Document Document Title
US11516624B2 User dynamics through Wi-Fi device localization in an indoor environment
An indoor location positioning system comprises at least one processor, Wi-Fi scanners, and a RSSI fingerprint database. The Wi-Fi scanners and the RSSI fingerprint database works with the processor. The Wi-Fi scanners are positioned at locations within an environment that is partitioned into interconnected zones. The Wi-Fi scanners receive anonymous probe messages from Wi-Fi devices that are present in the environment during a calibration phase of the indoor location positioning system. The RSSI values are collated to create RSSI fingerprints corresponding to the different locations respectively. One or more of the Wi-Fi scanners are used as anchor scanners to counter the difference in transmit power levels of different Wi-Fi devices that result in different RSSI fingerprints for the different types of Wi-Fi devices, wherein the RSSI value at each anchor scanner is subtracted from the RSSI values at rest of the Wi-Fi scanners to generate the RSSI fingerprint.
US11516622B2 Wireless communication modes based on mobile device orientation
Wireless communications may be established between mobile computing devices via wireless protocols in asymmetric modes, using the orientation of the mobile devices to determine the asymmetric modes in which the mobile devices are operated. Requests may be received to initiate wireless communications using a wireless protocol that supports at least two asymmetric communication modes. The orientation of the mobile devices may be determined, and the asymmetric communication modes to be used by the mobile devices may be based on the orientations of the mobile device. Each mobile device may be configured to operate in the determined asymmetric communication mode of the wireless protocol, for establishing communications via the wireless protocol with other mobile devices.
US11516621B2 Localization device and method of operating a localization device
In accordance with a first aspect of the present disclosure, a localization device is provided, comprising: an ultra-wideband, UWB, communication unit configured to transmit a localization signal to an external device and to receive a response signal from the external device; an angle of arrival measurement unit configured to measure an angle at which the response signal is received; an orientation sensor configured to sense an orientation of the localization device; and a processing unit configured to determine if an angle at which the localization signal is received by the external device, an orientation of the external device, said orientation of the localization device, and said angle at which the response signal is received meet a predefined relationship. In accordance with a second aspect of the present disclosure, a corresponding method of operating a localization device is conceived.
US11516620B2 Vehicle to everything dynamic geofence
A device may include a memory storing instructions and processor configured to execute the instructions to select a vehicle attached to a base station; determine a speed and a vehicle type associated with the vehicle; and calculate an estimated braking distance for the vehicle based on the speed and the vehicle type. The processor may be further configured to generate a geofence for the vehicle based on the calculated estimated braking distance; use the generated geofence to identify at least one relevant Vehicle-to-Everything (V2X) message to be forwarded to the vehicle; and forward the identified at least one relevant V2X message to the vehicle via the base station.
US11516619B2 Generating point of interest for location orientation
Systems and methods are provided for determining a street and segment corresponding to the geographic coordinates for a location and determining a heading and a side of the street for the location. The system and methods further provide for generating a list of places within a predetermined distance from the location, determining a first subset of places of the list of places that are located on the same street as the street corresponding to the geographic coordinates for the location, and generating a second subset of places from the first subset of places, each place of the second subset of places having a same heading and side of the street as the heading and side of the street for the location. The systems and methods further provide for selecting a place of the second subset of places and generating a semantic label for the selected place.
US11516618B2 Social networking using augmented reality
Systems and methods for social networking using augmented reality are disclosed. A network may receive, from a plurality of client devices, a request to connect to a server. The server may be associated with an object, such as a landmark or a product. The server may serialize an AR world including the object and content associated with the object and send, to the plurality of client devices, data indicative of the AR world. The server via network may receive, from a first client device among the plurality of client devices, an indication of user input associated with the AR world. The indication of user input may comprise text data, digital image data, or user feedback. The indication of user input may be broadcast to the plurality of client devices.
US11516612B2 Calibration based on audio content
An example playback device is configured to (i) receive, via a network interface, data representing a command to play back audio content, where the audio content is a first type of audio content, (ii) during playback of the first type of audio content via an audio amplifier configured to drive a speaker, apply a first calibration and a second calibration to playback by the playback device, where the first calibration at least partially offsets one or more acoustic characteristics of an environment surrounding the playback device when applied to playback by the playback device, and where the second calibration corresponds to the first type of audio content, and (iii) during playback of a second type of audio content via the audio amplifier configured to drive the speaker, apply a third calibration to playback by the playback device, where the third calibration corresponds to the second type of audio content.
US11516609B2 Methods and apparatus for analyzing microphone placement for watermark and signature recovery
Methods and apparatus to analyze microphone placement for watermarks and signatures are disclosed. An example instructions cause one or more processors to at least determine a variance of a magnitude spectrum of a frequency band corresponding to a frequency spectrum of a first audio signal sensed with an audio sensor. The example instructions further cause the one or more processors to determine, based on the variance, a recovery rate associated with at least one of watermark detection or signature generation to be performed on a second audio signal to be sensed with the audio sensor.
US11516606B2 Calibration interface
Examples disclosed herein relate to playback device calibration. A calibration state variable may represent a calibration state of a playback device. A control device may display an indications of the calibration state. For instance, in a first instance, the control device may display an indication that a first playback device is in an uncalibrated state. Further, in a second instance, the control device may display an indication that the first playback device is in an calibrated state, perhaps after instructing the first playback device to initiate calibration.
US11516605B2 Audio device, server, audio system, and method of controlling audio device
An audio device includes a network interface, an amplifier that amplifies an audio signal received through the network interface, and a processor configure to obtain an output value of a signal from the amplifier and sends the output value of the signal through the network interface.
US11516603B2 Contact hearing device and retention structure materials
Hearing aid devices, methods of manufacture, methods of use, and kits are provided. In certain aspects, the hearing aid devices comprise an apparatus having a transducer and a retention structure comprising a shape profile corresponding to a tissue of the user, and a layer of elastomer.
US11516598B2 Hearing device for providing physiological information, and method of its operation
A hearing device configured to be worn at an ear of a user may include a sensor unit configured to provide sensor data, the sensor unit comprising a biometric sensor configured to provide biometric data included in the sensor data; and a processor configured to determine a physiological parameter from the sensor data, the physiological parameter indicative of a physiological property of the user. The processor is configured to determine whether the physiological parameter fulfills a condition, and provide, depending on whether the physiological parameter fulfills the condition, output data based on the sensor data, the output data including at least part of the biometric data and/or information derived from at least part of the biometric data different from the physiological parameter.
US11516595B2 Integrated structure of mems microphone and air pressure sensor and fabrication method thereof
An integrated structure of a MEMS microphone and an air pressure sensor, and a fabrication method for the integrated structure, the structure including a base substrate; a vibrating membrane, back electrode, upper electrode, and lower electrode formed on the base substrate, as well as a sacrificial layer formed between the vibrating membrane and the back electrode and between the upper electrode and the lower electrode; a first integrated circuit electrically connected to the vibrating membrane and the back electrode respectively; and a second integrated circuit electrically connected to the lower electrode and the upper electrode respectively, wherein a region of the base substrate corresponding to the vibrating membrane is provided with a back cavity; the sacrificial layer between the vibrating membrane and the back electrode is hollowed out to from a vibrating space that communicates with the exterior of the integrated structure, and the sacrificial layer between the upper electrode and the lower electrode is hollowed out to form a closed space; and the integrated circuits are formed on a chip, thereby reducing the interference of connection lines on the performance of a microphone, reducing the introduction of noise, reducing the size of a product and reducing power consumption.
US11516587B2 Panel audio loudspeaker electromagnetic actuator
An electromagnetic actuator includes an inner magnet arranged relative to an axis, an outer magnet arranged a radial distance from the axis, an inner radial wall of the outer magnet facing an outer radial wall of the inner magnet, the inner and outer radial walls being separated by an air gap, a voice coil arranged in the air gap separating the inner and outer magnets, and an actuator coupling plate attached to the voice coil. During operation of the device electrical activation of the voice coil causes axial motion of the actuator coupling plate.
US11516584B2 Sound collection loudspeaker apparatus, method and program for the same
Provided is a sound pickup loudspeaker apparatus which suppresses the influence of feedback produced when adding a speaker while also reducing a sense of unnaturalness in a sound image. The sound pickup loudspeaker apparatus collects a target sound emitted from a first seat in the vehicle, plays back the collected target sound to a listener seated in a second seat in the vehicle from a second sound amplifying device disposed in a direction different from the first seat from the perspective of the listener, and furthermore plays back the collected target sound to the listener from a first sound amplifying device disposed in the same direction as the first seat from the perspective of the listener. The apparatus multiplies the target sound by a first gain and outputs the target sound to the first sound amplifying device; delays the target sound by an amount of time obtained by adding a time for achieving a precedence effect to a delay time of the first sound amplifying device relative to the second sound amplifying device; and multiplies the delayed target sound by a second gain and outputs the target sound to the second sound amplifying device. A first gain adjustment unit adjusts the first gain to a low value and a second gain adjustment unit adjusts the second gain to a high value.
US11516583B2 Amplifier unit for a sound converter, and sound-generating unit
The invention relates to an amplifier unit for a MEMS sound transducer, which is operable as a microphone and as a loudspeaker, comprising at least one audio amplifier for sound reproduction and/or sound recording. According to the invention, the amplifier unit is designed in such a way that the MEMS sound transducer provided therefor is simultaneously operable as a loudspeaker and as a microphone. Moreover, the invention relates to sound-generating unit comprising a MEMS sound transducer, which is operable as a microphone and as a loudspeaker, and an amplifier unit coupled to the sound transducer for sound reproduction and/or sound recording.
US11516578B1 Plate member of acoustic equipment
A plate member of an acoustic equipment includes a flat plate that constitutes at least a part of the plate member that is used in the acoustic equipment. The flat plate includes a first drawn portion and a second drawn portion. The first drawn portion is recessed in a thickness direction of the flat plate with respect to a predetermined plane orthogonal to the thickness direction of the flat plate and has a rectangular outline when viewed in the thickness direction of the flat plate. The first drawn portion and the second drawn portion are arranged adjacent to each other so as to provide a predetermined gap therebetween. When a standing wave is formed on the flat plate, the first drawn portion and the second drawn portion are arranged so that the gap is located in a position of an antinode of the standing wave.
US11516571B2 Headphone
A headphone includes two audio output devices and a headband connected between the two audio output devices. The headband includes a rubber block and at least one shape memory alloy wire. The shape memory alloy wire is at least partially embedded in the rubber block. The rubber block has at least one cutout.
US11516569B1 Capacitive microphone
A capacitive microphone includes a substrate, a plurality of stationary electrodes, a diaphragm, and a backplate. The substrate includes a cavity and a step disposed in the cavity, and the plurality of stationary electrodes is equally spaced on the step. A diaphragm is received in the step and includes a vibration portion and a connecting portion connected to the vibration portion. A plurality of movable electrodes protrudes from a periphery of the vibration portion, and one end of the connecting portion away from the vibration portion is connected to the substrate. The backplate is provided with a plurality of sound transmission holes, and a gap is formed between the backplate and the diaphragm to form electrode plates of a variable capacitor. The capacitive microphone can get a higher signal-to-noise ratio, improve the capability of suppressing linear distortion, and improve the anti-interference capability of the microphone.
US11516567B2 Microphone head device
A microphone head device includes a base unit, a microphone head unit and a connecting rod unit. The microphone head unit is disposed on the base unit, and includes a microphone head seat and a dynamic subunit mounted on the microphone head seat. The dynamic subunit includes a mounting seat, a first magnetic member disposed on the mounting seat, a coil surrounding the first magnetic member, and a vibrating plate disposed over the first magnetic member and connected to the coil. The connecting rod unit extends in an up-down direction through the first magnetic member, the mounting seat and the microphone head seat such that the first magnetic member, the mounting seat and the microphone head set are separably secured.
US11516566B2 Speaker box
A speaker box includes a housing, a speaker unit and a flexible circuit board. The housing includes a base defining a through hole, and a cover. The flexible circuit board includes an end received in the housing and an opposite end exposed to outside of the housing. The flexible circuit board includes a first surface facing the cover and a second surface opposite to the cover. A first pad and a second pad are disposed at the second surface. The flexible circuit board includes a first mounting part, a second mounting part and a bending part. The first pad is arranged on the first mounting part and configured to be electrically coupled to the speaker unit. The second pad is arranged on the second mounting part and configured to be electrically coupled to external circuits. The second pad is exposed to outside of the housing via the through hole.
US11516562B2 Core selective switch and optical node device
A core selective switch in an optical node device included in a spatial channel optical network includes a spatial demultiplexing unit, an optical switch, and an optical interconnect unit, wherein the spatial demultiplexing unit is an MCF collimator array in which a plurality of MCF collimators each comprising both an MCF having S cores and a collimator lens are two-dimensionally arranged in a plane, the optical switch is a variable reflection angle mirror array in which S variable reflection angle mirrors are two-dimensionally arranged in a plane in a manner similar to a core arrangement in the MCF, the optical interconnect unit is a steering lens, and a beam light output from each core of an input MCF is focused on a variable reflection angle mirror corresponding to the core to be reflected to couple to a corresponding core of a desired output MCF.
US11516559B2 Systems and methods for communication on a series connection
A system for serial communication may include a first device and a plurality of devices on a series connection. The first device may have a master circuit and the plurality devices may have a slave circuit. The master circuit may enable the first device to communicate with the plurality devices having the slave circuit on the series connection. The master circuit may enable the first device to send a command frame on the series connection. The command frame may include an execution mode command and a plurality of commands. The second devices may execute the commands within the command frame at or after the end of the command frame based on the execution mode command indicating a synchronous mode of command execution; and may execute the commands within the command frame at the ends of individual ones of the commands based on the execution mode command indicating a non-synchronous mode of command execution.
US11516558B2 Angled faceplates for a network element
A module for a networking node is disclosed. The module includes a Printed Circuit Board (“PCB”), one or more circuits mounted to the PCB and a faceplate. The faceplate includes a middle plate, a first side plate, and a second side plate. The first side plate extends from the middle plate at an obtuse angle relative to the middle plate towards a first side and back of the module. The second side plate extends from the middle plate, opposite to the first side plate, at an obtuse angle relative to the middle plate towards a second side and the back of the module.
US11516557B2 System and method for enhanced video image recognition using motion sensors
Disclosed are systems and methods for improving image recognition by using information from sensor data. In one embodiment, the method comprises receiving one or more sensor records, the sensor records representing timestamped sensor data collected by a sensor recording device; selecting an event based on the sensor records; identifying a time associated with the event; retrieving a plurality of timestamped video frames; synchronizing the sensor records and the video frames, wherein synchronizing the sensor records and the video frames comprises synchronizing the timestamped sensor data with individual frames of the timestamped video frames according to a common timeframe; and selecting a subset of video frames from the plurality of timestamped video frames based on the selected event.
US11516554B2 Method and system for enhancing sound and picture quality based on scene recognition, and display
Disclosed are a method and a system for enhancing sound and picture quality based on scene recognition, and a display. The method includes: recognizing a real scene reflected in a current screen of the display; calculating sound and picture quality enhancement parameters matching the real scene; and controlling the display to play sound and picture corresponding to the real scene according to best sound and picture quality corresponding to the sound and picture quality enhancement parameters.
US11516553B2 Systems and methods for generating a media-based result to an ambiguous query
Systems and methods are described herein for providing a search result based on an ambiguous voice query. The system comprises receiving an ambiguous voice query relating to an object from a user, retrieving a viewing history of the user for about a list of media assets viewed by the user, determining, from the list of media asset, a media asset that is likely to contain the object based at least in part on metadata of the media asset and the ambiguous voice query, searching content of the determined media asset to identify a segment within the media asset that contains the object, and generating a display of information about the object identified from the segment.
US11516550B2 Generating an interactive digital video content item
In a computer-implemented method for generating an interactive digital video content item, a digital video content item is accessed. Subject recognition is performed on the digital video content item, wherein the subject recognition automatically identifies a visual subject within the digital video content item. Responsive to identifying the visual subject, an interactive region is applied to visual subject within the digital video content item, wherein the interactive region enables presentation of content related to the visual subject in response to a user interaction with the interactive region during presentation of the digital video content item.
US11516549B2 Electronic apparatus and control method thereof
An electronic apparatus includes a communication interface, a display, and a processor configured to, based on a content being received from a source apparatus via the communication interface, obtain feature information of the received content, and transmit the obtained feature information to an external server, receive, from the external server, identification information of the content, the identification information being obtained based on the transmitted feature information, based on a predetermined mode of the display being turned on according to a signal that is received from the source apparatus via the communication interface, obtain information regarding a first time point when the predetermined mode is turned on, and based on the predetermined mode of the display being turned off, obtain information regarding a second time point when the predetermined mode is turned off after the first time point.
US11516547B2 Multi-file streaming media delivery system and method
A method includes rendering a portion of first video on a display associated with a device; and, in response to a first user gesture and/or interaction on and/or with a touch-sensitive interface, selecting a second video, and rendering a portion of the second video on the display, wherein the first user gesture and/or interaction corresponded to a first time in the first video, and wherein the portion of the second video begins a second time in the second video corresponding substantially to the first time in the first video. The method may include, in response to a second user gesture and/or interaction on and/or with the touch-sensitive interface, selecting a third video, and rendering a portion of the third video on the display, wherein the second user gesture and/or interaction corresponded to a second time in the second video, and wherein the portion of the third video begins a third time in the third video corresponding substantially to the second time in the second video.
US11516545B1 Optimization tools and techniques for audio and audiovisual content
A system is provided for modifying media content, including remastering audio or video components of the content. The system may include an application programming interface programmed for communicating selected mastering profiles to a user interface; applying the mastering profiles to uploaded original media content files; separating the uploaded media content files into their audio and video component portions; applying the selected mastering profiles to at least the audio component portion to generate a remastered audio component portion; and, combining the video component portions with the remastered audio component portions to generate modified media content files. The system may also include a user interface programmed for selecting original media content files for electronic upload from an access device; displaying multiple available mastering profiles in connection with the selected media content files; and receiving and previewing the modified media content files.
US11516544B1 System, method, and program product for interactively prompting user decisions
The present disclosure relates to a computer-implemented process for evaluating user activity, user preference, and/or user habit via one or more personal devices and providing precisely timed and situationally targeted content recommendations. It is an object of the present disclosure to provide a technological solution to the long felt need in small scale content recommendation systems caused by the technical problem of generating situationally targeted and user preference targeted content recommendations for users of an interactive electronic system.
US11516543B2 Methods and apparatus to assign viewers to media meter data
Methods, apparatus, systems and articles of manufacture to assign viewers to media meter data are disclosed. An apparatus includes memory, and a processor to execute instructions to: determine first probabilities for first panelists in a first household based on a first number of minutes of first media presented by a first media presentation device monitored by a first meter, determine second probabilities for second panelists in a plurality of second households based on a second number of minutes of second media presented by second media presentation devices monitored by a plurality of second meters, compare the first probabilities and the second probabilities to identify a candidate household from the plurality of second households to associated with the first household, and impute respective portions of the first number of minutes to corresponding ones of the first panelists when monitored behavior of the candidate household matches monitored behavior of the first household.
US11516542B2 Systems and methods for real-time adaptive bitrate transcoding and transmission of transcoded media
Methods and systems are provided for streaming a media asset with an adaptive bitrate transcoder. A server receives, from a client device, a first request for a first portion of the plurality of portions to be transcoded at a first bitrate. The server then starts to transcode the plurality of portions at the requested first bitrate to generate a plurality of corresponding transcoded portions. The server updates a header of a transcoded portion to include: 1) a transcode latency value; and 2) a count value indicating a number of available pre-transcoded portions of the media asset at the time the first request was received. The server then transmits the transcoded portion to the client. The client device then determines a second bitrate based on the transcode latency value included in the header of the transcoded portion corresponding to the first portion.
US11516536B2 Display apparatus and control method thereof
A display apparatus capable of correcting an image quality change caused by long-term use is provided. The display apparatus includes: a display panel; a communicator configured to communicate with a service apparatus; and a controller configured to control the communicator to transmit operation information including a total operating time of the display apparatus and an operating temperature of the display apparatus, to the service apparatus; receive an image parameter from the service apparatus through the communicator, and based on the received image parameter data; process image data; and transmit the processed image to the display panel. The image parameter may include at least one of a brightness level, a contrast, a sharpness level, and a color density of the display panel.
US11516532B2 Detection of items in a home
Various arrangements for detecting items in home are presented. Imaging devices may capture images of a user's home. The images may be analyzed and compared against a user approved list of item definitions. Using the definitions, items, brands, trademarks, and the like may be identified in the images. The items identified in the images may be used to determine preferences of a user and provide targeted marketing content using the television receiver. In some cases, analysis of items in a home may be used to determine the effectiveness of marketing content by determining causality or correlations between marketing content viewed by a user and items in the home.
US11516531B2 Methods of and systems for content search based on environment sampling
The present disclosure provides user interface methods of and systems for displaying at least one available action overlaid on an image, comprising displaying an image; selecting at least one action and assigning a ranking weight thereto based on at least one of (1) image content, (2) current device location, (3) location at which the image was taken, (4) date of capturing the image; (5) time of capturing the image; and (6) a user preference signature representing prior actions chosen by a user and content preferences learned about the user; and ranking the at least one action based on its assigned ranking weight.
US11516530B2 Television and system and method for providing a remote control device
A television and system and method for providing a remote control device are disclosed. In one embodiment of the television, the television includes a processor, a memory, a tuner, a panel, and an audio driver therein in an interconnected architecture. The television may establish a pairing with a proximate wireless-enabled interactive programmable device, such as a proximate wireless-enabled interactive handheld device having a touch screen display, whereby formatted parallel audiovisual experience instructions, including virtual buttons, may be transmitted to the proximate wireless-enabled interactive programmable device for display on the touch screen display to create an experience parallel to the experience on the television. The television receives and processes virtual remote control functionality input instructions from the proximate wireless-enabled interactive programmable device to control amenities associated with the television.
US11516528B2 Broadcast receiving apparatus and control method thereof
A method for interacting with a graphical user interface (GUI) of a television operating in a step mode in which movement of a cursor among menu items displayed on the GUI is performed stepwise in accordance with a manipulation of a direction key of the remote controller, the method including receiving, by the television, from a remote controller a signal corresponding to spatial movement of the remote controller detected by the remote controller that instructs the television to switch from (i) the step mode to (ii) a position mode of the GUI in which the movement of the cursor among the menu items is performed in accordance with the spatial movement of the remote controller and switching from the step mode of the GUI to the position mode of the GUI based on the signal.
US11516525B2 System for addressing on-demand TV program content on TV services platform of a digital TV services provider
Video content is uploaded via the Internet to a video-on-demand (VOD) server identified by a title and a hierarchical address of categories and subcategories for categorizing the title. The VOD server converts and stores the video content at a storage address in a video content database linked to the title. The title is listed in a location of an electronic program guide (EPG) using the same categories and subcategories as in its hierarchical address. Any TV subscriber can access the EPG and navigate through its categories and subcategories to find a title for viewing on the TV. This can enable many new blogging or podcasting-like programs by popular “Hosts” to be self-published on the Internet and readily navigated for display on TV. The EPG can also store TV program addresses as bookmarks and allow them to be shared with other subscribers or with friends and contacts online by sending to their email addresses.
US11516524B2 Online based broadcasting apparatus and method
An apparatus for providing online multimedia contents acquires, in a pre-designated manner, a content table addresses, in which a content table consisting of a plurality of content information with each set time to be played back is stored, maps and stores the content table address to a designated channel, obtains the content table based on the content table address, analyzes the content information corresponding to the current time among the plurality of content information included in the content table to obtain a content address where a multimedia content is stored, acquires the multimedia content online based on the obtained content address, outputs the multimedia content through TV, thereby allowing a TV user to easily view various multimedia contents available online by simply changing the channel buttons of the remote control and thereby maximizing the user convenience of online multimedia contents.
US11516521B2 Generating composite video stream for display in VR
A processor system and computer-implemented method may be provided for generating a composite video stream which may combine a background video and a foreground video stream into one stream. For that purpose, a spatially segmented encoding of the background video may be obtained, for example in the form of a tiled stream. The foreground video stream may be received, for example, from a(nother) client device. The foreground video stream may be a real-time stream, e.g., when being used in real-time communication. The image data of the foreground video stream may be inserted into the background video by decoding select segments of the background video, inserting the foreground image data into the decoded background image data of these segments, and by encoding the resulting composite image data to obtain composite segments which, together with the non-processed segments of the background video, form a spatially segmented encoding of a composite video.
US11516516B2 Method for picture decoding, decoder and storage medium
An image decoding method, a decoder and a storage medium are porovided. The method includes: receiving code stream data, and parsing the code stream data to obtain a coding tree unit corresponding to the code stream data; parsing an i-th node of i-th layer corresponding to the coding tree unit to obtain i-th state parameter and i-th flag parameter corresponding to the i-th node; performing detection processing on the i-th node according to the i-th state parameter and the i-th flag parameter to obtain an i-th detection result; acquiring a (i+1)th node of a (i+1)th layer corresponding to the coding tree unit; continuing to perform detection processing on the (i+1)th node, and traversing all the nodes corresponding to the coding tree unit until all the coding unit data corresponding to the coding tree unit is obtained; and generating a decoded image corresponding to the code stream data.
US11516512B2 Method and system for processing video content
Methods and systems for performing in-loop luma mapping with chroma scaling are described. One of the methods includes receiving a chrome block and a luma block associated with a picture. The method also includes determining luma scaling information associated with the luma block. The method also includes determining a luma scaling factor of the luma block based on the luma scaling information. The method also includes determining the chroma scaling factor based on a value of the luma scaling factor. The method also includes processing residuals of the chroma block using the chroma scaling factor.
US11516508B2 Method and apparatus for video coding
Aspects of the disclosure provide methods and apparatuses for video encoding/decoding. In some examples, an apparatus for video encoding includes processing circuitry. The processing circuitry determines a maximum transform size for partitioning a block in a coding tree unit (CTU) based on a size of the CTU. Then, the processing circuitry partitions the block into one or more transform blocks based on the maximum transform size, and encodes residues associated with a prediction of the block into bits in a bitstream, according to the one of more transform blocks.
US11516507B2 Image encoding/decoding methods and apparatuses
Image encoding/decoding methods and apparatuses according to the present invention may generate a prediction block of a current block based on a pre-defined prediction mode, generate a transform block of the current block through predetermined transformation, and reconstruct the current block based on the prediction block and the transform block.
US11516506B2 Method and apparatus for processing image service
A method, performed by a digital device, for processing an image service according to the present document comprises the steps of: receiving image information; decoding a first image on the basis of the image information; processing the decoded first image to be displayed on a first area of a display screen; and processing a second image to be displayed on a second area of the display screen.
US11516504B2 Method and apparatus for video coding
Aspects of the disclosure provide methods and apparatuses for video coding. In some examples, an apparatus includes processing circuitry that stores reconstructed samples of a reconstructed block in a memory. When a current sub-block in a current block is to be reconstructed using intra block copy (IBC) based on a reference sub-block in the reconstructed block, the processing circuitry determines whether the reconstructed samples of the reference sub-block stored in the memory are indicated as overwritten based on a position of the current sub-block, generates reconstructed samples of the current sub-block based on the reconstructed samples of the reference sub-block when the reconstructed samples of the reference sub-block stored in the memory are determined to be indicated as not overwritten, and overwrites the reconstructed samples of a collocated sub-block in the reconstructed block stored in the memory with the generated reconstructed samples of the current sub-block.
US11516497B2 Bidirectional optical flow based video coding and decoding
Devices, systems and methods for sample refinement and filtering method for video coding are described. In an exemplary aspect, a method for video processing includes modifying, for a conversion between a block of a video and a bitstream representation of the video, a refinement value for a prediction sample in the block by applying a clipping operation to refinement value. The refinement value is derived based on a gradient value of an optical flow coding process. An output of the clipping operation is within a range. The method also includes refining the prediction sample based on the refinement value and performing the conversion based on the refined prediction sample.
US11516496B2 Image encoding/decoding method and apparatus, and recording medium storing bitstream
The present invention is about an image encoding/decoding method and apparatus. According to present invention, a method of decoding an image, the method comprising, loading information of a neighboring block of a current block; decoding a current block using the loaded information of the neighboring block; and saving information of the current block that is decoded.
US11516491B2 Method of decoding an image using indicated most probable mode
Provided is a method of decoding an image, the method including: determining at least one prediction unit included in a current frame that is one of at least one frame forming the image; determining a reference region to be referred to by a current prediction unit that is one of the at least one prediction unit; changing a sample value included in at least one of the current prediction unit and the reference region, based on an analyzing result of a sample value of the reference region; determining a sample value included in the current prediction unit, based on a result of changing the sample value; and decoding the image based on the determined sample value of the current prediction unit.
US11516490B2 Method and device for inter predicting on basis of DMVR
The picture decoding method by a decoding device, according to one embodiment of the present invention, comprises the steps of: deriving a motion vector for a neighboring merge candidate block from among neighboring merge candidate blocks of a current block, if a merge mode is applied to the current block, deriving a reference block in a reference picture indicated by the motion vector for the neighboring merge candidate block, deriving a refinement block having the minimal SAD with the current block, from among refinement candidate blocks within the search range of the reference block, if DMVR is applied to the current block, deriving prediction samples for the current block on the basis of a refinement motion vector for the derived refinement block, and generating restoration samples for the current block on the basis of the prediction samples.
US11516489B2 Method and apparatus for video coding
Aspects of the disclosure provide a method and an apparatus for video coding. In some examples, an apparatus includes processing circuitry that receives a bitstream that includes coded information representing a current bin of a current syntax element of a first syntax element type for a block in a picture. The processing circuitry determines, for the current bin of the current syntax element, a current context model associated with both the first syntax element type and a second syntax element type different from the first syntax element type. The processing circuitry also decodes the coded information according to the current context model to obtain the current bin of the current syntax element, and reconstructs the current block according to a characteristic indicated by the current bin of the current syntax element.
US11516487B2 Coding concept allowing efficient multi-view/layer coding
Various concepts which further improve multi-view/layer coding concepts, are described.
US11516486B2 Decoded picture buffer management for video coding
Methods and devices for decoding a video stream are provided, a method includes storing previously decoded pictures of the video stream in a decoded picture buffer, including a plurality of first pictures of a same temporal sub-layer, the plurality of first pictures including at least one sub-layer reference picture for predicting a current picture of the video stream; identifying a network abstract layer (NAL) unit type of a picture of the plurality of first pictures; removing, based on the NAL unit type of the picture identified, the picture from the decoded picture buffer; and decoding the current picture using the decoded picture buffer. The decoding includes predicting the current picture using one or more of the at least one sub-layer reference picture that is stored within the decoded picture buffer, after removing the picture from the decoded picture buffer.
US11516482B2 Electronic device and image compression method of electronic device
According to one embodiment of the present invention, an electronic device may comprise a processor and an image sensing module, wherein the image sensing module comprises an image sensor, and a control circuit electrically connected to the image sensor and connected to the processor through an interface, and the control circuit is configured to: acquire at least one raw image, using the image sensor; designate, for the at least one raw image, first data corresponding to a first region and second data not corresponding to the first region, on the basis of information related to the first region in the at least one raw image; transform the at least one raw image by changing at least a part of the second data to a designated value; and compress the at least one transformed raw image and transmit the compressed transformed raw image to the processor.
US11516481B2 Video encoding method and video encoding device
A video encoding method includes a first mode selection step of selecting at least one mode as a first candidate mode from a predetermined first mode group for encoding a video, a second mode selection step of selecting one mode as an encoding mode from a predetermined second mode group, based on the selected first candidate mode, and an encoding step of encoding the video in the selected encoding mode.
US11516478B2 Method and apparatus for coding machine vision data using prediction
The present disclosure relates to an apparatus for and a method of coding machine vision data by using prediction, and for improving the efficiency of encoding the data used for machine vision, provides an apparatus for Video Coding for Machines (VCM) which sets reference data according to a correlation between the data, generates, based on the reference data, prediction data for original data having a high correlation with the reference data, and generates residual data between the prediction data and the original data, and provides a coding method performed by the apparatus for VCM.
US11516477B2 Intra block copy scratch frame buffer
An example apparatus includes a first frame buffer configured to store video data; a second frame buffer configured to store video data; and one or more processors configured to: reconstruct samples of a first block of a current picture of video data; store, in parallel, a compressed version of the samples of the first block of video data in the first frame buffer and an uncompressed version of the samples of the first block of video data in the second frame buffer; and responsive to determining to reconstruct a second block of the current picture of video data using intra block copy: obtain, from the second frame buffer, samples of a predictor block located in the current picture of video data, the predictor block at least partially overlapping the first block of video data; and predict, based on the obtained samples of the predictor block, samples of the second block.
US11516476B2 Systems and methods for deriving a motion vector difference in video coding
A method of deriving a motion vector difference for coding video data, the method comprises determining whether inter-layer prediction is utilized by determining whether both a reference picture in a first reference picture list is not marked as used for long-term reference and a reference picture in a second reference picture list is not marked as used for long-term reference; based on whether the inter-layer prediction is utilized, setting a scaling factor to one of: a value of 1 in a case where the inter-layer prediction is utilized; or a value in the range of −4096 to 4095 in a case where the inter-layer prediction is not utilized; and deriving the motion vector difference based on the scaling factor.
US11516475B2 Image encoding/decoding method and device for performing PROF, and method for transmitting bitstream
An image encoding/decoding method and apparatus are provided. An image decoding method according to the present disclosure is performed by an image decoding apparatus. The image decoding method comprises deriving a prediction sample of a current block based on motion information of the current block, deriving a reference picture resampling (RPR) condition for the current block, determining whether prediction refinement with optical flow (PROF) applies to the current block based on the RPR condition, and deriving a refined prediction sample for the current block by applying PROF to the current block.
US11516473B2 Bandwidth compression for neural network systems
Techniques and systems are provided for compressing data in a neural network. For example, output data can be obtained from a node of the neural network. Re-arranged output data having a re-arranged scanning pattern can be generated. The re-arranged output data can be generated by re-arranging the output data into the re-arranged scanning pattern. One or more residual values can be determined for the re-arranged output data by applying a prediction mode to the re-arranged output data. The one or more residual values can then be compressed using a coding mode.
US11516471B2 Video decoding method and device
Provided are a video decoding method and device. This specification provides a video decoding method comprising the steps of: acquiring a parameter indicating whether a multiple transform set is applicable to a block to be decoded, as well as information about the width of the block to be decoded and the height of the block to be decoded; determining the transform type of the block to be decoded on the basis of at least one of the parameter indicating whether a multiple transform set is applicable, or the information about the width and height of the block to be decoded, and setting a zero-out region of the block to be decoded; and inverse-transforming the block to be decoded on the basis of the zero-out region of the block to be decoded and the result of determining the transform type.
US11516469B2 Loop filter block flexible partitioning
A method of loop filtering in a video coding process comprises receiving image data; analyzing the image data; flexibility partitioning the image data into loop filtering blocks (LFBs) to allow the size of LFBs in at least one of a first row and a first column in a same frame to be smaller than other LFBs within the same frame; and applying a loop filter to the LFBs.
US11516466B2 Video coding and decoding
A method of encoding a motion information predictor index, comprising: generating a list of motion information predictor candidates; when an Affine Merge mode is used, selecting one of the motion information predictor candidates in the list as an Affine Merge mode predictor; when a non-Affine Merge mode is used, selecting one of the motion information predictor candidates in the list as a non-Affine Merge mode predictor; and generating a motion information predictor index for the selected motion information predictor candidate using CABAC coding, one or more bits of the motion information predictor index being bypass CABAC coded.
US11516463B2 Method and device for encoding/decoding image by using geometrically changed image
A method and apparatus use a geometric modified image for video encoding/decoding. The encoding method may include: generating a geometric modified reference picture by geometrically modifying a reference picture; generating a prediction block of a current block within an encoding target picture by performing inter prediction by referencing the reference picture or the geometrically modified reference picture; and encoding inter-prediction information of the current block.
US11516455B2 Electronic device and method for controlling the same
An electronic device (100) and a method for controlling the electronic device (100) are provided. The electronic device (100) includes a time-of-flight (TOF) module 20, a color camera 30, a monochrome camera (40), and a processor (10). The TOF module (20) is configured to capture a depth image of a subject. The color camera (30) is configured to capture a color image of the subject. The monochrome camera (40) is configured to capture a monochrome image of the subject. The processor (10) is configured to obtain a current brightness of ambient light in real time, and to construct a three-dimensional image of the subject according to the depth image, the color image, and the monochrome image when the current brightness is less than a first threshold.
US11516450B1 Method of regional color processing based on video content and system using the same
A method of regional color processing based on video content and a system using the same are provided, comprising: step 1: dividing a data area; step 2: denoising pixel video data; step 3: generating a representative value of small block; step 4: detecting a video scene type; step 5: smoothing of the representative value of the small block; step 6: dark block fading processing; step 7: HDR custom compensating/definition restoring; and step 8: generating a representative value of the large block. It divides the video source data into small blocks or large blocks according to the rendering granularity of the ambient light, and implements algorithms such as noise reduction, smooth processing and adaptive compensation according to the video format and content, and the lighting rendering can follow the video signal in real time, which can effectively reduce the sudden change of rendering light and bring users more soothing experience.
US11516449B2 Pixel value calibration method and pixel value calibration device
A pixel value calibration method includes: obtaining input image data generated by pixels, the input image data including a first group of pixel values in a first color plane and a second group of pixel values in a second color plane, generated by a first portion and a second portion of the pixels respectively; determining a difference function associated with filter response values and target values, the filter response values being generated by utilizing characteristic filter coefficients to filter first and second estimated pixel values of estimated pixel data in the first and second color planes, respectively; determining a set of calibration filter coefficients by calculating a solution of the estimated pixel data, the solution resulting in a minimum value of the difference function; and filtering the input image data, by a filter circuit using the set of calibration filter coefficients, to calibrate the first group of pixel values.
US11516441B1 360 degree video recording and playback device
The 360 degree video recording and playback device is a security device. The 360 degree video recording and playback device is an audio-video recording device. The 360 degree video recording and playback device incorporates an image capture structure, a rendering structure, a supervisory structure, and a housing. The housing contains the image capture structure, the rendering structure, and the supervisory structure. The image capture structure, the rendering structure, and the supervisory structure are electrically interconnected. The image captures structure is a recording device that captures audible sounds and video images from the vicinity surrounding the 360 degree video recording and playback device. The field of view of the captured video images is 360 degrees. The rendering structure converts the captured audible sounds and video images into one or more video files.
US11516436B2 Method and system for object location notification in a fire alarm system
A system and method for object location notification in a fire alarm system is disclosed. The fire alarm system includes a fire alarm panel and fire alarm devices deployed within a premises that capture audio and/or image information. The fire alarm panel generates alarm signals and provides notifications of the existence of objects of interest from the audio and/or image information captured by the fire alarm devices. In examples, the fire alarm devices include alarm notification devices that generate an audible and/or visible fire alarm to occupants of the premises such as sirens and strobe lights, and fire sensor devices such as flame sensor devices and smoke sensor devices that monitor for flame and smoke as the indications of fire, respectively. In one embodiment, an analytics system is integrated within the fire alarm devices that determines the existence of the objects of interest from the captured audio and/or image information.
US11516434B1 Routing visual content from different camera systems to different applications during video call
Visual content from different camera systems is concurrently routed to different applications during video call. A first application (e.g., a video call application) receives visual content from a first camera system while in a video call. The user can request to activate a second application, such as a photography application that allows the user to capture and display, store, or otherwise process visual content. A visual content routing system routes visual content captured by a second camera system (e.g., a rear facing camera system) to the second application concurrently with routing visual content captured by the first camera system (e.g., a front facing camera system) to the first application.
US11516433B1 Representation and compression of gallery view for video conferencing
The development of a region of interest (ROI) video frame that includes only ROIs of interest and not other elements and providing the ROI video frames in a single video stream simplifies the development of gallery view continuous presence displays. ROI position and size information metadata can be provided or subpicture concepts of the particular codec can be used to separate the ROIs in the ROI video frame. Metadata can provide perspective/distortion correction values, speaker status and any other information desired about the participant or other ROI, such as name. Only a single encoder and a single decoder is needed, simplifying both transmitting and receiving endpoints. Only a single video stream is needed, reducing bandwidth requirements. As each participant can be individually isolated, the participants can be provided in similar sizes and laid out as desired in a continuous presence display that is pleasing to view.
US11516432B2 Mode control and content sharing
A system controls a teleconferencing device by detecting a current operating state of the teleconferencing device and detecting a contact with a touch-screen device associated with a selection of an audio and a visual input, a selection of an option from a list of options that performs an action in the teleconferencing device, or a transferring of a virtual object between a plurality of devices. The system continuously senses a gesture across the touch-screen device by identifying a first contact with the touch-screen, a distance of a continuous contact with the touch screen, and a last contact with the touch-screen. The process executes a command associated with the selection of an audio and a visual input, the selection of an option from a list of options that performs an action in the teleconferencing device, or the transferring of a virtual object between a plurality of devices.
US11516431B2 Meeting privacy protection system
An intrusion detection system detects when an unexpected person enters the environment of a user who is in a meeting. A privacy protection action which is an action that is to be taken in response to the detected intrusion, is identified. Audio and/or video systems are then controlled to perform the privacy protection action. Machine learning can be used, based upon user interactions, to improve intrusion detection and other parts of the system.
US11516426B1 System and method for robust remote video recording with potentially compromised communication connection
A system, apparatus, computer program product, and method perform controlled video recording of video captured by a camera. The method includes checking by recorder circuitry of receipt of a ping signal sent from a server to the recorder, the ping signal being expected to be received by the recorder circuitry within a predetermined time interval after an earlier ping signal was received (or when an initial ping signal was expected to be received), in response to a determination by the recorder circuitry of not receiving the ping signal, entering an autonomous recording mode, the autonomous recording mode including recording video provided from at least one camera, and continuing operation of the autonomous recording mode until at least one of receiving another ping signal by the recorder circuitry, or receiving a control signal from the server that directs the recorder to stop recording the video provided from the at least one camera.
US11516425B2 Display apparatus
A display apparatus according to an embodiment of the present disclosure includes: a display cell that displays an image and has a thin-plate shape; one or more vibration exciters that are disposed on rear-surface side of the display cell and cause the display cell to vibrate; and an opposing plate opposed to the display cell with an air gap in between. The display apparatus further includes a sound-spreading adjustment member that is disposed between the display cell and the two or more vibration exciters, and controls spreading of a sound generated by vibration caused by the two or more vibration exciters.
US11516423B2 Photoelectric conversion device and image forming apparatus
A photoelectric conversion device includes first to fourth pixel columns. Each of the first to fourth pixel columns includes a plurality of pixels arranged in a predetermined direction. Each of the plurality of pixels arranged in the first to fourth pixel columns includes a photoelectric conversion element configured to receive light of a wavelength region and generate a signal charge. Each of the plurality of pixels arranged in the first to fourth pixel columns further includes a circuit configured to convert the signal charge generated by the photoelectric conversion element into a voltage signal. Directions of reading the voltage signals from the first pixel column and the second pixel column are different from directions of reading the voltage signals from the third pixel column and the fourth pixel column.
US11516422B2 Image sensor having column-level correlated-double-sampling charge transfer amplifier
Correlated double sampling column-level readout of an image sensor pixel may be provided by a charge transfer amplifier that is configured and operated to itself provide for both correlated-double-sampling and amplification of floating diffusion potentials read out from the pixel onto a column bus after reset of the floating diffusion (I) but before transferring photocharge to the floating diffusion (the reset potential) and (ii) after transferring photocharge to the floating diffusion (the transfer potential). A common capacitor of the charge transfer amplifier may sample both the reset potential and the transfer potential such that a change in potential (and corresponding charge change) on the capacitor represents the difference between the transfer potential and reset potential, and the magnitude of this change is amplified by the charge change being transferred between the common capacitor and a second capacitor selectively coupled to the common capacitor.
US11516419B2 Digital time stamping design for event driven pixel
An event driven pixel includes a photodiode configured to photogenerate charge in response to incident light received from an external scene. A photocurrent to voltage converter is coupled to the photodiode to convert photocurrent generated by the photodiode to a voltage. A filter amplifier is coupled to the photocurrent to voltage converter to generate a filtered and amplified signal in response to the voltage received from the photocurrent to voltage converter. A threshold comparison stage is coupled to the filter amplifier to compare the filtered and amplified signal received from the filter amplifier with thresholds to asynchronously detect events in the external scene in response to the incident light. A digital time stamp generator is coupled to asynchronously generate a digital time stamp in response to the events asynchronously detected in the external scene by the threshold comparison stage.
US11516415B2 Methods and apparatus for ambient light suppression with subtractive image sensor
The effect of ambient light on a measurement taken by an imaging pixel may be reduced by employing two optical filters. The two filters may have narrow passbands that are close to each other but do not overlap. The first filter may allow ambient and active light to pass. The second filter may allow ambient light to pass but may block active light. The ambient and active light that passes through the first filter may cause electrical charge to be generated in a photodiode of the pixel. The ambient light that passes through the second filter and strikes another pixel element may control the amperage of an electrical current that depletes charge from the photodiode. For instance, the other element may be a photoresistor, the light-dependent resistance of which controls the amperage, or may be a second photodiode that generates charge that controls a transistor that controls the amperage.
US11516402B1 Realtime image analysis and feedback
Performing realtime image analysis and providing realtime feedback are disclosed. A stream comprising a plurality of arriving RAW images is received. A RAW image included in the stream is sent to a graphics processing unit (GPU). A result of the GPU is used to generate a visualization corresponding to the RAW image. The visualization is co-presented with a realtime view of a scene in a display.
US11516397B2 Camera module and method for controlling the same
A camera module is provided, disposed in an electronic device, including a base, a holder, an image sensor, a bottom, and a first biasing element. The base is fixed to a casing of the electronic device. The holder is configured to hold an optical lens and connects to the base. The image sensor is supported by the bottom. The base is situated between the holder and the bottom. The first biasing element connects to the bottom and the base, and forces the bottom and the image sensor to move relative to the base.
US11516394B2 Multiple layer flexure for supporting a moving image sensor
Some embodiments may include a multi-layer flexure that may be used in an optical image stabilization voice coil motor (OIS VCM) actuator of a camera. The multi-layer flexure module may include a dynamic platform and a static platform along with multiple layers of flexure arms that mechanically connect the dynamic platform to the static platform. In some examples, the multi-layer flexure may include electrical traces configured to convey signals from the dynamic platform to the static platform. The electrical traces may be routed from the dynamic platform to the static platform via the flexure arms. In some embodiments, a multi-layer flexure may have a greater stiffness in a Z-direction aligning with an optical axis of a camera and may have a lower stiffness in X and Y directions corresponding to optical image stabilization directions of an OIS VCM actuator.
US11516393B2 Imaging apparatus to which an interchangeable lens apparatus is attached that utilize image circle information of an imaging optical system in the interchangeable lens apparatus
An interchangeable lens apparatus attachable to an imaging apparatus configured to move an image sensor in an image stabilization includes an imaging optical system, a storage unit configured to store image circle information including a relationship between an imaging condition and position information of an image circle of the imaging optical system, and a transmission unit configured to transmit at least part of the image circle information to the imaging apparatus.
US11516389B2 Image sensing device, method and device, electronic apparatus and medium
An image sensing device, method, an electronic apparatus, and a medium are provided. The image sensing device includes an image acquisition circuit comprising a plurality of image acquisition layer arrays, where at least one of the plurality of image acquisition layer arrays includes a reference layer, a first acquisition layer, and a second acquisition layer. The first acquisition layer is located under the reference layer and is configured to interact with the reference layer, to which a first electric signal is applied, to generate a first image signal. The second acquisition layer is located under the first acquisition layer and is configured to interact with the first acquisition layer to generate a second image signal. An image processing circuit is connected with the image acquisition circuit and configured to generate a target image according to the first image signal and the second image signal.
US11516385B2 Dynamic quality proxy plural camera image blending
Examples are disclosed that relate to blending different types of images captured by different types of cameras employing different sensing modalities based on a dynamic weighting. The dynamic weighting is calculated based on a dynamic quality proxy that serves as an approximation of image quality that may change from image to image. In one example, a first image of a scene is received from a first camera. A dynamic quality proxy is received. A second image of the scene is received from a second camera with a different sensing modality than the first camera. A composite image blended from the first and second images in proportion to a dynamic weighting that is based on the dynamic quality proxy is output.
US11516384B1 Operating system integrated image capture guidance
Systems and techniques for operating system integrated image capture guidance are described herein. An indication may be received of an object to be captured for completing a transaction. Configuration data may be obtained for an image of the object. The configuration data may indicate an orientation of the object in the image. An image of the object may be obtained from an imaging sensor of a device. A discrepancy may be determined between the orientation of the object in the image using the configuration data. Orientation guidance may be generated that indicates repositioning of the object in the image. It may be determined that the discrepancy between the orientation of the object in the image has been eliminated. Capture guidance may be generated for output via the device based on a set of commands determined based on detection of an operating system executing on the device.
US11516383B2 Adaptive camera control for reducing motion blur during real-time image capture
A method of forming a visual representation of an object from a plurality of image frames acquired using a portable electronic device, the method comprising the steps of determining at least one parameter of motion of the portable electronic device; determining at least one capture condition for at least one first image frame of the plurality of image frames; computing, based on the at least one parameter of motion and the at least one capture condition, an indication of blur in the image frame; based on the indication of blur, conditionally taking a corrective action.
US11516380B2 Method of controlling camera device in an electronic device in various instances and electronic device thereof
An electronic device and a method for controlling a camera device in the electronic device are provided. The electronic device includes a display, a camera device disposed at a location overlapping a partial area of the display, and a processor that controls the camera device based on information input through an adjacent area of the partial area of the display or an adjacent area including the partial area of the display.
US11516379B2 Lens control device, lens control method, and recording medium
An imaging apparatus is able to perform limit control of limiting a drive range of a focus lens and performing control of the focus lens. When first information regarding an end position of the drive range of the focus lens in the limit control is set, a body control unit drives the focus lens from a position set as one end position of the drive range of the focus lens in the limit control on a near side and a far side to one end position of the movable range of the focus lens on a near side and a far side, and then stores information corresponding to a drive amount during the drive as the first information.
US11516378B2 Methods and apparatus employing a phase detection autofocus (PDAF) optical system
Apparatus and methods employing a PDAF optical system are disclosed herein. An example apparatus includes an image sensor comprising a plurality of pixels. The plurality of pixels include a set of pixels configurable to be imaging pixels or focus pixels. The image sensor is configured to generate image data of a scene based on received light at the plurality of pixels. The example apparatus also includes a processor coupled to the image sensor. The processor may be configured to receive first image data of a first frame of the scene, determine at least one region of interest or region of non-interest of the first frame, select, based on the determined at least one region of interest or region of non-interest, a subset of the set of pixels to be focus pixels, and cause the selected subset of the set of pixels to operate as focus pixels.
US11516375B2 Display device
The display device includes a liquid crystal panel having pixels, and an imaging device arranged on a backside of the liquid crystal display panel, wherein in an imaging area of the liquid crystal display panel overlapping the imaging device, the pixels are controlled so that black display pixels and white display pixels are alternately lined up in a row direction according to an operation of the imaging device.
US11516374B2 Under-display image sensor
A device includes a display and a first light source configured to emit light, wherein the first light source is proximate to the display. The device further includes a first camera disposed behind the display, wherein the first camera is configured to detect reflections of the light emitted by the first light source. The first camera is further configured to capture a first image based at least in part on the reflections, wherein the reflections are partially occluded by the display. The device also includes a second camera proximate to the display, wherein the second camera is configured to capture a second image. In addition, the device includes a depth map generator configured to generate depth information about one or more objects in a field-of-view (FOV) of the first and second cameras based at least in part on the first and second images.
US11516372B2 Image capturing apparatus, information processing apparatus, methods for controlling the same, image capturing apparatus system, and storage medium
An image capturing apparatus includes a reception unit configured to connect with an external device, which is able to transmit a plurality of learned models, and receive list information of a plurality of learned models, a selection unit configured to select, based on the list information of the plurality of learned models, a learned model from the plurality of learned models, and a transmission unit configured to transmit a transmission request for the learned model selected by the selection unit to the external device, wherein, the reception unit receives the selected learned model transmitted from the external device.
US11516371B2 Cleaning apparatus for a detection surface of a detection element
A cleaning apparatus that cleans a detection surface of a detection element, comprises an attachment to which a detection apparatus including the detection element can be attached, a communication unit configured to communicate with the detection apparatus, a cleaning unit configured to clean the detection surface of the detection element, and a control unit configured to control a driving unit of the detection element included in the detection apparatus through the communication unit. When cleaning by the cleaning unit, the control unit controls the position of the detection element by driving the driving unit through the communication unit.
US11516370B2 Image display apparatus and image display method
An image display apparatus displays an image to be printed on a desired printing medium by using a desired printing apparatus. In this process, medium images corresponding to the tint of the printing medium illuminated with one of illumination light fluxes having a plurality of color temperatures are displayed on a specific display with the medium images associated with the color temperatures of the illumination light fluxes, and specification of one of the medium images or the color temperature associated with the medium image is accepted. When the specification is made, an illumination light flux reflecting image having the tint of the image printed on the printing medium by the printing apparatus and illuminated with the illumination light flux having the color temperature corresponding to the specification is displayed on the specific display.
US11516367B2 Reading device, image forming apparatus, image reading method, and recording medium
A reading device includes a visible light source to irradiate a subject with light having a visible wavelength; an invisible light source to irradiate the subject with light having an invisible wavelength; first and second image sensors to receive reflected light from the subject being irradiated with the light having the visible wavelength and the light having the invisible wavelength, and circuitry. The first image sensor generates visible image data containing a first invisible component, and the second image sensor generates invisible image data of a second invisible component. The circuitry removes the first invisible component contained in the visible image data using the invisible image data. The circuitry multiplies the invisible image data with the correction coefficient that absorbs an individual variation in removal of the first invisible component, and the correction coefficient is generated based on the visible image data and the invisible image.
US11516363B2 Image forming apparatus, method for controlling thereof, and storage medium
An image forming apparatus includes a detection unit configured to detect an object, a reception unit configured to receive an operation of a user, and a shifting unit configured to shift, if the detection unit detects an object, a power state of the image forming apparatus from a first power state to a second power state different from the first power state, and shift, if the reception unit receives an operation of a user, the power state of the image forming apparatus from the second power state to the first power state.
US11516362B1 Methods and systems for using halftone screening for security markings and other graphics
A method for preparing a select graphic for printing using a digital printing device includes receiving the select graphic, at least one position for printing the select graphic, and a select spot color name for the select graphic, wherein the select spot color name represents a tone printable using at least one colorant of the digital printing device; generating a select spot color separation for the select graphic using a halftone screen to produce the tone represented by the security spot name, wherein the halftone screen is selected for printing the select graphic without a discernible dot pattern upon unmagnified viewing; and preparing raster data incorporating the select spot color separation for printing the select graphic at the at least one position on the item.
US11516361B2 Image forming apparatus and image forming method
An image forming apparatus that forms an output image including an authentication image for authenticity determination on a medium. The image forming apparatus includes: a recording head configured to discharge a droplet onto the medium; a drive unit configured to perform main scanning in which the recording head moves in a main scanning direction and sub scanning in which the medium is fed in a feeding direction; and a control unit configured to control, based on image formation data representing the output image, the main scanning and the sub scanning performed by the drive unit, and the discharge of the droplet performed by the recording head. The control unit performs a control to form the authentication image by a plurality of times of the main scanning in which feeding positions of the medium in the feeding direction are different, and performs a control so that at least one feeding amount of the medium in one sub scanning is different between a feeding amount at time of forming the authentication image and a feeding amount at time of forming a portion of the output image that does not include the authentication image.
US11516356B2 Image forming apparatus
In a normal mode that is a mode when a user performs a printing work, a wireless operation unit shifts to a second mode when the wireless operation unit is not operated for a first predetermined time in a first mode. In a maintenance mode when a repairman performs a maintenance work, the wireless operation unit does not shift to the second mode even if the wireless operation unit is not operated for the first predetermined time in the first mode. In addition, in the maintenance mode, if the remaining amount of a battery is equal to or greater than a predetermined amount in the first mode, the wireless operation unit does not shift to the second mode, and if the remaining amount of the battery is less than the predetermined amount, the wireless operation unit shifts to the second mode.
US11516355B2 Defect detection for multi-function devices using machine learning
A method is disclosed. For example, the method executed by a processor of a multi-function device (MFD) includes executing a defect learning routine to identify defects, cataloging the defects based on a job function, a type of paper, and a machine state, receiving a job request, determining a known defect that has been catalogued based on the job function, the type of paper, and the machine state, and presenting a visualization of the known defect on a display of a user interface before executing the job request.
US11516353B2 System to download a scanned file from a server using a displayed access code
A reading apparatus comprises: an upload unit that uploads to a server a scanned file; and a display control unit that obtains an access code which is generated and for accessing an upload destination of the scanned file and displays the generated access code on a display unit. A portable terminal comprises: a reading unit that reads the displayed access code; an access unit that obtains information indicating an upload destination of the scanned file based on the reading and, using the obtained information, accesses the upload destination; and a download unit that downloads the scanned file from the upload destination. The information indicating the upload destination of the scanned file includes authentication information related to an access of the upload destination of the scanned file.
US11516351B2 Back-off timer for network reattachment
Various communication systems may benefit from improved network signaling or attachment. A method, in certain embodiments, may include receiving at a network node an initial attachment request message from a user equipment. The method may also include issuing a back-off timer when accepting the initial attachment request from the user equipment. The back-off timer may include a duration of time in which the user equipment is not allowed to reattach to a network. In addition, the method may include receiving at the network node another attachment request message from the user equipment. Further, the method may include determining whether the duration of the back-off timer has lapsed, and rejecting the another attachment request from the user equipment when the duration of time of the back-off timer has not lapsed.
US11516348B2 Voice enabled IoT using second line service
Enablement of a voice channel being established between an IoT device and a controller through the use of a voice-line service system.
US11516347B2 Systems and methods to automatically join conference
Systems and methods are described to enable a device of a user to automatically join an ongoing conference, where the device is not currently joined to the conference. A first audio signature is generated based on voices of users already in the conference, and a second audio signature is generated based on an audio signal captured by a microphone of the device associated with the first user when the device associated with the first user was not joined to the conference. The first audio signature and the second audio signature are compared, and in response to determining that first audio signature matches the second audio signature, the device associated with the first user is joined to the conference.
US11516345B1 Template-based management of telecommunications services
Certain aspects of the disclosure are directed to template-based management of telecommunications services. According to a specific example, a server is provided comprising one or more computer processor circuits configured to interface with a remotely-situated client entity using a first programming language. The server includes a call control engine that is configured to provide a private branch exchange (PBX) for the client entity, and identify a call control template written in a second programming language. The call control engine is further configured to control call routing by the PBX, by executing the call control template to identify at least one data source that corresponds to a call property for the VoIP telephone call, retrieve data from the data source, and implement one or more call processing functions specified by the call control template as being conditional upon the retrieved data.
US11516343B2 Intent analysis for call center response generation
A system obtains conversation data corresponding to conversations between users and agents of a client. The system identifies a set of intents from the conversations and identifies a set of contexts, explicit elements, and implied elements of these intents. The system identifies actions that can be performed to recognize new explicit and implied elements from new conversations and to address intents in these new conversations. Based on these actions, the system generates a set of recommendations that can be provided to the client. As agents communicate with users, the system monitors adherence to the set of recommendations.
US11516342B2 Calling contacts using a wireless handheld computing device in combination with a communication link establishment and management system
A mobile application for a wireless handheld computing device, such as a smartphone, is disclosed in combination with a communication link establishment and management system. Systems and methods are disclosed for calling desired contacts using a smartphone that can take advantage of the power and efficiency of agent-assisted dialing provided by the communication link establishment and management system. The systems and methods automatically integrate with a customer relationship management (CRM) system connected to the communication link establishment and management system.
US11516336B2 Surface detection for mobile devices
A disclosed example includes providing vibration information to a model, the vibration information corresponding to a first vibration measured at a first mobile device when the first mobile device is in a state of non-use by a user, the model based on a plurality of vibration patterns that correspond to second vibrations measured by second mobile devices in different environments; identifying, using the model, one of the vibration patterns that corresponds to the vibration information; determining an environment of the first mobile device based on the one of the vibration patterns; and instructing the first mobile device to modify a functionality of the first mobile device based on the environment.
US11516333B2 Enhanced calling systems and methods
Systems and methods described herein may present one or more enhanced communication features during a call. A destination identifier for a communication sent by a first device may be detected, the destination identifier being an identifier associated with a second device. A source identifier for the communication sent by the first device may be detected, the source identifier being an identifier associated with the first device. A direct connection between the first device and the second device may be established. By the direct connection, at least one call-enhancing element may be shared with the first device and the second device, the at least one call-enhancing element being associated with at least one of the source identifier and the destination identifier.
US11516329B2 Mobile terminal and auxiliary device connected thereto
The present disclosure provides an auxiliary device that implements both free-stop hinge and click hinge and includes a seating member forming a seating area for a mobile terminal to implement a neat appearance and a hinge module rotatably connecting the cover member to the seating member, wherein the hinge module includes a holder, a rotation member including a first rotation member fixed to the seating member to form a first rotation axis between the holder and the seating member, and a second rotation member fixed to the cover member to form a second rotation axis between the holder and the cover member, the second rotation axis being parallel with the first rotation axis, and an elastic member configured to elastically press the rotation member to prevent a rotation due to a predetermined magnitude of force or less.
US11516328B2 Systems and methods for an adjustable, quck release, positive pressure, electronic device holder
A system for holding an electronic device includes a body portion, the body portion having a surface. The system further includes a first gripping plate and a second gripping plate, each of the first and second holding pieces including a holding surface approximately perpendicular to the surface. The system further includes a first and second arm interconnected with the first and second gripping plate such that the first and second arm are rotationally movable and the first and second gripping plate are linearly moveable, the first and second gripping plate spring driven to move together, the first and second gripping plate configured to move apart when the first and second arm are moved together, the first and second gripping plate being complementarily shaped to hold the electronic device.
US11516317B2 Processing data in a network
A method of processing data in a network is disclosed. The method comprises transmitting, from a first server to a second server, first information characterising a first predefined format according to which first data is stored at a first data store; obtaining, at the second server, mapping information characterising a mapping of the first predefined format onto a second predefined format different to the first predefined format; generating, at the second server, based on the first information and the mapping information, second information for converting data in the first predefined format into data in the second predefined format; transmitting, from the second server to the first server, the second information; and parsing, at the first server, using the second information, the first data stored at the first data store, to generate data in the second predefined format. Apparatuses are also disclosed.
US11516316B2 Systems and methods of communicating electronic data transaction updates to client computer systems
A computer system is provided that includes a storage system, at least one transceiver, and a processing system with at least one hardware processor. The storage system stores a first list pair. The transceiver receives electronic data messages that each include a respective data transaction request. The processing system determines how the new data transaction request should be processed based on which communication protocol was used to submit the request. Updates regarding the first list pair are sent out to non-party client computer systems using different communication protocols, where one is faster than the other, but the slower update includes private data therein.
US11516315B2 Communication device of controller and communication method thereof
In an aspect of the disclosure, a communication method of a controller is disclosed. One form of a method may include: transmitting a diagnostic information request and attribute information of a diagnostic device to an Ethernet ECU; in response to the diagnostic information request, determining a protocol type of the diagnostic device based on the attribute information; controlling the Ethernet ECU to perform protocol conversion according to the determination result; and receiving a diagnostic message from the Ethernet ECU in response to the diagnostic information request by diagnostic device.
US11516314B2 Systems and methods for establishing asymmetric network communications
A method of establishing an asymmetric network between at least one node device and a gateway device is provided. The method may include transmitting a reduced data package from the node device, receiving the reduced data package in a data stream at the gateway device, validating bits of the data stream, and retrieving the reduced data package based on the validated bits.
US11516313B2 Language binding for DDS types that allows publishing and receiving data without marshaling
A method for reducing a number of copies required to send a data sample with a Data Distribution Service (DDS) type in a system using an Object Management Group (OMG) Data Distribution Service (DDS) and a Real-Time Publish Subscribe (RTPS) protocol is provided. Key to the invention is the definition/creation of a memory representation of the data samples for the DDS type that is equal to the network representation of the data samples for the DDS type. Sending of data samples to the DataReader is accomplished without making a serialization copy of the data samples, and for the receiving the data samples from the DataWriter is accomplished without making a deserialization copy of the data samples. Further, a method is provided for accessing to a network representation of data samples with a DDS type in a system using an OMG DDS and a RTPS protocol.
US11516312B2 Kubernetes as a distributed operating system for multitenancy/multiuser
A client device sends a connection request to a virtual system in a Kubernetes cluster. The connection request identifies the client device and the application to which the request pertains. Based on a tenant associated with the client device, the virtual system connects the client device to an instance of the application. The instance of the application has access to data for the tenant but not for other tenants. Another client device of the tenant sends another connection request to the virtual system for a connection to another application. Because the tenant is the same, the instance of the other application may access the same data as the instance of the first application. In this way, applications for a single tenant may share data while maintaining the security of the data from other tenants.
US11516309B2 Transparent pre-loading of user applications
A user device includes a memory and one or more processors. The memory is configured to store one or more user applications installed in the user device. The one or more processors are configured to run an Operating System (OS) of the user device, including maintaining a data structure that tracks activity of the user applications, and to pre-load a user application before the user application is accessed by a user, including preventing the data structure from tracking the pre-loaded user application.
US11516302B2 Network service discovery
Examples described herein provide network service discovery in a network. Examples herein include receiving, from a network device in the network, a set of records corresponding to a set of service advertisements indicative of capabilities of services hosted by respective host devices connected to the network device. Examples herein include determining, a set of neighbor network devices corresponding to the network device, based on radio frequency (RF) data in the network and a predefined set of policies associated with each of the set of records. Examples herein further include sending the set of records to the set of the neighbor network devices, where each of the set of neighbor network devices is to serve service discovery requests based on the set of records.
US11516294B2 Switch device, monitoring method and monitoring program
A switch device includes: a switch unit configured to relay an Ethernet frame between a plurality of function units installed in a vehicle; a monitoring unit configured to monitor predetermined data in the Ethernet frame; and a specification unit configured to specify a protocol being used by a target function unit which is a function unit serving as a transmission source of the Ethernet frame, based on a monitoring result of the monitoring unit. The monitoring unit performs an operation monitoring process of selectively monitoring an operation of the target function unit according to the target protocol that is the protocol specified by the specification unit.
US11516293B2 Network device, control system and method thereof
The present invention relates to a control system for a network device. The control system comprises a network device for connecting to a network and transmitting status information of the network device; a host server for receiving the status information via the network and transmitting action information related to the network device, wherein the action information includes at least an action command; and a Message Queuing Telemetry Transport (MQTT) server for receiving the action information from the host server, and transmitting the action information to the network device, wherein the network device executes the action command according to the received action information.
US11516291B2 Secure communications of storage tenants that share a storage cluster system
A first set of one or more tenant communication components are configured to communicate with a first separate system component of a first storage tenant via a first virtual network. A second set of one or more tenant communication components are configured to communicate with a second separate system component of a second storage tenant via a second virtual network. The second virtual network is separate from the first virtual network. A plurality of tenant communication components of the storage cluster system including the first set of one or more tenant communication components and the second set of one or more tenant communication components are configured to communicate internally in the storage cluster system via a third virtual network separate from the first virtual network and the second virtual network.
US11516289B2 Method and system for displaying similar email messages based on message contents
A method and system for identifying changes to a data set, such as data within a mailbox, and performing actions based on the identified changes is discussed. In some examples, the system receives an indication of a change to a mailbox, creates a change journal entry for the change, and identifies data to be copied via the change journal entry. In some examples, the system leverages the change journal to associate messages with changes to a mailbox.
US11516284B2 Interactive system, terminal apparatus, server apparatus, control method, program, and recording medium
An interactive system includes a terminal apparatus that is connected to a server apparatus via a network. The terminal apparatus requests the server apparatus to code a game image related to a game program. The server apparatus codes the game image related to the game program in response to an input operation signal from the terminal apparatus, and transmits coded moving image data of the game image to the terminal apparatus. The server apparatus includes an execution memory storing the coded moving image data requested by the terminal apparatus. In a case where communication with the terminal apparatus is stopped, the server apparatus suspends coding of the game image and holds the coded moving image data in the execution memory as suspended data.
US11516283B2 Multi-tenant-cloud-aggregation and application-support system
The present application is directed to a distributed system that provides multi-cloud aggregation and that includes a cloud-connector server, cloud-connector nodes, and one or more service-provider nodes that cooperate to provide services that are distributed across multiple clouds. A service-provider node obtains tenant-associated information from a virtual data center in which the service-provider node is installed and provides the tenant-associated information to the cloud-connector server.
US11516280B2 Configuration change processing for content request handling
Disclosed herein are methods, systems, and software for configuration change processing for end-user content request handling in content delivery nodes. In one example, a method of changing a content configuration for a content delivery node includes receiving a configuration change request by an end user. The method further provides, processing the configuration change request and a present configuration to generate a changed configuration comprising an assembly level code representation of the changed configuration, and transferring the changed configuration for delivery to the content delivery node.
US11516278B2 Transmission management system, transmission system, and recording medium
A transmission management system includes a destination name data managing unit which manages a plurality of destination name data items which indicate a plurality of names of a destination in communications between transmission terminals, a destination name data reading unit which reads a destination name data item from the plurality of destination name data items managed by the destination name data managing unit, and a destination name data transmitting unit which transmits the destination name data item read by the destination name data reading unit to a transmission terminal capable of communicating with the destination.
US11516277B2 Script-based techniques for coordinating content selection across devices
Methods and systems are disclosed for coordinating content selection across devices. A user device may transmit a request for webpage content and in response, may receive response communications that include the webpage content, embedded content, and a script. The user device may retrieve a device identifier initially generated by a remote system from a locally stored data object. The user device can detect, using the script, whether at least part of the embedded content is being presented within a portion of the webpage that is displayed on a screen of the user device. The user device may then transmit a report communication to a remote ID-graph system that includes the device identifier and an indication as to whether the at least part of the embedded content was presented within the portion of the webpage that was displayed on the screen of the user device.
US11516275B2 Subscription-notification mechanisms for synchronization of distributed states
A method of rotating assigned credentials for client devices registering with servers may include determining that assigned credentials for a client device are expired; in response to determining that the assigned credentials have expired, generating new credentials for the client device; sending the new credentials to the client device; generating an encrypted version of the new credentials and storing the encrypted version of the new credentials at the server during a grace period, where during the grace period the client device can be authenticated using the assigned credentials or the new credentials; and deleting the encrypted version of the new credentials at an expiration of the grace period.
US11516274B2 Video playback bit rate estimation device and method, non-transitory computer-readable medium containing program, and communication quality measurement device
A throughput division means (11) divides a throughput of a communication between a video delivery server configured to deliver, in a plurality of delivery modes, video data to a user terminal device used by a user and the user terminal device in a delivery period of the video data, according to a period of each delivery mode. A playback bit rate estimation means (12) estimates a playback bit rate of the video data, based on a throughput divided according to a period of the delivery mode. Thus, estimation precision of a video playback bit rate can be improved even when a video delivery server delivers video data in a plurality of delivery modes.
US11516270B1 Network protocol for enabling enhanced features for media content
A web server provides media content for playback on client devices that is associated with a set of enhanced features. When enabled, each enhanced feature provides functionality associated with and supplemental to the media content. The web server performs a handshake with each of a plurality of client devices to authenticate a communication channel. The web server enables one or more of the enhanced features while delivering media content for playback on a first device if information exchanged in the handshake with the first device satisfies a first criterion. The web server delivers the media content for playback on a second device, without enabling any of the enhanced features, if information exchanged in the handshake with the second device does not satisfy the first criterion.
US11516264B2 Methods and systems for soliciting an answer to a question
A question-and-answer application with an “ask-to-answer” feature is described. The ask-to-answer feature enables any user to solicit an answer to a question from another user. Upon soliciting another user for an answer to a particular question, a message with a call to action is directed to the solicited user. The message may include a copy of the text of the question and may provide a mechanism (e.g., a selectable user interface element) enabling the solicited user to pass on answering the question. Subsequent to the solicitation, the question page for the question will include a notification with information about the solicitation, including in some instances information identifying the user who has been asked to answer the question and the number of times the user has been asked to provide an answer to the question.
US11516261B2 IMS routing based on subscriber type
A network operator can partition network elements, including elements of an IP Multimedia Subsystem (IMS) or Policy and Charging Rules Functions (PCRFs) into groups reserved for specific types of subscribers. When a user equipment (UE) registers with an IMS, elements of the IMS can contact a Home Subscriber Server (HSS) to determine a subscriber type associated with the UE. Based on the UE's subscriber type, an IMS element can determine an application server or other IMS element to contact about the UE based on identifying application servers or IMS elements that are also associated with the same subscriber type as the UE. Similarly, an IMS element can determine a PCRF to contact about the UE based on identifying a PCRF that is associated with the same subscriber type as the UE.
US11516259B2 System and method for role validation in identity management artificial intelligence systems using analysis of network identity graphs
Systems and methods for embodiments of a graph based artificial intelligence systems for identity management are disclosed. Embodiments of the identity management systems disclosed herein may utilize a network graph approach to analyzing roles of a distributed networked enterprise computing environment. Specifically, in certain embodiments, an artificial intelligence based identity management systems may utilize role graphs to assess the role structure of a distributed enterprise computing environment.
US11516251B2 File resharing management
Managing file distribution in an online file sharing system implemented by at least one server includes inviting a first entity to access a shared file hosted by the online file sharing system, and allowing the first entity to reshare the shared the through the online file sharing system with at least a second entity only to an extent permitted by a resharing policy stored by the online file sharing system.
US11516249B1 On-demand scanning of e-mail attachments
An attachment to an e-mail message received at an e-mail gateway is scanned by a scan server and then is converted into an HTML file. The HTML file includes preview data of the attachment (minus any macro scripts), the entire original data of the attachment, scan functionality enabling a user to send the attachment back to a scan server for a second scan, or extract functionality enabling a user to extract the original attachment data for saving or opening in an application. The recipient is able to open or save the attachment directly if he or she believes it comes from a trusted sender. If the attachment seems suspicious, the recipient previews the attachment first before performing a scan, opening the attachment or deleting it. The recipient performs a scan of the attachment by clicking a “scan” button to send the attachment to a backend server for a second scan where an updated virus pattern file may be available to detect any zero-day malware.
US11516241B2 Rule-based network-threat detection
A packet-filtering device may receive packet-filtering rules configured to cause the packet-filtering device to identify packets corresponding to network-threat indicators. The packet-filtering device may receive packets and, for each packet, may determine that the packet corresponds to criteria specified by a packet-filtering rule. The criteria may correspond to one or more of the network-threat indicators. The packet-filtering device may apply an operator specified by the packet-filtering rule. The operator may be configured to cause the packet-filtering device to either prevent the packet from continuing toward its destination or allow the packet to continue toward its destination. The packet-filtering device may generate a log entry comprising information from the packet-filtering rule that identifies the one or more network-threat indicators and indicating whether the packet-filtering device prevented the packet from continuing toward its destination or allowed the packet to continue toward its destination.
US11516235B2 System and method for detecting bots based on anomaly detection of JavaScript or mobile app profile information
A system and method for detecting bots. The method includes receiving a request to access a server, the request is being received from a client device, and responsive to the request, causing the client device to download a script code file to the client device. The script code file, when executed, collects a profile, and the profile includes a plurality of parameters. The method also includes receiving the created profile, generating a score based on the plurality of parameters to identify a bot, and initiating a mitigation action based on the identified bot.
US11516233B2 Cyber defense system
In one aspect, a computer-implemented method of detecting network security threats comprises the following steps: receiving at an analysis engine events relating to a monitored network; analysing the received events to identify at least one event that meets a case creation condition and, in response, creating a case in an experience database, the case being populated with data of the identified at least one event; assigning a threat score to the created case based on the event data; matching at least one further event to the created case and populating the case with data of the at least one further event, the threat score assigned to that case being updated in response; and in response to the threat score for one of the cases meeting a significance condition, rendering that case accessible via a case interface.
US11516230B2 Selective encryption of data in motion
Provided is a method for disabling encryption of data in motion in response to an event. The method includes a service processing data. The service may process the data while in a public mode, in which the service is configured to encrypt data in motion. The method further comprises detecting an event that triggers the service to go into a protected mode. The method further comprises isolating the service from one or more public systems in response to detecting the event. The method further comprises deactivating encryption of data in motion, and processing the data without encrypting the data while in motion.
US11516224B2 Using an entity reputation when calculating an entity risk score
A system, method, and computer-readable medium are disclosed for performing event risk score generation operation. The event risk score generation operation includes identifying an anomalous event from a plurality of events enacted by the entity; generating a first event risk severity score based upon the anomalous event; generating a second event risk severity score based upon a historical entity risk function, the historical entity risk function providing an indication of historical security risk of the entity; generating an entity risk severity score for the entity, the generating using the historical entity risk function and the event risk severity score; performing a risk-adaptive prevention operation, the risk-adaptive prevention operation using the entity risk severity score, the risk-adaptive prevention operation adaptively responding to mitigate risk associated with the anomalous event.
US11516219B2 System and method for role mining in identity management artificial intelligence systems using cluster based analysis of network identity graphs
Systems and methods for embodiments of a graph based artificial intelligence systems for identity management are disclosed. Embodiments of the identity management systems disclosed herein may utilize a network graph approach to analyzing identities or entitlements of a distributed networked enterprise computing environment. Specifically, in certain embodiments, an artificial intelligence based identity management systems may utilize the peer grouping of an identity graph (or peer grouping of portions or subgraphs thereof) to identify roles from peer groups or the like.
US11516217B2 Blockchain-based service processing methods, apparatuses, devices, and storage media
Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for blockchain-based service processing. One of the methods includes receiving a service processing request by a first service processing platform from a first user. The first service processing platform is one of a plurality of service processing platforms that access a blockchain network, and service data of the first user is shared between the plurality of service processing platforms over the blockchain network. In response to a determination that the service processing request involves a second service processing platform of the plurality of service processing platforms, it is determined whether the service processing request is permitted to be executed. In response to determining that the service processing request is permitted to be executed, the service processing request is executed over the blockchain network.
US11516213B2 Authentication for requests from third-party interfaces
Methods, systems, and apparatus, including computer-readable media, for authentication requests from third party interfaces. In some implementations, an information request is received to an information system from a computing system that provides a natural language interface, wherein the information request is associated with a user, and (ii) a token corresponding to the information request. In response to receiving the information request, a user data request and the token corresponding to the information request are sent for requesting user profile information for the user associated with the information request. A user identifier is extracted from user profile information received from the trusted profile provider system. A user identity is identified for the user based on a match between the extracted user identifier and a user identifier in a user registry associated with the information system. The information request is processed based on the identified user identity.
US11516210B1 Image-based authentication systems and methods
Systems and methods for authenticating a user are provided. A method may comprise providing interactive media on a computing device associated with a user. The interactive media may comprise a plurality of images. The plurality of images may be presented on a graphical display of the computing device. The method may also comprise receiving input data from the computing device when the user selects a sequence of images from the plurality of images on the graphical display of the computing device. The selected sequence of images may correspond to a sequence of grammatical words. The method may further comprise analyzing the input data by comparing the sequence of grammatical words to a passcode, and authenticating the user when the sequence of grammatical words is equal to the passcode.
US11516209B2 Information processing apparatus and method for controlling information processing apparatus
An image forming apparatus includes a communication interface, a processor, and a memory. The communication interface communicates with an external service including an authorization code flow. The memory stores a front-end application having a UI and a back-end application having no UI and registered in the external service, which are programs executed by the processor. The processor causes the external service to execute the authorization code flow based on the information of the back-end application in response to a request from the front-end application, receives an authorization code from the external service, causes the front-end application to redirect using a URL previously associated with the back-end application on the external service, and acquires an access token from the external service by the back-end application using the authorization code.
US11516207B2 Method for provision of identity verification certificate
A method for facilitating a provision of a certificate that securely verifies an identification of an application is provided. The method includes: validating a bootstrap identity that identifies the application at a time of invocation; generating a first token that is signed with a first private key and transmitting the signed first token to the application; receiving, from an external server, a request for a public key to be used for verifying the first private key; and transmitting the requested public key to the external server in order to prompt the external server to provide the certificate to the application. When prompted to provide the certificate to the application, the external server generates a second token that is signed with a second private key and transmits the certificate in conjunction with the signed second token to the application. The private keys are never shared with the application.
US11516206B2 Cybersecurity system having digital certificate reputation system
A system, method, and computer-readable medium are disclosed for implementing a cybersecurity system having a digital certificate reputation system. At least one embodiment is directed to a computer-implemented method executing operations including receiving a communication having an internet protocol (IP) address and a digital certificate at a device within the secured network; determining whether the IP address is identified as having a high-security risk level; if the IP address has a high-security risk level, assigning a security risk level to the digital certificate based on the security risk level of the IP address; and using the security risk level for the digital certificate in executing the one or more security policies. Other embodiments include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices.
US11516205B2 Managing decryption of network flows through a network appliance
A network appliance receives a communication from a client device that includes a request to establish a network connection to a server. The network appliance establishes, in response to the communication, a single connection between the network appliance and the server based on application of a policy that causes the network appliance to determine not to decrypt data transmitted between the client device and the server. The network appliance transmits encrypted data between the client device and the server over the single connection.
US11516204B1 System and method for secure single sign on using security assertion markup language
A method for providing secure single sign on includes receiving a first data object from an application hosting server, the first data object indicating at least a service provider name and identifying a configuration file corresponding to the service provider name, wherein the configuration file includes at least trusted identity information. The method also includes determining, using the configuration file corresponding to the service provider name, whether the first data object is valid and, in response to a determination that the first data object is valid, generating a response message.
US11516201B2 Encryption and decryption techniques using shuffle function
Encryption and decryption techniques based on one or more transposition vectors. A secret key is used to generate vectors that describe permutation (or repositioning) of characters within a segment length equal to a length of the transposition vector. The transposition vector is then inherited by the encryption process, which shifts characters and encrypts those characters using a variety of encryption processes, all completely reversible. In one embodiment, one or more auxiliary keys, transmitted as clear text header values, are used as initial values to vary the transposition vectors generated from the secret key, e.g., from encryption-to-encryption. Any number of rounds of encryption can be applied, each having associated headers used to “detokenize” encryption data and perform rounds to decryption to recover the original data (or parent token information). Format preserving encryption (FPE) techniques are also provided with application to, e.g., payment processing.
US11516200B2 Controlled token distribution to protect against malicious data and resource access
Techniques are described for controlling data and resource access. For example, methods and systems can facilitate controlled token distribution across systems and token processing in a manner so as to limit access to and to protect data that includes access codes.
US11516197B2 Techniques to provide sensitive information over a voice connection
Embodiments may generally be directed components and techniques to detect a request to provide banking account information over a one or more voice connections, identify the requested banking account information, and generate speech data representing the banking account information requested. In embodiments further include communicating the speech data to another device.
US11516190B1 Secret superposition protocols for quantum computation
Methods, systems and apparatus, including computer programs encoded on computer storage medium, for implementation of secret superposition protocols. In one aspect a method includes, performing, by a sender party, quantum operations on one or more qubits, comprising preparing, according to a predetermined secret superposition protocol, one or more qubits in respective uniform superposition quantum states; transmitting, by the sender party, to a recipient party, and through a secure channel, data indicating use of the predetermined secret superposition protocol; and transmitting, by the sender party and to the recipient party, one or more of the qubits, wherein the recipient party performs one or more measurements on the qubits to verify use of the predetermined secret superposition protocol.
US11516189B2 Virtual transponder utilizing inband telemetry
Systems, methods, and apparatuses for a virtual transponder utilizing inband telemetry are disclosed. A disclosed method for a virtual transponder utilizing inband telemetry comprises receiving, by a vehicle, encrypted host commands from a host spacecraft operations center (SOC). The method further comprises receiving, by the vehicle via the host SOC, encrypted hosted commands from a hosted payload (HoP) operation center (HOC). Also, the method comprises reconfiguring a payload on the vehicle according to unencrypted host commands and/or unencrypted hosted commands. In addition, the method comprises transmitting payload data to a host receiving antenna and/or a hosted receiving antenna. In addition, the method comprises transmitting, by a host telemetry transmitter on the vehicle, encrypted host telemetry to the host SOC. Further, the method comprises transmitting, by the payload antenna, encrypted hosted telemetry to the HOC.
US11516185B2 Methods, systems, and computer readable media for enabling cloud-based management services using an on-sii e management cloud engine
A method for enabling cloud-based management services using an on-site management cloud engine includes establishing a single secure communication channel between a management cloud engine (MCE) located in a customer premises and a cloud management services platform located in a cloud computing infrastructure, receiving, by the MCE from a unified management service (UMS) manager located in the cloud management services platform, a management instruction message directed to at least one network function located in the customer premises via the single secure communication channel, converting instruction data contained in the management instruction message to a legacy protocol recognized by the at least one network function, and providing the converted instruction data to the at least one network function.
US11516180B2 Method and device for installing a node in a home network
A method is provided for installing a new node in a wireless home network having a client network and includes a node able to form a mesh network. A connection of a new node to the client network supplied by the home network node is detected, and an identifier of a client device that is connected to the client network is received. If the client device is known to the home network: the new node is notified that the client device that is connected to the client network must be disconnected from the client network; a connection of the client device to the client network supplied by the node of the home network is detected; and identifiers of the mesh network are transferred to the new node if the connection of the disconnected client device to the client network supplied by the node of the domestic network is detected.
US11516179B2 Automatic recovery from duplicate network addresses
A network device in a network may determine a tentative network address for a network interface of the network device and may determine whether the tentative network address is duplicative of any one of the network addresses in the network. If the tentative network address is duplicative of a network address assigned to another network interface in the network, the network device may store an indication of the other network interface. In response to receiving an indication that a new network address is assigned to the other network interface, the network device may re-determine whether the tentative network address is duplicative of any one of the network addresses in the network. If the network device determines that the tentative network address is not duplicative of any one of the plurality of network addresses in the network, the network device may assign the tentative network address to the network interface.
US11516173B1 Message composition interface
A message composition system to generate and distribute a plurality of messages to individual recipients based on a single message request, wherein each message among the plurality of messages is addressed and sent to a distinct recipient. According to certain embodiments, the message composition system is configured to perform operations that include, receiving a request to generate a message at a client device, causing display of a composition interface in response to the request to generate the message, wherein the composition interface includes a presentation of a menu that includes a list of user contacts, receiving an identification of a plurality of user contacts from among the list of user contacts, and generating a set of messages in response to the identification of the plurality of user contacts, wherein the set of messages are each individually addressed to the users among the plurality of user contacts.
US11516172B2 Systems and methods for email based data ingestion and intelligent workflows
An ingestion server is provided for processing emails and providing intelligent workflows. The ingestion server includes a processor and a memory. The processor is configured to receive an electronic mail message containing a set of email content and to determine a content type. The content type is one of structured content and unstructured content. The processor is configured to identify a parsing module from a plurality of parsing modules to process the set of email content. The processor is configured to apply the identified parsing module to the set of email content to obtain a set of parsed email content. The processor is configured to apply a mapper module to the set of parsed email content to obtain a routing path. The processor is also configured to define an intelligent workflow based on the routing path. The processor is also configured to submit the work item using the intelligent workflow.
US11516170B2 Integrating a third-party platform into a communication platform
Integrating a third-party platform into a communication platform to enable a user to interact with a third-party object from within the communication platform is described. In an example, an actuation mechanism can be associated with a reference to an object, associated with a third-party platform, presented via a user interface of the group-based communication platform. Based at least in part on detecting an input associated with the user interface, the object can be retrieved from the third-party platform. In an example, the object can be presented via the user interface, wherein one or more messages associated with the group-based communication platform are presented via a first section of the user interface and the object is presented via a second section of the user interface, and wherein the first section and the second section are presented simultaneously and are independently interactable.
US11516165B2 Revoking messages within a message chain
Methods and systems for revoking electronic messages. One method includes storing, for each of a plurality of forwarded messages, a record in a data store, each record including a link to an original message for the forwarded message, and receiving a request to revoke a forwarded message. In response to receiving the request, the method includes identifying an original message the forwarded message via a record stored in the data store and notifying, with an electronic processor, a user associated with the original message of the request to revoke the forwarded message. In response to receiving an instruction revoking the original source message from the user, the method includes identifying each forward of the original message via records stored in the data store and revoking the original message and each message associated with each record stored in the data store including a link to the original message.
US11516159B2 Systems and methods for providing a comment-centered news reader
Methods and systems for linking comments to portions of content items. An example computing device receives information associated with a content item produced by a source system, the content item being accessible to other the computing devices via a network and receives a comment associated with the content item, the comment produced by one of the other computing devices. In response to receiving the information and the comment, the computing device predicts a subsection of the content item to link to the received comment based at least on details associated with the content item and the comment, then makes information associated with the predicted subsection of the content item available to other computing devices requesting access to the content item.
US11516158B1 Neural network-facilitated linguistically complex message generation systems and methods
Provided are methods and systems for automated or semi-automated generation of complex messages. Provided systems include neural network(s) that are trained with at least an initial training set including message records having specific characteristics, such as size and form characteristics, and recognize certain user inputted content as “instructional prompts.” The neural network(s) use the instructional prompts, training set, and other prompts to generate a distribution of semantic element options for each semantic element the system determines to include in system drafted message(s). The system selects from among such options to generate a plurality of draft messages which are presented to users for evaluation, editing, or transmission, with the instructional prompts treated as priority content. The systems and methods include mechanisms for reviewing and changing the instructional prompts based on factors that can include the content of the system-generated draft messages before further iterations to enhance the accuracy of future messages.
US11516156B2 Determining reply content for a reply to an electronic communication
Methods and apparatus related to determining reply content for a reply to an electronic communication. Some implementations are directed generally toward analyzing a corpus of electronic communications to determine relationships between one or more original message features of “original” messages of electronic communications and reply content that is included in “reply” messages of those electronic communications. Some implementations are directed generally toward providing reply text to include in a reply to a communication based on determined relationships between one or more message features of the communication and the reply text.
US11516154B2 Systems for managing messaging conversations
A system for managing messaging conversations that can be simultaneous and can be maintained across various different autonomous processing systems is described. In one embodiment, the system (operated by or on behalf of a first organization) can include a messaging manager and a first autonomous processing system (first APS) and a second APS. The system can receive a first message and a second message, both directed to the first organization, and the messaging manager can select the first APS to respond to the first message and route the first message to the first APS which can transmit a response to the first message. The messaging manager can select the second APS to respond to the second message and route the second message to the second APS. The messages can be managed asynchronously without a persistent connection during the one or more conversations.
US11516153B2 Computer system providing a chat engine
A computer system initiates a chat upon receiving a chat input from a user. The computer system records a chat state for the chat. When the chat is at the chat state, the computer system can operate to determine a search criterion from the chat input. The computer can then select a chat response from a chat library based at least in part on the chat state and the search criterion. The chat response can be communicated to the user.
US11516152B2 First-in first-out function for segmented data stream processing
A method of segmented media data processing can include receiving a first sequence of first segments partitioned from a first data stream of a streaming media, and storing the first segments into a first first-in first-out (FIFO) buffer. In the first FIFO buffer, each first segment and attributes associated with each first segment form an entry of the first FIFO buffer. The attributes associated with each first segment can include a start time of the respective first segment, a duration of the respective first segment, and a length of the respective first segment indicating a number of bytes in the respective first segment. The first segments received from the first FIFO buffer can be processed using a first media processing task of a workflow in a network-based media processing (NBMP) system. The first segments received from the first FIFO buffer can be processed independently from each other.
US11516148B2 Techniques for dynamically allocating resources in a storage cluster system
Various embodiments are directed to techniques for dynamically adjusting a maximum rate of throughput for accessing data stored within a volume of storage space of a storage cluster system based on the amount of that data that is stored within that volume. An apparatus includes an access component to monitor an amount of client data stored within a volume defined within a storage device coupled to a first node, and to perform a data access command received from a client device via a network to alter the client data stored within the volume; and a policy component to limit a rate of throughput at which at least the client data within the volume is exchanged as part of performance of the data access command to a maximum rate of throughput, and to calculate the maximum rate of throughput based on the stored amount.
US11516146B2 Method and system to allocate bandwidth based on task deadline in cloud computing networks
A method implemented to provide a virtual network to tenants requiring bandwidth in a cloud computing environment is disclosed. The method starts with receiving a request for a task at a network device, the request including a first parameter indicating VMs required, a second parameter indicating bandwidths the required VMs need, a third parameter indicating a duration of the task, and a fourth parameter indicating a deadline of the task. The network device then selects a starting time and a bandwidth allocation of the task, where the bandwidth allocation is shrank to be smaller than the second parameter indicating, and where the selection aims at minimizing a measurement of cloud resource utilization considering consumptions of both VMs and bandwidth. Then the network device allocates VMs for the request at the starting time with the bandwidth allocated at a particular location in the cloud computing environment.
US11516143B2 Routing and control protocol for high-performance interconnect fabrics
Operating a computer network uses a routing and control protocol, the computer network having an interconnect fabric including routing and control distribution devices and fabric interface devices, each of the routing and control distribution devices and each of the fabric interface devices having a state machine having an input processing unit having parallel input buffers, an output processing unit having parallel output buffers and an arbiter; operating the state machine based on a set of instructions and a table located at the state machine; transferring data from the input processing unit to the output processing unit; choosing a highest priority currently flit occupied parallel input buffer located in the input processing unit for data transmission on a highest priority currently flit occupied channel; and; interrupting the highest currently flit occupied priority channel when one of the parallel input buffers is detected to contain a superseding even higher priority flit.
US11516138B2 Determining network flow direction
A computer-implemented system and method identifies a network flow direction. The method includes observing, by a network flow monitor, a plurality of data packets as each data packet travels past a connection point. The method further includes identifying, from the plurality of data packets, a flow session, wherein the flow session comprises a source port, a source device, a destination device, a destination port, and a communication protocol. The method also includes, gathering, from the plurality of data packets, directional metadata. The method includes, comparing the source port and the destination port against a list of common destination ports. The method further includes determining, based on the plurality of data packets, a flow direction of the flow session. The method includes storing the flow session in a database.
US11516137B2 Content propagation control
Content propagation control can include determining a classification of a message formatted for conveyance over a data communications network. The classification can be based on content of the message and determined using a classification model constructed by analyzing prior message propagation rates and corresponding propagation paths that are each associated with one of multiple message content types. Content propagation control also can include selecting propagation rate and propagation path control indicators based on the classification of the message determined using the classification model and embedding the propagation rate and propagation path control indicators in the message.
US11516133B2 Flow cache management
Packet-processing circuitry including one or more flow caches whose contents are managed using a cache-entry replacement policy that is implemented based on one or more updatable counters maintained for each of the cache entries. In an example embodiment, the implemented policy enables the flow cache to effectively catch and keep elephant flows by giving to the caught elephant flows appropriate preference in terms of the cache dwell time, which can beneficially improve the overall cache-hit ratio and/or packet-processing throughput. Some embodiments can be used to implement an Open Virtual Switch (OVS). Some embodiments are advantageously capable of implementing the cache-entry replacement policy with very limited additional memory allocation.
US11516130B2 Service function chaining SFC-based packet forwarding method, apparatus, and system
A service function chaining (SFC)-based packet forwarding method, an apparatus, and a system, where the packet forwarding method includes receiving, by a first service function forwarding node, a packet forwarding rule from a control node, where the packet forwarding rule indicating a mapping relationship between a match item of traffic characteristic information of a packet and route prefix information, receiving, by the first service function forwarding node, a first packet, where a header of the first packet carries traffic characteristic information of the first packet, determining, by the first service function forwarding node based on the packet forwarding rule, target route prefix information corresponding to the traffic characteristic information of the first packet, determining, by the first service function forwarding node, target next-hop information based on the target route prefix information, and forwarding the first packet based on the target next-hop information.
US11516127B2 System controller, controlling an IP switch including plural SDN switches
To efficiently distribute data to a plurality of distribution destinations.According to the present disclosure, a system controller is provided controlling an IP switch that distributes data received from a device on a transmission side to a device on a reception side, the system controller building a plurality of virtual networks in the IP switch and causing data received by any of the virtual networks to be transmitted to respective distribution destinations connected to the virtual networks. With this configuration, data can be efficiently distributed to a plurality of distribution destinations.
US11516124B2 Leveraging multicast listener discovery for discovering hosts
Techniques for leveraging MLD capabilities at edge nodes of network fabrics to receive SNMAs from silent hosts, and creating unicast addresses from the SNMAs for the silent nodes that are used as secondary matches in a network overlay if primary unicast address lookups fail. The edge nodes described herein may act as snoopers of MLD reports in order to identify the SNMAs of the silent hosts. The edge nodes then forge unicast addresses for the silent hosts that match with the least three bytes of the SNMAs. The forged unicast addresses are presented as unicast MAC/IP mappings in the fabric overlay. In situations where a primary IP address lookup fails, the look-up device performs a secondary lookup for a mapped address that has the last three bytes of the IP address. If a mapping is found, the lookup is sent as a unicast message to the matching MAC address.
US11516122B2 Validating active and inactive paths in a multiprotocol label switching (MPLS) network
Systems and methods for detecting, testing, and validating inactive paths or backup/protection paths of Label Switched Paths (LSPs) in a Multiprotocol Label Switching (MPLS) network are provided. A method, according to one implementation, includes the step of identifying an active path defining a traffic route along which data packets are transmitted from an ingress node to an egress node via one or more intermediate nodes. The method also includes sending an echo request from the ingress node to the one or more intermediate nodes, wherein the echo request allows the one or more intermediate nodes to detect and validate one or more inactive paths. The one or more inactive paths are configured as one or more protection paths when an event is detected that impedes the transmission of the data packets along the active path.
US11516121B2 Method and apparatus for managing network
A method for managing a computer network is provided, which comprises: performing data collection at at least one network node of the computer network belonging to a set of one or more network nodes corresponding to a first depth level of a routing tree that represents nodes of the computer network and edges respectively corresponding to neighboring relations between two nodes of the computer network, the data collection comprising: receiving first data collection configuration data generating second data collection configuration data for collecting data from at least one child node in the routing tree of the at least one network node of the computer network, wherein the second data collection configuration data comprises scheduling data for collecting data from each of the at least one child node, and collecting data from each of the at least one child node according to the second data collection configuration data.
US11516119B2 System, method, and device for communication between network segments
A method of providing a path between bridges of a first network segment. The first network segment is configured using a Spanning Tree Protocol (‘STP’). The method includes providing a second network segment interconnecting first and second bridges of said first network segment. The second network segment is operable to transmit frames adherent to a High-availability Seamless Redundancy (‘HSR’) network control protocol and to discard the STP control data frames. The method also includes modifying at a first Redundancy Box (‘RedBox’) STP control data frames to form modified data frames adherent to the HSR protocol. The method also includes modifying at a second RedBox, the modified data frames to re-form the STP control data frames.
US11516117B2 Single queue link aggregation
A method for transmitting a packet on a logical port comprising two or more physical ports comprises receiving a packet of a class of service; storing the packet in a memory; maintaining a lookup table relating a plurality of identifiers to at least one physical port; storing a pointer to the stored packet in the memory in a single pointer list for the class of service along with a selected one of the identifiers; and copying the stored packet to one or more physical ports corresponding to the selected identifier for transmission on at least one of the physical ports. In one implementation, a plurality of the physical ports are grouped into a logical port, and the received packet is processed to determine its logical port and its class of service.
US11516112B2 Optimized layer 3 VPN control plane using segment routing
Systems and methods include determining one or more Layer 3 Virtual Private Networks (L3VPNs) supported at the router; and advertising the one or more L3 VPNs to one or more routers in the Segment Routing network with each advertisement including a service Segment Identifier (SID) for each of the one or more L3VPNs and one of a node SID for the router or an Anycast SID when the router is connected to a Multi-Home site. The steps can further include transmitting a Layer 3 (L3) packet for an L3 VPN of the one or more L3 VPNs with a destination SID and a service SID of the L3VPN. The advertisement can include encapsulation as an IPv6 prefix containing both the node SID for the router and the service SID, and wherein prefixes are treated as attributes of a route.
US11516110B2 Method and apparatus for obtaining cross-domain link
A method for obtaining a cross-domain link. The method includes: a control device sends a first message to a forwarding device in an internet protocol (IP) domain, where the first message is used to instruct the forwarding device to search for a device adjacent to the forwarding device in an optical domain; the control device receives a second message from an optical network element adjacent to the forwarding device in the optical domain, where the second message includes a first identifier identifying the optical network element, a second identifier identifying a port communicating with the forwarding device and being on the optical network element, and a media access control (MAC) address of the forwarding device; and obtains the cross-domain link between the forwarding device and the optical network element based on the first identifier, the second identifier, and the MAC address of the forwarding device.
US11516108B2 System and method for loopback and network loop detection and analysis
A method of determining the presence of a loopback in one or more networks comprises storing information related to a test instance; sending a loopback detection beacon (PLD) containing information related to the test instance from a port on an originating device; monitoring the port for a predetermined time period to detect LPDBs arriving at the port during the predetermined time period; and determining whether a detected LPDB contains information corresponding to the stored information, to detect the presence of a loopback. The method may determine whether a detected loopback is a port loopback, a tunnel loopback or a service loopback. The stored information related to the test instance may be deleted if an LPDB arriving at the port and containing information corresponding to the stored information is not detected within the predetermined time period.
US11516107B2 Aggregation-based speed testing
In some examples, aggregation-based speed testing may include ascertaining, by a test speed analyzer, a test speed that corresponds to a maximum specified data transfer rate for a data transmission link. A test range generator may determine a maximum specified port speed of a test port of a device connected to the data transmission link. The test range generator may determine whether the maximum specified port speed is less than the test speed, and if so, divide the test speed into a plurality of test ranges. A total value of the test ranges may be equal to the test speed. A test performer may perform tests corresponding to the test ranges, and obtain intermediate test results. A test result generator may generate, based on aggregation of the intermediate test results, an aggregated test result that represents an actual speed associated with the data transmission link.
US11516105B2 Interspersed message batching in a database system
A message batching configuration may be determined for transmitting a message to recipients. The message batching configuration may include two or more message batches, a respective recipient count for each message batch, a respective time delay between each message batch, and a performance metric for evaluating the message. The message is transmitted in accordance with the message batching configuration. The transmission of subsequent message batches is halted when it is determined that the designated performance metric fails to meet a designated performance metric threshold.
US11516100B1 Cloud-to-cloud integration of vendor device testing automation and carrier performance analytics
A processor-implemented method includes integrating telecommunication network provider performance analytics with vendor testing automation such that specific data from vendor user equipment (UE) testing can be filtered out and the performance data results represent true service performance for the desired UEs. A network device associated with the network provider may establish an application programming interface (API) with a vendor device associated with the vendor to receive vendor testing information used to identify UEs undergoing vendor testing. The network device may identify the vendor UEs undergoing vendor testing when performing measurements on a group of UEs, such as key performance indicator (KPI) measurements.
US11516099B2 Resource monitoring system, resource monitoring method, and information storage medium
A computer of a resource monitoring system is configured to execute an application for analyzing an operation of an industrial device. A use status acquisition module is configured to acquire a use status of a resource of the computer by the application. A display control module is configured to display the use status on a resource monitoring screen.
US11516093B2 Systems and methods for updating the configuration of a cloud service
The present disclosure facilitates improving the operation of a cloud service by updating its configuration information and its resource requirements. The resource utilization of the cloud service can be monitored, and a decision logic module can determine whether action is required. When action is required, an update can be prepared and applied, and notifications can be generated about the condition and its resolution. Resolutions can require correlation of multiple cloud services to provide real-time access to information that is not otherwise available to a single entity. Resolutions can be learned and predicted in a number of ways using a predictive engine.
US11516091B2 Cloud infrastructure planning assistant via multi-agent AI
Cloud infrastructure planning systems and methods can utilize artificial intelligence/machine learning agents for developing a plan of demand, plan of record, plan of execution, and plan of availability for developing cloud infrastructure plans that are more precise and accurate, and that learn from previous planning and deployments. Some agents include one or more of supervised, unsupervised, and reinforcement machine learning to develop accurate predictions and perform self-tuning alone or in conjunction with other agents.
US11516087B2 Connecting processors using twisted torus configurations
Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for connecting processors using twisted torus configurations. In some implementations, a cluster of processing nodes is coupled using a reconfigurable interconnect fabric. The system determines a number of processing nodes to allocate as a network within the cluster and a topology for the network. The system selects an interconnection scheme for the network, where the interconnection scheme is selected from a group that includes at least a torus interconnection scheme and a twisted torus interconnection scheme. The system allocates the determined number of processing nodes of the cluster in the determined topology, sets the reconfigurable interconnect fabric to provide the selected interconnection scheme for the processing nodes in the network, and provides access to the network for performing a computing task.
US11516079B1 Network initialization communication storage system
A network initialization communication storage system includes a host device coupled to a storage system and an initialization issue analysis system via a network. The host device includes an initialization subsystem coupled to each of a plurality of ports. During network initialization of the host device via the storage system, the initialization subsystem identifies network initialization communications transmitted via the port(s) and the network, filters the network initialization communications to remove a subset of network initialization information and provide filtered network initialization communications, and transmits the filtered network initialization communications for storage in a remote access controller subsystem in the host device. In the event the network initialization of the host device fails, the initialization issue analysis system retrieves the filtered network initialization communications from the remote access controller subsystem, and uses them to identify at least one issue with the network initialization of the host device via the storage system.
US11516071B2 Method and system for root cause analysis across multiple network systems
Method and system for Root Cause Analysis (RCA) across multiple network systems. Update information of a first local root cause analysis mechanism is received. An RCA controller generates, based on the update information, a new node to be added to a global root cause decision tree, where the global root cause decision tree is to be shared by at least two of the plurality of network operators. The RCA controller requests storage of the new node in a distributed ledger that is shared by network operators. The RCA controller participates in a verification operation of the new node. In response to determining that the verification operation is successful, the RCA controller adds an entry including the new node to the distributed ledger as part of the global root cause decision tree. Alternatively, when the verification operation is not successful, the new node is not added to the distributed ledger.
US11516070B1 Method and system for diagnosing and remediating service failures
Techniques described herein relate to a method for diagnosing and remediating service failures. The method includes identifying, by a diagnostic and remediation manager, a diagnostic event associated with a service of services; generating a dependency directed acyclic graph (DAG) associated with the service; generating health vectors associated with each node of the dependency DAG; updating the dependency DAG using the health vectors to generate an unhealthy subgraph; and remediating the service based on the unhealthy subgraph.
US11516068B2 Software-defined network resource provisioning architecture
Embodiments are directed to an overlay network for an industrial Internet of Things. The overlay network has multiple main components: (1) a security component, such as a cloaked network, (2) a digital twin component that operates as digital simulations of the physical devices, (3) a communications mesh, and (4) a resource provisioning matrix for adjusting the resources used by the digital twin. The overlay network is a virtual network that is Software Defined—it sits on top of the existing Internet physical hardware of servers, routers, etc. The overlay network is sometimes referred to herein as a Software Defined Secure Content/Context Aware Network (SD-SCAN).
US11516067B1 Collecting metric information by sensors based on device characteristic information
A method includes determining, by a controller device that manages a plurality of network devices, device characteristic information for a network device of the plurality of network devices and selecting, by the controller device, one or more sensors from a plurality of sensors based on the device characteristic information for the network device. The method further includes outputting, by the controller device, an instruction to cause the network device to generate the one or more selected sensors at the network device and receiving, by the controller device, sensor information from the one or more selected sensors generated at the network device.
US11516066B2 Reference signal bundling for uplink channel repetition
Methods, systems, and devices for wireless communications are described. A user equipment (UE), that is configured for demodulation reference signal (DMRS) bundling, may receive a control message that schedules first and second sets of repetitions of an uplink transmission. The UE may determine a phase coherency configuration to be applied for DMRS transmissions corresponding to each set of repetitions. The phase coherency configuration may be determined based on a phase coherency capability of the UE, and the phase coherency configuration may specify that phase coherency is to be maintained for one or more of the first set of repetitions separate from one or more of the second set of repetitions. The UE may transmit the first set of repetitions with a first set of demodulation reference signals and the second set of repetitions with a second set of demodulation reference signals in accordance with the phase coherency configuration.
US11516062B2 Apparatus, system and method of transmitting an EDMG channel estimation field (CEF)
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a PPDU including a training field. For example, an Enhanced Directional Multi-Gigabit (DMG) (EDMG) wireless communication station may be configured to determine one or more Orthogonal Frequency Division Multiplexing (OFDM) Training (TRN) sequences in a frequency domain based on a count of one or more 2.16 Gigahertz (GHz) channels in a channel bandwidth for transmission of an EDMG PPDU including a TRN field; generate one or more OFDM TRN waveforms in a time domain based on the one or more OFDM TRN sequences, respectively, and based on an OFDM TRN mapping matrix, which is based on a count of the one or more transmit chains; and transmit an OFDM mode transmission of the EDMG PPDU over the channel bandwidth, the OFDM mode transmission comprising transmission of the TRN field based on the one or more OFDM TRN waveforms.
US11516059B2 Clipped signal pulse restoration after deliberate peak clipping
Saturation of an A/D converter at a receiver is addressed by forcing a controlled clipping of a peak signal pulse in the analog domain and restoring the pulse using a digital algorithm within the receiver. An A/D converter saturates and clips the peak pulses in the signal. Saturated peaks are restored by an algorithm operating in a baseband digital signal processor that utilizes information related to the time intervals where clipping was applied, along with information associated with the portion of the pulse below the clipping threshold. The time interval information is available from the A/D converter or through use of a separate pulse clipping detection algorithm. Through the use of embodiments of the present invention, the effect of signal clipping on receiver performance is reduced and therefore allows for increased clipping of the received signal.
US11516058B2 Peak to average power ratio shaping techniques
Systems and methods providing peak to average power ratio (PAPR) shaping for PAPR reduction using, for example, an extra-allocation peak reduction tone (PRT) signal processing technique are described. Carrier resources outside of carrier resources allocated for data transmission may be utilized for extra-allocation PRTs. Use of extra-allocation carrier resources for transmitting extra-allocation PRTs may be subject to a power threshold (T). The extra-allocation carrier resources and/or extra-allocation PRTs may be configured for peak to average power shaping of signal transmissions by a wireless device, such as base stations, user equipments (UEs), etc. Other aspects and features are also claimed and described.
US11516056B2 Apparatus and method for allocating guard band in wireless communication system
An operating method and an apparatus are provided in which state information is received from at least one of a higher layer and a plurality of terminals. A respective allocation resource is determined for each of the plurality of terminals, based on the state information. A respective guard band is determined to be allocated for each of the plurality of terminals, based on the respective allocation resource. Respective resource blocks (RBs) are determined for each of the plurality of terminals, based on the respective guard band. Information about the determined respective RBs is transmitted to respective terminals of the plurality of terminals.
US11516055B2 Error retro-propagation for a chain for the blind demodulation of a digital telecommunication signal
The present invention concerns a real-time method for the blind demodulation of digital telecommunication signals, based on the observation of a sampled version of this signal. The method comprises the following steps: —acquisition, by a sampling, of a first plurality of signals in order to each constitute an input of a network of L processing blocks (G, F, H), also referred to here as “specialized neurons”, each neuron being simulated by the outputs of the preceding block, the first plurality of signals being input into the first block simulating a first neuron of the network in order to generate a plurality of outputs of the first block; each neuron F being simulated by the outputs of an upstream chain G and stimulating a downstream chain H; each set of samples passes through the same processing chain; —the outputs of the last blocks of the network ideally correspond to the demodulated symbols; —addition of a nonlinearity to each of the outputs of the last block of the network making it possible to calculate an error signal and propagation of this error in the reverse direction of the processing chain (“retropropagation”); —estimation, upon receipt of the error by each neuron (i), of a corrective term δθi and updating, in each block, of the value of the parameter θi according to θi+=δθi.
US11516054B2 Polar transmitter with feedthrough compensation
A circuit includes a polar transmitter to generate a radio frequency output from amplitude and phase signal components. The polar transmitter includes an amplifier to combine amplitude and phase signal components. A processor is coupled to the polar transmitter to provide the amplitude and phase signal components. The processor includes: a digital modulation circuit to generate a modulated digital signal including in-phase and quadrature signal components and a correction circuit to calculate and apply a complex digital offset for local oscillator feedthrough of the amplifier. The complex digital offset includes an in-phase offset correction factor and a quadrature offset correction factor.
US11516049B2 Overlay network encapsulation to forward data message flows through multiple public cloud datacenters
Some embodiments establish for an entity a virtual network over several public clouds of several public cloud providers and/or in several regions. In some embodiments, the virtual network is an overlay network that spans across several public clouds to interconnect one or more private networks (e.g., networks within branches, divisions, departments of the entity or their associated datacenters), mobile users, and SaaS (Software as a Service) provider machines, and other web applications of the entity. The virtual network in some embodiments can be configured to optimize the routing of the entity's data messages to their destinations for best end-to-end performance, reliability and security, while trying to minimize the routing of this traffic through the Internet. Also, the virtual network in some embodiments can be configured to optimize the layer 4 processing of the data message flows passing through the network.
US11516048B2 Distribution of data over a network with interconnected rings
Systems and methods distributing data within a network for long-term storage are provided. Confederate host computers are arranged into interconnected rings by bridging confederate host computers. Payloads are routed through the network to a respective one of the rings associated with a respective one of the ring identifiers matching the identifier of the respective data payload for storage. Preferably, the bridging confederate host computers identify a destination ring for the payloads, transmit the payload to a next confederate host computer in a current ring where an identifier for the payload matches a ring identifier for the current ring, and transmit the payload to a next confederate host computer in a connected ring where the identifier associated with the payload does not match the ring identifier for the current ring.
US11516043B2 Monolithic high-voltage transceiver connected to two different supply voltage domains
A transceiver has a first interface supplied by a first supply voltage to interface with external devices operating in a first supply domain and a second interface supplied by a second supply voltage and adapted to interface to an external communication bus operating in a second supply domain. The transceiver has a first internal communication link, which is adapted to transfer transmit data generated by an external device operating in the first supply domain, from the first interface to the second interface, and a second internal communication link, which is adapted to transfer transmit data be supplied from the external communication bus operating in the second supply domain from the second interface to the first interface.
US11516040B2 Electronic device and method for controlling thereof
An electronic device and a controlling method are provided. The controlling method of the electronic device includes transmitting a signal to a plurality of external devices communicatively connected to the electronic device, receiving, from each of the plurality of external devices, intensity information of the signal sensed by an external device and identification information of an external device, determining at least one external device that is positioned in a same space as the electronic device, from among the plurality of external devices, based on the response signal, designating the at least one external device and the electronic device as a device group, and controlling the device group based on the user command, when a user command is input to at least one device from among the device groups.
US11516039B2 Performance mode control method and electronic device supporting same
An embodiment of the present invention comprises: a communication module for communicating with at least one external device; a microphone for receiving a user utterance; a memory for storing performance mode information having been configured in the electronic device; and a processor electrically connected to the communication module, the microphone, and the memory, wherein the processor is configured to: receive, through the microphone, a second user utterance associated with task execution; transmit first data associated with the second user utterance to an external device; receive, from the external device, second data associated with at least a part of processing of the first data; identify a first work load allocated to the electronic device at the time of receiving the second data; and compare a second work load required for processing the second data and the first work load, so as to control the performance mode. In addition, various embodiments recognized through the specification are possible.
US11516038B1 Data transmission using alert signals to carry data
Various embodiments provide for data transmission using alert signals to carry data, which can be used in such applications as data network communications between sensors (e.g., cameras, motion, radar, etc.) and computing equipment within vehicles (e.g., smart and autonomous cars).
US11516035B2 Enabling chat sessions
Methods, systems, computer readable media, and apparatuses for enabling chat sessions are presented. In response to detecting that a first user is viewing a first program, a chat invitation may be automatically transmitted to a second user. The chat invitation may identify the first user and the first program, and further may invite the second user to initiate a chat session with the first user. An updated chat invitation may be automatically transmitted in response to detecting that the first user has changed to viewing a second program, and a chat session that has been initiated may subsequently be transferred to another device. Content prioritization settings may be accounted for in transmitting one or more chat invitations, and before a chat invitation is transmitted, it may be determined that a sufficient amount of time has elapsed to suggest that the user will continue viewing the first program.
US11516034B2 Dynamic binding for software components
Some embodiments provide a non-transitory machine-readable medium that stores a program. The program transmits via a multicast communication protocol a message specifying a set of services offered by the device to a plurality of computing devices. The program further establishes a connection with a computing device in the plurality of computing devices. The program also receives, through the connection, a set of data for the set of services. The program further applies the set of services to the set of data.
US11516033B1 System and method for metering consumption
Various embodiments disclosed herein are related to a non-transitory computer readable storage medium. In some embodiments, the medium includes instructions stored thereon that, when executed by a processor, cause the processor to receive, at a server, from a cluster of nodes on an edge network in communication with the server, a resource consumption data of a service hosted on the edge network, determine, based on a metering policy, a unit of measurement, and calculate a resource consumption quantity according to the unit of measurement.
US11516026B2 Security device generating key based on physically unclonable function and method of operating the same
A security device generates a key based on a physically unclonable function (PUF). The security device includes a physically unclonable function (PUF) block, an integrity detector, and a post processor. The PUF block outputs a plurality of first random signals and a plurality of corresponding first inverted random signals each having a logic level opposite to that of each of the plurality of corresponding first random signals. The integrity detector determines data integrity of the plurality of first random signals by using the plurality of first random signals and the plurality of corresponding first inverted random signals. The post processor generates a first row key that includes validity signals satisfying the data integrity.
US11516023B1 Client side certificate revocation service
A proxy revocation service provides a reliable service for performing revocation checks. The proxy revocation service queries public certificate authorities for the revocation status of a set of digital certificates and maintains a database of the revocation statuses. The proxy revocation service provides a singular endpoint that is Application Protocol Interface (API) accessible to web clients. Web clients communicate with the proxy revocation service through use of API message to perform revocation checks, rather than communicating with the public certificate authorities using an online certificate status protocol (OCSP). Use of the proxy revocation service provides both a reliable service for performing revocation checks as well as shifts the complexity away from the web clients.
US11516020B2 Key management method, apparatus, and system, storage medium, and computer device
In a key management method performed by a terminal, a device key including a device public key and a device private key is generated in a security zone. A local device parameter and the device public key are transmitted to a certificate authentication server. A device certificate fed back by the certificate authentication server is received by the terminal. The signature data of the device certificate is generated by signing the device parameter and the device public key by using an authentication private key of the certificate authentication server. The terminal then stores the device private key and the device certificate in the security zone.
US11516015B2 System and method for computing cluster seeding and security using kubernetes immutable resource log
A method of reporting differences between a plurality of computing cluster configurations for executing containerized software applications may comprise routinely retrieving, at preset time intervals, cluster configuration files stored at computing clusters for configuring the computing clusters for execution of a containerized software application, receiving a user selection of a first cluster configuration file and a second cluster configuration file within the stored cluster configuration files, and comparing the first cluster configuration file and the second cluster configuration file. The method may also include displaying a difference between the first cluster configuration file and the second cluster configuration file resulting in the first cluster configuration file configuring one or more computing clusters for execution of the containerized software application differently than the second cluster configuration file configures one or more computing clusters for execution of the containerized software application.
US11516007B2 Entangled links, transactions and trees for distributed computing systems
An entangled links mechanism to establish and maintain bipartite temporal intimacy between pairs of computers, using an idempotent, reversible token method which presents no observable external “change” until a communication of information needs to occur between the computers, and which maintains the potential for “bounded (or unbounded) reversibility” in case the intended information dispatched by a source computational entity is not captured or properly accepted by a destination computational entity. The mechanism enables distributed computers in a network to remain continuously aware of each other's presence; to communicate on a logically nearest neighbor basis in a secure and reliable manner in which packets passed over these links do not conflict with normal traffic or cause the available resources of the link to be exceeded; and that atomicity, consistency, isolation, and “reversible durability” may be maintained for transactions when perturbations occur.
US11516003B2 Electronic subscriber identity module transfer credential wrapping
Embodiments described herein relate to credential wrapping for secure transfer of electronic SIMs (eSIMs) between wireless devices. Transfer of an eSIM from a source device to a target device includes re-encryption of sensitive eSIM data, e.g., eSIM encryption keys, financial transaction credentials, transit authority credentials, and the like, using new encryption keys that include ephemeral elements applicable to a single, particular transfer session between the source device and the target device. The sensitive eSIM data encrypted with a symmetric key (Ks) is re-wrapped with a new header that includes a version of Ks encrypted with a new key encryption key (KEK) and information to derive KEK by the target device. The re-encrypted sensitive SIM data is formatted with additional eSIM data into a new bound profile package (BPP) to transfer the eSIM from the source device to the target device.
US11516002B1 Tracking history of a digital object using a cryptographic chain
A system and a method for tracking history of a digital object using cryptographic chain. The digital object is encrypted using a cryptographic technique to form a first time travel record of a cryptographic chain. Further, an update in the digital object is detected. Furthermore, an updated digital object is encrypted to form a second time travel record. The first time travel record and the second time travel record are linked to form the cryptographic chain through a composite key. Subsequently, an input from the user is received to identify a change in the digital object. The cryptographic chain is sequentially decrypted based on the input. Finally, a change in the digital object is identified based on a comparison of the first time travel record and the second time travel record, thereby tracking history of the digital object using the cryptographic chain.
US11516001B2 Method and system for generalized provenance solution for blockchain supply chain applications
A method for conveying auditable information regarding provenance of a product that is cryptographically accurate while retaining complete anonymity of product and participant on a blockchain includes: receiving a product identifier; generating a digital token by applying a hashing algorithm to the product identifier; generating an entry value by applying the hashing algorithm to a combination of an event identifier and the digital token; generating a digital signature by digitally signing a data package using a private key of a cryptographic key pair, where the data package includes at least a blockchain address, the event identifier, and the digital token; and transmitting the blockchain address, the digital signature, and the entry value to a node in a blockchain network.
US11516000B2 Approximate hash verification of unused blockchain output
An example operation may include one or more of receiving a location of an output stored on a data structure of a blockchain, where the location comprises a path of hashes generated by a reduced-step hash instead of a full-step hash of the blockchain, performing an approximate hash verification on the path of hashes based on the reduced-step hash values to verify whether the output is unused, and in response to a determination that the output is unused as a result of the approximate hash verification, approving a use of the output by a client associated with the output.
US11515995B2 Efficient computation of univariate statistical moments for side channel vulnerability evaluation
Systems and methods for efficient computation of univariate statistical moments. An example method comprises: receiving a plurality of input traces, wherein each trace of the plurality of input traces includes a plurality of sample points; appending, to a trace matrix comprising combinations of pre-determined degrees of the sample points, a plurality of rows representing the plurality of input traces; appending, to a classifier matrix, a plurality of columns representing metadata associated with the plurality of input traces; applying a defined transformation to the classifier matrix to produce a transformed classifier matrix; incrementing an accumulator matrix by a product of the transformed classifier matrix and the trace matrix; computing, using a first subset of elements of the accumulator matrix, a first statistical moment for a first portion of the input traces identified by a first subset of elements of the classifier matrix, wherein the first subset of elements of the classifier matrix is identified by a first classifier value; and computing, by subtracting each element of the first subset of elements of the accumulator matrix from a corresponding sum of elements of the input traces stored by the accumulator matrix, a second statistical moment for a second portion of the input traces identified by a second subset of elements of the classifier matrix, wherein the second subset of elements of the classifier matrix is identified by a second classifier value.
US11515993B1 Antenna lattice for single-panel full-duplex satellite user terminals
A full-duplex User Terminal Panel (UTP) including one or more User Terminal Modules (UTM) having a plurality of Tx antenna elements. Each of the Tx antenna elements spaced apart from one another by a distance dTx. The full-duplex UTP further includes a plurality of Rx antenna elements. Each of the Rx antenna elements are spaced apart from one another by a distance dRx. Furthermore, the Tx antenna elements may be spaced according to a Tx lattice dTx, such that the Tx lattice dTx spacing arrangement provides grating lobe-free scanning in an elevation plane at a Tx frequency range. The Rx antenna elements are spaced according to an Rx lattice dRx, such that the Rx lattice dRx spacing arrangement provides grating lobe-free scanning in an elevation plane at a Rx frequency range.
US11515992B2 Methods for training of full-duplex wireless systems
A method and apparatus for (a) operating a first full-duplex transceiver to exchange radio-frequency signals with a second full-duplex transceiver, (b) determining at the first full-duplex transceiver that a residual self-interference signal exceeds a threshold, (c) in response to the determination that the residual self-interference signal exceeds the threshold, performing a self-training operation.
US11515990B2 Control using NR TDD
A wireless device, network node and methods using new radio time division duplex, NR-TDD, are provided. In one embodiment, the network node includes processing circuitry configured to configure placement of downlink control messages over at least two symbols of a NR TDD slot. The at least two symbols are different symbols in the time domain.
US11515989B2 Bandwidth switching method and user equipment
The embodiments of the disclosure provide a bandwidth switching method and a user equipment. The method includes: when a BWP switching command is received while successfully receiving the random access completion message of the non-contention-based random access process, determine the non-contention-based random access process has been completed successfully in accordance with random access completion message, and determine not to perform the BWP switching process, or perform the BWP switching process in accordance with the random access completion message and the BWP switching command.
US11515988B2 Method and device for determining initial positions of downlink data channel
A method and device for determining the initial positions of a downlink data channel are provided. The method includes: a base station transmits to a terminal a generated indication signaling, and the terminal determines, on the basis of the received indication signaling, the time domain initial positions of the downlink data channel in L downlink TTIs. With the method, when the downlink control channel only appears in a part of the positions in a frequency domain or does not appear at all, and when the downlink control channel does not occupy the complete downlink control area in the time domain or the resources occupied by the downlink control channel in the time domain are variable, the base station can still accurately notify the terminal the time domain initial positions of the downlink data channel.
US11515980B1 Positioning method, mobile terminal and positioning system
Disclosed is a positioning method, including: synchronizing, by a mobile terminal, with a network device according to preset configuration information; acquiring, from the configuration information, parameters for determining a time-frequency resource of a sounding reference signal (SRS); determining the time-frequency resource for sending the SRS, and sending, on the determined time-frequency resource, the SRS to a plurality of network devices; receiving, by each of the plurality of network devices, the SRS, determining an arrival time of the SRS and the time-frequency resource occupied, determining, according to the time-frequency resource occupied by the SRS, an identifier of the mobile terminal sending the SRS, and reporting the identifier to a location server; and determining, by the location server, a position of the mobile terminal sending the above SRS according to the arrival time of the SRS.
US11515976B2 Method and apparatus for configuring and signalling PTRS in a telecommunication system
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). Disclosed is a method of defining a resource block or resource element offset for mapping PTRS to a symbol, wherein the offset is determined based on an identifier of a particular user equipment, UE.
US11515974B2 Communication method and communications apparatus
Example communication methods and a communications apparatus are described. One example method includes receiving first information by a terminal device, where the first information indicates an identifier of a first frequency domain resource, and the first frequency domain resource is contiguous in frequency domain. When a status of the terminal device is a first state, the terminal device with a network device on a second frequency domain resource based on the first information, where the second frequency domain resource includes a plurality of segments of contiguous frequency domain resources, and the first frequency domain resource is one segment of the plurality of segments of contiguous frequency domain resources. According to the foregoing method, the terminal device may communicate, based on the received first information, with the network device on the second frequency domain resource when the status of the terminal device is the first state.
US11515973B2 Interference-aware beamforming
Aspects of the disclosure relate to an interference-aware beamforming environment in which an AP controller can determine one or more beams of one or more APs to serve various STAs. For example, an AP can request that STA(s) provide one or more uplink pilot signals during different time slots. The AP can receive the uplink pilot signal(s) and determine, for each STA, the uplink beam quality of each transmit beam-receive beam pair over which an uplink pilot signal was received from the respective STA. The AP can use reciprocity to determine, for each STA, the downlink beam quality for various transmit beam-receive beam pairs. The AP can use the determined downlink beam quality to identify the best beam with which to serve various STAs. An AP controller can determine which downlink beam(s) an AP should use to serve a STA based on the downlink beams originally selected by the APs.
US11515972B2 Method and apparatus for determining time-domain resource used for grant-free transmission
This application provides a method for determining a time-domain resource used for grant-free transmission. The method includes: obtaining, by a terminal device, a first time-domain period and a second time-domain period of grant-free transmission resources, where a size of the first time-domain period is P1 time units, a size of the second time-domain period is P2 time units, and P1 is greater than or equal to P2; obtaining, by the terminal device, a quantity k of grant-free transmission resources in the first time-domain period; and determining, by the terminal device based on the first time-domain period, the second time-domain period, and the quantity k of grant-free transmission resources in the first time-domain period, an index of a time unit in which a grant-free transmission resource used for grant-free transmission is located. In this way, grant-free transmission resources configured for the terminal device in two adjacent periods do not overlap.
US11515971B2 Method and apparatus for performing retransmission of an uplink data after expiration of a configured grant timer in wireless communication system
The present invention relates to a method of transmitting uplink (UL) data by a user equipment (UE) in a wireless communication system. In particular, the method includes the steps of: based on the UE transmitting the UL data on a UL resource of a configured grant (CG) configuration based on a Hybrid-ARQ (HARQ) process, starting a CG timer for the HARQ process; based on retransmission of the UL data based on the HARQ process not being performed until expiration of the CG timer, determining that a transmission of the UL data is not successful; and performing retransmission of the UL data based on the HARQ process after the expiration of the CG timer.
US11515967B2 Method and device for performing HARQ feedback operation in NR V2X
According to an embodiment of the present disclosure, a method for performing sidelink communication by a first device is provided. The method comprises the steps of: transmitting at least one PSSCH to at least one reception device by using at least one sub channel and at least one slot in a resource pool; and receiving at least one HARQ feedback for the at least one PSSCH through at least one PSFCH resource from among M PSFCH resources in the resource pool, wherein the resource pool comprises K PSSCH-associated slots and L sub channels, which are associated with the PSFCH resources, M is greater than or equal to K*L, and K, L, and M may be positive integers.
US11515958B2 Wireless communication method and wireless communication terminal
Disclosed is a wireless communication terminal. The wireless communication terminal includes a transceiver transmitting/receiving a wireless signal; and a processor controlling an operation of the wireless communication terminal. The transceiver receives a first frame including information on a manner for accessing, by a plurality of wireless communication terminals including the wireless communication terminal, a base wireless communication terminal. The processor acquires a manner for accessing the base wireless communication terminal on a basis of the first frame. The transceiver accesses the base communication terminal on a basis of the manner for accessing the base wireless communication terminal. The base wireless communication terminal is any one communication terminal different from the plurality of wireless communication terminals.
US11515957B2 Wireless communication method and wireless communication terminal
Disclosed is a wireless communication terminal. The wireless communication terminal includes a transceiver transmitting/receiving a wireless signal; and a processor controlling an operation of the wireless communication terminal. The transceiver receives a first frame including information on a manner for accessing, by a plurality of wireless communication terminals including the wireless communication terminal, a base wireless communication terminal. The processor acquires a manner for accessing the base wireless communication terminal on a basis of the first frame. The transceiver accesses the base communication terminal on a basis of the manner for accessing the base wireless communication terminal. The base wireless communication terminal is any one communication terminal different from the plurality of wireless communication terminals.
US11515954B2 Method and apparatus for providing an emergency alert service via a mobile broadcasting
A method of processing an emergency alert in a broadcast receiver includes receiving a broadcast signal including an emergency alert table, the emergency alert table including an emergency alert text related to an emergency alert message, information for identifying a viewing target for the emergency alert message and emergency-related broadcast service information for an emergency-related broadcast service, decoding the emergency alert table, displaying the emergency alert text in the decoded emergency alert table, and displaying an additional content related to the emergency alert message. The broadcast signal further includes wake-up information that includes 2 bits representing at least a first wake-up notification of a first emergency or a second wake-up notification of a second emergency different from the first wake-up notification of the first emergency.
US11515953B1 Low noise amplifier saturation mitigation
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive signaling from a base station and may pass the signaling through one or more low noise amplifiers (LNAs) at a receiver of the UE. The UE may determine a saturation threshold at the one or more LNAs is exceeded. The UE may transmit an indication to the base station that the saturation threshold is exceeded. The base station may send additional signaling to the UE whose content, schedule, or configuration is responsive to the indication that the saturation threshold is exceeded. The UE may process the additional signaling using a digital linearizer at a receive chain of the UE. A base station may indicate an LNA saturation state to a UE in advance. The UE may respond to the indication (e.g., by setting LNA and digital linearizer states to accommodate predicted saturation).
US11515947B2 Optical subcarrier dual-path protection and restoration for optical communications networks
An example system includes a first network device having first circuitry. The first network device is configured to perform operations including receiving data to be transmitted to a second network device over an optical communications network, and transmitting first information and second information to the second device. The first information is indicative of the data, and is transmitted using a first communications link of the optical communications network and using a first subset of optical subcarriers. The second information is indicative of the data, and is transmitted using a second communications link of the optical communications network and using a second subset of optical subcarriers. The first subset of optical subcarriers is different from the second subset of optical subcarriers.
US11515946B1 System and method for analog estimation and streaming of a spectral correlation function (SCF)
A system and method for analog estimation of a spectral correlation function (SCF) provides a photonic carrier to generate a signal comb and offset comb, each comprising N comb tones separated by respective repetition rates ΔF and ΔF+δF. The signal and offset combs are amplitude-modulated according to an inbound RF signal of interest and filtered via periodic optical filters to produce a sequence of N Fourier components of the signal comb and N Fourier components of the offset comb, each filtered signal comb component overlapping with a filtered offset comb component. In-phase/quadrature (I/Q) components of the products of each component of the complex conjugate of the filtered offset comb and the overlapping counterpart of the filtered signal comb are generated in an optical receiver and digitized into slices of the SCF at a fixed time instance and center frequency, correlated at various cyclic separations α.
US11515945B2 Phased-array radio frequency receiver
A method of RF signal processing comprises receiving an incoming RF signal at each of a plurality of antenna elements that are arranged in a first pattern. The received RF signals from each of the plurality of antenna elements are modulated onto an optical carrier to generate a plurality of modulated signals that each have at least one sideband. The modulated signals are directed along a corresponding plurality of optical channels with outputs arranged in a second pattern corresponding to the first pattern. A composite optical signal is formed using light emanating from the outputs of the plurality of optical channels. Non-spatial information contained in at least one of the received RF signals is extracted from the composite signal.
US11515944B2 Devices, methods, apparatuses and computer readable storage media for optical communication
Embodiments of the present disclosure relate to devices, methods, apparatuses and computer readable storage media of ONU activation for OLT Equalizer training. The method includes determining, at OLT, configuration information indicating a bandwidth allocation dedicated for an ONU and a first target preamble sequence associated with the bandwidth allocation, the first target preamble sequence to be used by the ONU for a transmission from the ONU to the OLT on a first wavelength; transmitting the configuration information to the ONU; and receiving the transmission from the ONU from the ONU on the first wavelength, the transmission is performed by the ONU based on the first target preamble sequence.
US11515943B2 Optical communications apparatus, optical line termination, and optical communication processing method
This application provides example optical communications apparatuses. One example optical communications apparatus includes a control apparatus and an optical module matching apparatus. The control apparatus can output a first control signal to the control end. An input end of the optical module matching apparatus can connect to a first optical module and receive a first electrical signal output by the first optical module. An output end of the optical module matching apparatus can output a first serial signal. The control apparatus can output a second control signal to the control end. The input end of the optical module matching apparatus can receive a second electrical signal output by the second optical module. The output end of the optical module matching apparatus can output a second serial signal. The first electrical signal and the second electrical signal can have different level types.
US11515941B2 Free space optical communication terminal with dispersive optical component
Embodiments relate to a local free space optical (FSO) terminal that transmits and receives optical beams. The FSO terminal includes a fore optic and a dispersive optical component. A receive (Rx) optical beam from a remote FSO terminal is received and focused by the fore optic to a Rx spot at a focal plane of the fore optic. A transmit (Tx) optical beam with a different wavelength forms a Tx spot at the focal plane and is collimated and projected by the fore optic to the remote FSO terminal. The dispersive optical component is positioned along optical paths of both the Rx beam and the Tx beam. Among other advantages, a wavelength dependence of the dispersive optical component laterally separates the Rx spot and the Tx spot at the focal plane.
US11515931B2 Telecommunications system utilizing drones
Wireless communication is provided over an extended distance using a line or a series of drones traveling along a transmission path between a transmitter and a receiver. The transmitter sends a data signal to a first drone that is within range of the transmitter. The first drone sends the data signal to an adjacent drone in the line of drones which retransmits the data signal to the next drone in line. The data signal is transmitted between drones until it reaches a final drone within range of the receiver. The final drone transmits the data signal to the receiver. As the drones travel along the transmission path, new drones are launched from a location within range of the transmitter to replace drones that land after transmitting a data signal to the receiver.
US11515930B2 Configuration of forwarding direction for a repeater
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a repeater may determine a forwarding direction for a set of resources based at least in part on time division duplexing (TDD) information associated with the set of resources. The forwarding direction may indicate a direction associated with forwarding signals carried in the set of resources. The repeater may receive a signal in the set of resources, the signal being provided by a first wireless communication device. The repeater may selectively forward the signal to a second wireless communication device based at least in part on the determined forwarding direction. Numerous other aspects are provided.
US11515924B2 Beam failure recovery operation
Described is an apparatus of a User Equipment (UE) operable to communicate with a fifth-generation Evolved Node-B (gNB) on a wireless network. The apparatus may comprise a first circuitry, a second circuitry, and a third circuitry. The first circuitry may be operable to detect a beam failure event. The second circuitry may be operable to generate a beam failure recovery request for transmission to the gNB, in response to the beam failure event. The third circuitry my be operable to monitor for Physical Downlink Control Channel (PDCCH) in a search space configured by the gNB, subsequent to a transmission of the beam failure recovery request.
US11515922B2 Transmission method, transmission device, and communication system
An indicator in a master AP from among a plurality of APs obtains communication quality of communication with an AP which is a communication partner. In the case where the obtained communication quality is less than a threshold, the indicator causes the plurality of APs including the master AP to perform cooperative operation to transmit data. In the case where the obtained communication quality is not less than the threshold, the indicator causes the plurality of APs including the master AP to stop the cooperative operation.
US11515921B2 Receiving device and transmission device for wireless communication
A receiving device for use in a wireless OFDM communication system comprises two or more receive antennas for receiving OFDM signals received over a channel from a transmission device having two or more transmit antennas and applying transmit beamforming, and circuitry configured to perform channel estimation to estimate the channel, generate transmit beamforming information based on the channel estimation, the transmit beamforming information comprising beamforming information per subcarrier or time domain tap, determine a reduced set of transmit beamforming information from the transmit beamforming information, wherein the reduced set comprises beamforming information for a reduced set of subcarriers in the frequency domain or for a reduced set of taps in the time domain, wherein the subcarriers of the reduced set or the taps of the reduced set are determined based on an error criterion, and feed back the reduced set of transmit beamforming information to the transmission device.
US11515919B2 Communications methods and apparatus using multiple beams
Methods and apparatus for facilitating the use of a plurality of antenna beams for communications purposes are described. In at least some embodiments beam priority information is periodically exchanged. Multiple timers are used to ensure beam information is exchanged at intervals intended to facilitate reliable beam synchronization and to control switching to one or more alternative beams in a predictable manner in the event beam change information or beam synchronization information is lost. In some but not all embodiments a wideband beam is used to communicate beam synchronization information when synchronization using narrower beams used for normal data communication is lost.
US11515918B2 Method and apparatus for transmitting and receiving channel state information in wireless communication system
Systems and techniques for transmitting channel state information (CSI) include: receiving configuration information related to the CSI from a base station, the configuration information including information on a CSI-RS resource set; receiving a CSI-reference signal (CSI-RS) from the base station; and transmitting the CSI to the base station based on the configuration information and the CSI-RS. The CSI-RS resource set includes M CSI-RS resource groups; in addition, N CSI-RS resource groups (N≤M) for reporting the CSI are determined from the M CSI-RS resource groups; the CSI includes N CSI sets generated based on a CSI-RS resource combination in the N CSI-RS resource groups. To generate an n-th (1≤n≤N) CSI set, a specific CSI-RS resource in an n-th (1≤n≤N) CSI-RS resource group is used for channel measurement; and a specific CSI-RS resource in the remaining CSI-RS groups other than the n-th CSI-RS resource group is used for interference measurement.
US11515914B2 Active antenna system for distributing over the air content
A method for distributing over the air (OTA) content is provided. The method includes detecting connection of an OTA antenna system capable of receiving an OTA signal including media content at a plurality of channels to a network access point via the removable connection. The method includes communicating a control signal from a network access point to the OTA antenna system via a removable connection to configure a modal antenna of the OTA antenna system in a selected mode of a plurality of antenna modes for a selected channel of the plurality of channels. The method includes receiving a signal associated with media content of the selected channel from the OTA antenna system via the removable connection. The method includes communicating the media content of the selected channel via a network communication link to a client device.
US11515910B2 Beam training in millimeter wave relays using amplify-and-forward transmissions
Various aspects of the present disclosure generally relate to wireless communication. A transmitter node and a relay node transmit, to a base station, feedback related to complex channel estimates associated with beam pairs providing viable paths for a first link between the transmitter node and the base station, a second link between the relay node and the base station, and a third link between the transmitter node and the relay node. The transmitter node transmits a signal to the base station using a transmit beam associated with a first beam pair and to the relay node using a transmit beam associated with a second beam pair. The base station receives the signal from the transmitter node and an estimate of the signal from the relay node via a receive beam configured based at least in part on the complex channel estimates included in the feedback. Numerous other aspects are provided.
US11515908B2 Impulse radio ultra-wide band transceiver using radio pulses with multi frequency carriers
An impulse radio (IR) ultra-wide band (UWB) transceiver adapted for a rake receiver is provided herein. This may be implemented as follows: on the transmitter side, the input data is converted to N-parallel streams having different delays, each stream is transmitted by an impulse radio signal with defined different carrier frequency. On the receiver side, the multicarrier RF signal is converted into base band signal, emulating multipath channels, so that rake receiver technique is used for an optimal demodulation of the received signal.
US11515904B2 Transmission management techniques for avoiding excessive exposure of humans to electromagnetic energy
The disclosure relates to a power control circuitry for controlling a radio frequency, RF, transmitter of a network equipment or a user equipment, the power control circuitry comprising: a controller configured to control a power level of an RF signal generated by the RF transmitter for transmission via an antenna arrangement, wherein the power level is controlled based on information about an object within an coverage area of the antenna arrangement.
US11515898B2 Error correction decoder, error correction circuit having the same, and method of operating the same
Provided herein may be an error correction decoder, an error correction circuit having the error correction decoder, and a method of operating the error correction decoder. The error correction decoder may include a calculator configured to output an error correction message by performing an iterative decoding operation on a first codeword, a syndrome generator configured to generate a syndrome by calculating the error correction message and a parity check matrix and to output a number of iterations representing the number of times the iterative decoding operation has been performed, and an unsatisfied check node (UCN) value representing the number of unsatisfied check nodes in the syndrome, and a speed selector configured to output a speed code for controlling a speed of the iterative decoding operation depending on the number of iterations and the UCN value.
US11515897B2 Data storage device
A data processing system includes a storage medium, and a controller including a data processing block, configured to receive data from a host, transmit the received data to the storage medium, read data from the storage medium in response to a read request from the host, and decode the read data by the data processing block according to multiple decoding modes. The data processing block includes a first decoder and a second decoder, and is configured to manage the first decoder and the second decoder to run the decoding for the read data, and activate a fast decoding having shorter latency than a normal decoding after a fast decoding condition is satisfied.
US11515896B2 Memory system
A memory system includes a non-volatile memory and a controller. The controller is configured to perform iterative correction on a plurality of frames of data read from the non-volatile memory. The iterative correction includes performing a first error correction on each of the frames including a first frame having errors not correctable by the first error correction, generating a syndrome on a set of second frames that include the first frame, performing a second error correction on the second frames using the syndrome, and performing a third error correction on the first frame. Each of the frames includes user data and first parity data used in the first error correction, the first parity data of the first frame also being used in the third error correction.
US11515895B2 Block code encoding and decoding methods, and apparatus therefor
The present disclosure discloses a new coding scheme, which is constructed by superimposing together a pair of basic codes in a twisted manner. A SCL decoding algorithm is proposed for the TPST codes, which may be early terminated by a preset threshold on the empirical divergence functions (EDF) to trade off performance with decoding complexity. The SCL decoding of TPST is based on the efficient list decoding of the basic codes, where the correct candidate codeword in the decoding list is distinguished by employing a typicality-based statistical learning aided decoding algorithm. Lower bounds for the two layers of TPST are derived, which may be used to predict the decoding performance and to show the near-ML performance of the proposed SCL decoding algorithm. The construction of TPST codes may be generalised by allowing different basic codes for the two layers.
US11515894B2 Enhanced information sequences for polar codes
According to some embodiments, a method of operation of a transmit node in a wireless communication system comprises performing polar encoding of a set of K information bits to thereby generate a set of polar-encoded information bits. The K information bits are mapped to the first K bit locations in an information sequence SN. The information sequence SN is a ranked sequence of N information bit locations among a plurality of input bits for the polar encoding where N is equivalent to a code length. A size of the information sequence SN is greater than or equal to K. The information sequence SN is optimized for the specific value of the code length (N). The method may further comprise transmitting the set of polar-encoded information bits.
US11515891B2 Application of low-density parity-check codes with codeword segmentation
A low-density parity-check (LDPC) decoder performs check node computations as N different segments of the check nodes which have connections only to a codeword segment of length C/N bits as well as check nodes that have connections across the entire codeword of length C. The decoder can include a controller or other compute hardware to decode the codeword, including to perform computations for separate segments of C/N bits of the codeword. The system can perform computations including adjustment of the decode computations based on an expected error rate for selected segments of the codeword.
US11515888B2 CHAN framework, CHAN coding and CHAN code
A framework and the associated method, schema and design for processing digital data, whether random or not, through encoding and decoding losslessly and correctly for purposes including the purposes of encryption/decryption or compression/decompression or both. There is no assumption of the digital information to be processed before processing. An universal coder is invented and now pigeonhole meets blackhole.
US11515886B2 Analog-to-digital converter, electronic device including the same, and operating method of analog-to-digital converter
Disclosed are an analog-to-digital converter (ADC), an electronic device including the ADC, and an operating method of the ADC. The ADC includes a first stage that includes a plurality of channels, generates a first sampling signal by sequentially sampling a first analog signal based on time interleaving, and generates a first digital signal and a first residual signal corresponding to the first analog signal by performing analog-to-digital conversion based on the first sampling signal, an amplifier that amplifies the first residual signal, and a second stage that includes a plurality of channels, generates a second sampling signal by sequentially sampling the amplified first residual signal based on time interleaving, and generates a second digital signal and a second residual signal corresponding to the first analog signal by performing analog-to-digital conversion based on the second sampling signal. The number of the plurality of channels included in the first stage is odd-numbered.
US11515885B2 Dynamic integration time adjustment of a clocked data sampler using a static analog calibration circuit
Methods and systems are described for generating a process-voltage-temperature (PVT)-dependent reference voltage at a reference branch circuit based on a reference current obtained via a band gap generator and a common mode voltage input, generating a PVT-dependent output voltage at an output of a static analog calibration circuit responsive to the common mode voltage input and an adjustable current, adjusting the adjustable current through the static analog calibration circuit according to a control signal generated responsive to comparisons of the PVT-dependent output voltage to the PVT-dependent reference voltage, and configuring a clocked data sampler with a PVT-calibrated current by providing the control signal to the clocked data sampler.
US11515882B2 MCU mode for SPI communication between precision converters and microcontrollers
A data acquisition device comprises an analog-to-digital converter (ADC) circuit configured to produce a digital value from an analog input signal. The ADC circuit includes a signal input, a mode input, a serial output, and logic circuitry. The logic circuitry is configured to shift bits of the digital value out the serial output and change an order of the bits shifted out the serial output according to the mode input.
US11515880B2 Semiconductor device
A semiconductor device includes a clock generating circuit and a jitter measurement circuit. The clock generating circuit is input with a control value for changing a cycle of the clock thereof. The jitter measurement circuit has a first logic circuit operated with using an output clock of the clock generating circuit as an input and a first delay element, and is configured to output the presence/absence of a jitter of the clock generating circuit.
US11515879B2 Counter
A counter is provided. A charge distributing circuit includes a first switch, a second switch, a third switch, a fourth switch, a third capacitor and a fourth capacitor. A first terminal of the first switch and a first terminal of the third switch are connected to a first input terminal of an operational amplifier. A second terminal of the first switch is connected to a first terminal of the third capacitor and a first terminal of the fourth switch. A second terminal of the third switch is connected to a first terminal of the fourth capacitor and a first terminal of the second switch. A second terminal of the third capacitor and a second terminal of the fourth capacitor are grounded. A second terminal of the second switch and a second terminal of the fourth switch are coupled to a reference voltage.
US11515874B2 Touch sensing device and electronic apparatus having reference signal update function
A touch sensing device includes: an oscillation circuit including a sensing inductor disposed inside a touch member, a part of a cover of an electronic device, and generating an oscillation signal according to whether a touch has occurred through the touch member; a signal processor converting the oscillation signal into a digital sensing signal; a reference signal generator updating a reference signal based on the digital sensing signal; and a signal detector outputting a detection signal by detecting whether a touch has occurred through the touch member, using the reference signal and the digital sensing signal.
US11515873B2 Semiconductor device and electronic device
A semiconductor device that can perform product-sum operation with low power is provided. The semiconductor device includes a switching circuit. The switching circuit includes first to fourth terminals. The switching circuit has a function of selecting one of the third terminal and the fourth terminal as electrical connection destination of the first terminal, and selecting the other of the third terminal and the fourth terminal as electrical connection destination of the second terminal, on the basis of first data. The switching circuit includes a first transistor and a second transistor each having a back gate. The switching circuit has a function of determining a signal-transmission speed between the first terminal and one of the third terminal and the fourth terminal and a signal-transmission speed between the second terminal and the other of the third terminal and the fourth terminal on the basis of potentials of the back gates. The potentials are determined by second data. When signals are input to the first terminal and the second terminal, a time lag between the signals output from the third terminal and the fourth terminal is determined by the first data and the second data.
US11515869B2 Semiconductor device
A semiconductor device, including a control circuit that has a gate control circuit driving a power semiconductor element. The control circuit further includes a plurality of alarm detection circuits respectively detecting a plurality of abnormalities, a protection circuit stopping the gate control circuit responsive to the detection of any abnormality, an alarm signal generation circuit generating an alarm signal responsive to the detected abnormality, a warning detection circuit detecting a warning before any of the abnormalities is detected, and a pulse generation circuit generating a warning signal while the warning is being detected. The alarm signal is a one-shot pulse having a pulse width thereof corresponding to the detected abnormality, such that alarm signals generated responsive to different abnormalities have different pulse widths. The warning signal includes a plurality of successive pulses, each of which has a pulse width smaller than any of the pulse widths of the alarm signals.
US11515865B1 Serializer clock delay optimization
A serializer clock delay optimization system comprising a multiplexer configured to receive two or more low-rate data signals and a multiplexer control signal. The multiplexer generates a full-rate data signal by combining the two or more low-rate data signals such that the multiplexer control signal determines sampling time of the low-rate data signals. A data monitor monitors and evaluates the full-rate data signal to generate a quality value representing the quality of the full-rate data signal. The quality of the full-rate data signal is based on the accuracy of the sampling time of the low-rate data signals. A delay controller processes the quality value to generate a delay control signal or value. A delay receives a clock signal and the delay control signal or value. Responsive to the delay control signal or value, the delay modifies the timing of the clock signal to create the multiplexer control signal.
US11515864B2 Nonlinear transmission line high voltage pulse sharpening with energy recovery
Some embodiments include a nonlinear transmission line system comprising: a power supply providing voltages greater than 100 V; a high frequency switch electrically coupled with the power supply; a nonlinear transmission line electrically coupled with the switch; an antenna electrically coupled with the nonlinear transmission line; and an energy recovery circuit comprising a diode and an inductor electrically coupled with the power supply and the antenna.
US11515863B2 Comb signal generator and method of providing a phase and amplitude reference
A comb signal generator that includes at least two signal sources that each provide a signal, wherein the signals provided by the at least two signal sources are shaped similarly. The com signal generator also has a combining circuit connected with the at least two signal sources, wherein the combining circuit is configured to combine the signals provided by the at least two signal sources, thereby generating a combined signal. Further, the com signal generator includes a clipping circuit connected with the combining circuit, wherein the clipping circuit is configured to receive and process the combined signal, thereby generating a comb signal. Further, a method of providing a phase and amplitude reference is described.
US11515860B2 Deterministic jitter generator with controllable probability distribution
A jitter generator may include a duty cycle code generator that generates a duty cycle control signal and an input buffer that outputs a signal based on its duty cycle. The input buffer may be coupled to the duty cycle code generator and to a source of a clock signal. After receiving the clock signal, the input buffer outputs the clock signal having jitter relative to the clock signal received from the source. The jitter may be added at least in part by components of the input buffer offsetting different transitions of the clock signal according to the duty cycle. Jitter may be added when the duty cycle changes in response to changes in the duty cycle control signal, such as in response to number generator circuitry of the duty cycle code generator update its output number, in response to a mode change received from a controller, or the like.
US11515858B2 Time constant calibration circuit and method
A time constant calibration circuit and method. The circuit comprises a resistor, a capacitor, an amplifier, a first switch and a second switch. The resistance of the resistor and/or the capacitance of the capacitor is variable. A first terminal of the resistor, a first terminal of the capacitor and a first input of the amplifier are coupled to a common node, which is coupleable to a reference current source. A second input of the amplifier is coupleable to a reference voltage. An output of the amplifier is coupled to a second terminal of the resistor and a second terminal of the capacitor. The circuit can perform a calibration process comprising one or more calibration cycles in which the switches route a reference current through the resistor in a first phase and through the capacitor in a second phase. The resistance and/or the capacitance is adjusted between calibration cycles.
US11515855B2 Saw resonator and filter comprising same
A SAW resonator comprises two reflectors and a transducer arranged between the reflectors. A resonant space between the transducer and a respective reflector is set large enough to enable occurrence of main resonance and at least one further resonance of comparable admittance. Thus, a multiple resonant resonator is achieved that can be used as a parallel resonator in a filter circuit with a DMS track for example to improve attenuation in a stop band.
US11515853B2 Equalizer for equalization of music signals and methods for the same
An equalizer and a method of controlling same are provided. The equalizer includes a memory storing an EQ value set for a plurality of music attributes and storing a general-purpose EQ value; and a processor configured to: obtain an input music signal; calculate a plurality of probability values for the plurality of music attributes by analyzing attributes of the input music signal based on a convolutional neural network; calculate a moderate index between the plurality of probability values; generate an EQ value based on the plurality of probability values and the moderate index; and perform equalizing by applying the generated EQ value to the input music signal.
US11515851B2 Josephson traveling wave parametric amplifier
According to an example aspect of the present invention, there is provided a travelling wave parametric amplifier comprising a waveguide transmission line comprising therein at least ten Josephson elements, wherein each of the at least ten Josephson element comprises a loop, with exactly one Josephson junction of first size on one half of the loop and at least two Josephson junctions of a second size on a second half of the loop, the second size being larger than the first size, a flux bias line configured to generate a magnetic flux threading each of the at least one loop, and a set of resistors coupled with the flux bias line.
US11515850B2 Distributed amplifier
In a distributed amplifier, a plurality of cascode amplifiers connected in parallel between an input side transmission line and an output side transmission line are provided, a transmission line is connected to an input terminal of an output transistor of each of the amplifiers, and a bias potential is applied from a bias circuit to the input terminal of the output transistor via the transmission line.
US11515848B2 Source driver having an output buffer circuit with slew rate compensation and display device thereof
An output buffer circuit includes an operational amplifier configured to generate an amplifier output voltage signal based on an input voltage signal and on a compensation current, a slew rate compensating circuit configured to generate the compensation current to increase a slew rate of the amplifier output voltage signal based on a difference between the input voltage signal and a feedback voltage signal, an output path circuit connected between the operational amplifier and an output pad, the output path circuit configured to transfer the amplifier output voltage signal to generate a pad output voltage signal through the output pad, and a feedback path circuit, the feedback path circuit connected between the slew rate compensating circuit and a feedback input node that is on the output path circuit, the feedback path circuit configured to generate the feedback voltage signal.
US11515846B2 Amplifier, configuration method of amplifier, and communication apparatus
An in-band extraction unit is configured to extract an in-band from an output signal. An out-band extraction unit is configured to extract at least one pair of out-bands including a low frequency side out-band and a high frequency side out-band from the output signal. An ADC is configured to convert the extracted in-band and out-bands to digital signals. A signal processing unit is configured to process information included in the digital signals converted by the analog to digital converter and adjust an operation of predistorting an input baseband digital signal to generate the output signal.
US11515843B2 Radio frequency (RF) integrated circuit performing signal amplification operation to support carrier aggregation and receiver including the same
A receiver includes an amplification block supporting carrier aggregation (CA). The amplification block includes a first amplifier circuit configured to receive a radio frequency (RF) input signal at a block node from an outside source, amplify the RF input signal, and output the amplified RF input signal as a first RF output signal. The first amplifier circuit includes a first amplifier configured to receive the RF input signal through a first input node to amplify the RF input signal, and a first feedback circuit coupled between the first input node and a first internal amplification node of the first amplifier to provide feedback to the first amplifier.
US11515841B2 DC coupled amplifier having pre-driver and bias control
A dc coupled amplifier includes a pre-driver, and amplifier and a bias control circuit. The pre-driver is configured to receive one or more input signals and amplify the one or more input signals to create one or more pre-amplified signals. The amplifier has cascode configured transistors configured to receive and amplify the one or more pre-amplified signals to create one or more amplified signals, the amplifier further having an output driver termination element. The bias control circuit is connected between the pre-driver and the amplifier, the bias control circuit receiving at least one bias current from the output driver termination element of the amplifier, wherein the pre-driver, the amplifier and the bias control circuit are all formed on a same die.
US11515835B2 Resilient mounting assembly for photovoltaic modules
An apparatus and system for flexibly mounting a power module to a photovoltaic (PV) module. In one embodiment, the apparatus comprises a plurality of distributed mounting points adapted to be adhered to a face of the PV module for mechanically coupling the power module to the PV module, wherein the plurality of distributed mounting points flexibly retain the power module such that the PV module is able to flex without subjecting the power module to stress from flexure of the PV module.
US11515832B2 Thrust surface bearing
Solar trackers that may be advantageously employed on sloped and/or variable terrain to rotate solar panels to track motion of the sun across the sky include bearing assemblies and other mechanical features configured to address mechanical challenges posed by the sloped and/or variable terrain that might otherwise prevent or complicate use of solar trackers on such terrain.
US11515823B2 Control of a single coil BLDC motor
A motor driver for driving a rotor of a single coil motor in a clockwise or counterclockwise rotation direction concerning a stator of the single coil motor is adapted for generating a position signal which is representative for the angular position of the rotor regarding the stator and comprises a controller which comprises a direction input to define the rotation direction of the rotor, and which is adapted for generating a driving signal for rotating the rotor in the defined rotation direction, wherein the driving signal is based on the position signal and is based on a signal indicative for an electrical lead angle wherein the signal indicative for the electrical lead angle is set such that the total lead angle is positive in both rotation directions of the rotor.
US11515822B2 Adaptive torque disturbance cancellation for electric motors
An adaptive torque disturbance cancellation method and motor control system for rotating a load are described. The system has: (i) a speed controller for receiving a first input signal indicating a desired motor speed and, in response, for outputting a motor control signal; (ii) current sensing circuitry for sensing current through a motor that rotates in response to the speed controller; (iii) circuitry for storing, into a storage device, history data representative of the current through a motor when the motor operates to rotate the load; and (iv) circuitry for modifying the motor control signal in response to the history data.
US11515819B2 Stabilizing DC link voltage with adaptive gain
A method for stabilizing a DC link voltage of an electrical converter, the method including: determining a DC link voltage signal for the DC link voltage of the electrical converter; determining a fluctuation signal of the DC link voltage by applying a high pass filter to the DC link voltage signal; determining a torque offset by multiplying the fluctuation signal with a gain value; and modifying a reference torque with the torque offset for controlling the electrical converter. The gain value is adjusted by: determining a DC link voltage ripple from the DC link voltage signal; and comparing the DC link voltage ripple with a threshold and, when the DC link voltage ripple is higher than the threshold, increasing the gain value.
US11515818B2 Common-mode voltage reduction of a SiC based dual T-type drive system
Reduced computation time for model predictive control (MPC) of a five level dual T-type drive considering the DC link capacitor balancing, the common-mode voltage (CMV) along with torque control of an open-ends induction motor based on determining a reduced set of switching states for the MPC. The reduced set of switching states are determined by considering either CMV reduction (CMVR) or CMV elimination (CMVE). Cost function minimization generates a voltage vector, which is used to produce gating signals for the converter switches. The reduced switching state MPC significantly reduces computation time and improves MPC performance.
US11515814B2 Motor drive control device and method for controlling the same
To provide a motor drive control device capable of determining the rotational direction of a motor using a simple configuration with a reduced number of lead wires from position sensors, and a method for controlling the motor drive control device. A control circuit unit of a motor drive control device includes a first comparator configured to compare the magnitudes of a first positive Hall signal and a first negative Hall signal output from a first Hall element, thereby generating a first position detection signal; a second comparator configured to compare the magnitudes of a second negative Hall signal output from a second Hall element and the first negative Hall signal, thereby generating a second position detection signal; and a rotational direction determination unit configured to compare the transitions of the first position detection signal and the second position detection signal, thereby determining the rotational direction of a motor.
US11515813B2 Torque ripple compensation in motor control systems
According to one or more embodiments, a motor control system that provides torque ripple compensation includes a current regulator that receives a first current command corresponding to an input torque command. The current regulator further generates a first voltage command based on the first current command using a first transformation matrix. The current regulator further receives a second current command corresponding to a torque ripple to be compensated. The current regulator further generates a second voltage command based on the second current command using a second transformation matrix. The current regulator further computes a final voltage command using the first voltage command and the second current command, the final voltage command being applied to a motor.
US11515810B2 Energy conversion film and energy conversion element using same
Provided is an energy conversion film excellent in charge retention performance and suppressed in deterioration of piezoelectricity even if it is exposed to a high temperature environment and an energy conversion element and the like using the film. An energy conversion element comprising: an energy conversion film at least comprises a charged resin film consisting of a resin film at least containing a thermoplastic resin and a metal soap; and an electrode provided on at least one of the two surfaces of the energy conversion film.
US11515805B2 Capacitor discharge
A capacitive element has its terminals coupled together by two thyristors electrically in antiparallel. The discharge of the capacitive element is controlled by the application of a gate current to one thyristor of the two thyristors which is in a reverse-biased state in response to a voltage stored across the terminals of the capacitive element. The reverse-biased thyristor responds to the applied gate current by passing a leakage current to discharge the stored voltage.
US11515804B2 Electrical power circuit for an electrical power converter
An electric circuit for a power converter having a substrate having a first face on which electronic components are mounted and a second face intended to cooperate with a cooling system, the substrate having a stack of conductive layers made of electrically and thermally conductive material and at least one insulating layer made of electrically insulating material, two successive conductive layers being separated by an insulating layer, and the conductive and insulating layers extending in parallel planes and being mechanically associated together. Each conductive layer has two opposite faces parallel to the plane in which the first face of the substrate extends and includes, on at least one of its two faces, at least one boss extending in a direction perpendicular to the plane, the at least one boss passing through at least one other conductive layer and opening out onto the first or the second face of the substrate.
US11515802B2 Modular configurable inverter and systems, components, and methods thereof
A modular inverter arrangement comprising one or more cages of a cage assembly, including at least a first cage of the cage assembly. Each of the one or more cages can be in the form of a cuboid, and each of the one or more cages can be adapted to accommodate therein respective sets of one or more power modules. The modular inverter arrangement can also be comprised of a heatsink extending transversely through each of the one or more cages, from a first end of the cage assembly to a second end of the cage assembly opposite the first end.
US11515799B2 Resonant converter controller circuit for controlling resonant converter converting input DC voltage into DC voltage
A resonant converter controller circuit is provided. Each period in drive control has a drive time interval and a pause time interval for driving/pausing the resonant converter. The resonant converter controller circuit includes a first oscillating means for generating a clock signal, a second oscillating means for generating a sawtooth wave signal, a third oscillating means for generating a rectangular wave signal, comparison means for outputting a comparison signal indication the rive time interval, by comparing the sawtooth wave signal with a threshold signal, which is generated based on a difference voltage between an output voltage of the resonant converter and a target voltage, and which indicates a ration of the drive time interval to the pause time interval, and a logical operation means for generating a drive control signal based on the comparison signal and the rectangular wave signal to drive and control the resonant converter.
US11515798B2 Flyback switching power supply for adjusting a chip working frequency
The invention discloses a flyback switching power supply, including a power input and rectifying circuit; a DC-DC switching circuit, the DC-DC switching circuit comprising a PWM control integrated circuit; and a voltage and current feedback circuit. The PWM control integrated circuit comprises a chip working frequency setting pin for setting a working frequency of the PWM control integrated circuit, the flyback switching power supply further comprises a frequency adjustment circuit connected between the chip working frequency setting pin of the PWM control integrated circuit and the voltage and current feedback circuit, and the frequency adjustment circuit is configured to decrease the working frequency when the flyback switching power supply is under a low load condition, and increase the working frequency when the flyback switching power supply is under a high load condition.
US11515793B2 Hybrid multi-level power converter with inter-stage inductor
The present document relates to a power converter comprising an inductor, a first stage, and a second stage. The first stage may be coupled between an input of the power converter and the inductor, and the first stage may comprise a first flying capacitor. The second stage may be coupled between the inductor and an output of the power converter, and the second stage may comprise a second flying capacitor. A second terminal of the first flying capacitor may be connected to a first terminal of the inductor, and a first terminal of the second flying capacitor may be connected to a second terminal of the inductor.
US11515790B2 Conversion circuit topology
The invention provides a conversion circuit for converting input voltage into output voltage, including: a full-bridge rectifier circuit including first and second bridge arms connected in parallel and electrically connected between first and second ends of the output voltage; a first switch branch electrically connected between the first end of the input voltage and the first end of the output voltage, and including first and second switches connected in series to form a first connection node; a first resonant unit electrically connected between the first connection point and midpoint of the first bridge arm; and a first transformer including a first primary winding connected in series with the first resonant unit; and a first secondary winding connected between midpoint of the first bridge arm and midpoint of the second bridge arm. The conversion circuit of the invention improves conversion efficiency while maintaining smaller voltage stress on switches.
US11515789B2 Zero voltage switching flying capacitor power converters
Circuit structures and methods are described for achieving zero voltage switching in flying capacitor converters for both isolated and non-isolated applications. A first method is described in which zero voltage switching is achieved by operating the circuit with a variable frequency so that each switch in its on state remains on until the magnetizing current in a main inductor is reversed to a current magnitude sufficient to drive a zero voltage switching transition for a main switch. A second method is implemented with a main coupled inductor wherein a winding current is reversed and energy in a leakage inductance drives a zero voltage switching transition for a main switch. A third method is implemented with auxiliary inductors, auxiliary switches, and auxiliary capacitors which reverse the current in the auxiliary inductor which provides the necessary energy for driving a zero voltage switching transition for a main switch.
US11515785B2 Multi-capacitor bootstrap circuit
Aspects of the disclosure provide for a circuit. In some examples, the circuit includes a first transistor, a second transistor, a third transistor, a first capacitor, and a second capacitor. The first transistor comprises a drain terminal coupled to an input voltage node, a source terminal coupled to a first node, and a gate terminal coupled to a second node. The second transistor comprises a drain terminal coupled to a third node, a source terminal coupled to a fourth node, and a gate terminal coupled to a fifth node. The third transistor comprises a drain terminal coupled to a sixth node, a source terminal configured to couple to a gate terminal of a switching transistor, and a gate terminal coupled to a seventh node. The first capacitor is coupled between the first node and the third node. The second capacitor is coupled between the fourth node and the sixth node.
US11515782B2 Switching control circuit and power supply circuit
A switching control circuit that controls switching of a switching device, the switching control circuit includes a frequency modulation circuit that generates an oscillator signal, and modulates a frequency of an oscillator signal with a predetermined frequency and a modulation index of two or more, and a drive circuit that drives the switching device in response to a signal corresponding to the modulated oscillator signal, the predetermined frequency being higher than a frequency indicative of a value that is a quarter of a half width of a bandpass filter used for measuring noise generated when the switching device is driven.
US11515781B2 Inverter with a current source provided with a protection circuit
A current source inverter, including: a first switching cell including at least first and second power switches coupling a same first input node of the inverter respectively to first and second output nodes of the inverter; and a circuit of protection against a placing in open circuit of an input current source of the inverter.
US11515780B2 Machines having power-electronic energy converters and leakage current compensation and system
A device includes an EMC (electromagnetic compatibility) filter, a frequency converter coupled to the EMC filter, and a motor coupled to the frequency converter via a motor cable. A leakage current compensator includes a leakage current detector and a compensation current generator configured to generate a compensation current that is directed against the leakage current and is overlaid on the leakage current in such a way that the leakage current is reduced.
US11515778B2 Power conversion device
Provided is a power conversion device capable of continuing the transmission of power even in the event of failure of a DC-to-DC converter cell. The power conversion device according to the present invention includes: a unit having a plurality of DC-to-DC converter cells; a short-circuit device that short-circuits a failed cell; and a control circuit that controls the plurality of DC-to-DC converter cells. The control circuit controls the voltage of a second cell terminal of a healthy cell included in a unit that includes the failed cell, based on a failed cell count m, so that the power of a first cell terminal and the power of the second cell terminal are matched.
US11515777B2 Cascaded conversion system and voltage equalizing control method thereof
A cascaded conversion system and a voltage equalizing control method thereof are provided. The cascaded conversion system includes a plurality of conversion circuits connected in cascade. Each conversion circuit includes a DC-side capacitor, a switching unit and a control unit. The DC-side capacitors of the conversion circuits are electrically connected in series. In each conversion circuit, the switching unit is connected to the DC-side capacitor in parallel and includes a plurality of bridge arms. Each bridge arm includes a first switch and a second switch. The control unit controls the switches according to the voltage across the DC-side capacitor. The control unit controls the first and second switches to be turned on alternately. All the first switches are turned on and off simultaneously, and all the second switches are turned on and off simultaneously, thereby making the voltages across the DC-side capacitors of the conversion circuits equal.
US11515773B2 Linear vibration motor and electronic device
A linear vibration motor is provided, comprising a housing, a spring part, a vibrator and a stator, the housing having a chamber, the stator, the vibrator and the spring part being provided in the chamber, the vibrator comprising a counterweight part and a magnet connected together, the stator comprising a pole core and a coil, the pole core being connected to the housing, the coil being wound around the pole core, the housing being configured to be magnetically conductive, the vibrator being suspended relative to the stator by the spring part, the housing comprising a top part and an opposed bottom part, and the vibrator being configured to vibrate along a connecting line between the top part and the bottom part.
US11515768B2 Method of assemblage for a winding group of a bar winding for an electric machine
An assembly for assembling a winding group of a bar winding for an electric machine is provided. The winding group includes a plurality of bar conductors, each bar conductor having a first leg, a second leg and a bridge portion connecting the first leg to the second leg, and being shaped so that the first and second legs are mutually spread by a predetermined distance. The assembly includes an annular fixture delimiting a plurality of slots, each slot receiving at least one portion of either the first leg or the second leg, a guiding device defining an annular containment housing, receiving at least partially the first and second legs of the plurality of legs of the plurality of bar conductors that are housed in the plurality of slots, forming at least one radial containment wall for the first and second legs.
US11515756B2 Electric motor cooling system
Methods and systems for cooling an electric motor are provided. An electric motor cooling system, in one example, includes a stator at least partially surrounding a rotor and an inner passage extending axially through the rotor and including an inlet and an outlet. The cooling system further includes an outer passage including an inlet in fluidic communication with the outlet of the inner passage and an outlet in fluidic communication with an inlet of the inner passage and a phase change material in the inner passage and the outer passage.
US11515753B2 Reduction gearbox
A reduction gearbox which has: an input, which can be coupled to an input shaft, which has an input speed; an output, which rotates at an output speed that is lower than the input speed; and at least one statically arranged component. It is envisaged that an electric generator is integrated into the reduction gearbox, said generator comprising a rotor and a stator, wherein the rotor of the electric generator is coupled to the output of the reduction gearbox, and the stator of the electric generator is coupled to a statically arranged component of the reduction gearbox.
US11515749B2 Motor assembly
A motor assembly includes a motor, a housing including a housing space to house the motor, oil in a vertically lower region of the housing space, and an oil passage to lead the oil from the vertically lower region of the housing space through the motor to the vertically lower region of the housing space. The oil passage includes a first oil passage extending through an inside of the motor, and a second oil passage extending through an outside of the motor. One of the first oil passage and the second oil passage includes a cooler to cool the oil therein.
US11515743B2 Motor winding design for an electric motor
An electric motor includes a stator assembly including a lamination stack, a printed circuit board assembly (PCBA), and a plurality of windings. The PCBA is coupled to the lamination stack at a first axial end of the stator assembly. The windings are wrapped about the lamination stack to form coils. Each winding includes crossover portions extending about a portion of a circumference of the stator assembly to connect pairs of opposite coils. The crossover portions are located at a second axial end of the stator assembly opposite the first axial end.
US11515737B2 Power receiving unit, power receiving control method, non-contact feed system, and electronic apparatus
A power receiving unit includes: a power receiving section configured to receive power that is fed from a power feeding unit in a non-contact manner; a rectification section configured to rectify the power received by the power receiving section; a method determination section configured to identify a feeding method of the power feeding unit; and a target voltage setting section configured to set a target voltage of the power rectified by the rectification section, to a value corresponding to the feeding method identified by the method determination section.
US11515734B2 Wireless power transmission system
The wireless power transmission is a system for providing wireless charging and/or primary power to electronic/electrical devices via microwave energy. The microwave energy is focused to a location by a power transmitter having one or more adaptively-phased microwave array emitters. Rectennas within the device to be charged receive and rectify the microwave energy and use it for battery charging and/or for primary power.
US11515730B2 Contactless power transmission system for transmitting power from power transmitter apparatus to power receiver apparatus, and supplying load device with desired voltage
A detection circuit detects at least one of a value of a current flowing through a power transmitting coil, and a value of a current or voltage generated by an auxiliary coil. A control circuit determines a transmitting frequency based on the value detected by the detection circuit, the transmitting frequency at least locally minimizing load dependence. The control circuit determines a voltage for the transmitting power at which an output voltage of a power receiver apparatus is equal to a predetermined target voltage when generating the transmitting power having the transmitting frequency determined, and controls the power supply circuit to generate the transmitting power having the transmitting frequency and voltage determined.
US11515729B2 Apparatus and method with wireless power relay
A wireless power relay apparatus includes: a first antenna configured to wirelessly receive an alternating current (AC) power signal of a first frequency from a wireless power transmission apparatus; a rectifier configured to convert the received AC power signal into a direct current (DC) power; a storage device configured to store electric energy of the DC power output from the rectifier; a power oscillator configured to generate an AC power signal of a second frequency based on an output current of the rectifier and electric energy of a DC voltage stored in the storage device; and a second antenna configured to transmit the AC power signal of the second frequency to a wireless power reception apparatus.
US11515724B1 Electrical unit and backup power system
Disclosed is an electrical unit with a first port configured to be operatively connected to an AC-grid, a second port configured to be operatively connected to an AC-load, and a third port to be operatively connected to an AC-side of a first inverter. The electrical unit includes a first choke arranged between the third port and the second port. The electrical unit is configured to transfer electrical power provided by the first inverter from the third port via the first choke to the second port. The electrical unit is configured to provide grid-forming electrical power to the second port in case of disconnection from the AC-grid at the first port. Further disclosed is a backup power system and a method for operating a backup power system.
US11515721B2 Dual-slope optical sensor
A dual-slope optical sensor is provided. Two terminals of a first charging switch are respectively connected to an optoelectronic component and a first terminal of a capacitor. Two terminals of a second charging switch are respectively connected to a second terminal of the capacitor and grounded. First terminals of third charging and discharging switches are respectively connected to the first and second terminals of the capacitor. First terminals of fourth charging and discharging switches are respectively coupled to first and second reference voltages. Two terminals of a first discharging switch are respectively connected to the optoelectronic component and the second terminal of the capacitor. A first input terminal of a comparator is connected to second terminals of the third charging switch and the fourth discharging switch. A second input terminal of the comparator is connected to second terminals of the fourth charging switch and the third discharging switch.
US11515691B2 Modular low voltage power distribution module
A modular power distribution device includes a base that is snap-fit onto DIN rail. The base includes a first mounting section, configured to receive a circuit protection device, and a second mounting section configured to receive an electronically actuated power distribution device. The circuit protection device slides on to the first mounting section and includes multiple output connections. The power distribution device slides on to the second mounting section and includes multiple input connections configured to engage the output connections of the circuit protection device as the power distribution device slides on to the second mounting section. An electronic control module is snap-fit to the assembly establishing electrical connections between the electronic control module and both the circuit protection device and the power distribution device. The electronic control module includes a port by which control signals are received and feedback signals may be transmitted.
US11515679B2 Power adapter for electronic devices
A power adapter for powering portable electronic devices is disclosed. The modifications and enhancements to the power adapter can reduce or eliminate the need for adhesives, flexible circuitry, and/or wiring. The power adapter includes multiple guide rails used to guide a circuit board (carrying components) to electrical springs. The electrical springs provide not only an electrical coupling, but also a mechanical coupling. As a result, wiring and/or adhesives is not required. Additionally, a cap is secured to the enclosure through melting part of the cap by, for example, ultrasonic welding without causing damage to the circuit board, as welding location(s) is/are in locations away from the electrical springs and other sensitive components. The power adapter further includes a connector connected to the circuit board. During assembly, the circuit board can pivot in three dimensions during assembly to align the connector with the cap.
US11515672B2 Electrical connector
An electrical connector is provided. The electrical connector includes a metal plate, a first-row terminal assembly, and a second-row terminal assembly. A hollow area of the metal plate has a first projection area on a projection plane that is parallel to the metal plate, and a contact area of the second power terminal set has a second projection area overlapping the first projection area on the projection plane. The first projection area has a first border line and a second border line. The second projection area has a third border line and a fourth border line. The first border line and the third border line have a first projection distance therebetween. The second border line and the fourth border line have a second projection distance therebetween. The first projection distance and the second projection distance are both 0.2 mm or more.
US11515671B2 Backplane connector with improved shielding effect
A backplane connector includes a wafer. The wafer includes a number of conductive terminals, an insulating frame, a first metal shield and a second metal shield located on opposite sides of the insulating frame. The insulating frame includes a number of first posts and a number of second posts. The first metal shield has a number of first mounting holes to receive the first posts. The second metal shield has a number of second mounting holes to receive the second posts. With this arrangement, the first metal shield and the second metal shield can be easily positioned with the insulating frame.
US11515669B2 Floating header and circuit board assembly
A connector assembly includes an outer conductive body having a first end configured to mate with a corresponding electrical connector, and a conductive center contact arranged within the outer conductive body. The center contact comprises a first end configured to mate with the corresponding electrical connector and a second end electrically connecting with a first electrical contact of a circuit board. An outer contact is slidably attached to a second end of the outer conductive body and electrically connects with a second electrical contact of the circuit board. An elastic element is provided for biasing the outer contact in a direction away from the outer conductive body and toward the circuit board.
US11515668B2 Alignment mechanism, charging device and charging system for automatic charging
An alignment mechanism for automatic charging, comprising: a first substrate, disposed in a vertical direction; a second substrate, disposed opposite to the first substrate; a first spring, both ends connected to surfaces of the first substrate and the second substrate which face each other, respectively; and a limiting assembly, disposed between the first substrate and the second substrate; wherein the limiting assembly comprises at least two limiting plates which are disposed parallel to each other and are in a same horizontal plane, and each of the two limiting plates has both ends connected to the first substrate and the second substrate respectively in such a manner that the limiting plate is rotatable in the horizontal plane; and a surface of the second substrate facing away from the first substrate is configured to connect a first connector, which is a connector of a charging device to be charged.
US11515666B2 System for vehicle battery charging around charge-adverse time periods
A communication system includes a plug connector mated with a receptacle connector. The receptacle connector includes a housing holding a contact assembly. The housing includes a front housing that receives an inner housing, which receives contact holders and receptacle contacts of the contact assembly. The receptacle connector housing includes a height profile defined between top and bottom walls with a housing latch and guide pockets contained within the height profile. The plug connector includes a housing holding a cable assembly with a circuit card received in a card slot of the receptacle housing. The plug connector housing includes alignment embossments received in the guide pockets and latches coupled to the alignment embossments are latchably coupled to the receptacle connector. The latches are contained within a height profile of the plug connector housing.
US11515663B2 Electrical connector for oilfield operations
An electrical connector is provided that includes a plurality of electric cables. A first adapter is configured to receive the electrical cables. The first adapter protects the electrical cables and allows for an electrical connection between the electrical cables and a plurality of electrical pins. A second adapter is coupled to the first adapter. The second adapter allows for an electrical connection between the electrical pins and a plurality of electrical terminals. A cable kit is provided that is at least partially housed within the second adapter. The cable kit has a plurality of projections extending therefrom. An insulator body is coupled to the second adapter. The insulator body includes a plurality of openings. Each of the openings has a tapered end portion configured to receive a corresponding one of the plurality of projections of the cable kit to form a mechanical seal with the cable kit.
US11515659B2 Electronic device with recognizable shell and manufacturing method for the recognizable covering plate
An electronic device with a recognizable shell is provided. At least a portion of the recognizable shell is manufactured by a method including mixing a plastic material and a color material to obtain a mixture material, increasing an environment temperature of the mixture material to a preheating temperature lower than the plastic material melting point, increasing the environment temperature above the preheating temperature, increasing the environment temperature to a temperature 5 to 10 degrees above the plastic material melting point; increasing the environment temperature above the color material melting point, injecting the mixture material in a mold cavity of a mold, maintaining the mold in under a molding pressure, and obtaining the cooled mixture material as the portion. A manufacturing method for recognizable covering plate is also provided.
US11515656B2 Circuit connection module
A circuit connection module include a board, an electronic component mounted on the board, and an electrically conductive member connected to the electronic component so as to be thermally conductive. The electronic component includes a heat dissipation portion exposed on an outer surface of the electronic component. The electrically conductive member includes a plate-shaped portion connected to the heat dissipation portion so as to be thermally conductive, and a terminal portion in which one end is connected to the plate-shaped portion so as to be thermally conductive and electrically conductive and the other end is in contact with a mating terminal.
US11515655B2 High-speed connector for automobile
A high-speed connector for an automobile includes a cable connector, a board connector connected to the cable connector, and sliding blocks provided on two sides of the cable connector. The sliding blocks are separate or are integrated. The cable connector includes a housing, a contact body and a cable. The contact body is installed in the housing. The contact body is in contact with the board connector to achieve an electric connection. The cable is connected to the contact body and protrudes out of the housing. The housing includes a main body portion and side snap-fit plates provided on two sides of the main body portion. A side snap-fit groove is provided on the side snap-fit plate. Side snap-fit clasps are provided on two sides of the board terminal connector. The sliding blocks are installed on the side snap-fit plates and slide upwards and downwards along the side snap-fit plates.
US11515654B2 Electrical connector with rotatable biasing member
There is provided a connector comprising an electrically conductive member (48) fixed in position within a rotatable insulating body (42), the electrically conductive member (48) comprising at least one connection channel (72, 74), a biasing member (46) such as a torsion spring connected to the insulating body (42), and an insertion axis (94), wherein the rotatable insulating body (42) is formed with at least one tapered guide channel (44) in which is located an insertion axis and the insulating body (42) is rotatable from a first biased position in which the at least one tapered guide channel (44) is offset from the connection channel (72, 74) to a second biased position where the at least one connection channel (72, 74) is aligned with the insertion axis (94). The electrically conductive member (48) is rotatable against a biasing force of the biasing member (46) upon insertion of a conductor pin.
US11515646B2 Integrated circuit-to-waveguide slot array coupler
A coupler comprising a silicon substrate with one or more double slot radiators configured to transmit or receive an RF signal, a slot balun circuit configured to isolate the RF signal, and a grounded coplanar waveguide configured to propagate the RF signal in a horizontal direction. The coupler can be included on an integrated chip with a second coupler and the chip can be positioned over two waveguides such that each coupler is positioned within the center of each waveguide aperture.
US11515640B2 EMNZ metamaterial switch configured for antenna modulation in a switched-beam array antenna
A system for EMNZ metamaterial-based direct antenna modulation. The system includes a signal generator, a metamaterial switch and an antenna. The signal generator may is configured to generate a microwave signal. The metamaterial switch is configured to generate a modulated microwave signal from the microwave signal. The modulated microwave signal is generated by selectively passing the microwave signal through the metamaterial switch. The metamaterial switch includes a first conductive plate and a first loaded conductive plate. The first loaded conductive plate includes a second conductive plate and a first monolayer graphene. The first monolayer graphene includes a first tunable conductivity. The first monolayer graphene is positioned between the first conductive plate and the second conductive plate. An effective permittivity of the metamaterial switch is configured to be adjusted to a predetermined value. The effective permittivity of the metamaterial switch is adjusted responsive to tuning the first tunable conductivity.
US11515639B2 Method and apparatus for an active radiating and feed structure
Examples disclosed herein relate to a radiating structure. The radiating structure has a transmission array structure having a plurality of transmission paths with each transmission path having a plurality of slots and a pair of adjacent transmission paths forming a superelement. Each superelement has a phase control module to control a phase of a transmission signal. The radiating structure also includes a radiating array structure having a plurality of radiating elements configured in a lattice, with each radiating element corresponding to at least one slot from the plurality of slots and the radiating array structure positioned proximate the transmission array structure. A feed coupling structure is coupled to the transmission array structure and adapted for propagation of a transmission signal to the transmission array structure. The transmission signal is radiated through at least one superelement and at least one of the plurality of radiating elements and has a phase controlled by the phase control module in the at least one superelement.
US11515637B2 Leaky wave antenna in AFSIW technology
Leaky wave antenna of AFSIW structure comprising a top substrate layer and a bottom substrate layer sandwiching an intermediate layer comprising a longitudinal aperture of length L defining a waveguide and whose width W1 is delimited by two conductive lateral walls. The inner faces of the conductive lateral walls are coated with a layer of dielectric material of thickness w(z). The top layer has a longitudinal radiating slot of width Wf (z) facing the longitudinal aperture of the intermediate layer. The thickness w(z) of the dielectric coating varies along the longitudinal axis z according to a given law, defined so as to obtain variations along the axis z of the amplitude Alpha(z) and of the phase Beta(z) of the leaky wave of the guide.
US11515633B2 Antenna and mobile terminal
A mobile terminal and an antenna that includes a feeder and a radiating element. The radiating element includes a first radiating patch and a second radiating patch. The first radiating patch and the second radiating patch are located on one side of the feeder and form a loop together with the feeder. An adjustable component configured to control the feeder and the second radiating patch is disposed on the feeder between the first radiating patch and the second radiating patch. The first radiating patch has a first extension part extending to an opposing side of the feeder.
US11515627B2 Antenna assemblies, terminal devices, and methods for improving radiation performance of antenna
An antenna assembly, a terminal device having the antenna assembly, and a method for improving a radiation performance of an antenna are provided. The terminal device includes an antenna assembly, and a controller. The antenna assembly comprises an antenna, a first adjusting unit, a second adjusting unit, and an antenna switch; the controller is configured to control, based on a current working power of the antenna, the antenna switch to select one of the first adjusting unit and the second adjusting unit to be in an enabled state, so that a radiation direction of the antenna can be adjusted by the selected adjusting unit to a radiation direction formed based on the selected adjusting unit.
US11515620B2 Spatial antenna diversity techniques
Embodiments disclosed herein include headphone devices with spatially diverse antennas employing multiple operational modes and antenna switching policies. The headphone device may identify a current mode of operation and wirelessly communicate with at least one external device based at least in part on the current mode of operation. Further, operating in a first mode of operation, the headphone device may cause switching circuitry to selectively couple a first antenna to the common port in accordance with a first antenna switching policy. While operating in the second mode of operation, the headphone device may cause circuitry to selectively couple a second antenna to the common port in accordance with a second antenna switching policy that is different from the first antenna switching policy.
US11515617B1 Radio frequency active antenna system in a package
The wireless RF semiconductor system is described for use in wireless communication devices that operate in frequency range from approximately 6 GigaHertz (GHz) to 100 GHz. The system comprises of at least one RF antenna and at least one RF integrated circuit fabricated (or built) on the same semiconductor substrate inside a one single packaged module. The wireless RF semiconductor system is described in a variety of different configurations with its functionality divided up over several single chip circuits. The system simplifies assembly, reduces size and cost, and allows for a quick time to market, while maximizing the RF performance demanded by fixed and mobile 4G, 5G and other wireless standards. The system uses a novel idea of configuration and packaging of active and passive RF components into a single module. This in turn allows RF manufacturers to unlock the potential of very high frequencies operation that were previously thought too expensive and unattainable to average user. The wireless RF semiconductor system can be implemented in both mobile solutions (such as phones and tablets) and fixed applications (such as repeaters, base-stations, and distributed antenna systems).
US11515612B2 Portable satellite antenna
A portable satellite antenna (1) includes radiating elements (2), made of flexible shape memory material, attached to a main body (3) acting as a handle. In operation (W) of the antenna elements (2) are arranged in a fan-like radial pattern (X). When not operational (H) they are folded in a position (R) in which they adhere to the main body (3). For the definition and maintenance of the radiating elements (2) in the folded position (R), means of stabilization (4) are provided, such as a cap (40) or a band (41), or even a collar (42) or a sleeve (43), to be associated, in a fixed or removable way, to the main body (3) and radiating elements (2), which are capable of spontaneously returning to the fan-like radial configuration (X), corresponding to operation (W) of the antenna (1), as a result of the removal/opening of the means of stabilization (4).
US11515609B2 Transmission line structures for millimeter wave signals
A coplanar waveguide structure includes a dielectric layer disposed over at least a portion of a substrate and a planar transmission line disposed within the dielectric layer. In some instances, the planar transmission line can include a conductive signal line and one or more ground lines. In other instances, the planar transmission line may include a conductive stacked signal line and one or more stacked ground lines.
US11515607B2 Method of interrupting inflow current in battery system
There is provided a battery system including parallel-connected bus bars each connecting the plurality of prismatic battery cells in parallel, and a safety mechanism configured to be capable of interrupting a current path of prismatic battery cells connected in parallel by the parallel-connected bus bars, where the sealing plate of one of the prismatic battery cells convexly deforms due to a rise in an internal pressure of this prismatic battery cell when an abnormality occurs, the sealing plate that has convexly deformed comes into contact with the parallel-connected bus bars to form external short circuitry between the electrode terminals that are positive and negative of one prismatic battery cell connected in parallel to the prismatic battery cell with the abnormality, and external short circuitry activates the safety mechanism that interrupts a current flowing into the prismatic battery cell with the abnormality.
US11515603B2 Separator plate arrangement for an electrochemical system
A separator plate arrangement for an electrochemical system, comprising a first metal sheet and a second metal sheet. The first metal sheet has a first circumferential sealing structure for sealing off an electrochemically active region, a first cutout arranged outside of the first circumferential sealing structure, and a first embossed structure arranged outside of the first circumferential sealing structure. The second metal sheet has a second circumferential sealing structure for sealing off an electrochemically active region, a second cutout arranged outside of the second circumferential sealing structure, and a second embossed structure arranged outside of the second circumferential sealing structure.
US11515600B2 Electric vehicle battery enclosure with sealant and seal bead height maintenance
Electric vehicle battery enclosures and methods of assembling electric vehicle battery enclosures involve a base portion to hold one or more batteries that provide motive power to an all-electric or hybrid electric vehicle. An electric vehicle battery enclosure includes a cover portion to mate with the base portion to enclose the one or more batteries, and a sealant to create a bond between the base portion and the cover portion around an entire perimeter of the enclosure and to seal the enclosure based on a uniform height of the sealant around the perimeter of the enclosure.
US11515597B2 Battery pack
A battery pack includes a plurality of stacked battery assemblies and an insulating spacer. The battery assemblies are provided with a pair of unit cells stacked in a thickness direction. Each unit cell includes a cell body having a power generation element and a flat shape, and an electrode tab protruding out from the cell body. The spacer is disposed between electrode tabs of the pair of the unit cells holding the electrode tabs and is electrically connected in the battery assemblies. A pair of the electrode tabs has distal end portions electrically connecting adjacent battery assemblies of the battery assemblies to each other. The distal end portions are bent in the stacking direction on a side of a surface of the insulating spacer. The distal end portions are positioned on opposite sides of the cell body. The distal end portions that are bent are electrically connected to each other.
US11515594B2 Waterproof device with air cell power source
Provided is a waterproof device that is impervious to water and can also use an air cell as a power source. The waterproof device of the present disclosure is worn on the body and includes a circuit unit, a power source, and an exterior package that protects the circuit unit and the power source. At least a part of the exterior package is composed of a water-repellent air-permeable sheet. The water-repellent air-permeable sheet has a water pressure resistance of 12 kPa or more.
US11515593B2 Battery module and battery pack including the same
The present disclosure relates to a battery module including: a battery cell stack in which a plurality of battery cells are stacked, and a frame member in which the battery cell stack is inserted, wherein the frame member includes plane surface parts covering the upper and lower surfaces of the battery cell stack, and curved surface parts covering both side surfaces of the battery cell stack, wherein the curved surface parts are formed on both side surfaces of the frame member located along the stacking direction of the battery cell stack, and wherein the curved surface parts support the battery cell stack.
US11515591B2 Heat transfer panel having non-planar internal channels with single planar joint
A heat rejection panel comprising a first and a second plate. The first plate comprises an oscillating heat pipe face having a plurality of first opened elongated recesses formed therein, and the second plate comprises an oscillating heat pipe face having a plurality of second open elongated recesses formed therein. The first plate oscillating heat pipe face is hermetically sealed to the second plate oscillating heat pipe face forming a bond joint therebetween. The first plate caps the second open elongated recesses and the second plate caps the first open elongated recesses such that first open elongated recesses are physically and fluidly connected to the second open elongated recesses, thereby forming at least one non-planar oscillating heat pipe channel within the panel that reciprocates back and forth across the bond joint having the bond joint as a longitudinal axis.
US11515586B2 Electric vehicle charging system
An external electric vehicle battery thermal management system is described. An electric vehicle thermal system provides external coolant to an internal battery thermal system of an electric vehicle. The internal battery thermal system includes a liquid-to-liquid heat exchanger to cool or warm the set of batteries of the electric vehicle. The external coolant is pumped through a first side of the heat exchanger and serves as the source to cool or heat internal coolant pumped through a second side of the heat exchanger. The external coolant and the internal coolant do not mix.
US11515583B2 Method for determining the state of an electrical energy storage unit, corresponding device for carrying out the method and corresponding electrical energy storage unit
A method for determining the state of an electric energy storage unit is described. An extension of the electrode assembly and/or a force exerted by the electrode assembly, and at least one electric variable of the electric energy storage unit are detected. A first and a second state variables, which represent the first state of the electric energy storage unit, are ascertained using the detected extension and/or the detected force and also a first mathematical model stored in a data memory and the detected at least one electric variable and also a second mathematical model stored in a data memory. This is followed by carrying out a first comparison of the first state variable with the second state variable. The first and/or the second mathematical model and/or the first and/or the second state variables are/is changed depending on the first comparison.
US11515581B2 Vehicular battery charger, charging system, and method
A vehicle battery charger and a vehicle battery charging system are described and illustrated, and can include a controller enabling a user to enter a time of day at which the vehicle battery charger or system begins and/or ends charging of the vehicle battery. The vehicle battery charger can be separate from the vehicle, can be at least partially integrated into the vehicle, can include a transmitter and/or a receiver capable of communication with a controller that is remote from the vehicle and vehicle charger, and can be controlled by a user or another party (e.g., a power utility) to control battery charging based upon a time of day, cost of power, or other factors.
US11515579B2 Cell control device, power system
To sufficiently exert charging and discharging performance of a cell while reliably protecting the cell, a battery controller determines ΔVlimit which is a limit value for a difference between a CCV and an OCV of a cell module, which is a secondary cell, and determines at least one of an upper limit voltage and a lower limit voltage of the cell module. An allowable current of the cell module is calculated based on the ΔVlimit and at least one of the upper limit voltage and the lower limit voltage determined in this manner.
US11515577B2 Battery module
A battery module may include a plurality of battery cells that are stacked on each other; and a circuit module which is electrically connected to the plurality of battery cells and includes a plate-shaped circuit part having a width and a length. The circuit part may be disposed between any one pair of battery cells of the plurality of battery cells in a state in which a width direction of the circuit part is parallel to a direction perpendicular to a direction in which the plurality of battery cells are stacked.
US11515573B2 Battery systems and methods for accelerating ion diffusion in polymer electrolyte materials
Battery systems and methods for accelerating ion diffusion in polymer electrolyte materials. The application of oscillating electric fields is used to improve the ionic transport properties of polymer electrolytes by reducing the apparent hopping barrier of the lithium ions within the electrolyte material. Polymer-electrolyte-based battery cells exhibiting enhanced ion mobility due to the application of such oscillating electric fields.
US11515571B2 Hot melt extruded solid state battery components
A method of co-extruding battery components includes forming a first thin film battery component via hot melt extrusion, and forming a second thin film battery component via hot melt extrusion. A surface treatment is applied to a surface region of at least one of the first and second components so that, relative to a remainder of the at least one component, the surface region has at least one of a decreased inter-particle distance, a decreased amount of polymer binder material, and an increased amount of exposed ionically conductive material. The first and second components are fed through a co-extrusion die to form a co-extruded multilayer thin film.
US11515563B2 Stacking apparatus and stacking method
A stacking apparatus provided with a flexible conveyor plate (20), a clamp mechanism (25) for holding a sheet-shaped member carried on the conveyor plate (20) against the conveyor plate (20), and an adjustment mechanism able to adjust the degree of curvature of the conveyor plate (20). When stacking a new sheet-shaped member (1) carried on the conveyor plate (20) onto already stacked sheet-shaped members (1), the adjustment mechanism makes the conveyor plate (20) deform from a flat state to a curved state to make the new sheet-shaped member (1) carried on the conveyor plate (20) deform from a flat state to a curved state.
US11515559B2 Fuel cell system
A first power output unit connected to a first terminal plate of a fuel cell system is electrically connected to a first external connector through a first joint part at a position above a cell stack body in an outer case. The first joint part includes a tightening member for tightening the first power output unit and the first external connector together by screw tightening, and a cover covering a screw tightening part of the tightening member from below.
US11515558B2 Cost-efficient high energy density redox flow battery
Methods and systems are provided for a redox flow battery system. In one example, the redox flow battery is adapted with an additive included in a battery electrolyte and an anion exchange membrane separator dividing positive electrolyte from negative electrolyte. An overall system cost of the battery system may be reduced while a storage capacity, energy density and performance may be increased.
US11515556B1 Solid electrolyte membrane and use thereof in batteries
The presently disclosed subject matter relates generally to a highly ionically conductive solid electrolyte membrane and to batteries comprising such solid electrolyte membrane.
US11515555B2 Reversible shunts for overcharge protection in polymer electrolyte membrane fuel cells
Described herein is a polymer-electrolyte-membrane fuel cell (PEMFC) that incorporates a shunt into the membrane separator that becomes electronically conductive around a well-defined anodic onset potential, thereby preventing excessive anodic potentials at the positive electrode that would otherwise drive deleterious parasitic reactions such as catalyst dissolution or catalyst and carbon oxidation.
US11515553B2 Degradation-conscious control for PEM fuel cells
A linear time varying model predictive control (LTV-MPC) framework is developed for degradation-conscious control of automotive polymer electrolyte membrane (PEM) fuel cell systems. A reduced-order nonlinear model of the entire system is derived first. This nonlinear model is then successively linearized about the current operating point to obtain a linear model. The linear model is utilized to formulate the control problem using a rate-based MPC formulation. The controller objective is to ensure offset-free tracking of the power demand, while maximizing the overall system efficiency and enhancing its durability. To this end, the fuel consumption and the power loss due to auxiliary equipment are minimized. Moreover, the internal states of the fuel cell stack are constrained to avoid harmful conditions that are known stressors of the fuel cell components.
US11515548B2 Fuel cell system
A fuel cell system includes a fuel cell stack, a reaction gas supply portion, and a control unit. The control unit performs two stages of purging that are a first purging and a second purging in which the flow rate of the reaction gas is smaller than the flow rate of the reaction gas of the first purging, and provides a purging standby time between the first purging and the second purging, and in a case in which an operation mode of the fuel cell stack when power generation of the fuel cell stack is stopped is a high output mode in which an output is higher than the output of a normal mode, the control unit makes a purging time longer than the purging time of the first purging that is performed in the normal mode.
US11515542B2 Fuel battery
A fuel battery includes a membrane-electrode assembly including a first catalyst layer and a first gas diffusion layer stacked on a first surface of a polymer electrolyte membrane, and a second catalyst layer and a second gas diffusion layer stacked on a second surface of the polymer electrolyte membrane. The membrane-electrode assembly is interposed between a first separator and a second separator. The first separator includes a rib and a groove on a surface that is in contact with the first gas diffusion layer, the rib and the groove defining a gas flow path through which a reaction gas is to flow. A thickness of the first gas diffusion layer is defined as h, and a width of a portion of the rib that is in contact with the first gas diffusion layer is defined as Rw such that 0.29 Rw≤h≤0.55 Rw is satisfied.
US11515540B2 Alkali metal-selenium secondary battery containing a graphene foam-protected selenium cathode
A graphene foam-protected selenium cathode layer for an alkali metal-selenium cell, comprising: (a) a sheet or a roll of solid graphene foam composed of multiple pores and pore walls containing graphene sheets, wherein the graphene sheets contain a pristine graphene material having less than 0.01% by weight of non-carbon elements or a non-pristine graphene material having 0.01% to 20% by weight of non-carbon elements, wherein said non-pristine graphene is selected from graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, boron-doped graphene, nitrogen-doped graphene, chemically functionalized graphene, or a combination thereof, wherein the graphene sheets are interconnected or chemically merged together without an adhesive resin; and (b) selenium coating or particles residing in the pores or bonded to the pore walls of the solid graphene foam.
US11515538B2 In-situ polymerization to protect lithium metal electrodes
An electrode including an electrode active material including lithium (Li) and a polymer layer coating at least a portion of the electrode active material is provided. The polymer layer includes a polymerization product of a monomer having Formula I: where R1 and R2 are independently an aryl or a branched or unbranched C1-C10 alkyl and X1 and X2 are independently chlorine (Cl), bromine (Br), or iodine (I).
US11515537B2 Energy storage device and energy storage apparatus
An energy storage device includes a negative electrode having a negative active material layer containing amorphous carbon as an active material, a curve attained by determining a rate of change (dQ/dV) in a potential (V) of the amorphous carbon in a discharge capacity (Q) of the amorphous carbon per unit quantity based on a result attained by measuring the potential (V) with respect to the discharge capacity (Q) and representing the rate of change (dQ/dV) with respect to the potential (V) has one or more peaks in a range in which the potential of the amorphous carbon is 0.8 V or more and 1.5 V or less, and a potential of the negative electrode at time of full charge is 0.25 V or more with respect to a lithium potential.
US11515534B2 Positive electrode active material for sodium-ion secondary battery
The present invention provides a novel positive electrode active material for a sodium-ion secondary battery having a high voltage and a high capacity. The positive electrode active material for a sodium-ion secondary battery contains, in terms of % by mole of oxide, 8 to 55% Na2O, 10 to 70% CoO, 0 to 60% CrO+FeO+MnO+NiO, and 15 to 70% P2O5+SiO2+B2O3 and also contains an amorphous phase.
US11515531B2 Electrode, secondary battery, battery pack, and vehicle
According to one embodiment, an electrode is provided. The electrode includes an active material-containing layer. The active material-containing layer contains an active material and a flat plate-shaped silicate.
US11515525B2 Process for coating an oxide material
The present invention is related to a process for coating anoxide material, said process comprising the following steps: (a) providing a particulate material selected from lithiated nickel-cobalt aluminum oxides, lithiated cobalt-manganese oxides and lithiated layered nickel-cobalt-manganese oxides, (b) treating said cathode active material with a metal alkoxide or metal amide or alkyl metal compound, (c) treating the material obtained in step (b) with moisture, and, optionally, repeating the sequence of steps (b) and (c), wherein steps (b) and (c) are carried out in a mixer that mechanically introduces mixing energy into the particulate material, or by way of a moving bed or fixed bed, and wherein steps (b) and (c) are carried out at a pressure that is in the range of from 5 mbar to 1 bar above normal pressure.
US11515524B2 Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
A positive active material for a rechargeable lithium battery includes: a core having a layered structure; and a surface layer on at least one portion of the surface of the core and including an oxide, wherein the oxide includes at least one first element and at least one second element each selected from Ti, Zr, F, Mg, Al, P, and a combination thereof, the first element and the second element being different from one another, the first element included in the positive active material in an amount of about 0.01 mol % to about 0.2 mol % based on a total weight of the positive active material, and the second element included in the positive active material in an amount of about 0.02 mol % to about 0.5 mol % based on a total weight of the positive active material. A rechargeable lithium battery includes the positive active material.
US11515523B2 Rechargeable lithium battery
A rechargeable lithium battery includes a positive electrode having a positive current collector and a positive active material layer at least partially disposed on the positive current collector, wherein the positive active material layer includes a first positive active material having at least one of a composite oxide of a metal selected from cobalt, manganese, nickel, and a combination thereof and lithium, and a second positive active material having a compound represented by Chemical Formula 1 as defined herein, and a negative electrode having a negative current collector, a negative active material layer at least partially disposed on the negative current collector, and a negative electrode functional layer having generally flake-shaped polyethylene particles at least partially disposed on the negative active material layer.
US11515517B2 Positive electrode for nonaqueous secondary battery, method for forming the same, nonaqueous secondary battery, and electrical device
A positive electrode for a nonaqueous secondary battery including an active material layer which has sufficient electron conductivity with a low ratio of a conductive additive is provided. A positive electrode for a nonaqueous secondary battery including an active material layer which is highly filled with an active material, id est, including the active material and a low ratio of a conductive additive. The active material layer includes a plurality of particles of an active material with a layered rock salt structure, graphene that is in surface contact with the plurality of particles of the active material, and a binder.
US11515515B2 Method of preparing negative electrode active material
The present invention relates to a method of preparing a negative electrode active material which includes forming a mixture by mixing Li2O and SiOx(0
US11515514B2 Method of manufacturing display device
A manufacturing method of a display device includes irradiating a laser beam onto a work panel along a beam irradiation line corresponding to an outer edge of the display device including a first thickness area and a second thickness area. The irradiating of the laser beam includes first irradiating the laser beam under a first driving condition to provide a first portion of the beam irradiation line at the first area, stopping driving of the laser beam while changing the first driving condition to a second driving condition different from the first driving condition, after the first irradiating of the laser beam, and second irradiating the laser beam under the second driving condition to provide a second portion of the beam irradiation line at the second area, after the stopping of the driving of the laser beam.
US11515508B2 Display panel and manufacturing method thereof
The present invention provides a display panel and a manufacturing method thereof. The display panel includes a glass substrate and a one-dimensional photonic crystal layer disposed on the glass substrate. The one-dimensional photonic crystal layer includes a plurality of crystal unit layers stacked upon each other. Each of the plurality of crystal unit layers includes a low-refractive-index sublayer disposed on a side of each of the plurality of crystal unit layers near the glass substrate and a high-refractive-index sublayer disposed on a side of each of the plurality of crystal unit layers away from the glass substrate.
US11515502B2 Display device
A display device includes a display panel including a folding area at which the display device is foldable and unfoldable; a first casing and a second casing arranged in a first direction along the display panel, the first casing and the second casing spaced apart from each other at the folding area; a third casing between the first casing and the second casing along the first direction, the third casing corresponding to the folding area; and a cover facing the display panel with the third casing therebetween, the cover connected to each of the first casing and the second casing. Folding and unfolding of the display device respectively includes extension of the cover from of the first casing and retraction of the cover into the first casing.
US11515499B2 Oled element, display panel, and display device
The disclosure discloses an OLED element, a display panel, and a display device. The OLED element includes an anode, a light-emitting layer, a cathode stacked, and at least one of following components: an electric charge transfer and hole transmission component located between the anode and the light-emitting layer, where the electric charge transfer and hole transmission component includes a first light-induced electron transfer material and a hole transmission material; or an electric charge transfer and electron transmission component located between the cathode and the light-emitting layer, where the electric charge transfer and electron transmission component includes a second light-induced electron transfer material and an electron transmission material.
US11515490B2 Organic light-emitting composite material and an organic light-emitting device comprising the same
An objective of the disclosure is to provide an organic light-emitting composite material based on an exciplex, which, when used as a light-emitting layer, can enhance the efficiency of an organic electroluminescent device. The disclosure also relates to an organic light-emitting device comprising the organic light-emitting composite material, and use of the organic light-emitting composite material of the disclosure for an organic electron device.
US11515486B2 Organic electroluminescence device and polycyclic compound for organic electroluminescence device
An organic electroluminescence device includes a first electrode, a hole transport region on the first electrode, an emission layer on the hole transport region, the emission layer including a polycyclic compound, an electron transport region on the emission layer, and a second electrode on the electron transport region, wherein the polycyclic compound includes an isophthalonitrile derivative, a linker, and a nitrogen-containing group, the linker is a condensed cyclic group of three rings that are independently five-membered or six-membered rings, and each of the isophthalonitrile derivative and the nitrogen-containing group is substituted into a same ring of the linker.
US11515485B2 Organic light emitting diode and organic light emitting device having the same
An organic light emitting diode including a plurality delayed fluorescent materials with specific energy levels and an organic light emitting device including the diode is disclosed. When the plurality delayed fluorescent materials with specific energy levels are applied in an emitting material layer, it is possible to minimize the energy loss or exciton quenching during luminous process and to prevent the diode from reducing life span caused by the exciton quenching. When the emitting material layer includes other luminous material having a narrow FWHM, the organic light emitting diode can enhance its color purity.
US11515478B2 Compound and organic light emitting device using the same
The present disclosure relates to a compound represented by Chemical Formula 1 and an organic light emitting device using the same. The compound is used as a material of an organic material layer of the organic light emitting device.
US11515476B2 Ink composition and method for manufacturing organic light emitting device
The present specification relates to an ink composition including: a compound represented by Formula 1; and a solvent represented by the Formula 2, and a method for manufacturing an organic light emitting device formed by using the ink composition.
US11515474B2 Memory device and method for fabricating the same
A memory device includes a semiconductor substrate, a first dielectric layer, a metal contact, an aluminum nitride layer, an aluminum oxide layer, a second dielectric layer, a metal via, and a memory stack. The first dielectric layer is over the semiconductor substrate. The metal contact passes through the first dielectric layer. The aluminum nitride layer extends along a top surface of the first dielectric layer and a top surface of the metal contact. The aluminum oxide layer extends along a top surface of the aluminum nitride layer. The second dielectric layer is over the aluminum oxide layer. The metal via passes through the second dielectric layer, the aluminum oxide layer, and the aluminum nitride layer and lands on the metal contact. The memory stack lands on the metal via.
US11515469B1 Multi-element prescription lenses with eye-tracking
The disclosed embodiments are generally directed to optical systems. The optical systems may include a proximal lens that may transmit light toward an eye of a user. The optical systems may also include a distal lens that may, in combination with the proximal lens, correct for at least a portion of a refractive error of the eye of the user. The optical systems may further include a selective transmission interface. The selective transmission interface may couple the proximal lens to the distal lens, transmits light having a selected property, and does not transmit light that does not have the selected property. The optical system can also include an accommodative lens, such as a liquid lens. Various other methods, systems, and computer-readable media are also disclosed.
US11515468B2 Piezoelectric ceramics, manufacturing method for piezoelectric ceramics, piezoelectric element, vibration device, and electronic device
Provided is a piezoelectric ceramics having a gradual change in piezoelectric constant depending on an ambient temperature. Specifically, provided is a single-piece piezoelectric ceramics including as a main component a perovskite-type metal oxide represented by a compositional formula of ABO3, wherein an A site element in the compositional formula contains Ba and M1, the M1 being formed of at least one kind selected from the group consisting of Ca and Bi, wherein a B site element in the compositional formula contains T1 and M2, the M2 being formed of at least one kind selected from the group consisting of Zr, Sn, and Hf, wherein concentrations of the M1 and the M2 change in at least one direction of the piezoelectric ceramics, and wherein increase and decrease directions of concentration changes of the M1 and the M2 are directions opposite to each other.
US11515464B2 Piezoelectric actuator
There is provided a piezoelectric actuator, including: a vibration plate; a first piezoelectric body; a second piezoelectric body; a first electrode disposed on a first surface of the first piezoelectric body; a second electrode disposed on a second surface of the second piezoelectric body; an intermediate electrode disposed on an intermediate surface of the first piezoelectric body and overlapping with the first and second electrodes; an intermediate trace connected to the intermediate electrode on the intermediate surface and drawn out to one side in a first direction beyond the first piezoelectric body and the second piezoelectric body; a first trace overlapping with the intermediate trace in the thickness direction and being conducted with the intermediate trace; and a second trace overlapping with the intermediate trace in the thickness direction and being conducted with the intermediate trace.
US11515461B2 Superconductor devices having buried quasiparticle traps
Techniques for trapping quasiparticles in superconductor devices are provided. A superconductor device can comprise a substrate layer. The superconductor device can further comprise a first superconductor layer composed of a first superconductor material, on a first surface of a substrate layer. The superconductor device can further comprise a trapping material buried in the first superconductor layer, wherein the trapping material is formulated to trap quasiparticles.
US11515460B2 Majorana fermion quantum computing devices with charge sensing fabricated with ion implant methods
A quantum computing device is fabricated by forming, on a superconductor layer, a first resist pattern defining a device region and a sensing region within the device region. The superconductor layer within the sensing region is removed, exposing a region of an underlying semiconductor layer outside the device region. The exposed region of the semiconductor layer is implanted, forming an isolation region surrounding the device region. Using an etching process subsequent to the implanting, the sensing region and a portion of the device region of the superconductor layer adjacent to the isolation region are exposed. By depositing a first metal layer within the sensing region, a tunnel junction gate is formed. A reflectrometry wire comprising a second metal within the reflectrometry region is formed. A nanorod contact using the second metal within the portion of the device region outside the sensing region is formed.
US11515456B2 LED with light adjusting layer extending past the LED
The present disclosure provides a lighting device and a manufacturing method thereof. The lighting device of an embodiment includes a substrate, a light emitting unit and a light adjusting layer. The light emitting unit is disposed on the substrate, and the light emitting unit includes a light output surface. The light adjusting layer is disposed on the light emitting unit, and the light adjusting layer includes a first portion and a second portion connected to the first portion. Wherein, the first portion only partially covers the light output surface, and the second portion does not cover the light output surface.
US11515453B2 Light-converting material with semiconductor nanoparticles, process for its preparation, and light source
The present invention relates to a light-converting material which comprises a luminescent material with semiconductor nanoparticles (quantum materials), where the semiconductor nanoparticles are located on the surface of the luminescent material and the emission from the semiconductor nanoparticles is in the region of the emission from the luminescent material. The present invention furthermore relates to a process for the preparation of the light-converting material and to the use thereof in a light source. The present invention furthermore relates to a light-converting mixture, a light source, a lighting unit which contains the light-converting material according to the invention, and a process for the production thereof.
US11515450B2 Semiconductor light emitting device with contact electrode having irregular top surface
A semiconductor light emitting device includes a first semiconductor layer, an active layer disposed on the first semiconductor layer to emit ultraviolet light, a second semiconductor layer disposed on the active layer, and a first electrode disposed on the first semiconductor layer and being in Ohmic contact with a portion of the first semiconductor layer, the first electrode including a contact electrode including aluminum (Al) and at least one other material and having a first region adjacent to the first semiconductor layer and a second region, with each region having an Al composition ratio defined by the amount of Al relative to the amount of the at least one other material. The Al composition ratio of the first region is greater than the Al composition ratio of the second region, and a metal layer disposed on the contact electrode.
US11515447B2 Flip-chip light emitting diode structure and manufacturing method thereof
The flip-chip light emitting diode structure includes a substrate, a first patterned current blocking layer, a second patterned current blocking layer, a first semiconductor layer, an active layer and a second semiconductor layer. The first patterned current blocking layer is disposed on the substrate. The second patterned current blocking layer is disposed on the first patterned current blocking layer, in which the first patterned current blocking layer and the second patterned current blocking layer are located on different planes, and patterns of the first patterned current blocking layer and patterns of the second current blocking layer are substantially complementary. The first semiconductor layer is disposed on the second patterned current blocking layer. The active layer is disposed on the first semiconductor layer. The second semiconductor layer is disposed on the active layer, in which electrical properties of the second semiconductor layer and the first semiconductor layer are different.
US11515436B2 Photovoltaic device and photovoltaic unit
A photovoltaic device includes: a p- or n-type semiconductor substrate; a p-type amorphous semiconductor film and an n-type amorphous semiconductor film on a first-face side; p-electrodes on the p-type amorphous semiconductor film; and n-electrodes on the n-type amorphous semiconductor film, wherein: the p-electrodes and the n-electrodes are arranged at intervals; the p-type amorphous semiconductor film surrounds the n-type amorphous semiconductor film in an in-plane direction of the semiconductor substrate; the n-type amorphous semiconductor film has an edge portion providing an overlapping region where the n-type amorphous semiconductor film overlaps the p-type amorphous semiconductor film; and the n-electrodes are disposed in areas of the n-type amorphous semiconductor film that are surrounded by the overlapping region.
US11515435B2 Semiconductor device with nanostructures and methods of forming the same
A semiconductor device includes a semiconductor substrate, a photo sensing region, and a plurality of nanostructures. The semiconductor substrate has a first dopant. The photo sensing region is embedded in the semiconductor substrate, has a top surface level with a top surface of the semiconductor substrate, and has a second dopant that is of a different conductivity type than the first dopant. The plurality of nanostructures is on the photo sensing region and is made of a material the same as the photo sensing region.
US11515434B2 Decoupling capacitor and method of making the same
A semiconductor device includes a substrate and a plurality of source/drain (S/D) regions in the substrate, wherein each of the plurality of S/D regions includes a first dopant having a first dopant type, and the each of the plurality of S/D regions are electrically coupled together. The semiconductor device further includes a gate stack over the substrate. The semiconductor device further includes a channel region in the substrate, wherein the channel region is below the gate stack and between adjacent S/D regions of the plurality of S/D regions, the channel region includes a second dopant having the first dopant type, and a concentration of the second dopant in the channel region is less than a concentration of the first dopant in each of the plurality of S/D regions.
US11515428B2 Semiconductor device structure having multiple gate terminals
One example provides an integrated circuit comprising a transistor including a semiconductor channel. The semiconductor channel includes three or more sub-channels, one or more nodes, each node being a junction of at least three sub-channels, and channel ends. A Schottky contact at each channel end forms a source or drain contact, and a gate contact disposed at each Schottky contact controls a barrier conductivity of the corresponding Schottky contact.
US11515426B2 Semiconductor device comprising a void region insulating film
A change in electrical characteristics of a semiconductor device including an interlayer insulating film over a transistor including an oxide semiconductor as a semiconductor film is suppressed. The structure includes a first insulating film which includes a void portion in a step region formed by a source electrode and a drain electrode over the semiconductor film and contains silicon oxide as a component, and a second insulating film containing silicon nitride, which is provided in contact with the first insulating film to cover the void portion in the first insulating film. The structure can prevent the void portion generated in the first insulating film from expanding outward.
US11515423B2 Semiconductor device having fins
A device includes a semiconductor substrate, a first fin arranged over the semiconductor substrate, and an isolation structure. The first fin includes an upper portion, a bottom portion, and an insulator layer between the upper portion and the bottom portion. A top surface of the insulator layer is wider than a bottom surface of the upper portion of the first fin. The isolation structure surrounds the bottom portion of the first fin.
US11515419B2 Ferroelectric semiconductor device and method of manufacturing the same
A ferroelectric semiconductor device of the present disclosure includes a substrate having a channel structure, a trench pattern having a bottom surface and a sidewall surface in the channel structure, a dielectric layer disposed on the bottom surface and the sidewall surface of the trench pattern, and a gate electrode layer disposed on the dielectric layer. The dielectric layer includes a ferroelectric layer pattern and a non-ferroelectric layer pattern that are disposed along the sidewall surface of the trench pattern.
US11515418B2 Vertical tunneling FinFET
A tunneling transistor is implemented in silicon, using a FinFET device architecture. The tunneling FinFET has a non-planar, vertical, structure that extends out from the surface of a doped drain formed in a silicon substrate. The vertical structure includes a lightly doped fin defined by a subtractive etch process, and a heavily-doped source formed on top of the fin by epitaxial growth. The drain and channel have similar polarity, which is opposite that of the source. A gate abuts the channel region, capacitively controlling current flow through the channel from opposite sides. Source, drain, and gate terminals are all electrically accessible via front side contacts formed after completion of the device. Fabrication of the tunneling FinFET is compatible with conventional CMOS manufacturing processes, including replacement metal gate and self-aligned contact processes. Low-power operation allows the tunneling FinFET to provide a high current density compared with conventional planar devices.
US11515416B2 Laterally-diffused metal-oxide semiconductor transistor and method therefor
A transistor includes a trench formed in a semiconductor substrate. A conductive spacer is formed in the trench and offset from a first sidewall of the trench. A dielectric material is formed in the trench and surrounds the conductive spacer. A drift region is formed in the semiconductor substrate adjacent to the first sidewall and a first portion of a second sidewall of the trench. A drain region is formed in the drift region adjacent to a second portion of the second sidewall. A first gate region overlaps a portion of the drift region and is formed separate from the conductive spacer.
US11515414B2 Semiconductor devices and methods for forming a semiconductor device
A semiconductor device includes an electrical device and has an output capacitance characteristic with at least one output capacitance maximum located at a voltage larger than 5% of a breakdown voltage of the semiconductor device. The output capacitance maximum is larger than 1.2 times an output capacitance at an output capacitance minimum located at a voltage between the voltage at the output capacitance maximum and 5% of a breakdown voltage of the semiconductor device.
US11515412B2 Nitride semiconductor device
A nitride semiconductor device includes: a substrate; a first nitride semiconductor layer of a first conductivity type; a second nitride semiconductor layer of a second conductivity type; an electron transport layer and an electron supply layer provided, in that order from a side on which the substrate is located, above the second nitride semiconductor layer and on an inner surface of a first opening; a gate electrode provided above the electron supply layer and covering the first opening; a source electrode provided in a second opening and connected to the second nitride semiconductor layer; a drain electrode; a third opening at an outermost edge part in a plan view of the substrate; and a potential fixing electrode provided in the third opening, the potential fixing electrode being connected to the second nitride semiconductor layer and in contact with neither the electron transport layer nor the electron supply layer.
US11515411B2 Silicon rich nitride layer between a plurality of semiconductor layers
According to one embodiment, a semiconductor device includes first to third electrodes, first and second semiconductor layers, a nitride layer, and an oxide layer. A direction from the second electrode toward the first electrode is aligned with a first direction. A position in the first direction of the third electrode is between the first electrode and the second electrode in the first direction. The first semiconductor layer includes first to fifth partial regions. The first partial region is between the fourth and third partial regions in the first direction. The second partial region is between the third and fifth partial regions in the first direction. The nitride layer includes first and second nitride regions. The second semiconductor layer includes first and second semiconductor regions. The oxide layer includes silicon and oxygen. The oxide layer includes first to third oxide regions.
US11515405B2 Method for fabricating semiconductor device with programmable feature
The present application discloses a method for fabricating a semiconductor device with a programmable feature such as anti-fuse The method includes forming a semiconductor fin on a buried insulating layer; forming a dummy gate structure on the semiconductor fin; forming a top insulating layer over the semiconductor fin and covering the dummy gate structure; removing the dummy gate structure and concurrently forming a first trench in the top insulating layer; performing an etch process in the first trench to form a tapered pit separating the semiconductor fin; forming a first insulating layer to completely fill the first trench and the tapered pit; and replacing the semiconductor fin with first conductive blocks.
US11515403B2 Semiconductor device and method
In an embodiment, a method includes: forming a fin extending from a substrate; forming a first gate mask over the fin, the first gate mask having a first width; forming a second gate mask over the fin, the second gate mask having a second width, the second width being greater than the first width; depositing a first filling layer over the first gate mask and the second gate mask; depositing a second filling layer over the first filling layer; planarizing the second filling layer with a chemical mechanical polish (CMP) process, the CMP process being performed until the first filling layer is exposed; and planarizing the first filling layer and remaining portions of the second filling layer with an etch-back process, the etch-back process etching materials of the first filling layer, the second filling layer, the first gate mask, and the second gate mask at the same rate.
US11515402B2 Microelectronic transistor source/drain formation using angled etching
The present description relates to the fabrication of microelectronic transistor source and/or drain regions using angled etching. In one embodiment, a microelectronic transistor may be formed by using an angled etch to reduce the number masking steps required to form p-type doped regions and n-type doped regions. In further embodiments, angled etching may be used to form asymmetric spacers on opposing sides of a transistor gate, wherein the asymmetric spacers may result in asymmetric source/drain configurations.
US11515397B2 III-V compound semiconductor layer stacks with electrical isolation provided by a trap-rich layer
Semiconductor structures including electrical isolation and methods of forming a semiconductor structure including electrical isolation. A layer stack is formed on a semiconductor substrate comprised of a single-crystal semiconductor material. The layer stack includes a semiconductor layer comprised of a III-V compound semiconductor material. A polycrystalline layer is formed in the semiconductor substrate. The polycrystalline layer extends laterally beneath the layer stack.
US11515395B2 Gallium nitride power device and manufacturing method thereof
A gallium nitride power device, including: a gallium nitride substrate; cathodes; a plurality of gallium nitride protruding structures arranged on the gallium nitride substrate and between the cathodes, a groove is formed between adjacent gallium nitride protruding structures; an electron transport layer, covering a top portion and side surfaces of each of the gallium nitride protruding structures; a gallium nitride layer, arranged on the electron transport layer and filling each of the grooves; a plurality of second conductivity type regions, where each of the second conductivity type regions extends downward from a top portion of the gallium nitride layer into one of the grooves, and the top portion of each of the gallium nitride protruding structures is higher than a bottom portion of each of the second conductivity type regions; and an anode, arranged on the gallium nitride layer and the second conductivity type regions.
US11515394B2 Method for the nanoscale etching of a germanium-tin alloy (GeSn) for a FET transistor
A method for the nanoscale etching of a layer of Ge1-xSnx on a carrier for a FET transistor, x being the concentration of tin in the GeSn alloy, the etching method includes a step of plasma-etching the layer of Ge1-xSnx using a mixture comprising dichlorine (Cl2) and dinitrogen (N2) and under an etching pressure lower than or equal to 50 mTorr, preferably lower than or equal to 10 mTorr. A method for producing a conduction channel on a carrier for a FET transistor, comprising a step of forming a layer of Ge1-xSnx on the carrier, the layer being produced by epitaxial growth, and a step of etching the layer of Ge1-xSnx according to the etching method. A conduction channel made of Ge1-xSnx for a FET transistor, the channel being obtained according to the production method, and a FET transistor comprising a plurality of conduction channels made of Ge1-xSnx.
US11515391B2 Semiconductor device
A semiconductor device includes a plurality of channels, source/drain layers, and a gate structure. The channels are sequentially stacked on a substrate and are spaced apart from each other in a first direction perpendicular to a top surface of the substrate. The source/drain layers are connected to the channels and are at opposite sides of the channels in a second direction parallel to the top surface of the substrate. The gate structure encloses the channels. The channels have different lengths in the second direction and different thicknesses in the first direction.
US11515388B2 Semiconductor device with P-N junction isolation structure and method for fabricating the same
The present application discloses a semiconductor device with a P-N junction isolation structure and a method for fabricating the semiconductor device. The semiconductor device includes a substrate, a first well layer positioned in the substrate and having a first electrical type, a bottom conductive layer positioned in the first well layer and having a second electrical type opposite to the first electrical type, a first insulating layer positioned on the bottom conductive layer, an isolation-mask layer positioned on the substrate and enclosing the first insulating layer, a first conductive line positioned on the first insulating layer, and a bias layer positioned in the first well layer and spaced apart from the bottom conductive layer. The bottom conductive layer, the first insulating layer, and the first conductive line together configure a programmable unit.
US11515383B2 Display device
A display device includes a substrate comprising an active area and a non-active area a first data conductive layer disposed on the substrate and including signal wires connected to pixels, a first insulating layer disposed on the first data conductive layer, a second data conductive layer disposed on the first insulating layer and including a connection wire connected to some of the signal wires and dummy wiring patterns disconnected the signal wires, a second insulating layer disposed on the second data conductive layer and a pixel electrode disposed on the second insulating layer. The dummy wiring patterns are separated from one another at a disconnection, the second insulating layer includes a second portion disposed on the disconnection and a third portion disposed on at least a portion of the connection wire, and thicknesses thereof are different from each other.
US11515377B2 Display panel with a light-blocking layer
Disclosed herein is a display panel, comprising: a support; a first layer comprising a light emitter, a first region and a second region; a second layer sandwiched between the first layer and the support; wherein the first region and the second region allow light scattered by an object (e.g., a person's finger) to transmit therethrough; wherein the second layer allows light transmitted through the first region to reach the support and comprises a light-blocking layer configured to attenuate light transmitted through the second region.
US11515372B2 Method of manufacturing electronic apparatus
A method includes: providing an unfinished set module for a display panel having an active area and a peripheral area adjacent to the active area and being foldable about a foldable axis extending in one direction, the active area including a hole formation area; selectively irradiating a laser beam along a path defined along a boundary between the hole formation area and the active area, the path including first paths spaced apart from each other in a direction substantially parallel to the foldable axis and second paths disposed between the first paths, at a first energy density and at second energy density different from the first energy density, wherein the laser beam is irradiated at the first energy density along the first paths and at the second energy density along the second paths; and forming a set module having a hole by removing the hole formation area from the unfinished set module.
US11515368B2 Organic light emitting display device and electronic device including the same
An organic light emitting display device includes a lower electrode, a pressure sensing layer disposed on the lower electrode, an upper electrode disposed on the pressure sensing layer, an organic light emitting structure disposed on the upper electrode, a window disposed on the organic light emitting structure and which is applied with a user pressure, and a haptic structure which generates a haptic signal when the user pressure detected through the lower electrode, the pressure sensing layer, and the upper electrode is greater than a predetermined pressure.
US11515366B2 Display device
A display device includes a display panel comprising a through hole and a pixel area, the pixel area surrounding the through hole and including pixels for displaying an image; a force sensor at a first surface of the display panel and configured to sense force applied from an outside; and a light sensor overlapping the through hole of the display panel in a thickness direction of the display panel, the light sensor being configured to sense light incident on the light sensor through the through hole.
US11515363B2 Display apparatus
A display apparatus includes: an organic light emitting diode (OLED) structure including in which at least one blue light-emitting unit and at least one green light-emitting unit are stacked to provide incident light in which the blue incident light and the green incident light are mixed; a first pixel, a second pixel, and a third pixel disposed on the OLED structure; color conversion layers disposed on at least two of the first, the second, or the third pixels, and including quantum dots for converting the mixed incident from the OLED structure into light of a predetermined color; and first, second, and third color filters disposed on the first, the second, and the third pixels, respectively, to absorb or block light of a predetermined wavelength band, wherein a conversion value of an area of a spectrum in a wavelength region of 380 nanometers to 780 nanometers of the green incident light with respect to a difference between a wavelength at the maximum transmittance of the second color filter and the medial wavelength of the incident green light (Δλ) may be 3.6 or greater and 13 or less.
US11515362B2 Display panel and display device
A display panel and a display device are provided. The display panel has a display area including a conventional display region and a translucent display region; and a non-display area. First sub-pixels, second sub-pixels and third sub-pixels are provided in the conventional display region, the first sub-pixels are arranged in a first density, and the second and third sub-pixels are arranged in a second density. Fourth sub-pixels, fifth sub-pixels and sixth sub-pixels are provided in the translucent display region, the fourth sub-pixel has a same color as the first sub-pixel, the fifth sub-pixel has a same color as the second sub-pixel, and the sixth sub-pixel has a same color as the third sub-pixel. The fourth sub-pixels are arranged in a third density equal to the first density, the fifth and sixth sub-pixels are arranged in a fourth density. The second density is greater than the fourth density.
US11515350B2 Multicolor photodetector and method for fabricating the same by integrating with readout circuit
Provided are a multicolor photodetector and a method of fabricating the same through integration with a readout integrated circuit. The multicolor photodetector may be fabricated by providing an integrated circuit device in which a readout integrated circuit is wired; forming an assembly in which a first photodetection layer for detecting first wavelength light from incident light and a second photodetection layer for detecting second wavelength light from the incident light on the integrated circuit device; and electrically connecting the first photodetection layer and the second photodetection layer to the readout integrated circuit using connecting members.
US11515348B2 Image sensor
An image sensor includes a substrate having a first surface, a charge storage portion disposed in the substrate, a light-blocking pattern disposed on the first surface overlapping the charge storage portion, and a low-refractive index pattern on the light-blocking pattern.
US11515344B2 Image sensor, image capturing apparatus and image processing apparatus
An image sensor comprises: a pixel region including a plurality of microlenses arranged in a matrix, and a plurality of photoelectric conversion portions provided for each of the microlenses; a plurality of amplifiers that apply a plurality of different gains to signals output from the pixel region; and a scanning circuit that scans the pixel region so that a partial signal and an added signal are read out, the partial signal being a signal from some of the plurality of photoelectric conversion portions, and the added signal being a signal obtained by adding the signals from the plurality of photoelectric conversion portions.
US11515343B2 Image sensor
Designs of image sensors including a plurality of first gild structures arranged in row and column directions of a pixel array of imaging pixels and structured to separate the imaging pixels from one another, each of the first grid structures including an air to provide optical isolation between two adjacent imaging pixels and a plurality of second grid structures respectively disposed at each intersection between the row direction and the column direction in which the first grid structures are arranged.
US11515341B2 Array substrate, manufacturing method thereof, and display device
The present application relates to the field of display technology and, in particular, to an array substrate, a manufacturing method of the array substrate, and a display device. An array substrate comprises: a base substrate having a pixel display area and a gate drive circuit area; a first thin film transistor formed in the pixel display area, the first thin film transistor comprising a first gate insulating layer; a second thin film transistor formed in the gate drive circuit area, the second thin film transistor comprising a second gate insulating layer, where a thickness of the second gate insulating layer is smaller than a thickness of the first gate insulating layer.
US11515340B2 Display device, display module, and electronic device
A display device with high resolution is provided. A display device with high display quality is provided. A display device includes a display portion, a first terminal group, and a second terminal group. The display portion includes pixels, scan lines, and signal lines. The first terminal group and the second terminal group are apart from each other. The first terminal group includes first terminals and the second terminal group includes second terminals. The scan lines are each electrically connected to the pixels arranged in a row direction. The signal lines are each electrically connected to the pixels arranged in a column direction. The signal lines are each electrically connected to the first terminal or the second terminal. The display portion includes a first region where the signal lines electrically connected to the first terminals and the signal lines electrically connected to the second terminals are mixed.
US11515337B2 Array substrate, display apparatus, and method of fabricating array substrate
An array substrate having a plurality of subpixels is provided. In a respective one of the plurality of subpixels, the array substrate includes a base substrate; and a thin film transistor on the base substrate. The thin film transistor includes a gate electrode, a source electrode, and a drain electrode. The drain electrode includes a first portion, a second portion, and a third portion connecting the first portion and the second portion. An orthographic projection of the first portion on the base substrate at least partially overlaps with an orthographic projection of a first gate line protrusion of a respective one of the plurality of gate lines on the base substrate. An orthographic projection of the second portion on the base substrate at least partially overlaps with an orthographic projection of a second gate line protrusion of the respective one of the plurality of gate lines on the base substrate.
US11515335B2 Method adapted to manufacture array substrate and display panel
The application discloses a method adapted to manufacture an array substrate and a display panel. The method includes: form a photoresist layer, a source and a drain; post-baking the photoresist layer, so that the photoresist layer flows to the position of a channel; etching a semiconductor layer to obtain a preset pattern; and peeling off the photoresist layer.
US11515332B2 Ferroelectric memory device and method of forming the same
A memory cell includes a transistor over a semiconductor substrate. The transistor includes a ferroelectric layer arranged along a sidewall of a word line. The ferroelectric layer includes a species with valence of 5, valence of 7, or a combination thereof. An oxide semiconductor layer is electrically coupled to a source line and a bit line. The ferroelectric layer is disposed between the oxide semiconductor layer and the word line.
US11515328B2 Staggered word line architecture for reduced disturb in 3-dimensional NOR memory arrays
A staggered memory cell architecture staggers memory cells on opposite sides of a shared bit line preserves memory cell density, while increasing the distance between such memory cells, thereby reducing the possibility of a disturb. In one implementation, the memory cells along a first side of a shared bit line are connected to a set of global word lines provided underneath the memory structure, while the memory cells on the other side of the shared bit line—which are staggered relative to the memory cells on the first side—are connected to global word lines above the memory structure.
US11515327B2 Semiconductor device and method for manufacturing same
According to one embodiment, a source layer includes a semiconductor layer including an impurity. A stacked body includes a plurality of electrode layers stacked with an insulator interposed. A gate layer is provided between the source layer and the stacked body. The gate layer is thicker than a thickness of one layer of the electrode layers. A semiconductor body extends in a stacking direction of the stacked body through the stacked body and the gate layer. The semiconductor body further extends in the semiconductor layer where a side wall portion of the semiconductor body contacts the semiconductor layer. The semiconductor body does not contact the electrode layers and the gate layer.
US11515326B2 Three-dimensional memory device including laterally-undulating memory material layers and methods for forming the same
A memory device includes an alternating stack of insulating layers and electrically conductive layers located over a substrate, a memory opening vertically extending through the alternating stack, and a memory opening fill structure located in the memory opening and including a vertical semiconductor channel and a memory material layer. A vertical stack of insulating material portions can be provided at levels of the insulating layers to provide a laterally-undulating profile to the memory material layer. Alternatively, a combination of inner insulating spacers and outer insulating spacers can be employed to provide a laterally-undulating profile to the memory material layer.
US11515321B2 Memory cells, memory arrays, and methods of forming memory arrays
Some embodiments include a memory cell having a conductive gate, and having a charge-blocking region adjacent the conductive gate. The charge-blocking region includes silicon oxynitride and silicon dioxide. A charge-storage region is adjacent the charge-blocking region. Tunneling material is adjacent the charge-storage region. Channel material is adjacent the tunneling material. The tunneling material is between the channel material and the charge-storage region. Some embodiments include memory arrays. Some embodiments include methods of forming assemblies (e.g., memory arrays).
US11515316B2 Semiconductor memory device
A semiconductor memory device includes a select transistor and a floating gate transistor on a substrate. The select transistor includes a select gate, a select gate oxide layer and a drain doping region. The floating gate transistor includes a floating gate, a floating gate oxide layer, a source doping region, a first tunnel doping region and a second tunnel doping region under the floating gate, a first tunnel oxide layer on the first tunnel doping region, and a second tunnel oxide layer on the second tunnel doping region. The floating gate oxide layer is disposed between the first tunnel oxide layer and the second tunnel oxide layer. A lightly doped diffusion region surrounds the source doping region and the second tunnel doping region.
US11515315B2 Single-layer polysilicon nonvolatile memory cell and memory including the same
The present invention relates to a single-layer polysilicon nonvolatile memory cell, a group structure thereof and a memory including the same. The memory cell includes a selection transistor and a storage transistor, wherein the selection transistor is connected in series with the storage transistor; and the selection transistor and the storage transistor are arranged on a substrate in a mutually perpendicular manner. A memory cell group includes four memory cells, arranged in a center-symmetrical array of two rows×two columns. The memory comprises at least one memory cell group. The memory cell and the memory thereof are used as a one-time programming memory cell and memory, and have the advantages of small area, high programming efficiency and capability, and strong data retention capability.
US11515314B2 One transistor two capacitors nonvolatile memory cell
A nonvolatile memory device is provided. The device comprises a memory transistor. A first capacitor is coupled to the memory transistor. A second capacitor is coupled to the memory transistor. The second capacitor comprises a first electrode and a second electrode. The first capacitor and the second capacitor are connected to separate input terminals.
US11515312B2 Memory cell and method for reading out data therefrom
A memory cell includes a semiconductor substrate, a transistor, and a first anti-fuse structure. The transistor is above the semiconductor substrate. The first anti-fuse structure is above the semiconductor substrate and adjacent the transistor, and includes a first terminal and a second terminal. The first terminal of the first anti-fuse structure is in the semiconductor substrate and laterally surrounds the transistor. The second terminal of the first anti-fuse structure is above and spaced apart from the first terminal of the first anti-fuse structure.
US11515309B2 Process for preparing a channel region of a thin-film transistor in a 3-dimensional thin-film transistor array
A process includes (a) providing a semiconductor substrate having a planar surface; (b) forming a plurality of thin-film layers above the planar surface of the semiconductor substrate, one on top of another, including among the thin-film layers first and second isolation layers, wherein a significantly greater concentration of a first dopant specie is provided in the first isolation layer than in the second isolation layer; (c) etching along a direction substantially orthogonal to the planar surface through the thin-films to create a trench having sidewalls that expose the thin-film layers; (d) depositing conformally a semiconductor material on the sidewalls of the trench; (e) annealing the first isolation layer at a predetermined temperature and a predetermined duration such that the first isolation layer act as a source of the first dopant specie which dopes a portion of the semiconductor material adjacent the first isolation layer; and (f) selectively etching the semiconductor material to remove the doped portion of the semiconductor material without removing the remainder of the semiconductor material.
US11515307B2 Heterogeneously integrated semiconductor device and manufacturing method thereof
A method of making a semiconductor device includes: providing a substrate; forming an insulating layer on the substrate; forming a first trench in the insulating layer; forming a first semiconductor layer in the first trench; and removing a portion of the insulating layer to expose the first semiconductor layer.
US11515304B2 Integrated circuit devices with non-collapsed fins and methods of treating the fins to prevent fin collapse
An integrated circuit device with a substrate and a plurality of fins is provided where fin width is less than 11 nanometers, fin height is greater than 155 nanometers and spacing between any two neighboring fins is less than 30 nanometers and each fin is in non-collapsed state. An integrated circuit device with a substrate and a plurality of fins is provided where fin width is less than 15 nanometers, fin height is greater than 190 nanometers and spacing between any two neighboring fins is less than 30 nanometers and each fin is in non-collapsed state. A method for forming a fin-based transistor structure is provided where a plurality of fins on a substrate are pre-treated with at least one of a self-assembled monolayer, a non-polar solvent, and a surfactant. One or more of these treatments is to reduce adhesion and/or cohesive forces to prevent occurrence of fin collapse.
US11515300B2 Semiconductor memory device
A semiconductor memory device includes a first chip and a second chip. The first chip includes a semiconductor substrate and a plurality of transistors disposed on a surface of the semiconductor substrate. The second chip includes a plurality of first conductive layers, a plurality of first semiconductor layers, and a plurality of memory cells disposed in intersection portions of the plurality of first conductive layers and the plurality of first semiconductor layers. The second chip includes a second semiconductor layer farther from the semiconductor substrate than the plurality of first conductive layers. The second semiconductor layer is connected to the plurality of first semiconductor layers and a first insulating layer that includes a part farther from the semiconductor substrate than a surface on a side opposite to the semiconductor substrate of the second semiconductor layer and a part closer to the semiconductor substrate than the surface.
US11515299B2 Method for manufacturing display array
A method for manufacturing a display array includes the following steps: providing a substrate and forming a semiconductor stacked layer on the substrate; forming an insulating layer and a plurality of electrode pads on an outer surface of the semiconductor stacked layer, the insulating layer and the electrode pads directly contacting the semiconductor stacked layer, wherein the insulating layer has a plurality of openings, and the electrode pads are respectively located in the openings of the insulating layer and separated by the insulating layer; and transferring the semiconductor stacked layer, the insulating layer and the electrode pads from the substrate to a driving backplane, wherein the electrode pads are respectively electrically connected to a portion of the semiconductor stacked layer and the driving backplane through the openings of the insulating layer to form a plurality of light emitting regions in the semiconductor stacked layer.
US11515297B2 Micro light-emitting diode displays having colloidal or graded index quantum dot films
Micro light-emitting diode displays having colloidal or graded index quantum dot films and methods of fabricating micro light-emitting diode displays having colloidal or graded index quantum dot films are described. In an example, a micro light emitting diode pixel structure includes a plurality of micro light emitting diode devices in a dielectric layer. A transparent conducting oxide layer is above the dielectric layer. A material layer is on the transparent conducting oxide layer, the material layer having a portion with a hydrophilic surface and a portion with a hydrophobic surface, the hydrophilic surface over one of the plurality of micro light emitting diode devices. A color conversion film is on the hydrophilic surface of the material layer and over the one of the plurality of micro light emitting diode devices.
US11515291B2 Integrated voltage regulator and passive components
It is highly desirable in electronic systems to conserve space on printed circuit boards (PCB). This disclosure describes voltage regulation in electronic systems, and more specifically to integrating voltage regulators and associated passive components into semiconductor packages with at least a portion of the circuits whose voltage(s) they are regulating.
US11515290B2 Semiconductor package
A semiconductor package includes an upper substrate having a first surface and a second surface which are opposite to each other, a lower semiconductor chip disposed on the first surface of the upper substrate, a plurality of conductive pillars disposed on the first surface of the upper substrate at at least one side of the lower semiconductor chip, and an upper semiconductor chip disposed on the second surface of the upper substrate. The lower semiconductor chip and the plurality of conductive pillars are connected to the first surface of the upper substrate, and the upper semiconductor chip is connected to the second surface of the upper substrate.
US11515288B2 Protective layer for contact pads in fan-out interconnect structure and method of forming same
A method includes providing a die having a contact pad on a top surface and forming a conductive protective layer over the die and covering the contact pad. A molding compound is formed over the die and the conductive protective layer. The conductive protective layer is exposed using a laser drilling process. A redistribution layer (RDL) is formed over the die. The RDL is electrically connected to the contact pad through the conductive protective layer.
US11515284B2 Multi-segment wire-bond
A multifaceted capillary that can be used in a wire-bonding machine to create a multi-segment wire-bond is disclosed. The multifaceted capillary is shaped to apply added pressure and thickness to an outer segment of the multi-segment wire-bond that is closest to the wire loop. The added pressure eliminates a gap under a heel portion of the multi-segment wire-bond and the added thickness increases a mechanical strength of the heel portion. As a result, a pull test of the multi-segment wire-bond may be higher than a single-segment wire-bond and the multi-segment wire-bond may resist cracking, lifting, or breaking.
US11515280B2 Mounting structure and nanoparticle mounting material
A mounting structure is used, which includes: a semiconductor element including an element electrode; a metal member; and a sintered body configured to bond the semiconductor element and the metal member is used, in which the sintered body contains a first metal and a second metal solid-dissolved in the first metal, the second metal is a metal having a diffusion coefficient in the first metal larger than a self-diffusion coefficient of the first metal, and a content ratio of the second metal relative to a total mass of the first metal and the second metal in the sintered body is equal to or lower than a solid solution limit of the second metal to the first metal.
US11515276B2 Integrated circuit, package structure, and manufacturing method of package structure
An integrated circuit includes a semiconductor substrate, contact pads, testing pads, conductive posts, and dummy posts. The contact pads and the testing pads are distributed over the semiconductor substrate. The conductive posts are disposed on the contact pads. The dummy posts are disposed on the testing pads. A height of the conductive posts is greater than a height of the dummy posts.
US11515274B2 Semiconductor package and manufacturing method thereof
A semiconductor package and a manufacturing method thereof are provided. The semiconductor package includes a semiconductor die laterally covered by an insulating encapsulation, a first redistribution structure disposed on the semiconductor die and the insulating encapsulation, a second redistribution structure disposed opposite to the first redistribution structure, and a through insulating via (TIV) penetrating through the insulating encapsulation. The semiconductor die is electrically coupled to the first redistribution structure through the second redistribution structure and the TIV. The first redistribution structure includes a patterned conductive layer covered by a patterned dielectric layer, and under-ball metallurgy (UBM) pattern partially covered by the patterned dielectric layer. A first portion of the UBM pattern physically contacts a via portion of the patterned conductive layer which is tapered toward the UBM pattern, and a second portion of the UBM pattern is connected to the first portion and protruded from the patterned dielectric layer.
US11515273B2 Bonded assembly containing oxidation barriers, hybrid bonding, or air gap, and methods of forming the same
At least one polymer material may be employed to facilitate bonding between the semiconductor dies. Plasma treatment, formation of a blended polymer, or formation of polymer hairs may be employed to enhance bonding. Alternatively, air gaps can be formed by subsequently removing the polymer material to reduce capacitive coupling between adjacent bonding pads.
US11515270B2 Semiconductor device package and method of manufacturing the same
An antenna package includes a conductive layer, an interconnection structure and an antenna. The interconnection structure is disposed on the conductive layer. The interconnection structure includes a conductive via and a first package body. The conductive via has a first surface facing the conductive layer, a second surface opposite to the first surface and a lateral surface extending from the first surface to the second surface. The first package body covers the lateral surface of the conductive via and exposes the first surface and the second surface of the conductive via. The first package body is spaced apart from the conductive layer. The antenna is electrically connected to the second surface of the conductive via.
US11515265B2 Fan-out semiconductor package
A fan-out semiconductor package includes: a core member having a first through-hole and including a dummy metal layer; a first semiconductor chip disposed in the first through-hole and having a first active surface having first connection pads disposed thereon and a first inactive surface opposing the first active surface; a first encapsulant covering at least portions of the core member and the first semiconductor chip and filling at least portions of the first through-hole; and a first connection member disposed on the core member and the first active surface of the first semiconductor chip and including a first redistribution layer electrically connected to the first connection pads, wherein the dummy metal layer is electrically insulated from signal patterns of the first redistribution layer.
US11515257B2 Semiconductor device and method of manufacturing the same
An upper surface of a plug (PL1) is formed so as to be higher than an upper surface of an interlayer insulating film (PIL) by forming the interlayer insulating film (PIL) on a semiconductor substrate (1S), completing a CMP method for forming the plug (PL1) inside the interlayer insulating film (PIL), and then, making the upper surface of the interlayer insulating film (PIL) to recede. In this manner, reliability of connection between the plug (PL1) and a wiring (W1) in a vertical direction can be ensured. Also, the wiring (W1) can be formed so as not to be embedded inside the interlayer insulating film (PIL), or a formed amount by the embedding can be reduced.
US11515253B2 Electronic module
An electronic module includes a power supply wiring line disposed on a substrate along a first side and connected to a power supply terminal, a ground wiring line disposed on the substrate along a second side and connected to a ground terminal, and first to third half bridges each having a high-side switch and a low-side switch connected in series between the power supply wiring line and the ground wiring line. Connection points of the high-side switches and the low-side switches are connected to first to third motor terminals and also connected in parallel to one another. The first motor terminal, the second motor terminal, and the third motor terminal are disposed between the power supply terminal and the ground terminal.
US11515251B2 FinFET transistors as antifuse elements
Embodiments herein may describe techniques for an integrated circuit including a FinFET transistor to be used as an antifuse element having a path through a fin area to couple a source electrode and a drain electrode after a programming operation is performed. A FinFET transistor may include a source electrode in contact with a source area, a drain electrode in contact with a drain area, a fin area including silicon and between the source area and the drain area, and a gate electrode above the fin area and above the substrate. After a programming operation is performed to apply a programming voltage between the source electrode and the drain electrode to generate a current between the source electrode, the fin area, and the drain electrode, a path may be formed through the fin area to couple the source electrode and the drain electrode. Other embodiments may be described and/or claimed.
US11515246B2 Dual circuit digital isolator
An apparatus, comprising: a substrate; a coupling capacitor that is formed over the substrate; and an isolator that is formed between the substrate and the coupling capacitor, the isolator including: (a) an MP-well layer, (b) a first well layer, (c) an epi tub layer that is nested in the MP-well layer and the first well layer, and (d) a second well layer that is nested in the epi tub layer.
US11515236B2 Power module and substrate structure applied to power modules
An embodiment of the present disclosure provides a substrate structure applied to a power module. In the substrate structure applied to a power module, the substrate includes an upper substrate and a lower substrate, a plurality of semiconductor devices disposed on the lower substrate, a source signal electrode transmitting a source signal to the semiconductor devices, and a gate signal electrode transmitting a gate signal to the semiconductor devices, one of the source signal electrode or the gate signal electrode is connected to the upper substrate through a conductive column, and a signal transmitted by one of the source signal electrode or the gate signal electrode is transmitted to the semiconductor devices through the upper substrate.
US11515235B2 Device topology for lateral power transistors with low common source inductance
Circuit-Under-Pad (CUP) device topologies for high-current lateral power switching devices are disclosed, in which the interconnect structure and pad placement are configured for reduced source and common source inductance. In an example topology for a power semiconductor device comprising a lateral GaN HEMT, the source bus runs across a centre of the active area, substantially centered between first and second extremities of source finger electrodes, with laterally extending tabs contacting the underlying source finger electrodes. The drain bus is spaced from the source bus and comprises laterally extending tabs contacting the underlying drain finger electrodes. The gate bus is centrally placed and runs adjacent the source bus. Preferably, the interconnect structure comprises a dedicated gate return bus to separate the gate drive loop from the power loop. Proposed CUP device structures provide for lower source and common source inductance and/or higher current carrying capability per unit device area.
US11515233B2 Semiconductor component with cooling structure
An apparatus includes a semiconductor component and a cooling structure. The cooling structure is over a back side of the semiconductor component. The cooling structure includes a housing, a liquid delivery device and a gas exhaust device. The housing includes a cooling space adjacent to the semiconductor component. The liquid delivery device is connected to an inlet of the housing and is configured to deliver a liquid coolant into the cooling space from the inlet. The gas exhaust device is connected to an outlet of the housing and is configured to lower a pressure in the housing.
US11515231B2 Coating method for liquid metal thermal grease and heat dissipation module
A coating method applied to perform coating with liquid metal thermal grease and a heat dissipation module are provided. The coating method includes: providing liquid metal thermal grease on a surface of an electronic element, and scraping the liquid metal thermal grease by a scraper, to coat the surface of the electronic element with the liquid metal thermal grease. A surface of the scraper is roughened. According to the coating method, the surface of the electronic element is evenly coated with the liquid metal thermal grease effectively.
US11515226B2 Semiconductor package and method of fabricating the same
Disclosed are semiconductor packages and/or methods of fabricating the same. The semiconductor package comprises a substrate, a semiconductor chip on the substrate, and a molding layer. The semiconductor chip includes a circuit region and an edge region around the circuit region. The molding layer covers a sidewall of the semiconductor chip. The semiconductor chip includes a reforming layer on the edge region. A top surface of the reforming layer is coplanar with a top surface of the molding layer.
US11515224B2 Packages with enlarged through-vias in encapsulant
A package includes a device die, an encapsulant encapsulating the device die therein, a first plurality of through-vias penetrating through the encapsulant, a second plurality of through-vias penetrating through the encapsulant, and redistribution lines over and electrically coupling to the first plurality of through-vias. The first plurality of through-vias include an array. The second plurality of through-vias are outside of the first array, and the second plurality of through-vias are larger than the first plurality of through-vias.
US11515223B2 Package structure, semiconductor device, and formation method for package structure
A package structure includes a metal member and a resin member. The metal member has an obverse surface facing one side in a first direction. The resin member is disposed in contact with at least a portion of the obverse surface. The obverse surface has a roughened area. The roughened area includes a plurality of first trenches recessed from the obverse surface, each of the first trenches having a surface with a greater roughness than the obverse surface. The plurality of first trenches extend in a second direction perpendicular to the first direction and are next to each other in a third direction perpendicular to the first direction and the second direction. The plurality of first trenches are filled up with the resin member.
US11515218B2 Thermal profile monitoring wafer and methods of monitoring temperature
Thermal monitors comprising a substrate with at least one camera position on a bottom surface thereof, a wireless communication controller and a battery. The camera has a field of view sufficient to produce an image of at least a portion of a wafer support, the image representative of the temperature within the field of view. Methods of using the thermal monitors are also described.
US11515217B2 Complementary metal oxide semiconductor device having fin field effect transistors with a common metal gate
A method of forming a complementary metal oxide semiconductor (CMOS) device is provided. The method includes forming a separate gate structure on each of a pair of vertical fins, wherein the gate structures include a gate dielectric layer and a gate metal layer, and forming a protective liner layer on the gate structures. The method further includes heat treating the pair of gate structures, and replacing the protective liner layer with an encapsulation layer. The method further includes exposing a portion of the gate dielectric layer by recessing the encapsulation layer. The method further includes forming a top source/drain on the top surface of one of the pair of vertical fins, and subjecting the exposed portion of the gate dielectric layer to a second heat treatment conducted in an oxidizing atmosphere.
US11515213B2 Method of forming a semiconductor device
A method for forming a semiconductor device. A substrate having a first region and a second region surrounding the first region is provided. The first region includes a first active area and a first gate. A dummy pattern is disposed on the substrate within the second region around a perimeter of the first region. A resist pattern masks the second region and includes an opening that exposes the first region. An ion implantation process is performed to implant dopants through the opening into the first active area not covered by the first gate within the first region, thereby forming doped regions in the first active area. A resist stripping process is performed to remove the resist pattern by using a sulfuric acid-hydrogen peroxide mixture (SPM) solution at a temperature that is higher than or equal to 120˜190 degrees Celsius. The substrate is subjected to a cleaning process.
US11515212B2 Method of manufacturing semiconductor devices having controlled S/D epitaxial shape
In a method of manufacturing a semiconductor device, an isolation structure is formed in a substrate defining an active region, a first gate structure is formed over the isolation structure and a second gate structure over the active region adjacent to the first gate structure, a cover layer is formed to cover the first gate structure and a part of the active region between the first gate structure and the second gate structure, the active region between the first gate structure and the second gate structure not covered by the cover layer is etched to form a recess, and an epitaxial semiconductor layer is formed in the recess.
US11515207B2 Methods of forming metal chalcogenide pillars
Methods of producing a self-aligned structure comprising a metal chalcogenide are described. Some methods comprise forming a metal-containing film in a substrate feature and exposing the metal-containing film to a chalogen precursor to form a self-aligned structure comprising a metal chalcogenide. Some methods comprise forming a metal-containing film in a substrate feature, expanding the metal-containing film to form a pillar and exposing the pillar to a chalogen precursor to form a self-aligned structure comprising a metal chalcogenide. Some methods comprise directly forming a metal chalcogenide pillar in a substrate feature to form a self-aligned structure comprising a metal chalcogenide. Methods of forming self-aligned vias are also described.
US11515203B2 Selective deposition of conductive cap for fully-aligned-via (FAV)
Methods and systems for selective deposition of conductive a cap for FAV features are described. In an embodiment, a method may include receiving a substrate having an interlayer dielectrics (ILD) layer, the ILD layer having a recess, the recess having a conductive layer formed therein, the conductive layer comprising a first conductive material. Additionally, such a method may include forming a cap within a region defined by the recess and in contact with a surface of the conductive layer, the cap comprising a second conductive material. The method may also include forming a conformal etch stop layer in contact with a surface of the cap and in contact with a region of the ILD layer. Further, the method may include selectively etching the etch stop layer using a plasma etch process, wherein the plasma etch process removes the etch stop layer selective to the second conductive material comprising the cap.
US11515199B2 Semiconductor structures including standard cells and tap cells
Semiconductor structures and methods are provided. A semiconductor structure according to an embodiment includes a first cell disposed over a first well doped with a first-type dopant, a second cell disposed over the first well, and a tap cell disposed over a second well doped with a second-type dopant different from the first-type dopant. The tap cell is sandwiched between the first cell and the second cell. The first cell includes a first plurality of transistors and the second cell includes a second plurality of transistors.
US11515197B2 Semiconductor device and method of forming the semiconductor device
A semiconductor device includes: a substrate; an ion-implanted silicon layer disposed in the substrate; a first insulator layer disposed over the ion-implanted silicon layer; an active device disposed over the first insulator layer; and a conductive via configured to penetrate the first insulator layer for coupling the ion-implanted silicon layer and the active device.
US11515194B2 Substrate processing apparatus, substrate processing system, and substrate transporting method
A substrate processing apparatus includes a stage including a first section and a second section, pins, a lifter configured to raise and lower the pins, and a controller configured to control the lifter. On the first section, a substrate is placed. On the second section, an edge ring is placed. The second section is provided at a periphery of the first section. Also, at the second section, holes are provided. The pins are provided in the respective holes so as to move up and down through the holes.
US11515191B2 Graded dimple height pattern on heater for lower backside damage and low chucking voltage
Embodiments disclosed herein may include a heater pedestal. In an embodiment, the heater pedestal may comprise a heater pedestal body and a conductive mesh embedded in the heater pedestal. In an embodiment, the conductive mesh is electrically coupled to a voltage source In an embodiment, the heater pedestal may further comprise a support surface on the heater pedestal body. In an embodiment, the support surface comprises a plurality of pillars extending out from the heater pedestal body and arranged in concentric rings. In an embodiment pillars in an outermost concentric ring have a height that is greater than a height of pillars in an innermost concentric ring.
US11515189B2 Automatic handling buffer for bare stocker
A buffer station for automatic material handling system can provide throughput improvement. Further, by storing to-be-accessed workpieces in the buffer stations of an equipment, the operation of the facility is not interrupted when the equipment is down. The buffer station can be incorporated in a stocker, such as bare wafer stocker.
US11515187B2 Fast FOUP swapping with a FOUP handler
A vertical batch furnace assembly for processing wafers having a cassette handling space, a wafer handling space, and a first wall and separating the cassette handling space from the wafer handling space. The first wall has at least one wafer transfer opening in front of which, at a side of the first wall which is directed to the cassette handling space, a wafer transfer position for a wafer cassette is provided. The cassette handling space comprises a cassette storage having a plurality of cassette storage positions and a cassette handler configured to transfer wafer cassettes between the cassette storage positions and the wafer transfer position. The cassette handler has a first cassette handler arm and a second cassette handler arm.
US11515179B2 Semiconductor processing chamber multistage mixing apparatus
Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include a mixing manifold coupled between the remote plasma unit and the processing chamber. The mixing manifold may be characterized by a first end and a second end opposite the first end, and may be coupled with the processing chamber at the second end. The mixing manifold may define a central channel through the mixing manifold, and may define a port along an exterior of the mixing manifold. The port may be fluidly coupled with a first trench defined within the first end of the mixing manifold. The first trench may be characterized by an inner radius at a first inner sidewall and an outer radius, and the first trench may provide fluid access to the central channel through the first inner sidewall.
US11515177B2 Circulating EFEM
A circulating EFEM includes an introduction port for introducing a gas, a housing for circulating the introduced gas, and a discharge port for discharging the gas from the housing into a discharge pipe. The discharge port includes a box and a damper. The box is disposed to surround a discharge opening formed on the housing and connected to the discharge pipe. The damper is disposed inside the box to close and open the discharge port and adjusts a discharge amount of the gas via the discharge opening by at least partially moving in response to a differential pressure between the housing and the box.
US11515175B2 Wafer inspection apparatus
A wafer inspection apparatus according to one embodiment is a wafer inspection apparatus including a plurality of inspection parts arranged in a height direction and a lateral direction, and includes a pair of air circulating means disposed at both ends in a longitudinal direction of an air circulating region including the plurality of inspection parts arranged in the lateral direction and configured to circulate air in the circulating region.
US11515172B2 Method of etching object
In a first aspect of a present inventive subject matter, a method of etching an object to be etched with an etching liquid that contains bromine, and the object contains at least gallium and/or aluminum.
US11515170B2 3D NAND etch
Methods of etching film stacks to form gaps of uniform width are described. A film stack is etched through a hardmask. A conformal liner is deposited in the gap. The bottom of the liner is removed. The film stack is selectively etched relative to the liner. The liner is removed. The method may be repeated to a predetermined depth.
US11515167B2 Plasma etching method and plasma processing apparatus
Provided is a plasma etching method which enables etching with high accuracy while controlling and reducing surface roughness of a transition metal film. The etching is performed for the transition metal film, which is formed on a sample and contains a transition metal element, by a first step of isotropically generating a layer of transition metal oxide on a surface of the transition metal film while a temperature of the sample is maintained at 100° C. or lower, a second step of raising the temperature of the sample to a predetermined temperature of 150° C. or higher and 250° C. or lower while a complexation gas is supplied to the layer of transition metal oxide, a third step of subliming and removing a reactant generated by an reaction between the complexation gas and the transition metal oxide formed in the first step while the temperature of the sample is maintained at 150° C. or higher and 250° C. or lower, and a fourth step of cooling the sample.
US11515165B2 Semiconductor device and method
In an embodiment, a structure includes: a contact etch stop layer (CESL) over a substrate; a fin extending through the CESL; an epitaxial source/drain region in the fin, the epitaxial source/drain region extending through the CESL; a silicide contacting upper facets of the epitaxial source/drain region; a source/drain contact contacting the silicide, lower facets of the epitaxial source/drain region, and a first surface of the CESL; and an inter-layer dielectric (ILD) layer surrounding the source/drain contact, the ILD layer contacting the first surface of the CESL.
US11515162B2 Method of manufacturing a semiconductor device and a semiconductor device
In a method of manufacturing a semiconductor device, a gate dielectric layer is formed over a channel region in a gate space, one or more conductive layers are formed over the gate dielectric layer, a seed layer is formed over the one or more conductive layers, an upper portion of the seed layer is treated by introducing one or more elements selected from the group consisting of oxygen, nitrogen and fluorine, and a W layer is selectively formed on a lower portion of the seed layer that is not treated to fully fill the gate space with bottom-up filling approach.
US11515160B2 Substrate processing method using multiline patterning
A method includes providing a substrate including mandrels of a first material positioned on an underlying layer. Each of the mandrels includes a first sidewall and an opposing second sidewall. The method further includes forming sidewall spacers made of a second material and including a first sidewall spacer abutting each respective first sidewall and a second sidewall spacer abutting each respective second sidewall. The mandrels extend above top surfaces of the sidewall spacers. The method also includes forming first capped sidewall spacers by depositing a third material on the first sidewall spacers without depositing on the second sidewall spacers, forming second capped sidewall spacers by depositing a fourth material on the second sidewall spacers without depositing on the first sidewall spacers, and selectively removing at least one of the first material, the second material, the third material, and the fourth material to uncover an exposed portion of the underlying layer.
US11515151B2 Methods and precursors for selective deposition of metal films
Methods and precursors for selectively depositing a metal film on a silicon nitride surface relative to a silicon oxide surface are described. The substrate comprising both surfaces is exposed to a blocking compound to selectively block the silicon oxide surface. A metal film is then selectively deposited on the silicon nitride surface.
US11515148B2 Method for producing at least one device in compressive strained semiconductor
Method for producing a semiconductor device, including: producing, on a first region of a surface layer comprising a first semiconductor and disposed on a buried dielectric layer, a layer of a second compressive strained semiconductor along a first direction; etching a trench through the layer of the second semiconductor forming an edge of a portion of the layer of the second semiconductor oriented perpendicularly to the first direction, and wherein the bottom wall is formed by the surface layer; thermal oxidation forming in the surface layer a semiconductor compressive strained portion along the first direction and forming in the trench an oxide portion; producing, through the surface layer and/or the oxide portion, and through the buried dielectric layer, dielectric isolation portions around an assembly formed of the compressive strained semiconductor portion and the oxide portion; and wherein the first semiconductor is silicon, the second semiconductor is SiGe, and said at least one compressive strained semiconductor portion includes SiGe.
US11515137B2 Ion guide with varying multipoles
An ion guide includes electrodes elongated along an axis from an entrance end to an exit end and spaced around the axis to surround an interior. The electrodes have polygonal shapes with inside surfaces disposed at a radius from the axis and having an electrode width tangential to a circle inscribed by the electrodes. An aspect ratio of the electrode width to the radius varies along the axis. The electrodes are configured to generate a two-dimensional RF electrical field in the interior having a multipole composition comprising one or more lower-order multipole components and one or more higher-order multipole components and varying along the axis in accordance with the varying aspect ratio, and having an RF voltage amplitude that varies along the axis.
US11515134B2 Highly sensitive emitter for strontium isotope analysis of picogram-level samples by thermal ionization mass spectrometry
A method for strontium isotope analysis of picogram-level samples using highly sensitive silicotungstic acid emitter is presented by a thermal ionization mass spectrometry. The emitter has merits of extremely high sensitivity, low cost, simple operation, etc. It is an important innovation of the strontium isotope analysis of the picogram-level samples. Compared with a sample consumption of 1-50 ng of conventional emitter, the present invention only needs 30-200 pg to obtain satisfying measurement accuracy. The present invention greatly improves test sensitivity, and has broad application prospects in future.
US11515132B2 Physical vapor deposition processing systems target cooling
Physical vapor deposition target assemblies and methods of manufacturing such target assemblies are disclosed. An exemplary target assembly comprises a flow pattern including a plurality of arcs and bends fluidly connected to an inlet end and an outlet end.
US11515127B2 End effectors for moving workpieces and replaceable parts within a system for processing workpieces under vacuum
An end effector for moving workpieces and replaceable parts within a system for processing workpieces. The end effector may include an arm portion extending between a first arm end and a second arm end along the axial direction. The end effector may further include a spatula portion extending between a first spatula end and a second spatula end, the first spatula end being adjacent the second arm end. Further, the end effector may include a first support member extending outwardly from the spatula portion, a second support member extending outwardly from the spatula portion, and a shared support member extending outwardly from the arm portion. The shared support member and the first support member together to support workpieces of a first diameter, and the shared support member and the second support member together support replaceable parts of a second diameter.
US11515120B2 Charged particle beam apparatus
A charged particle beam apparatus using a light guide that improves light utilization efficiency includes a detector including a scintillator for emitting light when a charged particle is incident, a light receiving element, and a light guide for guiding the light from the scintillator to the light receiving element. The light guide includes: an incident surface that faces a light emitting surface of the scintillator and to which the light emitted by the scintillator is incident; an emitting surface that is configured to emit light; and a reflecting surface that is inclined with respect to the incident surface so that the light from the incident surface is reflected toward the emitting surface. The emitting surface is smaller than the incident surface. A slope surface is provided between the incident surface and the emitting surface, faces the reflecting surface, and is inclined with respect to the incident surface.
US11515118B2 Electron beam irradiation apparatus and electron beam alignment method
Provided is an electron beam irradiation apparatus including: an aligner configured to perform an alignment of an electron beam by deflecting the electron beam; a deflector having a plurality of electrodes and configured to deflect the electron beam after passing through the aligner; and an adjuster configured to adjust deflection caused by the aligner, wherein the adjuster is configured to perform, on each of the plurality of electrodes, detecting an image of the electron beam by applying a test voltage to one of the plurality of electrodes and applying a reference voltage to the other electrodes, determine a position shift of the electron beam based on each position of the image of the electron beam corresponding to each electrode, and adjust deflection of the aligner so as to cancel the position shift of the electron beam.
US11515111B2 Actuator device for change of state of an electronic-control apparatus for underwater use, and corresponding system
The invention relates to an actuator device for change of state of an electronic-control apparatus for underwater use and a system for underwater use comprising the combination of a said actuator device with an electronic-control apparatus for underwater use. The actuator device for change of state of an electronic-control apparatus for underwater use comprises a main body designed to be associated in a stable way with at least part of said apparatus. A peculiarity of the invention is that it comprises, associated with the main body, magnetic-field generator means that interface, in the operating position of the actuator device, with reed-technology sensor means of said apparatus for sending electrical information to means for management and control of the apparatus that are designed to change the state, in particular the state of supply of the apparatus, said management and control means being electrically associated with a supply circuit of the apparatus, which comprises at least one power-supply battery, for the possible opening or closing of the circuit.
US11515105B2 Push-button structure, electronic device, and control method
A push-button structure includes: a mounting body, an outer surface of the mounting body being at least partially recessed inward to form a blind hole; a first magnetic component, located in the blind hole; a second magnetic component, located on an inner surface of the mounting body and distributed symmetrically with the first magnetic component on an opposite side of the mounting body, for generating, based on a distance to the first magnetic component, a magnetic signal corresponding to the distance; and an elastic block, located in the blind hole and having a first form without an external action and a second form under an external action.
US11515103B2 High voltage switch with condensation preventing bearing assembly and method therefor
A high voltage electric disconnect switch having a rotatable switch blade in operative arrangement with a rotatable high voltage electrical insulator. A rotating bearing assembly in operative supporting arrangement with a rotatable shaft. The bearing assembly containing corrodible ball bearing assemblies including associated corrodible ball bearing races. The rotatable insulator is operatively mounted to the rotatable shaft. The rotatable shaft has a lower rotatable shaft portion contacting the corrodible ball bearing assemblies housed within a sealed housing of the bearing assembly. An air permeable hydrophobic membrane mounted in a membrane assembly is mounted in an aperture of the housing to eliminate condensing humidity within the housing, thereby preventing corrosion of the corrodible ball bearings and races, freezing water, and lubrication degradation by keeping the surfaces dry to prevent switch failure.
US11515100B2 Modular breaking unit with a holder-guiding assembly and contactor
A modular breaking unit with a holder-guiding assembly, wherein: the modular breaking unit includes a casing unit; a holder for holding a movable contact of the modular breaking unit is accommodated in the casing unit; the movable contact of the modular breaking unit is mounted on the movable contact holder; the holder-guiding assembly is installed in the casing unit and arranged to support and guide the movable contact holder to move between an open position and a closed position; the holder-guiding assembly is made of thermoplastic material; the movable contact holder is made of thermosetting plastic material. A contactor including at least one said modular breaking units.
US11515095B2 Multi-layer ceramic electronic component and circuit board
A multi-layer ceramic electronic component includes: a ceramic body including first and second internal electrodes laminated in a first axis direction, first and second main surfaces facing in the first axis direction, and first and second end surfaces facing in a second axis direction orthogonal to the first axis, the first and second internal electrodes being drawn to those end surfaces; a first external electrode covering the first end surface and extending to the first main surface; and a second external electrode covering the second end surface and extending to the first main surface. Each external electrode includes a first region including a first outermost layer mainly containing tin and extending from the end surface to the first main surface, and a second region free from an outermost layer mainly containing tin and disposed adjacent to the first region in the first axis direction on the end surface.
US11515085B2 System for an inductive energy transmission from a primary-conductor system to a vehicle having a secondary winding
In a system for an inductive energy transmission from a primary-conductor system, in particular a stationary primary conductor system, to a vehicle having a secondary winding, the secondary winding is inductively coupled with the primary-conductor system. The primary conductor is installed as a primary-conductor loop installed in elongated form, which has a feed conductor and a return conductor in a line section, in particular a return conductor that is installed parallel thereto, and the return conductor is electrically grounded in that at least one inductance is disposed between the return conductor and the electrical ground.