmitting coil is configured to transmit a wireless charging signal to the outside based on the alternating current signal. |
US11552502B2 |
Induction charging device
An induction charging device for an electrically operated motor vehicle includes a charging assembly having a charging coil, and a temperature-control assembly having a fluid pipe. The charging coil can be inductively coupled to a primary coil, such that a battery in the motor vehicle can be inductively charged. The charging assembly has a ferrite plate for directing the electromagnetic alternating field, which is established between the charging coil and the fluid pipe, such that waste heat from the ferrite plate and the charging coil can be transmitted to the fluid in the fluid pipe. The fluid pipe is formed by a shell-type metal shielding plate for shielding electromagnetic field emissions and a shell-type lower shell heat-conductingly in contact with the ferrite plate. The metal shielding plate and the lower shell are secured on one another in a fluid-tight manner and spaced apart from one another with a stiffening insert. |
US11552501B2 |
Methods and systems for detection and notification of power outages and power quality
Described herein are methods and systems for detection and notification of electrical power outages and power quality. A sensor coupled to a circuit transmits a keepalive packet to a server. The sensor detects an input signal generated by electrical activity. The sensor generates an output signal based upon the input signal. The sensor monitors the output signal. During a clock cycle, the sensor determines whether a rising edge occurred and transmits a fault packet to the server when the rising edge occurred prior to a predetermined clock value or when no rising edge occurred. The server receives the fault packet from the sensor and listens for keepalive packets. The server transmits a power outage notification when no keepalive packets are received for at least a defined time period after the fault packet is received. The server transmits a power restoration notification when one or more keepalive packets are subsequently received. |
US11552499B2 |
Power backup for appliances
A backup power supply is provided. The backup power supply provides batteries electrically coupled to a power cord for receiving power for charging the batteries and a power outlet for transmitting power for powering electrical equipment coupled to the power outlet. An inverter generator is operatively associated with the power cord, the batteries, and the power outlet in such a way that when the power cord experiences an electrical short the batteries switch from a reserve mode receiving power to a backup mode for transmitting power to the power outlet. The invertor generator is also adapted to sense reception of power through the power cord so as to switch from the backup mode to the reserve mode. Visible and audible indicators are provided for indicating the switching between the reserve mode and the backup mode. |
US11552498B2 |
Method for controlling electrical consumers of an electrical supply grid
A method for controlling an electrical consumer is provided. The electrical consumer is coupled to an electricity supply grid using a frequency converter. The electricity supply grid has a line voltage and is characterized by a nominal line voltage. The electricity supply grid is monitored for a grid fault in which the line voltage deviates from the nominal line voltage by at least a first differential voltage. When the grid fault occurs, the electrical consumer remains coupled to the electricity supply grid, and a power consumption of the electrical consumer is changed on the basis of the deviation of the line voltage from the nominal line voltage. |
US11552495B2 |
Temperature-dependent charging of supercapacitor energy storage units of asset tracking devices
Methods, systems, and devices for temperature-dependent charging of supercapacitor energy storage units of asset tracking devices are provided. An example method for temperature-dependent charging involves obtaining a temperature reading measured at an asset tracking device, the asset tracking device located at an asset to monitor travel of the asset, determining a target voltage for a supercapacitor energy storage unit of the asset tracking device based on the temperature reading to balance utilization of a capacity of the supercapacitor energy storage unit against temperature-dependent deterioration of the supercapacitor energy storage unit, and controlling a charging interface of the asset tracking device to charge the supercapacitor energy storage unit to the target voltage. |
US11552494B2 |
Method and apparatus controlling charging of battery based on diffusion characteristics of material included in the battery
A battery charging control method and apparatus is disclosed. The battery charging control method includes inputting a preset magnitude of a current to a battery during a preset period of time, identifying a diffusion characteristic of a material in the battery, and determining whether to change the magnitude of the current to be input to the battery based on the identified diffusion characteristic of the material, in which the diffusion characteristic may be determined based on a distribution of the material in one or more of a cathode of the battery, an anode of the battery, and an electrolyte of the battery in response to the input of the current in the battery. |
US11552491B2 |
Charging management system and method for batteries
A battery charging management system includes a plurality of sockets combinable with a plurality of devices onto which a plurality of battery packs are mounted; a binding controller configured to receive state information of the plurality of battery packs from the plurality of devices, determine a priority of the plurality of devices to be allocated to the plurality of sockets according to a charging strategy selected based on the state information, and allocate one of the plurality of sockets to one of the plurality of devices or releasing the allocating; a charging controller configured to control charging of the plurality of battery packs of the plurality of devices electrically connected to a charging circuit based on the state information received by the binding controller; and a distributor configured to switch an electrical connection between the charging circuit and the plurality of battery packs. |
US11552489B2 |
Aerosol-generating system with charging device and aerosol-generating device with side coupling
An electrically operable aerosol-generating system is provided, including a charging device including a primary power source; and an elongated aerosol-generating device including a secondary power source and having a proximal end, a distal end, and a body extending between the proximal end and the distal end, the charging device having a docking arrangement configured to engage with the elongated aerosol-generating device and to charge the secondary power source by the primary power source, in which a first coupling member disposed on the body of the elongated aerosol-generating device is configured to engage with a second coupling member disposed on a wall of the charging device. |
US11552488B2 |
Charging system for a mobile device
A supply charging device includes a supply power connector having a housing with a mating end and a flange configured to be mounted to a panel. The housing includes power contact channels extending through a base receiving power contacts. The housing includes a guide member engaging a guide feature of a mobile device to locate a receiver power connector relative to the supply power connector. The supply charging device includes a retaining plate securing the housing to the panel. The supply charging device includes a mounting spring extending from the housing and received in the panel cutout. The mounting spring engages the panel to allow the supply power connector to float relative to the panel within the panel cutout for aligning the mating end of the supply power connector with the receiver power connector. |
US11552486B2 |
Portable vehicle charging system with location detection
A portable vehicle-charging system includes a control-pilot circuit configured to generate a plurality of signals, each of the signals having a unique duty cycle that corresponds to a predetermined charging current to be used during a charging event. The system further includes a global positioning system (GPS) module configured to output GPS data indicative of a location of the portable vehicle-charging system. A controller of the system is programmed to receive the GPS data to determine the location of the portable vehicle-charging system, and command the control-pilot circuit to generate the one of the signals corresponding to the location so that the vehicle charges according to a corresponding one of the charging currents that is compatible with a power grid of the location. |
US11552484B2 |
Systems and methods for operating a solar charger system for providing battery and circuit protection
Systems/methods for operating a solar charger system. The system comprises: preventing, by a first circuit, damage to the solar charger system when a reverse polarity connection exists between a solar panel and the solar charger system; preventing, by a second circuit, damage to the solar charger system when a reverse polarity connection exists between the battery and the solar charger system; preventing, by a third circuit, damage to the battery when a temperature of a surrounding environment exceeds a pre-defined value while the battery is being charged by the solar charger system; and preventing, by a fourth circuit, back-feed from the battery without any voltage drop or loss while the battery is being charged by the solar charger system. |
US11552483B2 |
Electric storage system
An electric storage system is provided including a switching unit which is arranged between an electric storage unit of an electric storage device which is configured to be connectable in parallel with another power supply device and wire which is configured to electrically connect the electric storage device and the another power supply device, wherein the switching unit is configured to switch the electrical connection relationship between the wire and the electric storage unit; and a restriction unit which is connected in parallel with the switching unit between the wire and the electric storage unit, has a higher resistance than the switching unit, and is configured to cause current to flow in a direction from the electric storage unit to the wire and suppress current flowing in a direction from the wire to the electric storage unit. |
US11552480B2 |
Method and power transmitter for controlling power transmission
Methods and apparatuses are provided for controlling power transmission in a power transmitter. Voltage information including a minimum voltage, a maximum voltage, and a first voltage, is received from each of a plurality of power receivers. Power is transmitted to the plurality of power receivers based on the voltage information. A respective report about a power reception condition is received from each of the plurality of power receivers while transmitting the power. Each respective report includes a measured voltage at a corresponding power receiver of the plurality of power receivers. A power receiver is selected from among the plurality of power receivers based on the received reports. An amount of the power is adjusted by reducing a difference between a first voltage of the selected power receiver and a measured voltage of the selected power receiver. |
US11552475B2 |
Systems and methods for stationary energy storage system optimization
Systems and methods for controlling power flow to and from an energy storage system are provided. One implementation relates to an energy storage system comprising an energy storage device, an inverter configured to control a flow of power out of the energy storage device, a rectifier configured to control the flow of power into the energy storage device and one or more controllers. The one or more controllers may be configured to determine a schedule of a plurality of time periods based on historical price data. Each of the plurality of time periods may be associated with one of a state of charging, discharging, or idle. The one or more controllers may be configured to control the inverter and the rectifier based on the determined schedule. |
US11552472B2 |
Power distribution control with asset assimilation and optimization
In a power control system a server maintains asset models that represent asset behaviour, each asset model being in real-time communication with its asset to dynamically inform the model of the status of the asset. A test is performed at the server by issuing a command to an asset requesting the asset to perform a function. Sensors at the asset measure physical parameters at the asset and report these to the server. The server determines whether the asset responded to the command and, if the asset responded, how it responded over time. The server establishes a model for the asset in terms of an energy capacitance and a time constant based on the measured response. An optimizer determines which assets are to participate in which service models. The server sends instructions to the selected assets to attempt to fulfill the services. |
US11552470B2 |
Electrostatic discharge circuit
An electrostatic discharge circuit includes six transistors. A power supply voltage node is coupled with a gate and a drain of a first transistor and connected to a source of a second transistor and a drain of a fifth transistor. A source of the first transistor is coupled to a ground voltage node and connected to a gate of a third transistor and a gate of a fourth transistor. A gate of the second transistor is connected to the drain of the first transistor. A source of the third transistor is connected to the drain of the second transistor and a gate of the fifth transistor. A drain of the fourth transistor is connected to a drain of the third transistor. A source of the fourth transistor and a source of the sixth transistor are connected to the ground voltage node. |
US11552468B2 |
Electrical device with power quality event protection and associated method
An electrical device includes a first terminal structured to electrically connect to a power source; a second terminal structured to electrically connect to a load; a voltage sensor electrically connected to a point between the first and second terminals and being structured to sense a voltage at the point between the first and second terminals; a switch electrically connected between the first terminal and the second terminal; and a control unit structured to detect a power quality event in the power flowing between the first and second terminals based on the sensed voltage and to control a state of the switch based on the detected power quality event. |
US11552466B2 |
Method for restoring power in an underground radial loop network
A method for isolating a fault in an underground power distribution network. The network includes a power line, a plurality of transformers electrically coupled to and positioned along the power line, a first recloser connected to one end of the power line and a second recloser connected to an opposite end of the power line, where each transformer includes an upstream switching device and a downstream switching device, and where power is provided to both ends of the power line through the first and second reclosers and one of the switching devices is a normally open switching device. The method includes detecting overcurrent by some of the switching devices, detecting loss of voltage by some of the switching devices and sending clear to close messages to some of the switching devices to open and close certain ones of the switching devices to isolate the fault. |
US11552464B2 |
GFCI test monitor circuit
A circuit interrupting device including a fault detection circuit and an auto-monitoring circuit. The fault detection circuit is configured to output a pre-trigger signal, wherein the pre-trigger signal is configured to not place the circuit interrupting device in a tripped condition. The auto-monitoring circuit is configured to monitor an auto-monitoring input signal, wherein the value of the auto-monitoring signal is at least partially determined by a value of a pre-trigger signal generated. |
US11552458B2 |
Distribution panel for intelligently controlled solid-state circuit breakers
An electrical distribution panel for controlling the distribution of electrical power to a plurality of loads includes a plurality of solid-state circuit breakers (SSCBs), each including a thermally conductive heatspreader and one or more power semiconductor devices that control whether electrical current is able to flow to an attached load; a distribution panel heatsink configured in thermal contact with the SSCB heatspreaders; one or more cooling fans that blow air onto the distribution panel heatsink; a stacked bus bar with quick-fit pin-mount receptacles for receiving mating/matching press-fit connection pins located on line-side terminals of the SSCBs; a communications and control (comm/control) bus communicatively coupled to the plurality of SSCBs; and a head-end interface and gateway to which an external computer can connect, to, among other things, set and alter trip settings of the plurality of SSCBs via the comm/control bus. |
US11552449B2 |
Semiconductor radiation source
A semiconductor radiation source includes at least one semiconductor chip that generates radiation; and at least one capacitor body, wherein the semiconductor chip and the capacitor body are stacked on top of each other, the semiconductor chip directly electrically connects in a planar manner to the capacitor body, the semiconductor chip is a ridge waveguide laser, and a ridge waveguide of the semiconductor chip is arranged on a side of the semiconductor chip facing away from the capacitor body. |
US11552448B2 |
Semiconductor optical amplifier integrated laser
A semiconductor optical amplifier integrated laser includes a semiconductor laser oscillator portion that oscillates laser light having a wavelength included in a gain band and a semiconductor optical amplifier portion that amplifies laser light output from the semiconductor laser oscillator portion. The semiconductor laser oscillator portion and the semiconductor optical amplifier portion have one common p-i-n structure, the common p-i-n structure includes an active layer, a cladding layer provided apart from the active layer, and a common functional layer formed in the cladding layer, and the common functional layer includes a first portion that reflects light having a wavelength within the gain band in the semiconductor laser oscillator portion and a second portion that transmits light having a wavelength within the gain band in the semiconductor optical amplifier portion. |
US11552446B2 |
Cooling device for cooling an electrical component and method for producing a cooling device
A cooling device (1) for cooling an electrical component (4), in particular a laser diode, including a base body (2) with at least one outer face (20) and at least one integrated cooling channel (5), in particular a micro-cooling channel, a connecting surface (21) on the outer face (20) of the base body (2) for connecting the electrical component (4) to the base body (2) and a first stabilising layer (11), wherein the first stabilising layer (11) and the connecting surface (21) are arranged at least partially one above the other along a primary direction (P), and wherein the first stabilising layer (11) is offset relative to the outer face (20) towards the interior of the base body (2) by a distance (A) along a direction parallel to the primary direction (P). |
US11552442B2 |
Device and method for generating laser pulses by Kerr lens based mode locking with a loss-modulation device as a Kerr medium
A laser device (100), being configured for generating laser pulses by Ken lens based mode locking, comprises a laser resonator (10) with a plurality of resonator mirrors (11.1, 11.2, 11.3) spanning a resonator beam path (12), a solid state gain medium (20) being arranged in the laser resonator (10), a Kerr medium device (30) being arranged with a distance from the gain medium (20) in the laser resonator (10), wherein the Kerr medium device (30) includes at least one Ken medium being arranged in a focal range of the resonator beam path and being configured for forming the laser pulses by the nonlinear Kerr effect, and a loss-modulation device (31, 32) having a modulator medium, which is capable of modulating a power loss of the laser pulses generated in the laser resonator (10), wherein the Kerr medium device (30) includes the modulator medium of the loss-modulation device (31, 32) as the at least one Kerr medium having an optical non-linearity being adapted for both of creating the Kerr lens based mode-locking in the laser resonator and modulating the power loss in the laser resonator. Furthermore, a method of generating laser pulses by Kerr lens based mode locking is described, wherein a loss-modulation device (31, 32) is used for both of introducing a Ken effect in the laser resonator (10) and modulating the power loss. |
US11552439B2 |
Laser projector
A laser projector steers a pulsed laser beam to form a pattern of stationary dots on an object, the pulsed laser beam having a periodicity determined based at least in part on a maximum allowable spacing of the dots and on a maximum angular velocity at which the beam can be steered, wherein a pulse width of the laser beam and a pulse peak power of the laser beam are based at least in part on the determined periodicity and on laser safety requirements. |
US11552438B2 |
Terahertz magnon generator comprising plurality of single terahertz magnon lasers
An apparatus for generation of tunable terahertz radiation is provided. The apparatus comprises: a plurality of terahertz magnon laser generators, whereas at least one such terahertz magnon laser generator comprises a multilayer column, and a terahertz transparent medium separating at least two such terahertz magnon laser generators. At least one such multilayer column further comprises: a substrate, a bottom electrode coupled with the substrate, a bottom layer coupled with the bottom electrode, a tunnel junction coupled with the bottom layer, a top layer coupled with the tunnel junction, a pinning layer coupled with the spin injector, and a top electrode coupled with the pinning layer. |
US11552433B2 |
Electrical connector capable of eliminating noise
An electrical connector is disclosed. The electrical connector has a casing, a terminal seat and a conductive plastic element. The terminal seat is mounted in the casing and has an insulator board and a terminal set. The terminal set has a ground terminal and a high-speed signal terminal set. One side of the conductive plastic element is mounted on an inner wall of the casing and another side thereof passes through the insulator board to be close to the high-speed signal terminal set. When the casing is electrically connected to a ground, the conductive plastic element is electrically connected to the ground through the casing. Therefore, the conductive plastic element may eliminate a noise interference caused by the high-speed signal terminal set during high-speed transmission. A crosstalk and a common-mode interference are also reduced to keep the stability of signal transmission of the electrical connector. |
US11552430B2 |
Ground structure for a cable card assembly of an electrical connector
A cable card assembly for an electrical connector includes a circuit card having upper and lower surfaces and extending between a cable end and a mating end with mating conductors at the mating end and cable conductors at the cable end. Cables are terminated to the circuit card that include signal conductors, ground shields surrounding the corresponding signal conductors, and drain wires electrically connected to the corresponding ground shields. The signal conductors are terminated to corresponding cable conductors. The cable card assembly includes a ground block separate and discrete from the circuit card and coupled to the circuit card. The ground block includes drain wire channels receiving corresponding drain wires. The ground block is electrically conductive to electrically connect the drain wires. |
US11552428B2 |
Systems and methods for a cable clip
Various embodiments of a cable clip having a clip housing configured to engage a casing to establish an operative connection with a portable device encased within the casing are disclosed. |
US11552424B2 |
Electrical connector with double-layer shells and staggered soldering legs
An electrical connector including an insulating body, a plurality of terminals disposed in the insulating body, a first shell sheathing the insulating body to form an insertion space for connecting to another electrical connector, and a second shell superposed on the first shell is provided. The first shell has at least one first soldering leg adjacent to the insertion space, and the second shell has at least one second soldering leg away from the insertion space. |
US11552420B2 |
Floating connector
A floating connector comprises a movable housing, a regulating member and a plurality of contacts. Each of the contacts is made of a single metal plate. Each of the contacts has a fixed portion, a regulated portion, a held portion, an extending portion, a contact portion and a coupling portion. The coupling portion is resiliently deformable. The movable housing is movable within a predetermined range in a plane perpendicular to an up-down direction by the resilient deformation of the coupling portion. The coupling portion has a first portion, a second portion and a bent portion. Each of the first portion and second portion has a principal surface. The principal surface of the first portion faces in a first direction. The principal surface of the second portion faces in a second direction. The first direction and the second direction are different from each other. |
US11552419B2 |
Floating connector
A floating connector comprises a movable housing, a plurality of contacts and at least one ground member. Each of the contacts has a fixed portion, a first held portion, a coupling portion, an extending portion and a contact portion. The coupling portion is resiliently deformable. The movable housing is movable within a predetermined range in a plane perpendicular to an up-down direction by the resilient deformation. The contacts include a plurality of ground contacts and a signal contact. The ground member has a plurality of ground contact portions, a plurality of supporting portions, a ground coupling portion and a second held portion. The ground contact portions correspond to the ground contacts, respectively. Each of the ground contact portions is brought into contact with the corresponding ground contact even when the movable housing is moved within the predetermined range. The ground coupling portion couples the supporting portions with each other. |
US11552417B2 |
Irrigation controller with terminal connector blocks
In some embodiments, an irrigation control device is provided that includes adjacent terminal connector rows having a ridge portion between the rows, where the ridge portion is configured to support and guide wires to electrical connection pads of one row, and to support these wires above wires retained in another row of electrical connection pads. In some embodiments, the ridge portion offsets the wires from the different rows in the horizontal plane. |
US11552407B1 |
RF test hat
A radio frequency (RF) test hat. The RF test hat may comprise: a body having a substantially rectangular portion with open forward and aft ends, an end cap, arm and strap assembly, absorber material, a receiving antenna, lens, and upper and lower mesh screens. The end cap may couple to the open forward end of the body. The arm and strap assembly may hingedly couple to the open aft end of the body. The absorber material may be within the end cap. The receiving antenna may be disposed within the first absorber material and may measure the intensity of a beam of electromagnetic radiation. The lens may be located within the middle portion of the body and may spread the beam across a larger surface area of the absorber material. The upper and lower mesh screens may be disposed between the end cap and lens and may comprise openings that are substantially hexagonal in shape. |
US11552406B2 |
Deployable membrane structure for an antenna
A deployable membrane structure for an antenna comprises a membrane comprising a plurality of first regions of higher-stiffness material integrally connected via one or more second regions of lower-stiffness material, wherein the one or more second regions are formed from compliant material configured to permit the membrane to be folded into a collapsed configuration and subsequently unfolded into a deployed configuration, and are arranged so as to allow adjacent ones of the plurality of first regions to be folded so as to lie against one another. In some embodiments the membrane is formed of a composite material comprising a plurality of fibres in a compliant matrix, and the plurality of first regions comprise material with a higher fibre density than the one or more second regions. A deployable antenna comprising the deployable membrane structure is also disclosed. |
US11552404B2 |
Multibending antenna structure
A multibending antenna structure includes a substrate, a microstrip antenna layer, and at least a decouple unit. The microstrip antenna layer is disposed on one side of the substrate. The microstrip antenna layer includes a plurality of radiation units which are respectively formed in a multibending shape and forming a concave area. The radiation units are sequentially connected to form an antenna array, and a plurality of antenna arrays are disposed in a transversely parallel arrangement, with an interval between each two neighboring antenna arrays. The decouple unit is disposed between the neighboring antenna arrays. When the input end of the radiation unit receives a signal input to emit an electromagnetic wave having a radiation energy, the half-power beam width thereof is increased. |
US11552400B2 |
Antenna structure and electronic device including the same
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to embodiments in the present disclosure, an antenna device for dual polarization of a wireless communication system, comprises a print circuit board (PCB); a first feeding line configured to provide a first polarization signal; a second feeding configured to provide a second polarization signal; and a patch antenna comprising a radiating region and cutting regions. Objects corresponding to the cutting regions are disposed to support the radiating region on the PCB. |
US11552398B2 |
Cloaked low band elements for multiband radiating arrays
A multiband antenna, having a reflector, and a first array of first radiating elements having a first operational frequency band, the first radiating elements being a plurality of dipole arms, each dipole arm including a plurality of conductive segments coupled in series by a plurality of inductive elements; and a second array of second radiating elements having a second operational frequency band, wherein the plurality of conductive segments each have a length less than one-half wavelength at the second operational frequency band. |
US11552396B2 |
Phase shifter, remote electrical tilt system and base station antenna
The present disclosure relates to a phase shifter, which includes: a phase shift circuit board with conductive traces printed thereon; and a phase shift circuit board with conductive traces printed thereon; and a slide device with a first tooth section configured to be driven, wherein movement of the first tooth section drives the slide device to slide on the phase shift circuit board. In addition, the present disclosure further relates to a remote electrical tilt system, which includes an actuator, a transmission mechanism, and at least one phase shifter according to the present disclosure, wherein the actuator is configured to drive the transmission mechanism, and the transmission mechanism engages the first tooth section to drive the slide device to slide on the phase shift circuit board. In addition, the present disclosure also relates to a base station antenna which includes the remote electrical tilt system according to the present disclosure. The base station antenna according to the present disclosure may improve the stability of the transmission of the remote electrical tilt system and increase the space utilization of the remote electrical tilt system. |
US11552394B2 |
Antenna apparatus, antenna system, and antenna electrical tilting method
An RCU (remote control unit), an antenna apparatus, an antenna electrical tilting method and an antenna system. The RCU includes a reading device and a driver. The reading device is configured to read, from a memory inside the antenna apparatus, when the antenna apparatus is communicatively connected with the RCU, antenna information of an antenna controlled by the antenna apparatus and configuration data corresponding to the antenna. The antenna information includes the antenna serial number and the antenna model of the antenna. The driver is configured to control the antenna apparatus to adjust an electrical down-tilt angle of the antenna in accordance with the configuration data. |
US11552390B2 |
Dielectric resonator antenna system
An electromagnetic device includes: an electrically conductive ground structure; at least one dielectric resonator antenna (DRA) disposed on the ground structure; at least one electromagnetic (EM) beam shaper disposed proximate a corresponding one of the DRA; and, at least one signal feed disposed electromagnetically coupled to a corresponding one of the DRA. The at least one EM beam shaper having: an electrically conductive horn; a body of dielectric material having a dielectric constant that varies across the body of dielectric material in a specific direction; or, both the electrically conductive horn and the body of dielectric material. |
US11552387B2 |
Roof antenna
A roof antenna may include an upper case formed to be opened at a lower portion thereof and including a plurality of fusion bosses and a plurality of hooks at the lower portion, a lower case coupled to the plurality of fusion bosses and the plurality of hooks to shield the opened lower portion of the upper case and configured to be coupled to a roof of a vehicle, and a rubber pad mounted to a lower portion of the lower case to prevent exposure to the outside by the upper case and provided so that the lower case is configured to be water-tightly coupled to the roof of the vehicle. |
US11552377B2 |
Rectangular secondary battery
Provided is a rectangular secondary battery with improved rigidity against vibrations and impacts. A rectangular secondary battery of the present invention includes: a flat-shaped electrode group; a current-collecting plate electrically connected to the electrode group; a battery case accommodating the current-collecting plate and the electrode group; a battery cover that closes an opening of the battery case; an electrode terminal penetrating through the battery cover, the electrode terminal being connected to the current-collecting plate via a connecting member; and a gasket that is inserted between the electrode terminal and the battery cover for insulating and sealing. An insulator is disposed between the current-collecting plate and the battery cover, the battery cover includes a battery cover side fixing part that fixes the insulator, and the insulator includes a current-collecting plate side fixing part that fixes the current-collecting plate. |
US11552376B2 |
Electrode assembly and method for manufacturing the same
The present invention provides a single electrode assembly, in which a plurality of negative electrodes and positive electrodes are stacked alternately and repeatedly, and separators are disposed between the plurality of negative electrodes and positive electrodes, the electrode assembly including: a negative electrode tab part formed on one end of the electrode assembly and extending from the plurality of negative electrodes; a positive electrode bus bar spaced apart from the negative electrode tab part on the one end of the electrode assembly and electrically connecting the plurality of the positive electrodes; a positive electrode tab part formed on the other end of the electrode assembly opposite to the one end and extending from the plurality of positive electrodes; and a negative electrode bus bar spaced apart from the positive electrode tab part on the other end of the electrode assembly and electrically connecting the plurality of the negative electrodes. |
US11552373B2 |
Battery and method of manufacturing battery
A welding step involves solid-state welding together an external terminal and a seat portion of an internal terminal by causing the external terminal or the internal terminal to vibrate while detaching an insulator from the external terminal in at least a region surrounding the seat portion and pressing the external terminal against the seat portion. |
US11552371B2 |
Battery module
Provided is a battery module that prevents a new current path that may be formed due to molten metal resulting from a molten and cut fuse, and has better safety than conventional battery modules. A battery module includes: module terminals; a battery cell group including a plurality of battery cells; and a plurality of bus bars connecting the plurality of battery cells of this battery cell group and connecting this battery cell group with the module terminals. At least one of the plurality of bus bars has a fuse. The battery module has a space that is located below the fuse and that allows the molten fuse to fall. |
US11552370B2 |
Lead acid battery separators, batteries and related methods
In accordance with at least selected embodiments or aspects, the present invention is directed to improved, unique, and/or complex performance lead acid battery separators, such as improved flooded lead acid battery separators, batteries including such separators, methods of production, and/or methods of use. The preferred battery separator of the present invention addresses and optimizes multiple separator properties simultaneously. It is believed that the present invention is the first to recognize the need to address multiple separator properties simultaneously, the first to choose particular multiple separator property combinations, and the first to produce commercially viable multiple property battery separators, especially such a separator having negative cross ribs. |
US11552367B2 |
Battery holder structure
A battery holder structure is disposed on an electric wrench which includes a battery unit, and the battery holder structure includes a back cover assembly. The back cover assembly is assembled on an end of the electric wrench, and the back cover assembly includes a cover, a supporting member, a first elastic member and a second elastic member. The cover has an accommodating space. The supporting member is disposed in the accommodating space. The first elastic member is assembled on an end of the supporting member, an end of the first elastic member contacts with the cover, and another end of the first elastic member contacts with the supporting member. The second elastic member is assembled on another end of the supporting member, an end of the second elastic member contacts with the supporting member, and another end of the second elastic member contacts with the battery unit. |
US11552364B2 |
Power supply apparatus and branch connector apparatus
A power supply apparatus includes a battery pack for a motor vehicle, and a power interface part that connects the battery pack and a plurality of electrical devices. The power interface part includes a battery-side connector, and a branch connector apparatus. The branch connector apparatus includes a joining part for connection lines, a fuse, a housing, and a connector. A guided part is provided on an outer side surface of the housing. The battery pack includes a slot part allowing the branch connector apparatus to be inserted and extracted. The battery-side connector is provided in the slot part. A guiding part extending along an insertion and extraction direction is provided on an inner side surface of the slot part. The guided part is guided along an extension direction of the guiding part by the guiding part. |
US11552362B2 |
Battery charging circuit integrated inside battery pack
Battery charging systems having battery charging circuits are described. The battery charging circuit can be located within a battery housing. Alternatively, the battery charging circuit can be located within a charging shoe housing. Also described are power source modules. In addition, various methods of charging and discharging are described. |
US11552357B2 |
Secondary battery and manufacturing method therefor
Various embodiments of the present invention relate to a secondary battery and a manufacturing method therefor, and the objective of the present invention is to provide a secondary battery having improved safety and a manufacturing method therefor, the secondary battery preventing an electrode assembly from moving inside a laminate exterior material during a drop shock and/or collision, thereby suppressing a voltage drop, a heating phenomenon, and/or ignition and the like caused by a small short between a cathode plate and an anode plate. To this end, disclosed in various embodiments of the present invention are a secondary battery and a manufacturing method therefor, the battery comprising: an electrode assembly including a first electrode plate, a second electrode plate, and a separator interposed between the first electrode plate and the second electrode plate; a pouch exterior case for encompassing the electrode assembly; and an adhesive dispensed in a dot array form on a surface of the pouch exterior case toward the electrode assembly. |
US11552356B2 |
Electricity storage device member, method of manufacturing the same, and electricity storage device
An electricity storage device member is provided. The electricity storage device member includes a base material mainly composed of a metal and a resin layer stacked on the base material, in which the resin layer contains a crosslinked fluororesin. |
US11552353B2 |
Hybrid power supply circuit, use of a hybrid power supply circuit and method for producing a hybrid power supply circuit
A hybrid power supply circuit, a method using a hybrid power supply circuit and method for producing a hybrid power supply circuit are disclosed. In an embodiment a hybrid power-supply circuit includes a first energy-storage device and a second energy-storage device, wherein the first and second energy-storage devices are combined in a module and electrically interconnected, and wherein the first energy-storage device is a solid-state accumulator. |
US11552351B2 |
Electrical cells and batteries, method for manufacturing the same and method for improving the performances of electrical cells and batteries
Disclosed is an electrical cell comprising a negative electrode, a positive electrode, and a deposition layer separating the positive electrode and a gas phase that supplies at least one reactive gas; wherein the deposition layer and the positive electrode are in communication with each other via electrolyte(s). Also disclosed is a battery comprising the electrical cell described above and a battery comprising: a cell comprising a negative electrode in communication with an anolyte and a positive electrode in communication with a catholyte; and a gas-liquid reactor, which is fed with the catholyte from the cell and a gas. Additionally, also disclosed is a method for improving the performances of a cell or battery comprising a negative electrode, a positive electrode, and a deposition layer separating the positive electrode and a gas phase that supplies at least one reactive gas, wherein the deposition layer and the positive electrode are in communication with each other via electrolyte(s), the method comprising: controlling reaction fronts away from the positive electrode by tuning the flux of compound(s) in the electrolyte(s), which can react with the reactive gas to form a solid, and/or the flux of the reactive gas. |
US11552348B2 |
Array frame design for electrified vehicle battery arrays
A battery array frame according to an exemplary aspect of the present disclosure includes, among other things, a frame body, and a thermal fin including a body embedded in the frame body and a leg that extends outside of the frame body. The thermal fin is flexible between a first position in which the leg is spaced farther from a surface of the frame body and a second position in which the leg is spaced closer to the surface of the frame body. |
US11552347B2 |
Bi-directional switchable cooling flow for traction battery
An apparatus and method, according to an exemplary aspect of the present disclosure includes, among other things, a battery pack having a coolant inlet and a coolant outlet, a coolant source to cool the battery pack, and a proportional valve in communication with the coolant inlet and the coolant outlet, and in communication with the coolant source. A battery control module controls the proportional valve such that a direction of flow is switchable at the coolant inlet and the coolant outlet based on temperatures at the coolant inlet and the coolant outlet to provide bi-directional cooling flow through the battery pack. The battery control module directly connects the coolant outlet to the coolant inlet via the proportional valve to bypass the coolant source in response to a predetermined condition. |
US11552342B2 |
Battery module and battery pack including the same
A battery module according to an exemplary embodiment of the present invention includes: a housing receiving a plurality of battery cells and including a bottom plate and a lateral plate; and a connection board disposed at one end or both ends of the housing, wherein the connection board is bonded to the lateral plate. The lateral plate may include a plurality of bus bar supporting members, at least some among the plurality of bus bar supporting members having a hooking protrusion protruded upward. The connection board may include a hooking member having a hooking groove opened downward. Thus, the hooking protrusion may be inserted into the hooking groove in a state in which the connection board is bonded to the lateral plate. |
US11552341B2 |
Method for inspecting a secondary battery
An inspection method for a secondary battery includes: constituting a circuit by connecting a charged secondary battery to a power supply; measuring a circuit current flowing through the circuit in association with self-discharge of the secondary battery; and determining the quality of the secondary battery based on a measured value of the circuit current converged in the measuring. During execution of the measuring, a battery temperature control is performed to control the temperature of the secondary battery. |
US11552336B2 |
Battery pack
A battery pack includes a cell block including battery cells electrically connected to each other, the cell block having a pair of long sides and a pair of short sides which surround lateral surfaces of the battery cells and are tangent to the lateral surfaces of the battery cells, and a flexible wiring surrounding the cell block in a direction parallel to the pair of long sides of the cell block, the flexible wiring including sensors to detect state information from the battery cells. |
US11552331B2 |
Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary
A solid electrolyte composition includes: an inorganic solid electrolyte (A) having ion conductivity of a metal belonging to Group 1 or Group 2 in the periodic table; a binder (B); and a dispersion medium (C), in which the binder (B) includes a first binder (B1) that precipitates by a centrifugal separation process and a second binder (B2) that does not precipitate by the centrifugal separation process, the centrifugal separation process being performed in the dispersion medium (C) at a temperature of 25° C. at a centrifugal force of 610000 G for 1 hour, and a content X of the first binder (B1) and a content Y of the second binder (B2) satisfy the following expression, 0.01≤Y/(X+Y)<0.10. |
US11552328B2 |
Lithium battery cell including cathode having metal fluoride core-shell particle
An embodiment is directed to a Li metal or Li-ion battery, including a conversion-type metal fluoride comprising cathode capable of storing and releasing Li ions during battery operation, a conversion-type type or Li metal-type anode capable of storing and releasing Li ions during battery operation, a separator membrane ionically coupling and electronically insulating the cathode and the anode, and a solid electrolyte with a Li transference number in the range from around 0.7 to around 1.0 impregnating at least the cathode, wherein the cathode comprises composite a core-shell particle and has an areal capacity loading that ranges from around 2 mAh/cm2 to around 12 mAh/cm2. |
US11552327B2 |
Electrodes for increased wettability
Batteries according to embodiments of the present technology may include an electrode stack. The electrode stack may include an anode electrode having an anode current collector, and an anode active material disposed on the anode current collector. The anode electrode may define one or more first apertures through the anode electrode. The electrode stack may also include a cathode electrode having a cathode current collector, and a cathode active material disposed on the cathode current collector. The cathode electrode may define one or more second apertures through the cathode electrode. |
US11552325B2 |
Flow battery
A flow battery includes a negative electrode, a positive electrode, a first liquid in contact with the negative electrode, a second liquid in contact with the positive electrode, and a lithium-ion-conductive film disposed between the first liquid and the second liquid. At least one of the first liquid or the second liquid contains a redox species and lithium ions. The lithium-ion-conductive film includes an inorganic member containing zeolite. |
US11552320B2 |
Anion exchange polymers and anion exchange membranes for direct ammonia fuel cells
An anion exchange polymer includes aryl ether linkage free polyarylenes having aromatic/polyaromatic rings in polymer backbone and a tethered alkyl quaternary ammonium hydroxide side groups. This anion exchange polymer may be utilized in an anion exchange process and may be made into a thin anion transfer membrane. An ion transfer membrane may be mechanically reinforced having one or more layers of functional polymer based on a terphenyl backbone with quaternary ammonium functional groups and an inert porous scaffold material for reinforcement. An anion exchange membrane may have multilayers of anion exchange polymers which each containing varying types of backbones, varying degrees of functionalization, or varying functional groups to reduce ammonia crossover through the membrane. |
US11552314B2 |
Fuel cell system
To provide a fuel-efficient fuel cell system configured to eliminate flooding in a fuel-based gas flow path, etc. The fuel cell system is a fuel cell system comprising a first fuel cell stack, a second fuel cell stack, a fuel gas supplier, a first supply flow path, a first circulation flow path, a second supply flow path, a second circulation flow path, a first bypass flow path which includes a first on-off valve, a second bypass flow path which includes a second on-off valve, a temperature detector, a current detector, a voltage detector and a controller. |
US11552310B2 |
Cooling system for fuel cell stacks
The invention relates to a cooling system (10) for fuel cell stacks (22, 26), comprising a first cooling module (14) and a second cooling module (18). The first cooling module (14) comprises a fuel cell stack (22, 26), a supply line connection (30, 34) for connecting a supply line (38, 42) for supplying coolant to the fuel cell stack (22, 26), a discharge line connection (46, 50) for connecting a discharge line (54, 58) for discharging coolant from the fuel cell stack (22, 26), and a venting line connection (94, 98) for connecting a venting line (102, 106). |
US11552307B2 |
Fuel cell system
A gas liquid separator of a fuel cell system includes a first channel forming section forming a first channel for allowing an oxygen-containing exhaust gas to flow in a horizontal direction, and a second channel forming section forming a second channel connected to the first channel. The first channel forming section is provided with an inlet for guiding the oxygen-containing exhaust gas into the first channel. The second channel forming section is provided with an outlet for discharging the oxygen-containing exhaust gas flowing through the second channel. The second channel includes a bent channel for guiding upward the oxygen-containing exhaust gas guided from the first channel. |
US11552294B2 |
Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
Provided are a nickel-based active material for a lithium secondary battery, a method of preparing the nickel-based active material, and a lithium secondary battery including a positive electrode including the nickel-based active material. The nickel-based active material includes at least one secondary particle that includes at least two primary particle structures, the primary particle structures each including a porous inner portion and an outer portion having a radially arranged structure, and the secondary particle including at least two radial centers. |
US11552286B2 |
Lithium-ion battery
The present disclosure provides a lithium-ion battery, the lithium-ion battery comprises a positive electrode plate, a negative electrode plate, a separator and an electrolyte. The positive active material comprises a material having a chemical formula of LiaNixCoyMzO2, the negative active material comprises a graphite-type carbon material, the lithium-ion battery satisfies a relationship 58%≤KYa/(KYa+KYc)×100%≤72%. In the present disclosure, by reasonably matching the relationship between the anti-compression capability of the positive active material and the anti-compression capability of the negative active material, it can make the positive electrode plate and the negative electrode plate both have good surface integrity, and in turn make the lithium-ion battery have excellent dynamics performance and excellent cycle performance at the same time. |
US11552283B2 |
Method of coating a flexible substrate in a R2R deposition system, and vapor deposition system
A method of coating a flexible substrate in a roll-to-roll deposition system is described. The method includes unwinding the flexible substrate from an unwinding roll, the flexible substrate having a first coating on a first main side thereof; measuring a lateral positioning of the first coating while guiding the flexible substrate to a coating drum; adjusting a lateral position of the flexible substrate on the coating drum depending on the measured lateral positioning of the first coating; and depositing a second coating on the flexible substrate, particularly on a second main side of the flexible substrate opposite the first main side. Further described is a vacuum deposition apparatus for conducting the methods described herein. |
US11552282B2 |
Roll press apparatus comprising stepped revision member and method for pressing using the same
According to an exemplary embodiment of the present invention, a roll press apparatus is provided. The roll press apparatus presses electrode sheets, each including a both-side coated portion where an electrode mixture is applied to both sides of a current collector and a one-side coated portion where the electrode mixture is applied to one side of a current collector, by passing the electrode sheet through a separated space between a pair of press rolls. |
US11552278B2 |
Integrated photobiomodulation device
Embodiments of the disclosed subject matter may provide a display device or display surface including at least one emissive layer and a near-infrared (NIR) emissive layer disposed in a stack arrangement between a first electrode and a second electrode, where NIR light is emitted from the NIR emissive layer through the at least one emissive layer, or visible light is emitted from the at least one emissive layer through the NIR emissive layer, and where the NIR light output by the NIR emissive layer has a peak wavelength of 740 nm-1000 nm. Embodiments of the disclosed subject matter may provide a near infrared (NIR) light source disposed behind or in front of an active-matrix organic light emitting diode (AMOLED), where the NIR light source has an area greater than 25% of an active area of the display device or display surface. |
US11552277B2 |
Light-emitting device including a light-transmitting interconnect located over a substrate
A substrate (100) is a light-transmitting substrate. A light-transmitting first electrode (110) is formed over the substrate (100). An insulating layer (150) is formed over the substrate (100) and the first electrode (110) and includes an opening (152) overlapping the first electrode (110). An organic layer (120) is located within at least the opening (152). A light-transmitting second electrode (130) is formed over the organic layer (120). An intermediate layer (200) is formed in at least a portion of a region of a lateral side of the first electrode (110) overlapping the first electrode (110). A refractive index of the intermediate layer (200) is between a refractive index of the substrate (100) and a refractive index of the first electrode (110). |
US11552273B2 |
Display device with refractive layers
A display device may include a pixel electrode, a pixel defining layer on the pixel electrode and having a pixel opening that exposes at least a portion of the pixel electrode, an emission layer on the pixel electrode in the pixel opening, an opposite electrode on the emission layer, a first refractive layer on the opposite electrode and having a refractive opening, the first refractive layer having a first refractive index, and a second refractive layer on the first refractive layer and having a second refractive index greater than the first refractive index. A maximum inclination angle of a sidewall of the first refractive layer exposed by the refractive opening with respect to a lower surface of the first refractive layer may be between about 65 degrees and about 90 degrees. |
US11552272B2 |
Display panel and manufacturing method thereof
A display panel includes: first and second substrates, each including a display area and a peripheral area in a plan view; and a sealing portion disposed between the first and second substrates. An edge of the display panel includes straight-lined and shaped edges, and the shaped edge includes a curved portion. An edge surface of the first substrate at the straight-lined edge, an edge surface of the second substrate at the straight-lined edge and an edge surface of the sealing portion at the straight-lined edge collectively define a first convex surface, an edge surface of the first substrate at the shaped edge, an edge surface of the second substrate at the shaped edge and an edge surface of the sealing portion at the shaped edge collectively define a second convex surface, and shapes of the first and second convex surfaces are different from each other. |
US11552266B2 |
Electrodes for electronic devices comprising an organic semiconducting layer
The present application relates to an organic electronic device, said electronic device comprising a multi-layer electrode as well as an organic semiconducting layer, as well as to a method for producing such organic electronic device. |
US11552264B2 |
Electronic apparatus
An electronic apparatus includes an electronic panel, a first support plate below the electronic panel, a second support plate below the first support plate, and a first input sensor between the first support plate and the second support plate. The electronic panel includes light emitting parts arranged in an active area. The active area includes a folding area and a first non-folding area and a second non-folding area adjacent to the folding area and spaced apart from each other. The first support plate includes a folding part overlapping the folding area, and a first support part and a second support part spaced apart from each other, the folding part being disposed between the first support part and the second support part. An edge of the second support plate protrudes further in the second direction than an edge of the first support plate protrudes. |
US11552262B2 |
Organic molecules for use in optoelectronic devices
The invention relates to an organic molecule, in particular for use in organic optoelectronic devices. According to the invention, the organic molecule has one first chemical moiety with a structure of formula I, and one second chemical moiety with a structure of formula II, wherein the first chemical moiety is linked to the second chemical moiety via a single bond. |
US11552260B2 |
Condensed cyclic compound and organic light-emitting device including the same
Provided are a condensed cyclic compound having the following structure: wherein ring D1 and ring D2 are each independently a C6-C20 aromatic ring, and an organic light-emitting device including the same. |
US11552256B2 |
Light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
To provide a light-emitting element with an improved reliability, a light-emitting element with a high current efficiency (or a high quantum efficiency), and a novel dibenzo[f,h]quinoxaline derivative that is favorably used in a light-emitting element which is one embodiment of the present invention. A light-emitting element includes an EL layer between an anode and a cathode. The EL layer includes a light-emitting layer; the light-emitting layer contains a first organic compound having an electron-transport property and a hole-transport property, a second organic compound having a hole-transport property, and a light-emitting substance; the combination of the first organic compound and the second organic compound forms an exciplex; the HOMO level of the first organic compound is lower than the HOMO level of the second organic compound; and a difference between the HOMO level of the first organic compound and the HOMO level of the second organic compound is less than or equal to 0.4 eV. |
US11552252B1 |
Organic electroluminescence device and electronic apparatus
An organic electroluminescence device including: an anode, a cathode, and at least one emitting layer between the cathode and the anode, wherein the emitting layer contains a first host material, a second host material, and a dopant material, the first host material is a compound having at least one deuterium atom, and the emitting layer contains the first host material in the proportion of 1% by mass or more. |
US11552249B2 |
Polyimide luminescent material, preparation method thereof, and device thereof
A polyimide luminescent material, a preparation method, and a used thereof are disclosed; the polyimide luminescent material includes a polyimide resin and a rare earth complex distributed in the polyimide resin, wherein the polyimide resin is a condensation polymer of an aromatic diamine containing a bidentate chelate ligand and an aromatic dianhydride, and the rare earth complex and the bidentate chelate ligand are connected by a chemical bond. The luminescent material has enhanced fluorescence intensity, thermal stability, and mechanical properties. The preparation method is simple and easy, and is suitable for industrial production. |
US11552242B2 |
Weyl semimetal material for magnetic tunnel junction
In some examples, a device includes a magnetic tunnel junction including a first Weyl semimetal layer, a second Weyl semimetal layer, and a dielectric layer positioned between the first and second Weyl semimetal layers. The magnetic tunnel junction may have a large tunnel magnetoresistance ratio, which may be greater than five hundred percent or even greater than one thousand percent. |
US11552241B2 |
Magnetoresistance random access memory (MRAM) device
A method for fabricating a semiconductor device includes the steps of: forming a first metal interconnection on a substrate; forming a stop layer on the first metal interconnection; removing the stop layer to form a first opening; forming an electromigration enhancing layer in the first opening; and forming a second metal interconnection on the electromigration enhancing layer. Preferably, top surfaces of the electromigration enhancing layer and the stop layer are coplanar. |
US11552240B2 |
Machines and processes for producing polymer films and films produced thereby
A sensor is disclosed which includes a piezoelectric layer, a piezoresistive layer, one or more electrode layers coupled to the piezoelectric layer and to the piezoresistive layer, the piezoelectric layer configured to provide an electrical signal in response to application of a dynamic disturbance, and the piezoresistive layer configured to provide a change in resistivity in response to application of a static disturbance. |
US11552238B2 |
Systems and methods for qubit fabrication
A method of fabricating a superconducting-semiconducting stack includes cleaning a surface of a substrate, the substrate comprising a group IV element; depositing an insulating buffer layer onto the substrate, the insulating buffer layer comprising the group IV element; depositing a p-doped layer onto the insulating buffer layer; depositing a diffusion barrier onto the p-doped layer; and processing the superconducting-semiconducting stack through dopant activation. |
US11552236B2 |
Superconducting qubit capacitance and frequency of operation tuning
A method for adjusting a resonance frequency of a qubit in a quantum mechanical device includes providing a substrate having a frontside and a backside, the frontside having at least one qubit formed thereon, the at least one qubit comprising capacitor pads; and removing substrate material from the backside of the substrate at an area opposite the at least one qubit to alter a capacitance around the at least one qubit so as to adjust a resonance frequency of the at least one qubit. |
US11552229B2 |
Spacer layer arrangements for light-emitting diodes
Solid-state lighting devices including light-emitting diodes (LEDs), and more particularly LEDs and packaged LED devices with spacer layer arrangements are disclosed. An LED package may include one or more LED chips on a submount with a light-altering material arranged to redirect light in a desired emission direction with increased efficiency. A spacer layer is arranged in the LED package to cover rough surfaces and any gaps that may be formed between adjacent LED chips. When the light-altering material is applied to the LED package, the spacer layer provides a surface that reduces unintended propagation of the light-altering material toward areas of the LED package that would interfere with desired light emissions, for example over LED chips and between LED chips. In various arrangements, the spacer layer may cover one or more surfaces of a lumiphoric material, one or more LED chip surfaces, and portions of an underlying submount. |
US11552228B2 |
Optoelectronic component and method for producing an optoelectronic component
An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment an optoelectronic component includes a semiconductor chip including a plurality of pixels, each pixel configured to emit electromagnetic primary radiation from a radiation exit surface and conversion layers located on at least a part of the radiation exit surfaces, wherein the conversion layers comprise a crosslinked matrix having a three-dimensional siloxane-based network and at least one phosphor embedded in the matrix, and wherein the conversion layers have a thickness of ≤30 μm. |
US11552225B2 |
Phosphor layer for micro-LED applications
Embodiments include a device having a micro-LED that includes at least two, individually addressable light emitting diodes on a same substrate; a phosphor converter layer disposed on the micro-LED, the phosphor converter layer including phosphor particles having a D50 of greater than 1 μm and less than 10 μm. |
US11552224B2 |
Wavelength conversion device
A wavelength conversion device includes a wavelength conversion plate, a reflective layer, a driving component and a thermal conductive layer. The wavelength conversion plate includes a lateral edge, at least one surface and a conversion region. The reflective layer is disposed on the surface of the wavelength conversion plate. The driving component is disposed near the lateral edge of the wavelength conversion plate and configured to displace the wavelength conversion plate. The thermal conductive layer is disposed on the surface of the wavelength conversion plate and thermally connected to the conversion region for conducting heat generated by the conversion region during a wavelength conversion. By disposing the thermal conductive layer on the surface of the wavelength conversion plate, the thermal conductive layer is thermally directly connected to the conversion region, so that the heat generated at the conversion region during the wavelength conversion is efficiently dissipated. |
US11552222B2 |
Display device
The display device includes a substrate, a patterned wall, the first, second, third sub-pixels, and an optical layer. The patterned wall is disposed on the substrate and has a plurality of openings. The first sub-pixel is disposed in one of the openings and includes a light-emitting element and a wavelength conversion layer. The second sub-pixel is disposed in one of the openings and includes a light-emitting element and a wavelength conversion layer. The third sub-pixel is disposed in one of the openings and includes a light-emitting element and a wavelength conversion layer, wherein a first distance between a top surface of the light-emitting element and a top surface of the patterned wall is about 10 um to about 100 um. The optical layer is disposed on the patterned wall and in direct contact with at least one of the first sub-pixel, the second sub-pixel, and the third sub-pixel. |
US11552220B2 |
Electronic component mounting package for mounting a light-emitting element, electronic device, and electronic module
An electronic component mounting package includes: an insulating base body including a principal face and a recess which opens in the principal face; and a metallic pattern including a plurality of metallic layers lying across a side face of the recess and the principal face. The metallic pattern includes, as an inner layer, at least one metallic layer selected from a tungsten layer, a nickel layer, and a gold layer, and an aluminum layer as an outermost layer. The metallic pattern includes an exposed portion corresponding to a part of the metallic layer constituting the inner layer which part is exposed at the principal face. |
US11552218B2 |
Aluminum nitride laminate member and light-emitting device
There is provided an aluminum nitride laminate member including: a sapphire substrate having a base surface on which bumps are distributed periodically, each bump having a height of smaller than or equal to 500 nm; and an aluminum nitride layer grown on the base surface and having a flat surface, there being substantially no voids in the aluminum nitride layer. |
US11552210B2 |
Polymer composition for photovoltaic applications
The present invention relates to a polymer composition, to an article comprising the polymer composition, preferably to an article which is a photovoltaic (PV) module comprising at least one layer element (LE) comprising the polymer composition and to a process for producing said article, preferably said photovoltaic (PV) module. |
US11552206B2 |
Optical waveguide type photodetector
An optical waveguide type photodetector includes a first semiconductor layer of a first conductive type, a multiplication layer of a first conductive type on the first semiconductor layer, an optical waveguide structure, and a photodiode structure. The photodiode structure has a third semiconductor layer of a second conductive type, an optical absorption layer of an intrinsic conductive type or of a second conductive type, and a second semiconductor layer of a second conductive type. The optical waveguide structure includes an optical waveguiding core layer and a cladding layer. An end face of the photodiode structure located in a second region of the first semiconductor layer and an end face of the optical waveguide structure located in a first region of the first semiconductor layer are in contact. |
US11552205B2 |
Optical sensing device having inclined reflective surface
Disclosed are devices for optical sensing and manufacturing method thereof. In one embodiment, a device for optical sensing includes a substrate, a photodetector and a reflector. The photodetector is disposed in the substrate. The reflector is disposed in the substrate and spaced apart from the photodetector, wherein the reflector has a reflective surface inclined relative to the photodetector that reflects light transmitted thereto to the photodetector. |
US11552203B2 |
Photoconductive semiconductor switch assembly utilizing a resonant cavity
A PCSS comprises a photoconductive semiconductor block that exhibits electrically-conductive behavior when exposed to light of a predetermined wavelength; two or more electrodes fixed to the photoconductive semiconductor block and connectable to a power supply; a resonance cavity enveloping the photoconductive semiconductor block, the resonance cavity having a reflective outer surface to trap light within the resonance cavity and the photoconductive semiconductor block, the resonance cavity having a window through the reflective outer surface to admit light of the predetermined wavelength, the resonance cavity being transmissive to light of the predetermined wavelength within the reflective outer surface; and a light source directed toward the photoconductive semiconductor block and through the window, and emitting light at the predetermined wavelength. The photoconductive semiconductor block may include Si, GaAs, GaN, AlN, SiC, and/or Ga2O3. The resonance cavity may include glass, crystal, Au, Ag, Cr, Ni, V, Pd, Pt, Ir, Rh, and/or Al. |
US11552202B2 |
High efficiency solar cell and method for manufacturing high efficiency solar cell
A solar cell including a semiconductor substrate having a first conductivity type an emitter region, having a second conductivity type opposite to the first conductivity type, on a first main surface of the semiconductor substrate an emitter electrode which is in contact with the emitter region a base region having the first conductivity type a base electrode which is in contact with the base region and an insulator film for preventing an electrical short-circuit between the emitter region and the base region, wherein the insulator film is made of a polyimide, and the insulator film has a C6H11O2 detection count number of 100 or less when the insulator film is irradiated with Bi5++ ions with an acceleration voltage of 30 kV and an ion current of 0.2 pA by a TOF-SIMS method. The solar cell can have excellent weather resistance and high photoelectric conversion characteristics. |
US11552200B2 |
Avalanche photodiode gain control comprising a bias circuit having a second avalanche photodiode
An avalanche photo-diode (APD) circuit includes a first APD and a bias circuit. The first APD is configured to detect light. The bias circuit is configured to control a gain of the first APD. The bias circuit includes a second APD, a reference voltage source, a bias voltage generation circuit, and a metal layer configured to shield the second APD from the light. The reference voltage source is configured to bias the second APD. The bias voltage generation circuit is configured to generate a bias voltage for biasing the first APD based on dark current output by the second APD. |
US11552196B2 |
Low noise amplifier transistors with decreased noise figure and leakage in silicon-on-insulator technology
A metal oxide semiconductor field effect transistor preferably fabricated with a silicon-on-insulator process has a first semiconductor region and a second semiconductor region in a spaced relationship thereto A body structure is defined by a channel segment between the first semiconductor region and the second semiconductor region, and a first extension segment structurally contiguous with the channel segment. A shallow trench isolation structure surrounds the first semiconductor region, the second semiconductor region, and the body structure, with a first extension interface being defined between the shallow trench isolation structure and the first extension segment of the body structure to reduce leakage current flowing from the second semiconductor region to the first semiconductor region through a parasitic path of the body structure. |
US11552194B2 |
Low loss power device and method for fabricating thereof
Existing semiconductor transistor processes may be leveraged to form lateral extensions adjacent to a conventional gate structure. The dielectric thickness under these lateral gate extensions can be varied to optimize device channel resistance and enable resistance to breakdown at high operating voltages. These extensions may be patterned with dimensions that are not limited by lithographic resolution and overlay capabilities and are compatible with conventional processing for ease of integration with other devices. The lateral extensions and dielectric spacers may be used to form self-aligned source, drain, and channel regions. A thin dielectric layer may be formed under an extension gate to reduce channel resistance. A thick dielectric layer may be formed under an extension gate to improve operation voltage range. The present invention provides an innovative structure with lateral gate extensions which may be referred to as EGMOS (extended gate metal oxide semiconductor). |
US11552193B2 |
Semiconductor device
An embodiment of a semiconductor device may include a transistor having a first doped region and a second doped region that extend laterally underlying the source, body, and drain of the transistor. The transistor may have an embodiment that includes an additional bias contact to apply a bias potential to the first doped region and or alternately the second doped region. |
US11552190B2 |
High voltage double-diffused metal oxide semiconductor transistor with isolated parasitic bipolar junction transistor region
A modified structure of an n-channel lateral double-diffused metal oxide semiconductor (LDMOS) transistor is provided to suppress the rupturing of the gate-oxide which can occur during the operation of the LDMOS transistor. The LDMOS transistor comprises a dielectric isolation structure which physically isolates the region comprising a parasitic NPN transistor from the region generating a hole current due to weak-impact ionization, e.g., the extended drain region of the LDMOS transistor. According to an embodiment of the disclosure, this can be achieved using a vertical trench between the two regions. Further embodiments are also proposed to enable a reduction in the gain of the parasitic NPN transistor and in the backgate resistance in order to further improve the robustness of the LDMOS transistor. |
US11552189B2 |
High electron mobility transistor (HEMT) devices and methods
Embodiments are directed to high electron mobility transistor (HEMT) devices and methods. One such HEMT device includes a substrate having a first surface, and first and second heterostructures on the substrate and facing each other. Each of the first and second heterostructures includes a first semiconductor layer on the first surface of the substrate, a second semiconductor layer on the first surface of the substrate, and a two-dimensional electrode gas (2DEG) layer between the first and second semiconductor layers. A doped semiconductor layer is disposed between the first and second heterostructures, and a source contact is disposed on the first heterostructure and the second heterostructure. |
US11552188B2 |
High-voltage semiconductor structure
A semiconductor structure includes a substrate, a semiconductor epitaxial layer, a semiconductor barrier layer, a first semiconductor device, a doped isolation region, and at least one isolation pillar. The substrate includes a core layer and a composite material layer, the semiconductor epitaxial layer is disposed on the substrate, and the semiconductor barrier layer is disposed on the semiconductor epitaxial layer. The first semiconductor device is disposed on the substrate, where the first semiconductor device includes a first semiconductor cap layer disposed on the semiconductor barrier layer. The doped isolation region is disposed at one side of the first semiconductor device. At least a portion of the isolation pillar is disposed in the doped isolation region, and the isolation pillar surrounds at least a portion of the first semiconductor device and penetrates the composite material layer. |
US11552186B2 |
Inverter based on electron interference
Semiconductor devices includes third arms. A channel from the first and second arms extends to a channel of the third arm. When a current from a first voltage is flowing from the first arm to the second arm, a flow of ballistic electrons is generated that flow through the third arm channel from the channel of the first and second arms to the third arm channel. A fin structure located in the third arm channel and includes a gate. The gate is controlled using a second voltage over the fin structure, the fin structure is formed to induce an energy-field structure that shifts by an amount of the second voltage to control an opening of the gate that the flow of ballistic electrons pass through, which in turn changes a depletion width, subjecting the ballistic electrons to diffraction, and then interference. |
US11552182B2 |
Integrated circuit devices including a vertical field-effect transistor (VFET) and methods of forming the same
Integrated circuit devices and methods of forming the same are provided. The methods may include forming a dummy channel region and an active region of a substrate, forming a bottom source/drain region on the active region, forming a gate electrode on one of opposing side surfaces of the dummy channel region, and forming first and second spacers on the opposing side surfaces of the dummy channel region, respectively. The gate electrode may include a first portion on the one of the opposing side surfaces of the dummy channel region and a second portion between the bottom source/drain region and the first spacer. The methods may also include forming a bottom source/drain contact by replacing the first portion of the gate electrode with a conductive material. The bottom source/drain contact may electrically connect the second portion of the gate electrode to the bottom source/drain region. |
US11552181B2 |
Semiconductor device and method for fabricating the same
A method for fabricating a semiconductor device includes the steps of: forming a fin-shaped structure on a substrate, forming a gate material layer on the fin-shaped structure, performing an etching process to pattern the gate material layer for forming a gate structure and a silicon residue, performing an ashing process on the silicon residue, and then performing a cleaning process to transform the silicon residue into a polymer stop layer on a top surface and sidewalls of the fin-shaped structure. |
US11552175B2 |
Semiconductor device
A semiconductor device includes a semiconductor substrate of a first conductivity type, a first semiconductor layer of the first conductivity type formed on the semiconductor substrate and having a first conductivity type impurity concentration higher than that of the semiconductor substrate, a second semiconductor layer of a second conductivity type formed above the first semiconductor layer, a first device region formed in the second semiconductor layer and configured to operate based on a first reference voltage, a second device region formed in the second semiconductor layer and configured to operate based on a second reference voltage, the second device region being spaced apart from the first device region, and a region isolation structure interposed between the first and second device regions and formed in a region extending from a front surface of the second semiconductor layer to the first semiconductor layer so as to electrically isolate the first and second device regions from each other. |
US11552168B2 |
Tiled lateral BJT
A lateral transistor tile is formed with first and second collector regions that longitudinally span first and second sides of the transistor tile; and a base region and an emitter region that are between the first and second collector regions and are both centered on a longitudinal midline of the transistor tile. A base-collector current, a collector-emitter current, and a base-emitter current flow horizontally; and the direction of the base-emitter current is perpendicular to the direction of the base-collector current and the collector-emitter current. Lateral BJT transistors having a variety of layouts are formed from a plurality of the tiles and share common components thereof. |
US11552167B2 |
Semiconductor device including an element separation structure
A semiconductor device includes first and second active patterns extending in a first direction, a first epitaxial pattern on the first active pattern and adjacent to the second active pattern, a second epitaxial pattern on the second active pattern and adjacent to the first active pattern, an element separation structure separating the first and second active patterns between the first and second epitaxial patterns, and including a core separation pattern, and a separation side wall pattern on a side wall of the core separation pattern, and a gate structure extending in a second direction intersecting the first direction, on the first active pattern. An upper surface of the gate structure is on the same plane as an upper surface of the core separation pattern. The separation side wall pattern includes a high dielectric constant liner, which includes a high dielectric constant dielectric film including a metal. |
US11552165B2 |
Semiconductor device and manufacturing method of 1HE same
A semiconductor device includes a semiconductor substrate, a transistor section, a diode section, and a boundary section provided between the transistor section and the diode section in the semiconductor substrate. The transistor section has gate trench portions which are provided from an upper surface of the semiconductor substrate to a position deeper than that of an emitter region, and to each of which a gate potential is applied. An upper-surface-side lifetime reduction region is provided on the upper surface side of the semiconductor substrate in the diode section and a partial region of the boundary section, and is not provided in a region that is overlapped with the gate trench portion in the transistor section in a surface parallel to the upper surface of the semiconductor substrate. |
US11552164B2 |
Semiconductor device and manufacturing method therefor
A semiconductor device comprises: a substrate; a well region provided in the substrate, having a second conductivity type; source regions having a first conductivity type; body tile regions having the second conductivity type, the source regions and the body tie regions being alternately arranged in a conductive channel width direction so as to form a first region extending along the conductive channel width direction, and a boundary where the edges of the source regions and the edges of the body tie regions are alternately arranged being formed on two sides of the first region; and a conductive auxiliary region having the first conductivity type, provided on at least one side of the first region, and directly contacting the boundary, a contact part comprising the edge of at least one source region on the boundary and the edge of at least one body tie region on the boundary. |
US11552162B2 |
Transparent display panel and transparent display device including the same
In a transparent display panel, a layer of each of a VSS voltage connection line and a VDD voltage connection line as a power line in a display region is different from a layer of a data line and a reference voltage connection line, while each of the VSS voltage connection line and the VDD voltage connection line partially overlaps the data line and the reference voltage connection line. Thus, an overall width of a line region may be reduced. Thus, an area of a pixel circuit region is reduced, such that an area of a transmissive region increases, thereby to increase an overall transmittance of the panel. Further, a width of each of the VSS voltage connection line and the VDD voltage connection line is large while reducing or minimizing an area of the line region in the display region. This reduces or minimizes occurrence of VDD drop or VSS rise, thereby to reduce luminance non-uniformity of the panel. |
US11552155B2 |
Method for manufacturing display device
A method for manufacturing a display device includes providing an electronic component between a plurality of bumps, providing a display panel, aligning the electronic component and the display panel, and applying ultrasonic waves to bond the plurality of bumps to signal pads. In providing first adhesive members, at least a portion of a top surface of each of the plurality of bumps is exposed between the first adhesive members. |
US11552154B2 |
Display device with reduced area of dead space at periphery of a light transmissive area disposed in a display area
A display device includes a substrate including a display area including pixels, and a light transmissive area including a portion in the display area, and signal lines disposed in the display area and electrically connected with the pixels, where the signal lines include a first signal line on a first side, a second signal line on a second side and arranged with the first signal line in a first direction, and a third signal line on a third side, and the third signal line is arranged with the first signal line and the second signal line in a second direction, the first and second signal lines are insulated from each other in the display area, and a length of the first signal line is longer than a length of the second signal line in the first direction. |
US11552148B2 |
Array substrate, manufacturing method thereof, and display apparatus
An array substrate, its manufacturing method, and a display apparatus are provided. The array substrate having a substrate, includes: a monocrystalline silicon substrate employed as the substrate including a central display area, a first peripheral area, and a second peripheral area; substrate circuits integrated with a scan drive circuit in the first peripheral area, a data drive circuit in the second peripheral area, and a plurality of pixel circuits in the central display area; a plurality of scan lines in the central display area and coupled to the scan drive circuit; and a plurality of data lines in the central display area and coupled to the data drive circuit. The scan drive circuit, the data drive circuit, and the plurality of pixel circuits include a plurality of transistors, each of which has an active region inside the monocrystalline silicon layer. |
US11552147B2 |
Bezel-less display panel
The present disclosure provides a display panel. The display panel may include a first substrate on which a main display area is disposed, at least one second substrate on which an auxiliary display area smaller than the main display area is disposed, and an organic film connecting the first substrate and the second substrate, wherein at least one second substrate includes a plurality of block substrates separated from each other, wherein the plurality of block substrates are connected by the organic film, and wherein each of the plurality of block substrates comprises pixels of the auxiliary display area. |
US11552146B2 |
Display device
A display device includes: a substrate including a display area including first and second pixels in a first row, and third and fourth pixels arranged in a second row parallel to the first row; a light-transmitting non-display area within the display area; first and second columns parallel to and spaced apart from each other, and each crossing the non-display area; and a plurality of lines including: first and second lines extending along the first row and connected to the first and second pixels, respectively, a first disconnection point where the first and second lines are spaced apart from each other, third and fourth lines extending along the second row and connected to the third and fourth pixels, respectively, and a second disconnection point where the third and fourth lines are spaced apart from each other, where the first and second disconnection points respectively correspond to the first and second columns. |
US11552143B1 |
OLED panel with trench overhang structures
Embodiments described herein generally relate to sub-pixel circuits that may be utilized in a display such as an organic light-emitting diode (OLED) display. The device includes substrate, pixel-defining layer (PDL) structures disposed over the section of the substrate, inorganic or metal overhang structures disposed on an upper surface of the PDL structures, and a plurality of sub-pixels. The PDL structures include a trench disposed in the top surface of the PDL structure. Each sub-pixel includes an anode, an OLED material disposed over and in contact with the anode, and a cathode disposed over the OLED material. The inorganic or metal overhang structures have an overhang extension that extends laterally over the trench. An encapsulation layer is disposed over the cathode and extends under at least a portion of the inorganic or metal overhang structures and along a top surface of the PDL structures. |
US11552142B2 |
Display panel and method of fabricating the same
A method of fabricating a display panel may include forming an oxide semiconductor pattern on a base layer including a first region and a second region, etching first, second, and third insulating layers to form a first groove that overlaps the second region, forming electrodes on the third insulating layer, forming a fourth insulating layer on the third insulating layer to cover the electrodes, thermally treating the fourth insulating layer, forming an organic layer to cover the fourth insulating layer, and forming an organic light emitting diode on the organic layer. |
US11552140B2 |
Top emission organic EL element and manufacturing method thereof
A top emission organic EL element includes a substrate, an insulating layer including a hole portion, a lower electrode, a light emitting layer, a bank surrounding the lower electrode and the light emitting layer, and an upper transparent electrode. The insulating layer, the lower electrode, the light emitting layer, the bank, and the upper transparent electrode are disposed above the substrate. The bank is arranged on the insulating layer so as to surround the hole portion. The lower electrode is configured to cover an inner side of the hole portion and an area, where the bank is not arranged, of an upper surface of the insulating layer, and a thickness at a center area of the lower electrode is 150 nm or more. |
US11552138B2 |
Display device including component areas with corresponding transmission areas
A display device includes a substrate including a display area, a first component area including a first pixel group and a first transmission area, and a second component area including a second pixel group and a second transmission area, main sub-pixels disposed in the display area, and auxiliary sub-pixels disposed in the first pixel group, wherein a first distance between adjacent ones of the auxiliary sub-pixels is different from a second distance between adjacent ones of the main sub-pixels. |