Document | Document Title |
---|---|
US11540222B2 |
Apparatus and method for controlling operation cycle of electronic device in wireless communication system
An electronic device is provided. The electronic device includes a first communication circuit, a second communication circuit, a processor configured to be electrically connected with the first communication circuit and the second communication circuit, and a memory configured to be electrically connected with the processor. The memory includes instructions, when executed by the processor, cause the processor to obtain location information of the electronic device, transmit a first message for requesting to change a state of the electronic device to a network, receive a first response message to the transmitted first message from the network, transmit a second message for requesting a parameter for an operation cycle of the second communication circuit to the network, receive a second response message to the second message from the network, and change the operation cycle of the second communication circuit to a value corresponding to a current state of the electronic device. |
US11540219B2 |
Method for monitoring PDCCH, terminal device, and network device
Embodiments of the present application provide a method for monitoring a PDCCH, a terminal device, and a network device, capable of reducing power consumption when a terminal device monitors a PDCCH. The method comprises: a terminal device receiving a first message sent by a network device, the first message indicating a first time duration and/or whether to monitor a PDCCH within the first time duration; and the terminal device monitoring the PDCCH according to the first message. |
US11540210B2 |
Method for transmitting and receiving downlink channel for MTC terminal, and apparatus therefor
The present invention relates to a method and an apparatus for a base station transmitting a downlink signal for a machine-type communication (MTC) terminal. More specifically, the present invention relates to a method for transmitting and receiving PBCH, PRACH, PDSCH, PDCCH or EPDCCH for a low cost and enhanced coverage MTC terminal, and an apparatus therefor. Particularly, provided are an apparatus and a method for a base station transmitting a control channel, the method comprising the steps of repeatedly transmitting a control channel comprising control information, and repeatedly transmitting downlink data channel (PDSCH) on the basis of information for a subframe ending the control channel being repeatedly transmitted. |
US11540209B2 |
Method for determining a set of encoding formats in order to establish a communication
A method is described for determining a set of coding formats usable by a first terminal to establish communications with a second terminal. The method includes obtaining, from a server, a first set of coding formats permitted on the communication network, and associated with a type of access network and with a type of communication service, and obtaining a second set of coding formats supported by the terminal, a type of access network, and a type of communication service which are used by the terminal. A third set of coding formats are determined, corresponding to a set of coding formats supported by the terminal and permitted by the network with regard to the type of network access and to the type of communication service used by the terminal, and a setup message is transmitted to the second terminal including at least one coding format included in the third set when the third set is not empty. |
US11540201B2 |
Network awareness of device location
Systems and methods for managing a network are disclosed. One method can comprise detecting a triggering event at a node. Location information of the node can be transmitted to a routing device in response to the triggering event. Location information of the node can be transmitted to a management device. The management device can be configured to control an operation of one or more of the node and the routing device in response to the location information. |
US11540197B2 |
Systems and methods for network based dynamic network slice selection control and federation
In some implementations, a network device may receive an identifier associated with an application server. The network device may associate the identifier with a service profile associated with a network slice based on a quality of service associated with the network slice. The network device may provide, to a device associated with the application server, information indicating that the identifier is associated with the service profile. The network device may receive address information associated with the application server. The network device may associate the address information with the service profile. The network device may provide service profile information to a security device included in a core network to cause the security device to forward traffic transmitted by the application server toward a destination via the network slice. The service profile information may include an identifier associated with the service profile, the identifier, and the address information. |
US11540196B2 |
System and method for processing enhanced route selection descriptors
A device includes a memory that stores a User Equipment Route Selection Policy (URSP) that includes a rule. The rule includes enhanced route selection descriptors (RSDs). Each of the enhanced RSDs may include special RSD parameter, such as a Technology selector. The device is configured to receive a request from a component, in the device, to establish a session with a network. The request includes request parameters. The devices processes each of the RSDs. |
US11540195B2 |
Cellular enhancements for application mobility
Apparatuses, systems, and methods for a wireless device to perform detection and mitigation of data stalls. The mitigation may occur during and/or at initiation of a data connection. The wireless device may establish a data connection(s) with a network over a Wi-Fi or cellular interface and monitor the data connection(s) for a data stall condition(s)/hint(s). The wireless device may perform a remedial action(s) responsive to detection of a data stall condition(s)/hint(s), including initiating a service recovery of the cellular interface, initiating a radio access technology (RAT) upgrade procedure, and/or initiating a handover procedure to a neighbor cell. |
US11540193B2 |
Mitigating user equipment overheating for 5G or other next generation network
Wireless network operations can choose a long-term evolution (LTE) and 5G new radio (NR) dual connectivity deployment architecture using LTE as the anchor radio access network (RAN) node and adding mmWave NR as a secondary node when available. However, dual LTE/NR radios can consume more power and contribute more heat, thus degrading performance of radio frequency components. The overheating can be addressed by the user equipment (UE) sending an information message to indicate areas in which it requests to operate with reduced capability. Consequently, the network can determine whether to grant the request, or the UE can switch between NR to LTE depending on NR downlink channel quality. |
US11540191B2 |
Method for transmitting and receiving reference signal and device therefor
Disclosed is a method for a terminal to receive a reference signal in a wireless communication system. In particular, the method comprises: receiving first information related to a reference signal configuration from a serving cell; receiving the reference signal from a neighbor cell on the basis of the first information; and obtaining second information on the timing of the reference signal on the basis of the sequence of the reference signal, wherein the reference signal is of a different type from a SS/PBCH block. |
US11540190B2 |
Methods and apparatuses for deploying a moving base station for internet of things (IoT) applications
Systems, methods, apparatuses, and computer program products for deploying an unmanned vehicle base station (BS) are provided. One method may include receiving an indication from at least one device of its capability to switch to a temporary cell of an unmanned vehicle base station (BS), and determining, based on knowledge of locations on a planned path of the unmanned vehicle base station (BS), which of the at least one device is located within coverage of one of the locations on the planned path. The method may then include configuring discontinuous reception cycles or Power-Saving Mode (PSM) of the at least one device so that the at least one device is awake when the unmanned vehicle base station (BS) establishes the temporary cell. |
US11540187B2 |
Methods for enforcing limited mobility in mobile network
Systems, methods, and instrumentalities are disclosed for enforcing limited mobility in a mobile network. For example, a wireless transmit/receive unit (WTRU) may receive (e.g., receive from a network) a mapping of physical cell identifications (PCIs) to area identifications (AIDs). The WTRU may determine a first PCI associated with a first neighbor cell. The WTRU may determine, based on the first PCI and the PCIs to AIDs mapping, whether the WTRU is allowed to access the first neighbor cell. The WTRU may perform cell selection or reselection with the first neighbor cell as a cell selection or reselection candidate. The WTRU may perform cell selection or reselection based on the WTRU determining that the WTRU is allowed to access the first neighbor cell. The WTRU may determine that the WTRU is allowed to access the first neighbor cell based on the first PCI and the PCIs to AIDs mapping. |
US11540184B1 |
Dynamic handover trigger based on primary path throughput
Systems and methods are provided for dynamically triggering a handover of a wireless device based on a throughput measurement of a source node and a target node on a primary path. The method includes comparing the first throughput measurement at the source access node for the primary path to the second throughput measurement at the target access node or comparing both throughput measurements to predetermined criteria and making a handover determination for the wireless device based on the comparison. |
US11540177B2 |
Method and apparatus for configuring an assistance information bit for local cache bit
The present disclosure relates to a method and apparatus for transmitting and receiving data in a wireless communication system. A method, performed by a terminal dual-connected to a master base station and a secondary base station in a wireless communication system, of configuring an assistance information bit for local cache (AILC) bit includes receiving, from the master base station, a radio resource control (RRC) reconfiguration message including AILC bit configuration information (ailc-BitConfig), configuring an AILC bit of a packet data convergence protocol (PDCP) data packet data unit (PDU) based on at least one of a terminating base station of a data radio bearer (DRB) through which the PDCP data PDU is transmitted, whether the PDCP data PDU includes a service data unit (SDU) to be transmitted to a local cache, whether the DRB is configured with evolved universal terrestrial radio access (E-UTRA) PDCP or New Radio (NR) PDCP, or a PDCP sequence number (SN) of the PDCP data PDU, and transmitting, to the terminating base station, the PDCP data PDU in which the AILC bit is configured. |
US11540173B2 |
Efficient inroute (return channel) load balancing scheme of guaranteed QoS traffic mixed with best effort traffic in an oversubscribed satellite network
A method for balancing inroute traffic load that contains both guaranteed QoS and best effort traffic. Hierarchical grouping levels are defined with the lowest level corresponding to inroutes within the system. Certain levels have common symbol rates, modulation rates, or both. When a new terminal requires admission, it is assigned to entries in the different hierarchical levels so that the inroute traffic load across all levels are balanced. Terminals are admitted to inroutes based, in part, on their channel quality indicator. Inroute traffic load can periodically rebalance based on elapsed time or terminal redistribution. |
US11540172B2 |
Load relocation in a communications network
This application discloses a load relocation method, apparatus, and a system. The method includes determining, by a communications network entity, a target access management entity for load relocation; and sending, to an access network entity, an identifier of an original access management entity and an identifier of the target access management entity or an address of the target access management entity with respect to the access network entity. The access network entity sends a message from UE to the target access management entity based on the identifier of the original access management entity carried in the message from the UE. In the foregoing solution, signaling overheads in a load relocation process are reduced and load relocation efficiency is improved. |
US11540170B2 |
Load-testing a cloud radio access network
A system for load-testing a cloud radio access network (C-RAN) is provided. The system includes at least one radio point (RP), each being configured to exchange radio frequency (RF) signals with at least one user equipment (UE). The system also includes a baseband controller communicatively coupled to the at least one RP via a front-haul ETHERNET network. The front-haul ETHERNET network includes at least one switch; and a testing device that is time-synchronized to the baseband controller and the at least one RP. The testing device is configured to receive at least one packet from each of the at least one RP. The testing device is also configured to replicate each of at least some of the received packets to produce a respective replicated packet. The testing device is also configured to transmit at least one replicated packet to the baseband controller. |
US11540168B2 |
Apparatus and methods of packet retransmission between multi-link devices
Embodiments of the present invention provide apparatus and methods for multi-link operations that include retransmission of data using different wireless links. The following discussion describes one such exemplary electronic system or computer system that can be used as a platform for implementing embodiments of the present invention. The multi-link device can be a multi-link wireless access point or a multi-link wireless station, for example. The multi-link device can operate multiple transceivers simultaneously to perform multi-link operations including retransmission using different wireless links. For example, the multi-link device can transmit an encrypted MPDU using a first wireless link, and retransmit the MPDU using a second wireless link by setting a MAC header of the MPDU according to a MAC address of the second wireless link, to advantageously enhance the performance, reliability, and efficiency of the wireless network. |
US11540164B2 |
Data packet prioritization for downlink transmission at sender level
Techniques for network-based and sender-based data packet prioritization for downlink transmissions are discussed herein. Packets can be tagged or associated with information indicative of a priority of the packet for downlink transmission to a user equipment (UE). A priority level can be determined based on an application identifier or type associated with a data request, a level of user interaction with the UE, network conditions, and other factors. Packets can be received by a PDCP layer of a base station for sending based on the priority. Packets may be associated with a primary priority level associated with a QCI level and a secondary priority level based on UE and/or network factors discussed herein. Packets associated with a same QCI may be prioritized to optimize transmission of downlink data associated with a single UE or between transmission of downlink data associated with a plurality of UEs. |
US11540162B2 |
Wireless perception system energy and information transmission method of unmanned aerial vehicle (UAV) swarm
The present invention discloses a wireless perception system energy and information transmission method of an unmanned aerial vehicle (UAV) swarm, comprising: building a wireless perception system architecture based on multi-UAV energy supply, wherein the system comprises a plurality of wireless powered sensors and a UAV swarm, and each sensor establishes connection with a UAV based on random access to realize network construction; designing energy and information transmission protocols in the swarm and between the swarm and the sensors, designing a joint optimization algorithm and solving optimal system configuration to obtain optimal transmission strategies. The present invention firstly proposes a joint optimization method of multi-network power allocation, time slot design and beam forming under the condition of multi-UAV autonomous collaborative energy supply, and also provides an efficient and reliable communication means for autonomous cooperative control of the UAV swarm. |
US11540161B2 |
Wireless communication terminal, wireless communication base station, wireless communication system, and reporting method
In a wireless communication terminal in a wireless communication system for performing a control not to transmit signals, or to transmit signals with a reduction in a transmission power by a part of radio resources for a downlink signal in a cell provided by a base station, the terminal receives control information in generating a report related to a measurement result of the cell provided by the base station, monitors a state of a radio link with an own cell, and performs measurement on reception of the downlink signal. If an instruction for restricting the measurement to a part of the radio resources is included in the control information from the base station after the radio link failure occurs, the terminal generates and transmits a radio link failure report including the measurement result in the radio resources as instructed when the radio link failure occurs. |
US11540156B2 |
Methods, systems and apparatuses for network assisted interference cancellation and/or suppression (NAICS) in long-term evolution (LTE) systems
A method implemented by a Wireless Transmit/Receive Unit (WTRU) includes receiving a DeModulation Interference Measurement (DM-IM) resource, determining an interference measurement based on the DM-IM resource, and demodulating a received signal based on the interference measurement. An interference is suppressed based on the interference measurement. At least one DM-IM resource is located in a Physical Resource Block (PRB). The DM-IM resource is located in a PRB allocated for the WTRU. The DM-IM resource is a plurality of DM-IM resources which form a DM-IM pattern, and the DM-IM pattern is located on a Physical Downlink Shared Channel (PDSCH) and/or an enhanced Physical Downlink Shared Channel (E-PDSCH) of at least one Long Term Evolution (LTE) subframe. The DM-IM resources are different for different Physical Resource Blocks (PRB) in the LTE subframe. The DM-IM is located in a Long Term Evolution (LTE) Resource Block (RB), and the DM-IM pattern is adjusted. |
US11540155B2 |
Measurement period formulation for reference signal time difference (RSTD) measurements
Disclosed are techniques for wireless positioning. In an aspect, a user equipment (UE) receives a positioning reference signal (PRS) configuration, the PRS configuration including at least a PRS periodicity defining repetitions of one or more PRS resources associated with at least a first transmission-reception point (TRP), receives a measurement gap configuration including at least a measurement gap repetition period (MGRP) defining repetitions of a measurement gap, and performs one or more positioning measurements of at least the one or more PRS resources during one or more repetitions of a measurement period, the one or more repetitions of the measurement period having an effective measurement periodicity, the effective measurement periodicity based on an alignment periodicity and a time period T during which the UE can process a duration N of PRS symbols, the alignment periodicity based on the PRS periodicity and the MGRP. |
US11540152B2 |
Wideband PDCCH for unlicensed band useful for new radio
A UE performs first control channel monitoring according to a first CORESET and first search space set configuration(s), the first control channel monitoring performed on n subbands, n>1, able to be transmitted by a base station in an unlicensed band carrier. The UE determines, in response to a detection of a control channel in the monitoring and from the control channel, transmission bandwidth configuration to be used by the base station in the unlicensed band carrier for control channels. The UE performs second control channel monitoring according to a second CORESET and at least one second search space set configuration. The second control channel monitoring is performed on m subbands, m≤n, in the unlicensed band carrier, the m subbands being a subset of the n of subbands. A base station determines which subbands are available for use and transmits the transmission bandwidth configuration to the UE based thereon. |
US11540149B2 |
Synchronization and fault management in a distributed antenna system
In an embodiment, a method comprises: sending a message from a master unit of a distributed antenna system to a remote unit of the distributed antenna system, wherein the message includes a list of service frequencies and applied standards for a base station; sending a downlink signal generated based on a base station signal from the master unit to the remote unit; decoding the downlink signal based on the list of service frequencies and applied standards for the base station; extracting a base station clock signal from the decoded downlink signal; and synchronizing an internal clock of the remote unit to the base station clock using the extracted base station clock signal. |
US11540148B2 |
Methods and apparatus for access point location
Methods and apparatus for determining a desired or optimal location for one or more access points within a premises. In one embodiment, software is provided to wireless-enabled client devices in a user premises; the software enables each of the devices to communicate with one another and collect a plurality of data relating to the connectivity of each at various locations within the premises. The data is used to determine a desired or optimal location for placement of an access point. Once the optimal location is determined, the access point is placed, and the client devices communicate therewith. In one variant, ongoing data may be collected as the system operates to ensure continued optimization. In the instance changes in the topology or environment of the user premises cause significant alterations to the communication signals or connectivity, a new optimal location for the access point may be determined. |
US11540146B2 |
Active antenna array dithering to improve scanning efficiency and reduce beam indices
In accordance with some embodiments, an apparatus, comprising at least one processor and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to transmit at least one data packet according to a link budget. The apparatus may further adjust at least one antenna beam steering angle in 3-dimensions according to an optimum dither angle or plurality of dither angles. The apparatus may further adjust at least one antenna pattern according to a predetermined tilt. |
US11540144B2 |
Client steering
Steering clients between access points (APs) or other sources of wireless signaling is contemplated. The client steering may be used to supplant or augment roaming capabilities of the clients with independent steering decisions made at the APs such as by utilizing information shared between the APs to generate a steering threshold for use in assessing whether clients should be steered from one AP to another. |
US11540142B2 |
AI-ARRP (artificial intelligence enabled automatic radio resource provisioning) for steering wireless stations on 6 GHz spectrum channels on wireless data communication networks
Muted 6 GHz stations on the Wi-Fi network within the plurality of stations on a first access point within the plurality of access points are assigned to a first access point from the plurality of access points associated with a list of non-overlapping 6 GHz channels, responsive to an RSSI value between the at least one 6 GHz station and the first access point. To do so, a channel switch announcement is unicast to the at least one muted 6 GHz station. The channel switch announcement is associated with a non-overlapping 6 GHz channel of the first access point. The remaining stations connected to the first access point are deauthenticated. |
US11540136B2 |
Device pairing
Alternative pairing is used to enable communication between devices, but without conventional processes required for pairing. Moreover, multiple wireless bonds may be enabled, where both a device is linked to another device and an account is associated with the device and also a backend server. Once an appropriate bond is established, a streaming app (or partial or lightweight version of an application including a selected subset of application functionality) can be streamed to a device such that the user can enter information that can be transmitted to a paired device over the wireless connection. This can enable the association of the device to be performed with respect to the backend servers of the relevant provider. Such an approach can also establish a mechanism for the user to create an account while downloading the full application, or remainder of the application in some embodiments, in the background. |
US11540132B2 |
Method for providing an elastic content filtering security service in a mesh network
The present disclosure is directed to distributing processing capabilities throughout different nodes in a wireless mesh network. Methods and apparatus consistent with the present disclosure increase the efficiency of communications in a wireless mesh network because they help minimize the need to forward communications to other nodes in the wireless mesh network such that an evaluation can be performed. Apparatus and methods consistent with the present disclosure may distribute ratings or verdicts associated with previous requests to access data to different nodes in a wireless mesh network without generating additional wireless communications through the wireless mesh network. Apparatus and methods consistent with the present disclosure distribute content ratings to different nodes in a wireless network such that different wireless nodes may block redundant requests to undesired content without increasing messaging traffic. |
US11540128B2 |
Multi-factor authentication providing a credential via a contactless card for secure messaging
Exemplary embodiments may use a contactless card as a secondary form of authentication in a multi-factor authentication for a secure messaging service. The recipient party of a request to initiate a messaging service session (such as a server computing device) may be programmed to use the phone number of the originating device to look up records regarding an identity of a party and their associated phone number as a primary credential and then may require an authentication credential originating from the contactless card as a secondary credential for the initiating party. In some instances, the credential originating from the contactless card is a onetime password that is valid only for a period of time. The recipient party determines whether the onetime password is valid. If both credentials are valid, a secure messaging session may be initiated with the initiating party. |
US11540123B2 |
Compound transmission security (TRANSEC) for military-grade fifth generation (5G) radio systems
A multi-user (MU) multiple-input/multiple-output (MU MIMO) module for a fifth-generation (5G) software-defined radio (SDR) network environment is disclosed. In embodiments, the MU MIMO module of a transmitting SDR system of a 5G mobile ad hoc network (MANET) or other peer-to-peer directional network receives feedback from a receiving SDR system based on a prior or current frame and generates, based on the feedback, a compound transmission security (TRANSEC) encryption key for a subsequent frame. The compound TRANSEC encryption key encrypts the transmission of the subsequent frame through a combination of frequency-hopping encryption codes, orthogonality-hopping encryption codes, and dynamic pseudorandom distribution of transmitting power among antenna elements to simulate multipath hopping. The SDR system may include an antenna controller capable of managing dynamic power distribution according to the compound TRANSEC encryption keys as well as directionality shifts and beamforming operations to evade jammers detected within the 5G network environment. |
US11540120B2 |
Physical layer key based interleaving for secure wireless communication
A key-based interleaver for enhancement the security of wireless communication includes a physical layer communication channel key to provide security even when the software encryption key is compromised. A method of creating a secure communication link using a physical layer interleaving system includes implementing a key policy implementation that utilizes temporal dependency and interleaving bits using a flexible inter and intra-block data interleaver. |
US11540117B2 |
Optimized user equipment capabilities signaling including recovery from database failure
Methods and apparatus, including computer program products, are provided for UE capability signaling. An apparatus is provided that is caused to at least: receive, from a user equipment capability management function, a message including a first restart counter value indicating a restart of the user equipment capability management function; inhibit, in response to receiving the first restart counter value, one or more old user equipment capability identifiers associated with a second restart counter value, the second restart counter value being associated to a pre-restart state of the user equipment capability management function; and send the first restart counter value indicating the restart of the user equipment capability management function. Related systems, methods, and articles of manufacture are also described. |
US11540114B2 |
Connection method, configuration updating method, control plane device, and user plane device
Provided are a connection method, a configuration updating method, a control plane device and a user plane device. The method includes: transmitting, by a control plane device, a first request message for establishing a connection to a user plane device, where the first request message for establishing the connection includes information about the control plane device; and transmitting, by the user plane device, a first response message indicating that the connection is successfully established or a first response message indicating that the connection fails to be established to the control plane device, where the first response message indicating that the connection is successfully established includes information about the user plane device, and the first response message indicating that the connection fails to be established includes the information about the user plane device and a reason why the connection fails to be established. Further provided is a storage medium. |
US11540113B2 |
Transmission configuration method and apparatus
A transmission configuration method can be applied to a base station and include: determining that a terminal is allowed to report a changed transmission capability when the transmission capability changes; generating a first configuration information, the first configuration information characterizes that the terminal is allowed to report the changed transmission capability when the transmission capability changes; sending the first configuration information to the terminal, such that when the transmission capability changes, the terminal obtains the changed transmission capability according to the first configuration information and sends the changed transmission capability to the base station. |
US11540108B2 |
Communication apparatus and communication method
There is provided an apparatus comprising means for: translating between a first communication apparatus and a first wireless communication network operating as at least part of a bridge between the first communication apparatus and a second communication apparatus; determining that the first and/or second communication apparatus is undergoing or has undergone a mobility event; and executing at least part of a mobility procedure resulting from the mobility event. |
US11540106B2 |
Beam sweeping on millimeter wave frequencies for device-to-device communications
Disclosed are techniques for wireless communication. In an aspect, a first user equipment (UE) performs a limited beam sweep of one or more transmit beams on a second frequency band in an estimated direction from the first UE to the second UE, wherein the estimated direction is based on one or more parameters received over a previously established signaling radio bearer (SRB) on a first frequency band and/or a device-to-device discovery procedure performed on the first frequency band, receives, over the SRB, a confirmation that a data radio bearer (DRB) has been established on the second frequency band with at least one transmit beam of the one or more transmit beams, and sends, to the second UE, a data flow over the DRB on the second frequency band using the at least one transmit beam. |
US11540105B2 |
UE behavior when the device is attached for emergency service
This disclosure is related to a procedure of handling UE (100) behavior when the UE (100) is attached for emergency services. More specifically this disclosure defines the UE (100) behavior when the UE (100) is registered to a PLMN or two different PLMN via 3GPP access network and non-3GPP access network and UE (100) has is registered for emergency service over one of the 3GPP access network or non-3GPP access network. |
US11540104B2 |
Discovery procedure for off grid radio service
This disclosure relates to techniques for supporting narrowband device-to-device wireless communication, including possible techniques for performing discovery in an off grid radio system. A wireless device may obtain synchronization with a peer-to-peer communication group. The wireless device may determine the location of the wireless device within the peer-to-peer communication group based at least in part on signal strength of a synchronization signal used to obtain the synchronization. The wireless device may perform peer-to-peer discovery in the peer-to-peer communication group, such that time and frequency resources used by the wireless device to perform the peer-to-peer discovery are determined based at least in part on the location of the first wireless device within the peer-to-peer communication group. |
US11540098B2 |
Distance measurement method of user equipment in wireless communication system and user equipment using method
The present document provides a method by which first vehicle-to-X (V2X) user equipment (UE) for supporting distance measurement transmits a ranging response signal in a wireless communication system, the method comprising: receiving a ranging request signal from second V2X UE; and transmitting, to the second V2X UE, the ranging response signal as a response to the ranging request signal on the basis of distance measurement parameter information, wherein the distance measurement parameter information includes information on a cyclic prefix (CP) length used for the ranging response signal, and the CP length used for the ranging response signal is different from a CP length to be used in V2X data channel transmission. |
US11540093B2 |
Method and apparatus for automatically identifying and annotating auditory signals from one or more parties
A telecommunications system, that after a communication is established by a first electronic communication device and a second electronic communication device, receives digital auditory data corresponding to an ongoing conversation between a first person using the first electronic communication device and a second person using the second electronic communication device, uses that digital auditory data to enable transformation of an information knowledge model, and utilizes the information knowledge model to suggest information for the ongoing conversation. |
US11540088B2 |
System and method for locating a portable device in different zones relative to a vehicle and with device zone indicators
A vehicle system may include a plurality of wireless transmitters carried by a vehicle and configured to transmit wireless signals, at least one indicator carried by the vehicle, and a portable device moveable relative to the vehicle and configured to receive the wireless signals from the plurality of wireless transmitters. The system may further include a controller carried by the vehicle and configured to wirelessly communicate with the portable device, and determine a predicted zone the portable device is located in adjacent to the vehicle based upon the received wireless signals, with the predicted zone being one of a plurality of different zones adjacent the vehicle having respective vehicle functions associated therewith. The controller may be further configured to cause the at least one indicator to provide an indication that the portable device has entered the predicted zone, and enable the respective vehicle function associated with the predicted zone. |
US11540084B2 |
Dynamic geofencing hysteresis
A vehicle geofence system may include a vehicle location detection device configured to provide vehicle location data for a vehicle, a memory configured to maintain geofence data, and a processor programmed to receive the vehicle location data, compare a vehicle location as indicated by the vehicle location data to the geofence data, in response to determining that the vehicle has crossed a geofence, present an inquiry, to a user, requesting feedback as to the accuracy of the geofence crossing, receive user feedback to the inquiry, and provide the user feedback to a server external of the vehicle. |
US11540083B1 |
Method and apparatus for adaptive location determination
Locations for mobile computers may be adaptively determined in a system which includes a server, a set of mobile computers, and an administrator computer. In such a system, the set of mobile computers may each be programmed with instructions operable to, when executed, transmit multiple forms of location information to the server. Additionally, the server may be programmed with a set of location determination routines and these routines may be used in determining a location for each of the mobile computers from the set of mobile computers. These locations may then be used to populate an interface of the administrator computer with icons at positions corresponding to the mobile computers' locations. |
US11540082B2 |
Processing system, update server and method for updating a processing system
According to various examples, a processing system is described comprising a plurality of hardware circuit components, each hardware circuit component configured to provide a processing functionality, a data path leading through the plurality of hardware circuit components, at least one programmable circuit and a controller configured to select one of the hardware circuit components to be replaced by the at least one programmable circuit, program the programmable circuit to provide the processing functionality provided by the selected hardware circuit component and configure the data path to lead through the programmable circuit instead of the selected hardware circuit component. |
US11540081B2 |
Spatial audio downmixing
Channels of audio data in a spatial audio object are associated with any one or more of a direction and a location of one or more recorded sounds, which channels are to be reproduced as spatial sound. A visualized spatial sound object represents a snapshot/thumbnail of the spatial sound. To preview the spatial sound (by experiencing its snapshot or thumbnail), a user manipulates the orientation of the visualized spatial sound object, and a weighted downmix of the channels is rendered for output as a spatial preview sound, e.g., a single output audio signal is provided to a spatial audio renderer; one or more of the channels that are oriented toward the user are emphasized in the preview sound, more than channels that are oriented away from the user. Other aspects are also described and claimed. |
US11540077B2 |
Directional acoustic sensor and electronic device including the same
Provided are a directional acoustic sensor that detects a direction of sound, a method of detecting a direction of sound, and an electronic device including the directional acoustic sensor. The directional acoustic sensor includes a sound inlet through which a sound is received, a sound outlet through which the sound received through the sound inlet is output, and a plurality of vibration bodies arranged between the sound inlet and the sound outlet, in which one or more of the plurality of vibration bodies selectively react to the sound received by the sound inlet according to a direction of the received sound. |
US11540075B2 |
Method and device for processing audio signal, using metadata
Disclosed is a device for processing an audio signal, which renders an audio signal. The device for processing an audio signal includes a processor. The processor receives metadata including an audio signal and first element reference distance information and renders a first element signal on the basis of the first element reference distance information, wherein the first element reference distance information indicates the reference distance of an element signal. The audio signal is capable of including a second element signal which may be simultaneously rendered with the first element signal, and the metadata is capable of including second element distance information indicating the distance of the second element signal. The number of bits required for representing the first element reference distance information is smaller than the number of bits required for representing the second element distance information. |
US11540074B2 |
Electroacoustic transduction film and manufacturing method thereof, electroacoustic transducer, flexible display, vocal cord microphone, sensor for musical instrument
Provided are an electroacoustic transduction film capable of reproducing a sound with a sufficient sound volume at a high conversion efficiency, a manufacturing method thereof, an electroacoustic transducer, a flexible display, a vocal cord microphone, and a sensor for a musical instrument. The electroacoustic transduction film includes: a polymer composite piezoelectric body in which piezoelectric body particles are dispersed in a viscoelastic matrix formed of a polymer material having viscoelasticity at a normal temperature; two thin film electrodes laminated on both surfaces of the polymer composite piezoelectric body; and two protective layers respectively laminated on the two thin film electrodes, in which an intensity ratio α1=(002) plane peak intensity/((002) plane peak intensity+(200) plane peak intensity) between a (002) plane peak intensity and a (200) plane peak intensity derived from the piezoelectric body particles in a case where the polymer composite piezoelectric body is evaluated by an X-ray diffraction method is more than or equal to 0.6 and less than 1. |
US11540072B2 |
Reverberation fingerprint estimation
Examples of the disclosure describe systems and methods for estimating acoustic properties of an environment. In an example method, a first audio signal is received via a microphone of a wearable head device. An envelope of the first audio signal is determined, and a first reverberation time is estimated based on the envelope of the first audio signal. A difference between the first reverberation time and a second reverberation time is determined. A change in the environment is determined based on the difference between the first reverberation time and the second reverberation time. A second audio signal is presented via a speaker of a wearable head device, wherein the second audio signal is based on the second reverberation time. |
US11540070B2 |
Method of fine tuning a hearing aid system and a hearing aid system
A hearing aid system (100), wherein changes to the settings is only allowed if a hearing aid performance verification is carried out with a successful result as well as a method of operating such a hearing aid system. |
US11540067B2 |
Compact, watertight and acoustically-tight button structure
A button structure for a hearing device, includes: a first microphone, the first microphone being configured to receive sound via a first microphone input; an elastic member comprising a first part and a second part, the first part comprising a user interface surface, the second part comprising a first opening, the first opening being aligned with the first microphone input; a switch component, wherein the user interface surface is configured to be operated by a user to activate the switch component; and an outer shielding comprising a shield opening and a second opening, wherein at least a portion of the first part of the elastic member extends through the shield opening, wherein the second opening of the outer shield is aligned with the first opening of the second part of the elastic member, and wherein the outer shielding is in contact with the elastic member to create a seal. |
US11540063B2 |
Hearing device comprising a detector and a trained neural network
A hearing device comprises an input transducer comprising a microphone for providing an electric input signal representative of sound in the environment of the hearing device, a pre-processor for processing electric input signal and providing a multitude of feature vectors, each being representative of a time segment thereof, a neural network processor adapted to implement a neural network for implementing a detector configured to provide an output indicative of a characteristic property of the at least one electric input signal, the neural network being configured to receive said multitude of feature vectors as input vectors and to provide corresponding output vectors representative of said output of said detector in dependence of said input vectors. The hearing device further comprises a transceiver comprising a transmitter and a receiver for establishing a communication link to another part or device or server, at least in a particular adaptation-mode of operation, and a selector for—in said particular adaptation-mode of operation—routing said feature vectors to said transmitter for transmission to said another part or device or server, and—in a normal mode of operation—to route said feature vectors to said neural network processor for use as inputs to said neural network, a neural network controller connected to said neural network processor for—in said particular adaptation-mode of operation—receiving optimized node parameters, and to apply said optimized node parameters to said nodes of said neural network to thereby implement an optimized neural network in said neural network processor, wherein the optimized node parameters have been selected among a multitude of sets of node parameters for respective candidate neural networks according to a predefined criterion in dependence of said feature vectors. A method of selecting optimized parameters for a neural network for use in a portable hearing device is further disclosed. The invention may e.g. be used in hearing aids or headsets, or similar, e.g. wearable, devices. |
US11540059B2 |
Vibrating panel assembly for radiating sound into a passenger compartment of a vehicle
A vibrating panel assembly configured to radiate sound into a passenger compartment of a vehicle having a support structure is provided. The assembly includes a substrate panel having front and back surfaces. The panel includes an inner portion, an outer boundary portion formed on the perimeter of the panel and an intermediate portion between the inner portion and the outer boundary portion. The vibrating panel has a frequency distribution of modes in a range of audible frequencies. The panel is configured to be attached to the support structure. An electroacoustic vibrator is mounted on the inner portion at the back surface at a predetermined location and is configured to vibrate the panel over the range of audible frequencies in response to an electrical signal. The intermediate portion is configured to increase modal density of the panel. |
US11540058B1 |
Microphone with additional piezoelectric component for energy harvesting
A microphone with an additional piezoelectric component for energy harvesting is provided, and includes a substrate penetrated through by a cavity, a diaphragm, and a piezoelectric conversion. The diaphragm includes a vibration portion and at least one connecting arm, and two ends of each of the at least one connecting arm are connected to the vibration portion and the substrate, respectively. The piezoelectric conversion component is disposed on one of the at least one connecting arm and configured to convert mechanical energy collected from a displacement of the diaphragm by sound to electrical energy. The piezoelectric conversion component is mounted on the diaphragm, so as to convert the mechanical energy collected from the diaphragm by the sound to the electrical energy, thereby effectively recycling the mechanical energy and avoiding a waste of energy. |
US11540056B2 |
Speaker and magnetic circuit system thereof
The present disclosure relates to a speaker and a magnetic circuit system thereof. The speaker includes a housing and at least one magnetic circuit system and at least one vibration system arranged in the housing. The at least one vibration system includes at least one layer of drive circuit configured to generate mechanical motion under the action of a magnetic field of the at least one magnetic circuit system, and a diaphragm driven by the at least one layer of drive circuit. The at least one layer of driving circuit is mounted to the diaphragm and has a planar shape. Since the driving circuit of the vibration system has a planar shape, the thickness of the speaker of the present disclosure can be effectively reduced. |
US11540055B1 |
Control leak implementation for headset speakers
A headset includes a speaker, such as a side firing dipole speaker. The headset includes a front chamber that receives sound waves from a first side of the speaker and a rear chamber that receives sound waves from a second side of the speaker. A control leak channel connects the front chamber and the rear chamber. An acoustic mesh may be located within the control leak channel. The speaker configuration is configured to reduce total harmonic distortion of the speaker, particularly in ranges such as 3-6 kHz, while maintaining the broadband efficiency of the speaker. |
US11540054B2 |
Using auxiliary device case for translation
An auxiliary device charging case is used to facilitate translation features of a mobile computing device or auxiliary device. A first user, who may be a foreign language speaker, holds the charging case and speaks into the charging case. The charging case communicates the received speech to the mobile computing device, either directly or through the auxiliary device, which translates the received speech into a second language for a second user, who is the owner of the mobile computing device and auxiliary device. The second user may provide input in the second language, such as by speaking or typing into the auxiliary or mobile computing device. The mobile computing device may translate this second input to the first language, and transmit the translated input to the charging case either directly or through the auxiliary device. The charging case may output the translated second input to the first user, such as through a speaker or display screen. |
US11540052B1 |
Audio component adjustment based on location
In one aspect, a device may include at least one processor and storage accessible to the at least one processor. The storage may include instructions executable by the at least one processor to identify at least one characteristic associated with audio as sensed at a first location, with the audio being produced at a second location that is different from the first location. The instructions may also be executable to, based on the at least one identified characteristic, adjust a first volume level of a first component of the audio in a first frequency and/or first frequency band but not a second volume level of a second component of the audio in a second frequency and/or second frequency band of the audio. |
US11540051B2 |
Two-channel balance method and electronic device using the same
A two-channel balance method and an electronic device using the same are provided. The two-channel balance method includes the following steps. A gain-frequency information of a two-channel signal is adjusted. A sampling delay information of the two-channel signal is calculated according to a distance information among a sound receiving unit, a left speaker unit and a right speaker unit. A forward test audio file or a surround test audio file is generated according to the sampling delay information. A phase offset information is estimated according to at least the forward test audio file or the surround test audio file. A phase offset direction information is determined. A phase information of the two-channel signal is adjusted according to the phase offset information and the phase offset direction information. |
US11540046B2 |
Audio output mode adjustment structure, method, apparatus, and electronic device
Aspects of the present disclosure provide an audio output mode adjustment structure that can include a sound output channel communicating an interior and an exterior of the electronic device and an adjusting unit. An opening of the sound output channel is located at the top of the electronic device. The adjustment unit moves relative to the opening of the sound output channel so that when the electronic device outputs audio in a loud-speaking mode, the adjustment unit does not cover the sound output channel, and sound waves propagate in a straight line through the opening of the sound output channel, and when the electronic device outputs audio in the handset mode, the adjustment unit covers the opening of the sound output channel, so that the sound waves propagate toward a display screen side of the electronic device through the opening of the sound output channel. |
US11540045B2 |
Audio transducer system and audio transducer device of the same
An audio transducer device includes an audio transducer, a controller and a direction adjusting mechanism. The audio transducer has a sound receiving surface formed with multiple sound collecting holes, and multiple microphones corresponding in position to the sound collecting holes. The controller is detachably mounted to an electronic device, and controls the microphones to cooperatively perform directional sound reception to obtain audio data. The direction adjusting mechanism interconnects an audio transducer shell and the controller such that the sound receiving surface can be rotated to a position where a normal direction thereof and an image capturing direction of the electronic device forming a desired angle therebetween. |
US11540044B2 |
Speaker device
A speaker device includes a frame, a vibration unit fixedly connected to the frame, a magnetic circuit unit having a magnetic gap, and a screen cloth. The vibration unit includes a diaphragm and a voice coil. The magnetic circuit unit includes a carrier, a first main magnet, an auxiliary magnet and a magnetic conductive plate. The magnetic conductive plate is fixed to the frame. The magnetic conductive plate includes a first central portion and a first edge portion; the auxiliary magnet is located at the first central portion. The first edge portion is provided with a through hole. The screen cloth is provided at a side of the carrier away from the diaphragm, and includes a second central portion and a second edge portion. The second edge portion is provided with a first groove recessed toward the magnetic conductive plate, corresponding to the through hole. |
US11540043B1 |
Active noise reduction earbud
An active noise reduction earbud and method. The earbud includes a housing comprising an outlet portion that defines a sound outlet, wherein the outlet portion is configured to be located in or proximate the external auditory meatus of a user's ear, a first feedforward microphone configured to develop a first input signal, and a first sound inlet opening in the housing and configured to conduct external sound to be sensed by the first feedforward microphone, wherein the first sound inlet opening is proximate the outlet portion. |
US11540040B2 |
Ear-mounted two-way radio system
A two-way radio system includes multiple units each having a hub, speaker, primary clip, secondary clip, antenna, and microphone. The hub has exterior and interior sides defining a hub cavity therebetween. The speaker is in the hub cavity and has an output directed to a speaker opening on the hub interior side. The primary clip extends from the hub for selective attachment to a wearer's ear such that the speaker opening is directed to the wearer's ear canal. The secondary clip extends outwardly from the hub exterior side such that the hub exterior side is between the secondary clip and the hub interior side. The secondary clip has an antenna support on an interior side of the secondary clip and an antenna cap on an exterior side of the secondary clip. The antenna support and the antenna cap define an antenna cavity, and the antenna is in the antenna cavity. |
US11540038B2 |
Acoustic device
The present disclosure may provide an acoustic device. The acoustic device may include a housing, at least one low-frequency acoustic driver, at least one high-frequency acoustic driver, and a noise reduction assembly. The housing may be configured to be rested on a shoulder of a user. The at least one low-frequency acoustic driver may be carried by the housing and configured to output first sound from at least two first sound guiding holes. The at least one high-frequency acoustic driver may be carried by the housing and configured to output second sound from at least two second sound guiding holes. The noise reduction assembly may be configured to receive third sound and reduce noise of the third sound. |
US11540030B2 |
Simultaneous recording and uploading of multiple audio files of the same conversation and audio drift normalization systems and methods
The invention relates to simultaneous recording and uploading systems and methods, and, more particularly to a simultaneous recording and uploading of multiple files from the same conversation. |
US11540029B2 |
Methods and systems for reducing piracy of media content
Techniques for reducing piracy of media content are described. In some embodiments, a collusion resistant method is performed at a device, where the device receives a first request for a base copy of a media content item. In response, the device determines a first transformation based on a statistical performance criterion and a viewing performance criterion. The device further generates a first copy of the media content item by replicating and applying a first transformation to the base copy, where the first copy of the media content item satisfies the viewing performance criterion, and the first copy of the media content item is statistically different from the base copy or other copies in accordance with the statistical performance criterion. The device then causes transmission of the first copy of the media content item in combination with a first watermark for the base copy of the media content item. |
US11540027B2 |
Performant ad hoc data ingestion
A video processing engine may receive a request for a video communication session, via a network to produce a video file key that is routed to the video camera. If the video camera is communicatively connected to a Wi-Fi 6 compatible wireless access point, it routes a high-quality video file to the Network Operation Center (NOC). Alternatively, using the video key file, the video camera generates message digests and watermarks that are embedded in a video camera generated high-quality video file and a degraded quality video file. The video camera routes, via the network, the degraded quality video file to the NOC, while the high-quality video file is uploaded to the NOC later. Subsequently, a video processing engine extracts the watermarks from the message digests of the video files and compares them to ensure that the high-quality video file correlates to the degraded quality video file. |
US11540026B2 |
Data relay apparatus, method, delivery system, and program
A data relay apparatus arranged between a client apparatus and a server apparatus that delivers content, discriminates a packet based on a data size thereof, the packet transmitted from the client apparatus to the server apparatus, and detects re-buffering based on a frequency of transmission of a predetermined packet discriminated. |
US11540024B2 |
Method and system for precise presentation of audiovisual content with temporary closed captions
A method, set-top box, and non-transitory computer readable medium are disclosed for presentation of audiovisual content with closed captions. The method includes receiving, via an input device interfaced with the electronic device, an instruction requesting a replay of previously viewed video content with closed captioning; sending, to the display device interfaced with the electronic device, one or more thumbnail images of the previously viewed video content to be displayed on the display device; receiving, via the input device interfaced with the electronic device, one of the one or more thumbnail images of the previously viewed video content being selected for replay of the previously viewed video content; and sending, to the display device interfaced with the electronic device, closed captioning with the previously viewed video content starting at a video frame corresponding to the one of the one or more thumbnails of the previously viewed video content selected for replay. |
US11540022B2 |
Method and system for segmenting video without tampering video data
Techniques segmenting a video using tags without modifying video data thereof are disclosed. According to one aspect of the present invention, each tag is created to define a portion of the video, wherein the tags can be modified, edited, looped, reordered or restored to a create an impression other than that if the video was played back sequentially. The tags are so structured in a table included in a tagging file that can be shared or published electronically or modified or updated by others. Further the table may be modified to include one or more conditional or commercial tags. |
US11540020B2 |
Method for realizing video information preview, client and storage medium
Provided are a method for realizing a video information preview, a client and a storage medium. The method for realizing a video information preview comprises: when it is detected that a progress bar is dragged, according to position information about dragging, positioning (100) corresponding preview information from a description file, wherein the description file is used for describing the preview information; and presenting (101) the positioned preview information. |
US11540013B1 |
Systems and methods for increasing first user subscription
Systems and methods are provided for generating a customized media asset to incentivize a first user to subscribe to a subscription service. A first user provides their subscription access information to a media provider. In response to receiving the subscription access information, the media provider determines whether the subscription access information is from an account subscribed for a trial period. If the account is subscribed for the trial period, the media provider presents a plurality of media assets for selection to the first user, receives a selection of a media asset available from the subscription service, generates a customized media asset based on a media asset consumption profile of the first user, wherein the customized media asset includes a segment from an additional media asset different from the selected media asset, and presents to the first user the customized media asset instead of the selected media asset. |
US11540005B2 |
Systems and methods for recording relevant portions of a media asset
Systems and methods are presented herein for recording portions of a media asset relevant to recording criteria. A media application receives input indicating the recording criteria and identifying a first keyword. The media application accesses a data structure to identify a first node associated with the first keyword. The data structure includes the first node and a plurality of nodes connected to the first node via a plurality of paths. The media application receiving audio component data for a portion of the media asset extracts a term from the audio component data, and identifies a second node in the data structure that is associated with the extracted term. The media application calculates a path score for the portion of the media asset based on a path size in the data structure between the first node and the second node. When the score is high enough, the portion of the media asset is recorded. |
US11540000B2 |
Targeting content based on location
Assets of broadcast network content are targeted to network users of interest based on location information regarding user equipment devices. Asset providers can specify location targeting criteria via a graphical user interface displaying mapping information. This location targeting criteria can then be compared to location information regarding user equipment devices so that assets are delivered to appropriate devices. The comparison of the location targeting criteria to the device location information can be performed at the user equipment devices or at another location. In the latter case, the assets can be addressed to appropriate user equipment devices or appropriate user equipment devices can be directed to select the asset, which is broadcast via the network. In this manner, assets can be targeted to individual network users on a basis independent of network topology. |
US11539999B2 |
Session control of broadcast video services for DAA and non-DAA automation
The system may include a headend and/or a hub that includes a processor that provides signals to consumer premises devices. The headend and/or the hub is configured with a headend configuration table defining broadcast video services for a desired distribution of broadcast video services, where configurating the headend configuration table is performed based upon data from a digital video configuration service that is independent of the broadcast video services. |
US11539998B2 |
Evolutionary parameter optimization for selecting optimal personalized screen carousels
Systems and associated methods are described for providing content recommendations. The system selects a first plurality of subsets of content categories, each subset of content categories comprising a first number of content categories. The subsets are assigned reward scores based on content popularity and duplication. The subset are then iteratively modified to increase the rewards scores. If the reward scores are still low, the process is repeated by selecting a second plurality of subsets of content categories, each subset of content categories comprising a second number of content categories, different from first number. |
US11539997B1 |
Systems and methods for on-the-fly repackaging
An electronic device associated with a media-providing service receives a first media item and a request, from a second device, for playback of the first media content item. The electronic device determines an insertion time within the first media content item for inserting a second media content item, and generates a queue indicating an order in which a first, second, and third file are to be provided. The first file corresponds to a portion of the first media content item from a start of the first media content item until the insertion time, the second file corresponds to the second media content item, and the third file corresponds to a portion of the first media content item starting at the insertion time. The electronic device generates the files, and queues the second electronic device to play back the first, second, and the third files in accordance with the queue. |
US11539994B2 |
Generating media content keywords based on video-hosting website content
Systems and methods for generating media program keywords based on a video-hosting website are disclosed herein. Control circuitry identifies, on the video-hosting website, video content items that include at least a portion of a media program. The media program has a media program identifier and the video content items have respective titles, each including one or more terms. The control circuitry identifies a term included in more than one of the titles and identifies a group of the video content items that have the term included in their title. Based on the video-hosting website, the control circuitry determines a cumulative number of rankings of the video content items within the group and generates a relevance score for the term based on the cumulative number of rankings. The control circuitry stores the term and the relevance score in a keyword database in association with the media program identifier. |
US11539993B2 |
Methods, systems, and media for presenting notifications indicating recommended content
Methods, systems, and media for presenting notifications indicating recommended content are provided. In some implementations, a method for presenting notifications of recommended content is provided, the method comprising: receiving an indication that a user device has initiated a casting session with at least one display device, wherein the indication includes an identifier of media content presented on the at least one display device during the casting session; storing the indication in a log in association with an identifier of the user device; receiving, from the user device, a request for recommended content to be presented on the at least one display device associated with the user device; in response to receiving the request, identifying a group of media content items based on at least one media content item that has been previously selected by a user account associated with the user device and based on an identifier of the at least one display device; generating a notification that includes an indication of the identified group of media content items and a selectable input that, when selected, causes the identified group of media content items to begin being presented on the at least one display device; and transmitting the notification to the user device, wherein transmitting the notification to the user device causes the notification to be presented on the user device. |
US11539992B2 |
Auto-adjust playback speed and contextual information
Implementations disclose methods and systems for providing a media item at an adjusted playback. A method includes receiving, from a first user device, a playback request from a first user for a first media item including one or more portions of media content; determining an adjusted playback for at least one portion of the first media item that is different than a default playback for the at least one portion of the first media item. The determining is based on previous playback behavior of one or more users in relation to one or more media items that each included one or more portions of media content corresponding to the one or more portions media content of the first media item; and causing the at least one portion of the first media item to be rendered on the first user device at the adjusted playback. |
US11539991B2 |
Method and system for transmitting and reproducing video of dynamic bitrate with a plurality of channels
Disclosed is a method and system for transmitting and reproducing a video of a dynamic bitrate using a plurality of channels. A video transmission method may transferring frames of a video to N encoders using an interleaving scheme, N denoting a first natural number greater than or equal to 2, generating N video streams by encoding the frames using the N encoders, each of the N video streams corresponding to one of the N encoders, and transmitting each of the N video streams as an independent stream. |
US11539982B2 |
Merge estimation region for multi-type-tree block structure
A video encoder may encode a picture of video data using merge estimation regions (MERs). The video encoder may determine merge candidate lists in parallel for coding units within a MER. The video encoder may also partition the picture of video data into coding units according to a constraint, wherein the constraint specifies that the partitioning is constrained such that, for each MER containing one or more coding units, the one or more coding units are completely in the MER, and for each coding unit containing one or more MERs, the MERs are completely in the coding unit. |
US11539978B2 |
Method and apparatus for block vector prediction with integer offsets in intra picture block compensation
A method of video decoding performed by a video decoder includes receiving a coded video bitstream containing a current picture. The method includes determining whether a current block in the current picture is coded in intra block copy (IBC) mode. The method includes in response to a determination that the current block is coded in IBC mode, determining whether a mode with a motion vector offset is enabled for the IBC encoded current block. The method further includes in response to a determination that the mode with the motion vector offset is enabled for the IBC encoded current block, decoding the current block in accordance with an offset associated with the current block. Furthermore, the fractional offsets are not permitted for the IBC encoded current block. |
US11539977B2 |
Method and apparatus of merge with motion vector difference for video coding
A method and apparatus of Inter prediction for video coding using UMVE (Ultimate Motion Vector Expression) are disclosed. According to this method, a base candidate is selected from an original Inter candidate list, where the base candidate has a base prediction direction. One or more extended candidates are derived by adding one or more offsets to the base candidate, where said one or more extended candidates have a same prediction direction as the base prediction direction. The extended candidates are then inserted into the original Inter candidate list to form an extended Inter candidate list for encoding or decoding. According to another method, the UMVE mode is treated as an additional AMVP (Advanced Motion Vector Prediction) mode. |
US11539975B2 |
Motion vector prediction method based on affine motion model and device
A motion vector prediction method based on an affine motion model and a device are provided. The method includes: obtaining one spatial reference block of a to-be-processed picture block; determining a plurality of preset subblock locations of the spatial reference block; obtaining motion vectors corresponding to preset pixel locations of the to-be-processed picture block that are extrapolated from motion vectors corresponding to the preset subblock locations; and obtaining motion vectors corresponding to a plurality of subblock locations of the to-be-processed picture block that are interpolated from the motion vectors corresponding to the preset pixel locations. According to this application, prediction accuracy in coding can be improved, and coding efficiency can be improved. |
US11539971B2 |
Method for parallel image processing and routing
Various embodiments relate to systems and methods for simultaneously switching input image streams to output devices, while providing optional image processing functions on the image streams. Certain embodiments may enable multiple users/viewers to collaboratively control such systems and methods. Additionally, some embodiments may enable control by a set of computer input devices (e.g., keyboard and mouse) to switch between multiple computer systems, possibly by following the movement of a computer input device cursor, between virtual displays, as the cursor is controlled by the set of computer input devices. |
US11539963B2 |
Preserving image quality in temporally compressed video streams
When a temporally compressed video stream is decoded and subsequently re-encoded, quality is typically lost. The quality loss may be mitigated using information about how the source video stream was encoded during the re-encoding process. According to some aspects of the disclosure, this mitigation of quality loss can be facilitated by decoders that output such information and encoders that receive such information. These decoders and encoders may be separate devices. The functionality of these decoders and encoders may also be combined in a single device, such as a transcoding device. An example of the information that may be used during re-encoding is whether each portion of the original stream was intra-coded or non-intra-coded. |
US11539962B2 |
Coding method, device, system
A decoding method for decoding an encoded picture which is partitioned into coding tree blocks which are further partitioned into coding blocks with different sizes, comprises parsing a first indication from the sequence parameter set (SPS)/picture parameter set (PPS)/slice header/tile header of a bit stream containing the encoded picture, determining the partition mode of the coding tree blocks, which are confined by block size restriction parameter and partition depth restriction parameter included in the SPS/PPS/slice header/tile header when the first indication is first value, or determining the partition mode of the multiple coding tree blocks, which are confined by default by block size restriction parameter and default partition depth restriction parameter when the first indication is second value or not presented in the SPS/PPS/slice header/tile header, and partitioning the coding tree blocks into the coding blocks according to the partition mode, and decoding the coding blocks. |
US11539960B2 |
Game application providing scene change hint for encoding at a cloud gaming server
A method for encoding including executing game logic built on a game engine of a video game at a cloud gaming server to generate video frames. The method including executing scene change logic to predict a scene change in the video frames based on game state collected during execution of the game logic. The method including identifying a range of video frames that is predicted to include the scene change. The method including generating a scene change hint using the scene change logic, wherein the scene change hint identifies the range of video frames, wherein the range of video frames includes a first video frame. The method including delivering the first video frame to an encoder. The method including sending the scene change hint from the scene change logic to the encoder. The method including encoding the first video frame as an I-frame based on the scene change hint. |
US11539957B2 |
Layered random access with reference picture resampling
A method of decoding an encoded video bitstream using at least one processor, including obtaining a coded base layer picture and a coded enhancement layer picture included in an LRA access unit; determining whether a random access occurs at the LRA access unit; based on the random access not occurring at the LRA access unit, generating a reconstructed base layer picture by reconstructing the coded base layer picture, and generating a reconstructed enhancement layer picture by reconstructing the coded enhancement layer picture using the reconstructed base layer picture and a previously reconstructed picture; based on the random access occurring at the LRA access unit, generating the reconstructed base layer picture by reconstructing the coded base layer picture, and generating the reconstructed enhancement layer picture by upsampling the reconstructed base layer picture; and outputting the reconstructed enhancement layer picture. |
US11539951B2 |
Method and device for picture encoding and decoding
A decoding method is presented. a type of split of a block into transform units is first decoded. A transform is then determined for each transform unit of said block responsive to said type of split. Finally, decoded transform coefficients of said transform units are inverse transformed using the determined transforms. |
US11539949B2 |
Determination of picture partition mode based on block size
Methods, systems, and devices for coding or decoding video wherein the picture partition mode is based on block size are described. An example method for video processing includes using a dimension of a virtual pipeline data unit (VPDU) used for a conversion between a video comprising one or more video regions comprising one or more video blocks and a bitstream representation of the video to perform a determination of whether a ternary-tree (TT) or a binary tree (BT) partitioning of a video block of the one or more video blocks is enabled, and performing, based on the determination, the conversion, wherein the dimension is equal to VSize in luma samples, wherein dimensions of the video block are CtbSizeY in luma samples, wherein VSize=min(M, CtbSizeY), and wherein M is a positive integer. |
US11539945B2 |
Image encoding/decoding method and device using filtering, and method for transmitting bitstream
An image encoding/decoding method and apparatus are provided. An image decoding method performed by an image decoding apparatus may comprise deriving a reconstructed block for a current block, deriving a target boundary for the reconstructed block, determining a filter length of a deblocking filter to be applied for the target boundary, and applying the deblocking filter for the target boundary based on the determined filter length. The filter length may be determined based on at least one of a width or height of a transform block adjacent to the target boundary. |
US11539942B2 |
Image encoding method and apparatus, and image decoding method and apparatus
An image decoding method includes: splitting a first block included in an image on the basis of at least one of a split type and a split direction of the first block to determine at least one second block from the first block; determining one of a prediction mode of the at least one second block and whether to split the at least one second block on the basis of at least one of a size and a shape of the determined at least one second block; obtaining a prediction block of a block included in the at least one second block on the basis of one of the determined prediction mode and whether to split the at least one second block; and restoring the block included in the at least one second block on the basis of the prediction block of the block included in the at least one second block. Here, the split type represents one of binary-split, tri-split, and quad-split. |
US11539939B2 |
Video processing methods and apparatuses for horizontal wraparound motion compensation in video coding systems
Video processing methods and apparatuses for processing a current block in a current picture include receiving input data of the current block, determining a reference picture, determining whether picture sizes of the current and reference pictures are different, determining whether horizontal wraparound motion compensation is enabled for predicting the current block, performing motion compensation for the current block to obtain a reference block from the reference picture, and encoding or decoding the current block according to the reference block. Horizontal wraparound motion compensation is disabled when the picture sizes of the current and reference pictures are different. |
US11539936B2 |
Imaging system for three-dimensional source localization
An imaging system includes a detector configured to obtain radiation data from one or more sources and a controller. The controller is configured to define plurality of buffers based on at least one initial condition. The radiation data includes a plurality of events. The controller is configured to receive an individual event of the plurality of events and determine if the individual event falls within a designated current buffer. Each of the plurality of events in the current buffer is corrected for pose and aligned in a common two-dimensional space. The plurality of events in the current buffer are reconstructed into a three-dimensional space, the reconstruction being done once for each of the plurality of buffers. The controller is configured to create a three-dimensional image based in part on the reconstruction in the three-dimensional space. |
US11539935B2 |
Videotelephony with parallax effect
In one embodiment, a computing system may receive, from a second computing system, video streams of a scene, the video streams including at least a first image and a second image that are simultaneously captured by a first camera and a second camera of the second computing system, respectively. The system may determine, using a sensor system, a viewpoint of a viewer with respect to a display region of a monoscopic display associated with the first computing system. The system may generate an output image of the scene by blending, according to blending proportions computed using the viewpoint of the viewer, corresponding portions of the first image and the second image. The system may display the output image in the display region of the monoscopic display. |
US11539928B2 |
Light source module and projection device
A light source module and a projection device are provided. The light source module is configured to provide a laser beam and includes multiple laser source units and a focusing lens. The laser source units include a first laser source unit, a second laser source unit, a third laser source unit and a fourth laser source unit respectively configured to provide a first laser beam, a second laser beam, a third laser beam and a fourth laser beam. The focusing lens is located on transmission paths of the first laser beam, the second laser beam, the third laser beam and the fourth laser beam. The first laser beam, the second laser beam, the third leaser beam and the fourth laser beam are respectively incident on the focusing lens along a first direction. The first laser source unit and the second laser source unit are arranged along a second direction. |
US11539927B2 |
Digital point spread function (DPSF) and dual modulation projection (including lasers) using DPSF
A digital PSF for use in a dual modulation display. The invention allows the use of less than optimal point spread (PSF) functions in the optics between the pre-modulator and primary modulator of a dual modulation projection system. This technique uses multiple halftones per frame in the pre-modulator synchronized with a modified bit sequence in the primary modulator to produce a compensation image that reduces the errors produced by the sub-optimal PSF. The invention includes the application to dual modulation and dual modulated 3D viewing systems. |
US11539922B2 |
Point-to-point visual communications in a security monitoring system
A monitoring system includes a doorbell unit that includes a camera and a display and that is configured to receive a request to access the property. The monitoring system includes a monitor control unit that is configured to determine an authentication protocol for determining whether to grant the visitor access to the property. The monitor control unit generates a first image and transmits authentication data to a computing device. The monitor control unit provides the first image and instructions to output the first image on the display of the doorbell unit. The monitor control unit receives a second image captured by the camera of the doorbell unit. The monitor control unit determines whether the second image includes a representation of data that is based on processing the first image in combination with the authentication data. The monitor control unit grants or denies the visitor access to the property. |
US11539920B1 |
Sidebar conversations
A system and a method are disclosed that enable sidebar conversations between two or more attendees that are participating in a primary or main meeting. The sidebar conversation occurs in conjunction or concurrently with the primary meeting. A first attendee provides commands to indicate a desire to initiate a sidebar conversation and information about a targeted attendee. The commands are analyzed to determine if a trigger phrase is included. The commands are analyzed to determine if there is an identification of a second (targeted) attendee, who is currently participating in the main meeting. If the second attendee is available, then the sidebar conversation is initiated. Additional attendees can be added to the sidebar conversation. Additional independent and simultaneous sidebar conversations can be initiated (by attendees currently participating in the active sidebar conversation), thereby allowing one attendee to conduct multiple simultaneous sidebar conversations while being able to switch between them. |
US11539917B2 |
Videoconferencing calibration systems, controllers and methods for calibrating a videoconferencing system
A controller for calibrating a videoconferencing system is disclosed. The system includes a first codec connected to a second codec through a videoconferencing connection. The controller includes an output in communication with the first codec for controlling the first codec to transmit a videoconferencing signal to the second codec through the videoconferencing connection, and an input for receiving a calibration adjustment value from another controller over a network, where the other controller is in communication with the second codec. The controller is configured to adjust a signal level setting of the first codec using a level adjustment command of the first codec, and the level adjustment command is determined according to the calibration adjustment value transmitted by the other controller. |
US11539915B2 |
Transmission confirmation in a remote conference
Confirming transmission of information in a web conference by determining a presenter of a web conference is providing speech to a second computing device based at least in part on a video data, converting the speech of the presenter to textual data, transmitting information of the second computing device to a third computing device of a participant, wherein the information of the second computing device includes the speech, the textual data, and images of a display of the second computing device, and determining a match level of the information of the second computing device and output information of the third computing device of the participant, wherein the output information of the third computing device correlates with the information of the second computing device. |
US11539914B2 |
Communication management system, communication system, computer-readable recording medium, and maintenance system
A communication management system includes: a storage unit configured to store destination information of a first communication terminal that establishes a first session with a relay device that relays communication data, destination information of a conversion system that performs mutual conversion between communication schemes of communication data transmitted from the first communication terminal and a second communication terminal and establishes a second session with the relay device, and destination information of the second communication terminal that establishes a third session with the conversion system; a receiving unit configured to receive start request information to start communication between the communication terminals from the first communication terminal; an extracting unit configured to extract destination information of each communication terminal and the conversion system stored in the storage unit, based on the received start request information; and a transmitting unit configured to transmit the extracted destination information to the relay device. |
US11539910B2 |
Display control system, display apparatus and control method
Provided are a display module control system, a display apparatus, a control method, a computer device and a medium. The display module control system includes a display module, a display controller driving the display module and a bridge unit connecting the display module and the display controller, wherein the display controller is configured to output a first video signal according to an external video source; the bridging unit is configured to determine whether the display controller is in normal operation state according to the first video signal received, output the first video signal to the display module to play the first video signal when the display controller is in normal operation state, and output a second video signal pre-stored to the display module to play the second video signal when the display controller is not in normal operation state. |
US11539902B2 |
Correlated double sampling circuit and image sensor including the same
A flicker detection circuit is provided. The flicker detection circuit may include a flicker detection correlated double sampling (FD CDS) circuit including first to sixth switches turned on or off based on a control signal, and first to fourth capacitors, the FD CDS circuit being configured to receive a flicker pixel signal output from at least one pixel, summate with an output offset signal, and amplify the summation based on a gain to form a flicker detection signal; and an analog-to-digital converter (ADC) configured to quantize the flicker detection signal. |
US11539900B2 |
Caption modification and augmentation systems and methods for use by hearing assisted user
A system and method for facilitating communication between an assisted user (AU) and a hearing user (HU) includes receiving an HU voice signal as the AU and HU participate in a call using AU and HU communication devices, transcribing HU voice signal segments into verbatim caption segments, processing each verbatim caption segment to identify an intended communication (IC) intended by the HU upon uttering an associated one of the HU voice signal segments, for at least a portion of the HU voice signal segments (i) using an associated IC to generate an enhanced caption different than the associated verbatim caption, (ii) for each of a first subset of the HU voice signal segments, presenting the verbatim captions via the AU communication device display for consumption, and (iii) for each of a second subset of the HU voice signal segments, presenting enhanced captions via the AU communication device display for consumption. |
US11539897B2 |
Systems and methods for exposure control
The present disclosure relates to systems and methods for determining the exposure setting of an imaging device having a set of exposure parameters. A target luma of the imaging device may be determined. A correspondence table may be obtained. The correspondence table may relate to a plurality of reference luma values and a plurality of groups of operation values of the set of exposure parameters, a group of operation values corresponding to a reference luma value. A reference luma value and a group of operation values of the set of exposure parameters may be identified based on the target luma and the correspondence table. An adjustment of at least one exposure parameter of the imaging device may be determined based on the identified group of operation values. The at least one exposure parameter of the imaging device may be adjusted based on the determined adjustment. |
US11539893B2 |
Handheld gimbal and shooting control method for handheld gimbal
A shooting control method includes determining a handheld gimbal is in a selfie mode, determining a target object, controlling a shooting device of the handheld gimbal to track and shoot the target object according to the target object, determining position information of the target object in a shooting image according to the target object, adjusting a control parameter of the shooting device according to the position information of the target object in the shooting image, to enable the shooting device to shoot the target object in a preset configuration to obtain the shooting image, and displaying the shooting image. |
US11539885B2 |
Lens cover-based image capture device operation
An image capture device may include one or more optical elements. One or more lens covers may be used to cover the optical element(s). Usage of the lens cover(s) with respect to the optical element(s) may be determined. The operation of the image capture device may be changed based on whether the lens cover(s) are on or off the optical element(s). |
US11539880B2 |
Super resolution and color motion artifact correction in a pulsed color imaging system
The disclosure extends to methods, systems, and computer program products for producing an image in light deficient environments and associated structures, methods and features. The features of the systems and methods described herein may include providing improved resolution and color reproduction. |
US11539878B2 |
Method and apparatus for controlling video recording
The present disclosure provides a method and an apparatus for controlling video recording. The method is applied to a head-wearable device provided with a camera and a touch-control area, including: starting video recording in response to a multi-touch operation on the touch-control area; adjusting, in a process of the video recording, a zoom ratio for the video recording according to a moving track of a touch point corresponding to the multi-touch operation; terminating the video recording when it is determined that a recording termination condition is met, where the recording termination condition includes that the multi-touch operation disappears and a duration of the disappearing reaches a first preset duration. In the technical solution of the present disclosure, a series of operation of quickly starting video recording, zooming during recording, and terminating video recording can be completed through simple multi-touch operations, improving the efficiency of interactive operations and the user experience. |
US11539877B2 |
Apparatus and control method
An apparatus sets a weighting of a first subject included in a predetermined first range to be larger than that of other subjects when a detected subject is included in a first range in an image, updates a target subject for the photometry of which the weighting is set to be larger after continuing a state where the weighting of the first subject is set to be larger for a predetermined time when the first subject goes out of a second range which is wider than the first range and when the first subject does not go out of a third range which is wider than the second range, and updates the target subject for the photometry of which the weighting is set to be larger in response that the first subject goes out of the third range. |
US11539876B2 |
User interfaces for altering visual media
The present disclosure generally relates to user interfaces for altering visual media. In some embodiments, user interfaces capturing visual media (e.g., via a synthetic depth-of-field effect), playing back visual media (e.g., via a synthetic depth-of-field effect), editing visual media (e.g., that has a synthetic depth-of-field effect applied), and/or managing media capture. |
US11539874B2 |
Image-capturing apparatus and control method thereof
The image-capturing apparatus (100) includes an image sensor (14), a focus detector (42) performing focus detection using output from the image sensor; and a controller (50) configured to cause the focus detector to perform the focus detection and configured to control emission of a light emitter for illuminating an object and movement of a focus element for focusing. The controller selectively performs: a first focus detection process that causes the focus detector to perform the focus detection with the focus element being stopped while causing the light emitter to intermittently emit light; and a second focus detection process that causes the focus detector to perform the focus detection with the focus element being moved while causing the light emitter to intermittently emit the light. |
US11539871B2 |
Electronic device for performing object detection and operation method thereof
An electronic device includes: a first image sensor that outputs a first image produced by photographing a first viewing angle; a second image sensor that outputs a second image produced by photographing a second viewing angle that overlaps a portion of the first viewing angle; a third image sensor that outputs a third image produced by photographing a third viewing angle; and a processor that performs object detection on an object included in an image. The processor generates disparity information indicating a separation degree of a feature point of the first and second images, transforms the third image based on the disparity information, and performs object detection on the transformed third image. |
US11539868B2 |
Imaging system and vehicle window used for the same
A camera lens attaching portion 30 is fitted into an opening provided in a vehicle window 20. A lens of a camera 40 is attached to a lens attaching surface 31a of the camera lens attaching portion 30. A surface opposed to the lens attaching surface 31a is a window surface 31b. The window surface 31b is an inclined surface different from a window surface 22 of the vehicle window 20. Furthermore, the window surface 31b may be an inclined surface same as the window surface 22 of the vehicle window 20. The camera 40 images outside of the vehicle through the camera lens attaching portion 30 with an angle of view set within the window surface 31b of the camera lens attaching portion 30. It is possible to prevent reflection of a reflected image generated on a vehicle inner side of the vehicle window. |
US11539865B2 |
Operation of an electronic device as a web camera
Methods, apparatuses, and systems for operating an electronic device as a web camera are disclosed. The disclosed embodiments relate to features that enable a user to operate a mobile device as a webcam. A smartphone case can hold a smartphone and be attached to a display, such as a laptop monitor or a flatscreen monitor, with a camera of the smartphone pointed at the user. The smartphone case can include a magnet, which triggers a Hall effect sensor inside the laptop or flatscreen monitor. The sensor can be used to trigger software that enables the smartphone and laptop or computer to pair with each other, e.g., by a Bluetooth handshake. The laptop or computer can accept a Wi-Fi or physical signal, such as via USB, from the smartphone and treat that input as a video stream into the laptop or computer. |
US11539864B1 |
Folded optics camera and actuator assembly
Various embodiments include a camera with a folded optics arrangement and include a voice coil motor (VCM) actuator assembly to provide autofocus (AF) and/or optical image stabilization (OIS) movement. The camera with folded optics and the associated VCM actuator assembly have a first rotational normal mode of free vibration such that lenses of the camera rotate about an optical axis of the camera such that the rotational motion in the first rotational mode of free vibration is invisible from a perspective of an image sensor of the camera. |
US11539862B2 |
Image processing for color matching before and after lamination printing
An image processing method includes: converting a device color CMYK1 that is an input device color depending on an input device into a device color CMYK2 that is an output device color depending on an output device; converting the device color CMYK2 into a spectral reflectance R1 using an output profile showing a relationship between the output device color and a spectral reflectance; converting the spectral reflectance R1 into a spectral reflectance R2, to be reproduced before lamination processing, using a mutual conversion formula of a spectral reflectance before lamination processing and a spectral reflectance after lamination processing; and calculating a device color CMYK3 that is an output device color using the spectral reflectance R2, the output profile, and light source information. |
US11539861B1 |
Color plane misregistration determinations
In some examples, a device includes a printing device to generate an image on a substrate from a digital image, and a processor to: receive a scanned image of the image on the substrate, identify a plurality of image portions of the scanned image, identify horizontal color changes across a horizontal portion of the plurality of image portions, identify vertical color changes across a vertical portion of the plurality of image portions, compare the horizontal color changes and vertical color changes to corresponding horizontal color changes and corresponding vertical color changes of the digital image, and measure a presence of color plane misregistration, and the color, direction and magnitude of misregistration based on the comparison. |
US11539859B2 |
Image processing apparatus and image forming apparatus
An image processing apparatus includes a halftone processing unit and a multi-level gradation processing unit. The halftone processing unit is configured to perform a halftone process for a target image and generate a binary image corresponding to the target image. The multi-level gradation processing unit is configured to (a) set a target pixel as a dot pixel in the binary image, (b) determine whether a dot exists on plural first periphery pixels with a predetermined first distance from the target pixel and plural second periphery pixels with a predetermined second distance from the target pixel or not, (c) derive a gradation level of the target pixel among predetermined three or more gradation levels on the basis of a number of dots on the plural first periphery pixels and a number of dots on the plural second periphery pixels and thereby generate a multi-level gradation image. |
US11539854B2 |
Image scanning apparatus and method for controlling apparatus having scanning device
According to aspects of the present disclosures, an image scanning apparatus receives an inquiry for assignment information and, when the assignment information designates none of multiple destination candidates, transmits the assignment information indicating the same to a mobile terminal. When receiving, from the mobile terminal, an assignment request requesting to assign a server as a destination, the image scanning apparatus checks whether the assignment information designates none of the multiple destination candidates. When it is confirmed that the assignment information designates none of the multiple destination candidates, a state of the assignment information is changed to a state of designating a server as the destination of image data. |
US11539853B2 |
Document feeder and image forming apparatus
An image reader used as a back surface reading unit includes LEDs, a first mirror, a second mirror, a third mirror, a lens, and a CCD inside a housing. The first mirror, which first reflects light reflected from the document, is positioned farther away from the document reading position than other reflecting mirrors (i.e. the second mirror and the third mirror) in an optical axis direction of the optical path connecting the document reading position and the first mirror. |
US11539851B2 |
Apparatus for switching a power state among a plurality of power states and method thereof
An apparatus includes a control unit configured to switch a power state among a first power state, a second power state, and a third power state, the first power state being a state where a device driver is loaded and a device is usable, the second power state being a state where the device driver is unloaded and the device is unusable, the third power state being a state where the device driver is unloaded and the device is unusable, power consumption in the third power state being less than power consumption in the second power state. Based on reception of a predetermined signal in a case where the information processing apparatus is in the third power state, the control unit causes the power state to transition from the third power state to the second power state. |
US11539842B2 |
Methods and systems for information streaming to user interface
Methods and systems are disclosed for information streaming to a user interface via a networked contact center. In one example, a system includes communications computer circuitry to receive, at a networked contact center, a request to stream information to a user interface, the user interface being associated with the networked contact center and an agent to be contacted by others. Information streaming circuitry streams the requested information and to open a network connection between the user interface and a server of a networked contact center, and the information streaming circuitry keeps the network connection between the user interface and the server open as a persistent network connection to the user interface. The communications computer circuitry also pushes one or more events to the user interface via the persistent network connection to cause a change in the user interface without further network requests to the server from the user interface. |
US11539837B1 |
Mechanisms for scheduling outbound calls from call centers
Communications channels between systems can be managed such that unnecessary use of the channels is limited. A computer system can initiate a request to establish communications channels between a client device and the computer system. A notification is sent to the client device, which causes the client device to prompt the user to either accept the request or reschedule the requested establishing of the communications channel. |
US11539834B1 |
Systems and methods for detecting fraudulent calls using virtual assistants
A system may include a processor that may execute computer-executable instructions that cause the processor to receive caller information regarding an incoming communication from a caller and receive a request from a user to route the incoming communication to a virtual assistant application. The virtual assistant application is configured to interact with the caller and determine whether the caller is associated a fraudulent caller activity stored on databases accessible by the processor. The processor may then receive an indication from the virtual assistant application that the caller is associated with the fraudulent caller activity and forward the incoming communication to another party in response to receiving the indication. |
US11539833B1 |
Robust step-size control for multi-channel acoustic echo canceller
A multi-channel acoustic echo cancellation (AEC) system that includes a step-size controller that dynamically determines a step-size value for each channel and each tone index on a frame-by-frame basis. The system determines that near-end signals are present by calculating a scaled error and determining that the scaled error exceeds a threshold value. When the scaled error exceeds the threshold value, the system may switch from a first cost function to a second cost function and determine a step-size value using a robust algorithm. The robust algorithm may prevent the system from diverging due to the presence of the near-end signal. For example, the robust algorithm may select a different cost function to determine the step-size value and/or combine different step-size computations, resulting in the step-size value being temporarily reduced. Thus, the robust algorithm may enable the AEC to better model the near-end disturbance statistics while the near-end signal is present. |
US11539828B2 |
User interface process flow for posting content on a display device
The present disclosure provides a user interface process flow for posting content on a display device. The disclosed techniques include a user interface process that initiates a connection that enables a host device to receive content from a guest device in a secure and discrete manner. The host device utilizes one or more graphical elements to invoke a user input at the host device to verify that the user is physically present at the host device. In response to the user input, a server generates a connection identifier that is communicated to, and displayed at, the host device. The connection identifier and an address of a server are displayed at, or otherwise communicated from, the host device to a guest device. The guest device uses the connection identifier to establish a connection with the host device for delivery of content from the guest device for display on the host device. |
US11539826B2 |
5G FWA device self-installation application
Systems and methods are provided for effectuating a self-installation application that may be utilized by end users of 5G Fixed Wireless Access (FWA) devices, installation professionals, etc. to optimally locate and position/orient a 5G FWA device relative to an installation environment. Various guidance can be provided to a user depending on the user's level of experience or familiarity with installation of such devices. Calculations can be executed to determine performance of a 5G FWA device depending on its location/position/orientation relative to elements or structures or obstructions that may impact its ability to effectively connect to/obtain service from a serving cell or network infrastructure. |
US11539825B2 |
Processing method of customized key based on android platform and processing device using the same
A processing method of a customized key based on an Android platform includes receiving a key value of an input key, mapping the key value to a key scan code, identifying a to-be-blocked key according to the key scan code, converting, when the input key is the to-be-blocked key, the key scan code into a specific key code by a key block module, and sending, by bypassing an Android framework layer by the key block module, the specific key code to an application program for processing. |
US11539824B2 |
Split mobile phone radiator
The present disclosure discloses a split mobile phone radiator. The split mobile phone radiator includes a protective cover. An accommodating groove is formed in the top of the inner wall of the protective cover. A refrigeration module is separably arranged on the top surface, far away from the accommodating groove, of the protective cover. The refrigeration module includes a semiconductor refrigeration mechanism, a radiating mechanism used for cooling the semiconductor refrigeration mechanism, and a rear cover wrapping around the semiconductor refrigeration mechanism and the radiating mechanism. A heat conducting silica gel sheet is arranged on one side, close to the protective cover, of the rear cover. According to the present disclosure, the whole refrigeration module fits the top of the protective cover, so that the mobile phone radiator is directly attached to the back side of the mobile phone, and the mobile phone radiator has a split function. |
US11539817B1 |
Adaptive authentication and notification system
Systems, methods, and machine-readable media for processing data transmissions from a plurality of client devices to create composites for transmission to destination addresses are provided. Communications via a network may be received from a set of devices. Each communication may include a digital identifier corresponding to a destination specification. The communication may be processed to identify the digital identifier and to identify the destination specification. A data portion may be selected from the communication and cached. A second format may be identified as corresponding to a second communication medium, where the second format is different from a first format of the communication. A composite may be created according to the second format. The composite may include the selected data portion and the destination specification. The composite formatted according to the second format may be transmitted toward an endpoint device in accordance with the destination specification. |
US11539816B2 |
Dynamic service response
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for dynamic service response are disclosed. In one aspect, a method includes the actions of receiving a request to access a first computing service. The actions further include, in response to receiving the request to access the computing service, accessing first status data that indicates a first status of the first computing service and second status data that indicates a second status of the first computing service. The actions further include, based on the first status data and the second status data, generating instructions for the first computing service to respond to the request. The actions further include providing the first computing service the instructions for responding to the request. |
US11539815B2 |
Enhanced self-assembling and self-configuring microservices
A method for managing systems with interrelated microservices with self-assembling and self-configuring microservices includes receiving at a first micro service a service request from a client. A determination is the made whether the first micro service is capable of processing the service request. If the first micro service is capable of processing the service requests, then processing the service request; if the first micro service cannot process the service request then routing the service request to a first stem service. The first stem service determines whether there is a second micro service that can process the service request. If the second micro service that can process the service requests exists, then forwarding the service request to the second micro service for processing. If there is no second micro service that can service the service requests then morphing the first stem service into a micro service that can service the service request. |
US11539811B2 |
Adaptive compression of stored data
Systems, devices and methods for adaptive compression of stored information includes a memory management computing device programmed to monitor a size of a plurality of data structures stored in a data repository. The computing device compares the size of each of a plurality of data structures to a predetermined threshold. When a size of an uncompressed data structure meets the threshold, the memory management computing device calculates a value of a first compression parameter based on a value of a first parameter and a value of a second parameter of each data element of the uncompressed data structure, calculates a value of a second compression parameter based the value of the first parameter of each data element of the uncompressed data structure, generates a compressed data structure based on the value of the first compression parameter and the second compression parameter; and replaces, in the data repository, the uncompressed data structure with the compressed data structure. |
US11539809B2 |
Push notification delivery system with feedback analysis
A push notification delivery system includes a server system including a processor, a network interface, and memory storing program instructions having code segments for receiving a received push notification, code segments for determining at least one of a favorable push time and a favorable message format based upon a database of received push information developed from a plurality of prior sent push notifications, and code segments for pushing the message to the destination in accordance with the at least one of a favorable push time and a favorable message format. A method for delivering push notifications includes receiving a received push notification including a message and a destination, sending a sent push notification derived from the received push notification to the destination in accordance with at least one favorable condition, receiving received push information related to the sent push notification, and storing the received push information in a database. |
US11539806B2 |
Server-side configuration variables in feature testing
A method includes receiving an identification of a feature associated with digital content of a third-party content provider, wherein the identification comprises a feature variable placeholder associated with the feature. The method further includes receiving a configuration of a feature flag associated with the feature. The method further includes determining, by a processing device of an experimentation system, a plurality of feature variable values corresponding to the feature variable placeholder. The method further includes configuring, by the processing device, one or more rules on the experimentation system to determine: when and to whom the feature is to be deployed, based on the feature flag; and which of the plurality of feature variable values is to be deployed when and to whom. |
US11539805B2 |
Application programming interface for rendering personalized related content to third party applications
A system includes an ingestion component configured to receive a request from an entity for content related to a content item and a user identity. The request has a content identifier representative of the content item and a token. A request processing component of the system is configured to access a database associated with the system and identify the content item and the user identity using the content identifier and the token, wherein the database has information associating the token with the user identity and associating the content identifier with the content item. In response to identification of the content item and the user identity, the request processing component directs a recommendation engine associated with the system to identify the content related to the content item and the user identity. Information identifying the content related to the content item and the user identity is then transmitted back to the entity. |
US11539802B2 |
Dynamically configurable client application activity
A method includes selecting, by one or more servers, a digital component to be presented in an application executed at a client device; obtaining, by the one or more servers, attributes of the digital component, including at least one or more of a destination network location to which the digital component redirects users in response to interaction with the digital component and a reporting network location to which the interaction with the digital component is reported; after selecting the digital component and obtaining the attributes of the digital component, selecting, by the one or more servers and based on the obtained attributes, a config file that specifies a set of operations to be performed by the client device that presents the digital component; and transmitting, to the client device, a payload that includes information specifying the digital component to be presented in the application and the config file that, upon execution by the client device, causes the client device to perform the set of operations specified by the config file. |
US11539800B2 |
Electronic device and control method therefor
Disclosed is an electronic device. The electronic device of the present invention comprises: a communication unit; a storage unit for storing a uniform resource locator (URL) designated by an external electronic device and information on specific content provided in the designated URL; and a processor which, when a request for a connection to a designated URL is received from an external electronic device through the communication unit, identifies whether specific content can be provided in the designated URL, and in a case where the specific content cannot be provided, obtains information on another URL that provides content related to the specific content by using stored information, and transmits the obtained information on the another URL to the external electronic device through the communication unit. |
US11539797B2 |
Reconfigurable zone-based architecture for trailering applications
Methods and systems are provided for communicating trailer information from a trailer to a vehicle. In one embodiment, the method includes: a plurality of zone-based modules configured to communicate with at least one of sensors and actuators of a vehicle; and at least one command center module configured to communicate with the plurality of zone-based modules. The at least one of the plurality of zone-based modules includes a configuration sub-module configured to, by a processor, facilitate communication of the trailer information from the trailer to at least one other of the plurality of zone-based modules. Each of the plurality of zone-based modules includes a configuration sub-module configured to, by a processor, facilitate communication of the trailer information between the plurality of zone-based modules. The at least one command center module includes a configuration sub-module configured to, by a processor, facilitate communication of the trailer information between the plurality of zone-based modules and vehicle applications. |
US11539796B2 |
System for intelligent sensor data transfer and device manipulation leveraging quantum optimization engine
A system for intelligent data transfer is provided. The system is configured to: collect sensor data from a plurality of user devices, the plurality of user devices being connected to a device gateway in an edge layer of the network; combine the collected sensor data with contextual data stored in a contextual device database, wherein the contextual data comprises device usage data and user data; generate a data transfer rule set for governing data transfer from the plurality of user devices over the network based on the combined data; calculate a data configuration flow for the plurality of user devices based on the data transfer rule set; and execute the data configuration flow to control a flow of the sensor data transferred from the device gateway to an application server in a platform layer. |
US11539793B1 |
Responding to membership changes to a set of storage systems that are synchronously replicating a dataset
Determining active membership among a set of storage systems, including: determining, by a cloud-based storage system among the set of storage systems, that a membership event corresponds to a change in membership to the set of storage systems synchronously replicating the dataset; applying, in dependence upon the membership event, one or more membership protocols to determine a new set of storage systems to synchronously replicate the dataset; and for one or more I/O operations directed to the dataset, applying the one or more I/O operations to the dataset synchronously replicated by the new set of storage systems. |
US11539790B2 |
Systems and methods for establishing and maintaining virtual computing clouds
Networking systems and methods for establishing and maintaining virtual computing clouds are disclosed. A networking system can comprise a server and various instances of a software agent, each agent being installed on a computing device participating in a virtual computing cloud. The server can maintain account setting for a user, wherein the settings can indicate which files on indicated computing devices are included in the virtual computing cloud. The networking system can selectively synchronize data between the computing devices automatically and in a secure manner, and can transmit data in real time to simulate local storage when synchronization of certain files is inappropriate in light of file incompatibility. As a result, the networking system can provide the user with a seamless, automatic system and method for accessing a total computing environment. |
US11539787B2 |
5G enabled massively distributed on-demand personal cloud system and method
The technology described herein allocates resources in a cloud computing environment using a 5G network. The system can connect a device to the 5G network and collect data related to the device such as a location of the device and characteristics of use of the device with the 5G network. The system can create a device service profile of the device based at least in part on the data related to the device. The system can then dynamically partition computing resources within the cloud computing environment for the device based on the device service profile and a time-of-day in the location of the device to thereby provide on-demand access to content or services in the cloud computing environment to the device over the 5G network. |
US11539784B2 |
Content-based distribution and execution of analytics applications on distributed datasets
Methods are provided. A method includes announcing to a network meta information describing each of a plurality of distributed data sources. The method further includes propagating the meta information amongst routing elements in the network. The method also includes inserting into the network a description of distributed datasets that match a set of requirements of the analytics task. The method additionally includes delivering, by the routing elements, a copy of the analytics task to locations of respective ones of the plurality of distributed data sources that include the distributed datasets that match the set of requirements of the analytics task. |
US11539783B1 |
Efficient downloading of files to multiple users in proximity of one another
In one disclosed method, a computing system receives, from a first remote device, a first request for a file and determines that at least a second remote device is within a proximity of the first remote device. The computing system further divides the file into at least a first portion and a second portion. The computing system further sends, to the first remote device, the first portion of the file and sends, to the second remote device, the second portion of the file. The computing system further sends, to the second remote device, first data to enable the second remote device to establish a connection with the first remote device, for transfer of at least the second portion of the file to the first remote device via the connection with the second remote device. |
US11539780B2 |
Systems and methods for quick start-up of playback
Systems and methods for quick start-up of playback in accordance with embodiments of the invention are disclosed. Media content may be encoded in a plurality of alternative streams and a quick start-up stream. The quick start-up stream may include media content that is encoded at a lower quality that the alternative streams and may be encrypted with a different, less secure encryption process than that of the alternative streams. During a start-up of playback, the playback device streams the media content from a quick start-up stream until a metric, such as a decryption key for the alternative streams is met. The device then streams the media content from the alternative streams in response to the metric being met. |
US11539773B2 |
Systems, methods, and devices for providing networked access to media signals
A system for providing networked access to media signals, the system comprising at least one virtual media card configured to interface with at least one application that produces and/or consumes media signals, and/or at least one media interface configured to interface with at least one physical media card that produces and/or consumes media signals. The system may also comprise a network interface configured to enable the system to exchange media signals with other devices on a common network, and a reference clock configured to provide a common clock signal to the at least one virtual media card, the at least one media interface, and the common network. An advertisement and discovery module configured to identify when the at least one application is started and/or stopped and when the at least one media card is attached and/or detached from the system may also be provided. The advertisement and discovery module is configured to: (i) make I/O channels of the at least one media card available to the system and the common network, and (ii) make I/O channels of the at least one application available to the system and the common network. |
US11539772B2 |
Uniform packet streaming
A method and system for delivering content are disclosed. A media stream including media data is received from a content provider at a content delivery network (CDN) server. The CDN server creates a uniform protocol data unit (PDU) comprising the media data. A plurality of requests to receive the uniform PDU are received at the CDN server from a plurality of devices is received at a CDN server. Each device is associated with a unique IP address. The CDN server communicates the uniform PDU over a network to the plurality of devices using the unique IP address for each of the plurality of devices. |
US11539770B1 |
Host-to-kernel streaming support for disparate platforms
Providing host-to-kernel streaming support can include determining a platform circuitry for use with a streaming kernel of a circuit design. The streaming kernel is configured for implementation in a user circuitry region of an integrated circuit (IC) to perform tasks offloaded from a host computer. The platform circuitry is configured for implementation in a static circuitry region of the IC. The platform circuitry is configured to establish a communication link with the host computer. An adaptable streaming controller can be inserted within the circuit design. The adaptable streaming controller is configured for implementation in the user circuitry region and connects to the streaming kernel. The adaptable streaming controller further communicatively links the streaming kernel with the platform circuitry. The adaptable streaming controller can be parameterized for exchanging data between the platform circuitry and the streaming kernel based, at least in part, on a type of the platform circuitry. |
US11539769B2 |
Optimizing content streaming
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing streaming content are disclosed. In one aspect, a method includes the actions of determining that a user device participating in a content streaming service will transition from a first wireless service coverage area to a second wireless service coverage area that provides a lower quality wireless service relative to the first wireless service coverage area. The actions further include, prior to the user device transitioning from the first wireless service coverage area to the second wireless service coverage area, increasing a resource associated with the content streaming service and the user device. The actions further include, after the user device transitions from the first wireless service coverage area to the second wireless service coverage area, decreasing the resource associated with the content streaming service and the user device. |
US11539768B2 |
System and method of minimizing network bandwidth retrieved from an external network
A system and method are provided of minimizing network bandwidth used from an external network by client peers in a local network. The method can include the operation of organizing a plurality of clients each having media streamlets and a client parent in a structure within the local network. Mapping information propagates through the structure. The mapping information represents local streamlet locations as stored by the plurality of clients. Another operation is retrieving a local streamlet from a client identified in the mapping information as having the local streamlet for the requesting client. |
US11539767B2 |
Social media connection recommendations based on playback information
Embodiments are described herein that involve a computing device initiating playback of a particular media item on a media playback system that is registered to a particular account of a social media service. The computing device may query the social media service for one or more accounts of the social media service that are registered to respective media playback systems that have played the particular media item on at least a threshold number of occasions and have not yet been connected to the particular account of the social media service within the social network. The computing device may receive the queried one or more accounts of the social media service and cause a graphical interface to display one or more respective selectable indications of the received one or more accounts of the social media service. |
US11539766B1 |
Selection of images to transmit as part of video conference based on network issues and/or other conditions
In one aspect, a first device may include at least one processor and storage accessible to the at least one processor. The storage may include instructions executable by the at least one processor to, during video conferencing and based on at least one identified condition (such as an issue with a network being used for the video conferencing), select a first image from plural images received from a camera. The plural images may be associated with the video conferencing. The instructions may also be executable to provide the first image to a second device different from the first device but decline to provide at least a second image from the plural images. |
US11539764B2 |
Communication management system, communication system, communication management device, image processing method, and non-transitory computer-readable medium
A communication management system manages a session in which a plurality of terminal apparatuses shares a stroke image. The communication management system includes circuitry configured to: manage stroke information including a plurality of pieces of stroke data representing the stroke image; receive, from a first terminal apparatus, group operation information for designating one or more pieces of stroke data, which are operation targets, from among the plurality of pieces of stroke data; and restrict, based on the group operation information, an operation regarding the one or more pieces of stroke data by a second terminal apparatus, which is different from the first terminal apparatus. |
US11539757B1 |
Interoperability between RCS networks and proprietary messaging platforms
Methods, systems, and storage media for providing interoperability for advanced messaging features between RCS and proprietary messaging platforms are disclosed. Exemplary implementations may: register a user of a messaging platform with an external network; associate the user with an identifier of the external network; configure an adapter to receive notifications from the identifier of the external network via a subscription; and receive, via the adapter at the messaging platform, the notifications addressed to the identifier of the external network based on the subscription. |
US11539756B2 |
Switch device for one-way transmission
A switch device is provided. The switch device includes a switch and a one-way link circuit, wherein the switch including a first port, a second port, and a third port. The third port coupled to the second port via a first path and coupled to the first port via a second path. An input terminal of the one-way link circuit is coupled to the first port. |
US11539753B2 |
Network-accessible service for executing virtual machines using client-provided virtual machine images
Techniques are described for managing communications between multiple intercommunicating computing nodes, such as multiple virtual machine nodes hosted on one or more physical computing machines or systems. In some situations, users may specify groups of computing nodes and optionally associated access policies for use in the managing of the communications for those groups, such as by specifying which source nodes are allowed to transmit data to particular destinations nodes. In addition, determinations of whether initiated data transmissions from source nodes to destination nodes are authorized may be dynamically negotiated for and recorded for later use in automatically authorizing future such data transmissions without negotiation. This abstract is provided to comply with rules requiring an abstract, and it is submitted with the intention that it will not be used to interpret or limit the scope or meaning of the claims. |
US11539749B2 |
Systems and methods for alert prioritization using security events graph
The technology disclosed includes a system to group security alerts generated in a computer network and prioritize grouped security alerts for analysis. The system includes graphing entities in the computer network as entities connected by one or more edges. Native scores for pending alerts are assigned to nodes or to edges between the nodes. A connection type is assigned to each edge and weights are assigned to edges representing relationship strength between the nodes. The technology disclosed includes traversing the graph starting at starting nodes and propagating native scores through and to neighboring nodes connected by the edges. Aggregate score for a visited node is calculated by accumulating propagated scores at visited nodes with their respective native scores. The technology disclosed forms clusters of connected nodes in the graph that have a respective aggregate score above a selected threshold. The clusters are ranking and prioritized for analysis. |
US11539748B2 |
Monitoring and reporting enterprise level cybersecurity remediation
An orchestration system is described that is configured to receive a request to monitor compliance of an enterprise infrastructure and generate an infrastructure change that is associated with the compliance of the enterprise infrastructure, based at least in part on a set of predetermined criteria. In doing so, the orchestration system may further generate one or more infrastructure change events based at least in part on instances of the infrastructure change within the enterprise infrastructure. The orchestration system may further generate a verification report for the enterprise infrastructure, based at least in part on the one or more infrastructure change events, and transmit the verification report to a registered user associated with the request. |
US11539746B2 |
Methods and systems for browser spoofing mitigation
An authentication system includes an authentication module and a user history database storing order information that includes, for each of multiple logins of the first user to a web property, at least one of: an indication of an order of hypertext transfer protocol (HTTP) headers that were previously received at the authentication module during the login, and an indication of an order of navigator object properties that were previously returned to the authentication module during the login. The authentication module is configured to: receive, from a web browser of a first entity attempting to log in to the web property, credentials of the first user; determine order information of the first entity's web browser; perform a comparison operation based on the order information of the first user and that of the first entity, and determine whether to allow the first entity to log in based on the comparison operation. |
US11539745B2 |
Identifying legitimate websites to remove false positives from domain discovery analysis
Aspects of the disclosure relate to identifying legitimate websites and removing false positives from domain discovery analysis. Based on a list of known legitimate domains, a computing platform may generate a baseline dataset of feature vectors corresponding to the known legitimate domains. Subsequently, the computing platform may receive information identifying a first domain for analysis and may execute one or more machine learning algorithms to compare the first domain to the baseline dataset. Based on execution of the one or more machine learning algorithms, the computing platform may generate first domain classification information indicating that the first domain is a legitimate domain. In response to determining that the first domain is a legitimate domain, the computing platform may send one or more commands directing a domain identification system to remove the first domain from a list of indeterminate domains maintained by the domain identification system. |
US11539739B2 |
Detection and mitigation of flood type DDoS attacks against cloud-hosted applications
A system and method for protecting cloud-hosted applications against hypertext transfer protocol (HTTP) flood distributed denial-of-service (DDoS) attacks are provided. The method includes collecting telemetries from a plurality of sources deployed in at least one cloud computing platform hosting a protected cloud-hosted application; providing at least one rate-based feature and at least one rate-invariant feature based on the collected telemetries, wherein the rate-based feature and the rate-invariant feature demonstrate behavior of at least HTTP traffic directed to the protected cloud-hosted application; evaluating the at least one rate-based feature and the at least one rate-invariant feature to determine whether the behavior of the at least HTTP traffic indicates a potential HTTP flood DDoS attack; and causing execution of a mitigation action when an indication of a potential HTTP flood DDoS attack is determined. |
US11539737B2 |
Adaptive security for resource constraint devices
A method for providing protection of a computing resource constrained device against cyberattacks may include collecting threat intelligence data in form of indicators of compromise (IoC). The indicators may include cyberattack chain related data. The method may also include determining a relevance of the cyberattack chain for the device, measuring a utilization of security measures in terms of their detection of the respective IoCs and their respective responses to the IoCs, measuring a resource consumption of the security measures, and determining a benefit value for at least one the security measure expressed by its utilization and a relevance value of the IoCs detected with it. |
US11539736B1 |
Network asset correlator for cybersecurity operations
Disclosed herein are methods, systems, and processes for utilizing computing entity resolution for network asset correlation. A scanned dataset that includes newly scanned node information that identifies newly scanned nodes on a network is received from a security server. The newly scanned node information is extracted from the scanned dataset and indicates that the newly scanned nodes cannot be identified as being part of existing computing devices in the network. The newly scanned node information is processed with a network asset correlator and the processing results in a set of asset correlation results for the newly scanned nodes. An existing computing device is identified based on a highest disparate correlation probability in the set of asset correlation results and the security server is instructed to perform a security action on the identified existing computing device. |
US11539729B2 |
Protecting network devices from suspicious communications
According to some aspects, disclosed methods and systems may comprise generating a profile that is based on monitoring a communication pattern associated with a device. Subsequent communications associated with the device may be monitored. Based on the profile and the subsequent communication, a security status may be associated with the device. |
US11539725B2 |
System and method for continuous collection, analysis and reporting of attack paths choke points in a directory services environment
A system and method for analyzing directory service environment attack path choke points for an enterprise may continuously collect data about the attack paths and provide alerts. |
US11539720B2 |
Computer network threat assessment
Systems and methods are disclosed for computer network threat assessment. For example, methods may include receiving from client networks respective threat data and storing the respective threat data in a security event database; maintaining affiliations for groups of the client networks; detecting correlation between a network threat and one of the groups; identifying an indicator associated with the network threat, and, dependent on the affiliation for the group, identifying a client network and generating a message, which conveys an alert to the client network, comprising the indicator; responsive to the message, receiving, from the client network, a report of detected correlation between the indicator and security event data maintained by the client network; and updating the security event database responsive to the report of detected correlation. |
US11539719B2 |
Target aware adaptive application for anomaly detection at the network edge
Customized DL anomaly detection models and generated and deployed on disparate edge devices. Configuration-related information is fetched from the edge devices and, based on the configuration/capabilities of the edge device, at least one primary deep learning-based anomaly detection model is selected, which are customized based on the configuration/capabilities of the edge device. Customization involves limiting the volume of the predictors/variables and optimizing the iterations used to determine anomalies and/or make predictions. The customized models are subsequently packaged in edge device-specific formats, such as a customized set of binaries in C language or the like. The resulting customized DL anomaly detection application is subsequently deployed to the edge device where it is executable without the need for specialized hardware or communication with network entities, such as cloud nodes or servers. |
US11539718B2 |
Efficiently performing intrusion detection
Some embodiments of the invention provide a method for performing intrusion detection operations on a host computer. The method receives a data message sent by a machine executing on the host computer. For the data message's flow, the method identifies a set of one or more contextual attributes that are different than layers 2, 3 and 4 header values of the data message. The identified set of contextual attributes are provided to an intrusion detection system (IDS) engine that executes on the host computer to enforce several IDS rules. The IDS engine uses the identified set of contextual attributes to identify a subset of the IDS rules that are applicable to the received data message and that do not include all of the IDS rules enforced by the IDS engine. The IDS engine then examines the subset of IDS rules for the received data message to ascertain whether the data message is associated with a network intrusion activity. For instance, in some embodiments, the IDS engine identifies one rule in the identified subset of IDS rules as matching the received data message, and then processes this rule to determine whether the data message is associated with an intrusion. |
US11539705B2 |
Systems and methods for controlling third-party access of protected data
A server comprises a communications module, a processor coupled to the communications module, and a memory coupled to the processor, the memory storing processor-executable instructions which, when executed, configure the processor to receive, via the communications module and from a monitoring application installed on a remote computing device, on-device application data, generate a risk profile for a user based at least on the on-device application data, configure a data sharing configuration option for sharing data associated with the user based on the risk profile for the user, and share the data based on the data sharing configuration option. |
US11539702B2 |
Enhanced load processing using linked hierarchical data structures
The present disclosure relates to enhancing load processing for facilitated assignment or modification of access-right data. More specifically, the present disclosure relates to enhancing load processing and data storage using hierarchical data structures that can store various iterations of resource objects. In some embodiments, a computer-implemented method, system, and/or computer-program product tangibly embodied in a non-transitory machine-readable storage medium for enhanced load processing using hierarchical data structures may be provided. |
US11539701B2 |
Network access point
A computer implemented method of a network access point for secure network access by a mobile computing device, the mobile device being associated with the access point by a digitally signed record in a blockchain wherein the blockchain is accessible via a network and includes a plurality of records validated by miner computing components, the method including receiving a request from another network access point to associate the mobile device with the other access point, the request having associated identification information for the mobile device; responsive to a verification of an entitlement of the mobile device to access the network, generating a new record for storage in the blockchain, the new record associating the mobile device with the other access point and being validated by the miner components such that the other access point provides access to the network for the mobile device based on the validation of the new record. |
US11539699B2 |
Network slice authentication
Apparatuses, methods, and systems are disclosed for network slice authentication. One apparatus includes a processor that provides an application layer and a non-access stratum (“NAS”) layer and a transceiver for communicating with a mobile communication network. The processor receives, at an application at the application layer, network slice authentication information for a subscribed service and stores the network slice authentication information at an application module. The processor associates the network slice authentication information with single network slice selection assistance information (“S-NSSAI”) and registers the application with the NAS layer, said registration pointing to the associated S-NSSAI. Additionally, the transceiver that exchanges, via the NAS layer, authentication messages with an authentication, authorization, and accounting (“AAA”) server for network slice authentication information. |
US11539694B2 |
Method and system for context aware frictionless authentication based on authentication scores
Described embodiments provide systems and methods for context aware frictionless authentication. A server may determine authentication method information, contextual scores and contextual weights of a device, in connection with a user request to access a resource via the device. The authentication method information may include a weight and a completion duration for each of a plurality of authentication methods available via the device. The server may determine an authentication score for each of the plurality of authentication methods using the authentication method information, the contextual scores and the contextual weights of the device. The server may identify a first authentication method from the plurality of authentication methods, according to the determined authentication score. The server may authenticate the user request via the first authentication method using a first device that supports the first authentication method. |
US11539692B2 |
Setting based access to data stored in quarantined memory media
Methods and apparatuses related to settings based access to data stored in quarantined memory media are described. Memory systems can include multiple types of memory media (e.g., volatile and/or non-volatile) and data (e.g., information included in) stored in the memory media are subject to risks of the data being undesirably exposed and/or viewable to the public. According to embodiments of the present disclosure, a particular portion and/or location in the memory media can provide a data protection scheme, and a setting associated with the data can include security protocols that can control the accessibility to the stored data. For example, a setting can be associated with data to be stored in a particular location of the memory media, and responsive to a request to access the data, the setting can initiate an authentication of the request. |
US11539690B2 |
Authentication system, authentication method, and application providing method
An application server of an authentication system includes a requesting part that makes a request for possession authentication which is authentication using an authenticator, when the requesting part receives a request for authentication of a user from a terminal, a verifying part that receives an authentication result of the possession authentication and information for verification from the authentication server, and verifies the validity of the authentication server on the basis of the received information for verification, and a providing part that provides a function related to the application to the terminal if the verifying part verifies that the authentication server is valid. The authentication server of the authentication system includes a possession authentication part and a result transmission part that transmits the authentication result of the possession authentication and the information for verification to the application server. |
US11539689B2 |
System, method, and apparatus for authenticating a user device
Provided is a method, system, and apparatus for authenticating a user device. The method includes registering a device identifier with at least one transformation rule, receiving a request for authentication comprising a device identifier associated with a user device, obtaining a one-time password (OTP) in response to receiving the request, communicating the OTP to the user device, receiving a transformed OTP from the user device, and authenticating the user device based on the OTP, the transformed OTP, and the at least one transformation rule. |
US11539684B2 |
Dynamic authentication scheme selection in computing systems
Techniques of dynamic authentication scheme selection in distributed computing systems are disclosed herein. One example technique includes analyzing a received authentication request for an indicator of an authentication scheme that is supported by a computing service submitting the authentication request. The example technique can also include determining whether the authentication scheme associated with the indicator is also supported by the authentication service and in response to determining that the authentication scheme associated with the indicator is also supported by the authentication service, initiating an authentication process with the computing service according to the authentication scheme that is supported by both the computing service and the authentication service. As such, the authentication scheme can be dynamically selected at the authentication service for the received authentication request. |
US11539683B2 |
Operation related to user equipment using secret identifier
A method performed by a network node of a serving public land mobile network, PLMN, associated with a user equipment, UE, comprising: obtaining a secret identifier that uniquely identifies the UE, wherein the secret identifier is a secret that is shared between the UE and at least a home PLMN of the UE and that is shared by the home PLMN with the network node; and performing an operation related to the UE using the secret identifier. Other methods, computer programs, computer program products, network nodes and a serving PLMN are also disclosed. |
US11539682B2 |
Connection parameter awareness in an authenticated link-layer network session
Methods, apparatuses, and computer programs products for connection parameter awareness in an authenticated link-layer network session are disclosed. A client sends, to a network access server (NAS), an initiation packet announcing the initiation of an authentication session. The client establishes an authenticated link-layer session with the NAS. The client receives, from the NAS, a network policy packet including a network policy defined by one or more connection parameters for the link-layer session. The client then enforces the network policy. |
US11539681B2 |
Network supporting two-factor authentication for modules with embedded universal integrated circuit cards
A network with a set of servers can support authentication from a module, where the module includes an embedded universal integrated circuit card (eUICC). The network can send a first network module identity, a first key K, and an encrypted second key K for an eUICC profile to an eUICC subscription manager. The second key K can be encrypted with a symmetric key. The module can receive and activate the eUICC profile, and the network can authenticate the module using the first network module identity and the first key K. The network can (i) authenticate the user of the module using a second factor, and then (ii) send the symmetric key to the module. The module can decrypt the encrypted second key K using the symmetric key. The network can authenticate the module using the second key K. The module can comprise a mobile phone. |
US11539678B2 |
Asymmetric key management for cloud computing services
A key manager receives one or more asymmetric key pairs associated with a user to be associated with remote access of cloud computing resources, selects a first asymmetric key pair of the one or more asymmetric key pairs, determines one or more cloud service providers associated with the user, selects a first cloud service provider of the one or more cloud service providers to be associated with the first asymmetric key pair, determines one or more cloud service components associated with the first cloud service provider that are accessible to the user, provisions at least one of the one or more cloud service components with the first public key, and configures a connection component to establish a secure connection to the at least one of the one or more cloud service components using the first private key. |
US11539677B2 |
Message-based database replication
A networked device communication system can configure network devices (e.g., a primary and secondary database) to send and receive sequences of messages, such as replicated data, using one or more keypairs and wrapping keys. The sequences of messages can include an initial set of messages that are encrypted by a wrapping key, and further include another set of messages that are encrypted by a replaced staggered key. The sequence of messages can be configured to be decrypted without exporting keys of hardware security modules. |
US11539675B2 |
Encryption key management for international data residency
Media, method, and system for providing encryption key management for international data residency. Organizations using a group-based communication system can designate a particular geopolitical area where that organization's data can be stored and another geopolitical area (which may be the same or different) where encryption keys used to encrypt and decrypt that data should be stored. Users of that organization can post message or access messages previously posted on the group-based communication system from any geopolitical area, causing the system to automatically store and retrieve messages and encryption keys from the appropriate regions to allow the users to transparently access the group-based communication system while maintaining security and data residency requirements. |
US11539674B2 |
Method and system for anonymous sending of physical items with possibility of responding
The present invention relates to a method and a system that enable a sender to send one or more physical items to a recipient in an anonymous way, allowing the recipient to respond to the sender after receiving the one or more physical items. No data related to the sender and the recipient are retained in the system. |
US11539673B2 |
Predictive secure access service edge
In one embodiment, a device obtains telemetry data that results from an edge router sending probes to a cloud-hosted application via a plurality of points of presence. The device makes, based on the telemetry data, predictions as to whether use of each of the plurality of points of presence by the edge router to access the cloud-hosted application will result in a violation of a service level agreement. The device selects, based on the predictions, a particular point of presence from among the plurality of points of presence that the edge router should use to access the cloud-hosted application during a time window. The device causes the edge router to access the cloud-hosted application via the particular point of presence during the time window. |
US11539670B1 |
Providing substitute domain information in a virtual private network
A method in a virtual private network (VPN) environment, the method including receiving, at a processor associated with a device, domain information associated with a VPN service provider; determining, by the processor, substitute domain information based at least in part on determining that the VPN service provider is unreachable via utilization of the domain information, the determining the substitute domain information being based at least in part on utilizing a time marker and a string of alphanumeric characters associated with the VPN service provider; and transmitting, by the processor, a connection request to reach the VPN service provider by utilizing the substitute domain information. Various other aspects are contemplated. |
US11539666B2 |
Method and apparatus for secure communication and routing
An apparatus is provided, comprising: a volatile memory; a non-volatile memory; a first electronic circuit that is configured to operate as a wireless access point, the first electronic circuit including a wireless controller for accessing a wireless network; and a second electronic circuit that is operatively coupled to the first electronic circuit, the second electronic circuit including at least one processor configured to execute: (i) a first virtual machine that includes a wireless network authentication server, and (ii) a second virtual machine that includes a virtual private network (VPN) server, wherein the wireless network authentication server is configured to authenticate devices that attempt to join the wireless network; wherein the VPN server is arranged to encrypt data that is received at the apparatus to produce encrypted data, and forward the encrypted data to the wireless controller for transmission over the wireless network. |
US11539662B2 |
System and method for generation of simplified domain name server resolution trees
A system and method for generating and representing a consolidated resolution tree of a network are provided. The method includes receiving a target fully qualified domain name (FQDN); creating at least one tentative equivalence class (TEC) containing all the internet root domain name servers (DNS); processing the at least one TEC to determine respective consolidated edges and vertices; retrieving nameservers from domain registration records; determining whether additional TECs are to be generated for the retrieved nameserver(s); processing all new TECs to determine respective consolidated edges and vertices, when it is determined that new TECs are to be generated; and generating a resolution tree for display based on the consolidated edges and vertices. |
US11539661B2 |
Using a learning algorithm to suggest domain names
Methods are taught for creating training data for a learning algorithm, training the learning algorithm with the training data and using the trained learning algorithm to suggest domain names to users. A domain name registrar may store activities of a user on a registrar website. Preferably, domain name searches, selected suggested domain names and domain names registered to the user are stored as the training data in a training database. The training data may be stored so that earlier activities act as inputs to the learning algorithm while later activities are the expected outputs of the learning algorithm. Once trained, the learning algorithm may receive activities of other users and suggest domain names to the other users based on their activities. |
US11539659B2 |
Fast distribution of port identifiers for rule processing
Some embodiments of the invention provide a method for managing logical forwarding elements (LFEs) implemented by multiple physical forwarding elements (PFEs) operating on multiple devices, each LFE including multiple logical ports. On a host computer executing a particular machine connected to the LFE and a PFE implementing the LFE, the method identifies an address discovery message associating a particular network address of the particular machine with another network address of the particular machine. The method identifies an LFE logical port associated with the particular machine, stores in an encapsulation header an identifier that identifies this port, and then forwards the encapsulated message to a set of one or more devices implementing the LFE for the devices to use in processing data messages associated with the particular machine. |
US11539658B2 |
Signaling optimization during short messaging for internet of things devices in a mobility network
One or more protocols between a control plane entity (e.g., a mobility management entity (MME)) and its peer nodes (e.g., mobile switching center (MSC) and/or short message service center (SMSC)) are enhanced to improve short messaging services for Internet of things (IoT) devices. Oftentimes, IoT devices enter an extended sleep mode during which they cannot be reached by the control plane entity. In one aspect, the control plane entity can determine a wait period based on information, such as, but not limited to, device context data, mapping tables, policy data, commercial traffic data, latency data, device delay tolerance, sleep mode timer values, etc. The wait period can be provided to the peer nodes, which can utilize the wait period to control one or more message retry mechanisms based on IoT device behaviors resulting in an improvement of overall IoT service behaviors and a delivery of superior IoT customer experience. |
US11539655B2 |
Computerized tools to enhance speed and propagation of content in electronic messages among a system of networked computing devices
Various embodiments relate generally to data science and data analysis, computer software and systems, and control systems to provide a platform to facilitate implementation of an interface, and, more specifically, to a computing and data storage platform that implements specialized logic to enhance speed and distribution of content in electronic messages as a function, for example, modifiable portions of the content. In some examples, a method may include identifying a performance metric values assigned to one or more portions of an electronic message, determining an equivalent to a portion of the electronic message to enhance a performance metric value, substituting the equivalent in place of the portion to form an adapted electronic message, and receiving data to set, for example, a time at which the adapted electronic message is to be published. |
US11539650B2 |
System and method for alerts for missing coverage of chatbot conversation messages
A method, system, and computer-usable medium are disclosed for identifying areas to improve an interactive conversational system, such as a chatbot. A stream of stream of conversational interactions C (C1, C2, . . . , Cn) between users and the interactive conversational system is received. An intent clustering model is periodically applied to the stream to form an incremental clustering based on a set of derived intents to form a mapping from a first set of conversational characteristics to a first set of intents and a second set of conversational characteristics to a first set of unclear intents. Information is provided related to the second set of conversation characteristics. |
US11539649B2 |
Group-based communication interface with subsidiary channel-based thread communications
Provided is a group-based communication interface configured to allow members of the interface to communicate within group-based communication channels. The group-based communication interface is configured to relegate selected group-based messaging communications to a separate display pane, where additional messaging communications can be received, thereby maintaining a focused selected group-based communication channel. The selected group-based communication channel is updated to indicate that the selected group-based messaging communications was relegated to a separate display pane, informing the channel members while also allowing the channel members to access the separate display pane if desired. Accordingly, the selected group-based communication interface provides for efficient and focused group-based communications. |
US11539646B2 |
Differentiated message presentation in a communication platform
Differentiated message presentation in a communication platform is described. In an example, a message to be posted to the communication platform can be received, wherein the communication platform is associated with a plurality of users that are permissioned to access content associated with the communication platform. In an example, a first user profile of a first user of the plurality of users can be associated with a first characteristic of the first user and a second user profile of a second user of the plurality of users can be associated with a second characteristic. Techniques described herein enable differentiated presentation of the message, in respective user interfaces of the communication platform, based at least in part on the first characteristic and the second characteristic. |
US11539642B2 |
Fallback command in a modular control system
A device may include a memory storing instructions and a processor configured to execute the instructions to receive an instruction from an administration device; identify a link selector in the instruction that corresponds to a resource attribute of a first resource that specifies how a second resource is to be controlled by the first resource; query a database of contracts between resources to determine that the second resource is available to be controlled by the first resource, based on resource contracts associated with the second resource. The processor may be further configured to generate a resource contract between the first resource and the second resource that indicates the second resource is controlled by the first resource and enable the first resource to communicate with the second resource in accordance with the generated resource contract. |
US11539635B2 |
Using constraint programming to set resource allocation limitations for allocating resources to consumers
Resource allocation limitations include resource limits and resource guarantees. A consumer is vulnerable to interruption by other consumers if using more resources than guaranteed. Resources are designated and/or assigned to consumers based on resource limits and resource guarantees. A constraint programming (CP) solver determines resource limits and resource guarantees that minimize vulnerability and/or vulnerability cost based on resource usage data. A CP data model includes limit elements, guarantee elements, and vulnerability elements. The CP data model further includes guarantee-vulnerability constraints, which relies on exceedance distributions generated from resource usage data for the consumers. The CP data model declaratively expresses combinatorial properties of a problem in terms of constraints. CP is a form of declarative programming. |
US11539632B2 |
System and method for detecting constant-datagram-rate network traffic indicative of an unmanned aerial vehicle
A system and method for detecting unmanned aerial vehicles (UAV) includes capturing a set of wireless data traffic from a wireless transmission and performing frequency spectrum analysis on datagram arrival times to classify the wireless data traffic based upon potential constant-datagram-rate data content that may be indicative that at least a portion of the wireless data traffic is emanating from a UAV. The wireless data traffic may be captured from one or more Wi-Fi receivers and sorted based upon transmission parameters prior to performing the frequency spectrum analysis. Detected peak frequencies may be used to determine if any constant-datagram-rate traffic within the wireless data traffic potentially contains data traffic streaming from a UAV. Directional antennas and/or a phased array of antennas can be used to determine the direction of propagation of the wireless transmission and further classify the wireless data traffic based on potential emanation from a UAV. |
US11539626B2 |
Method, apparatus, and system for load balancing of service chain
A method, an apparatus, and a system are provided for load balancing of a service chain. The method includes: receiving, by a flow classifier, a service chain selection and control policy sent by a policy and charging rules function (PCRF) unit; hashing, by the flow classifier according to a hash quantity, a service flow corresponding to a service chain identifier, to obtain multiple subflows, and adding the service chain identifier and hashing factors to packets of the subflows, where different subflows correspond to different hashing factors; and sending, by the flow classifier, the packets of the subflows after the service chain identifier and the hashing factors are added, to a forwarding device. |
US11539625B2 |
Packet processing system and packet processing method thereof for detecting microbursts and accordingly processing packets
A packet processing system including an ingress unit, a detour launcher, a packet sequencer, a post-detour handler and an egress unit. The ingress unit is used to receive a packet. The detour launcher is used to detect a microburst according to at least a queue value and accordingly send the packet. The packet sequencer is used to attach a sequence number to the packet when the microburst emerges. The post-detoured handler is used to release the packet after the microburst has elapsed. The egress unit is used to output the packet processed by at least one member of a group consisting of the detour launcher, the packet sequencer and the post-detour handler. |
US11539623B2 |
Single field for encoding multiple elements
Implementations of the present disclosure are directed to systems and methods for reducing the size of packet headers by using a single field to encode multiple elements. Instead of including separate fields for each element, one or more encoded fields may be used, each of which is decoded to determine two or more values for the data packet. A receiving device decodes the encoded data field to retrieve the two or more values. |
US11539620B2 |
Anomaly flow detection device and anomaly flow detection method
An anomaly flow detection device and an anomaly flow detection method thereof are provided. The device can retrieve a plurality of training data transmitted between a monitored network and an external network, preprocess a plurality of packet headers of the pluralities of training data to obtain a plurality of training feature vectors, construct a flow recognition model with an unsupervised learning method, input the pluralities of training feature vectors to the flow recognition model to train the flow recognition model, retrieve a plurality of testing data transmitted between the monitored network and the external network, preprocess a plurality of packet headers of the pluralities of testing data to obtain a plurality of testing feature vectors, input the pluralities of testing feature vectors to the flow recognition model to identify whether the pluralities of packet headers of the pluralities of testing data are normal or abnormal, and determine the flow of the monitored network is abnormal according to the recognition result of the flow recognition model. |
US11539616B1 |
Upgrading meshnet connections in a mesh network
A method including determining, by a first device in communication with a second device in a mesh network, an optimal midpath node to be utilized for communicating meshnet data between the first device and the second device; and transmitting, by the first device to the second device, coordination information including identification information that identifies the optimal midpath node and timing information that indicates a time associated with connecting with the optimal midpath node to enable utilization of the optimal midpath node for communicating the meshnet data. Various other aspects are contemplated. |
US11539615B2 |
Disaggregated border gateway protocol (BGP)
Disaggregated border gateway protocol (BGP) enables an eBGP session between an internal node an external node to continue despite failover of a perimeter through which the eBGP session is established. eBGP control traffic is trapped by a perimeter router and forwarded to a BGP speaker on the internal node through an IP tunnel. Failover is detected in response to a change in a source address of the IP tunnel over which eBGP control traffic is received. The BGP speaker announces routes to the external node that include a reference to an internal address of an active perimeter router. In response to failover, the BGP speaker announces updated routes referencing the standby router for the perimeter router. |
US11539614B2 |
Digital object routing based on a service request
A digital object may be routed via a network. Routing of a digital object may be based in part on a requested service, and/or on an ability of an intermediate node to provide the requested service, and/or on a willingness of the intermediate node to provide the requested service. |
US11539606B2 |
Method and apparatus for measuring packet loss rate via deep packet inspection at an intermediate node in a communication network
A method and apparatus for monitoring network performance in near real-time by making measurements on packets received at an intermediate node in wireless communication network. The solution is useful for monitoring wireless network performance of any packetized wireless communication network that connects a client and application server, and particularly for any application running over TCP/IP protocol. A method is disclosed for measuring packet loss rate of a packet-based communication session between a Network Source (NS) and a User Equipment (UE) device at an intermediate node, in the downlink direction and the uplink direction. The measured loss is indicative of the loss in the portion of wireless network between the intermediate node and the UE. The measured packet loss rate is compared with service guarantees for the wireless network, and if the service guarantees are not being met, then resolution mechanisms can be implemented. |
US11539602B2 |
Continuous monitoring of containers using monitor containers configured as sidecar containers
Systems and methods discussed herein are directed to monitoring an application pod of a network using a sidecar container. The application pod comprises one or more containers and the sidecar container, where each of the one or more containers hosts a service for traffic of the network. The monitoring comprises periodically executing checks of a plurality of checks on the containers. The sidecar container, based at least in part on the checks, determines that a container is non-compliant. Based at least in part on the container being non-compliant, the container is removed from service. The container may be fixed and placed back in service or may be replaced with a new container that provides the service. |
US11539600B2 |
Closed loop automation for intent-based networking
A method is performed at one or more entities configured to configure and provide assurance for a service enabled on a network. The service is configured as a collection of subservices on network devices of the network. A definition of the service is decomposed into a subservice dependency graph that indicates the subservices and dependencies between the subservices that collectively implement the service. Based on the subservice dependency graph, the subservices are configured to record and report subservice metrics indicative of subservice health states of the subservices. The subservice metrics are obtained from the subservices, and the subservice health states of the subservices are determined based on the subservice metrics. A health state of the service is determined based on the subservice health states. One or more of the subservices are reconfigured based on the health state of the service. |
US11539593B2 |
Activation method for bandwidth part and related products
The embodiment of the present application discloses an activation method for a BWP and related products, including: a terminal receives a first downlink control signaling DCI, the first DCI is used by a scheduling terminal to transmit uplink data through a physical uplink shared channel PUSCH in a target time unit; the terminal receives a second DCI, and the feedback response information of the second DCI is transmitted in the target time unit, and the transmitting time of the second DCI is before the target time unit or the same as the target time unit; the terminal determines, according to the transmitting time of the second DCI, the feedback response information for the transmission of the second DCI through the PUSCH in the target time unit. The embodiment of the present application is beneficial to improvement of both the accuracy and reliability of data scheduling in a communication system. |
US11539591B2 |
Distributed network control system with one master controller per logical datapath set
A method of implementing a logical switching element. The method generates data for programming a set of two or more physical forwarding elements to implement the logical switching element. The method uses a first controller to distribute at least a first portion of the generated data to a first plurality of physical forwarding elements in the set of physical forwarding elements. The first controller serves as the master controller for the first plurality of physical forwarding elements. The method uses a second controller to distribute at least a second portion of the generated data to a second plurality of physical forwarding elements in the set of physical forwarding elements. The second controller serves as the master controller for the second plurality of physical forwarding elements. |
US11539590B2 |
Detect impact of network maintenance in software defined infrastructure
A system may assist with checking policy impact in a software-defined infrastructure environment. The system's data analysis may enable it to discover and quantify the impact of policies on software-defined infrastructure objects in the same or different layers. |
US11539589B2 |
Accelerated network reconnect using previous connection parameters
A Wi-Fi device includes a controller coupled to a writeable memory implementing a MAC and PHY layer and to a transceiver. Connection data stored in the writeable memory includes Wi-Fi connection parameters including≥1 router MAC level information or a most recently utilized (MRU) channel used, and IP addresses including≥1 of an IP address of the Wi-Fi device, IP address of the MRU router, an IP address of a MRU target server, and an IP address of a network connected device. An accelerated reconnecting to a Wi-Fi network algorithm is implemented by the processor is for starting from being in a network disconnected state, establishing current connection parameters for a current Wi-Fi network connection using the Wi-Fi connection parameters for at least one MAC layer parameter for the MAC layer. |
US11539588B2 |
Discovering and grouping application endpoints in a network environment
An example method for discovering and grouping application endpoints in a network environment is provided and includes discovering endpoints communicating in a network environment, calculating affinity between the discovered endpoints, and grouping the endpoints into separate endpoint groups (EPGs) according to the calculated affinity, each EPG comprising a logical grouping of similar endpoints for applying common forwarding and policy logic according to logical application boundaries. In specific embodiments, the affinity includes a weighted average of network affinity, compute affinity and user specified affinity. |
US11539587B2 |
Platform for vehicle cooperation and coordination of services
A control platform generates commands for coordinating use of network resources between a plurality of vehicles within a geographic region. In an embodiment, game-theoretical modelling is employed to determine allocation of resources in a manner that provides an optimal solution for a given allocation strategy. This model may reward controllers of vehicles that comply with a coordination policy while penalizing controllers of vehicles that defect from compliance. |
US11539584B2 |
Automatic and dynamic adaptation of grouping in a data processing system
A system and method to adapt the grouping between a plurality of nodes in a data processing system. In one embodiment, a first leader node (320) in a data processing system (300) is configured to determine (815) a cost map within a first group of nodes (310), calculate (820) costs between the first leader node (320) and first member nodes (330) based on the cost map, determine (830) a candidate member node (330A) from the first member nodes (330), query (840) other leader nodes (350, 380) to accept a transfer of the candidate member node (330A), receive (850) a first transfer response from a second leader node (350) to accept the transfer to a second group of nodes (340), initiate (860) a transfer of and receive (865) an acknowledgement for the transfer of the candidate member node (330A) to the second group of nodes (340). |
US11539583B2 |
Dynamic network discovery service for system deployment and validation
One or more nodes on a network can run a network discovery service to obtain information regarding network configuration parameters for the nodes on the network by passively listening for packets received on one or more ports. The discovered network configuration data can be used to identify a configuration for various types of nodes. The configuration can then be used to facilitate checking, testing, or self-configuration of a network configuration of one of the nodes (e.g., a lead node or a new node). |
US11539578B2 |
Generating actionable alert messages for resolving incidents in an information technology environment
Machine data reflecting operation of a monitored system is ingested and made available for search by a data intake and query system (DIQS). A monitoring function may search the data ingested by the DIQS to determine instances of notable events in regards to the monitored system and may further determine a defined invokable action message (IAM) associated with a notable event instance. Processing ensues to send an IAM to a communications device used by support personnel. The IAM includes information about an action invocation message (AIM) suitable to cause the performance of an action that possibly remedies or improves an operational condition represented by the notable event. Support personnel engages a user interface representation corresponding to the AIM and the AIM is sent to a remedial node where performance of the action is invoked. |
US11539577B2 |
System and methods for alerting a user consuming media to the progress of others consuming media
Systems and methods are provided herein for enabling a first user to set up an alert that will notify the first user when the first user has caught up to a second user's progress in consuming media. These systems and methods are used to ensure that the first user is informed, while they are consuming media, that they have caught up to the progress of a second user. By providing an alert while the first user is viewing media, the first user does not have to remember the progress of the second user while viewing the media, alleviating the first user from worrying they will pass the progress made by the second user without realizing they have done so. |
US11539574B2 |
Edge node cluster network redundancy and fast convergence using an underlay anycast VTEP IP
Some embodiments provide a method for providing redundancy and fast convergence for modules operating in a network. The method configures modules to use a same anycast inner IP address, anycast MAC address, and to associate with a same anycast VTEP IP address. In some embodiments, the modules are operating in an active-active mode and all nodes running modules advertise the anycast VTEP IP addresses with equal local preference. In some embodiments, modules are operating in active-standby mode and the node running the active module advertises the anycast VTEP IP address with higher local preference. |
US11539570B2 |
I/Q imbalance compensation
The disclosure relates to technology for compensating for I/Q imbalance. An apparatus includes I-path circuitry having a first analog filter configured to filter an I-path signal and Q-path circuitry having a second analog filter configured to filter a Q-path signal. An I/Q imbalance compensation circuit of the apparatus is configured to process digital versions of the I-path signal and the Q-path signal to compensate for mismatch between the I-path circuitry and the Q-path circuitry. A first circuit of the apparatus is configured to apply a coarse adjustment to at least one of the first analog filter or the second analog filter to reduce an initial mismatch between the I-path circuitry and the Q-path circuitry. The first circuit is configured to operate the I/Q imbalance compensation circuit to compensate for a residual mismatch between the I-path circuitry and the Q-path circuitry with the coarse adjustment applied. |
US11539568B2 |
Detection of repetitive data signals
There is provided an apparatus for detecting repetitive information in data packets communicated between a first node and a second node over a wireless network. The apparatus includes a processing circuitry. The processing circuitry is configured to: (a) collect samples of a data communication signal transmitted between said first node and the second node over said wireless network at a plurality of respective times; (b) group the collected samples into a plurality of sequences of samples; (c) combine the sequences of samples into at least one united signal; and (d) based on an analysis of the at least one united signal, provide a signal indicative of repetitive information in a plurality of data packets carried by said data communication signal. |
US11539566B2 |
Generalization of encoding for uplink transmissions
Methods, systems, and devices for wireless communications are described. Generally, a user equipment (UE) may identify an angle parameter for encoding uplink messages using a fractional Fourier Transform (FrFFT). A base station may transmit a set of angle parameters or a single angle parameter that the UE is to use for encoding an uplink message. The UE may select an alpha value from the set of alpha values for the encoding. The UE may transmit an indication of a set of proposed angle parameters to the base station, and the base station may determine and indicate one of or a subset of the received set of proposed angle parameters to the UE. The base station may indicate a correspondence between angle parameters and beam configurations, and the UE may identify an alpha parameter value based on a subsequently indicated beam configuration. |
US11539564B2 |
Channel sounding using multiple sounding configurations
A base station determines multiple different sets of configuration parameters for uplink sounding signal transmissions for a mobile terminal. Each of the multiple different sets of configuration parameters comprises frequency-domain and time-domain parameters. Each of the time-domain parameters indicates a time offset (in number of subframes) of a sounding signal, and a period (in number of subframes) of the sounding signal. The base station transmits information representing the multiple different sets of configuration parameters to the mobile terminal. The mobile terminal receives the information from the base station and generates different sounding signals based on the multiple different sets of configuration parameters. |
US11539562B2 |
Reference signal having variable structure
A method for transmitting a data demodulation reference signal (DMRS) in a wireless communication system and a device therefor are disclosed. To this end, a basic DMRS is transmitted via the first OFDM symbol in a data transmission region of a predetermined subframe, and an additional DMRS is transmitted in the predetermined subframe in accordance with a level determined by a transmission environment, wherein the basic DMRS is characterized by being transmitted via the first OFDM symbol in the data transmission region of the predetermined subframe regardless of a transmission link, the structure of the subframe, and the transmission environment. |
US11539560B2 |
OOK modulation device
A device for OOK modulating an input signal, comprising at least: an injection-locked oscillator comprising a power supply input, an injection signal input and an output to which the OOK modulated signal is to be delivered; a first controlled switch comprising a control input to which the input signal is to be applied, and configured to couple or not a power supply source to the power supply input of the injection-locked oscillator in dependence on the value of the input signal; a periodic signal providing device configured to deliver, on an output which is electrically coupled to the injection signal input of the injection-locked oscillator, a periodic injection signal whose frequency and amplitude trigger locking of the injection-locked oscillator at the frequency of the injection signal or a multiple of this frequency. |
US11539553B1 |
Onboarding a VNF which includes a VDU with multiple VNFCs
The instant solution includes at least one element or action described or depicted herein. |
US11539552B1 |
Data caching in provider network substrate extensions
One or more configuration parameters for an object gateway instance are received at an interface to a provider network, the parameters including an identifier of a first object store of the provider network for which to cache objects in a first object cache of the object gateway instance and an indication of a data transfer mode that controls when objects written to the first object cache are written to the first object store. The one or more configuration parameters are stored in a data store of the provider network and sent to the object gateway instance. A read request that includes the identifier of the first object store and a first object identifier is received from the object gateway instance, and a first object associated with the first object identifier and stored in the first object store is sent to the object gateway instance. |
US11539550B2 |
Systems and methods for detection of vehicle bus protocol using signal analysis
Embodiments of the invention include a vehicle telematics device that performs vehicle CAN bus discovery using bit timing analysis. In an embodiment, the vehicle telematics device enters a vehicle CAN bus protocol discovery mode, samples a vehicle CAN bus signal, performs bit timing analysis of the CAN bus signal, calculates a BAUD rate of the vehicle CAN bus based on the bit timing analysis, determines a data packet format of data packets on the vehicle CAN bus, and identifies a vehicle CAN bus protocol from a plurality of vehicle CAN bus protocols based on the calculated BAUD rate and data packet format. |
US11539549B2 |
Data transmission method, data structure, automation network and unlocker
A method for transmitting data in an automation network by telegrams, where the automation network comprises a master subscriber, slave subscribers and at least one unlocker, connected to each other via a data-line network. The slave subscribers are divided into segments. The master subscriber sends locked telegrams for processing by the slave subscribers, each having a telegram identifier used to assign a locked telegram to a segment. At least one segment is assigned to at least one unlocker. If the unlocker receives a locked telegram, the unlocker checks, by the telegram identifier in the locked telegram, whether the locked telegram for the assigned segment is intended to release the locked telegram, as an unlocked telegram for processing by the slave subscribers, provided that the locked telegram is intended for the segment assigned to the unlocker. |
US11539548B2 |
Method, system and apparatus for suppressing controller area network bus ringing
CAN bus drive slew rate control is used to suppress ringing using bus impedance matching that is only activated during and shortly after the bus driver unit transitions from driving the bus “dominant” to “recessive”. In one embodiment a bus impedance matching unit is a differential input and differential output operational trans-conductance amplifier (OTA). The differential OTA absorbs or provides the ringing current based on bus differential voltage. In another embodiment a bus impedance matching unit is a back-to-back connected RON regulated transistor pair together with a gate control related circuit. Where the total RON is equal to the CAN bus characteristic impedance. |
US11539547B2 |
Network system, information processing method, server, and refrigerator
A network system includes a refrigerator, a terminal, and a server that is capable of communicating with the refrigerator and the terminal and that provides, to the terminal, at least information based on an opening/closing operation of a door of the refrigerator. When the refrigerator starts an eco-mode, the server restricts an operation related to the watching service. |
US11539546B2 |
Home appliances and method for controlling home appliances
A method of controlling a home appliance which operates in an Internet of Things environment through a 5G communication network and which is performed using a neural network model generated by machine learning, including determining whether there is a user in the vicinity of the home appliance, capturing a motion of the user using a vision sensor based on a determination that there is a user in the vicinity of the home appliance, identifying an intention of the user based on the captured motion, and activating a speech module of the home appliance based on the intention of the user. |
US11539544B2 |
Electronic apparatus and method of controlling the same
An electronic apparatus and a controlling method in which a home appliance without a display and a user terminal directly communicate with each other so that a user can control the home appliance through the user terminal are provided. The electronic apparatus includes a communication interface configured to directly communicate with a user terminal, a storage configured to store a graphic user interface, and at least one processor configured to transmit the graphic user interface to the user terminal, and receive a user command through the graphic user interface transmitted to the user terminal. |
US11539541B1 |
Apparatuses and methods involving data-communications room predictions
Apparatuses and methods concerning providing data-communications room recommendations are disclosed. As an example, one apparatus includes a data-communications server. The data-communications server is configured to provide user-data-communications sessions. The server is also configured to retrieve data-communications messages, which may arise from a plurality of disparate interconnected data-communications systems, and batch the data communications messages for a particular data-communications room together to create a room document. Responding to receipt of a request from a particular user, the server identifies a particular data-communications room for a particular inquiry. |
US11539539B2 |
Taking a break after seamless transition between network conferences
Methods and apparatus for taking a break after seamless transition between network conferences. In an embodiment, a method for taking a break after a transition between network conferences includes operations of attending a first network conference using a first conference state and a conferencing application, and displaying Up-Next conference status about a second network conference. The method also includes operations of receiving a request to enter a break mode after joining the second network conference, joining the second network conference using the first conference state and the conferencing application, and transmitting a break mode icon to participants in the second network conference. |
US11539538B1 |
System and mechanism to report usage for offline services with specific trigger requirements
Systems and methods are provided for utilizing an asynchronous report feature when a time or volume reporting trigger is unavailable. The systems and method can include receiving node level capabilities from at least one of a plurality of user plane functions, receiving an asynchronous report from the at least one of the plurality of user plane functions, determining an absence of a reporting trigger based on charging information associated with a policy control function and trigger information associated with a charging function, selecting a user plane function from the plurality of user plane functions based on the asynchronous report, and generating a usage reporting rule without the reporting trigger to be provided to the user plane function from the plurality of user plane functions. |
US11539536B2 |
Physically unclonable function with precharge through bit lines
A physically unclonable function (PUF) includes a bit cell that includes a latch and a switch to selectively couple the latch to a supply voltage node. A first transmission gate couples a first bit line to a first internal node of the latch and a second transmission gate couples a second bit line to a second internal node of the latch. A digital to analog converter (DAC) circuit is selectively coupled to the first internal node through the first bit line and the first transmission gate and to the second internal node through the second bit line and the second transmission gate, to thereby precharge the latch before the first bit cell is read. The latch regenerates responsive to the switch being closed to connect the latch to the supply voltage node. The first and second bit lines are used to read the regenerated value of the latch. |
US11539534B2 |
Credential mapping for analytics platform
An analytics platform or another system is provided to store multiple sets of credentials and other connection information in each user profile and to map the stored credentials to different resources within the platform. Each set of credentials can be associated with a credential mapping key, and each resource in the platform can be mapped to the credentials using a connection associating the resource with the credential mapping key. By mapping multiple sets of credentials and other connection information to the resources within the platform, the user profile can be transparently authenticated when accessing resources in the platform, different credentials can be used to authenticate the user profile with accessing different resources, and administrators can benefit by having greater control over permissions with the platform. |
US11539533B1 |
Access control using a circle of trust
A system for access control includes an interface to receive an access request from a first user application for permission to access a first digital identity wallet application and a processor to: determine whether to grant access for the first user application to the first digital identity wallet application, wherein access is granted for the first user application to the first digital identity wallet application in response to the first user application belonging to a first circle of trust and the first digital identity wallet application belonging to the first circle of trust; and in response to determining to grant access for the first user application to the first digital identity wallet application, provide an access granting indication. |
US11539531B2 |
System and apparatus for providing authenticable electronic communication
The present disclosure relates to security risk warning system that a recipient may acknowledge and act accordingly. Security insights may be provided explicitly in a security insight panel that may clearly identify vulnerabilities specific to a particular authenticable communication. This may limit risk that a recipient would ignore or not understand the risk. Security insights may be provided for a combination of indicated source, recipients, and content, such as links, text, attachments, and images. Security insights may be provided on site, such as on or proximate to the reviewed portions of the authenticable communication. |
US11539527B2 |
Peer node recovery via approximate hash verification
An example operation may include one or more of receiving, from a blockchain peer node, a sequence of blocks stored in a hash-linked chain of blocks on a distributed ledger, where each block in the sequence of blocks includes a reduced-step hash of block content from a previous block in the sequence, performing an approximate hash verification on the reduced-step hashes stored among the sequence of blocks, and determining whether the sequence of blocks has been tampered with based on the approximate hash verification on the reduced-step hashes. |
US11539523B1 |
Data creation limits
Systems and techniques for data creation limits are described herein. In an example, a data creation limits system is adapted to receive data and split the data into a plurality of portions based on entity interests in each of the plurality of portions. The data creation limits system may be further adapted to generate respective tokens for each portion of the plurality of portions. The data creation limits system may be further adapted to assign an owner to a token of the respective tokens, the token corresponding to a portion of the plurality of portions and assigning the owner based on the owner having an entity interest in creation of the portion. The data creation limits system may be further adapted to generate a script, using the token, for access to the portion. The data creation limits system may be further adapted to save the portion including the token. |
US11539522B2 |
Methods and apparatus for authorizing and providing of services
A method for a system includes broadcasting with a first transceiver of a transit terminal to a smart device, a first identifier, receiving with the first transceiver from the smart device, an ephemeral ID not permanently associated with a user of the smart device, providing with the first transceiver to the smart device, a second identifier and a unique data packet, receiving with the first transceiver from the smart device a token determined by an authentication server in response to the second identifier and the unique data packet and wherein the token comprises a payload portion, determining with a processor of the transit terminal whether the token is valid, and directing with the processor a peripheral device to perform a user-perceptible action for the user, authorizing the user to enter or exit a transit system associated with the transit terminal in response to determining the token to be valid. |
US11539520B2 |
Emergency lockdown in a local network of interconnected devices
Systems, methods, and devices are described herein for executing a lockdown of electronic locks deployed in a local network of interconnected devices. In example implementations, each electronic lock is provided with a unique encryption key specific to that electronic lock and is provided with a shared encryption key. To execute a lockdown of all electronic locks in the local network, a server generates a locking instruction and encrypts it using the shared encryption key. The server then transmits the encrypted locking instruction to the gateway devices of the local network which, in turn, transmit it to each of the electronic locks. Upon receipt of the encrypted locking instruction, the electronic locks attempt to decrypt it using the shared encryption key. Upon successful decryption of the encrypted locking instruction, an electronic lock toggles to a lock state. |
US11539519B2 |
Privacy solutions for cyber space
Developing a cyber security protocol to enable two members of a community to conduct a conversation without revealing neither their identity, nor the fact that a conversation took place. Secret randomized matching is used to allow people to claim certain personal attributes like age, place of residence, having a license, but without exposing their individual identity. |
US11539517B2 |
Private association of customer information across subscribers
Methods are provided for discovering related attributes with respect to an element in a customer data record, based on provided associations and for generating new associations between various elements of the customer data record. In these method, the context service system obtains, from a subscriber, a lookup request including a first blinded attribute. The first blinded attribute is obtained by applying an oblivious pseudo random function (OPRF) to a first element of a data record. The method further includes the context service system identifying at least one second blinded attribute associated with the first blinded attribute in a shared data partition of the context service system and providing, to the subscriber, at least one second element of the data record associated with the at least one second blinded attribute. |
US11539515B2 |
High-precision privacy-preserving real-valued function evaluation
A method for performing privacy-preserving or secure multi-party computations enables multiple parties to collaborate to produce a shared result while preserving the privacy of input data contributed by individual parties. The method can produce a result with a specified high degree of precision or accuracy in relation to an exactly accurate plaintext (non-privacy-preserving) computation of the result, without unduly burdensome amounts of inter-party communication. The multi-party computations can include a Fourier series approximation of a continuous function or an approximation of a continuous function using trigonometric polynomials, for example, in training a machine learning classifier using secret shared input data. The multi-party computations can include a secret share reduction that transforms an instance of computed secret shared data stored in floating-point representation into an equivalent, equivalently precise, and equivalently secure instance of computed secret shared data having a reduced memory storage requirement. |
US11539513B1 |
Pausing a media access control security (MACsec) key agreement (MKA) protocol of an MKA session using a fast heartbeat session
A network device may establish a media access control security (MACsec) key agreement (MKA) session with another network device via a MACsec communication link; establish a fast heartbeat session via the MACsec communication link, between a first packet processing engine of the network device and a second packet processing engine of the other network device, where the fast heartbeat session is to permit the first packet processing engine and the second packet processing engine to exchange fast heartbeat messages via the fast heartbeat session and the MACsec communication link; place an MKA protocol of the MKA session in a pause state until the first packet processing engine detects a rekey event; determine that a key for the MKA session is to be regenerated based on detection of the rekey event; and perform an action based on the rekey event for the MKA session. |
US11539512B2 |
Systems and methods for multi-region encryption/decryption redundancy
Methods and systems for encrypting and decrypting data comprising sending sensitive information to a first cryptographic processing system in a first cloud region for encryption with a first key encryption key generated by and stored by the first cryptographic processing system. The first encrypted sensitive information received from the first cryptographic processing system is stored in a first database. The sensitive information is also sent to a second cryptographic processing system in a second cloud region different from the first cloud region for encryption with a second key encryption key generated by and stored by the second cryptographic processing system. The second encrypted sensitive information received from the second cryptographic processing system is stored in a second database. If the first encrypted sensitive information cannot be decrypted by the first cryptographic processing system, the second encrypted sensitive information is sent to the second cryptographic processing system. |
US11539507B1 |
Managing blockchain access
Techniques are described for managing access to data stored in a blockchain, and for managing the communication of blockchain data to other entities. A private key may be generated and issued to an external entity to enable the external entity to access an internal (e.g., private blockchain). The external entity may be an external (e.g., public) blockchain, device, process, or user that is outside an internal network. The key may be associated with metadata that includes constraints, conditions, or rules governing access to the blockchain. An authorized entity may employ the key to request access to the blockchain via access management module(s), and the access management module(s) may employ the metadata to determine whether to approve the request. The access management module(s) may also employ rules governing outbound communication of data from internal blockchain(s) to external entities. |
US11539506B2 |
System and method for healthcare security and interoperability
Embodiments facilitate interoperability and secure determination of healthcare costs. An entity may receive a first Electronic Health Record (EHR) sub-block with patient medical coverage information and first treatments and may transmit a first Device Drug Information (DIR) sub-block comprising first treatment classes corresponding to each first treatment, first treatment class members corresponding to each first treatment class, and corresponding first treatment class member cost information. In response, the entity may receive a second EHR sub-block comprising second treatments each: associated with a corresponding first treatment, and selected from corresponding first treatment class members. Upon receipt of a transaction confirmation, the entity may augment a multi-dimensional blockchain with a multi-dimensional block formed by linking: a DIR block including second treatment information, an EHR block including information based on the second EHR sub-block and a transaction block. Payment assistance information determined from the second EHR block may be transmitted to a patient. |
US11539504B2 |
Homomorphic operation accelerator and homomorphic operation performing device including the same
A homomorphic operation accelerator includes a plurality of circuits and a homomorphic operation managing circuit. The plurality of circuits may perform homomorphic operations. The homomorphic operation managing circuit may receive cipher text data, homomorphic encryption information and homomorphic operation information from an external device. The homomorphic operation managing circuit may activate or deactivate each of a plurality of enable signals applied to the plurality of circuits based on the homomorphic encryption information and the homomorphic operation information. The homomorphic operation managing circuit may activate or deactivate each of the plurality of circuits based on the plurality of enable signals. The homomorphic encryption information may be associated with a homomorphic encryption algorithm used to generate the cipher text data. The homomorphic operation information may be associated with the homomorphic operations to be performed on the cipher text data. |
US11539503B2 |
Container management for cryptanalysis attack protection
Containers can be managed for cryptanalysis attack protection. For example, a computing system can receive, from a container, a description specifying a first hardware requirement for the container. The computing system can restrict access to hardware based on the first hardware requirement for the container. The computing system can perform, for a data object requested by the container, an encryption operation and a decryption operation using the hardware. A result of the encryption operation can be inaccessible to the container prior to the decryption operation. |
US11539500B2 |
Signal receiving device, and a semiconductor apparatus and a semiconductor system including the signal receiving device
A signal receiving device may include a high-speed receiving circuit, a low-speed receiving circuit, a low-speed synchronization circuit and a low-speed synchronization circuit. The high-speed receiving circuit receives an input signal and generate a high-speed received signal in a first operation mode. The high-speed synchronization circuit generates a high-speed synchronized signal to synchronize the high-speed received signal with a clock signal. The low-speed receiving circuit receives the input signal and generate a low-speed received signal in a second operation mode. The low-speed synchronization circuit generates a low-speed synchronized signal to synchronize the low-speed received signal with the clock signal. According to an operation mode, one of the high-speed synchronized signal and the low-speed synchronized signal is selected as an internal signal. |
US11539496B2 |
Resource configuration method and device, and computer storage medium
Disclosed in the present invention are a resource configuration method and device, and a computer storage medium. The method comprises: a terminal receiving first configuration information sent by a network device, the first configuration information at least comprising configuration information of a first bandwidth part (BWP), the configuration information of the first BWP comprising a plurality of numerologies corresponding to the first BWP. |
US11539495B2 |
Reference signal configuration
Methods, systems, and devices are described for reference signal configuration in wireless communication. In one exemplary aspect, a method for wireless communication is disclosed. The method includes receiving one or more signaling that indicates selection of reference signal resources, cell and/or BWP information, and receiving at least one reference signal based thereon. |
US11539488B2 |
Control element resource mapping schemes in wireless systems
Methods, systems, and devices for wireless communications are described. A base station may transmit control information to a UE in a shortened physical downlink control channel (sPDCCH). The sPDCCH may be included in shortened resource element groups (sREGs) of shortened channel control elements (sCCEs), which may be indexed in resource block (RB) sets by using localized or distributed mapping schemes. Updated sREG mapping schemes may result in a uniform distribution of sREGs within available symbols (and, as a result, a uniform distribution of unused resource blocks within the available symbols) and may ensure that sREGs within an sCCE are indexed into only one symbol. |
US11539476B2 |
Method and device for transmitting/receiving HARQ-ACK information in wireless communication system
A method for transmitting and receiving HARQ-ACK information in a wireless communication system and a device therefor are disclosed. Specifically, a method of transmitting, by a user equipment (UE), HARQ-ACK information in a wireless communication system comprises receiving first downlink control information (DCI) based on a first control resource set group and second DCI based on a second control resource set group; determining a physical uplink control channel (PUCCH) resource for a transmission of the HARQ-ACK information; and transmitting the HARQ-ACK information based on the determined PUCCH resource, wherein the first DCI and the second DCI are indexed based on (i) an index of a physical downlink control channel (PDCCH) related monitoring occasion, (ii) a cell index, and (iii) an index associated with each control resource set group, and wherein the PUCCH resource is determined based on a last DCI among the first DCI and the second DCI. |
US11539473B2 |
Methods and apparatuses for handling uplink (re)transmission in NR-U
A user equipment (UE) includes one or more non-transitory computer-readable media containing computer-executable instructions embodied therein, and at least one processor coupled to the one or more non-transitory computer-readable media. The at least one processor is configured to execute the computer-executable instructions to receive a dynamic grant for scheduling a first uplink (UL) resource, determine whether to obtain a first Medium Access Control (MAC) protocol data unit (PDU) for transmission using the first UL resource or to transmit a second MAC PDU before obtaining the first MAC PDU, and transmit the second MAC PDU using the first UL resource when the first UL resource is suitable for transmitting the second MAC PDU. |
US11539471B2 |
Hybrid automatic repeat request feedback indication and feedback method, apparatus and base station
A HARQ feedback indication method includes: configuring to control information a timing relationship between a time domain unit of downlink data and a time domain unit for an uplink HARQ feedback of the downlink data; and sending to a terminal the downlink data and the control information configured with timing information. |
US11539470B2 |
Re-transmission control method, radio terminal, and radio base station
A re-transmission control method of downlink data to be transmitted from a radio base station to a radio terminal includes: by the radio terminal, transmitting information regarding decoding performance of the radio terminal to the radio base station; receiving the downlink data from the radio base station; transmitting a re-transmission request of the downlink data to the radio base station in a case where an error in the downlink data is detected; receiving a re-transmission configuration based on the information regarding decoding performance of the radio terminal, from the radio base station in a physical downlink control channel (PDCCH), after transmission of the re-transmission request; receiving the downlink data re-transmitted from the radio base station; and decoding the re-transmitted downlink data in accordance with the re-transmission configuration. |
US11539469B2 |
Method for terminal resending data in wireless communication system, and communication device using same
Provided are a method for a terminal resending data in a wireless communication system, and a communication device using same. The method comprises: receiving downlink control information (DCI) from a network; and resending data on the basis of the DCI, wherein the DCI includes an acknowledgement/not-acknowledgement (ACK/NACK) field. |
US11539465B2 |
HARQ codebook structure
There is disclosed a method of operating a user equipment in a radio access network. The method includes transmitting acknowledgement information reporting on subject transmissions based on a HARQ codebook. The HARQ codebook indicates a bit pattern of the acknowledgement information. The bit pattern has a plurality of subpatterns, each subpattern being associated to a different subdivision of a reception time interval to which the acknowledgement information pertains. Each subpattern includes a predetermined number of bits of acknowledgement information associated to subject transmissions of the subdivision. There are also disclosed related methods and devices. |
US11539460B2 |
Transmitter, receiver, and signal processing method thereof
A transmitter and receiver of a broadcasting signal and a method of processing the broadcasting signal are provided. The transmitter includes: a segmenter configured to segment an L1 signaling of a frame into a plurality of segmented L1 signalings such that each of the segmented L1 signalings has bits a number of which is equal to or smaller than a predetermined number; and an encoder configured to perform a Bose, Chaudhuri, Hocquenghem (BCH) and a low density parity check (LDPC) encoding, or the LDPC encoding without the BCH encoding, with respect to the segmented L1 signalings. |
US11539456B2 |
Circular buffer based hybrid automatic retransmission request for polar codes
Certain aspects of the present disclosure generally relate to wireless communications and, more particularly, to methods and apparatus for rate-matching a stream of bits encoded using polar codes. An exemplary method generally includes determining a target coding rate, RT, for transmitting a group of K information bits, based on a first coding rate, R1, corresponding to a first target block error rate (BLER) for a first transmission of a first redundancy version (RV) of the packet and a second coding rate, R2, corresponding to a second target BLER for a last transmission of a last RV of the packet; determining a circular buffer size, N, of a circular buffer for use in transmitting the first RV and the last RV of the packet; generating encoded information bits from the K information bits using a polar code having a mother code size of N; writing the encoded information bits to the circular buffer; determining a maximum number of retransmissions, based on a latency requirement for the packet; generating different RVs from the encoded information bits in the circular buffer, each RV based on a corresponding target BLER; and transmitting the first RV via a wireless medium. |
US11539453B2 |
Efficiently interconnecting a plurality of computing nodes to form a circuit-switched network
A system for interconnecting a plurality of computing nodes includes a plurality of optical circuit switches and a plurality of electrical circuit switches. A first network stage comprises a first plurality of circuit switches selected from among the plurality of optical circuit switches and the plurality of electrical circuit switches. Each computing node among the plurality of computing nodes is optically coupled to at least one of the first plurality of circuit switches. A second network stage comprises a second plurality of circuit switches selected from among the plurality of optical circuit switches and the plurality of electrical circuit switches. Each circuit switch among the first plurality of circuit switches is optically coupled to each circuit switch among the second plurality of optical circuit switches. |
US11539451B2 |
Method and system for merging clocks from multiple precision time protocol (PTP) clock domains
Embodiments of a method and device are disclosed. In an embodiment, a method for synchronizing a slave clock in a Time Sensitive Network (TSN) that includes multiple Precision Time Protocol (PTP) clock domains is disclosed. The method involves determining parameters related to multiple PTP clock domains, assigning domain-specific weights to the multiple PTP clock domains based on the determined parameters, generating a control signal for a clock parameter using the domain-specific weights assigned to the multiple PTP clock domains, and adjusting the clock parameter of a slave clock in response to the control signal. |
US11539446B2 |
Optical receiver
Disclosed is an optical receiver. The optical receiver includes a circuit board, a base member, a photodetector mounted on the base member, a transimpedance amplifier, and a capacitor. The base member is disposed between a first grounding pattern and a second grounding pattern on a first side of the circuit board. The transimpedance amplifier is mounted on the first grounding pattern. The capacitor is mounted on the second grounding pattern. The first wiring pattern and the second wiring pattern are apart from both the first grounding pattern and the second grounding pattern in a plan view of the first side. The first grounding pattern is electrically connected to the second grounding pattern through a grounding pattern formed on the first side. |
US11539443B2 |
Optical subcarrier dual-path protection and restoration for optical communications networks
An example system includes a first network device having first circuitry. The first network device is configured to perform operations including receiving data to be transmitted to a second network device over an optical communications network, and transmitting first information and second information to the second device. The first information is indicative of the data, and is transmitted using a first communications link of the optical communications network and using a first subset of optical subcarriers. The second information is indicative of the data, and is transmitted using a second communications link of the optical communications network and using a second subset of optical subcarriers. The first subset of optical subcarriers is different from the second subset of optical subcarriers. |
US11539442B1 |
Systems and methods for power and modulation management
A method for automatic power and modulation management in a communication network includes (1) generating a management function of (a) mutual information per symbol (MIPS) of the communication network and (b) output power (P) of a transmitter of the communication network, determining a selected MIPS value and a selected P value which achieve a maximum value of the management function, and causing the transmitter of the communication network to operate according to the selected MIPS value and the selected P value. |
US11539441B1 |
Chirp-compensating transmitter and method
A method for laser chirp precompensation includes modulating an amplitude of an optical signal, in response to an amplitude of one of (i) a chirp-compensated signal generated via distortion of an original modulated signal according to an inverse of a chirp-response function of a laser and (ii) a first signal derived from the chirp-compensated signal, to yield an amplitude-modulated optical signal. The method also includes modulating a phase of the amplitude-modulated optical signal in response to a phase of one of (i) the chirp-compensated signal and (ii) a second signal derived from the chirp-compensated signal to yield a chirp-compensated optical signal. |
US11539440B2 |
Injection seeding of a comb laser
Examples herein relate to optical systems. In particular, implementations herein relate to an optical system including an optical transmitter configured to transmit optical signals. The optical transmitter includes a first optical source and a second optical source coupled to the first optical source and injection seeded by the first optical source. The optical transmitter further includes an output coupler, the second optical source coupled to the optical coupler via an output waveguide and configured to emit light having multiple different wavelengths through the output waveguide. In some implementations, the second optical source is self-injection seeded. |
US11539436B2 |
Cable modem system management of passive optical networks (PONs)
A network infrastructure combining data over cable service interface specification (DOCSIS) cable modem management and 10 Gb passive optical network XGPON networking technology. The DOCSIS equipment controls restrict the XGPON to physical layer (layer 1) while the DOCSIS equipment operate at a data link layer and above. |
US11539434B2 |
Dark fiber dense wavelength division multiplexing service path design for microservices for 5G or other next generation network
A dark fiber dense wavelength division multiplexing service path design microservice (ddSPDmS) can provide a scalable self-contained meta-data driven approach for a flexible implementation of a dark fiber dense wavelength division multiplexing (DWDM) service path design solution. The service plan design solution can be used as a standalone solution or integrated with a network management application. In order to manage a large volume of circuit designs, multiple microservices can accept application program interface (API) requests in a cloud environment. Permission can then be given to any application to use the API to make a call to the design and inventory. Additionally, metadata templates can be designed to support a node, a link, and/or a topology for the microservices. |
US11539433B2 |
Methods, devices, and systems for timing and bandwidth management of ultra-wideband, wireless communication channels
Disclosed herein are methods, devices, and systems for providing timing and bandwidth management of ultra-wideband, wireless data channels (including radio frequency and wireless optical data channels). According to one embodiment, a hub apparatus is disclosed for providing out-of-band bandwidth management for a free-space-optical (FSO) data channel associated with a first device. The hub apparatus includes a processor, a memory coupled with the processor, an FSO transmitter coupled with the processor, and an FSO receiver coupled with the processor. The FSO transmitter may be configured to transmit a control signal comprising timing information and bandwidth management information. |
US11539432B1 |
Systems and methods for skew detection and pre-compensation in a coherent optical system
A skew compensation system for a coherent optical communication network includes a transmitter modulator having a first driver input for receiving a first signal from a first channel, a second driver input for receiving a second signal from a second channel, a source input for receiving a continuous wave source signal, and a modulation output in communication with an optical transport medium of the network. The system further includes a tunable delay line disposed between the second channel and the second driver input for inserting a pre-determined training sequence onto the second signal prior to the second driver input, and a processor for determining a skew amount between the second signal at the second driver input and the first signal at the first driver input, calculating a pre-compensation value corresponding to the skew amount, and reducing the skew amount at the modulation output according to the pre-compensation value. |
US11539431B1 |
Systems and methods for optical filter fault localization
The disclosed systems and methods for optical filter fault localization. The optical filter fault localization is based on: i) determining an accumulated noise density at frequencies where ASE noise is filtered out by a faulty optical filter in an optical signal; ii) comparing the accumulated noise density with predicted accumulated noise densities, the predicted accumulated noise densities representing noises predicted from a plurality of optical filters to a receiver; and iii) determining, based on the comparison of the accumulated noise density and the predicted accumulated noise densities, a location of the faulty optical filter. |
US11539424B2 |
System and method for providing channel recovery for angle domain sparse channels
A system and method for providing channel recovery for angle domain sparse channels is herein provided. According to one embodiment, a method includes receiving an input including a measurement output, and recovering analog channels utilizing bases derived from the measurement output. |
US11539422B2 |
Beam management method, terminal, network device, and storage medium
Embodiments of this application provide a beam management method, a terminal, a network device, and a storage medium. The method includes: when a quantity of reference signals whose RSSIs are greater than a first preset value in reference signals received on a first time-frequency resource on one of one or more beams is less than a second preset value, detecting, by the terminal, a reference signal and/or downlink indication information (used to indicate a sending status of the reference signal on the first time-frequency resource and/or a second time-frequency resource on the beam) from the network device on the second time-frequency resource on the beam. Further, when receiving the downlink indication information on the second time-frequency resource on the beam, the terminal continues to detect a reference signal from the network device on the beam, thereby saving communications system resources. |
US11539421B2 |
Method for recovering beam in wireless communication system and device therefor
Provided is a beam recovery method in a wireless communication system. A beam recovery method performed by a user terminal (UE) may include receiving a beam reference signal (BRS) used for beam management from an enhanced Node B (eNB), when a beam failure event is detected, transmitting a control signal for a beam failure recovery request to the eNB; and, when beam reporting is triggered, reporting a beam measurement result to the eNB in a specific resource. |
US11539419B2 |
System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A mobility application method of a user equipment (UE) residing in a system of wireless communication systems, which supports transmission/reception of data, using a beamforming, via multiple input multiple output (MIMO) antennas is provided. The method includes measuring beam measurement reference signals that a network transmitted using different transmission nodes and evolved NodeB (eNBs) and transmitting the measured information to the network in a system using a number of beams. |
US11539418B2 |
Method, apparatus for channel state information feedback and storage medium
A method and apparatus for channel state information feedback and a storage medium are provided according to the present disclosure. The method includes: performing by a terminal channel measurement according to a reference signal; selecting M subbands from K subbands of a CSI reporting band, and reporting to a base station the M subbands' Relative Power Indicator (RPI) and Phase Indicator (PI) of a weighted coefficient associated with a precoding codebook index, where M and K are integers greater than or equal to 1, M |
US11539416B2 |
Method for reporting channel state information in wireless communication system and apparatus for the same
The present invention provides a method of reporting, by a UE, CSI in a wireless communication system, the method comprising: receiving, from a base station, a RRC signaling that comprises a plurality of reporting settings, wherein each reporting setting comprises a corresponding list of first values representing time offsets for transmitting a CSI report, forming a plurality of lists of first values; receiving, from the base station, DCI triggering the CSI report, wherein the DCI comprises an index value related to a time at which to transmit the CSI report on a PUSCH; determining, based on the DCI, a plurality of list entries; determining a second value that is largest among the plurality of list entries; and transmitting, to the base station, the CSI report on the PUSCH based on the second value. |
US11539411B2 |
Electronic device for selecting antenna to support designated radio communication among plurality of antennas
An electronic device includes a first antenna configured to process a first radio frequency (RF) signal within a first frequency band; a second antenna spaced apart from the first antenna configured to process a second RF within a second frequency band different from the first frequency band; a first radio frequency front end (RFFE) and a second RFFE configured to process a third RF signal within a third frequency band different from the first frequency band and the second frequency band; a communication processor electrically connected to the first switch and the second switch; and a memory operatively coupled to the communication processor and configured to store performance information having, at least, a first value indicating an efficiency of the first antenna when performing a first radio communication, and a second value indicating an efficiency of the second antenna when performing the first radio communication. The memory is configured to store instructions that, when executed, cause the communication processor to transmit or receive a signal within at least one of the first frequency band, the second frequency band or the third frequency band, and select an antenna to support the first radio communication among the first antenna and the second antenna based on the performance information having the first value or the second value. The first RFFE and the second RFFE support the first radio communication within the third frequency band. |
US11539399B2 |
System and method for smart card based hardware root of trust on mobile platforms using near field communications
The exemplary embodiments described herein relate to systems and methods for identifying and authenticating a mobile platform. One embodiment relates to a method comprising receiving, by a mobile platform, a digital certificate from an integrated circuit card (“ICC”) via close-proximity radio communication, verifying the digital certificate with a digital signature stored on the mobile platform, and booting the mobile platform upon verification of the digital certificate of the ICC. A further embodiment relates to a mobile platform, comprising a non-transitory computer readable storage medium storing a digital signature, and a processor receiving a digital certificate from an integrated circuit card (“ICC”) via close-proximity radio communication between the ICC and the mobile platform, verifying the digital certificate with the digital signature, booting the mobile platform upon verification of the digital certificate of the ICC. |
US11539398B1 |
Variable PLC attenuator and amplifier
A system for controlling a level of communication signals broadcast onto an associated power line communication (PLC) network by an associated transmitting device includes an input circuit, an adjustable amplifier circuit, and an output circuit. The input circuit receives a first communication signal having a first signal level from the associated transmitting device. The adjustable amplifier circuit applies a selectable gain to the first communication signal based on one or more of a monitored condition of the associated vehicle and/or a monitored condition of the associated PLC network to generate a level-adjusted communication signal having a second signal level different than the first signal level of the first communication signal. The output circuit receives the level-adjusted communication signal and broadcasts the level-adjusted communication signal onto the associated PLC network. |
US11539397B2 |
Power extender for smart-home controllers using 2-wire communication
A method of powering a controller using an intermediate device with power from an environmental system may include receiving current from a power wire from the environmental system; passing the current from the power wire to a second command wire from the controller; monitoring the current flowing between the power wire and the second command wire while the current is below a threshold indicative of an amount of current used to power the controller from the environmental system; detecting when the current flowing between the power wire and the second command wire exceeds the threshold indicating that the controller is sending a command to the environmental system to perform the function; and sending a command to environmental system using a first command wire from the environmental system after detecting that the current exceeds the threshold. |
US11539390B2 |
Semiconductor integrated circuit and reception device
According to one embodiment, in a semiconductor integrated circuit, a sampler is connected to an output node of a summer circuit. A shift register is connected to an output node of the sampler and includes K stages of registers, K being an integer that is equal to or larger than 3. To a control circuit, output nodes of respective registers of N-th to M-th stages among the K stages of registers are connected, N being an integer larger than 1 and smaller than K, M being an integer larger than N and equal to or smaller than K. A first switch includes one end connected to the output node of the summer circuit. A correction circuit includes a first control node that is connected to the control circuit through a first feedback line and an output node to which a second end of the first switch is connected. |
US11539386B2 |
Communication conduits within communications assemblies
In the field of communications assemblies, particularly those arising in connection with high voltage direct current (HVDC) power converters, there is provided a communications assembly (10) that comprises a first module (12) which is arranged in operative communication with a second module (14A, 14B, 14C, 14D, 14E, 14F, 14G, 14H) via a communication conduit (16A, 16B, 16C, 16D, 16E, 16F, 16G, 16H). At least one of the first module (12) and the second module (14A, 14B, 14C, 14D, 14E, 14F, 14G, 14H) have a receiver (24) that includes a squelch filter (26) which is configured to operate in a first normal mode and a second test mode. The squelch filter (26) normally operates in the first normal mode to suppress a signal output (28) from the receiver (24) when the strength of an input signal (30) received by the receiver (24), via the communication conduit (16A, 16B, 16C, 16D, 16E, 16F, 16G, 16H), falls below a normal threshold. The squelch filter (26) selectively operates in the second test mode to suppress the signal output (28) from the receiver (24) when the strength of the input signal (30) received by the receiver (24), via the communication conduit (16A, 16B, 16C, 16D, 16E, 16F, 16G, 16H), falls below a test threshold higher than the normal threshold. When the squelch filter (26) is operating in the second test mode, a signal output (28) from the receiver (24) indicates a signal margin in the communication conduit (16A, 16B, 16C, 16D, 16E, 16F, 16G, 16H) that is at least equal to the difference between the test threshold and the normal threshold. |
US11539383B2 |
Bidirectional image-rejection active array with reduced LO requirement
An RF frontend integrated circuit (IC) device comprises one or more RF transceivers to transmit and receive RF signals within a first frequency band and a second frequency band that is higher than the first frequency band. The RF frontend IC device further comprises a bidirectional LO signal generation circuit coupled to the one or more transceivers to generate a bidirectional LO signal. The bidirectional LO signal is injected between the first frequency band and the second frequency band. The bidirectional LO signal generation circuit is to perform a high-side LO injection for the RF signals within the first frequency band by injecting the bidirectional LO signal having an LO frequency higher than the first frequency band and to perform a low-side LO injection for the RF signals within the second frequency band by injecting the bidirectional LO signal having the LO frequency lower than the second frequency band. |
US11539375B2 |
System and method for direct signal down-conversion and decimation
Systems and methods for direct signal down-conversion and decimation in a digital receiver. The digital receiver produces a decimated passband version of the signal without the problems associated with use of digital mixers. The digital receiver includes a passband-to-passband decimator/down-converter that implements an algorithm which takes the signal band (frequency and bandwidth or lower and upper frequencies) where a signal is present and produces a decimation rate and phase for use by a low-pass mixer-free down-conversion. The digital receiver technology may be efficiently implemented on a digital signal processor or field-programmable gate array. |
US11539373B2 |
Method to compensate for metastability of asynchronous SAR within delta sigma modulator loop
Herein disclosed are some examples of metastability detectors and compensator circuitry for successive-approximation-register (SAR) analog-to-digital converters (ADCs) within delta sigma modulator (DSM) loops. A metastability detector may detect metastability at an output of a SAR ADC and compensator circuitry may implement a compensation scheme to compensate for the metastability. The identification of the metastability and/or compensation for the metastability can avoid detrimental effects and/or errors to the DSM loops that may be caused by the metastability of the SAR ADCS. |
US11539372B2 |
Signal control device
A signal control device includes a charge/discharge circuit, a sampling capacitor, and an AC conversion circuit. The charge/discharge circuit is capable of charging or discharging the sampling capacitor. The AC conversion circuit performs an AD conversion by converting an analog voltage value charged in the sampling capacitor into an AD conversion value that is a digital value. After a charge operation or a discharge operation to the sampling capacitor with the charge/discharge circuit, the AD conversion circuit performs the AD conversion, and a malfunction of the charge/discharge circuit is determined based on a diagnosis result of the AD conversion value. |
US11539367B2 |
Level shifter enable
A multi-bit level shifter that has a plurality of level shifters, each of which is configured to receive an input signal in a first voltage domain and provide a corresponding output signal in a second voltage domain. The level shifters each have an enable node. An enable circuit includes an output terminal connected to the enable node of each of the plurality of level shifters, and each of the plurality of level shifters is configured to output the corresponding output signals in response an enable signal received by the enable circuit. |
US11539366B1 |
Capacitive transmitter
A capacitive transmitter includes a control circuit configured to generate a data signal by delaying input data and to generate a control signal according to the input data and a delayed signal thereof; a capacitor connected between a first node and a transmission node; a driving circuit configured to receive the data signal and to provide an output signal corresponding to the data signal to the first node; and a bias setting circuit configured to set a transmission voltage at the transmission node according to the control signal. |
US11539364B2 |
Estimation of gap between a proximity sensor and target
A method is provided for sensing proximity of a target. The method includes sensing inductance associated with a magnetic field, wherein the inductance is affected by the target when the target is proximate the magnetic field. The method further includes providing the sensed inductance for processing. The processing includes determining an inductance value from at least the sensed inductance and estimating a parameter of a gap between a location of sensing the inductance and the target as a function of the inductance value and application of a nonlinear model of a relationship between the gap and inductance. |
US11539359B2 |
Monitoring safe operating area (SAO) of a power switch
This disclosure is directed to circuits and techniques for protecting a power switch when the power switch is turned ON. A driver circuit may detect whether the power switch is in a desaturation mode or an overcurrent state based on a signal at a detection pin, and disable the power switch in response to detecting that the power switch is in the desaturation mode or the overcurrent state. In addition, the driver circuit may detect whether the power switch is trending towards a safe operating area (SOA) limit of the power switch based on a rate of change of the signal, and disable the power switch in response to detecting that the power switch is trending towards the SOA limit. |
US11539354B2 |
Systems and methods for generating a controllable-width pulse signal
Systems, methods, and devices are provided for a circuit for generating a pulse output having a controllable pulse width. Systems and methods may include a delay line having a plurality of stages. A delay per stage calculation circuit is configured to determine a per-stage delay of the delay line using a first clock input. A pulse generation circuit is configured to generate the pulse output using the delay line based on the per-stage delay using a second clock input, the second clock input having a lower frequency than the first clock input. |
US11539347B1 |
Current-mode frequency translation circuit with programmable gain
A radio frequency (RF) transmission circuit includes an input stage, a current-mode mixer coupled to an output of the input stage, an attenuator coupled to an output of the current-mode mixer, and a matching network coupled to an output of the attenuator. The input stage, current-mode mixer, attenuator, and the matching network are configured in a series stack. |
US11539346B2 |
Resonator device, resonator module, electronic apparatus, and vehicle
A resonator device includes a base, a resonator element attached to the base, a cover accommodating the resonator element between the base and the cover, and a conductive bonding member positioned between the base and the cover and bonding the base to the cover. The base includes a resonator element mount surface on which the resonator element is attached, a first interconnect and a second interconnect that are arranged on the resonator element mount surface and that are electrically coupled to the resonator element, a bonding surface bonded to the cover through the bonding member, and a step between the resonator element mount surface and the bonding surface. |
US11539344B2 |
Elastic wave device and method for producing the same
An elastic wave device includes a supporting substrate including an upper surface including a recessed portion, a piezoelectric thin film on the supporting substrate to cover the recessed portion of the supporting substrate, an IDT electrode on a main surface of the piezoelectric thin film, the main surface being adjacent to the supporting substrate, and an intermediate layer on a main surface of the piezoelectric thin film, the main surface being remote from the supporting substrate. A space is defined by the supporting substrate and the piezoelectric thin film. The IDT electrode faces the space. Through holes are provided in the piezoelectric thin film and the intermediate layer to extend from a main surface of the intermediate layer to the space, the main surface being remote from the piezoelectric thin film. The elastic wave device further includes a cover member on the intermediate layer and covering opening ends of the through holes. |
US11539342B2 |
Acoustic wave device and communication apparatus
The multiplexer includes a plurality of IDT electrodes on a substrate, an insulating cover located on the substrate so as to configure one or more spaces above the plurality of IDT electrodes, an antenna terminal, transmission terminal, and reception terminal which are all located on the substrate and pass through the cover, and a reinforcing layer which is located on the cover and is made of metal. By the plurality of IDT electrodes, a transmission filter located in a signal path connecting the antenna terminal and the transmission terminal and a receiving filter located in a signal path connecting the antenna terminal and the reception terminal. The reinforcing layer includes a first area part facing the transmission filter and a second area part which faces the receiving filter and is separated from the first area part. |
US11539333B2 |
RF switching
An RF transceiver front end includes a receiver limb including a length of transmission line, an impedance matching network, a downstream shunt switch and a downstream further receiver component and a transmitter limb. The impedance matching network is configured to transform the input impedance of the further receiver component to match the input impedance of the receiver limb when the shunt switch is open and the RF transceiver front end is operable in receiver mode. The impedance matching network is further configured to transform the input impedance of the shunt switch to present an open circuit as the input impedance of the receiver limb when the shunt switch is closed and the RF transceiver front end is operable in transmitter mode. The length of transmission line can be from zero to less than λ/4 at the operating frequency of the RF transceiver. |
US11539330B2 |
Envelope tracking integrated circuit supporting multiple types of power amplifiers
An envelope tracking (ET) integrated circuit (ETIC) supporting multiple types of power amplifiers. The ETIC includes a pair of tracker circuits configured to generate a pair of low-frequency currents at a pair of output nodes, respectively. The ETIC also includes a pair of ET voltage circuits configured to generate a pair of ET voltages at the output nodes, respectively. In various embodiments disclosed herein, the ETIC can be configured to generate the low-frequency currents independent of what type of power amplifier is coupled to the output nodes. Concurrently, the ETIC can also generate the ET voltages in accordance with the type of power amplifier coupled to the output nodes. As such, it is possible to support multiple types of power amplifiers based on a single ETIC, thus helping to reduce footprint, power consumption, and heat dissipation in an electronic device employing the ETIC and the multiple types of power amplifiers. |
US11539328B2 |
Timing circuit for locking a voltage controlled oscillator to a high frequency by use of low frequency quotients and resistor to switched capacitor matching
Devices, systems, and methods for locking a voltage controlled oscillator (VCO) at a high frequency may include use of a VCO and an integrator, which generates and outputs a control signal to the VCO, based on an inverting signal and a reference signal. The control signal locks the VCO to a high frequency signal (FH). A frequency divider is coupled to the VCO, receives FH from the VCO, divides FH by a factor “F”, and outputs a low frequency signal (FL). A switched capacitor resistor circuit (SCRC) is coupled to the frequency divider and the integrator. The SCRC receives FL from the frequency divider and generates the inverting signal. An integrating capacitor is coupled across an inverting and an output terminal of op-amp in the integrator. The output of the op-amp provides an integrator signal, which may be (optionally) filtered to produce the control signal. |
US11539326B2 |
Photovoltaic direct-current breaking apparatus
This application discloses a photovoltaic direct-current breaking apparatus, including a positive connection terminal and a negative connection terminal for connecting a photovoltaic string and a photovoltaic energy converter, a first diode, a first switch, a convector circuit, and an energy absorption circuit, where the first switch, the convector circuit, and the energy absorption circuit are connected in parallel. The convector circuit can effectively avoid arc discharge and ablation generated when the first switch cuts off a direct-current circuit between the photovoltaic string and the photovoltaic energy converter. The first diode can effectively bypass energy stored by an energy storage device in the photovoltaic energy converter, helping reduce required specifications of a semiconductor device in the convector circuit. The energy absorption circuit can also effectively reduce required specifications of the semiconductor device and a varistor. |
US11539325B2 |
Variable terrain solar tracker
Solar trackers that may be advantageously employed on sloped and/or variable terrain to rotate solar panels to track motion of the sun across the sky include bearing assemblies configured to address mechanical challenges posed by the sloped and/or variable terrain that might otherwise prevent or complicate use of solar trackers on such terrain. |
US11539324B2 |
Roof integrated photovoltaic system
A roof integrated photovoltaic (RIPV) system has a plurality of solar tiles that are mounted to a roof. The tiles may be mounted using a metal batten and hanger system or some other attachment system. Each tile has an electrical edge junction extending rearwardly from its top edge. The edge junction is coextensive with or contains the plane of the solar tile and may be slightly thicker than the solar tile. Sockets on opposed ends of the edge junction receive plugs of electrical cables for interconnecting the array of solar tiles together electrically. The edge junctions provide for a low profile installation that mimics the appearance of a traditional roofing tile such as a slate tile. The slightly thicker edge junctions may raise solar tiles of one course above the surfaces of solar tiles of a next lower course to provide ventilation for the RIPV array and to provide accommodating space for system wiring. |
US11539319B2 |
Controller and drive circuit for electric motors
An electric motor system is described. The electric motor system includes a drive circuit including an inverter configured to supply variable frequency current and a contactor configured to supply line frequency current. The electric motor system also includes an electric motor coupled to the drive circuit wherein the electric motor is communicatively coupled to a controller. The controller is configured to control the inverter to supply variable frequency current to the electric motor, thereby operating the electric motor at a motor speed, and determine, based upon at least one input parameter, a maximum potential motor speed the inverter can achieve. The controller is also configured to receive a command to operate the electric motor at line frequency current and control the drive circuit to transition from supplying variably frequency current to supplying line frequency current before the maximum potential motor speed the inverter can achieve is reached. |
US11539314B2 |
Electric working machine
An electric working machine in one aspect of the present disclosure includes: a motor; a driver to drive the motor; a first control circuit; and a second control circuit. The first control circuit controls the driver such that the motor rotates in a set rotation direction. The second control circuit is provided separately from the first control circuit. The second control circuit detects a rotation direction of the motor and performs an abnormality handling process to stop rotation of the motor in response to a situation where the detected rotation direction is reverse to the set rotation direction. |
US11539310B2 |
Artificial muscles comprising an electrode pair having fan portions and artificial muscle assemblies including same
An artificial muscle includes an electrode pair including a first electrode and a second electrode. One or both of the first electrode and the second electrode includes a central opening. The first electrode and the second electrode each include two or more fan portions and two or more bridge portions. Each fan portion includes a first end having an inner length, a second end having an outer length, a first side edge extending from the second end, and a second side edge extending from the second end. The outer length is greater than the inner length. Each bridge portion interconnecting adjacent fan portions at the first end. |
US11539304B2 |
Indirect matrix converter and rectifier module
An indirect matrix converter includes a rectifier module, an inverter module, and a control unit. The rectifier module includes three parallel-connected T-type bridge arms, and each T-type bridge arm includes a bidirectional switch and a power bridge arm. The power bridge arm includes a first switch and a second switch connected to the first switch in series. One end of the bidirectional switch is coupled to a first AC power source, and the other end thereof is coupled to a common contact between the first switch and the second switch. The control unit outputs a plurality of control signals to control the rectifier module and the inverter module, so that the first AC power source is converted into a second AC power source, or the second AC power source is converted into the first AC power source. |
US11539303B2 |
Uninterruptible power supply and method of operation
An uninterruptible power supply (UPS) is provided that includes a split direct current (DC) link having a first capacitor coupled between a positive DC link terminal and a first node, and a second capacitor coupled between the first node and a negative DC link terminal. The UPS also includes a rectifier coupled to an input of the split DC link and a controller coupled to the rectifier. The rectifier includes first, second, and third legs, wherein each leg is configured to convert a first alternating current (AC) voltage received from an AC source into a DC voltage to be provided to the split DC link, and a fourth leg configured to balance DC link voltages of the first and second capacitors. The controller is configured to maintain functionality of the rectifier during at least one of a partial utility power outage, a full utility outage, and a failure of at least one of the first, second, third, and fourth legs. |
US11539300B1 |
DC to DC power converter device capable of either bidirectional step-up conversion or bidirectional step-down conversion, and control method thereof
A DC to DC power converter device includes a controller, and a DC to DC resonant converter that includes first and second full bridge chopper circuits (FBCCs) and an LLC resonant converter coupled between the first and second FBCCs. To cause the DC to DC resonant converter to operate in a conversion mode where an input voltage received by the second FBCC is converted to an output voltage provided by the first FBCC, the controller controls switches of the second FBCC and switches of the first FBCC to transition between an ON state and an OFF state with the ON state reoccurring at a frequency lower than a resonant frequency of the DC to DC resonant converter, so that the output voltage can be higher than the input voltage. |
US11539299B2 |
Switching power supply unit and electric power supply system
A switching power supply unit includes a pair of input terminals, a pair of output terminals, a transformer, an inverter circuit, a rectifying and smoothing circuit, and a driver. The inverter circuit includes first to fourth switching devices, a first capacitor, a resonant inductor, and a resonant capacitor. The rectifying and smoothing circuit includes a rectifying circuit including rectifying devices, and a smoothing circuit. The first to fourth switching devices are coupled in series in this order between two input terminals constituting the pair of input terminals. The first capacitor is disposed between a connection point between the first and second switching devices and a connection point between the third and fourth switching devices. The resonant inductor, the resonant capacitor, and a primary winding are coupled in series in no particular order between a connection point between the second and third switching devices and one of the two input terminals. |
US11539297B2 |
DC-DC power converter with improved output current resolution
The present invention relates to a DC-DC power converter which comprises a switched converter core operated in accordance with a primary control signal to supply a primary DC output current (Io) of the converter; said primary control signal exhibiting a minimum resolution, e.g. a minimum time step, leading to a corresponding minimum current step of the primary DC output current. The DC-DC power converter additionally comprises a controllable resistive path, or a controllable current source, connected between a pair of terminals selected from a group of: (the positive output terminal, the negative output terminal, the positive input terminal, the negative input terminal) and configured to add or subtract a secondary DC output current (Icon) to the primary DC output current (Io) in accordance with a secondary control signal to adjust the load current. |
US11539295B2 |
Switched-mode power supply having multiple operating phases and a stepped reference voltage
An electronic device includes a switched-mode power supply having a first operating phase during which the output node of the switched-mode power supply is coupled by an on switch to a source of a first reference voltage. The first operating phase is followed by a second operation phase during which the output node of the switched-mode power supply is in a high impedance state. While in the second operating phase, a capacitor connected to the output node of the switched-mode power supply at least partially discharges into a load. |
US11539294B2 |
Multi-level power converter with light load flying capacitor voltage regulation
A multi-level power converter and a method using first, second, third and fourth switching elements, an inductor, and a flying capacitor are presented. A first terminal of the inductor may be connected to a switching terminal connecting the second and third switching elements. A first terminal of the flying capacitor may be connected to a terminal connecting the first and second elements. A second terminal of the flying capacitor may be connected to a terminal connecting the third and fourth switching elements. The multi-level power converter may have a first feedback circuit to generate control signals for setting the switching elements in a plurality of switching states for regulating an output voltage or an output current. The converter may have a second feedback circuit to generate control signals to allow the flying capacitor to be charged or discharged using an inductor current flowing through the inductor. |
US11539292B2 |
Power converter control device with feedforward
A subtracting unit calculates a voltage deviation of an output voltage of a DC-to-DC converter from a target voltage. A feedback control variable calculator calculates a feedback control variable in each control cycle. In a control cycle in which a crossing of the output voltage and the target voltage is detected by a feedforward control determination unit, a feedforward control variable calculator calculates a feedforward control variable so that a change in the output voltage is prevented. A switching control signal generator generates a control signal for the DC-to-DC converter for controlling the output voltage, according to a summation of the feedforward control variable and the feedback control variable. |
US11539291B2 |
Method of manufacturing a power semiconductor system
A method of manufacturing a power semiconductor system includes providing a power module having one or more power transistor dies and attaching an inductor module to the power module such that the inductor module is electrically connected to a node of the power module. The inductor module includes a substrate with a magnetic material and windings at one or more sides of the substrate. Further methods of manufacturing power semiconductor systems and methods of manufacturing inductor modules are also described. |
US11539288B2 |
Devices and methods for operating a charge pump
Devices and methods for operating a charge pump. In some implementations, a charge pump module includes a clock circuit configured generate to a first clock signal and a second clock signal, the first clock signal having a lower frequency than the second clock signal. The charge pump module also includes a driving circuit configured to generate a first set of clock signals based on the first clock signal and a second set of clock signals based on the second clock signal, the driving circuit coupled to the clock circuit. The charge pump module further includes a charge pump core including a set of capacitances, the charge pump core configured to charge the set of capacitances based the first set of clock signals and the second set of clock signals. |
US11539287B2 |
Average current and frequency control
Apparatuses, systems and methods for regulating the output currents of a power supply at a target output current include a buck converter module operably connected to a power source and a load. A first switch couples the power source to the buck converter module during a first period of a given operating cycle, while the buck converter module stores and provides electrical power to the load. During a second period, the buck converter may discharge the electrical power stored during the first period. A current sensor senses the currents during at least one of the first period and the second period and, over the operating cycle, the switching is adjusted so the average output current equals the target output current. Adjustments to the first and second period durations result in maximum and a minimum currents symmetrically disposed about the average current provided to the load during the operating cycle. |
US11539285B2 |
DC-to-DC converter
A DC-to-DC converter includes a first DC side, a second DC side, a first capacitor, a first switch circuit, a magnetic element circuit, a second switch circuit, and a second capacitor. The DC-to-DC converter is adapted for converting between a first DC voltage and a second DC voltage. The magnetic element circuit is electrically coupled to the first switch circuit, and includes a plurality of magnetically coupled windings and an inductor. An oscillating current flowing in the first switch circuit is generated by controlling the first switch circuit and the second switch circuit, and an oscillating frequency of the oscillating current is determined by the capacitance of the first capacitor and the inductance of the inductor in the magnetic element circuit, and the first switch circuit and the second switch circuit are switched at a specific region of a wave trough of the oscillating current. |
US11539282B2 |
Switching control circuit and power supply circuit
A switching control circuit for controlling a power supply circuit that generates an output voltage from an alternating current (AC) voltage inputted thereto. The power supply circuit includes an inductor receiving a rectified voltage corresponding to the AC voltage, and a transistor controlling an inductor current flowing through the inductor. The switching control circuit controls switching of the transistor, and includes a first arithmetic circuit that calculates a first time period, from when the transistor is turned off to when the inductor current reaches a predetermined value, based on a first voltage corresponding to the rectified voltage, a second voltage corresponding to the output voltage, and the inductor current upon turning on of the transistor; and a drive circuit that causes the transistor to be on in a second time period corresponding to the second voltage, and causes the transistor to be off in the first time period. |
US11539281B2 |
Magnetically-coupled torque-assist apparatus
A magnetically-coupled torque assist apparatus includes a movable (rotor) magnet configured to rotate about a rotor magnet axis extending through the rotor magnet, and a stationary (stator) magnet. The rotor magnet and the stator magnet have a gap therebetween. There is an equilibrium state position (ESP) of the rotor magnet where forces acting on the rotor magnet are balanced such that the rotor magnet is stationary about the rotor magnet axis. And when the rotor magnet is rotated from the equilibrium state position (ESP) to an elastically stressed state position (SSP), magnetic fields of the rotor magnet and the stator magnet generate a resultant magnetic force on the movable magnet that biases the movable magnet towards the equilibrium state position. In some embodiments, the stator and rotor magnets are configured to create a Halbach-effect magnetic field bloom, which contributes to the magnetic forces. |
US11539280B2 |
Actuator, linear motor and lithographic apparatus
An actuator comprises a coil, a first cooling plate and a second cooling plate. The cooling plates are configured to cool the coil. The first and second cooling plates are arranged at opposite sides of the coil to be in thermal contact with the coil. The coil comprises a first coil part and a second coil part, the first coil part facing the first cooling plate and the second coil part facing the second cooling plate, the first and second coil parts being separated by a spacing there between. The first cooling plate, the first coil part, the spacing, the second coil part and the second cooling plate form a stacked structure whereby the coil parts are arranged between the cooling plates and the spacing is arranged between the coil parts. The actuator further comprises a filling element arranged in the spacing. The filling element to push the first coil part towards the first cooling plate and to push the second coil part towards the second cooling plate. |
US11539279B2 |
Gap-closing actuator having a double-wound driving coil
A haptic engine includes a gap-closing actuator having a double-wound driving coil in which the two windings can be activated with two driving sources, respectively. Or, the two windings double-wound driving coil can be activated with a single driving source when the two windings are connected with each other either in series or in parallel. By using the double-wound driving coil in the gap-closing actuator as described, an instant inductance of either of the two windings can be determined without having to measure in real time a resistance of the corresponding winding. |
US11539275B2 |
Dynamoelectric rotary machine with elements for reducing tonal noises
A dynamoelectric rotary machine includes a stator, which has a winding system arranged in grooves disposed between teeth of a magnetically conductive body and a winding head on the end faces of the stator in each case. A rotor with a cage ring is arranged rotatably about an axis and during operation of the dynamoelectric rotary machine is in electromagnetic interaction in a motor-driven or generator-driven manner with the winding system of the stator arranged in the grooves by way of an air gap. Comb-type elements are disposed on the end faces of the stator. The comb-type elements assume an extensive intermediate space between the winding system projecting from the end faces of the stator, so that tonal noises which are produced during operation of such an electric machine are at least reduced. |
US11539272B2 |
Electric power tool
A motor retainer is provided on an inner circumferential surface of a housing and retains an outer circumference of a motor unit. A rotation detector includes a rotating body attached to a motor shaft and a position detector that outputs a rotational position signal corresponding to a rotational position of the rotating body. A sensor substrate retainer is provided on the inner circumferential surface of the housing and retains the position detector at a position facing the rotating body. |
US11539266B2 |
Electromotive furniture drive comprising a drive motor with a brake device
The invention relates to an electromotive furniture drive comprising a drive motor (10). The drive motor (10) has a driveshaft (11) which is mechanically coupled to a brake device (13), and the brake device (13) has a looping wrap spring (15). The electromotive furniture drive is characterized in that the brake device (13) comprises a brake element (17) which is designed to apply a braking torque to the drive shaft (11) in a rotational direction. The brake element (17) is operatively connected to a coupling element (16) in a mechanical manner, and the wrap spring (15) is positioned on an outer lateral surface (161) of the coupling element (16). |
US11539263B2 |
Rotary connector device and method of assembling rotary connector device
A rotary connector device body in which a rotator and a stator are assembled so as to be relatively rotatable has a housing space that can house an FFC inside. The rotary connector device body has a viewing window that is a through hole through which the housing space is viewed from outside of the rotary connector device body, a cover member disposed at the viewing window so as to cover the viewing window, an outer regulating portion facing outside of the rotary connector device body and disposed so as to be able to contact an outer surface of the cover member, and an inner regulating portion facing the housing space and disposed so as to be able to contact an inner surface of the cover member. The cover member is disposed between an outer regulating portion and an inner regulating portion. |
US11539262B2 |
Connection structure of electric component, motor and connection method of electric component
A connection structure of an electric component, a motor and a connection method of an electric component are provided. The connection structure of the electric component includes: an electric component main body having a connection terminal; a connector for wiring which is connected with the connection terminal; a base member; and a cover member. The base member is provided with an accommodation recessed part which accommodates inside a connected portion between the connection terminal and the connector. The accommodation recessed part has an opening part opened to an upper side. The cover member is attached to the base member so as to cover the opening part. An inside of the accommodation recessed part is filled with a sealing material which seals the connected portion between the connection terminal and the connector, and the sealing material fixes the connected portion, the base member and the cover member to each other. |
US11539259B2 |
Contact device for a stator, stator and electric machine
The invention relates to a contact device (1) for a stator (2) of an electric machine, wherein the contact device (1) has a contact carrier (4) made from an electrically insulating material, an upper side, which can be positioned to face away from the stator (2), and, at least on the upper side which can be positioned to face away from the stator (2), electrically conductive connection conductors (41) for contacting a plurality of coils (3), arranged over the circumference of the stator (2), via coil conductors (31). The contact device (1) furthermore has feedthrough openings (5), through which the coil conductors (31) of the coils (3) can be guided such that at least one coil conductor (31) can be connected to a connection conductor (41). The contact carrier (4) moreover has fixing devices (6) at the feedthrough openings (5), which fixing devices are designed in such a way that at least one coil conductor (31) touches a connection conductor (41) at a contact surface (7) and the coil conductor (31), at this contact surface (7), applies a permanent force action to the connection conductor (41) via forces acting perpendicularly to the respective conductor axis, whereby mutually parallel-lying portions of the coil conductor (31) and the connection conductor (41) are pressed against each other at the common contact surface (7). |
US11539257B2 |
Electric machine with asymmetric hairpin crown
An electric machine is disclosed that includes a rotor, a stator and a plurality of pins. The stator is received inside the rotor and defines a plurality of slots for receiving the pins. The pins are conductors that are each joined with a circumferentially adjacent pins to form a conductive path for each power phase. The pins each have a first axial leg and a second axial leg that are each disposed in one of the plurality of slots. The first and second axial legs are joined by an asymmetric crown portion of the pin conductors. The crown portion includes a long arm and a short arm that are joined at an apex that is radially and circumferentially offset to be closer to the second leg than the first leg. |
US11539256B2 |
Stator having winding cooling for an electrical machine
Various embodiments include stator for an electrical machine comprising: a stator winding; and a yoke with a plurality of slots. There are a plurality of conductor segments connected to one another, wherein each conductor segment has one respective axially internal inner section and two respective axially external outer sections. The respective inner section of each conductor segment is embedded into a respective slot. Ducts for coolant flow in the axial direction are formed at least in a portion of each of the slots. The stator defines, at least in a first axial end region, a first coolant chamber fluidically encapsulated from a surrounding area. The first coolant chamber surrounds at least a portion of the respective outer sections of each of the conductor segments situated in the first axial end region. The first coolant chamber is fluidically connected to the ducts to conduct coolant into and/or out of the ducts. |
US11539254B2 |
Electric drive apparatus
An electric drive apparatus includes a rotating electric machine and a transmission. The transmission is provided, on one axial side of the rotating electric machine, integrally with the rotating electric machine. The rotating electric machine includes a stator coil that is assembled to a stator core to have first and second coil end parts respectively protruding from first and second axial end faces of the stator core. The axial protruding height of the second coil end part from the second axial end face of the stator core is larger than the axial protruding height of the first coil end part from the first axial end face of the stator core. The first coil end part is located on the same axial side of the stator core as the transmission whereas the second coil end part is located on the opposite axial side of the stator core to the transmission. |
US11539250B2 |
Rotary electrical machine with a divided winding
The invention predominantly relates to a rotating electrical machine for a motor vehicle, comprising: a rotor having an even number of pole pairs Np; and a stator (10) comprising a body provided with slots and a three-phase winding (14) inserted into the slots in the stator body. The three-phase winding (14) comprises: at least a first group (G1) of portions of phases (U, V, W) and a second group (G2) of portions of phases (U, V, W) which are associated with a first set of at least three bridge arms (21.1); and at least a third group (G3) of portions of phases (U, V, W) and a fourth group (G4) of portions of phases (U, V, W) which are associated with a second set of at least three bridge arms (21.1). |
US11539242B2 |
Method for activating functions, implemented in a host appliance integrating or linked to a wireless charging device
Method for activating predefined functions, implemented in a host appliance integrating or linked to a wireless charging device, and including the steps of: detecting that a mobile appliance has just been positioned on a reception surface of the wireless charging device in order to be recharged; following the detection that the mobile appliance has just been positioned on the reception surface, activating or deactivating at least one predefined first function performed by the host appliance, in addition to recharging the mobile appliance; then, detecting that the mobile appliance has just been moved away from the reception surface; following the detection that the mobile appliance has just been moved away from the reception surface, activating or deactivating at least one predefined second function performed by the host appliance. |
US11539237B2 |
Uninterruptible power supply system and uninterruptible power supply
An uninterruptible power supply system includes a plurality of uninterruptible power supplies, each of which includes a rectifier and an inverter and switches between a normal operation mode for normal operation and a load simulation mode for simulating a load. |
US11539236B2 |
Multi-level uninterruptable power supply systems and methods
Systems and methods for supplying power at a medium voltage from an uninterruptible power supply (UPS) to a load without using a transformer are disclosed. The UPS includes an energy storage device, a single stage DC-DC converter or a two-stage DC-DC converter, and a multi-level inverter, each of which are electrically coupled to a common negative bus. The DC-DC converter may include two stages in a unidirectional or bidirectional configuration. One stage of the DC-DC converter uses a flying capacitor topology. The voltages across the capacitors of the flying capacitor topology are balanced and switching losses are minimized by fixed duty cycle operation. The DC-DC converter generates a high DC voltage from a low or high voltage energy storage device such as batteries and/or ultra-capacitors. The multi-level, neutral point, diode-clamped inverter converts the high DC voltage into a medium AC voltage using a space vector pulse width modulation (SVPWM) technique. The UPS may also include a small filter to remove harmonics in the AC voltage output from the multi-level inverter. |
US11539232B2 |
Display device
A display device, including a backplane, and a power generation component disposed on the backplane for converting kinetic energy generated by movement of the display device into electric energy and supplying power to the display device using the generated electric energy, the power generation component includes a generator, and a swing component with an eccentric structure, the swing component being connected to the generator and swingable during movement of the display device, so as to drive the generator to operate. |
US11539229B2 |
Multi-stage constant current charging method and charging apparatus
Provided are a multi-stage constant current charging method and a charging apparatus. The multi-stage constant current charging method includes the following. Perform a multi-stage constant-current charging on a battery, where a constant-current charging cut-off voltage is larger than a second voltage. Perform a constant-voltage charging on the battery, where a constant-voltage charging cut-off current is larger than a second current. |
US11539228B2 |
Charging control device
A CPU, when determining that the predicted minimum value of a limit value of charging power is not smaller than the minimum power of a charger, controls charging such that charging is performed in a normal mode, the normal mode being a mode in which a lower limit of a command value of supply power is the minimum power, when determining that the predicted minimum value is smaller than the minimum power, controls charging such that charging is performed in an estimation mode, that is a mode in which the lower limit of the command value is an estimated value of the minimum power of the charger, the estimated value being smaller than the minimum power, and controls charging such that charging is performed in the estimation mode by using, as the command value, power between a current limit value of the charging power and the estimated value. |
US11539227B2 |
Charge/discharge control circuit and battery device
Provided is a technology capable of protecting a charge/discharge control circuit and a battery device from a reverse connection state without a separately provided protection circuit. The charge/discharge control circuit to be contained in a battery device including a secondary cell, an external positive terminal and an external negative terminal, and FETs which control charging and discharging of the secondary cell, respectively, includes: VDD and VSS terminals; a charge control terminal; a discharge control terminal; a voltage detection terminal to which a voltage applied to the external positive terminal is supplied; an NMOS transistor communicates the discharge control terminal and the voltage detection terminal; and a bipolar transistor having a collector to be connected to a drain of the NMOS transistor, an emitter to be connected to a source of the NMOS transistor, and a base to be connected to a bulk of the NMOS transistor and the VSS terminal. |
US11539225B2 |
Power control method and related charging system
A power control method for a charging system includes: detecting a power signal and an input voltage of the power signal; determining a charging protocol supported by the power signal; and determining whether to conduct a power switching circuit or not according to the input voltage of the power signal and the charging protocol supported by the power signal to provide power for an amplifier chip of the charging system. |
US11539224B2 |
Drop-in charging system for electric aerosol-generating devices
A charging system (10) for an aerosol-generating device (12) includes a charging unit (14). The charging unit includes a body (20) at least partially defining a receiving volume (22). The receiving volume is sized to receive the elongate aerosol-generating device through an open top end in a plurality of orientations. A charging interface is coupled to the body and includes a biasing element and an electrical contact. The biasing element is configured to apply a force on the aerosol-generating device that causes an electrical contact of the aerosol-generating device to electrically engage the electrical contact of the charging interface when the aerosol-generating device rests on the charging unit. |
US11539214B2 |
Modular power conversion system
A method for determining when a connection of a power system to a grid has been disconnected. The method includes the power system supplying a first amount of reactive power to the grid to which the power system is connected, and the power system determining if there is a frequency change within the grid. This includes if the frequency change does not exceed a predetermined threshold, the power system supplying a second amount of reactive power to the grid, and if the frequency exceeds a predetermined threshold, the power system supplying a first amount of reactive power to the grid. |
US11539211B2 |
Fast-slow injection for recovery from transient response and voltage collapse with avoidance of SSR and SSCI
An intelligent impedance injection module is for use with transmission lines in a power grid. The intelligent impedance injection module has a plurality of transformer-less impedance injector units and a controller. The controller changes injector gain of the impedance injector units to compensate for current swings in a transmission line. |
US11539210B2 |
Power and fault management of electrical components of a transport climate control system powered by an electric vehicle
A power management system for managing power of a climate control unit (CCU) configured to be used with at least one of an electric vehicle, a trailer, or a transport container and at least partially powered by the electric vehicle is disclosed. The system includes a power distribution system that includes a power input, a power distributor electrically connected to the power input, a fault detecting and isolating circuit electrically connected to the power input, and a connection point for receiving the CCU. The connection point is electrically connected to the fault detecting and isolating circuit. A power controller is electrically connected to the power distribution system. The power controller includes a processor and a memory. |
US11539204B1 |
Intelligent circuit breaker with dynamic coordination system
A power distribution system includes a first intelligent circuit breaker; a plurality of second intelligent circuit breakers, the second intelligent circuit breaker is structured to transmit the circuit breaker information to the first intelligent circuit breaker; and an energy monitoring device coupled to the first and second intelligent circuit breakers and structured to receive the circuit breaker information, the energy monitoring device including a dynamic coordination system structured to: (i) determine whether an adjustment to configuration setting of an intelligent circuit breaker is required based at least in part on the circuit breaker information, (ii) identify the intelligent circuit breaker with the configuration setting required to be adjusted based on a determination that the adjustment is required, and (iii) transmit an alert to user, indicating that the adjustment to the configuration setting of the identified intelligent circuit breaker is required and device address of the identified intelligent circuit breaker. |
US11539201B2 |
Reverse polarity protection device
A reverse polarity protection device includes a protection unit, a detection unit, and a control unit electrically connected between a power supply device and a load device. The detection unit is electrically connected to the power supply device for detecting the polarity of an output signal of the power supply device, and the control unit is electrically connected to the detection unit and the protection unit. The detection unit outputs a detection signal to the control unit according to a detection result of the polarity of the output signal. If the detection signal shows that the polarity of the output signal is reverse, the control unit will control the protection unit to form an open circuit between the power supply device and load device to stop transmitting the output signal of the power supply device to the load device and achieve a reverse polarity protection effect of the load device. |
US11539199B2 |
Smart interconnecting clamp system
A apparatus for monitoring the integrity of an electrical wire includes a clamp system, a sensor system, a user interface configured to receive input data and output wire information, and a control unit configured to process the wire data, process the input data, and generate the output wire information. The clamp system includes a clamp and the sensor system includes a sensor configured to retrieve the wire data. In another embodiment, a portable device is configured to obtain wire data from a smart clamping system, to transmit the wire data to a processor and to receive a multi-dimensional representation, and a computer system configured to receive the wire data generated and to generate the multi-dimensional representation of the wire. A method for monitoring a wire includes capturing wire data using a clamp, transmitting the wire data to a control unit, generating wire information to output, and outputting the wire information. |
US11539195B1 |
Self-leveling floor outlet cover
A self-leveling floor mounted electrical outlet assembly may include a cylindrical housing with a threaded inner surface. A mounting frame may be rotatably coupled to the threaded inner surface of the cylindrical housing to adjustably position the mounting frame within the housing and provide for a rough elevation adjustment of an electrical receptacle or wiring device. The mounting frame may further comprise a first portion or outer disk comprising an edge mateably coupled with the threaded inner surface of the cylindrical housing, and a second portion or yoke support comprising at least one threaded fastener extending from the second portion to the threaded opening, the at least one threaded fastener coupled to the threaded opening to adjustably position the second portion with respect to the first portion and configured to provide for a fine elevation adjustment. A wiring device may be coupled to the second portion of the mounting frame. |
US11539185B2 |
Laser apparatus
A laser apparatus includes: a light source configured to generate laser light; and an optical negative feedback unit configured to narrow a spectral line of the laser light using optical negative feedback. A modulation signal is input to the light source to modulate a frequency of the laser light. A modulation amount in the frequency of the laser light is detected. A modulation sensitivity is calculated from (i) the modulation amount and (ii) an intensity of the modulation signal. |
US11539184B2 |
Light-emitting device, optical device, and measurement device
A light-emitting device includes a laser unit; and a first capacitive element and a second capacitive element that supply a driving electric current to the laser unit; wherein the first capacitive element has smaller equivalent series inductance than the second capacitive element, and the second capacitive element has a larger capacity and a smaller mount area than the first capacitive element. |
US11539182B2 |
Light source device and method of manufacturing the same
A light source device includes: a laser diode; a substrate directly or indirectly supporting the laser diode; and a cap secured to the substrate and covering the laser diode. The cap includes a first glass portion configured to transmit laser light that is emitted from the laser diode, and a second glass portion. At least one of the first glass portion and the second glass portion includes an alkaline glass region.The first glass portion and the second glass portion are bonded together via an electrically conductive layer that is in contact with the alkaline glass region. |
US11539180B2 |
Laser apparatus and extreme ultraviolet light generation system
A laser apparatus according to an aspect of the present disclosure includes: a master oscillator; at least one amplifier disposed on an optical path of a first pulse laser beam output from the master oscillator; a sensor disposed on an optical path of a second pulse laser beam output from the at least one amplifier; and a laser controller. The laser controller causes the laser apparatus to perform burst oscillation based on a burst signal from an external device, and performs processing of controlling a beam parameter based on a sensor output signal obtained from the sensor in a burst duration, and processing of detecting self-oscillation light from the amplifier based on a sensor output signal obtained from the sensor in a burst stop duration. |
US11539178B2 |
Hand-actuatable plier tool
A hand-actuatable plier tool for processing cables has a plier head for handling or processing a workpiece such as a cable, two plier handles that can be pivoted relative to one another between an open position and a closed position, an electronic monitoring unit detachably arranged on a first of the plier handles and with which at least the number of handling or processing procedures can be counted and stored. The monitoring unit has an electronic circuit and a signal transmitter emitting actuation signals to the electronic circuit when the plier tool is actuated. The signal transmitter has an energy harvesting module for supplying energy to the monitoring unit and an actuation mechanism activating the signal transmitter. |
US11539176B2 |
Splitter with equidistant output ports
A splitter with equidistant output ports is disclosed herein. In exemplary aspects, the splitter includes a housing, a printed circuit board (PCB) assembly positioned therein, an input port, and a plurality of output ports. The printed circuit board assembly includes a PCB, an input conductor attached to a first surface of the printed circuit board at an input contact point, and a plurality of output conductors attached to a second surface of the PCB. The input port and the plurality of output ports are attached to the housing and surround at least a portion of the input conductor and the plurality of output conductors. The plurality of output ports includes at least three output ports, wherein each output port of the plurality of output ports, and each of the corresponding output conductors, are circumferentially positioned around the input contact point. Thus, the splitter provides improved signal balance and transfer. |
US11539172B2 |
Reveal ports
In an example, an apparatus includes a body moveable relative to a housing, a port coupled to the body, and a guide member to guide the body between positions to reveal the port. In another example, an electronics device includes a port area defined by a housing, a cover to cover the port area in a first orientation, a guide to allow the cover to rotate to a second orientation to reveal the port area, and a positioner member to bias the cover into the first orientation or the second orientation. |
US11539171B2 |
Connector configurable for high performance
An electrical connector for high speed signals. The connector has multiple conductive elements that may serve as signal or ground conductors. A member formed with lossy material and conductive compliant members may be inserted in the connector. The conductive compliant members may be aligned with conductive elements of the connector configured as ground conductors. For a connector configured to carry differential signals, the ground conductors may separate pairs of signal conductors. The member may further include a conductive web, embedded within the lossy material, that interconnects the conductive compliant members. For a receptacle connector, the conductive elements may have mating contact portions aligned along opposing surfaces of a cavity. The conductive elements may have contact tails for attachment to a printed circuit board and intermediate portions connecting the mating contact portions and the contact tails. The conductive compliant members may press against the intermediate portions. |
US11539167B2 |
Adjustable push on connector/adaptor
A connector or adaptive connector includes a first subassembly and a second subassembly with each subassembly including a center conductor and terminating at one end in a termination portion forming a connector portion. The subassemblies interface with each other to slide with respect to each other. A spring acts on each of the subassemblies to bias the subassemblies to slide away from each other and a sleeve contains the subassemblies and spring, the sleeve securing at least one of the subassemblies while allowing movement of the other of the subassemblies in the sleeve for varying the length of the connector. Each subassembly center conductor includes a respective portion of an electrical contact that cooperate to form a center conductor for the connector. The portions of the electrical contact are configured to slide relative to each other when the connector varies in length for maintaining an electrical signal path through the connector. |
US11539166B2 |
Strap connector
A strap connector includes an insulating body, a conductive element, a locking member, a pressing block, and a strap connected with the pressing block. The locking member includes a main body portion and a locking elastic arm. The main body portion includes a top plate. The locking elastic arm extends from the top plate and is used for locking with a mating connector. The pressing block is slidable backwardly under the pulling of the strap, so that the pressing block presses the top plate downwardly, and then the locking elastic arm moves downwardly to realize unlocking. When the unlocking method disclosed in the present disclosure is performed, it is only necessary to ensure that the pressing block slides over the top plate, which improves the reliability of unlocking. |
US11539165B2 |
Lever-type connector
Between a housing and a position ensuring member, provided are: a first locking mechanism that locks move of the position ensuring member at a standby position in an ensuring-operation direction toward a fitting assured position when a lever member is not at a completely fitted position; and a second locking mechanism that locks move of the position ensuring member at the fitting ensured position in an ensuring-release direction that is a reverse direction of the ensuring-operation direction when the lever member is at the completely fitted position. Between the lever member and the position ensuring member, provided is a locking release mechanism that releases a locked state of the position ensuring member with the first locking mechanism when the lever member comes at the completely fitted position. |
US11539163B2 |
Electric device including a housing for receiving a battery pack and a latching mechanism
A power tool including a housing that has a battery pack receiving portion configured to receive an interface of a battery pack, device contacts extending from the housing and configured to mechanically and electrically engage with the battery pack, and a latching mechanism supported by the housing and including an actuator and a latch member configured to selectively engage the interface of the battery pack. The actuator is pivotable to operatively pivot the latch member. |
US11539159B2 |
Plug connector
A plug connector for providing an electrical connection, having a collective seal with at least one passage opening and at least one electrically conductive plug contact, which is guided through the at least one passage opening of the collective seal. Also disclosed is a template for the passage opening to support the plug contact when the plug contact is guided through the passage opening of the collective seal. |
US11539158B2 |
Electrical terminal seal and electrical connector containing same
An electrical connector assembly includes a connector housing defining a cylindrical terminal cavity, an electrical terminal having a cylindrical portion, and an electrical terminal seal. The electrical terminal seal includes a base formed of a compliant material and a cylindrical protrusion integrally formed with the base and extending from a major surface of the base. The electrical terminal seal defines a cylindrical aperture extending through the protrusion. The protrusion includes a first circumferential rib that is integrally formed with the protrusion. The first circumferential rib extends into the aperture from an inner surface of the protrusion. |
US11539147B2 |
Electrical conductor connector
The present invention relates to an electrical conductor connector, comprises: an insulating body, a contact member and an actuation lever. A plurality of inserting openings are provided in the insulating body. The contact member comprises a busbar and a wire connection clamp. The actuation lever comprises an actuation portion for cooperating with the wire connection clamp and a flip portion, wherein the actuation portion is provided with a cam, a stop wall is provided inside the insulating body for contacting the cam. When the flip portion is flipped, the actuation lever swings and moves jointly through the contour of the cam and a contact surface of the stop wall, so a relative displacement is generated between the insulating body and the actuation lever. A contact point is generated between the surface of wire connection clamp and the actuation portion, and the position of the contact point will be changed continuously. |
US11539127B2 |
Wireless telecommunication antenna mount and control system
A remotely controllable antenna mount (100) for use with a wireless telecommunication antenna (102) provides mechanical azimuth and tilt adjustment using AISG compatible motor control units (171/192) and AISG control and monitoring systems to remotely adjust the physical orientation of the antenna. The mount control units are serially interconnected with AISG antenna control units (ACUs) (104) which adjust electronic tilt mechanisms within the antenna itself. An AISG compatible mount azimuth control unit (MACU) (171) drives rotatable movement of the antenna through a range of azimuth angle positions. The antenna mount further includes a mechanical downtilt assembly interconnected between the antenna interface and the antenna. An AISG compatible mount tilt control unit (MTCU) (192) drives a linear actuator for physical downtilt of the antenna through a range of tilt angle positions. |
US11539125B2 |
Antenna systems and devices, and methods of manufacture thereof
Embodiments of the present disclosure provide methods, apparatuses, devices and systems related to the implementation of a multi-layer printed circuit board (PCB) radio-frequency antenna featuring, a printed radiating element coupled to an absorbing element embedded in the PCB. The embedded element is configured within the PCB layers to prevent out-of-phase reflections to the bore-sight direction. |
US11539118B2 |
Multi-polarization HF NVIS for vertical lift aircraft
A system of high-frequency (HF) antennas is disposed on various aircraft body panels. The antennas are configured for orthogonal polarization such that NVIS may be operable no matter the state of the ionosphere. The antennas are disposed on substantially perpendicular body panels so that, when operated in concert, the resulting signals have opposite polarization and at least one signal will bounce off the ionosphere. |
US11539106B2 |
Dielectric waveguide with an electrode array configured to provide a lateral vibration of the electric field in the X and/or Y directions
A dielectric waveguide device for inputting from the outside and outputting electromagnetic waves of arbitrary frequencies includes the waveguide. The waveguide is provided in which the refractive index of the dielectric material of the waveguide is larger than the outer refractive index, and the propagation speed of electromagnetic waves in the inner region of the waveguide is slower than that in the outer region, the maximum dimensions in the width direction and/or the height direction of the waveguide, the lateral vibration mode curve of the electric field inherent in the waveguide and the electric field attenuation curve outside the waveguide are continuous on both sides of the waveguide in the width direction or the height direction, the electromagnetic waves in the lateral vibration mode of the electric field are transmitted in the form of cosine distribution or sine distribution. |
US11539104B2 |
Battery pillar protector
A system for reducing the likelihood of a battery short during a collision of a vehicle includes a metallic structure coupled to a portion of the vehicle. The system further includes a battery located proximate to the metallic structure and having a positive terminal. The system further includes an insulator coupled to the metallic structure such that it is located between the metallic structure and the positive terminal of the battery and configured to resist contact between the metallic structure and the positive terminal of the battery in response to the collision of the vehicle. |
US11539102B2 |
Battery connector for series connection of batteries and battery pack including the same
A battery connector including a conductive plate configured to contact a first battery and a second battery so as to electrically connect the first battery and the second battery to each other, an upper fixer configured to be coupled the first battery, and a lower fixer configured to be coupled to the second battery. |
US11539097B2 |
Battery housing for a high-voltage battery of a motor vehicle, high- voltage battery and motor vehicle
A battery housing for a high-voltage battery of a motor vehicle has a housing interior for receiving a multiplicity of battery modules. The housing interior is formed by a housing upper part and a housing lower part covering the housing upper part. The housing lower part is formed as a segmented housing base with at least two separate housing base segments, of which at least one housing base segment is designed to be removable for opening the battery housing and for allowing access to a part region of the housing interior covered by this housing base segment, and to that end is secured to the housing upper part in a non-destructively removable manner. |
US11539095B2 |
In-vehicle lithium ion battery member
An in-vehicle lithium ion battery member produced by molding a resin composition containing (a) a polyphenylene ether resin, the resin composition having a critical strain in a chemical resistance evaluation of 0.5% or more and a Charpy impact strength at 23° C. of 20 kJ/m2 or more. |
US11539094B2 |
Imaging apparatus, grip structure of imaging apparatus, and battery
A grip structure connected to a main body of an imaging apparatus includes a battery storage part configured to store a battery; an inner side wall surface of the battery storage part includes a first corner, a second corner, and a third corner each having a curved shape when viewed in an insertion direction of the battery; and each of the first, second, and third corners has a radius of curvature equal to or greater than a radius of curvature of a cylindrical cell built into the battery. |
US11539089B2 |
Pouch-type secondary battery and battery module comprising the same
A pouch-type secondary battery includes an electrode assembly; and a pouch member comprising an accommodating portion configured to accommodate the electrode assembly therein, a sealing portion formed at an edge of the accommodating portion, and an indent portion formed of a cutting edge cut at a plurality of angles and a rounded edge cut to connect the cutting edges adjacent to each other in a portion of the sealing portion corresponding to a vertex of the accommodating portion. |
US11539085B2 |
Serviceable flex circuit for battery module
A battery connector, including a flexible circuit including a first set of electrical circuitry connecting to a plurality of energy storage cells, where the first set of electrical circuitry terminates at a first connection point at the battery connector; a controller including components to control the energy storage cells connected to a second set of electrical circuitry terminating at a second connection point at the battery connector; where the first connection point and the second connection point are electrically connected. |
US11539083B2 |
Secondary battery
A positive-electrode core laminate of a portion of a positive-electrode core on which no positive-electrode active material layer is formed is bonded to a positive-electrode current collector by ultrasonic bonding. A core recess is formed in a bonding region of the positive-electrode core laminate bonded to the positive-electrode current collector by ultrasonic bonding, a region of the positive-electrode core laminate in which the core recess is formed includes a solid-state bonding layer and a central layer, the solid-state bonding layer being formed by solid-state bonding between layers of the positive-electrode core, the central layer being disposed between the solid-state bonding layers formed on both faces of the positive-electrode core, and the first average grain size of metal crystal grains constituting the solid-state bonding layer is smaller than the second average grain size of metal crystal grains constituting the central layer. |
US11539080B2 |
Miniaturized electronics package with patterned thin film solid state battery
A method for integrating a thin film microbattery with electronic circuitry includes forming a release layer over a handler, forming a thin film microbattery over the release layer of the handler, removing the thin film microbattery from the handler, depositing the thin film microbattery on an interposer, forming electronic circuitry on the interposer, and sealing the thin film microbattery and the electronic circuitry to create individual microbattery modules. |
US11539072B1 |
Lithium-ion conducting composite material
A lithium-ion conducting composite material includes a Li binary salt, a Li-ion conductor with a chemical composition of Li2−3x+y−zFexOy(OH)1−yCl1−z, and at least two of: a first inorganic compound with a chemical composition of (Fe1−xM1x)O1−y(OH)yCl1−x; a second inorganic compound with a chemical composition of M2OX; and a defected doped inorganic compound with a chemical composition of (M3OX)′. The value of n is 1 or 2, x is greater than 0 and less than or equal to 0.25, and y is greater than or equal to 0 and less than or equal to 0.25. Also, M1 is at least one of Mg and Ca, M2 and M3 are each at least one of Fe, Al, Sc, La, and Y, and X is at least one of F, Cl, Br, and I. |
US11539071B2 |
Sulfide-impregnated solid-state battery
A sulfide-impregnated solid-state battery is provided. The battery comprises a cell core constructed by basic cell units. Each unit comprises a positive electrode comprising a cathode layer and a positive meshed current collector comprising a conductive material which is further coated by oxide-based solid-state electrolyte. The cell unit further comprises a negative electrode comprising an anode layer and a negative meshed current collector comprising a conductive material which is further coated by oxide-based solid-state electrolyte. The positive and negative electrodes are stacked together to form the cell unit. The two coated oxide-based solid electrolyte layers are disposed between the positive and negative electrode as dual separators. Such a cell unit may be repeated or connected in parallel or bipolar stacking to form the cell core to achieve a desired battery voltage, power and energy. The cell core comprises a sulfide-based solid-state electrolyte dispersed in the pore structures of cell core. |
US11539070B2 |
Method for manufacture and structure of multiple electrochemistries and energy gathering components within a unified structure
A method for using an integrated battery and device structure includes using two or more stacked electrochemical cells integrated with each other formed overlying a surface of a substrate. The two or more stacked electrochemical cells include related two or more different electrochemistries with one or more devices formed using one or more sequential deposition processes. The one or more devices are integrated with the two or more stacked electrochemical cells to form the integrated battery and device structure as a unified structure overlying the surface of the substrate. The one or more stacked electrochemical cells and the one or more devices are integrated as the unified structure using the one or more sequential deposition processes. The integrated battery and device structure is configured such that the two or more stacked electrochemical cells and one or more devices are in electrical, chemical, and thermal conduction with each other. |
US11539064B2 |
Polymer electrolyte membrane and method for producing the same
A polymer electrolyte membrane according to the present invention has a cluster diameter of 2.96 to 4.00 nm and a converted puncture strength of 300 gf/50 μm or more. The polymer electrolyte membrane according to the present invention has a low electric resistance and an excellent mechanical strength. |
US11539060B2 |
Membrane humidifier for fuel cell
A membrane humidifier for a fuel cell is disclosed. The membrane includes a middle case in which a plurality of hollow fiber membranes are accommodated; a cap case coupled to the middle case; a potting part formed at the end portions of the plurality of hollow fiber membranes; and an assembling member disposed between the end portions of the cap case and the middle case, and simultaneously coupling, so as to be airtight, a gap between the cap case and the middle case and a gap between the cap case and the potting part. |
US11539057B2 |
Fuel cell separator member and fuel cell
A tab of a load receiver forming a fuel cell separator member includes a base portion in the form of a metal plate, and a resin member covering the base portion. A hole, into which the resin member is partially inserted, is formed in the base portion. The resin member includes a thick portion, and a thin portion positioned closer to a first separator than the thick portion is. The hole is disposed so as to be overlapped with the thick portion. |
US11539054B2 |
Method of manufacturing catalyst ink free of eluted transition metal for fuel cell
Disclose is a method of manufacturing catalyst ink for a fuel cell, and particularly the method includes removing eluted transition metal from a noble-metal/transition-metal alloy catalyst. |
US11539053B2 |
Method of making copper electrode
Herein discussed is an electrode comprising a copper or copper oxide phase and a ceramic phase, wherein the copper or copper oxide phase and the ceramic phase are sintered and are inter-dispersed with one another. Further discussed herein is a method of making a copper-containing electrode comprising: (a) forming a dispersion comprising ceramic particles and copper or copper oxide particles; (b) depositing the dispersion onto a substrate to form a slice; and (c) sintering the slice using electromagnetic radiation. |
US11539052B2 |
Metal-based solid oxide electrochemical devices
A solid oxide electrochemical device comprises a solid electrolyte layer, the first surface and second surface having surface pores formed therein; a first composite electrolyte layer composed of metal and a solid electrolyte and having a first porosity; a second composite electrolyte layer composed of metal and the solid electrolyte and having the first porosity, the solid electrolyte layer sandwiched between the first composite electrolyte layer and the second composite electrolyte layer; a cathode on one of the first composite electrolyte layer and the second composite electrolyte layer; and an anode on another of the first composite electrolyte layer and the second composite electrolyte layer. The anode comprises an anode metal layer comprising pores; anode active material; and reforming catalyst, wherein the anode active material and the reforming catalyst line walls of the pores in the anode metal layer. |
US11539049B2 |
Polymer-modified silicon-carbon composite and use thereof
The present invention provides a silicon-carbon composite which contains a body having a core-shell structure and a polymer modification layer. The core of the body contains a silicon-containing particle. The shell of the body is a carbon encapsulation layer. The polymer modification layer is located on the external surface of the shell of the body and encapsulates the body. The polymer modification layer comprises a polymer selected from the group consisting of polyester, polyfluorocarbon, polyvinyl alcohol, polyacrylic acid, cellulose and a combination thereof. |
US11539044B2 |
Secondary battery electrode, manufacturing method for the same, and electrode assembly
The present disclosure relates to a secondary battery electrode, a manufacturing method for the same, and an electrode assembly, and more particularly, to a secondary battery electrode, a manufacturing method for the same, and an electrode assembly having improved stability.In accordance with an exemplary embodiment, a secondary battery electrode includes a current collector that extends in one direction, a first active material layer provided on one surface of the current collector and including a first inclined portion and a first protruding portion, and a second active material layer provided on the other surface of the current collector and including a second inclined portion and a second protruding portion. In particular, a position of the second protruding portion is controlled on the second active material layer to be disposed at a position that is not directly opposite to the first inclined portion with respect to the current collector. |
US11539043B2 |
Negative active material, lithium battery including the negative active material, and method of preparing the negative active material
A negative active material, a lithium battery including the negative active material, and a method of preparing the negative active material. The negative active material includes: a core particle including a silicon based alloy; carbon nanoparticles disposed on a surface of the core particle; and an amorphous carbonaceous coating layer disposed on at least a portion of a surface of the core particle. The negative active material may improve the lifetime characteristics of the lithium batteries. |
US11539041B2 |
Silicon particles for battery electrodes
Silicon particles for use in an electrode in an electrochemical cell are provided. The silicon particles may have outer regions extending about 20 nm deep from the surfaces, the outer regions comprising an amount of aluminum such that a bulk measurement of the aluminum comprises at least about 0.01% by weight of the silicon particles. The bulk measurement of the aluminum may provide the amount of aluminum present at least in the outer regions. |
US11539039B2 |
Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and preparation method thereof
A negative electrode for a lithium secondary battery, in which a LiF layer comprising amorphous LiF in an amount of 30 mol % or more is formed on a negative electrode active material layer comprising a carbon-based active material, a lithium secondary battery comprising the same, and a preparation method thereof. |
US11539036B2 |
Battery
Provided is a battery including a positive electrode including a first positive electrode layer and a second positive electrode layer; a negative electrode; and an electrolyte layer. The first positive electrode layer includes a first positive electrode active material, a first solid electrolyte material, and a coating material. The second positive electrode layer includes a second positive electrode active material and the first solid electrolyte material. The first solid electrolyte material includes lithium, at least one kind selected from the group consisting of metalloid elements and metal elements other than lithium; and at least one kind selected from the group consisting of chlorine and bromine. The first solid electrolyte material does not include sulfur. |
US11539033B2 |
Display device
A display device includes a front display area, a first side display area, a second side display area, a corner display area, a display panel, and a light guide member. The first side display area extends from a first side of the front display area. The second side display area extends from a second side of the front display area. The corner display area is disposed between the first side display area and the second side display area. The display panel overlaps the front display area and does not overlap the corner display area. The light guide member is disposed in the corner display area. |
US11539025B2 |
Composition for organic light emitting diode encapsulation and organic light emitting diode display manufactured therefrom
Provided are: a composition for an organic light emitting diode comprising an indole-based photocurable monomer, a non-indole-based photocurable monomer, and an initiator, and an organic light emitting display manufactured therefrom. |
US11539021B2 |
Moveable display supports, computing devices using same, and methods of use
A computing device is disclosed that includes an organic light-emitting diode (OLED) display. The OLED display has a front surface and a back surface. The computing device includes a moveable display support connected to the back surface of the display. In some implementations, the moveable display support is configured to limit bending in one direction to a first bend radius and to limit bending in another direction to a second bend radius. In some implementations, the moveable display support is formed by a plurality of unit cells. |
US11539020B2 |
Display substrate and preparation method thereof, and display apparatus
Provided is a display substrate, a preparation method thereof and a display apparatus. The display substrate includes a base substrate, which has a display area and an encapsulation area, the encapsulation area surrounds the display area, and a hydrophobic structure is arranged on the encapsulation area. |
US11539016B2 |
Light-emitting device, display apparatus and manufacturing method
The present disclosure discloses a light-emitting device, a display apparatus and a manufacturing method. The light-emitting device includes: an electron transfer layer located between a light-emitting layer and a cathode, where a material of the electron transfer layer includes an inner core and a shell layer wrapping the inner core; when the number of electrons reaching the light-emitting layer in unit time is greater than the number of holes reaching the light-emitting layer in unit time, and a difference value between the number of the electrons reaching the light-emitting layer in unit time and the number of the holes reaching the light-emitting layer in unit time exceeds a preset threshold range, a particle size of the inner core is reduced and/or a thickness of the shell layer is increased; and when the number of the electrons reaching the light-emitting layer in unit time is smaller than the number of the holes reaching the light-emitting layer in unit time, and the difference value between the number of the electrons reaching the light-emitting layer in unit time and the number of the holes reaching the light-emitting layer in unit time exceeds the preset threshold range, the particle size of the inner core is increased and/or the thickness of the shell layer is reduced. |
US11539012B2 |
Organic light-emitting device
Presented is an organic light-emitting device including a host, a dopant, and a sensitizer. |
US11539005B2 |
Transition metal complexes comprising carbene ligands serving as emitters for organic light-emitting diodes (OLED's)
Use of transition metal complexes of the formula (I) in organic light-emitting diodes where: M1 is a metal atom; carbene is a carbene ligand; L is a monoanionic or dianionic ligand; K is an uncharged monodentate or bidentate ligand selected from the group consisting of phosphines; CO; pyridines; nitriles and conjugated dienes which form a π complex with M1; n is the number of carbene ligands and is at least 1; m is the number of ligands L, where m can be 0 or ≥1; o is the number of ligands K, where o can be 0 or ≥1; where the sum n+m+o is dependent on the oxidation state and coordination number of the metal atom and on the denticity of the ligands carbene, L and K and also on the charge on the ligands carbene and L, with the proviso that n is at least 1, and also an OLED comprising these transition metal complexes, a light-emitting layer comprising these transition metal complexes, OLEDs comprising this light-emitting layer, devices comprising an OLED according to the present invention, and specific transition metal complexes comprising atb least two carbene ligands. |
US11538995B2 |
Materials for organic electroluminescent devices
The present invention relates to compounds of the formula (1) which are suitable for use in electronic devices, in particular organic electroluminescent devices, and to electronic devices which comprise these compounds. |
US11538994B2 |
Mask assembly and method for manufacturing the same
Provided is a mask assembly. The mask assembly includes a mask frame and a mask. The mask is coupled to the mask frame to distinguish first to third deposition areas from each other. Each of the first and third deposition areas has a first width greater than a reference width in a first direction and a second width less than the first width in a second direction. The second deposition area has a third width less than the first width in the first direction and a fourth width less than the reference width in the second direction. |
US11538993B2 |
Evaporating mask plate, evaporating mask plate set, evaporating system, and alignment test method
An evaporating mask plate, an evaporating mask plate set and an evaporating system are provided. The evaporating mask plate includes a mask pattern plate. The evaporating mask pattern plate includes an evaporating area and a test area located around the evaporating area. The test area is provided with at least two test element groups located in different regions of the test area, and each test element group includes at least one test hole for alignment. |
US11538992B2 |
Formulation of an organic functional material
The present invention relates to a formulation containing at least one organic functional material and at least four different organic solvents, a first organic solvent A, a second organic solvent B, a third organic solvent C, and a fourth organic solvent D, wherein the first organic solvent A comprises a group, which is capable of receiving or giving a hydrogen bonding, the second organic solvent B has a boiling point in the range from 50 to 350° C., the third organic solvent C has a boiling point in the range from 100 to 300° C., and the fourth organic solvent D has a boiling point in the range from 200 to 400° C., is present in an amount from 0.01 to 1 vol.-% and has a viscosity of ≥15 mPas, the solubility of the at least one organic functional material in the second organic solvent B and in the fourth organic solvent D is ≥5 g/l, the boiling point of the third organic solvent C is at least 10° C. lower than the boiling point of the second organic solvent B; and the boiling point of the fourth organic solvent D is at least 10° C. higher than the boiling point of the second organic solvent B; as well as to electroluminescent devices prepared by using these formulations. |
US11538990B2 |
Method for manufacturing a resistive random access memory structure
A method for forming a resistive random access memory structure. The resistive random access memory structure includes a bottom electrode; a variable resistance layer disposed on the bottom electrode; a top electrode disposed on the variable resistance layer; a protection layer surrounding the variable resistance layer, wherein a top surface of the protection layer and a top surface of the top electrode are coplanar; and an upper interconnect structure disposed on the top electrode, wherein the upper interconnect structure is electrically connected to the top electrode and directly contacts a sidewall of the protection layer. |
US11538987B2 |
IrAl as a non-magnetic spacer layer for formation of synthetic anti-ferromagnets (SAF) with Heusler compounds
A device including a first magnetic layer, a templating structure and a second magnetic layer is described. The templating structure is on the first magnetic layer. The second magnetic layer is on the templating structure. The templating structure includes D and E. A ratio of D to E is represented by D1-xEx, with x being at least 0.4 and not more than 0.6. E includes a main constituent. The main constituent includes at least one of Al, Ga, and Ge. E includes at least fifty atomic percent of the main constituent. D includes at least one constituent that includes Ir. D includes at least 50 atomic percent of the at least one constituent. The templating structure is nonmagnetic at room temperature. At least one of the first magnetic layer and the second magnetic layer includes at least one of a Heusler compound and an L10 compound. |
US11538985B2 |
Method for configuring reconfigurable physical unclonable function based on device with spin-orbit torque effect
A method for configuring a reconfigurable physical unclonable function (PUF) based on a device with spin-orbit torque (SOT) effect is provided. The disclosure uses SOT or magnetic field to change the magnetic moment. After the current or magnetic field is removed, the magnetic moment returns to the easy axis direction. Under the effect of thermal fluctuation, the magnetic moment is randomly oriented in the easy axis direction. The non-volatile devices are formed into an array, the magnetic moments of all non-volatile devices are randomly distributed after a write operation. The read state can be used as a random code to implement the reconfigurable PUF. The PUF has a simple structure and guarantees security. The random code in the disclosure may be two-state or multi-state, which is related to the number of magnetic domains of the ferromagnetic layer. A large number of challenge response pairs form a strong PUF. |
US11538982B2 |
Ultrasonic probe
A backing includes a plurality of backing plates that are laminated. Each backing plate includes a lead row and a backing material. Each lead includes a lead wire and an insulating coating. The insulating coating is integrated with the backing material, and an adhesive layer between them does not exist. Short-circuit between the leads may be prevented or reduced by the insulating coating. The backing plate is manufactured by a screen printing method. |
US11538979B2 |
Piezoelectric energy hunting device with lightweight design and voltage signal application system thereof
A piezoelectric energy hunting device and a voltage signal application system thereof are disclosed. The piezoelectric energy hunting device includes a plurality of curved piezoelectric elements, a plurality of rigid foams, and a flexible foam structure. The plurality of curved piezoelectric elements are arranged side by side with one another, wherein each curved piezoelectric element is attached to one of the rigid foams. The flexible foam structure includes a top foam and a bottom foam covering the outer surface of the plurality of curved piezoelectric elements and the plurality of rigid foams; when the flexible foam structure is compressed, the plurality of curved piezoelectric elements are simultaneously deformed, thereby generating a voltage signal. When the flexible foam structure is not compressed, the flexible foam structure and the plurality of rigid foams provide an elastic force to restore the plurality of curved piezoelectric elements. |
US11538967B2 |
Display device with a bezel kit
Disclosed is a display device. The display device includes: a light transmissive plate including a first front surface, a rear surface facing the first front surface, and a hole positioned behind the first front surface and connected to the rear surface; and a display film attached to the rear surface of the plate, in which the display film includes a light transmissive substrate having a second front surface attached to the plate, an electrode layer formed on the second front surface, and a light source electrically connected to the electrode layer, and the light source is positioned in the hole. |
US11538966B2 |
Method of manufacturing light emitting device
A method of manufacturing a light emitting device, the method includes: preparing an intermediate structure including a supporter, a plurality of light emitting elements arranged on the supporter, a covering layer arranged on the supporter and surrounding the light emitting elements, and wiring electrodes each arranged on and straddling the covering layer and a corresponding one of the light emitting elements: preparing a board including light-reflective resin arranged on a surface of the board; pressing the intermediate structure against the light-reflective resin arranged on the board, with the wiring electrodes facing the light-reflective resin; curing the light-reflective resin to form a light-reflective resin layer; and removing the supporter. |
US11538961B2 |
Light-emitting diode
A light-emitting diode is disclosed, which includes: a substrate; a light-emitting diode chip disposed on the substrate; and a quantum dot film disposed on the light-emitting diode chip, wherein the quantum dot film includes a plurality of quantum dots and a matrix material, and a plurality of particles are dispersed in the matrix material, wherein the plurality of particles are conductive particles, semiconductor particles, or a combination thereof. |
US11538960B2 |
Epitaxial light emitting structure and light emitting diode
An epitaxial light emitting structure includes n-type and p-type semiconductor layers, and a light emitting component disposed therebetween. The light emitting component includes a multiple quantum well structure which contains a plurality of first periodic layered elements, each of which includes first, second and third layers alternately stacked on one another. For each of the first periodic layered elements, the first, second and third layers respectively have a first energy bandgap (Eg1), a second energy bandgap (Eg2), and a third energy bandgap (Eg3) that satisfy a relationship of Eg1 |
US11538955B2 |
Methods of manufacturing a photovoltaic module
Method of manufacturing a photovoltaic module comprising at least a first layer and a second layer affixed to each other by means of an encapsulant, said method comprising a lamination step wherein the encapsulant material comprises a silane-modified polyolefin having a melting point below 90° C., pigment particles and an additive comprising a cross-linking catalyst; and wherein in said lamination step heat and pressure are applied to the module, said heat being applied at a temperature between 60° C. and 125° C. |
US11538946B1 |
Deep ultraviolet and infrared silicon sensor module
A sensor module that may include optics and a sensor located downstream to the optics. The optics may include a self-assembling polymer and luminescent elements embedded in the self-assembling polymer. |
US11538942B2 |
Light receiving element and ranging module having light receiving regions and an isolation portion between adjacent light receiving regions
The present technology relates to a light receiving element and a ranging module that can improve characteristics. A light receiving element includes: light receiving regions each including a first voltage application unit to which a first voltage is applied, a first charge detection unit provided around the first voltage application unit, a second voltage application unit to which a second voltage different from the first voltage is applied, and a second charge detection unit provided around the second voltage application unit; and an isolation portion that is arranged at a boundary between the light receiving regions adjacent to each other, and isolates the light receiving regions from each other. The present technology can be applied to a light receiving element. |
US11538941B2 |
Integrated capacitive element and corresponding production method
An integrated circuit includes a first semiconductor well contained in a semiconductor substrate and a second semiconductor well contained in the first semiconductor well. A capacitive element for the integrated circuit includes a first electrode and a second electrode, where the first electrode includes at least one vertical conductive structure filling a trench extending vertically into the first semiconductor well. The vertical conductive structure is electrically isolated from the first semiconductor well by a dielectric envelope covering a base and the sides of the trench. The vertical conductive structure penetrates into the second semiconductor well at least at one longitudinal end of the trench. The second electrode includes the first semiconductor well and the second semiconductor well. |
US11538937B2 |
Fin trim plug structures having an oxidation catalyst layer surrounded by a recessed dielectric material
Fin trim plug structures for imparting channel stress are described. In an example, an integrated circuit structure includes a fin including silicon, the fin having a top and sidewalls. The fin has a trench separating a first fin portion and a second fin portion. A first gate structure including a gate electrode is over the top of and laterally adjacent to the sidewalls of the first fin portion. A second gate structure including a gate electrode is over the top of and laterally adjacent to the sidewalls of the second fin portion. An isolation structure is in the trench of the fin, the isolation structure between the first gate structure and the second gate structure. The isolation structure includes a first dielectric material laterally surrounding a recessed second dielectric material distinct from the first dielectric material, the recessed second dielectric material laterally surrounding an oxidation catalyst layer. |
US11538935B2 |
Silicon carbide semiconductor device
A SiC semiconductor device includes a main cell region and sense cell region being electrically isolated by an element isolation portion. The SiC semiconductor device includes a substrate, a first impurity region, a first current dispersion layer, first deep layers, a second current dispersion layer, a second deep layer, a base region, a trench gate structure, a second impurity region, first electrodes and a second electrode. The second impurity region, the first electrodes, and the second electrode are disposed at the main cell region and the sense cell region to form a vertical semiconductor element. The vertical semiconductor element allows a current flowing between the first electrode and the second electrode through a voltage applied to the gate electrode. The spacing interval between the deep layers at the element isolation portion is shorter than or equal to a spacing interval between the deep layers at the main cell region. |
US11538932B2 |
Semiconductor transistor device and method of manufacturing the same
The present application relates to a semiconductor transistor device that includes a Schottky diode electrically connected in parallel to a body diode formed between a body region and a drift region. A diode junction of the Schottky diode is formed adjacent to the drift region and is arranged vertically above a lower end of the body region. |
US11538928B2 |
Semiconductor device
In a transistor including an oxide semiconductor, a change in electrical characteristics is suppressed and reliability is improved. The transistor includes an oxide semiconductor film over a first insulating film; a second insulating film over the oxide semiconductor film; a metal oxide film over the second insulating film; a gate electrode over the metal oxide film; and a third insulating film over the oxide semiconductor film and the gate electrode. The oxide semiconductor film includes a channel region overlapping with the gate electrode, a source region in contact with the third insulating film, and a drain region in contact with the third insulating film. The source region and the drain region contain one or more of hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, and a rare gas. |
US11538921B2 |
Method for manufacturing semiconductor device
A source electrode (5), a drain electrode (6) and a T-shaped gate electrode (9) are formed on a GaN-based semiconductor layer (3,4) to form a transistor. An insulating film (10,11) covering the T-shaped gate electrode (9) is formed. A property of the transistor is evaluated to obtain an evaluation result. A film type, a film thickness or a dielectric constant of the insulating film (10,11) is adjusted in accordance with the evaluation result to make a property of the transistor close to a target property. |
US11538916B2 |
Semiconductor device
A semiconductor device including a substrate; a fin active region on the substrate and extending in a first direction; a gate structure extending across the fin active region and extending in a second direction; a source/drain region in the fin active region on a side of the gate structure; an insulating structure covering the gate structure and the source/drain region; and contact structures penetrating through the insulating structure and respectively connected to the source/drain region and the gate structure, wherein one of the contact structures includes a seed layer on the gate structure or the source/drain regions and including lower and upper regions, the lower region having a first grain size and the upper region being amorphous or having a grain size different from the first grain size, and a contact plug on an upper region of the seed layer and having a second grain size. |
US11538915B2 |
Semiconductor device
A semiconductor device includes a substrate and a first transistor disposed on the substrate. The first transistor includes a first semiconductor channel structure and two first source/drain structures. The first semiconductor channel structure includes first horizontal portions and a first vertical portion. The first horizontal portions are stacked in a vertical direction and separated from one another. Each of the first horizontal portions is elongated in a horizontal direction. The first vertical portion is elongated in the vertical direction and connected with the first horizontal portions. A material composition of the first vertical portion is identical to a material composition of each of the first horizontal portions. The two first source/drain structures are disposed at two opposite sides of each of the first horizontal portions in the horizontal direction respectively. The two first source/drain structures are connected with the first horizontal portions. |
US11538907B2 |
Semiconductor memory device and method of manufacturing the same
A semiconductor memory device includes first conducting layers and a first semiconductor layer opposed to the first conducting layers. If a concentration of the dopant in the first semiconductor layer is measured along an imaginary straight line, the concentration of the dopant has: a maximum value at a first point, a minimum value in a region closer to the first conducting layer than the first point at a second point; and a minimum value in a region farther from the first conducting layer than the first point at a third point. The second point is nearer to an end portion of the first semiconductor layer on the first conducting layer side than that on the opposite side. The third point is farther from the end portion on the first conducting layer side than that on the opposite side. |
US11538906B2 |
Diode with structured barrier region
A power device includes: a diode section; a semiconductor body; a drift region extending into the diode section; trenches in the diode section and extending along a vertical direction into the semiconductor body, two adjacent trenches defining a respective mesa portion in the semiconductor body; a body region in the mesa portions; in the diode section, a barrier region between the body and drift regions and having a dopant concentration at least 100 times greater than an average dopant concentration of the drift region and a dopant dose greater than that of the body region. The barrier region has a lateral structure according to which at least 50% of the body region in the diode section is coupled to the drift region at least by the barrier region, and at least 5% of the body region in the diode section is coupled to the drift region without the barrier region. |
US11538900B1 |
Semiconductor device and method of fabricating the same
A semiconductor device includes a landing pad and a capacitor disposed on and electrically connected to the landing pad. The capacitor includes a cylindrical bottom electrode, a dielectric layer and a top electrode. The cylindrical bottom electrode is disposed on an in contact with the landing pads, wherein an inner surface the cylindrical bottom electrode includes a plurality of protruding portions, and an outer surface of the cylindrical bottom electrode includes a plurality of concaved portions. The dielectric layer is conformally disposed on the inner surface and the outer surface of the cylindrical bottom electrode, and covering the protruding portions and the concaved portions. The top electrode is conformally disposed on the dielectric layer over the inner surface and the outer surface of the cylindrical bottom electrode. |
US11538898B2 |
Display panel and display apparatus
A display panel and a display apparatus are provided. The display panel includes an array substrate and an encapsulation cover plate, wherein a first power supply line and a second power supply line are arranged on a same layer on the array substrate, the second power supply line is disconnected by an opening, a first connecting line is connected with the first power supply line through the opening, a second connecting line is connected with the second power supply line, and the second power supply lines on both sides of the opening are electrically connected by a jumper arranged on the encapsulation cover plate. |
US11538894B2 |
Display device with overlapped wiring lines at periphery of cutout region
A first metal layer, an inorganic insulating film, and a second metal layer are provided. A first wiring line led to a peripheral edge of a cutout portion is provided in the first metal layer. A second wiring line led to the peripheral edge of the cutout portion is provided in the second metal layer. The first lead wiring line and the second lead wiring line overlap each other through intermediation of the inorganic insulating film. |
US11538890B2 |
Display device including plural lines
According to one embodiment, a display device includes an insulating substrate and lines. The lines include first lines each including a first linear portion and a second linear portion. The first linear portions extend in a first direction and are arranged at intervals in a second direction. The second linear portions extend in a third direction and are arranged at intervals in a fourth direction. A length of each of the first linear portions changes gradually in the second direction. A length of each of the second linear portions changes gradually in the fourth direction. |
US11538886B2 |
Display panel and display device
The present disclosure provides a display panel and a display device. A through-hole is defined in a bending area of the display panel, and after the bending area is bent along a bending center line, the through-hole forms a light transmitting area, and the light transmitting area is disposed on a light path of an electronic component. Based on the light transmitting area formed after bending the through-hole, the electronic component can be disposed under the display panel, thereby achieving a narrow frame design. |
US11538878B2 |
Display device and electronic apparatus
A display device includes: a first main pixel being configured to emit light of a first color, and a second main pixel being configured to emit light of a second color; and a first auxiliary pixel and a second auxiliary pixel on the second area, the first auxiliary pixel being configured to emit light of the first color, and the second auxiliary pixel being configured to emit light of the second color, wherein a first virtual line passing through a center of an emission area of the first main pixel and a center of an emission area of the first auxiliary pixel is parallel to a first direction, and a second virtual line passing through a center of an emission area of the second main pixel and a center of an emission area of the second auxiliary pixel crosses the first direction. |
US11538875B2 |
Display substrate, manufacturing method thereof, display device
A display substrate, a manufacturing method thereof, and a display device are provided. The display substrate includes a base substrate, a pixel defining layer, and a first electrode layer between the base substrate and the pixel defining layer. The pixel defining layer defines a plurality of sub-pixels on the base substrate, the first electrode layer comprises a plurality of first electrodes, and the plurality of first electrodes being separated from each other by gaps, and an orthographic projection of the pixel defining layer on the base substrate covers an orthographic projection of the gap on the base substrate. |
US11538872B2 |
Display structure, display panel using the same and display device using the same
The present disclosure relates to a display structure, a display panel including the display structure, and a display device including the display panel and an image acquisition device. The display structure includes a plurality of pixels disposed in a first region of the display structure, wherein each pixel of the plurality of pixels includes a plurality of sub-pixels of N number of colors, and each sub-pixel of the plurality of sub-pixels includes an organic light emitting diode; and N number of driving circuits disposed in a second region of the display structure, wherein an ith driving circuit of the N number of driving circuits is configured to drive each sub-pixel of an ith color of the plurality of sub-pixels, wherein 1≤i≤N and N is an integer greater than 1. |
US11538868B2 |
Display device
A display device includes a display panel including a plurality of pixels and an input sensing unit including a plurality of color filters that correspond with the pixels. The color filters include a plurality of conductive color filters that are electrically conductive, and the conductive color filters include first conductive color filters in first sensing areas arranged in a first direction and second conductive color filters in second sensing areas arranged in a second direction. The input sensing unit includes a first connection pattern electrically coupling the first conductive color filters and a second connection pattern electrically coupling the second conductive color filters. |
US11538863B2 |
Photoelectric conversion device and imaging apparatus
[Problem] Provided are a photoelectric conversion device and an imaging apparatus capable of improving quantum efficiency and a response speed.[Solving means] A first photoelectric conversion device according to one embodiment of the present disclosure includes a first electrode, a second electrode opposed to the first electrode, and a photoelectric conversion layer. The photoelectric conversion layer is provided between the first electrode and the second electrode and includes at least one type of one organic semiconductor material having crystallinity. Variation in a ratio between horizontally-oriented crystal and vertically-oriented crystal in the photoelectric conversion layer is three times or less between a case where film formation of the one organic semiconductor material is performed at a first temperature and a case where the film formation of the one organic semiconductor material is performed at a second temperature. The second temperature is higher than the first temperature. |
US11538857B2 |
Bidirectional selector device for memory applications
The present invention is directed to a magnetic memory cell including a magnetic tunnel junction (MTJ) memory element and a two-terminal bidirectional selector coupled in series between two conductive lines. The MTJ memory element includes a magnetic free layer, a magnetic reference layer, and an insulating tunnel junction layer interposed therebetween. The two-terminal bidirectional selector includes bottom and top electrodes, first and third volatile switching layers interposed between the bottom and top electrodes, and a second volatile switching layer interposed between the first and third volatile switching layers. The bottom and top electrodes each independently include one of titanium nitride or iridium. The first and third volatile switching layers each include tantalum oxide and silver. The second volatile switching layer includes hafnium oxide and has a higher electrical resistance than the first and third volatile switching layers. |
US11538856B2 |
MRAM device and methods of making such an MRAM device
One illustrative MRAM cell disclosed herein includes a bottom electrode, a top electrode positioned above the bottom electrode and an MTJ (Magnetic Tunnel Junction) element positioned above the bottom electrode and below the top electrode. In this example, the MTJ element includes a bottom insulation layer positioned above the bottom electrode, a top insulation layer positioned above the bottom electrode; and a first ferromagnetic material layer positioned between the bottom insulation layer and the top insulation layer. |
US11538855B2 |
SOI semiconductor structure and method for manufacturing an SOI semiconductor structure
An SOI semiconductor structure, including a substrate layer formed on a back side and a semiconductor layer of a second conductivity type formed on a front side, an insulating layer being disposed between the substrate layer and the semiconductor layer, a three-dimensional Hall sensor structure having a sensor region made up of a monolithic semiconductor body being formed in the semiconductor layer, and the semiconductor body extending from an underside up to the front side, at least three first metallic terminal contacts being formed on the upper side, and at least three second metallic terminal contacts being formed on the underside, the first terminal contacts being offset with respect to the second terminal contacts in a projection perpendicular to the front side, each first terminal contact and each second terminal contact being formed in each case on a highly doped semiconductor contact region of a second conductivity type. |
US11538852B2 |
μ-LED, μ-LED device, display and method for the same
The invention relates to various aspects of a μ-LED or a μ-LED array for augmented reality or lighting applications, in particular in the automotive field. The μ-LED is characterized by particularly small dimensions in the range of a few μm. |
US11538848B2 |
Fingerprint identification substrate and manufacturing method therefor, identification method and display apparatus
Provided a fingerprint identification substrate and a manufacturing method therefor, a identification method, and a display apparatus. The fingerprint identification substrate includes a substrate and at least two kinds of identification pixels disposed on the substrate, a first identification pixel includes a first photodiode and a second identification pixel includes a second photodiode. The first photodiode includes a first electrode, a first photoelectric conversion layer and a second electrode, the second photodiode includes the first electrode, a second photoelectric conversion layer and the second electrode, and the first photoelectric conversion layer and the second photoelectric conversion layer have different spectral response characteristics to red light or infrared light. |
US11538844B2 |
Semiconductor image sensor device and fabrication method thereof
An image sensor device includes a transistor disposed in a pixel region; a salicide block layer covering the pixel region; a first ILD layer covering the salicide block layer; a second ILD layer on the first ILD layer; a source contacts extending through the second and first ILD layers and the salicide block layer, and including first polysilicon plug in the first ILD layer, first self-aligned silicide layer on the polysilicon plug and first conductive metal layer on the first self-aligned silicide layer; and a drain contact extending through the second and first ILD layers and the salicide block, and including second polysilicon plug in first ILD layer, second self-aligned silicide layer on the second polysilicon plug, and second conductive metal layer on the second self-aligned silicide layer. |
US11538843B2 |
Imaging unit, method for manufacturing the same, and electronic apparatus
Provided is an imaging unit more efficiently manufacturable with high dimensional precision. The imaging unit includes: a sensor board including an imaging device, in which the imaging device has a plurality of pixels and allows generation of a pixel signal by receiving outside light in each of the plurality of pixels; a bonding layer including an inorganic insulating material; and a circuit board including a circuit chip and an organic insulating layer, in which a circuit chip has a signal processing circuit that performs signal processing for the pixel signal and is bonded to the sensor board through the bonding layer, and the organic insulating layer covers a vicinity of the circuit chip. |
US11538840B2 |
Color filters disposed in holes of a light collimator, manufacturing method of the same and biometric identification apparatus using the same
A semiconductor device includes a conductive substrate and an encapsulation structure. The conductive substrate has a plurality of pixels. The encapsulation structure is disposed on the conductive substrate and includes at least one light-collimating unit. The light-collimating unit includes a transparent substrate and a patterned light-shielding layer. The patterned light-shielding layer is disposed on the transparent substrate. The patterned light-shielding layer has a plurality of holes disposed to correspond to the pixels. |
US11538838B2 |
Image sensing device
Designs of image sensing devices by including a substrate layer including a plurality of photoelectric conversion elements, a plurality of grid structures disposed over the substrate layer, a plurality of color filter layers each of which is disposed between adjacent grid structures, a plurality of over-coating layers formed over the color filter layers, and a plurality of microlenses formed over the over-coating layers. Each of the grid structures includes an air layer, and a capping film formed to cap the air layer, and an upper portion of the air layer is formed to protrude upward from the over-coating layer. |
US11538836B2 |
Cell deep trench isolation pyramid structures for CMOS image sensors
A pixel cell includes a photodiode disposed proximate to a front side of a semiconductor layer to generate image charge in response to incident light directed through a backside of the semiconductor layer. A cell deep trench isolation (CDTI) structure is disposed along an optical path of the incident light to the photodiode and proximate to the backside of the semiconductor layer. The CDTI structure includes a plurality of portions arranged in the semiconductor layer. Each of the plurality of portions extends a respective depth from the backside towards the front side of the semiconductor layer. The respective depth of each of the plurality of portions is different than a respective depth of a neighboring one of the plurality of portions. Each of the plurality of portions is laterally separated and spaced apart from said neighboring one of the plurality of portions in the semiconductor layer. |
US11538834B2 |
Display device
A display device includes a substrate; at least one data line disposed on the substrate; a first pattern disposed on the substrate and spaced apart from the data line; a first insulating layer at least partially disposed on the data line and the first pattern; an active layer disposed on the first insulating layer and at least partially overlapping with the first pattern; a first gate insulating layer disposed on the active layer; and a first electrode disposed on the first gate insulating layer and overlapping with the active layer, wherein the first electrode does not overlap with the data line in a direction parallel to an upper surface of the first insulating layer. |
US11538830B2 |
Semiconductor memory device and method of manufacturing the semiconductor memory device
Provided herein may be a semiconductor memory device and a method of manufacturing the same. The semiconductor memory device may include a stacked body including alternately stacked interlayer insulating layers and conductive patterns, and channel structures penetrating the stacked body. Each of the channel structures may include a channel layer vertically extending up to the height of the upper portion of at least one upper conductive pattern disposed uppermost, among the conductive patterns, a memory layer surrounding the channel layer and extending from the lower interlayer insulating layer to the height of the middle portion of the upper conductive pattern, and a doped semiconductor pattern disposed above the channel layer and the memory layer. |
US11538825B2 |
Methods for forming channel structures with reduced sidewall damage in three-dimensional memory devices
Methods for forming channel structures in 3D memory devices are disclosed. In one example, a memory film and a sacrificial layer are subsequently formed along a sidewall and a bottom of a channel hole. A protective structure covering a portion of the sacrificial layer along the sidewall of the channel hole is formed. A portion of the sacrificial layer at the bottom of the channel hole that is not covered by the protective structure is selectively removed. A portion of the memory film at the bottom of the channel hole that is not covered by a remainder of the sacrificial layer is selectively removed. |
US11538821B2 |
Semiconductor devices
A semiconductor device is disclosed. The semiconductor device includes a first slit, at least one word line, and a second slit. The first slit is disposed at a boundary between contiguous memory blocks to isolate the memory blocks from each other, and includes a first outer slit and a second outer slit, the second outer slit is spaced apart in a first direction from the first outer slit by a predetermined distance. The word line is disposed, between the first and second outer slits, including a center region having a first end and a second end, and an edge region located at the first end and a second end of the center region, and the second slit is disposed at the center region that isolate area of the word line in the center region on either side of the second slit, wherein the word line is continuous in the edge regions. |
US11538820B2 |
Memory device having vertical structure including a first wafer and a second wafer stacked on the first wafer
A memory device is disclosed. The disclosed memory device may include a first wafer, and a second wafer stacked on and bonded to the first wafer. The first wafer may include a cell structure including a memory cell array; and a first logic structure disposed under the cell structure, and including a column control circuit. The second wafer may include a second logic structure including a row control circuit. |
US11538818B2 |
Manufacturing method for memory structure
A method of manufacturing a memory structure including the following steps is provided. A spacer layer is formed on sidewalls of gate stack structures. A protective material layer covering the spacer layer and the gate stack structures is formed. A mask material layer is formed on the protective material layer. There is a void located in the mask material layer between two adjacent gate stack structures. A first distance is between a top of the protective material layer and a top of the mask material layer. A second distance is between a top of the void and a top of the mask material layer above the void. A third distance is between a bottom of the void and a bottom of the mask material layer below the void. The first distance is greater than a sum of the second and third distances. |
US11538814B2 |
Static random access memory of 3D stacked devices
A semiconductor device and a method of manufacturing the same are provided. The semiconductor device includes a static random access memory (SRAM) including a plurality of transistors disposed in a first layer and a second layer. The first layer includes a first shared gate of a first transistor and a second shared gate of a second transistor, among the plurality of transistors. The second layer is disposed above the first layer and includes a third shared gate of a third transistor and a fourth shared gate of a fourth transistor, among the plurality of transistors. The third shared gate is disposed above the first shared gate, and the fourth shared gate is disposed above the second shared gate. The SRAM further includes a first shared contact, a second shared contact, a first cross-couple contact connecting the fourth shared gate and the first shared contact, and a second cross-couple contact connecting the third shared gate and the second shared contact. |
US11538810B2 |
Wiring structures, methods of forming the same, and semiconductor devices including the same
A wiring structure includes a first conductive pattern including doped polysilicon on a substrate, an ohmic contact pattern including a metal silicide on the first conductive pattern, an oxidation prevention pattern including a metal silicon nitride on the ohmic contact pattern, a diffusion barrier including graphene on the oxidation prevention pattern, and a second conductive pattern including a metal on the diffusion barrier. |
US11538807B2 |
Method for fabricating a semiconductor device including a gate structure with an inclined side wall
A semiconductor device and a method for fabricating the same, the device including an active pattern extending in a first direction on a substrate; a field insulating film surrounding a part of the active pattern; a first gate structure extending in a second direction on the active pattern and the field insulating film, a second gate structure spaced apart from the first gate structure and extending in the second direction on the active pattern and the field insulating film; and a first device isolation film between the first and second gate structure, wherein a side wall of the first gate structure facing the first device isolation film includes an inclined surface having an acute angle with respect to an upper surface of the active pattern, and a lowermost surface of the first device isolation film is lower than or substantially coplanar with an uppermost surface of the field insulating film. |
US11538801B2 |
Semiconductor package
A semiconductor package includes a first substrate that includes a first trench on a recessed portion of a bottom surface of the first substrate and a first through hole extending through the first substrate to the first trench, a first semiconductor chip on the first substrate, a first capacitor chip in the first trench and on the first substrate, and a first molding layer on the first substrate and covering the first semiconductor chip. The first molding layer includes a first part that extends parallel to a top surface of the first substrate, a second part connected to the first part and extending vertically in the first through hole, and a third part connected to the second part and surrounding the first capacitor chip. A bottom surface of the third part is coplanar with the bottom surface of the first substrate. |
US11538800B2 |
Display device having a heat dissipation layer with a gap separation portion and manufacturing method thereof
A display device and a manufacturing method thereof are provided. The display device includes a display panel, a heat dissipation layer, and a chip on film. The heat dissipation layer is on a non-display side of the display panel and includes a driving circuit arranging region and a peripheral region. The heat dissipation layer located in at least a part of the driving circuit arranging region is insulated from the heat dissipation layer located in the peripheral region. The chip on film is on a side of the heat dissipation layer away from the display panel and is in the driving circuit arranging region. |
US11538791B2 |
Semiconductor memory device including a memory chip and a circuit chip bonded to the memory chip
A semiconductor memory device includes a memory chip. The memory chip includes a first region including a plurality of first memory cells and second memory cells, a second region different from the first region, a plurality of first word lines stacked apart from each other in a first direction in the first and second regions, a first pillar including a first semiconductor layer extending through the first word lines, and a first insulator layer provided between the first semiconductor layer and the first word lines, in the first region, the first memory cells being located at intersections of the first pillar with the first word lines, a first bonding pad in the second region, and a first transistor between the first word lines and the first bonding pad, and connected between one of the first word lines and the first bonding pad, in the second region. |
US11538790B2 |
Extended HBM offsets in 2.5D interposers
A semiconductor package includes an interposer, a number of a first integrated circuit (IC) dies, one or more second IC dies, and one or more dummy dies. The first IC dies, the second IC dies and the dummy dies are implemented on the interposer. The dummy dies are configured to enable routing of pins of the first IC dies to selected circuits of the second IC dies while conforming to predefined routing rules. |
US11538787B2 |
Method and system for manufacturing a semiconductor package structure
A method and a system for manufacturing a semiconductor package structure are provided. The method includes: (a) providing a package body including at least one semiconductor device encapsulated in an encapsulant; (b) providing a flattening force to the package body; (c) thinning the package body after (b); (d) attaching a film to the package body; and (e) releasing the flattening force after (d). |
US11538785B2 |
Method of using optoelectronic semiconductor stamp to manufacture optoelectronic semiconductor device
A method of using an optoelectronic semiconductor stamp to manufacture an optoelectronic semiconductor device comprises the following steps: a preparation step: preparing at least one optoelectronic semiconductor stamp group and a target substrate, wherein each optoelectronic semiconductor stamp group comprises at least one optoelectronic semiconductor stamp, each optoelectronic semiconductor stamp comprises a plurality of optoelectronic semiconductor components disposed on a heat conductive substrate, each optoelectronic semiconductor component has at least one electrode, and the target substrate has a plurality of conductive portions; an align-press step: aligning and attaching at least one optoelectronic semiconductor stamp to the target substrate, so that the electrodes are pressed on the corresponding conductive portions; and a bonding step: electrically connecting the electrodes to the corresponding conductive portions. |
US11538783B2 |
Semiconductor device
A semiconductor package including a semiconductor chip, a redistribution layer structure disposed under the semiconductor chip, a bump pad disposed under the redistribution layer structure and having an upper structure of a first width and a lower structure of a second width less than the first width, a metal seed layer disposed along a lower surface of the upper structure and a side surface of the lower structure, an insulating layer surrounding the redistribution layer structure and the bump pad, and a bump structure disposed under the bump pad. A first undercut is disposed at one end of the metal seed layer that contacts the upper structure, and a second undercut is disposed at an other end of the metal seed layer that contacts the lower structure. |
US11538779B2 |
Semiconductor device with electrode pad having different bonding surface heights
A semiconductor device includes a first electrode on a semiconductor element at a first location and a second electrode on the semiconductor element at a second location spaced from the first location. And insulating film covers the first electrode, the second electrode and a third electrode. First and second pads are on the insulating film. The first electrode contacts the first pad through an opening in a first portion of the insulating film. The second electrode contacts the second pad each through an opening in a second portion of the insulating film. A bonding surface of the first pad is at a first distance above one portion of the insulating film, and a second distance above another. A bonding surface of the second pad likewise at different distances above the insulating film depending on location. |
US11538777B2 |
Semiconductor structure containing pre-polymerized protective layer and method of making thereof
A method of forming a semiconductor structure includes providing a semiconductor wafer including a plurality of semiconductor dies, providing a polymerized material layer, attaching the polymerized material layer to the semiconductor wafer such that the polymerized material layer is polymerized prior to the step of attaching the polymerized material layer to the semiconductor wafer, applying and patterning an etch mask layer over the polymerized material layer, such that openings are formed through the etch mask layer, etching portions of the polymerized material layer that are proximal to the openings through the etch mask layer by applying an etchant into the openings through the etch mask layer in an etch process, and removing the etch mask layer selective to the polymerized material layer. Alternatively, a patterned polymerized material layer may be transferred from a transfer substrate to the semiconductor wafer. |
US11538776B2 |
Driving backplane and display apparatus
The present disclosure provides a driving backplane and a display apparatus. The driving backplane includes: a substrate, and signal wires, binding electrodes and connection wires arranged on the substrate; at least one of the signal wires extends in a first direction; a first end of any one of the connection wires is electrically connected with at least one of the binding electrodes, and a second end of any one of the connection wires is electrically connected with one of the signal wires; a wire width of at least one of the connection wires at the first end is smaller than a wire width at the second end; and at least one of the connection wires includes: a first straight wire portion extending in the first direction, and an oblique wire portion with an extending direction forming a certain included angle with the first direction. |
US11538775B2 |
Semiconductor device and method of manufacturing a semiconductor device
A semiconductor device includes wiring that is formed by a conductive body extending, via an insulating film, on a front surface of a semiconductor substrate, and an insulating layer that covers the front surface of the semiconductor substrate including the wiring. Gaps are provided extending from an upper surface of the wiring to a lower portion of the insulating film. |
US11538767B2 |
Integrated circuit package with partitioning based on environmental sensitivity
An integrated circuit includes a lead frame, a first die, and a second die. The first die is bonded to and electrically connected to the lead frame. The second die is electrically connected to and spaced apart from the first die. |
US11538766B2 |
Isolated transformer with integrated shield topology for reduced EMI
A packaged electronic device includes first conductive leads and second conductive leads at least partially exposed to an exterior of a package structure, and a multilevel lamination structure in the package structure. The multilevel lamination structure includes a first patterned conductive feature having multiple turns in a first level to form a first winding coupled to at least one of the first conductive leads in a first circuit, a second patterned conductive feature having multiple turns in a different level to form a second winding coupled to at least one of the second conductive leads in a second circuit isolated from the first circuit, and a conductive shield trace having multiple turns in a second level spaced apart from and between the first patterned conductive feature and the second patterned conductive feature, the conductive shield trace coupled in the first circuit. |
US11538765B2 |
Semiconductor sub-assembly and semiconductor power module
A semiconductor sub-assembly and a semiconductor power module capable of having the reduced thickness of a chip and reduced thermal resistance are provided. The semiconductor sub-assembly includes a single or a plurality of semiconductor chips having a first electrode that is formed on the lower surface thereof, a second electrode that is formed on the upper surface thereof, and a plurality of chip-side signal electrode pads that are formed at one end of the upper surface thereof. The semiconductor chip is embedded in the embedded structure and a plurality of extension signal electrode pads are connected to each of the chip-side signal electrode pads. The extension signal electrode pad is formed on the embedded substrate in a size greater than the chip-side signal electrode pad when viewed on the plane. |
US11538763B2 |
Chip package
A display device comprises a display panel substrate and a glass substrate over said display panel substrate, wherein said display panel substrate comprises multiple contact pads, a display area, a first boundary, a second boundary, a third boundary and a fourth boundary, wherein said display area comprises a first edge, a second edge, a third edge and a fourth edge, wherein said first boundary is parallel to said third boundary and said first and third edges, wherein said second boundary is parallel to said fourth boundary and said second and fourth edges, wherein a first least distance between said first boundary and said first edge, wherein a second least distance between said second boundary and said second edge, a third least distance between said third boundary and said third edge, a fourth distance between said fourth boundary and said fourth edge, and wherein said first, second, third and fourth least distances are smaller than 100 micrometers, and wherein said glass substrate comprising multiple metal conductors through in said glass substrate and multiple metal bumps are between said glass substrate and said display panel substrate, wherein said one of said metal conductors is connected to one of said contact pads through one of said metal bumps. |
US11538760B2 |
Semiconductor package structure and method for manufacturing the same
A semiconductor package structure and a method for manufacturing a semiconductor package structure are provided. The semiconductor package structure includes a lower conductive structure, a first semiconductor device and a second semiconductor device. The upper conductive structure is disposed on the lower conductive structure. The second semiconductor device is electrically connected to the first semiconductor device by a first path in the upper conductive structure. The lower conductive structure is electrically connected to the first semiconductor device through a second path in the upper conductive structure under the first path. |
US11538756B2 |
Bonding structure and method for manufacturing the same
A bonding structure is provided. The bonding structure includes a conductive layer, a seed layer, and a nanotwinned copper (NT-Cu) layer. The seed layer is disposed on the conductive layer. The NT-Cu layer is disposed on the seed layer. The NT-Cu layer has anisotropic crystal structure. |
US11538755B2 |
Semiconductor device
A semiconductor device includes a substrate provided with a decoupling capacitor and plurality of circuit elements disposed along a first direction, and a plurality of first wiring line patterns disposed in a first wiring line layer over the substrate, including a power routing pattern coupled to the decoupling capacitor and a plurality of internal wiring line patterns coupled to the plurality of circuit elements. The plurality of first wiring line patterns extend in the first direction, and are aligned in conformity with virtual wiring line pattern tracks which are defined at a first pitch along a second direction intersecting the first direction and parallel to the substrate. |
US11538753B2 |
Electronic chip with under-side power block
An electronic chip, system, and method includes a power block including a power source configured to provide power to components of the electronic chip and a relay circuit coupled to the power source and a ground plane. The electronic chip further includes chip package having a first major side and a second major side, the power block secured to the second major side, the chip package comprising electrical connections, disposed on the second major side, to be secured with respect to a circuit board, and interconnect circuitry, electrically coupling the power block to ground, comprising a plurality of conductive layers, a conductive through hole, electrically connecting a first pair of the plurality of conductive layers, having a first width, and a via, electrically connecting a second pair of the plurality of conductive layers, having a second width less than the first width. |
US11538750B2 |
Terminal structure and wiring substrate
A terminal structure includes a wiring layer, a protective insulation layer, an open portion, and a connection terminal. The protective insulation layer covers the wiring layer. The open portion extends through the protective insulation layer in a thickness-wise direction to expose part of an upper surface of the wiring layer. The connection terminal is formed on the wiring layer exposed from the open portion. The open portion includes a wall surface, a depression, and a projection. The wall surface extends downward from an upper surface of the protective insulation layer. The depression is depressed into the protective insulation layer from the wall surface toward an outer side of the open portion. The projection is formed under the depression, continuously with the depression, and projected from the depression into the open portion further inward than the wall surface in a plan view. The depression is filled with the connection terminal. |
US11538749B2 |
Interconnect structure
The present disclosure relates an integrated chip. The integrated chip may include a first interconnect and a second interconnect disposed within a first inter-level dielectric (ILD) layer over a substrate. A lower etch stop structure is disposed on the first ILD layer and a third interconnect is disposed within a second ILD layer that is over the first ILD layer. The third interconnect extends through the lower etch stop structure to contact the first interconnect. An interconnect patterning layer is disposed on the second interconnect and laterally adjacent to the lower etch stop structure. |
US11538742B2 |
Packaged multichip module with conductive connectors
In a described example, a packaged device includes a substrate having a device mounting surface including a first layer of conductive material having a first thickness less than a substrate thickness, the substrate having a second layer of the conductive material having a second thickness less than the substrate thickness. A first semiconductor device is mounted to a first area of the device mounting surface; and a second semiconductor device is mounted to a second area on the device mounting surface and spaced from the first semiconductor device. At least two connectors are formed of the first layer of the substrate having first ends coupled to one of first bond pads on the first semiconductor device and the at least two connectors having second ends coupled to one of second bond pads on the second semiconductor device. |
US11538738B1 |
Isolated temperature sensor device
In a described example, an apparatus includes: a package substrate including a die pad configured for mounting a semiconductor die, a first lead connected to the die pad, and a second lead and a third lead; and a semiconductor die including a temperature sensor mounted on the die pad. The semiconductor die includes a first metallization layer being a metallization layer closest to the active surface of the semiconductor die, and successive metallization layers overlying the previous metallization layer, the metallization layers including a respective conductor layer in a dielectric material for the particular metallization layer and conductive vias; and the temperature sensor formed of the conductor layer in an uppermost metallization layer and coupled to the second lead and to the third lead. The semiconductor die includes a high voltage ring formed in the uppermost metallization layer, spaced from and surrounding the temperature sensor. |
US11538737B2 |
Semiconductor package
A semiconductor package includes a redistribution substrate having a first redistribution layer, a semiconductor chip on the redistribution substrate and connected to the first redistribution layer, a vertical connection conductor on the redistribution substrate and electrically connected to the semiconductor chip through the first redistribution layer, a core member having a first through-hole accommodating the semiconductor chip and a second through-hole accommodating the vertical connection conductor, and an encapsulant covering at least a portion of each of the semiconductor chip, the vertical connection conductor, and the core member, the encapsulant filling the first and second through-holes, wherein the vertical connection conductor has a cross-sectional shape with a side surface tapered to have a width of a lower surface thereof is narrower than a width of an upper surface thereof, and the first and second through-holes have a cross-sectional shape tapered in a direction opposite to the vertical connection conductor. |
US11538736B2 |
Cooling apparatus, semiconductor module, and vehicle
A semiconductor module including a cooling apparatus and a semiconductor device mounted on the cooling apparatus is provided. The cooling apparatus includes a cooling fin arranged below the semiconductor device, a main-body portion flow channel through which a coolant flows in a predetermined direction to cool the cooling fin, a first coolant flow channel that is connected to one side of the main-body portion flow channel and has a first inclined portion upwardly inclined toward the main-body portion flow channel, and a conveying channel that, when seen from above, lets the coolant into the first coolant flow channel from a direction perpendicular to the predetermined direction or lets the coolant out of the first coolant flow channel in the direction perpendicular to the predetermined direction. |
US11538732B2 |
Method for forming board assembly with chemical vapor deposition diamond (CVDD) windows for thermal transport
A method for forming a board assembly includes identifying a location of a hot-spot on a semiconductor die and cutting an opening in a circuit board corresponding to the location of the identified hot-spot. A Chemical Vapor Deposition Diamond (CVDD) window is inserted into the opening. A layer of thermally conductive paste is applied over the CVDD window. The semiconductor die is placed over the layer of thermally conductive paste such that the CVDD window underlies the hot-spot and such that a surface of the semiconductor die is in direct contact with the layer of thermally conductive paste. |
US11538731B2 |
Thermal solutions for package on package (PoP) architectures
Embodiments disclosed herein include electronic packages with improved thermal performance. In an embodiment, the electronic package comprises a first package substrate, a first die stack over the first package substrate, and a heat spreader over the first die stack. In an embodiment, the heat spreader comprises arms that extend out past sidewalls of the first package substrate. In an embodiment, the electronic package further comprises an interposer over and around the heat spreader, where the interposer is electrically coupled to the first package substrate by a plurality of interconnects. In an embodiment, the electronic package further comprises a second package substrate over the interposer, and a second die over the second package substrate. |
US11538730B2 |
Chip scale package structure of heat-dissipating type
A chip scale package structure of heat-dissipating type is provided and includes a board, a die fixed on and electrically coupled to the board, a thermally conductive adhesive sheet adhered to the die, and a package body formed on the board. The die has a heat-output surface arranged away from the board. The thermally conductive adhesive sheet is connected to at least 50% of an area of the heat-output surface. The package body covers and is connected to the die and entire of the surrounding lateral surface of the thermally conductive adhesive sheet. The die is embedded in the board, the thermally conductive adhesive sheet, and the package body. The heat-dissipating surface of the thermally conductive adhesive sheet is exposed from the package body, and a thermal conductivity of the thermally conductive adhesive sheet is at least 150% of a thermal conductivity of the package body. |
US11538729B2 |
Semiconductor device, semiconductor chip and method of manufacturing semiconductor device
Embodiments of the disclosure provide a semiconductor device, a semiconductor chip and a method of manufacturing a semiconductor device, wherein the semiconductor device, includes a substrate, a semiconductor layer formed on the substrate, a plurality of gates, drains, and a plurality of sources formed on a side of the semiconductor layer away from the substrate, the gates located between the sources and the drains, and the gates, sources, and drains located in an active region of the semiconductor device, wherein a gate pitch is formed between any two adjacent gates, the formed respective gate pitches include at least two unequal gate pitches, the maximum gate pitch of the respective gate pitches is within a first preset range determined according to a pitch of two gates at the two outermost ends in the semiconductor device in the gate length direction and a total number of gates of the semiconductor device. |
US11538724B2 |
Processing method of workpiece with laser power adjustment based on thickness measurement and processing apparatus thereof
A processing method of a workpiece used when the workpiece is processed is provided. The processing method of a workpiece includes a disposing step of disposing the workpiece in a gas containing a substance that generates an active species that reacts with the workpiece, a measurement step of measuring the distribution of the thickness of the workpiece disposed in the gas, and a laser beam irradiation step of irradiating the workpiece in the gas with a laser beam of which the power is adjusted based on the distribution of the thickness measured in the measurement step. In the laser beam irradiation step, the removal amount by which a region irradiated with the laser beam in the workpiece is removed by the active species is controlled by irradiating the workpiece with the laser beam of which the power is adjusted. |
US11538722B2 |
Optical diagnostics of semiconductor process using hyperspectral imaging
Disclosed are embodiments of an improved apparatus and system, and associated methods for optically diagnosing a semiconductor manufacturing process. A hyperspectral imaging system is used to acquire spectrally-resolved images of emissions from the plasma, in a plasma processing system. Acquired hyperspectral images may be used to determine the chemical composition of the plasma and the plasma process endpoint. Alternatively, a hyperspectral imaging system is used to acquire spectrally-resolved images of a substrate before, during, or after processing, to determine properties of the substrate or layers and features formed on the substrate, including whether a process endpoint has been reached; or before or after processing, for inspecting the substrate condition. |
US11538720B2 |
Stacked transistors with different channel widths
A semiconductor device includes a first stack of nanowires above a substrate with a first gate structure over, around, and between the first stack of nanowires and a second stack of nanowires above the substrate with a second gate structure over, around, and between the second stack of nanowires. The device also includes a first source/drain region contacting a first number of nanowires of the first nanowire stack and a second source/drain region contacting a second number of nanowires of the second nanowire stack such that the first number and second number of contacted nanowires are different. |
US11538718B2 |
Method of producing semiconductor devices in a substrate including etching of the pattern of an etch mask and/or a reticle to create the first dicing lanes encircling the devices and second dicing lanes defined by fracture lines of the edges of the substrate
Process for producing semiconductor devices in a substrate, comprising: photolithography of a pattern of a reticle onto a portion of the substrate, defining first elements of the semiconductor devices, an exposure of the pattern being repeated a plurality of times in order to define all of the devices, photolithography of a pattern of an etch mask over all of the substrate, etching photolithography patterns into one portion of the thickness of the substrate, wherein first dicing lanes encircling the devices are included in the pattern of the etch mask and/or of the reticle, and the photolithography of the etch mask defines second dicing lanes defined by predetermined fracture lines of the edges of the substrate, and furthermore comprising the implementation of a step of irradiating the substrate with a laser beam through the first and second dicing lanes. |