Document Document Title
US11240626B2 Method and apparatus for movement-related remote device control
A system includes a processor configured to determine that a boundary parameter associated with an automatic action has been met. The processor is also configured to determine that one or more secondary vehicle-related predefined conditions pre-associated with the action have been met, responsive to determining that the boundary parameter has been met. The processor is additionally configured to instruct the automatic action responsive to the secondary vehicle-related predefined conditions being met.
US11240624B2 Information processing apparatus, information processing method, and program
An information processing apparatus includes a storage, a sensor, a controller, and a sound output unit. The storage is capable of storing a plurality of sound information items associated with respective positions. The sensor is capable of detecting a displacement of one of the information processing apparatus and a user of the information processing apparatus. The controller is capable of extracting at least one sound information satisfying a predetermined condition out of the plurality of stored sound information items and generating, based on the detected displacement, multichannel sound information obtained by localizing the extracted sound information at the associated position. The sound output unit is capable of converting the generated multichannel sound information into stereo sound information and outputting it.
US11240620B2 Methods for making spatial microphone subassemblies, recording system and method for recording left and right ear sounds for use in virtual reality playback
A sound field recording system 100 and method for sound recording includes a paired spherical acoustic pressure sensor assembly 120. A user wears paired transducer assembly 120 during recording in a position which captures a sonic image or sound-field the way the user hears it. Sound field recording system 100 effectively captures and encodes a surprisingly uniform Head Related Transfer Function (“HRTF”) into an audio recording. The paired spherical acoustic pressure sensor assembly 120 includes transducers 130, 140 which are worn over the ears on opposing sides of a person's head, carried on left and right side cable temple defining ear hook members 132, 142, and suspended in front of the ear canals in front of the tragus. System 100 and the method of the present invention enable users to make audio-visual recordings having an aural perspective which is substantially constant and fixed in relation to a contemporaneous video recording.
US11240619B2 Multi-channel decorrelator, multi-channel audio decoder, multi-channel audio encoder, methods and computer program using a premix of decorrelator input signals
A multi-channel decorrelator for providing a plurality of decorrelated signals on the basis of a plurality of decorrelator input signals is configured to premix a first set of N decorrelator input signals into a second set of K decorrelator input signals, wherein KK′. The multi-channel decorrelator can be used in a multi-channel audio decoder. A multi-channel audio encoder provides complexity control information for the multi-channel decorrelator.
US11240616B2 Method and system for adjusting a hearing device to personal preferences and needs of a user
The present invention pertains to a method for adjusting a hearing device to personal preferences and needs of a user. The proposed method comprises providing initial settings and target settings for signal processing parameters of the hearing device, the user operating the user control element to provide an input for adjusting the current settings so as to meet the personal preferences and needs of the user, adjusting the current settings based on the initial settings and the target settings in dependence of the input to provide adjusted settings for the signal processing parameters. Thereby the user control element is located at the hearing device and/or a hearing device accessory such as a smartphone or tablet. Moreover, the present invention provides a system structured and configured to carry out the proposed method.
US11240615B2 Apparatuses for coupling to hearing aids
An apparatus for connecting to an ear canal component of a hearing aid includes a sleeve having a first end, an opposite second end, and a channel extending between the first end and the second end. The sleeve is configured to engage the ear canal component such that the ear canal component is in the channel. A flap is coupled to the sleeve and pivotable into and between an open position in which the channel at the second end of the sleeve is open and a closed position in which the flap closes the channel at the second end of the sleeve. When the flap is in the closed position, the flap prevents the ear canal component from passing out of the channel through the second end of the sleeve.
US11240611B2 Hearing device comprising a sensor unit and a communication unit, communication system comprising the hearing device, and method for its operation
The disclosure relates to a hearing device configured to be worn at an ear of a user, the hearing device comprising a sensor unit configured to provide sensor data; and a communication unit configured to receive remote data from a remote device. The disclosure further relates to a communication system comprising the hearing device and the remote device and to a method of operating the hearing device and the remote device.
US11240608B2 Device for providing a hearing aid user guide and related method
A method and a device for providing a hearing aid user guide is disclosed. The device comprises a communication interface and a processing unit connected to the communication interface. The processing unit is configured for: obtaining at least one hearing aid setting of a hearing aid via the communication interface; configuring a user guide based on the at least one hearing aid setting; and providing the user guide.
US11240607B2 Optical microphone assembly
An optical microphone assembly comprises a rigid substrate; an interferometric arrangement, a light source, at least one photo detector and an enclosure. The interferometric arrangement comprises a membrane and at least one optical element spaced from the membrane, wherein the at least one optical element comprises a surface of the substrate and/or is disposed on a surface of the substrate. The light source is arranged to provide light to the interferometric arrangement such that a first portion of the light propagates along a first optical path via the interferometric arrangement and a second portion of the light propagates along a second different optical path via the interferometric arrangement, thereby giving rise to an optical path difference between the first and second optical paths which depends on a distance between the membrane and the optical element. The photo detector(s) are arranged to detect at least part of an interference pattern generated by said first and second portions of light dependent on said optical path difference. The enclosure is arranged to form an acoustic cavity in fluid communication with one side of the membrane. The volume of the acoustic cavity is at least 3 mm multiplied by d2, where d is a diameter of the membrane.
US11240606B2 Amplifiers for parametric loudspeakers
Systems and methods of audio processing and control for improved audibility and performance in a parametric loudspeaker system. The parametric loudspeaker system includes a parametric loudspeaker providing a capacitive load, an output stage having a plurality of switches interconnected in a bridge configuration and connected to the capacitive load of the parametric loudspeaker, and a controller operative to generate a series of pulse width modulation (PWM) pulses, and to generate a plurality of control signals synchronized with the series of PWM pulses for switchingly controlling the plurality of switches in the bridge configuration, thereby driving the capacitive load of the parametric loudspeaker.
US11240602B2 Sound quality improvement based on artificial intelligence
A sound quality improvement based on artificial intelligence is disclosed. A sound control method based on artificial intelligence according to an embodiment of the present disclosure provides a different call sound quality for each person based on a plurality of person information stored in an address book of a mobile terminal. The mobile terminal and 5G network of the present disclosure may be associated with an artificial intelligence module, a drone ((Unmanned Aerial Vehicle, UAV), a robot, an AR (Augmented Reality) device, a VR (Virtual Reality) device, a device associated with 5G services, etc.
US11240595B2 Castellated cosmetic mesh stiffener for acoustic flow noise reduction
An electronic device can include a housing defining a first aperture and at least partially defining an internal volume. An air permeable component can be disposed at the first aperture and the device can include a support component defining a second aperture within the first aperture and engaging the air permeable component. The support component can include a sidewall disposed in the first aperture and defining at least one notch.
US11240594B1 Techniques for loudspeaker
A loudspeaker is provided that includes an outer tubular section, an inner tubular section at least partially disposed within the outer tubular section, a driver disposed in the inner tubular section, a sound deflector disposed at a first end of the outer tubular section, and a void defined collectively by a space between a first end of the inner tubular section within the outer tubular section and the sound deflector, and a space between an outer portion of the inner tubular section and an inner portion of the outer tubular section. The sound produced by the driver passes through the void via the space between the first end of the inner tubular section within the outer tubular section and the sound deflector, and then via the space between the outer portion of the inner tubular section and the inner portion of the outer tubular section.
US11240591B2 Internal control leak integrated in a driver frame
A driver assembly including a driver module having a driver frame and a diaphragm coupled to the driver frame, the driver frame defining a front volume chamber coupled to a first side of the diaphragm and a back volume chamber; an internal control leak formed through the driver frame to couple the front volume chamber to the back volume chamber; and a first driver vent and a second driver vent formed through the driver frame to couple a second side of the diaphragm to the back volume chamber, wherein a centroid of the first driver vent is aligned with a centroid of the second driver vent.
US11240590B2 Baby monitor system with noise filtering
A baby monitor system with noise filtering comprises a capture device and a display device, the capture device comprises a detection module, the display device comprises a DSP processor with ENC module and filters; the detection module detects target signals from baby and environmental noise signals to form audio streaming data, and transmits the audio streaming data to the display device in encrypted format; the display device converts the audio streaming data to analog signals and passes the analog signals to input of ENC module of the DSP processor; the ENC module identifies the noise signals and target signals from the analog signals, and activates the filters to filter the noise signals according to frequency bands of noise for attenuating noise sound and to pass the target signals with signal amplification for improving target sound.
US11240583B1 Interchangeable and rechargeable batteries for earbuds
A pair of earbuds having interchangeable and rechargeable batteries is implemented, enabling the user to switch out a depleted battery with a charged one and virtually endlessly listen to music, video, etc. A rear of the earbud's main body is adapted with charging/connecting points to which corresponding connecting points on a detachable battery are positioned. The contact points are positive and negatively charged so that a current from the battery can pass to the main body for use. In addition, the battery is external to the earbud's main body so that the user can easily detach and replace it with a new one within seconds. Furthermore, a rear side of the battery is adapted with a touch-input surface that receives input from a user to control the earbuds and connected computing device's functions, such as play and pause, adjust the volume, and answer phone calls.
US11240582B1 Ear tip including structure easily removable from mold
Disclosed is an ear tip. An ear tip according to an exemplary embodiment of the present disclosure is mounted on one side of an earphone and configured to be inserted into a wearer's external auditory canal to stably fix a position of the earphone. According to the present disclosure, it is possible to provide the ear tip including a structure easily and physically removable from a mold without the aid of a separate chemical substance even though a material having high adhesiveness is applied in a manufacturing process.
US11240578B2 Systems and methods for on ear detection of headsets
Described embodiments generally relate to a signal processing device for on ear detection for an earbud. The device comprises a first microphone input for receiving a microphone signal from a first microphone, the first microphone being configured to be positioned within an ear of a user when the earbud is being worn; a second microphone input for receiving a microphone signal from a second microphone, the second microphone being configured to be positioned outside the ear of the user when the earbud is being worn; a signal generator configured to generate a signal for acoustic playback from a speaker configured to be positioned within the earbud; and a processor. The processor is configured to receive at least one first microphone signal from each of the first microphone input and the second microphone input, and compare the first microphone signals to determine the on ear status of the earbud; determine that the on ear status of the earbud cannot be sufficiently determined, generate a signal for acoustic playback from the speaker, receive a second microphone signal from the first microphone input, and compare the second microphone signal to the generated signal to determine the on ear status of the earbud.
US11240577B2 Speaker cover
A speaker cover having an exterior top portion; at least one exterior side wall extending from the exterior top portion; at least one pull tab extending from a portion of the speaker cover; an interior top wall formed substantially opposite at least a portion of the exterior top portion; an interior side wall formed substantially opposite at least a portion of the exterior side wall, wherein an at least partial interior cavity is defined by the interior top wall and the interior side wall; one or more side wall projections extending from at least a portion of the interior side wall; and optionally one or more top wall projections extend from at least a portion of the interior top wall.
US11240571B2 Method and system for enabling interactive infomercials
Embodiments of present disclosure relates to a method and an interactive infomercial system for enabling interactive infomercials. In one embodiment, the system receives a request for U3I (unique infomercial identification information) associated with infomercial content. The system determines the availability of pregenerated U3I and generate remaining number of U3I based on determination of non-availability of the requested U3I. Further, the system updates the generated U3I with at least one redirect URL that is activated to enable the rendering of the infomercial content on a user device. The system may also generate personalized U3Is based on user data. Thus, the above disclosed system and method enables real-time interactive infomercials to the users such that the U3Is are generated and stored in advance when the system is available and updated with animation content on demand in less time and quick response time.
US11240567B2 Video content switching and synchronization system and method for switching between multiple video formats
A video content type seamless switching system and method for synchronizing and displaying multiple types of video content in a single platform, such as a single video player, application, or other content player. Illustrative video content type switching may be between 2D and interactive Artificial Intelligence formats coordinated by a switching controller. The switching controller may be configured to operate with television displays and associated control components, such as cable boxes, through implementation of the video content switching methods.
US11240566B1 Video traffic management using quality of service and subscriber plan information
Aspects of the subject disclosure may include, for example, a method in which a processing system directs video flows to a plurality of user devices located at network cells, and determines a first or second data usage priority for each user device. The system detects congestion at a cell of the network and/or in the video flows. The system also performs a first congestion-aware shaping procedure for video flows in the congested cell directed to user devices of a second priority located at the congested cell, and subsequently performs a second congestion-aware shaping procedure for video flows in the congested cell directed to user devices of the first priority located at the congested cell. Other embodiments are disclosed.
US11240562B1 Set-top box reboot and polling tool
A system and method for polling a plurality of client devices of different types are provided. A reboot and polling tool pre-polls client devices, where the pre-poll is specific to a type of client device and identifies a state of the client devices. The reboot and polling tool then executes a script on the client devices that changes the state of the plurality of client devices. After the script is executed, the reboot and polling tool post-polls the client devices where the post-poll is specific to the type of client device and the post-poll provides information that identifies changes in the state of the client devices caused by the script.
US11240561B2 Systems and methods for providing improved skip and delay functionality in media assets
Systems and methods are described for managing presentation of content. An action may be scheduled to occur at a first time within the presentation of the media asset, where the action may interrupt the presentation of the media asset. When a current presentation position is approaching the first time, an option to delay the action may be generated for presentation. In response to receiving selection of the option to delay the action, the action may be scheduled to occur at a later second time within the presentation of the media asset.
US11240560B2 Assigning priority for an automated assistant according to a dynamic user queue and/or multi-modality presence detection
Implementations relate to an automated assistant that provides and manages output from one or more elements of output hardware of a computing device. The automated assistant manages dynamic adjustment of access permissions to the computing device according to, for example, a detected presence of one or more users. An active-user queue can be established each time a unique user enters a viewing window of a camera of the computing device when, up to that point, no user was considered active. Multiple image frames can be captured via the camera and processed to determine whether an initial user remains in the viewing window and/or whether another user has entered the viewing window. The initial user can be considered active as long as they are exclusively detected in the viewing window. Restricted content associated with the user may be rendered by the computing device whilst the user is active.
US11240558B2 Automatically determining and presenting participants' reactions to live streaming videos
A computer-implemented method includes: identifying, by a computing device, one or more participants associated with a live streaming video, wherein the one or more participants are co-located; monitoring, by the computing device, behavior of each of the one or more participants, wherein the monitoring comprises monitoring sensor data associated with the one or more participants; automatically determining, by the computing device, respective reactions of each of the one or more participants based on the monitoring the behavior; and providing, by the computing device, respective visual representations of the respective reactions of each of the one or more participants for display within a user interface that is presenting the live streaming video.
US11240553B2 Control method and display apparatus providing various types of content
A control method and display apparatus for providing various types of content is provided. The display apparatus includes a display unit which displays an image of contents; a storage unit which stores information regarding the contents; a UI generation unit which generates UIs regarding the contents; and a controller which shuts down a first content being executed, storing information regarding the shut down first content and controls generation and display of a UI regarding the first content on the display unit, when running a second content different from the first content, while the first content is running. The control method includes running contents and displaying the contents; running a second content that is different from a first content being run, according to a user input; shutting off the first content before running the second content; storing the first content; and generating and displaying a UI regarding the first content.
US11240552B2 Multi-stream placeshifting
Disclosure is directed to managing more than one placeshifting transmission at a target device. The target device may be configured to receive a first video from a first placeshifting source and a second video from a second placeshifting source. The target device may additionally be configured to simultaneously output the first and second video on an output device, using various display screen configurations such as picture-in-picture, split screen, windows, and so. The first and second placeshifting sources may be content receivers having integrated placeshifting functions or may be content receivers provided in association with stand-alone placeshifting devices. A dual-tuner content receiver may also provide both the first and second placeshifting sources to the target device.
US11240551B2 Music service with motion video
Techniques of providing motion video content along with audio content are disclosed. In some example embodiments, a computer-implemented system is configured to perform operations comprising: receiving primary audio content; determining that at least one reference audio content satisfies a predetermined similarity threshold based on a comparison of the primary audio content with the at least one reference audio content; for each one of the at least one reference audio content, identifying motion video content based on the motion video content being stored in association with the one of the at least one reference audio content and not stored in association with the primary audio content; and causing the identified motion video content to be displayed on a device concurrently with a presentation of the primary audio content on the device.
US11240550B2 Electronic apparatus and control method thereof
An electronic apparatus includes: a display; a communication circuit; and a processor configured to: display an image on the display, in response to receiving a request for transmitting content of the image from an external apparatus through the communication circuit, identify whether or not to perform an operation for selecting content based on a number of content included in the image, based on the identifying to perform the operation for selecting the content, receive a user input for selecting the content from the external apparatus, and transmit data of the content, which is selected from a plurality of contents in the image according to the user input, to the external apparatus through the communication circuit, and based on the identifying to not perform the operation for selecting the content, transmit data of the image displayed on the display to the external apparatus.
US11240547B2 Progressive delivery of targeted third-party content
The progressive delivery of targeted secondary content may include determining that primary content requested from a particular distribution point of a distributed platform includes a first tag to integrate targeted secondary content as part of an initial presentation of the primary content, and a second tag to integrate targeted secondary content outside the initial presentation. The progressive delivery may further include modifying the primary content by replacing the first tag so that the primary content and targeted secondary content for the initial presentation (e.g., third-party content associated with the first tag) are provided from the particular distribution point without accessing a third-party content provider, while targeted secondary content outside the initial presentation (e.g., third-party content associated with the second tag) may be selected and provided by one or more third-party content providers as originally specified in the primary content.
US11240539B1 Reporting of engaged views of directed content
Technologies are provided for reporting engaged impressions of directed content. Some embodiments include a computing device that can initiate a screensaver session within a content streaming service. The computing device also can cause presentation of a directed content asset on a display device functionally coupled to the computing device. The computing device can then update a queue to add a record of an impression of the directed content asset, where the queue is retained in a memory device of the computing device. The computing device can receive a signal indicative of user activity. The computing device can determine, using the queue, that the impression of the directed content asset occurred within a defined time interval relative to a time that the user activity occurred. The computing device can then send data identifying the directed content asset.
US11240537B2 Set-top box with enhanced features and system and method for use of same
A set-top box with enhanced features and system and method for use of the same are disclosed. In one embodiment of the set-top box, the set-top box is deployed to provide an interactive portal in a hospitality establishment having multiple rooms, such as a hotel. The set-top box generates a default interactive portal as well as a guest-specific interactive portal, which is generated from a guest configuration profile having information including guest identification, a guest channel preference presentation, and a guest service preference presentation with guest account information. The guest configuration profile may also enable the creation of a local area wireless network with substantially the same behavior as the guest's home wireless network. The guest configuration profile may further enable the control of in-room amenities, such as temperature control, lighting, shades, and availability, for example.
US11240536B2 Method and device for entropy encoding, decoding video signal
The present disclosure provides a method for decoding a video signal, the method comprising the steps of: decoding, from a bitstream, a syntax element indicating the last non-zero region, wherein the last non-zero region represents a region including the last non-zero transform coefficient in a scan order; splitting a current block into multiple sub-regions; and based on the syntax element, determining the last non-zero region of the current block among the split sub-regions.
US11240535B2 Method and device for filtering image in image coding system
A filtering method by a decoding device according to the present invention comprises the steps of: receiving information relating to ALF control depth; deciding an ALF control unit on the basis of information relating to the division depth and the ALF control depth of a current block in a restoration picture with respect to a current picture; determining whether or not ALF is applied to the current block in an ALF control unit level; and, if the ALF is determined to be applied to the current block, performing the ALF for the current block. In the filtering method, the current picture is recursively divided on the basis of a QTBT structure, and the current block is one of blocks divided on the basis of the QTBT structure.
US11240528B2 Systems and methods for performing motion vector prediction for video coding using motion vector predictor origins
Systems and methods for performing motion vector prediction for video coding are disclosed. A motion vector predictor is determined based at least in part on motion information associated with a selected motion vector predictor origin and offset values corresponding to a selected sampling point. The sampling point is specified according to a set of direction and distance on a sampling map for the motion vector predictor origin.
US11240526B2 Method and apparatus for decoding image using interpicture prediction
Disclosed are a method and apparatus for decoding an image using inter-prediction. The method of decoding an image using inter-prediction includes receiving a bitstream; acquiring a portion of information indicating a motion vector of a current block to be decoded in the received bitstream, obtaining the motion vector of the current block by using the acquired information to determine the remaining information other than the portion, and generating a prediction block for the current block through inter-prediction that uses the motion vector of the current block. Therefore, it is possible to improve image decoding/encoding efficiency.
US11240521B2 Method for image processing and apparatus for implementing the same
A method of method of processing an image includes: determining estimates of parameters of an auto-regressive, parametric model of noise, according to which a current noise pixel is computed combining linear combination of previous noise pixels in a causal neighborhood of the current noise pixel weighted by respective model linear combination parameters with a generated noise sample corresponding to an additive Gaussian noise of model variance parameter; performing a convergence check loop, each iteration including: generating a noise template of noise pixels based on the estimated model parameters, the noise template having predetermined pixel size smaller than the image pixel size; estimating a noise template variance; if the estimated variance is below a first predetermined threshold or above a second predetermined threshold, proportionally decreasing the model linear combination parameters with a predetermined correcting factor, and performing another convergence check loop; otherwise exiting the convergence check loop.
US11240516B2 Coding mode signaling for small blocks
An apparatus for video decoding includes processing circuitry that decodes prediction information for a current block in a current picture that is a part of a coded video sequence. The processing circuitry determines whether the current block is coded in an intra block copy (IBC) mode based on the prediction information. Responsive to the current block not being coded in the IBC mode, the processing circuitry determines whether a size of the current block is above a threshold. The processing circuitry determines that the current block is coded in an intra prediction mode based on a determination that the size of the current block is not above the threshold. The processing circuitry reconstructs the current block based on the intra prediction mode.
US11240511B2 Video encoding code rate control method, apparatus, and device, and storage medium
A video encoding code rate control method of a terminal device is provided. A space domain complexity and a time domain complexity of a first picture frame in a video stream are obtained. A first target bit of the first picture frame is updated to a second target bit according to the space domain complexity and the time domain complexity. A first initial quantization parameter of the first picture frame is updated to a second initial quantization parameter according to the space domain complexity and the time domain complexity. A compressed code stream of the first picture frame is generated according to the second target bit and the second initial quantization parameter.
US11240510B2 Blurring privacy masks
Methods and apparatus, including computer program products, implementing and using techniques for encoding a video sequence comprising a plurality of image frames, by an encoder are described. An image frame is received from a video stream. An input is received, which indicates one or more regions in the received image frame for which a privacy mask should be applied. The one or more regions are represented by one or more coding units. The image frame is encoded into an output frame, wherein image data in the one or more regions is replaced by intra-predicted coding units with transformed coefficients set to zero, the intra-predicted coding units are obtained from a prediction stage in the encoder.
US11240509B2 Configuring luma-dependent chroma residue scaling for video coding
A method for video processing is provided to include: performing a conversion between a current video block of a video that is a chroma block and a coded representation of the video, wherein, during the conversion, the current video block is constructed based on a first domain and a second domain, and wherein the conversion further includes applying a forward reshaping process and/or an inverse reshaping process to one or more chroma components of the current video block.
US11240507B2 Simplified palette predictor update for video coding
An example device includes a memory configured to store at least a portion of an encoded video bitstream; and one or more processors that are implemented in circuitry and configured to: determine, based on a parameter of a first block of video data, a maximum number of entries to be used for palette-mode coding of the current block; generate, based on the determined maximum number of entries and based on a palette predictor, a palette for the first block of video data, the palette including one or more entries each including a palette index that is associated with a color value; decode, from the encoded video bitstream and for the first block of video data, index values for samples of the first block that identify entries in the palette; and reconstruct, based on the index values, the samples of the first block.
US11240504B2 Encoding and decoding pictures in of high dynamic range and wide color gamut format
A method for decoding a block of a picture represented in a current HDR/WCG format is disclosed. The method comprises receiving a bitstream representative of a coded block of picture, an indication representative of a default d QP table (index_d QP_table), an indication representative of a QP offset (slice_qp_delta); determining a quantization parameter responsive to the current format based on the default d QP table and the QP offset; decoding the coded block of a picture using the determined QP. Corresponding encoding method, transmitting method, decoding device, encoding device and transmitting device are disclosed. Besides an embodiment relative to adapting generic codec parameters to any HDR/WCG format as done for d QP table is also disclosed.
US11240503B2 Method for optimizing two-pass coding
A method for optimizing a second coding is provided. The method includes: Setting a quantization parameter of a start frame of a video sequence according to a range of an input quantization parameter QP0 of a coder; performing first coding with a simplified method, and calculating a frame-level temporal impact factor ki of a current frame and a block-level temporal impact factor kB,j of all 16×16 pixel blocks in the current frame; restoring reference list information of the coder after the first coding is completed, and then determining whether a scene is switched; and performing the second coding by setting quantization parameters with different strategies according to whether the scene is switched.
US11240499B2 Method and apparatus for video coding
An apparatus for video decoding includes receiving and processing circuitry. The circuitry is configured to receive a bitstream including a syntax element associated with a parent coding unit (CU) in a picture indicating the parent CU is partitioned into a predefined set of child CUs without performing a recursive tree-structure-based partitioning, and process the child CUs according to the indication of the syntax element to reconstruct the picture. In an embodiment, at least two subdivisions need to be performed when the parent CU is partitioned using the recursive tree-structure-based partitioning in order to obtain the same set of child CUs. In an embodiment, at least one of the child CUs has a size larger than a minimum allowed CU size for partitioning the parent CU and includes no syntax element to indicate whether the at least one of the child CUs is to be further subdivided.
US11240498B2 Independently coding frame areas
Video coding may include identifying an input frame from an input video stream, generating, by a processor, an output bitstream by encoding the input frame, wherein encoding the input frame includes dividing the input frame into at least a first contiguous area of the input frame and a second contiguous area of the input frame, generating first encoded data by encoding the first contiguous area of the input frame, generating second encoded data by encoding the second contiguous area of the input frame, wherein encoding the second contiguous area of the input frame is performed independently of encoding the first contiguous area of the input frame, and including the first encoded data and the second encoded data in the output bitstream, and outputting the output bitstream.
US11240494B2 Method and apparatus for processing video signal
A method for decoding a video according to the present invention may comprise: determining an intra prediction mode of a current block, determining, based on the intra prediction mode, a first reference sample of a prediction target sample included in the current block, generating a first prediction sample for the prediction target sample using the first reference sample, and generating a second prediction sample for the prediction target sample using the first prediction sample and a second reference sample located at a position different from the first reference sample.
US11240491B2 Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
A three-dimensional data encoding method of encoding three-dimensional points includes: calculating a new predicted value as a predicted value, using attribute information items of one or more second three-dimensional points neighboring a first three-dimensional point, and assigning the predicted value to at least one prediction mode among two or more prediction modes, the new predicted value being used for calculating an attribute information item of the first three-dimensional point; selecting one prediction mode from the two or more prediction modes; calculating a prediction residual which is a difference between the attribute information item of the first three-dimensional point and the predicted value of the one prediction mode selected; and generating a bitstream including the one prediction mode and the prediction residual.
US11240489B2 Testing method for a camera system, a control unit of the camera system, the camera system, and a vehicle having this camera system
A testing method for a camera system having a control unit and at least one camera. The control unit carries out the following method steps immediately after loading of an operating system of the control unit: generating transmittable image data as a function of at least one source image loaded from an electronic camera memory of the camera; transmitting the generated image data from the camera to the control unit; generating an intermediate image as a function of the received image data in the control unit; ascertaining a processed image as a function of the generated intermediate image in the control unit; comparing the processed image to at least one reference image, the reference image being loaded from a memory; and generating an error signal in the event of a deviation between the processed image and the reference image.
US11240486B1 Detecting interference in depth images captured using overlapping depth cameras
Discrete frequencies and time slots of operation are assigned to each of a plurality of time-of-flight cameras. Where two time-of-flight cameras having overlapping fields of view, whether the time-of-flight cameras are operating at the same frequency or time slot is determined by calculating ratios of zero-value pixels to total numbers of pixels for each depth image captured by the time-of-flight cameras over a selected interval. If the time-of-flight cameras operate at the same frequency or time slot, a plot of the ratios of depth images captured using one time-of-flight camera is erratically sinusoidal. Another time-of-flight camera causing the interference may be identified among time-of-flight cameras operating at the frequency or time slot, based on areas of interest that overlap with the time-of-flight camera, or based on a time at which the time-of-flight cameras began capturing depth images, as compared to a time at which the interference is observed.
US11240474B1 Reporting connectivity problems for electronic devices
Systems and methods provide a notification of a connectivity problem of a video doorbell to a smartphone. A first communication link between the video doorbell and a backend server is determined unavailable, such as when a password used by the video doorbell to access a local area network (LAN) is not accepted by the LAN. A Bluetooth transceiver of the video doorbell is activated and a Bluetooth signal transmitted from the smartphone is detected. A second communication link between the video doorbell and the smartphone via the Bluetooth transceiver is established and a message is sent to the smartphone, via the Bluetooth transceiver, indicating that the password used by the video doorbell to access the LAN is not accepted by the LAN. The message causes an application running on the smartphone to display a notification on a display of the smartphone indicating the communication problem.
US11240472B2 Methods and apparatus to perform remote monitoring
Methods, apparatus, systems and articles of manufacture to perform remote monitoring are disclosed. Some example methods include adjusting an image capture rate at which an image sensor captures images based on a difference image containing differences between a first image of a first set of objects and a second image of a second set of objects. Example methods also include reducing a file size of the difference image using an edge detection technique and prioritizing one or more of a set of frames based on an amount of information contained in the frames. The frames are subdivisions of the image. In further example methods, the first image is taken at a first time and the second image is taken at a second, later time, and the method includes subtracting the first image from the second image to generate the difference image.
US11240469B1 Systems and methods for audience interactions in real-time multimedia applications
Systems and methods for audience interaction in real-time multimedia applications are provided. In one embodiment, a method for a real-time video conference comprises, during the real-time video conference, receiving a media stream including audio and video from a remote computing system over a network, acquiring, video and audio of a user, detecting an event with a machine learning model in at least one of the video and the audio of the user, and transmitting an event detection message indicating the detected event and/or audio and video of the user to the remote computing system over the network. In this way, natural audience reactions may be automatically detected and shared.
US11240465B2 System and method to use decoder information in video super resolution
A system for using decoder information in video super resolution processing. A compressed video buffering module is used for receiving a compressed video stream and a decoder module is used for decoding the compressed video stream into an uncompressed stream and extracting motion vector information from the uncompressed stream. A video super resolution deep neural network processor module is used for processing the uncompressed stream in conjunction with the motion vector information to produce a video super resolution stream. An output buffer module is used for buffering the video super resolution stream for subsequent output.
US11240463B2 Display system, display method, and display apparatus
A display system includes a conversion apparatus converting video luminance including a luminance value in a first luminance range and a display apparatus connected thereto and displaying the video. The conversion apparatus includes a first acquisition unit, a first luminance converter, a second luminance converter, a quantization converter, and an output unit outputting a third luminance signal to the display apparatus. The display apparatus includes: a second acquisition unit acquiring the third luminance signal and setting information indicating display settings recommended to the display apparatus in display of the video; a display setting unit setting the display apparatus, using the setting information; a third luminance converter converting a third code value indicated by the third luminance signal into a second luminance value compatible with a second luminance range, using the setting information; and a display controller displaying the video on the display apparatus based on the second luminance value.
US11240457B2 Method for transmitting image data and data associated with control of image capture, on basis of size of image data and size of data associated with control of image capture, and electronic device supporting same
An electronic device according to various embodiments of the present invention may comprise: a processor; and an image sensor module electrically connected to the processor, wherein the image sensor module comprises: an image sensor; and a control circuit electrically connected to the image sensor and connected to the processor via an interface, and the control circuit is configured to: receive a signal for capturing an image of an external object; acquire multiple pieces of raw image data of the external object, using the image sensor; generate pixel information data associated with control of the image capture by the processor, using at least a part of the acquired multiple pieces of raw image data; generate compressed data obtained by compressing at least a part of the multiple pieces of raw image data; transmit the pixel information data to the processor according to a transmission period designated by the processor or the control circuit; and transmit the compressed data to the processor.
US11240456B2 Column amplifier reset circuit
An amplifier circuit for use in an image sensor includes a common source amplifier coupled to receive an input signal representative of an image charge from a pixel cell of the image sensor. An auto-zero switch is coupled between an input of the common source amplifier and an output of the common source amplifier. A feedback capacitor is coupled to the input of the common source amplifier. An offset switch is coupled to the feedback capacitor and is further coupled to a reset voltage and an output of the amplifier circuit. The auto-zero switch and the offset switch are configured to couple the feedback capacitor to the reset voltage during a reset of the amplifier circuit. The offset switch is configured to couple the feedback capacitor to the output of the amplifier circuit after the reset of the amplifier circuit.
US11240455B2 Ad conversion device, ad conversion method, image sensor, and electronic apparatus
The present technology relates to an AD conversion device, an AD conversion method, an image sensor, and an electronic apparatus that are able to achieve high-speed, low-power-consumption AD conversion. In a case where an electrical signal and a variable-level reference signal are compared by a comparator and the result of comparison is used to perform AD (Analog to Digital) conversion of the electrical signal, control is exercised in such a manner that a bias current flowing in the comparator to operate the comparator during a certain section of the reference signal including a section where the reference signal changes is increased from a first current, which is larger than 0 (zero), to a second current, which is larger than the first current. The present technology is applicable, for example, to AD conversion of an electrical signal.
US11240452B2 Solid-state imaging device and electronic device including light-shielding film for suppression of light leakage to memory
The present disclosure relates to a solid-state imaging device and an electronic device which efficiently capture incident light to improve sensitivity while maintaining the effect of suppressing noise generation. A memory is located on a side opposite from a light receiving surface and formed in the same substrate of Si as a photoelectric conversion element. The substrate including Si is defined by digging the Si deep from the light receiving surface, at a position where the memory is formed, and a bottom light-shielding film is formed at a bottom portion of the defined hole. The present disclosure is applicable to, for example, a stacked and back-illuminated solid-state imaging device.
US11240449B2 Solid-state imaging device and imaging device with combined dynamic vision sensor and imaging functions
An imaging device includes a plurality of unit pixels or pixels, with each pixel separated from every other unit pixel by an isolation structure. Each unit pixel includes a photoelectric conversion unit, a pixel imaging signal readout circuit, and an address event detection readout circuit. A first transfer transistor selectively connects the photoelectric conversion unit to the pixel imaging signal readout circuit, and a second transfer transistor selectively connects the photoelectric conversion unit to the address event detection readout circuit. The photoelectric conversion unit, the pixel imaging signal readout circuit, the address event detection readout circuit, and the first and second transfer transistors for a given pixel are located within a pixel area defined by the isolation structure. The isolation structure may be in the form of a full thickness dielectric trench isolation structure.
US11240448B2 Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
Provided is a solid-state imaging device. A comparator is configured to perform a first comparing operation of outputting a digital first comparison result signal obtained by processing the overflow charges overflowing from PD1 to FD1 in the storing period, a second comparing operation of outputting a digital second comparison result signal obtained by processing the charges stored in PD1 that are transferred to FD1 in the transfer period, and a third comparing operation of outputting a digital third comparison result signal obtained by processing the charges stored in PD1 that are transferred to FD1 in the transfer period and the charges stored in the charge storing part, and a memory control part controls whether or not to allow writing of the data corresponding to the third comparison result signal into a memory part, depending on the states of the first and second comparison result signals.
US11240447B2 Solid imaging apparatus, control method of solid imaging apparatus, and computer program
[Problem] To provide a solid imaging apparatus that is able to shorten the time from the detection of an object to the completion of imaging processing.[Solution] A solid imaging apparatus includes a control unit that controls a shutter operation for a pixel area having a plurality of pixels arranged in matrix, and a reading operation from the pixel area at a first reading speed and a second reading speed. The control unit starts the shutter operation for at least one row of the pixel area after the reading operation at the first reading speed is completed, and during execution of detection processing of an object read from the pixel area.
US11240436B2 Machine vision system and method with steerable mirror
Systems and methods are provided for acquiring images of objects using an imaging device and a controllable mirror. The controllable mirror can be controlled to change a field of view for the imaging device, including so as to acquire images of different locations, of different parts of an object, or with different degrees of zoom.
US11240432B2 Control method for displaying images upright
A control method includes sending a switching signal to a camera to control the camera to switch between a landscape shot-mode and a portrait shot-mode, receiving an image from the camera, determining whether a display screen is in a landscape orientation or in a portrait orientation, and controlling the display screen to display the image upright. The image includes a landscape image captured by the camera in the landscape shot-mode or a portrait image captured by the camera in the portrait shot-mode. Controlling the display screen to display the image upright includes controlling the display screen to display the portrait image upright when the display screen is in the landscape orientation or controlling the display screen to display the landscape image upright when the display screen is in the portrait orientation.
US11240428B1 Adjusting camera settings based on a display of an information handling system
Adjusting camera settings based on a display, including identifying display settings of a display coupled to an information handling system, the display settings including a current color profile of the display; accessing a look-up table (LUT), the LUT identifying, for each color profile of a plurality of color profiles, camera settings parameters associated with a camera coupled to the information handling system; identifying, based on the LUT, one or more camera settings parameters associated with the current color profile of the display; applying the identified camera settings parameters to the camera settings at the camera; obtaining, from the camera, an image that is based on the applied camera settings that corresponds to the current color profile of the display; and providing the image for presentation at the display.
US11240427B2 Vehicular vision system with infrared emitter synchronization
A vehicular vision system includes a camera and a plurality of infrared light emitters disposed at a vehicle, and an electronic control unit having an image processor. The camera captures frames of image data at a first rate, and infrared light emitters of the plurality of infrared light emitters are pulsed at a second rate. The plurality of infrared light emitters is operable in (i) a first mode, where infrared light emitters of the plurality of infrared light emitters are operated to emit infrared light to illuminate a region within a field of view of the camera, and (ii) a second mode, where a reduced number of infrared light emitters of the plurality of infrared light emitters are operated to emit infrared light to illuminate the region.
US11240426B2 Pulsed illumination in a hyperspectral, fluorescence, and laser mapping imaging system
Pulsed hyperspectral, fluorescence, and laser mapping imaging in a light deficient environment is disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes a controller configured to synchronize timing of the emitter and the image sensor. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of a hyperspectral emission, a fluorescence emission, or a laser mapping pattern.
US11240418B2 Electronic device and control method thereof
An electronic device includes a connection unit, a communication unit configured to communicate with a first external device or a second external device, and a control unit configured to control the electronic device. The control unit controls the electronic device so that at least one terminal of the connection unit is connected to the communication unit in a case where the first external device is connected to the connection unit. The control unit controls the electronic device so that at least one terminal of the connection unit is connected to the control unit in a case where the second external device is connected to the connection unit.
US11240410B1 Control and monitoring of body worn cameras
A video recording system improves the control and monitoring of body worn cameras, such as those worn by police. The system may communicate through a private radio network. Operation of cameras and other controlled devices are configured by a system controller. Events of interest may be recorded, may initiate or restrict system functions, and may be collected for evaluating system efficacy and policy compliance. Body worn cameras of the system begin recording video upon being disconnected from a camera dock. A mobile device may be associated with the camera and have a recording management application. The controller may synchronize settings for the camera with the recording management application, and the mobile device has no administrative control over the application.
US11240406B2 Object tracking using momentum and acceleration vectors in a motion estimation system
There is provided a method and apparatus for motion estimation in a sequence of video images. The method comprises a) subdividing each field or frame of a sequence of video images into a plurality of blocks, b) assigning to each block in each video field or frame a respective set of candidate motion vectors, c) determining for each block in a current video field or frame, which of its respective candidate motion vectors produces a best match to a block in a previous video field or frame, d) forming a motion vector field for the current video field or frame using the thus determined best match vectors for each block, and e) forming a further motion vector field by storing a candidate motion vector derived from the best match vector at a block location offset by a distance derived from the candidate motion vector. Finally, steps a) to e) are repeated for a video field or frame following the current video field or frame. The set of candidate motion vectors assigned at step b) to a block in the following video field or frame includes the candidates stored at that block location at step e) during the current video field or frame The method enables a block or tile based motion estimator to improve its accuracy by introducing true motion vector candidates derived from the physical behaviour of real world objects.
US11240398B2 Communication priority of image forming apparatus and non-transitory computer readable medium storing program
An image forming apparatus includes a first wireless communication unit that performs wireless communication based on a first wireless communication method, a second wireless communication unit that performs wireless communication based on a second wireless communication method different from the first wireless communication method, and a prioritized control unit that performs a control based on information related to a communication destination of the first wireless communication unit and information related to a communication destination of the second wireless communication unit such that one wireless communication unit of the first wireless communication unit or the second wireless communication unit is operated in a prioritized manner over another wireless communication unit.
US11240395B2 Information-processing device importing setting information thereinto and method for importing setting information into information-processing device
In an information-processing device, a memory is configured to store setting information including an operation setting for the information-processing device. A controller is configured to perform: acquiring; determining; allowing; importing; and encrypting. The acquiring acquires import authentication information including a device password for the information-processing device while a removable storage medium storing import setting information is connected to an input-output interface. The determining determines whether the device password matches a preset device password of the information-processing device. The allowing allows, in response to determining that the device password matches the preset device password, the import setting information to be imported. The importing imports the import setting information from the removable storage medium into the memory as the setting information. The encrypting encrypts the import authentication information using the device password to create encrypted import authentication information and stores the encrypted import authentication information into the removable storage medium.
US11240394B2 Information processing apparatus for invalidating an operation setting from a second device
An information processing apparatus includes a controller that performs control so that a specific operation among operations performed on a second operation unit is invalidated in a state where an operation performed on a first operation unit is valid.
US11240392B2 Systems and methods relating to document and fastener identification
Method and systems of automated document processing described herein include activating in sequence a plurality of illumination modules of an illumination source to illuminate a document, where the plurality of illumination modules are located at different positions relative to the document. The document can be imaged each time the document is illuminated by an illumination module to provide a plurality of images. A shadow profile of the document can be obtained based on the plurality of images. One or more of a boundary of the document and presence of a fastener attached to the document can be identified using the shadow profile. Any fasteners present may be removed using a robot arm.
US11240382B2 Computer-based systems configured for automated subscription management and methods thereof
Systems and methods of the present disclosure include at least one processor that receives electronic messages, each associated with a respective originating entity. Message metadata of each electronic message is extracted and list subscriptions are determined based on the message metadata. User interaction commands relative to each electronic message are tracked. Record similarity values for user activity records are determined based on a measure of similarity between the originating entity and each activity record. An engagement model is utilized to determine an engagement score indicative of a degree of user engagement with each originating entity based on the user activities and the user interaction metrics to generate a prediction indicative of the degree of user engagement. An unsubscribe condition is determined based on the engagement score being below a threshold score, and an unsubscribe command is automatically issued.
US11240376B2 Transcription of communications through a device
A method to transcribe communications is provided. The method may include obtaining first communication data during a communication session between a first communication device and a second communication device and transmitting the first communication data to the second communication device by way of a mobile device that is locally coupled with the first communication device. The method may also include receiving, at the first communication device, second communication data from the second communication device through the mobile device and transmitting the second communication data to a remote transcription system. The method may further include receiving, at the first communication device, transcription data from the remote transcription system, the transcription data corresponding to a transcription of the second communication data, the transcription generated by the remote transcription system and presenting, by the first communication device, the transcription of the second communication data.
US11240373B2 Caller number identification
Methods and apparatus for improving caller identification in telecommunications services based on general-purpose networks are described. A gateway device may process invitation messages sent from a telephone via a private branch exchange, in which the private branch exchange has replaced the number of the telephone with a customized number. The gateway device may determine that the customized number is mapped to an account-related number, and insert that number into a field of the invitation messages that is examined by a telecommunications provider and associated trunking services for account-related purposes.
US11240372B2 System architecture for fraud detection
An architecture for assessing and identifying fraudulent contact with client contact systems, such as IVR, includes threshold and machine learning scoring and filtering of calls based on these criteria. The criteria may include behavioral, situational and reputational scoring.
US11240360B2 Methods and systems for automatic discovery of fraudulent calls using speaker recognition
A computer-implemented method for determining potentially undesirable voices, according to some embodiments, includes: receiving a plurality of audio recordings, the plurality of audio recordings comprising voices associated with undesirable activity, and determining a plurality of audio components of each of the plurality of audio recordings. The method may further comprise generating a multi-dimensional vector of audio components, from the plurality of audio components, for each of the plurality of audio recordings to generate a plurality of multi-dimensional vectors of audio components, and comparing audio components between the plurality of multi-dimensional vectors of audio components to determine a plurality of clusters of multi-dimensional vectors, each cluster of the plurality of clusters comprising two or more of the plurality of multi-dimensional vectors of audio components, wherein each cluster of the plurality of clusters corresponds to a blacklisted voice. The method may further comprise receiving an audio recording or audio stream, and determining whether the audio recording or audio stream is associated with a voice associated with undesirable activity based on a comparison to the plurality of clusters.
US11240345B2 Method for deploying an application workload on a cluster
The present disclosure describes a plurality of examples for deploying an application workload consisting of micro-service instances. The examples include federating a cluster from a plurality of computing nodes, defining a network overlay policy based on an application policy associated with the application workload, configuring one or more virtual networks in accordance with defined network overlay policy, each virtual network from one or more virtual networks connects one or more computing nodes from the two or more computing nodes of the cluster for providing layer 2 adjacency, and deploying the plurality of micro-service instances on the two or more computing nodes in accordance with the network overlay policy, for executing the application workload.
US11240339B2 Managing multimedia content at edge servers
A content management system to optimize delivery of multimedia content to user devices in a subscriber network is provided. The system generates a set of telemetry data by monitoring selections of multimedia content instances by subscribers of a subscriber network at a set of edge servers of the subscriber network. The system generates a data consumption model based on the set of telemetry data. The system anticipates a set of multimedia content instances for a current time interval by using the generated data consumption model to identify the anticipated set of media content instances for the current time interval. The system caches the anticipated set of multimedia content instances from one or more network sources. The system provides the cached content instances to one or more subscribers in response to multimedia content selections from the subscribers for the current time interval.
US11240333B2 ID space conversion system and method for the same
Provided is an ID space conversion system enabling an application to access a correct data resource by using a system ID.An ID space conversion function unit generates a non-overlapping unique system ID for each type of components based on a physical ID of a component included in a device D which is determined to be a correct device by a device configuration verification function unit. A sharing function unit shares, with a gateway, a gateway file including a correspondence relationship between the physical ID and the system ID included in the device D. Accordingly, the gateway adds, to data, the system ID, on the basis of the gateway-setting file, and outputs system ID-added data to a network. A data processing unit determines whether component data of the device D includes the generated system ID. Accordingly, it is determined whether the data is output from the correct device.
US11240331B2 Ending communications session based on presence data
Methods and devices for causing a communications session between a first device and a second device to end based on lack of speech activity are described herein. In some embodiments, non-speech may be detected for both the first device and the second device. If the non-speech associated with the first device is determined to occur at a substantially same time as the non-speech associated with the second device, then this may indicate that no individuals are talking within earshot of their respective devices. Furthermore, the non-speech detected by the first device and the non-speech detected by the second device may both be of an amount of time that is greater than a predefined temporal threshold. If so, then the communications session may be caused to end because speech activity has not been detected by either device for more than the predefined temporal threshold.
US11240329B1 Personalizing selection of digital programs for patients in decentralized clinical trials and other health research
In some implementations, a system includes a database comprising program data for each of a plurality of programs that involve monitoring using remote devices. The system includes a server system configured to selectively distribute the configuration data for the respective programs to remote devices over a communication network and monitor incoming data received from the remote devices over the communication network to determine changes to programs active for the remote devices. The server system can be configured to collect, from the respective remote devices, monitoring data that is generated by the programs active for the remote devices and is provided over the communication network. The server system can compare the collected monitoring data with reference levels, select one or more program changes, and distribute, to various remote devices, data indicating appropriate program changes for the remote devices.
US11240327B2 Systems and methods for matching online users across devices
Systems and methods are disclosed for associating a plurality of Internet-enabled devices with a common user profile for targeting Internet content or advertising. One method includes: receiving, from a plurality of Internet-enabled devices, a plurality of requests for electronic content or advertising; extracting, from each of the plurality of requests, a source IP address and a unique identifier associated with the respective Internet-enabled device; for each source IP address for which requests were received over a predetermined time period from a number of Internet-enabled devices below a threshold number of devices, identifying each possible pair of devices from which requests were received; and for each possible pair of devices, calculating a probability that the pair of devices are owned or operated by a common user.
US11240326B1 Data structures for intelligently resolving deterministic and probabilistic device identifiers to device profiles and/or groups
An electronic device identifier mapping and resolution system are disclosed which may be used to analyze various device identifiers associated with an online event initiated by a particular device in applying a matching algorithm to determine a unique device identifier and/or device profile for the device. Device identifiers provided from disparate sources (such as web browser cookies, network IP addresses, device-specific identifiers, application-specific identifiers, custom identifiers, probabilistic identifiers, etc.), including both deterministic and/or probabilistic identifiers, may be analyzed according to the matching algorithm to determine a device identifier associated with the device. Matching algorithms may be customized and configured to a high degree of complexity for respective entities, such as to analyze disparate device identifiers according to a variety of identifier comparison functions and matching tiers. Matching algorithms may include conditional requirements that streamline execution of such algorithms, e.g., which may reduce processor load and increase execution time, such as conditional requirements that bypass portions of the matching algorithm based on particular identifiers associated with the online event that are initially analyzed.
US11240325B2 Method and system for tracing end-to-end transaction, including browser side processing and end user performance experience
A system is provided for tracing end-to-end transactions. The system uses bytecode instrumentation and a dynamically injected agent to gather web server side tracing data, and a browser agent which is injected into browser content to instrument browser content and to capture tracing data about browser side activities. Requests sent during monitored browser activities are tagged with correlation data. On the web server side, this correlation information is transferred to tracing data that describes handling of the request. This tracing data is sent to an analysis server which creates tracing information which describes the server side execution of the transaction and which is tagged with the correlation data allowing the identification of the causing browser side activity. The analysis server receives the browser side information, finds matching server side transactions and merges browser side tracing information with matching server side transaction information to form tracing information that describes end-to-end transactions.
US11240321B2 Systems and methods for enabling access to third party services via a service layer
An M2M Service Layer is expanded to access the services of third parties and exchange data with these third parties. The M2M Service Layer is then able to act as a proxy between M2M Devices and the third party services. The M2M Service Layer is able to present a single/consistent interface, or API, to the M2M Device and hide the details of the third party service provider from the M2M Device.
US11240318B1 Systems and methods for virtual multiplexed connections
A system for facilitating a plurality of virtual transmission control protocol connections between a target application and a source application is provided. The system includes a server proxy, a client proxy, and a network protection interposed between the server proxy and the client proxy. The server proxy is configured to receive an open request from the client proxy via a stateless protocol, including a target identifier, the open request originating from the source application, open a connection between the server proxy and the target application based on the target identifier, provide a response to the client proxy indicating a status of the open request, the response including at least one of a session identifier and a sequence identifier, receive, a data request from the client proxy, including the session identifier and an incremented sequence identifier, and provide the data request to the target application.
US11240313B2 Contextually assigning user input to personal electronic devices
Personal electronic devices are organized into a personal electronic device network. One of the personal electronic devices is designated as a device management hub. Based on contextual information from the personal electronic device network, a current activity of a user is predicted, and based on the predicted current user activity and the contextual information, one or more hierarchy is cognitively derived. The device management hub uses one of the hierarchy to contextually assign user input to one of the personal electronic devices for processing. Cognitively predicting the current user activity can include analyzing, by the device management hub, contextual information from the personal electronic devices.
US11240305B2 Task allocation among devices in a distributed data storage system
In one example, a processor may receive a first request to process a first task, the first request including a first estimated central processing unit utilization for the first task and a first estimated memory utilization for the first task and receive central processing unit capacities and memory capacities of a plurality of sub-data routers including at least a first sub-data router. The processor may further determine that the first sub-data router has a lowest central processing unit capacity from among the plurality of sub-data routers that is sufficient to accommodate the first estimated central processing unit utilization for the first task and determine that the first sub-data router has a memory capacity that is sufficient to accommodate the first estimated memory utilization for the first task. The processor may then assign the first task to the first sub-data router.
US11240303B2 Processing and ordering messages in partitions
The disclosure herein describes a message ordering system for processing and synchronizing chat messages in partitions to maintain messaging order and load balancing in a distributed system at scale. Messages are placed in partitions based on session identifiers (IDs). Messaging order is secured by a session receiver holding a lock over particular partitions. Receivers having subscription to messages in service bus are enabled to terminate on occurrence of a predetermined event, such as threshold wait time without receiving additional messages with a selected session ID from their partitions, activity level on a node, number of receivers on a node or other metrics. Session ID locks are released after a session ends, a receiver terminates or a node crashes for failure handling. New receivers are created to handle new incoming messages for additional load balancing and/or failover.
US11240300B2 Summary of a resource
Concepts for automatically generating a summary of a resource are presented. One example comprises analyzing at least a portion of electronic content comprising a reference to a resource to determine a context identifier for the electronic content, the context identifier describing subject-matter of the electronic content. Content of the resource is also analyzed to determine one or more content identifiers for the resource, the one or more content identifiers describing subject-matter of the resource. A summary of the resource is then generated based on the context identifier and the one or more content identifiers.
US11240299B2 Methods and systems for secure information storage and delivery
A group definition is received via a network interface. Communications are transmitted to destinations, the communications comprising an invitation to associate with the a content sharing group. Authentication data associated with users that accept the invention is encrypted. The accepting users are associated with the content sharing group. A content gallery definition is received. A communication is received that the content gallery is to be shared with the content sharing group. The content gallery is caused to be instantiated on devices of users associated with the group. A content request for the content sharing group is received and the content request is transmitted accordingly to users associated with the group. A content item is received in response the request and the content item is transmitted to user devices associated with the group and enabled to appear in instantiations of the content gallery on the user devices.
US11240297B2 WebRTC API redirection with interception techniques
A computing system includes a server to execute a first portion of a real-time media application so as to integrate with other desktop applications and other operating system functionality, and to redirect intercepted APIs of the real-time media application based on redirection code injected into the real-time media application so that a second portion of the real-time media application is redirected. A client computing device communicates with the server, and executes the redirected second portion of the real-time media application. The redirected second portion of the real-time media application corresponds to real-time media processing and networking off-loaded from the server to the client computing device.
US11240294B2 Systems and methods for spike detection and load balancing resource management
A load balancing system includes: a centralized queue; a pool of resource nodes connected to the centralized queue; one or more processors; and memory coupled to the one or more processors and storing instructions that, when executed by the one or more processors, cause the one or more processors to: monitor a queue status of the centralized queue to identify a bursty traffic period; calculate an index value for a load associated with the bursty traffic period; select a load balancing strategy based on the index value; distribute the load to the pool of resource nodes based on the load balancing strategy; observe a state of the pool of resource nodes in response to the load balancing strategy; calculate a reward based on the observed state; and adjust the load balancing strategy based on the reward.
US11240291B2 Content snip capture and sharing
To share snips of content, content access rules of a content file can be parsed to identify an accessible range of the content file and an inaccessible range of the content file. In one example, content sharing includes receiving an identifier of a recipient for a content file, parsing content access rules for the recipient, to identify an accessible range of the content file, and presenting an indicator of the accessible range and an inaccessible range of the content file for the recipient. A user can then identify a selection of a snip of the accessible range of the content file in a user interface. In some cases, a copy of the snip of the content file, a link to the snip of the content file, or both can be generated and forwarded after the selection is identified.
US11240286B2 Software request-filtering predictive technique based on resource usage probabilities
In filtering requests to be forwarded to a runtime environment, a filtering apparatus intercepts a new runtime request for the runtime environment and determines execution paths that may be traversed by the runtime request when executed in the runtime environment. The filtering apparatus assigns a probability of traversal by the runtime request to each of the execution paths and identifies at least one given execution path that reference a stressed resource of the runtime environment. Based on the probabilities assigned to the at least one given execution path, the filtering apparatus determines whether or not to block the runtime request from being sent to the runtime environment. If the probability assigned to the at least one given execution path exceeds a configured threshold, the runtime request is blocked from being sent to the runtime environment. Otherwise, the runtime request is sent to the runtime environment.
US11240280B2 Low latency streaming media
Content streaming systems, such as systems that use HTTP compliant requests to obtain media segments for presentation of the content on a device. These content streaming systems can be optimized to reduce latency to a low level so that live events can be streamed to receiving devices in such a manner so that the time between an action in the live event and the presentation of the action on a receiving device that receives the streamed content is less than about 10 seconds. A client device can use rendition reports to tune-in to a new rendition (at a first bit rate) after presenting a prior rendition (of a second bit rate) when switching between the different bit rates; also, for example, a client device can use playlist annotations that indicate independent frames to avoid downloading depending frame media segments when switching between different renditions.
US11240274B2 Monitoring system for securing networks from hacker drones
Methods, systems, and apparatus, including computer programs encoded on a storage device, for securing a network associated with a property in response to the detection of a hacking drone within a vicinity of the property. In one aspect, a method includes obtaining sensor data from one or more sensors located at a property, detecting, based on the obtained sensor data, the presence of a drone, determining, based on the obtained sensor data, that the detected drone is an unauthorized drone, determining, by the monitoring system, that the unauthorized drone (i) is communicating or (ii) attempting to communicate with a network associated with the property, selecting one or more network adjustment policies, and transmitting one or more instructions to (i) one or more monitoring system components or (ii) one or more network components that are configured to adjust network parameters based on the one or more selected network adjustment policies.
US11240272B2 User responses to cyber security threats
Aspects of the disclosure relate to improving user responses to cyber security threats. A computing platform may generate a test communication to simulate a potential cyber threat activity. Then, the computing platform may send, via the communication interface, the test communication to a user device associated with a target user. Then, the computing platform may receive, via the communication interface and from the user device, a response to the test communication. Subsequently, the computing platform may determine, based on the response, a threat awareness level for the target user, where the threat awareness level is indicative of a susceptibility of the target user to the potential cyber threat activity. Then, the computing platform may send, to the target user and based on the threat awareness level, an alert notification to counter the cyber threat activity.
US11240271B2 Distributed detection of security threats in a remote network management platform
A system may include a plurality of computational instances dedicated to different managed networks and a central instance communicatively coupled to the plurality of computational instances. A first computing device disposed within a first computational instance may be configured to: obtain a profile of a software application operational within a first managed network to which the first computational instance is dedicated, calculate a threat level of the software application based on the profile, determine that the threat level exceeds a pre-determined threshold, and transmit, to the central instance, an indication that the threat level exceeds the pre-determined threshold. A second computing device disposed within the central instance may be configured to: receive the indication, determine that the software application is also operational within a second managed network to which a second computational instance, and transmit, to the second computational instance, an indication that the threat level exceeds the pre-determined threshold.
US11240270B1 Secure electronic transactions using transport layer security (SETUTLS)
A system and method for extending data protection of data elements of a data packet beyond a TLS tunnel termination point by using encryption keys established when the TLS tunnel was established. The system and method include authenticating a client device to establish a shared secret. The system and method include receiving a data packet comprising a data element and an object identifier associated with the data element, the data element encrypted with a first content-specific key associated with the shared secret, the data packet encrypted with a session key. The system and method include decrypting the data packet using the session key to recover a decrypted data packet. The system and method include determining an existence of an object identifier in the decrypted data packet. The system and method include decrypting the data element of the decrypted data packet using a second content-specific key associated with the object identifier.
US11240267B1 Identifying and blocking fraudulent websites
A system may generate all possible character mistakes in a first uniform resource locator associated with a first website, which may produce a set of unique and similar uniform resource locators associated with a set of similar websites. The system may execute machine vision algorithms to compare visual images of the first website and the set of similar websites, and identify a subset of similar websites, which may be undistinguishable from the first website. The system may block the subset of websites, and thereby prevent any user from accessing these fraudulent and malicious websites.
US11240266B1 System, device and method for detecting social engineering attacks in digital communications
Embodiments of the present disclosure use natural language processing, machine learning and relevant corpora to detect social engineering attacks with a high degree of accuracy. In various embodiments, lexical features, spelling features and topical features are automatically analyzed from a source text and a model is employed to assess the likelihood that the source message is a social engineering attack.
US11240264B2 System and method for security service collaboration
Systems and methods are provided for mitigating security attacks by enabling collaboration between security service functions. A Service Function Chaining (SFC) node receives a packet and determines whether to apply a service function to the packet. Responsive to determining that the packet has been treated by the service function, the packet can be reclassified and switched to a different SFC path.
US11240261B2 Systems and methods for providing user interfaces based on actions associated with untrusted emails
The present disclosure describes a system that notifies users regarding specific user decisions with respect to solution phishing emails. The system notifies users when users perform specific actions with respect to the untrusted phishing emails. The system pauses execution of these actions and prompts the user to confirm whether to take the actions or to revert back to review the actions. In contrast from anti-ransomware technologies which are entirely in control, the system gives the user autonomy in deciding actions relating to untrusted phishing emails. The system interrupts execution of actions related to untrusted phishing emails in order to give users a choice on whether to proceed with actions.
US11240258B2 Method and apparatus for identifying network attacks
Embodiments of the present disclose provide a method and apparatus for identifying network attacks. The method can include: acquiring access data within at least two time periods of a target website server, wherein the access data include one or more fields; determining, for each of the at least two time periods, a quantity of access data having same content in at least two of the one or more fields; determining whether the quantities of access data for each of the at least two time periods are the same; and in response to the quantities of access data being the same, determining that at least two access requests of the access data are network attacks.
US11240251B2 Methods and systems for virtual file storage and encryption
The present invention discloses an intelligent cloud server for cloud storage information management and encryption. In some embodiments, the intelligent cloud server can save and store documents without the need of first saving them in a local drive for upload. Upon storage, the document can be scanned and classified in a security level according to pre-determined settings and parameters. In some embodiments, depending on the classification, the system can encrypt portions of the document in order to facilitate the sharing and access of information in a secure way. Encryption keys and access to the encrypted portions are only provided upon authentication of the user, network, and/or need, according to corresponding protocols for the information.
US11240250B2 Permission management
Implementations of the present disclosure relate to methods, systems, and computer program products for permission management. In one implementation, a computer-implemented method is disclosed. In the method, a permission score may be determined for a user in response to an operation requested to a target system by the user. Whether to permit the operation may be determined based on the permission score. Here, the permission score may be determined based on an identity component of the user and at least one of following components of the user: a state component, and an environment component. In other implementations, a computer-implemented system and a computer program product for permission management are disclosed.
US11240246B2 Secure confirmation exchange for offline industrial machine
In one embodiment, functionality is disclosed for commissioning a target device based, at least in part, on providing identifying information that identifies a target device, where that identifying information is configured to be included in a request for authorization to commission the target device, and that request for authorization to commission the target device comprises one or more requested commissioning actions; receiving a commissioning authorization, where the commissioning authorization comprises information regarding one or more authorized commissioning actions for which a license is available, where the one or more authorized commissioning actions were selected from among the one or more requested commissioning actions; and performing the one or more authorized commissioning actions.
US11240242B1 System and method for providing a zero trust network
A system and method for providing remote zero trust access to a private network. A cloud server provides a user at a remote device with access to the private network. A proxy server interfaces between the remote device and the private network. A web interface initiates a session with the user. The proxy server allows the user to enter login credentials, verifies the entered login credentials, provides a dashboard page for displaying a list of assets available to the user at the private network, establishes a first remote session between a client at the remote device and the proxy server, establishes a second remote session between the proxy server and a proxy agent at the remote server, and informs the proxy agent of a selected asset, and enables the user to access the selected asset via the first remote session, the second remote session, and the proxy agent.
US11240236B2 Methods for authorizing use of an application on a device
According to an embodiment, there is provided a method for authorizing use of an application on a device. The method includes: identifying a plurality of device identifiers of the device; determining authorization information based on predetermined one or more of the plurality of device identifiers; and determining authorization for use of the application on the device in response to the authorization information.
US11240234B2 Methods and systems for providing online verification and security
The methods and systems are designed to utilize an integrated combination of just in time, just in place, and just on device actions connected to an image recognition process to reduce or remove the risk of a User utilizing fake or stolen credentials in order to get verified.
US11240233B2 Systems and methods for provisioning biometric image templates to devices for use in user authentication
Systems and methods are provided for use in provisioning a biometric image template of a user to a card device associated with the user. One exemplary method includes authenticating, by a card device, a portable communication device associated with the user based on a certificate associated with the portable communication device and receiving, at the card device, a biometric image of the user from the portable communication device after the portable communication device is authenticated. The method then includes storing, by the card device, the biometric image of the user in a memory of the card device as a biometric image template of the user, whereby the user may be authenticated, by the card device, based on a subsequent biometric image matching the biometric image template.
US11240224B2 Systems, methods and apparatuses for identity access management and web services access
Systems, methods, and apparatus for identity access management for web services are disclosed. The method includes: creating on a user device, a session's access token and an identity token to be sent along with a request for accessing web services, wherein: the accessing of web services includes at least one of: retrieving and pushing information from an instance storage which is client specific and protected from unauthorized access by another instance storage; the session's access token indicates a location where the session's access token was created, an expiration time, and a hash identity for verifying a validity of the session's access token; the identity token identifies a user who sends the request; and authenticating the user on the user device according to the session's access token and the identity token to authorize the accessing of web services in a session.
US11240218B2 Key distribution and authentication method and system, and apparatus
This application provides a key distribution and authentication method, system, and an apparatus. The method includes: a service center server distributes different keys to terminal devices, and then the terminal devices perform mutual authentication with the network authentication server based on respective keys and finally obtain communication keys for communication between the terminal devices and a functional network element. This provides a method for establishing a secure communication channel for the terminal device, having a broad application range.
US11240216B2 Enhanced network security using packet fragments
A network system comprising a first network element and a second network element. The first network element is programmed to provide the step of first, communicating to the second network element a plurality of configuration parameter sets. Each configuration parameter set corresponds to a respective frame fragment and comprises a parameter value that differs in value from the parameter value in another configuration parameter set in the plurality of configuration parameter sets. The first network element also is programmed to provide the step of second, communicating a frame, to the second network element, in a plurality of frame fragments, wherein each frame fragment in the plurality of frame fragments is communicated according to a respective parameter value in the plurality of configuration parameter sets.
US11240214B2 Flow multiplexing in IPsec
Systems and methods for processing inbound and outbound secure packet traffic are provided herein. A first lookup operation can be performed to identify a security association corresponding to a received packet. A second lookup operation can be performed to determine a security parameters index associated with the packet and the identified security association. The packet can be processed in accordance with the security association and the security parameters index.
US11240211B2 System and method to leverage EDR, ECU, CAN and OBD data from vehicles by means of blockchain technology
Systems and methods to retrieve, encrypt, and transmit control area network (CAN), event data recorder (EDR), engine control unit (ECU) and onboard diagnostics (OBD) data from vehicles such as automobiles and airplanes etc. is disclosed. The invention having, but not limited to, several main parts: a first part being a microcontroller having onboard memory, a second part being a connector that interfaces with a vehicle's existing CAN, EDR, ECU and OBD data, a third part being onboard software that encrypts said data to a blockchain within a vehicle, and a fourth part being multiple, wireless transmitters that send blockchain information to a cloud network. An object of the invention is to leverage and decentralize valuable telematic, CAN, EDR, ECU and OBD vehicle data for an array of stakeholders including dealers, insurers and consumers in a secure manner through the latest cryptography software.
US11240202B2 Message processing method, electronic device, and readable storage medium
Embodiments of the present application provide a packet processing method, an electronic device and a readable storage medium. The method is applied to an electronic device installed with a Virtual Private Network VPN application, and includes: a non-VPN application in the electronic device sending a packet that is to be sent by the non-VPN application to the VPN application through a hardware network module and a virtual network module in the electronic device; the VPN application receiving and analyzing the packet; if the analysis indicates that the packet contains a Domain Name System (DNS) resolution request, the VPN application redirecting the DNS resolution request packet to a preset secure DNS server through the virtual network module and the hardware network module. With embodiments of the present application, the security of software, hardware, and data of an electronic device can be effectively ensured with a reduced cost.
US11240201B2 Publishing data across a data diode for secured process control communications
To secure communications from a process plant across a unidirectional data diode to a remote system, a sending device at the plant end publishes data across the diode to a receiving device at the remote end. The publication of various data is respectively in accordance with context information (e.g., identification of data sources, respective expected rate of data generation/arrival, etc.) that is descriptive of data sources of the plant and that is recurrently provided by the sending device across the diode. A recurrence interval may be based on a tolerance for lost data or another characteristic of an application, service, or consumer of data at the remote system. The publishing may leverage an industrial communication protocol (e.g., HART-IP) and/or a suitable general-purpose communication protocol (e.g., JSON).
US11240199B2 Service provision in scenarios with network address translation
A method for operating a session control entity configured to control a data packet session of a user in a cellular network. A policy request is transmitted to a policy control entity of the cellular network requesting at least one policy rule for the data packet session. A policy response is received including the at least one policy rule for the data packet session and including a request to provide information about an address translation carried out in a user plane on the data packets of the data packet session. Rules for handling the data packet session are transmitted to a user plane entity configured to handle the user plane of the data packet session. The rules include a translation detection rule by which the user plane entity is requested to inform the session control entity about the address translation that has taken place in the user plane.
US11240198B2 Session management method and apparatus
Example session management methods and apparatus are described. One example method includes allocating a first IP address and a first user plane network element to a terminal by a session management network element. The first user plane network element allocated to the terminal supports the first IP address.
US11240196B2 Communication using DNS repurposing
Technology for communicating by embedding messages in DNS requests/responses is disclosed. In many cases it is desirable for a device to communicate without that device having to supply network credentials. In some network environments, credentials are not required to send or receive DNS messages. The question section of a DNS request message may include a message for a destination DNS server and a query domain which, when using standard DNS routing, will result in the DNS request being directed to the intended destination DNS server. The message may be encoded in such a way that an algorithm run by the destination DNS server is able to parse the message from the DNS request.
US11240195B2 Systems and methods for direct dispatching of mobile messages
In an example implementation of the disclosed technology, a method includes predicting, by a computing device, a destination server that is predicted to be the destination of a message from a sending device connected to the computing device. The method also includes determining whether a connection exists between the computing device and the destination server. The method also includes, responsive to determining that no connection exists, determining a connection and caching the connection at the computing device. The method also includes, responsive to receiving a message for dispatch to the destination server, dispatching the message to the destination server via the connection.
US11240194B2 Instant messaging interoperability between disparate service providers
An apparatus for facilitating instant messaging communications between clients of different instant messaging service provider networks is provided. The apparatus includes translation logic for translating received communications related to an instant messaging service, the received communications associated with an external instant messaging service provider network and formatted according to a secondary protocol. The translation logic translates the received communication from the secondary protocol to a primary protocol, the primary protocol native to a receiving service provider network. The communication may then be routed to a client of the primary network according to the native, primary protocol.
US11240192B2 Information exchange between hospital information system and social network platform
A method for supporting hospital visits on a social network platform includes: detecting a user input for registering a visit at a hospital using a social network client application of the social network platform; in response to detecting the user input: obtaining a registration number for the visit, wherein the registration number indicates an ordinal position of the user in a hospital queue of multiple visitors to the hospital; and displaying a group chat interface for a group conversation including a social network identity of the user and a public social network identity of the hospital; and displaying a payment request for the visit in the group chat interface.
US11240190B2 Social network communities
Disclosed are methods, apparatus, systems, and computer-readable storage media for providing access to communities of users in an online social network. In some implementations, a server is configured to identify a user identity (ID), received from a computing device, as one of a plurality of first user identities (IDs) of first users belonging to a first community maintained on behalf of a first organization by a social networking system. The computing device can then be provided access to the first community. When a request to access a second community maintained on behalf of a second organization is received from the computing device, the user ID can be identified as one of a plurality of second user IDs of second users belonging to the second community. The computing device can then be provided access to the second community.
US11240186B2 Identification of converged conversation threads
Technologies are disclosed for identifying converged conversation threads. A number of the most recent messages in a conversation thread are selected. Selected messages that are action messages or query messages are identified. Scores are then assigned to the action and query messages. A determination is then made as to whether the conversation thread is converged or non-converged based upon the scores. Data is then stored that indicates that the conversation thread is converged or non-converged. The stored data can be used to locate converged or non-converged threads and identify the threads in a UI as such.
US11240184B2 Interaction driven artificial intelligence system and uses for same, including presentation through portions of web pages
Artificial intelligence systems utilizing a chat driven interface that includes a chat portion and a display portion are disclosed. The user may interact with the chat portion of the interface in a human understandable and comfortable manner (e.g., through natural language). The artificial intelligence system uses the context of the interactions in the chat potion of the interface to drive the presentation of content in the display portion interface and the chat portion of the such that the content presented in the display portion of the interface reflects the intents or concepts expressed in the chat portion of the interface and the chat portion and the display portion of the interface are kept in synchronicity.
US11240182B2 Systems and methods for automated and centralized real-time event detection and communication
Centralized hospital communication system and methods are provided for event monitoring and notification. In some embodiments, consistent with the present embodiments, a centralized hospital communication server is disclosed. The centralized hospital communication server may include a memory storing instructions, and at least one processor configured to execute the stored instructions to: receive, from a networked device, event information indicative of an event, the event information including at least one personal attribute of a first individual associated with the event; search a network database for information associated with at least one location within a hospital, the first location information including at least one location attribute; identify, based on the received event information and the received first location information, a selected location for the first individual associated with the event; and automatically generate and transmit at least one electronic communication to a first electronic device associated with the selected location.
US11240180B2 Message providing device and non-transitory computer readable medium
A message providing device includes: a receiver; and a controller. At least first and second operation modes are operations of a software robot program. The program operates on a service exchanging messages between users. In the first mode, a specific service is executed upon reception of a message or a sticker. In the second mode, the specific service is not executed even if the message or the sticker is received. The receiver receives the message or the sticker from the user. When the received message is a first specific message or the received sticker is a first specific sticker, the controller switches the first mode to the second. When the received message is a second specific message different from the first or the received sticker is a second specific sticker which is different from the first, the controller switches the second mode to the first.
US11240179B2 Internet cloud-hosted natural language interactive messaging system with virtual database
Provided are methods, systems, and computer-program products for responding to a natural language communication, sending a response to request additional information from a user, and exposing an invocable method for accessing a virtual database. Some examples relate to a bot server that can respond to natural-language messages (e.g., questions or comments) through a messaging application using natural-language messages. Other examples relate to storage of event data associated with a web page or a mobile application. Event data can describe one or more actions performed in relation to the web page and/or the mobile application. Other examples relate to behavioral analytics of the event data.
US11240178B2 Data transmission method and data transmission system
A data transmission method for a data transmission system including a host and a peripheral device is disclosed, including: setting at least one identification number to at least one packet stored in the host; transmitting the at least one packet from the host to the peripheral device; allocating the at least one packet to plural temporary blocks of a memory of the peripheral device corresponding to the at least one identification number according to the at least one identification number of the at least one packet. Each of the temporary blocks includes a threshold value, and the threshold value of each of at least two of the temporary blocks are different; and transmitting part of the at least one packet stored in one of the temporary blocks when the one of the temporary blocks reaches the threshold value of the one of the temporary blocks.
US11240177B2 Networks and hierarchical routing fabrics with heterogeneous memory structures for scalable event-driven computing systems
Among other aspects, the present invention relates to a network comprising a plurality of interconnected core circuits (10) particularly arranged on several units (6), wherein each core circuit (10) comprises: an electronic array (8, 9) comprising a plurality of computing nodes (90) and a plurality of memory circuits (80) which is configured to receive incoming events, wherein each computing node (90) is configured to generate an event comprising a data packet when incoming events received by the respective computing node (90) satisfy a pre-defined criterion, and a circuit which is configured to append destination address and additional source information, particularly source core ID, to the respective data packet, and a local first router (R1) for providing intra-core connectivity and/or delivering events to intermediate level second router (R2) for inter-core connectivity and to higher level third router (R3) for inter-unit connectivity, and a broadcast driver (7) for broadcasting incoming events to all the memory circuits (80) in the core circuit (10) in parallel.
US11240176B2 Time-spaced messaging for facilitating network communications
Example methods, apparatus, systems, and articles of manufacture (e.g., physical storage media) to facilitate time-spaced messaging for network communications are disclosed. An example method may include receiving a plurality of messages at a message rate. The method may further include determining a number of the plurality of messages a network device is unable to process. The method may further include determining, based on the number, a miss rate associated with the plurality of messages. The method may further include determining whether the miss rate exceeds a threshold miss rate and, if the miss rate is determined to exceed the threshold miss rate, determining a time delay based on the miss rate and message rate, and applying the first time delay to at least one message received subsequent to the plurality of messages.
US11240173B2 Method and request router for dynamically pooling resources in a content delivery network (CDN), for efficient delivery of live and on-demand content
A method and request router (RR) are provided for dynamically pooling resources in a Content Delivery Network (CDN), for efficient delivery of live and on-demand content. The method comprises receiving, at the RR, a request for a content from a client, determining a content type associated with the request for the content, the content type being one of: live content and on-demand content. The method also comprises, based on the determined content type, dynamically electing, at the RR, delivery nodes at edge, region or core for content delivery and grouping the dynamically elected nodes into a resource pool, selecting a delivery node within the resource pool for delivering the content and sending a response to the client including an address of the delivery node selected within the resource pool to be used to get the requested content.
US11240172B2 Methods and apparatuses for responding to requests for network resources implemented in a cloud computing infrastructure
A method and system for responding to requests for network resources implemented in a cloud computing infrastructure are described. A proxy server responds to requests from client devices based on the state of the origin instances that serve the requested network resources. The proxy server modifies the state of the origin instance based on whether requests are received for the network resources. The proxy server receives from the client device, a first request for a network resource that is served by an origin server. The proxy server determines a state of the origin instance, where the state of the origin instance indicates whether the origin instance is executing on the cloud computing infrastructure. Upon receipt of the state of the origin instance, the proxy server determines based on the received state, a response to be transmitted to the client device.
US11240159B2 Service link selection control method and device
Disclosed are a flow classifier, policy and charging rules function unit and controller. The flow classifier receives a service chain selection control policy sent by a policy and charging rules function unit. The service chain selection control policy includes a corresponding relation between an application type and an identifier of a service chain. The service chain is a path formed by a forwarding device and a value-added service device both of which a service flow with the application type needs to pass through. The flow classifier detects the service flow with the application type based on the service chain selection control policy and adds the identifier of the service chain to a message of the service flow. The flow classifier sends the message of the service flow with the added identifier of the service chain to a forwarding device directly connected to the flow classifier.
US11240156B2 Techniques for steering network traffic to regions of a cloud computing system
In various embodiments, domain name system (DNS) servers are implemented on a content distribution network (CDN) infrastructure in order to facilitate centralized control of traffic steering. Each server appliance in the CDN infrastructure acts as both an authoritative DNS nameserver and a dynamic request proxy, and each such server appliance is assigned to one of multiple cloud computing system regions. The assignment of server appliances to cloud regions is based on latency measurements collected via client application probes and an optimization that minimizes an overall latency experienced by the client applications subject to constraints that the maximum traffic to each cloud region is less than a capacity constraint for that region, the maximum deviation of traffic to each cloud regions at any point in time is less than a given percentage, and the maximum deviation of traffic between direct and indirect paths is less than a given percentage.
US11240149B2 Rank and routing techniques for networked device
Techniques configure a network to relay data from a node to a root device are described herein. In an example, one-hop neighbors of the node are determined and ranked according to link quality. The ranked neighbor nodes may be considered potential “parent nodes” of the node. The ranked nodes may be divided into a plurality of groups according to link quality. A parent node may be selected from among the “best” group of one-hop neighbor nodes and may be used to relay data for the node to and/or from the router or other device. The node continues to use the parent node at least until its ranking removes it from the best group or falls below a threshold value. After the ranking of the parent falls below such a prescribed threshold it may be replaced by selection of a replacement parent from the group of one-hop upstream neighbors having the best link quality.
US11240143B2 Embedded network packet data for use of alternative paths within a group of network devices
This disclosure describes techniques for addressing and/or accounting for path failures (e.g., congestion, link failures, disconnections, or other types of failures) within a network environment. In one example, this disclosure describes a method that includes receiving, by a node connected to a plurality of interconnected nodes, a network packet to be forwarded to a destination node; identifying, by a forwarding plane within the node, a first link along a path to the destination node; determining, by the forwarding plane, that the first link is inoperable; storing, by the node and within the network packet, data identifying the node as having been visited; identifying, by the forwarding plane and from among the plurality of egress links from the node, a second link that is operable and is along an alternative path to the destination node; and transmitting the network packet over the second link.
US11240139B2 Generating a minimum-cost circulation topology in a microservice mesh network
A computer-implemented system and method for generating a minimum-cost circulation topology in a mesh network is provided. The system comprises one or more processors configured to receive a service request from a client computer and identify a group of services for the service request. The one or more processors are further configured to iteratively query a global registry for each of the group of services to obtain respective groups of dependent service instances, generate an adjacency table including a plurality of service dependency paths identified from the respective groups of dependent service instances. The system determines a minimum-cost service dependency path by applying a predetermined cost algorithm on the adjacency table and executing a first service instance of the minimum-cost service dependency path and route the service request to the second service instance in the dependency path.
US11240134B2 Communication system determining time of arrival using matching pursuit
A wireless receiver receives location pilots embedded in received symbols and uses the location pilots to detect the first path for every base station the network has designated for the receiver to use in time of arrival estimation. The receiver preferably applies matching pursuit strategies to offer a robust and reliable identification of a channel impulse response's first path. The receiver may also receive and use estimation pilots as a supplement to the location pilot information in determining time of arrival. The receiver can use metrics characteristic of the channel to improve the robustness and reliability of the identification of a CIR's first path. With the first path identified, the receiver measures the time of arrival for signals from that path and the receiver determines the observed time difference of arrival (OTDOA) to respond to network requests for OTDOA and position determination measurements.
US11240132B2 Device classification
Systems, methods, and related technologies for device classification are described. In certain aspects, traffic data associated with a device and data from an external system can be accessed. The data can be processed to determine a device classification for the device. An action can be initiated based on the classification.
US11240123B2 Dynamic adaptive network
Systems and methods for managing a network are disclosed. In certain systems and methods, access to a network such as a wireless network, can be granted or denied based upon a threshold number of devices accessing the network. Moreover, access to a first service available over the network can be granted or denied based upon a threshold number of devices accessing the first service. Various network resource can be allocated to the first service based at least upon the number of device access the first service.
US11240122B2 Event-triggered machine learning for rare event forecasting in a software defined wide area Network (SD-WAN)
In one embodiment, a service detects that an event of a particular event type has occurred in a software-defined wide area network (SD-WAN). The service activates, in response to detecting the occurrence of the event, a machine learning model to assess telemetry data regarding a first tunnel in the SD-WAN. The service predicts a failure of the first tunnel, based on the assessment of the telemetry data regarding the first tunnel by the machine learning model. The service proactively reroutes at least a subset of traffic on the first tunnel onto a second tunnel in the SD-WAN, in advance of the predicted failure of the first tunnel.
US11240120B2 Simulating multiple paths of a course of action executed in an information technology environment
Described herein are improvements for generating courses of action for an information technology (IT) environment. In one example, a method includes identifying a first course of action for responding to an incident type in an information technology environment and generating a simulated incident associated with the incident type. The method further includes initiating performance of the first course of action based on the generation of the simulated incident. The method also includes, upon reaching a particular step of the first course of action that prevents the performance of the first course of action from proceeding, providing a first simulated result that allows the performance of the first course of action to proceed.
US11240117B2 Intelligent analytic cloud provisioning
A services platform acts as an intermediary between an existing enterprise analytic environment, and one or more underlying cloud service providers. The platform provides enterprise “big data-as-a-service,” by which an enterprise can seamlessly and easily provision new capacity for processing its analytic workload, and migrate data sources (e.g., data warehouse marts, enterprise data warehouses, analytic sandboxes, and the like) to the cloud for processing. The platform provides end-to-end enterprise class manageability of enterprise data assets, from data collection, aggregation, movement, staging and processing, all while providing service levels, security, access and governance. The platform integrates directly but seamlessly into the enterprise analytic stack, and existing analytics applications work as normal. The platform provides a way for the enterprise to translate its workloads into clusters of compute resources that meet its service level requirements.
US11240115B2 Network topology display method and network management device
A method of displaying network topology and a network management device are disclosed. The method includes: determining a sub-network that can be abstracted from the original network topology, wherein the sub-network includes at least two network devices as well as a network link and a network interface between the at least two network devices; abstracting the at least two network devices, as well as the network link and the network interface between the at least two network devices included in the sub-network and obtaining a virtual network device; and displaying a current network topology, the current network topology including the virtual network device which is generated after abstracting the sub-network.
US11240114B2 Network visibility
Systems, methods, and related technologies for device monitoring are described. In certain aspects, network traffic data is analyzed to determine one or more devices associated with a network. The network may be a remote network. The network traffic data may further be used to determine one or more non-active devices associated with the network.
US11240113B2 Forwarding element slice identifying control plane
Some embodiments of the invention provide a novel method of performing network slice-based operations on a data message at a hardware forwarding element (HFE) in a network. For a received data message flow, the method has the HFE identify a network slice associated with the received data message flow. This network slice in some embodiments is associated with a set of operations to be performed on the data message by several network elements, including one or more machines executing on one or more computers in the network. Once the network slice is identified, the method has the HFE process the data message flow based on a rule that applies to data messages associated with the identified slice.
US11240100B2 Using an out-of-band network to reconfigure a bus interface port
Provided are a computer program product, system, and method for using an out-of-band network to coordinate a first node reconfiguring a bus interface port used by a second node to communicate on a bus. The first node configures the bus to enable the second node to link to the bus. The second node sends a join request to the first node over an out-of-band network separate from the bus in response to determining that the second node cannot join the bus. The first node reconfigures the bus to enable the second node to communicate on the bus in response to receiving the join request from the second node over the out-of-band network.
US11240095B2 Techniques for interfacing between web services and interface description language (IDL)-based remote procedure call (RPC) services and an optical communication system implementing same
An embodiment of the present disclosure includes an RPC architecture that includes a central manager gateway with a client-facing side that allows for client access via web services protocols such as SOAP and REST. The central manager gateway further includes a server-facing side that can communicate with a plurality of network elements, with each network element implementing a common IDL architecture and RPC manager instance. Each of the network elements, and in particular their RPC manager instance, may communicate with other RPC manager instances to ‘learn’ the network topology for the system and maintain a topology database for purposes of exposing a naming service, e.g., a CORBA naming service. The network elements may elect one master element while the others remain as slaves. The central manager gateway may automatically locate the master network element and forward client requests to the same for servicing.
US11240094B2 Information processing apparatus, information processing method, and computer-readable medium
First device information, which is information independent from settings of a device or functions of a device, is obtained from a device in bulk; second device information, which is information that depends on settings of a device or functions of a device, is obtained; and the obtained first and second device information are stored in a storage unit. A device connected through communication is then specified on the basis of the obtained first device information.
US11240087B2 Repeater and method of operation thereof
A synchronization detection method of a repeater comprises receiving a communication signal comprising a plurality of synchronization signal blocks respectively belonging to different frequency ranges, determining a priority of a frequency range in which the plurality of synchronization signal blocks are to be detected based on signal level for each frequency range and detecting a synchronization signal block included in each frequency range according to the determined priority.
US11240083B2 Bandwidth constrained communication systems with frequency domain information processing
The present disclosure provides techniques for bandwidth constrained communication systems with frequency domain information processing. A bandwidth constrained equalized transport (BCET) communication system can include a transmitter, a communication channel, and a receiver. The transmitter can include a pulse-shaping filter that intentionally introduces memory into a signal in the form of inter-symbol interference, an error control code (ECC) encoder, a multidimensional fast Fourier transform (FFT) processing block and a multidimensional inverse FFT processing block that process the signal in the frequency domain, and a first interleaver. The receiver can include an information-retrieving equalizer, a deinterleaver with an ECC decoder, and a second interleaver joined in an iterative ECC decoding loop. The communication system can be bandwidth constrained, and the signal can comprise an information rate that is higher than that of a communication system without intentional introduction of the memory at the transmitter.
US11240082B1 Methods and systems for modulating and de modulating data
Methods and systems for modulating and demodulating data in systems. Bits can be converted into complex-valued symbols. An Inverse Fast Fourier Transform (FFT) can be applied to the complex-valued symbols that represent the bit groups. An FFT time window can be replaced with a time window and a frequency window. A signal comprising the time window and the frequency window can be transmitted. The signal can be converted into a complex-valued symbol. The complex-valued symbols can be converted into bits.
US11240079B1 Systems, methods, and devices for high-speed data modulation
A data modulator for a transmitter includes a multiplexer configured to receive, at a first rate, a first data stream including a plurality of first symbols and a second data stream including a plurality of second symbols. The multiplexer is configured to selectively output, based on a first clock signal, the plurality of first symbols and the plurality of second symbols to form a third data stream that achieves a second rate greater than the first rate for transmission of the third data stream by the transmitter.
US11240077B2 C-PHY half-rate wire state encoder and decoder
Methods, apparatus, and systems provide improved throughput on a communication link. An apparatus has a plurality of line drivers, a first wire state encoder configured to receive a first symbol in a sequence of symbols when a 3-wire link is in a first signaling state, and to define a second signaling state for the 3-wire link based on the first symbol and the first signaling state, a second wire state encoder configured to receive a second symbol in the sequence of symbols, and to define a third signaling state for the 3-wire link based on the second symbol and the second signaling state. The first symbol immediately precedes the second symbol in the sequence of symbols. The 3-wire link transitions from the first to the second signaling state, and from the second to the third signaling state in consecutive transmission intervals.
US11240075B2 SerDes receiver with optimized CDR pulse shaping
An optimized pulse shaping clock data recovery system is provided that includes a slicer configured to receive a signal and provide an initial set of tentative decisions to a decision feedforward equalizer, where the decision feedforward equalizer provides a fully equalized output signal. The slicer may be incorporated as part of decision feedback equalizer to provide better quality tentative decisions. The clock data recovery system also receives the first output signal that is partially equalized in such a way as to optimally shape it for a clock to sample it at an ideal location by providing an adjustment signal to the analog to digital controller.
US11240073B2 Adapative receiver with pre-cursor cancelation
A data receiver circuit includes a summer circuit configured to receive an input signal that encodes multiple data symbols, and combine the input signal with a feedback signal to generate an equalized input signal, which is used to generate a clock signal. The data receiver circuit also includes multiple data slicer circuits that sample, using the clock signal and multiple voltage offsets, to generate multiple samples for a particular data symbol. A precursor compensation circuit included in the data receiver circuit may generate an output value for the particular data symbol using the multiple samples. The data receiver circuit also includes a post cursor compensation circuit that generates the feedback signal using at least one of the multiple samples and a value of a previously received sample.
US11240066B2 System and method for distributed flow state P2P setup in virtual networks
Systems and methods for virtual network implementation and management based on a peer-to-peer metadata exchange are disclosed. Metadata pertaining to a flow traversing a virtual network overlaying an underlying network is generated in accordance with actions executed to send data packets via the underlying network relative to the virtual network. The metadata is encapsulated in one or more control packets sent to a set of nodes of the underlying network. Each node of the set of nodes maintains a copy of the metadata received in the one or more control packets in a local data store. The metadata is accessed via the local data store when needed to process packets of the flow.
US11240064B2 System and method for a global virtual network
Systems and methods for connecting devices via a virtual global network are disclosed. In one embodiment the network system may comprise a first device in communication with a first endpoint device and a second device in communication with a second endpoint device. The first and second devices may be connected with a communication path. The communication path may comprise one or more intermediate tunnels connecting each endpoint device to one or more intermediate access point servers and one or more control servers.
US11240063B2 Methods, nodes and computer readable media for tunnel establishment per slice
A method in a controlled node and a corresponding controlled node. The method comprises: receiving, from a control node, a computed result of logical topology for each slice on a physical topology composed by controlled nodes under control of the control node, and splitting information and constraints for each slice (S301); splitting a physical port into the at least one logical port for a slice based on the received splitting information (S303); associating the at least one logical port for the slice with a slice container (S305); applying the constraints for the slice on the at least one logical port (S307); generating a routing table for the slice based on the received computed result and the constraints (S309); and computing at least one tunnel according to the routing table for the slice based on the slice requirements of the slice (S311).
US11240058B2 System and method to view occupant status and manage devices of building
A device to provide information to a visual interface that is mountable to a vehicle dashboard includes a memory configured to store device information indicative of controllable devices of a building and occupant data indicative of one or more occupants of the building. The device includes a processor configured to receive, in real-time, status information associated with the one or more occupants of the building. The status information includes at least one of dynamic location information or dynamic activity information. The processor is configured to generate an output to provide, at the visual interface device, a visual representation of at least a portion of the building and the status information associated with the one or more occupants. The processor is also configured to generate an instruction to adjust an operation of one or more devices of the controllable devices based on user input.
US11240054B2 Multicast service processing method and access device
A multicast service processing method and an access device. In the method, an access device receives an on-demand request; the access device separately sends the on-demand request to a multicast source device through a first uplink port of the access device and a second uplink port of the access device, so that the multicast source device sends a first multicast packet and a second multicast packet based on the on-demand request; the access device receives the first multicast packet through the first uplink port of the access device, and receives the second multicast packet through the second uplink port of the access device; the access device obtains a multicast data stream based on attribute information of the first multicast packet and attribute information of the second multicast packet; and the access device sends the obtained multicast data stream to the program terminal.
US11240053B2 Overlay signaling for bit indexed explicit replication
Various systems and methods for performing bit indexed explicit replication (BIER). For example, one method involves receiving a membership message that was generated by an egress router, where the membership message comprises information identifying a multicast group, and information identifying a plurality of egress routers. The method identifies at least one bit position in the membership message that is associated with the first egress router, where at least one bit position of the plurality of bit positions is associated with the first egress router. The method also records membership of the first egress router in the multicast group, where the membership is recorded in a bit of a group membership table, and the bit corresponds to the bit position identified in the membership message.
US11240052B2 Facilitating communication in a collaborative environment
Embodiments generally relate to facilitating communication in a collaboration environment. In some embodiments, a method includes receiving a message in a collaboration environment. The method further includes determining a group of users based on text in the message, where one or more key words in the text indicate the group of users. The method further includes obtaining a collaboration history associated with the group of users, where the collaboration history includes collaboration statistics. The method further includes determining a subgroup of users from the group of users based on the collaboration statistics, where the collaboration statistics indicate a level of collaboration activity that meets one or more predetermined collaboration requirements. The method further includes sending notifications to users in the subgroup of users, where the notifications invite the users of the subgroup to respond to the message.
US11240051B1 Methods and apparatus for automatically adding a media component to an established multimedia collaboration session
A multimedia collaboration system that facilitates more efficient, free-flowing collaboration sessions. In order to make addition of new participants, media components, and or network access device to a collaboration session more efficient, client devices associated with each participant can store endpoint address information that can be automatically obtained by the multimedia collaboration system. The endpoint address information can then be used to add the new participants, media components, and or network access device.
US11240047B2 Capacitor based physical unclonable function
The present disclosure relates to a PUF apparatus for generating a persistent, random number. The random number is determined by selecting one or more PUF cells, each of which comprise a matched pair of capacitors that are of identical design, and determining a value that is accurately and reliably indicative of a random manufacturing difference between them, based in which the random number is generated. The random manufacturing differences between the capacitors creates the randomness in the generated random number. Furthermore, because the random manufacturing difference should be relatively stable over time, the generated random number should be persistent.
US11240046B2 Digital certificate management method, apparatus, and system
Techniques for providing a digital certificate management for blockchain technologies are described. One example method includes a transaction request including a digital certificate is received from a certificate authority at a node in a blockchain network, and the transaction request is a request to write the digital certificate into a blockchain associated with the blockchain network, and the digital certificate is issued to a node in the blockchain network. A consensus verification result is determined for the transaction request, and the consensus verification result is produced by nodes in the blockchain network. The consensus verification result is compared to a predetermined threshold value. In response to determining the consensus verification result is greater than or equal to the predetermined threshold value, the digital certificate is stored in the blockchain associated with the blockchain network.
US11240040B2 Systems, devices, and methods for recording a digitally signed assertion using an authorization token
A method for importing a digitally signed assertion to a temporally sequential listing includes receiving, by an evaluating device, at least a communication including a first digitally signed assertion recorded, assigning, by the evaluating device, a confidence level to the first digitally signed assertion, authenticating, by the evaluating device, the first digitally signed assertion as a function of the confidence level, generating, by the evaluating device, a second digitally signed assertion as a function of the first digitally signed assertion, and entering, by the evaluating device, the second digitally signed assertion in at least an instance of a first temporally sequential listing.
US11240035B2 Systems and methods for extending the utility of blockchains through use of related child blockchains
A system for extending the utility of blockchain environments when such environments become too large or complex, is disclosed. The system systematically creates a second generation, or child blockchain that can retain machine-readable links to the parent blockchain which, in turn, can be archived and referenced, when necessary, for historical reference. Accordingly, the system serves to reduce the size of the working blockchain thereby making it easier to store the blockchain, and further serves to increase the speed of queries to interrogate the current state of the blockchain. By reducing the size of the working blockchain, the present invention seeks to extend the utility of large blockchains by segregating and archiving historical or older transactions recorded in the blockchain. The system and process further includes methodologies to create links between the current blockchain and the archived sections of the blockchain to ensure the integrity of the full historical ledger.
US11240033B2 Secure DNA-based password
A method includes determining a password-length threshold. The password-length threshold may comprise an integer. The method also includes obtaining, for a first user, a set of nucleotide locations. The number of nucleotide locations in the set may be greater than or equal to the integer. The method also includes obtaining a first sample of the user's DNA. The method also includes determining, in the first sample, a nucleotide at each nucleotide location in the set of nucleotide locations, resulting in a first nucleotide-password sequence. The method also includes performing a one-way hashing operation on the first nucleotide-password sequence with a first hashing algorithm, resulting in a first hashed password.
US11240032B2 System and method for hierarchical token distribution on blockchain network
A method to participate in a blockchain-implemented token distribution process is disclosed. The token distribution process divides an initial quantity of tokens at an input address associated with an input node into a plurality of sub-quantities and distributes the sub-quantities to multiple output addresses associated with respective output nodes using a blockchain. The token distribution process is implemented collectively by the input node, the output nodes, and a plurality of mixer nodes. The method, which may be implemented at a mixer node (Uij), includes: identifying an upstream node (Ui) and a plurality of downstream nodes (Uijk) associated with the mixer node; collaborating with the upstream node to generate a first commitment channel (Ui→Uij) for a first transaction between the upstream node and the mixer node; and for each of the plurality of downstream nodes: collaborating with the downstream node to generate a second commitment channel (Uij→Uijk) for a second transaction between the mixer node and the downstream node, wherein an unlocking script for the first transaction is derived from an unlocking script for any one of the second transactions.
US11240029B2 Method of registration and access control of identity for third-party certification
A method of registration and access control of identity for third-party certification is provided. The method has steps of registration and steps of access control. The steps of registration have: controlling a user-end computer apparatus to retrieve an identity image of an identity document of a user; executing processes on the identity image for obtaining identity data; retrieving embedded identity data from the identity document; and configuring and registering the identity data if the data are matched with each other. The steps of access control have: controlling the user-end computer apparatus to verify user's identity upon reception of request of identity access, and generating and returning return identity data to a request-end computer apparatus.
US11240025B2 Systems and methods for distributed key storage
A system for implementing a distributed certificate authority using trusted hardware includes a first verifying node communicatively coupled to a plurality of remote devices, the verifying node designed and configured to receive an authorization request from a remote device, wherein receiving the authorization request further comprises receiving an identifier of the remote device, authenticate the remote device, and generate an authorization token, wherein generating the authorization token further includes associating the identifier of the remote device with at least an authorization datum, associating the identifier of the remote device with at least a temporal attribute, and digitally signing the authorization datum, and generating the authorization token containing the digitally signed authorization datum.
US11240023B1 Key management for expiring ciphertexts
Techniques described herein enhance information security in contexts that utilize key management systems and cryptographic keys. A cryptographic structure is utilized to maintain cryptographic keys with associated expiration times such that after an expiration time associated with a cryptographic key has passed, the cryptographic key is no longer accessible.
US11240014B1 Systems and methods for post-quantum cryptography optimization
Systems, apparatuses, methods, and computer program products are disclosed for post-quantum cryptography (PQC). An example method includes monitoring an enveloped data structure comprising a data envelope and data encrypted based on a first set of PQC encryption attributes. The example method further includes generating an electronic indication of a change in the enveloped data structure. The example method further includes retrieving PQC cryptographic performance information associated with a set of PQC cryptographic techniques. The example method further includes generating a second set of PQC encryption attributes for encrypting the data based on the change in the enveloped data structure and the PQC cryptographic performance information. Subsequently, the example method includes encrypting the data based on the second set of PQC encryption attributes.
US11240010B2 Random oracles in open networks
Systems and techniques are provided for random oracles in open networks. A node computing device of an open network may choose a random secret. The random secret may be a numeric or alphanumeric value. The node computing device may distribute shares of the random secret to node computing devices that are members of essential subsets for the node computing device. The node computing device may receive a share of a random secret from a second node computing device. The node computing device may be a member of an essential subset of the second node computing device. The node computing device may sign a deterministic seed message using the share of the random secret received from the second node computing device to generate a signature share. The node computing device may reveal the signature share and may receive a random value in response.
US11240008B2 Key management method, security chip, service server and information system
A key management method includes: sending, by a security chip of a computer device, a request for obtaining a service key to a key management service; receiving, by the security chip, a service key ciphertext from the key management service, wherein the service key ciphertext is obtained by encrypting the service key by the key management service based on a migration key of the security chip; decrypting, by the security chip, the service key ciphertext based on the migration key to obtain the service key; storing, by the security chip, the service key in the security chip; and providing, by the security chip, the service key to an application program of the computer device when the application program needs to encrypt data based on the service key.
US11240003B2 Consent-based data management
An example operation may include one or more of generating, by a data management node, a profile token based on a data profile of a data provider (DP) node, receiving, by the data management node, a transaction request from a service provider (SP) node to access data from the DP node over a blockchain, acquiring, by the data management node, consent of the SP node based on the profile token, generating, by the data management node, a consent token based the consent of the SP node, and allowing access to data of the DP node by the SP node based on a verification of the consent token.
US11239999B1 Blockchain network communications system
The present patent application discloses a distributed network system for communications via messaging based on blockchains. Utilizing blockchains for network messaging allows for various security systems to ensure that messages are not intercepted in a man-in-the-middle attack, or other form of hacking. An electronic message formed of a blockchain includes a genesis block containing as data an electronic message and identifying information of a sender terminal that generated the electronic message. The blockchain also includes a plurality of blockchain blocks containing identifying information of devices that transmitted the electronic message through a distributed network. The blockchain also includes a recipient block containing identifying information of a recipient terminal to which the electronic message was sent.
US11239997B2 Techniques for cipher system conversion
Various embodiments are generally directed to techniques for converting between different cipher systems, such as, for instance, between a cipher system used for a first encryption environment and a different cipher system used for a second encryption environment, for instance. Some embodiments are particularly directed to an encryption engine that supports memory operations between two or more encryption environments. Each encryption environment can use different cipher systems while the encryption engine can translate ciphertext between the different cipher systems. In various embodiments, for instance, the first encryption environment may include a main memory that uses a position dependent cipher system and the second encrypted environment may include a secondary memory that uses a position independent cipher system.
US11239996B2 Weighted partial matching under homomorphic encryption
Various embodiments are provided for performing weighted partial matching under homomorphic encryption in a computing environment. Selected data may be encoded and encrypted into an encrypted query for comparison using private set intersection (PSI) under homomorphic encryption (HE). An encrypted score may be determined according to data blocks of the selected data and a set of weights for each of the data blocks of the selected data to identify matches between the data and the encrypted query. The encrypted score may be decrypted and decoded to identify matches between the encrypted query with the selected data.
US11239994B2 Techniques for key provisioning in a trusted execution environment
Techniques for securely provisioning a set of enclaves are described. A contract owner may register with a shared registry. A subset of enclaves may be selected to be provisioned from among a plurality of enclaves. A keyshare may be requested from one or more provisioning services for each of the subset of enclaves to be provisioned. The requested keyshares may be received from each provisioning service for each of the subset of enclaves to be provisioned. For each of the selected enclaves, the received keyshares may be sent for verification by the enclave. Each of the selected enclaves may send an authenticated and encrypted key derived from the received keyshares.
US11239992B1 Efficient phase calibration methods and systems for serial interfaces
A phase calibration method includes sweeping phase codes applicable to a serial clock signal, identifying a first, a second, a third, and a fourth phase code, wherein the first phase code causes zero plus a first threshold number of bits extracted from the serial data signal to be a particular value, wherein the second phase code causes all minus a second threshold number of bits extracted from the serial data signal to be the particular value, wherein the third phase code causes all minus a third threshold number of bits extracted from the serial data signal to be the particular value, wherein the fourth phase code causes zero plus a fourth threshold number of bits extracted from the serial data signal to be the particular value, determining an average phase code based on the identified phase codes.
US11239991B2 Systems and methods for timing recovery with bandwidth extension
The present invention is directed to circuits and communication. More specifically, a specific embodiment of the present invention provides a timing recovery device with two stages. The first stage generates a clock signal to sample the received waveform, and the second stage provides timing-jitter mitigation. The second stage includes a jitter mitigation circuit with coefficients a function of the instantaneous jitter estimate, in addition to a jitter estimation tracking loop consisting of an error generator, a timing error detector and a loop filter to compensate for timing jitter associated with the clock signal. There are other embodiments as well.
US11239990B2 Phase error determination using two modulators
Noise test systems, methods, and circuitries are provided for determining a phase error of a first modulator using a second modulator. In one example, an integrated circuit device includes a first modulator configured to modulate a first signal to generate a first modulated signal and a second modulator configured to modulate a second signal to generate a second modulated signal. The first signal and the second signal are based on the same reference signal. The integrated circuit device also includes analysis circuitry configured to determine a phase error of the first modulator based on the first modulated signal and the second modulated signal.
US11239989B2 In-vehicle communication device and time synchronization method thereof
The present disclosure relates to an in-vehicle communication device and a time synchronization method thereof. The in-vehicle communication device includes a clock generator for generating a clock signal, a local counter for counting the number of pulses of the clock signal, a transceiver for receiving a message via an in-vehicle communication network, and a processor that determines whether the message received via the transceiver is a synchronization message, extracts synchronization time information from the synchronization message, and adjusts a count value of the local counter based on the synchronization time information to perform time synchronization.
US11239988B2 Methods and systems for synchronization of slave device with master device
Methods and systems for synchronizing a slave device with a master device are disclosed. The method includes arranging a bitstream of data into a two-dimensional frame having a plurality of columns and rows. The method further includes searching the columns for an occurrence of an 8-bit static sync word having a constant sync value. The total number of columns of the two-dimensional frame is equal to the number of columns of a group containing the 8-bit static sync word. The method also includes re-aligning the two-dimensional frame by shifting and re-numbering the column having the 8-bit static sync word to column zero. The method also includes determining the number of rows of the re-aligned frame and synchronizing the slave device with the master device based on the re-aligned frame and the number of columns and rows of the two-dimensional frame.
US11239986B2 User equipment, base stations, and wireless communications systems for ultra-reliable communications
A user equipment is configured to operate in a wireless communications network being operated in a TDD scheme, the TDD scheme including a plurality of TDD-frames, each TDD-frame including a guard period arranged between a downlink symbol and an uplink symbol of the TDD-frame. The user equipment is configured to receive a first number of symbols during the guard period or is configured to transmit the uplink symbol and to transmit a second number of symbols previous to transmitting the uplink symbol.
US11239980B2 Method and apparatus for transmitting physical uplink shared
Embodiments of the present invention provide a method and an apparatus for transmitting a physical uplink shared channel (PUSCH). The method includes: determining a time domain location for transmitting the PUSCH according to a downlink transmission time interval TTI for receiving a scheduling grant; and transmitting the PUSCH in the determined time domain location; wherein the scheduling grant comprises at least one of: indication information for indicating whether to transmit a demodulation reference signal DMRS; first time domain location related information for transmitting the demodulation reference signal DMRS; second time domain location related information for transmitting data; information on frequency domain density of the demodulation reference signal DMRS; and frequency domain offset information of the demodulation reference signal DMRS.
US11239973B2 Methods and nodes in a wireless communication network
Transmit device and method therein, for providing transmission burst information to a receive device by downlink control signalling. The transmit device is configured to: transmit a Downlink Control Information, DCI (210-1), comprising the transmission burst information, wherein the DCI (210-1) has the same number of bits as a DCI format used for PDSCH scheduling. Also a receive device (120) and method (600) therein is disclosed.
US11239970B2 Reference signal sending method, reference signal receiving method, and communications apparatus
This application provides a reference signal sending method. The method includes: determining a resource set, where the resource set is used to carry a demodulation reference signal and downlink information, the downlink information is downlink control information or downlink data, the demodulation reference signal is used to demodulate the downlink information, the resource set includes a first time-frequency resource group and a second time-frequency resource group, the first time-frequency resource group is reserved time-frequency resources, and the second time-frequency resource group is used to carry the demodulation reference signal; determining a third time-frequency resource group based on a location of the second time-frequency resource group and an offset when the first time-frequency resource group and the second time-frequency resource group overlap, wherein the offset is determined according to a preset rule; and sending the demodulation reference signal by using the third time-frequency resource group.
US11239962B2 Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
Embodiments are provided for supporting variable sub-carrier spacing and symbol duration for transmitting OFDM or other waveform symbols and associated cyclic prefixes. The symbol duration includes the useful symbol length and its associated cyclic prefix length. The variable sub-carrier spacing and symbol duration is determined via parameters indicating the sub-carrier spacing, useful symbol length, and cyclic prefix length. An embodiment method, by a network or a network controller, includes establishing a plurality of multiple access block (MAB) types defining different combinations of sub-carrier spacing and symbol duration for waveform transmissions. The method further includes partitioning a frequency and time plane of a carrier spectrum band into a plurality of MAB regions comprising frequency-time slots for the waveform transmissions. The MAB types are then selected for the MAB regions, wherein one MAB type is assigned to one corresponding MAB region.
US11239959B2 Methods and apparatus for code block level feedback
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a transmission comprising an indication of at least one failed code block group in a plurality of code block groups, wherein a code block group comprises a plurality of code blocks, re-assign code blocks to different code block groups (CBGs) according to a total number of code blocks (CBs) across the at least one failed code block group (CBG) and a maximum number of code block groups (CBGs) per a transport block (TB), and configure a retransmission based on the re-assigned code blocks (CBs).
US11239958B2 Method and apparatus for transmitting and receiving data in a communication system
The present disclosure relates to a fifth generation (5G) or pre-5G communication system to be provided to support a higher data transmission rate since fourth generation (4G) communication systems like long-term evolution (LTE). A method of a receiver in a wireless communication system is provide. The method includes receiving at least one packet, identifying whether there is a non-received packet among the at least one packet, and transmitting status report information when there is the non-received packet, in which the status report information includes a field indicating whether there are consecutively non-received packets.
US11239952B2 Method and device for retransmission
Embodiments related to retransmission in a communication system are described and depicted. In one embodiment, a retransmission entity repeats a transmission of a data transfer unit by the device after a predetermined number of other transmitted data transfer units has been transmitted. The retransmission entity may also determine whether a measure for a time period since the first transmission of the data transfer unit by the device has exceeded a predetermined threshold and to provide a final transmission of the data transfer unit based on the determining that the measure for the time period has exceeded the predetermined threshold.
US11239951B2 Method for transmitting or receiving wireless signal in wireless communication system and apparatus therefor
The present disclosure discloses a method for controlling transmission power in a wireless communication system and an apparatus therefor. Specifically, in a method for performing repetition transmission of a wireless signal by a terminal in a wireless communication system, the method comprises receiving a configuration of multiple resources for repetition transmission of the wireless signal semi-statically by a base station; wherein a redundancy version sequence for repetition transmission of the wireless signal is pre-configured, performing repetition transmission of the wireless signal based on the redundancy version sequence on the remaining resources except for at least one particular resource among the multiple resources; and performing repetition transmission of the wireless signal on the at least one particular resource based on a redundancy version value pre-configured for the at least one particular resource.
US11239945B2 Encoding method, decoding method, apparatus, and device
A polar code encoding/decoding method in a communications system is provided, including: determining an information bit location set or a frozen bit location set of a polar code based on an interleaving operation or a corresponding de-interleaving operation; and encoding or decoding the polar code based on the determined information bit location set or frozen bit location set.
US11239943B2 Transmission device, transmission method, reception device, and reception method
An FEC coder in a transmission device according to an exemplary embodiment of the present disclosure performs BCH coding and LDPC coding based on whether a code length of the LDPC coding is a 16k mode or a 64k mode. A mapper performs mapping in an I-Q coordinate to perform conversion into an FEC block, and outputs pieces of mapping data (cells). The mapper defines different non-uniform mapping patterns with respect to different code lengths even an identical coding rate is used by the FEC coder. This configuration improves a shaping gain for different error correction code lengths in a transmission technology in which modulation of the non-uniform mapping pattern is used.
US11239936B2 High capacity resilient optical network design
An optical network is provided that includes at least one strand of a plurality of strands of optical fiber optically connected to a first fiber distribution hub and an access terminal. The at least one strand optically is also connected to a second fiber distribution hub and the access terminal. The at least one strand thus provides a full duplex optical path in a first direction from the first fiber distribution hub to the access terminal and in a second direction from the second fiber distribution hub to the access terminal.
US11239933B2 Systems and methods for transporting constant bit rate client signals over a packet transport network
A method for transporting Ethernet frame packets assembled from a constant bit rate (CBR) client stream from an ingress network node to an egress network node, each Ethernet frame packet including a payload region having a number of bytes of CBR client data from the CBR client stream determined by a client rate value of the CBR client stream. The method including synchronizing a reference clock signal and a ToD in the ingress network node to a packet-based time distribution mechanism, independently synchronizing a reference clock signal and a ToD in the egress network node to the packet-based time distribution mechanism, for an Ethernet frame packet assembling a presentation time packet including a sequence number and a presentation ToD for the Ethernet frame packet, and transmitting the Ethernet frame packets and the presentation time packet to the egress network node over the packet transport network.
US11239931B2 Generalized frequency division multiplexing method with multiple-input multiple-output and flexible index modulation
A generalized frequency division multiplexing method with multiple-input multiple-output and flexible index modulation, which enables to have the energy efficiency provided by space and frequency index modulation systems with generalized frequency division multiplexing (GFDM) without complicating the transmitter and receiver structure and provide for the efficient use of frequency resources, increase in spectral efficiency, minimum complexity and increase in energy efficiency.
US11239927B2 RRC indication to enable pathloss reference signal updates via MAC-CE
A method, a computer-readable medium, and an apparatus are provided for wireless communication at a user equipment. The UE receives an indication from a base station that a medium access control-control element (MAC-CE) activation of a pathloss reference signal is enabled. The UE receives a MAC-CE activating the pathloss reference signal. The UE determines the pathloss reference signal based on the MAC-CE and the indication that indicates that the MAC-CE activation of the pathloss reference signal is enabled. Then, the UE estimates a downlink pathloss based on the pathloss reference signal that is activated by the MAC-CE.
US11239919B2 Side channel communication for an optical coherent transceiver
A method, system and apparatus for optimizing parameters between two optical coherent transceivers connected via an optical link, including determining performance of a second optical receiver; wherein the second optical transceiver uses a set of parameters; and inputting information into a side channel communication between a first optical transceiver and the second optical transceiver to update the set of parameters for the second transceiver.
US11239918B2 Reduction of second-order non-linear distortion in a wideband communication system
A system has a plurality of non-linear circuit stages and an intervening linear circuit stage. An input signal is provided to a first non-linear circuit stage, and from the first non-linear circuit stage, to the linear circuit stage. The first non-linear circuit stage applies a second-order distortion to the input signal and provides the resulting signal to the linear circuit stage. The resulting signal that is output from the linear circuit stage is inverted with respect to the input signal and suitably linearly processed (attenuated or amplified). This signal is then provided to a second non-linear circuit that applies a second-order distortion and outputs a signal that has an overall reduction in second-order distortion.
US11239917B2 Methods and devices for the determination of core dependent loss in multi-core fiber transmission systems using core scrambling
The various embodiments provide an optical transmission system comprising an optical transmitter configured to transmit data over an optical fiber transmission channel comprising a multi-core fiber, the data being carried by optical signals, the optical signals propagating along the multi-core fiber according to two or more cores, the multi-core fiber being associated with fiber parameters and misalignment losses values, at least one scrambling device being arranged in the optical fiber transmission channel for scrambling the two or more cores according to a scrambling function, wherein the optical fiber transmission channel comprises a system configuration device configured to determine a core dependent loss value depending on the fiber parameters, at least one misalignment loss, a number of the at least one scrambling device, and the scrambling function.
US11239915B2 Li-drive
An optical communication access point comprises: an optical communication channel for allowing wireless light communication with a remote device, and a memory for storing content, wherein the content in the memory is accessible by the remote device via the wireless light communication link.
US11239912B2 Closed loop module control for communication based on signal quality
The present invention is directed to communication systems and methods. According to an embodiment, a receiving optical transceiver determines signal quality for signals received from a transmitting optical transceiver. Information related to the signal quality is embedded into back-channel data and sent to the transmitting optical transceiver. The transmitting optical transceiver detects the presence of the back-channel data and adjusts one or more of its operating parameters based on the back-channel data. There are other embodiments as well.
US11239911B2 Display apparatus and control method for display apparatus
A display apparatus is disclosed. The display apparatus includes: an optical communication interface configured to communicate with an electronic device through an optical cable; and a processor for, when an optical signal including at least one signal among an image signal and a sound signal is received from the electronic device through the optical communication interface, measuring a strength of the received optical signal, and controlling an operation of the display apparatus related to a state of the optical cable, on the basis of the measured strength of the optical signal.
US11239908B2 Communications in a wireless network
A user equipment (UE) is configured to receive a downlink physical control channel including a transmission parameter in a first time slot, a number of bits sent over the downlink physical control channel is based on fields of control information to be sent to the UE, wherein the first time slot also includes a downlink physical shared channel. Further, the UE is configured to transmit an uplink physical control channel in a second time slot based on the transmission parameter, wherein a plurality of UEs transmit uplink physical control channels in the second time slot.
US11239906B2 Beam hopping synchronization system
An improved procedure and associated hardware to allow a satellite to switch antenna coverages according to predefined repetitive sequences and to align switching of the antenna sequence with ground data sequence switching. The principle of synchronisation of the sequence switching is based on the anticipation of the exact time at which change in beam hopping sequence occurs at the satellite, such that a change to a beam hopping sequence can be reflected in ground data sequence switching without losing connectivity between the satellite and ground segment.
US11239905B2 Systems and methods for command and control of satellite constellations
The disclosed technology relates to systems and methods for tasking satellite constellations. A method is disclosed herein for receiving, from a resource database of a satellite control system, knowledge data corresponding to a plurality of components associated with a satellite constellation communications system. The plurality of components can include one or more satellites associated with a constellation. The method includes processing the knowledge data according at least one received mission objective. Processing the knowledge data can include determining a status of at least one satellite in the constellation. The method includes scheduling the satellite control system based at least in part on the received mission objective and the processed knowledge data; initiating communication with the at least one satellite in the constellation according to the scheduling; receiving updated status information for at least one component of the plurality of components; and storing, in the resource database, the updated status information.
US11239899B2 Near field communication antenna system for a playset
A playset comprises a near field communication extending system. The near field communication extending comprises a main antenna and a plurality of extending antennas. The main antenna is positioned at a first location of the playset and configured to wirelessly communicate to a near field communication device of a mobile device. The plurality of extending antennas is positioned at a plurality of different locations in an interior of the playset. Each of the plurality of extending antennas is connectable to the main antenna via a plurality of connection elements. The playset further comprises an antenna switching mechanism coupled to the plurality of extending antennas via a plurality of connection elements. The antenna switching mechanism is configured to switchably couple the main antenna with each of the plurality of extending antennas.
US11239898B1 Relaying data to multiple access points
Relaying data comprises assigning a first network address to a relay wireless device attached to an access node, wherein the relay wireless device is communicatively coupled to one or more wireless access points (WAPs); and instructing the relay wireless device to correspondingly assign one or more additional network addresses to the one or more WAPs, wherein the relay wireless device is configured to relay data between the access node and one or more end-user wireless devices attached to any of the one or more WAPs. Port NAT and DHCP are leveraged at the relay UE according to embodiments described herein.
US11239895B2 Data transmission method, terminal device, and network device
This application describes a data transmission method, a terminal device, and a network device. The method may include determining, by a terminal device, a reporting type of channel state information (CSI), where the reporting type is used to indicate a relationship between CSI of a beam that is currently reported by the terminal device and CSI of a beam that is previously reported by the terminal device in a current reporting period. The method may also include sending, by the terminal device, CSI of N beams to a network device based on a reporting type and a codebook parameter, where the codebook parameter is used to indicate a quantity N of the currently reported beams, and N is an integer greater than or equal to 1. According to the data transmission method, the terminal device, and the network device described in the embodiments of this application, CSI reporting flexibility can be improved, thereby improving system performance.
US11239893B2 Quasi co-location assumptions for aperiodic channel state information reference signal triggers
Certain aspects of the present disclosure relate to quasi co-location assumptions for aperiodic channel state information (CSI) reference signals (RS) in communications systems operating according to NR techniques. An exemplary method that may be performed by a UE includes determining a quasi-co-location (QCL) relationship of an aperiodic channel state information (CSI) reference signal (CSI-RS) to a physical channel and processing the aperiodic CSI-RS according to the determined QCL relationship.
US11239889B2 Radio-frequency circuit and communication device
A radio-frequency circuit includes: a first transfer circuit that outputs a B1 or B3 first transmission signal amplified by a first power amplifier from a first input/output terminal; a second transfer circuit that outputs an n77 or n79 second transmission signal amplified by a second power amplifier from a second input/output terminal; and a switch. When a B1 first transmission signal and an n77 second transmission signal are simultaneously transmitted, the switch connects the first transfer circuit to a first antenna and connects the second transfer circuit to a second antenna since intermodulation distortion IMD2 overlaps with B1. When a B3 first transmission signal and an n79 second transmission signal are simultaneously transmitted, the switch connects both of the first transfer circuit and the second transfer circuit to the first antenna since intermodulation distortion IMD2 does not overlap with B3.
US11239879B1 Signal detection method for non-coherent detection in a chirp spread spectrum communication system
A system and methods for transmission and non-coherent detection of data signals modulated by a plurality of overlapping chirps in a chirp spread spectrum communication system (CSS). Data signals input to an adaptive overlapping transmitter are modulated by a plurality of overlapping chirps and transmitted over a wireless communication system to a non-coherent receiver. The coherent receiver includes a chirp matched filter which matches the chirps to an internal chirp signal, a delay filter which delays each chirp, a multiplier which multiplies each delayed chirp by a next chirp, an integrator which sums the amplitudes of the chirps and decision circuitry which determines the polarity of each sum and outputs a stream of ones and zeroes representing the data signals.
US11239872B2 Signal receiver and method of measuring offset of signal receiver
A signal receiver includes a first preliminary receiver circuit suitable for receiving an input signal and generating a first preliminary reception signal based on a first reference voltage, a second preliminary receiver circuit suitable for receiving the input signal and generating a second preliminary reception signal based on a second reference voltage, a reception circuit suitable for selecting one of the first preliminary reception signal and the second preliminary reception signal in response to a voltage level of a reception signal and generating the reception signal using the selected signal, and a reference voltage generation circuit suitable for adjusting a voltage level of the first reference voltage based on a first offset and adjusting a voltage level of the second reference voltage based on a second offset.
US11239869B2 Multistage Doherty power amplifier and transmitter
A multistage Doherty power amplifier and a transmitter are provided, and the multistage Doherty power amplifier includes: a generalized carrier amplifier, which is a nested 2-way inverted Doherty sub amplifier, and a generalized peaking amplifier, connected to the generalized carrier amplifier, which is a nested single ended sub amplifier or a nested 2-way normal Doherty sub amplifier, the generalized carrier amplifier and the generalized peaking amplifier are arranged in a generalized 2-way inverted Doherty power amplifier form. With the multistage Doherty power amplifier, signal power probability distribution function (PDF) oriented for a cost-effective multi stage Doherty PA design is applied, and 2-way normal and inverted Doherty PA cells are used as basic units to construct multistage Doherty PA with gain extension effect.
US11239863B2 Data processing device and data processing method
The present technology relates to a data processing device and a data processing method capable of securing excellent communication quality in data transmission using an LDPC code. In group-wise interleave, an LDPC code having a code length N of 64800 bits and a coding rate r of 9/15, 11/15, or 13/15 is interleaved in units of bit groups of 360 bits. In group-wise deinterleave, a sequence of LDPC codes after the group-wise interleave is returned to an original sequence. The present technology, for example, can be applied to a case where data transmission using an LDPC code or the like is performed.
US11239860B2 Methods and apparatus for compactly describing lifted low-density parity-check (LDPC) codes
Certain aspects of the present disclosure generally relate to techniques for compactly describing lifted low-density parity-check (LDPC) codes. A method by a transmitting device generally includes selecting a first lifting size value and a first set of lifting values; generating a first lifted LDPC code by applying the first set of lifting values to interconnect edges in copies of a parity check matrix (PCM) having a first number of variable nodes and a second number of check nodes; determining a second set of lifting values for generating a second lifted LDPC code for a second lifting size value based on the first lifted PCM and the first set of lifting values; encoding a set of information bits based the first lifted LDPC code or the second lifted LDPC code to produce a code word; and transmitting the code word.
US11239858B2 Detection of unknown code page indexing tokens
A method for determining an encoding used for a sequence of bytes may be provided. The method comprises providing a set of candidate code pages and transforming them into different groups of sequences of bytes, wherein each group of sequences of bytes corresponds to one of the candidate code pages. Thereby each code point is transformed by applying a transformation from one of the candidate code pages to a reference code point value relating to a reference encoding for each code point. The method comprises further separating each of the transformed sequences of bytes into groups of tokens, wherein each group of tokens relates to one candidate code page, and providing an index relating to a text corpus. Furthermore, the method comprises selecting a code page from the set of candidate code pages at least partially based on how many tokens are found in the index.
US11239857B2 Calibration of digital-to-analog converter with low pin count
An open-loop digital-to-analog converter (DAC) circuit may include a delta-sigma modulator, a decode block responsive to the delta-sigma modulator configured to perform a DAC decode operation, a plurality of DAC elements responsive to the DAC decode operation, an analog output driver responsive to the plurality of DAC elements, a test signal generator configured to generate a test signal that is responsive to inputs of the plurality of DAC elements, and a synchronizer configured to enable replication of the test signal at an external test system coupled to the open-loop DAC circuit in order to generate a matching test signal at the external test system that matches the test signal generated by the test signal generator.
US11239854B2 Non-linearity correction
A non-linearity correction circuit includes a non-linearity coefficient estimation circuit. The non-linearity coefficient estimation circuit includes a data capture circuit, a non-linearity term generation circuit, a time-to-frequency conversion circuit, a bin identification circuit, a residual non-linearity conversion circuit, and a non-linearity coefficient generation circuit. The non-linearity term generation circuit is coupled to the data capture circuit. The time-to-frequency conversion circuit is coupled to the data capture circuit and the non-linearity term generation circuit. The bin identification circuit is coupled to the time-to-frequency conversion circuit. The residual non-linearity conversion circuit is coupled to the bin identification circuit. The non-linearity coefficient generation circuit is coupled to the bin identification circuit and the residual non-linearity conversion circuit.
US11239845B1 Biphase mark code edge recovery
An integrated circuit is described. This integrated circuit may include an input connector, coupled to a signal line, that conveys an input signal corresponding to encoded data, where the encoded data is encoded using a BMC, and the input signal may have different rise times and fall times. Moreover, the integrated circuit may include a recovery circuit, coupled to the input connector, that outputs the data based at least in part on a first threshold and a second threshold, where the output data may include data values with equal half-bit periods and variable frequency. Note that the recovery circuit may implement a state machine corresponding to the data.
US11239842B1 Level down shifter
A level down shifter circuit includes a latch and an assist circuit. The latch is configured to generate a digital shifted signal and a complementary shifted signal by a voltage downshift of a digital input signal and a complementary input signal. The digital input signal and the complementary input signal are in a first voltage domain. The digital shifted signal and the complementary shifted signal are in a second voltage domain. The second voltage domain has a smaller voltage range than the first voltage domain. The assist circuit is configured to alternately pull the digital shifted signal and the complementary shifted signal to an intermediate voltage in response to the digital input signal and the complementary input signal. The intermediate voltage is in the second voltage domain.
US11239841B1 Diode fault detection
A power delivery system includes a controller, configured to receive a voltage indication signal indicating a measured voltage of a battery management system and to determine whether first and second diodes of the battery management system are faulty based on the voltage indication signal. The controller is also configured to respectively receive first and second current indication signals from first and second current sensors of the battery management system and to determine whether the first and second diodes of the first battery management system are faulty based on the first and second current indication signals.
US11239837B2 Switch device
A switch device includes a switching element that connects/disconnects a current path from a power supply terminal to a ground terminal via a load, and an overcurrent protection circuit that limits output current flowing in the switching element to be an overcurrent limit value or less. When an output short circuit of the load is detected, the overcurrent protection circuit decreases the overcurrent limit value to be lower as a power supply voltage is higher. In addition, the switch device preferably includes a switching element that connects/disconnects a current path from a power supply terminal to a ground terminal via a load, an intermittent control unit that intermittently drives the switching element when an abnormality is detected, and an output voltage monitoring portion that disables the intermittent control unit until an output voltage applied to the load reaches its target value.
US11239836B2 Low resistive load switch with output current control
A circuit and a method for providing a switchable current linkage between a first terminal and a second terminal is presented. The circuit has a transistor switch and a charge pump circuit. An output node of the charge pump circuit is coupled to a control terminal of the transistor device, and an input node of the charge pump circuit is coupled to a predetermined voltage. The charge pump generates a boosted voltage. A drive circuit provides feedback control for the current flowing through the transistor. The drive circuit also controls the voltage magnitude at the input node of the charge pump circuit in accordance with the feedback control or to control a magnitude of a voltage at the control terminal of the transistor device in accordance with the feedback control.
US11239834B2 Clockless delay adaptation loop for random data
An apparatus includes a clockless delay adaptation loop configured to adapt to random data. The apparatus also includes a circuit coupled to the clockless delay adaptation loop. The clockless delay adaptation loop includes a cascaded delay line and an autocorrelation control circuit coupled to the cascaded delay line, wherein an output of the autocorrelation control circuit is used to generate a control signal for the cascaded delay line.
US11239831B2 Level shifter
In an example, an apparatus includes a level-shifting circuit and a ramp detector. The level-shifting circuit has a current choke and a transistor coupled across the current choke, the level-shifting circuit adapted to be coupled to a first voltage source. The ramp detector has a ramp detector input adapted to be coupled to the first voltage source and a ramp detector output coupled to the transistor, the ramp detector adapted to be coupled to a second voltage source.
US11239829B2 Method and apparatus for sensing environmental conditions
A wireless communication system includes a plurality of wireless sensors. A wireless sensor includes a radio frequency (RF) receiving circuit, and a sensing element, where the sensing element affects the resonant frequency of the RF receiving circuit. The wireless sensor further includes a processing module operable to determine a first value for an adjustable element of a plurality of elements for a known environmental condition, a second value for the adjustable element for an unknown environmental condition, a difference between the first and second values that corresponds to a change, and to generate a coded value representative of the change. The wireless communication system further includes one or more sensor computing devices coupled to the plurality of wireless sensors via a network. A sensor computing device includes a second processing module operable to receive the coded value and determine a sensed environmental condition based on the coded value.
US11239828B2 Method for carrying out a morphing process
Method for carrying out a morphing process, wherein an output parameter relating to the output of an audio signal outputted into an interior via an audio output device is changed.
US11239826B2 Filter device
A filter device includes series and parallel arm resonators provided at a filter chip and inductors electrically connected in series with respective ones of the parallel arm resonators. A first inductor having the highest inductance of the inductors is electrically connected in series with a first parallel arm resonator having the highest anti-resonant frequency of the parallel arm resonators. One end of the first parallel arm resonator and one end of a second parallel arm resonator in other ones of the parallel arm resonators are electrically connected to a same wiring line in wiring lines separated by the series arm resonators on a line electrically connecting an input terminal and an output terminal of the filter chip. The other ends of the first and second parallel arm resonators are respectively electrically connected to first and second ground terminals of the filter chip.
US11239825B1 Micromechanical device and related methods
A MEMS resonator is described.
US11239821B2 Electronic component device
An electronic component device includes first and second mount boards, and first, second, and third electronic components. The first electronic component includes a first major surface and a second major surface, and is disposed on the first mount board. The first major surface is positioned closer to the first mount board than the second major surface. The second electronic component includes a third major surface and a fourth major surface, and is disposed on the second mount board. The third major surface is positioned closer to the second mount board than the fourth major surface. The third electronic component includes a fifth major surface and a sixth major surface, and is disposed on the second mount board. The fifth major surface is positioned closer to the second mount board than the sixth major surface. The second major surface directly contacts the fourth and sixth major surfaces, or indirectly contacts the fourth and sixth major surfaces with a bonding layer interposed therebetween.
US11239817B2 Low loss temperature compensated surface acoustic wave filter and duplexer
A surface acoustic wave resonator comprises at least one set of interdigital transducer (IDT) electrodes disposed on an upper surface of a piezoelectric substrate between first and second reflector gratings, a layer of silicon nitride disposed over the at least one set of IDT electrodes and the first and second reflector gratings, and a continuous trench formed in the layer of silicon nitride over portions of bus bar electrodes and tips of electrode fingers of the at least one set of IDT electrodes and over portions of bus bar electrodes and electrode fingers of the first and second reflector gratings to reduce acoustic leakage at electrode fingers of the first and second reflector gratings proximate the at least one set of IDT electrodes.
US11239816B1 Decoupled transversely-excited film bulk acoustic resonators
Acoustic resonator devices and filters are disclosed. An acoustic resonator includes a substrate and a piezoelectric plate having parallel front and back surfaces, the back surface attached to the substrate. A decoupling dielectric layer is on the front surface of the piezoelectric plate. An interdigital transducer (IDT) is formed over the decoupling dielectric layer such that interleaved fingers of the IDT are over a portion of the piezoelectric plate suspended across a cavity formed in the substrate.
US11239814B2 Cryogenic radio-frequency resonator for surface ion traps
The present subject matter provides technical solutions for the technical problems facing cryogenic ion traps by providing a cryogenic radio-frequency (RF) resonator that is compact, monolithic, modular, and impedance-matched to a cryogenic ion trap. The cryogenic RF resonator described herein is power-efficient, properly impedance-matched to the RF source, has a stable gain profile, and is compatible with a low temperature and ultra-high vacuum environment. In some examples, the gain profile is selected so that the cryogenic RF resonator acts as a cryogenic RF amplifier. This cryogenic RF resonator improves the performance of ion traps by reducing or minimizing the heat load and reducing or minimizing the unwanted noise that may erroneously drive trapped ions. These features of the present subject matter improve the performance of atomic clocks and mass spectrometers, and especially improve the performance of trapped ion quantum computers.
US11239811B2 Audio device with dynamically responsive volume
Described herein is an audio device with a microphone which may adapt the audio output volume of a speaker by either increasing or decreasing output volume based on an audio input volume from a user and a distance from the user to the audio device. The audio device may also adapt its output volume to lower the audio output based on detecting one or more interruptions including occupancy and acoustic sounds.
US11239807B1 Offset compensated differential amplifier and calibration circuit providing increased linear range and granularity of offset compensation and related method
An offset compensated differential amplifier employing a multi-tan h circuit comprising differential pairs coupled in parallel to compensate for an offset voltage of the output voltage in the offset compensation calibration mode is disclosed. The differential pairs each include a compensation transistor coupled to the positive internal node and a reference transistor coupled to the negative internal node. Each compensation transistor receives the compensation control voltage and each reference transistor receives a different reference voltage. The multi-tan h circuit generates an offset compensation voltage on the positive and negative internal nodes based on a difference between the compensation control voltage and the different reference voltages. The multi-tan h circuit comprises a larger linear range than a hyperbolic tangent current transfer function of a single differential pair. The offset compensated differential amplifier provides offset compensation with improved linearity and a finer granularity compared to a conventional differential amplifier.
US11239805B2 Differential opto isolator
Isolators and methods for operating the same are described for opto-isolators with improved common mode transient immunity (CMTI). In some embodiments, a pair of photodetectors are provided in the opto-isolator and configured to generate photocurrents of opposite signs or directions in response to a light signal. Photocurrents from the pair of photodetectors are combined in a differential manner to represent data transmitted in a light signal, while common mode transient noise at the two photodetectors is attenuated or eliminated.
US11239803B2 Ruggedness protection circuit
Various methods and circuital arrangements for protection of an RF amplifier are presented. According to one aspect, the RF amplifier is part of switchable RF paths that may include at least one path with one or more attenuators or switches that can be used during normal operation to define different modes of operation of the at least one path. An RF level detector monitors a level of an RF signal during operation of any one of the switchable RF paths and may control the attenuators or switches to provide an attenuation of the RF signal according to a desired level of protection at an input and/or output of the RF amplifier. According to another aspect, the RF level detector may control a switch to force the RF signal through a different switchable RF path.
US11239799B2 Apparatus for radio-frequency amplifier with improved performance and associated methods
An apparatus includes a radio-frequency (RF) circuit, which includes a power amplifier coupled to receive an RF input signal and to provide an RF output signal in response to a modified bias signal. The RF circuit further includes a bias path circuit coupled to modify a bias signal as a function of a characteristic of an input signal to generate the modified bias signal. The bias path circuit provides the modified bias signal to the power amplifier.
US11239797B1 Regenerative frequency doubler
A frequency doubler is provided that filters an input signal to form I and Q components responsive to a tuning signal. A single sideband mixer mixes the I and Q components with I and Q components of a local oscillator signal to form an output signal having a frequency of twice the frequency of the input signal.
US11239796B2 Drift compensation
An embodiment of the present disclosure relates to a device comprising an electronic circuit; an oscillation circuit comprising a quartz crystal, configured to provide a clock signal to the electronic circuit; and a heater configured to increase the temperature of the quartz crystal.
US11239793B2 Systems and methods to reduce field buildup between cells and glass and frame assembly for solar energy production
Systems and methods for removing charge buildup/leakage from solar modules. A discharge controller may be coupled between a solar module and a string bus of a solar array. The discharge controller is configured to disconnect the solar module from the string bus, and to connect a grounded frame to solar cells of the solar module. Since the grounded frame of the solar module is grounded, connecting the grounded frame and the solar cells allows charge buildup/leakage to discharge into ground.
US11239790B1 Solar tower system
A solar tower system; the solar tower system includes a module unit having a cylindrical core, a series of tower slices positioned in a continuous series around the cylindrical core and together forming a cylindrical solar tower, and a battery unit attachment. Each tower slice comprises a clear plastic block having a series of solar panel bays, each configured to house one of a series of solar panels. The solar tower system provides a portable solar energy source for various uses.
US11239783B2 Systems and methods for motor parameter extraction
Systems and methods for extracting motor operational state parameters from an electric motor for improved motor control and motor fault or failure detection are discussed. An exemplary system includes an excitation circuit to apply a drive voltage to an electric motor, and a processor circuit to measure a resulting winding current, extract a current waveform by oversampling the winding current in an entire PWM frame at a sampling rate higher than the PWM frequency, and fit the current waveform in the PWM period to a parametric model. The processor circuit can determine a motor operational state parameter using one or more of the applied drive voltage or the parametric model of the winding current.
US11239780B1 Iterative flux identification
For flux map identification, a method applies an initial voltage to a motor. The motor is a salient motor. The method generates a flux map for the motor. The method iteratively applies a variable voltage to the motor. The variable voltage includes a constant current change calculated from the flux map. The method iteratively modifies the flux map.
US11239779B2 Method and control system for controlling a power converter
A method of controlling a power converter, connected to an electrical grid, to mimic a synchronous generator, by: determining a frequency control error with respect to a setpoint and actual frequency of the grid, determining an input power to an inertia model of a synchronous generator based on the frequency control error, regulating by means of the input power a rotational frequency of the inertia model, determining a voltage control error with respect to a setpoint and actual voltage, determining an exciter parameter of a synchronous generator model based on the voltage control error, regulating by means of the exciter parameter an output voltage of the synchronous generator model, adjusting the rotational frequency or a phase angle obtained from the rotational frequency, and the output voltage based on a virtual impedance of a stator of the synchronous generator model, and controlling the power converter based on the adjusted rotational frequency or the adjusted phase angle and on the adjusted output voltage.
US11239775B1 Separately excited direct current motor drive apparatus and equipment
The invention provides a separately excited direct current motor drive apparatus and electric equipment. The separately excited direct current motor drive apparatus includes: a separately excited direct current motor; a direct current power supply; an armature chopper; and a field chopper, wherein the armature chopper has m armature chopper units, each armature chopper unit has a pair of armature power output terminals and w armature switch control ends, the field chopper has n field chopper units, each field chopper unit has a pair of field power output terminals, the separately excited direct current motor has m pairs of armature external terminals and n pairs of field external terminals, the m pairs of armature external terminals are connected to the m pairs of armature power output terminals in a one-to-one correspondence manner, the n pairs of field external terminals are connected to the n pairs of field power output terminals in a one-to-one correspondence manner, m is a positive integer not less than 2, n is a positive integer not less than 2, and w is 1, 2 or 4.
US11239768B2 Liquid droplet powered electricity generator
The present invention is concerned with an electricity generator. The generator resembles a transistor and powered by impacting liquid such as water droplets. The generator has a glass substrate defining an upwardly facing surface and a downwardly facing surface. The substrate includes i) a region with polytetrafluoroethylene (PTFE) coated on the upwardly facing surface and acting as a virtual source and ii) an electrode arranged adjacent said PTFE coated region on the upwardly facing surface and acting as a drain in that the PTFE coated region and the electrode are positioned on the upwardly facing surface to receive an impacting water droplet acting as a gate, and wherein circuitry of the generator connects the virtual source and the drain via an electrical connection passing the downwardly facing surface, and electricity is harvested via the electrical connection.
US11239761B2 Coreless current sensor for high current power module
A power module is provided that is configured to supply power to a load. The power module includes a current generator, a current rail, and a magnetic sensor. The current generator is configured to generate a current. The current rail is configured to receive the current and output the current from the power module. The current rail includes a first opening formed therethrough, and the current, while flowing along the current rail in an output direction, produces a magnetic field. The magnetic sensor is disposed in the first opening of the current rail, and is configured to generate a differential sensor signal based on the magnetic field impinging thereon. The current generator is further configured to regulate the current based on the differential sensor signal.
US11239756B2 Troubleshooting method and apparatus for power supply device
Embodiments of the application disclose a troubleshooting method and device. The method is applicable to an inverter power supply system in the power supply device. The inverter power supply system includes at least two direct current to direct current (DC/DC) power supply modules, and any DC/DC power supply module of the at least two DC/DC power supply modules includes fuses F1 and F2, relays K1 and K2, inductors L1 and L2, switch modules Q1, Q2, and Q3, and direct current bus capacitors C1 and C2. The troubleshooting method includes: if it is detected that any DC/DC power supply module of the at least two DC/DC power supply modules is a faulty module, determining a faulty component in the faulty module; and if the faulty component is a C1 or a C2, and the inverter power supply system is in a battery discharging mode, turning on a Q2 in the faulty module, so that an F1 and an F2 of the faulty module are blown, thereby disconnecting the faulty module from another DC/DC power supply module.
US11239751B2 DC-coupled hybrid energy system and method for converting DC voltages
A method is provided for setting an operating parameter for a DC to DC voltage converter. A load is operated, using a controller, with the operating parameter at a first value. A measurement of an actual inductor current at an inductor of the DC to DC voltage converter, a measurement of an actual load current are provided. The method then determines a reference value for the inductor current, based on the actual load current combined with an inductor current adjustment value based on a desired output voltage at the DC load. The reference value for the inductor current is then compared to the actual inductor current, and the operating parameter is maintained at the first value if the reference value is greater than the actual inductor current. The operating parameter is changed to a second value if the reference value is less than the actual inductor current.
US11239750B2 Charge pump circuits
A charge pump circuit includes a voltage output terminal, a flying capacitor, and a current source. The flying capacitor includes a first terminal coupled to the voltage output terminal, and a second terminal coupled to an output terminal of a drive circuit. The current source includes a first terminal coupled to the voltage output terminal, and a second terminal coupled to a power supply rail.
US11239744B2 Active monolithic snubber design
A semiconductor switching circuit associated with a power semiconductor circuit is described. The semiconductor switching circuit includes a snubber circuit comprising a snubber switch element that comprises a first terminal configured to couple to a supply node associated with the power semiconductor circuit and a second terminal configured to couple to a switch node associated with the power semiconductor circuit. In some aspects, the snubber switch element is configured to bypass a ringing voltage at the switch node associated with the power semiconductor circuit to the supply node associated with the power semiconductor circuit. In some aspects, the ringing voltage at the switch node comprises a voltage that is greater than a supply voltage associated with the supply node.
US11239731B2 Electric motor assembly
An electric motor assembly (10), in particular for driving a vehicle, comprises an electric motor (12), a magnetic sensor (46) and a shield (14), the electric motor (12) being equipped with a stator (16), a rotor (18) and at least one magnet (28) which is connected to the rotor (18) for conjoint rotation therewith and generates a measuring magnetic field (MM). The magnetic sensor (46) is located in the measuring magnetic field (MM) and is connected to the shield (14), and the shield (14) has high magnetic permeability and is closed in the area of the magnetic sensor (46).
US11239729B2 Two-stroke electromagnetic engine
A two-stroke electromagnetic has a busbar, a magnetic field generator, a piston, a crankshaft, a connecting linkage, and a power source. The magnetic field generator may be a permanent magnet or a solenoid. The power source provides electric current to the busbar and the solenoid. The piston is positioned concentrically with the busbar, which produces a magnetic field upon receiving current flow from the power source. The magnetic field generator is connected atop the piston and oriented orthogonal to the magnetic field generated by current flow through the busbar, so that interaction of the two magnetic fields produces a downward force on the piston, which is connected to the crankshaft by the connecting linkage.
US11239727B2 Electrical machine with a rotor having a cavity for the dynamic balancing of the rotor
The present invention is an electrical machine comprising a stator and a rotor (10). The rotor is formed with a rotor body comprising a stack of laminations placed on a rotor shaft. The rotor includes at least one cavity with at least one arm for retaining at least one balancing weight.
US11239718B2 Wedges with Q-axis damper circuits
A rotor for an electrical machine includes a rotor core having a plurality of circumferentially spaced apart rotor poles. A plurality of windings are seated in gaps between circumferentially adjacent pairs of the rotor poles. A respective wedge secures the windings in each gap configured to supply Q-axis damping. A pair of end plates are connected electrically to the wedges at opposing longitudinal ends thereof thereby completing a Q-axis winding circuit for each wedge.
US11239713B2 Rotor structure of motor
A rotor structure of a motor includes a rotor core formed by laminating a plurality of laminated steel plates, a permanent magnet, and end plates. First holes and second holes are perforated alternately in a circumferential direction at equal intervals. The end plates have holes. The end plates are respectively fixed to end portions of the rotor core by fastening members inserted to the holes and the first holes. When the rotor core is divided into first laminated portions and a second laminated portion, in the second laminated portion, the plurality of the laminated steel plates adjacent to the first laminated portions are rotationally laminated in such a manner that the second holes are connected to the first holes.
US11239712B2 Stator of an electrical machine and cooling apparatus for same
A stator for an electrical machine, in particular for an electromotive drive machine for an electric or hybrid vehicle, includes a stator core stack with a stator yoke and a number of radial stator teeth, as well as a corresponding number of stator slots, arranged between the stator teeth, for receiving a stator winding. A cooling apparatus has a number of cooling channels, each of which runs axially in one of the stator slots.
US11239711B2 Armature molded structure
An armature molded structure includes a cylindrical iron core used for a molded structure of a motor armature; a winding; and molding resin, wherein the iron core includes first core sheets and second core sheets, the first core sheet includes first magnetic poles placed along a circumferential direction of the iron core, tip portions, on an inner peripheral side of the iron core, of adjacent first magnetic poles form a coupling portion coupling the adjacent first magnetic poles, the second core sheet includes second magnetic poles placed along the circumferential direction of the iron core, tip portions, on the inner peripheral side of the iron core, of adjacent second magnetic poles form a non-coupling portion separating the adjacent second magnetic poles, the first and second core sheets are laminated along a central axis direction of the iron core in such a manner that the coupling portions coincide with each other, the non-coupling portions coincide with each other, the coupling portion and the non-coupling portion coincide with each other, the winding is wound around the first and second magnetic poles of the laminated first and second core sheets, the first and second core sheets and the winding are molded with the molding resin, the non-coupling portion delimits an opening window portion in an inner peripheral surface of the iron core, and the opening window portion is filled with the molding resin.
US11239707B2 Tunable resonant inductive coil systems for wireless power transfer and near field communications
A tunable resonant inductive coil system includes an electrical circuit having an alternating current (AC) voltage source, a barium strontium titanate (BST) variable capacitor coupled in series with a first terminal of the AC voltage source, a coil coupled in series with the BST variable capacitor, and a return line coupling the coil with a second terminal of the AC voltage source and/or a ground. The electrical circuit forms an LC circuit (resonant circuit). The electrical circuit adjusts between two configurations. In the first configuration the resonant circuit has a first resonant frequency configured for wireless power transfer and in the second configuration it has a second resonant frequency configured for near field communication (NFC). An entire length of the coil is used for both resonant frequencies. Adjusting between the first and second configurations includes varying a capacitance of the BST variable capacitor in response to receiving a control signal.
US11239706B2 Wireless charging receiving device, wireless charging method and system, and terminal device
A wireless charging receiving device, wireless charging method and system, and terminal device are provided. The device includes a control unit, receiving coil, rectifier-filter unit, first voltage conversion unit and battery cell module. The control unit transmits a first control signal to a wireless charging transmitting device and outputs a second control signal to the first voltage conversion unit if the wireless charging transmitting device is of a model belonging to a first preset model set and an output voltage of the battery cell module is within a preset range. The receiving coil senses a first electromagnetic wave to generate a first AC. The rectifier-filter unit converts the first AC into a first DC. The first voltage conversion unit converts the first DC into a second DC under the control of the second control signal. The battery cell module is charged by the second DC.
US11239705B2 Method for foreign object detection in wireless charging, wireless charging device, and storage medium
Methods and apparatuses for detecting a foreign object during wireless charging are described. The method can include obtaining a first parameter value and a second parameter value according to: a charging current when a transmitted power falls into a first charging power range, obtained; or a charging voltage when the transmitted power falls into a second charging power range. A reference received power can be obtained according to the first parameter value, the second parameter value, and the received power of the wireless charging receiver. The existence of a foreign object between the wireless charging transmitter and the wireless charging receiver can be determined according to a difference between the transmitted power and the reference received power. For the first charging power range, the transmitter can output a constant voltage, and for the second charging power range, the transmitter can output a constant current.
US11239700B2 Wireless power transfer system, power reception apparatus, and control method therefor
A wireless power transfer system includes: (a) an annular first substrate, a first coil, a second coil, and an annular second substrate that are stacked such that central axes of those substantially coincide with each other; (b) a power transmission circuit, implemented on the first substrate, for applying a voltage to the first coil; and (c) a power reception circuit, implemented on the second substrate, for rectifying an electric current that is generated at the second coil through electromagnetic induction and/or magnetic resonance. The second substrate is a multilayer substrate that includes a first layer provided with a ground pattern and a second layer provided with a power supply pattern, and includes slit portions where the patterns are not present as viewed from a direction of the central axes.
US11239699B2 Inductive power transfer system
An inductive power transfer system (1) for coupling a power source to a load across an air gap (11) is disclosed. The system (1) comprises a primary unit (3) associated with a host platform and a secondary unit (5) arranged to receive power transmitted inductively from the primary unit (3). The primary unit (3) includes a phase detection circuit (21) configured to detect phase changes in a signal in the primary unit (3) indicative of changes in an operating condition within the secondary unit (5), and a drive circuit (17). The drive circuit (17) is configured to adjust the power level transmitted to the secondary unit (5) depending on the detected phase.
US11239698B1 Digitally timed CMOS rectifier for wireless power transfer
A digitally timed complementary metal oxide semiconductor (CMOS) rectifier for wireless power transfer in an implanted medical device is provided. According to one aspect, a voltage rectification circuit for a medical device having an internal coil and internal circuitry includes a voltage rectifier comprising a complementary metal oxide semiconductor (CMOS) circuit having low-side first type MOS transistors and upper cross-coupled second type MOS transistors. The voltage rectifier may be configured to output a rectified received voltage, each low-side first type MOS transistor being configured with an first type MOS body diode, the low-side first type MOS transistors being enabled by a timing signal to provide conduction through the low-side first type MOS transistors while bypassing conduction through the first type MOS body diode during a time window having a duration determined by voltage level crossings of the received voltage.
US11239697B2 Wireless charging system for portable terminal
Provided is a wireless charging system for a portable terminal, the system including: a terminal accessory which is fixed to the rear surface of a portable terminal and in which a transmission coil for generating a magnetic field for electromagnetic induction-type wireless charging is embedded; and a wireless charging device which is couplable to the terminal accessory by using magnetism, wherein: the terminal accessory and the wireless charging device include a first electric contact point and a second electric contact point, respectively, and thus, when the terminal accessory and the wireless charging device are coupled to each other, the first and second electric contact points come into contact with each other, so that power is supplied from the wireless charging device to the transmission coil embedded in the terminal accessory; and two or more magnets arranged in different polar directions from each other are provided at the wireless charging device.
US11239692B2 Automatic transfer switch utilizing back-to-back mounted molded case circuit breakers or molded case switches to connect a load to a normal power source and a standby power source
An automatic transfer switch (ATS) utilizing molded case circuit breakers (MCCB) or molded case switches (MCS) to connect and disconnect an electrical load to a Normal power source and a Standby power source. The ATS comprising two MCCB or MCS mounted back-to-back one connected to a Normal power source and the other to a Standby power source. Bus bars electrically connect the poles on the load side of the MCCB or MCS connecting the ATS to a load. A rotating cam drive mechanism drives Toggle Levers with attached stored energy opening springs toggles to open and close the MCCB or MCS through the leverage of fulcrum points. A ratchet mounted on the output shaft of a unidirectional gear motor rotates the cam drive mechanism. An interlock bar prevents both MCCB from closing at the same time.
US11239691B2 Powering an emergency lighting system
An emergency LED lighting system maintains power to an LED lighting source based on measured voltages and currents provided to the LED lighting source; rolls back or decreases power provided to an LED lighting source over time in order to increase the amount of time the battery can power the LED lighting source; executes a soft start procedure, such that the power provided to the LED lighting source is gradually ramped up during activation of the LED lighting sources; identifies a type of battery coupled to the emergency LED lighting system; cycles the emergency LED lighting system between charging mode and standby mode to reduce power consumption over a window of time; detects AC power or an absence of AC power; and/or uses a status LED to communicate information about the emergency LED lighting system with a remote device.
US11239688B2 Power supply unit with adaptive feedback control
A power supply unit, preferably for a power analyzer, a power analyzer comprising a power supply unit and a method for operating a power supply unit, wherein the power supply unit comprises a feedback control unit controlling the output level of the voltage, the current or the power supplied to output terminals of the power supply unit on a preset value, means for sensing the actual output level of the voltage, the current or the power, respectively, and sending a signal representing the sensed output level to said feedback control unit, and means for detecting oscillations in the actual output of the voltage, the current or the power, respectively and for issuing an oscillation detection signal to the feedback control unit, wherein the feedback control unit is arranged to adapt at least one parameter value of the feedback control in response to a value of the oscillation detection signal.
US11239687B2 Charge control device
A charge control device capable of charging a battery with electric power generated by a photovoltaic power generator, includes: a setting unit configured to set a control value relating to a magnitude of electric power to be supplied to the battery; and an acquisition unit configured to acquire information relating to an actual supplied electric power supplied to the battery. The setting unit sets a predetermined initial value as the control value and then increases and decreases the control value based on the information acquired by the acquisition unit.
US11239683B2 Transmitter for wireless charging power transmission, and method and system for connection between internet of things system and wireless charging receiver
A transmitter for wireless charging power transmission comprises a transmitter-side power converting unit converting power of an input Alternating Current (AC) signal and outputting the converted AC signal; a transmitter-side resonant circuit unit generating a magnetic field based on the converted AC signal and providing power to a receiver located within a charging area; and a transmitter-side processor controlling power conversion of the transmitter-side power converting unit and performing impedance matching of the transmitter-side resonant circuit unit. The transmitter-side processor detects an object located within the charging area, generate a wireless power signal and output the generated wireless power signal to the transmitter-side power converting unit, recognizes the object as a receiver if modulation of the wireless power signal associated with the object is detected, receives identification information of the receiver, connects to the receiver for wireless charging power transmission based on charging authentication information included in the identification information, transmits IoT authentication information included in the identification information to an IoT system to enable the receiver to subscribe to the IoT system, and transmits wireless charging power to the receiver.
US11239676B2 Mobile device
A mobile device includes a drive element, a first battery which outputs power, and a supplying unit which supplies the power output by the first battery or power output by a second battery to the drive element, in which the supplying unit prioritizes supplying of the power output by the second battery to the drive element over the power output by the first battery.
US11239674B2 Power pack vending apparatus, system and method of use for charging packs with biased locking arrangement
A power pack vending system comprises a plurality of kiosks including a magazine having a plurality of slots, and a plurality of rechargeable power packs. Each power pack has a unique identifier and is sized to be received within one slot. Each kiosk includes a computer for receiving and storing the unique identifier of each power pack received within the magazine, the specific slot the power pack is in, and current power pack information. The kiosk computer controls a charging unit for charging the power packs. The system includes a central management operation comprising a central computer and central database. The management operation communicates with each kiosk and the central database includes a database storing power pack information for every power pack and a database storing customer information. The central management operation receives, stores and processes information received from the kiosks and sends information to each of the kiosks.
US11239672B2 Monitoring charging efficiency of a mobile computing device via a power bank
A portable power bank for charging a mobile computing device is described, and a dynamic charging efficiency is monitored while the power bank is charging the mobile computing device. Particularly, instantaneous power output of a battery of the power bank is compared to power received by a battery of the mobile computing device to determine efficiency. The charging of the mobile computing device by the power bank is interrupted and/or resumed based upon the charging efficiency at any given time, thereby preventing inefficient use of the power bank.
US11239669B2 Underwater power supply system
An underwater power supply system includes: a working apparatus arranged underwater with at least one power receiving pad; a first battery unit detachably attached to the apparatus with a power supplying pad and battery, the pad configured to supply electric power to the power receiving pad in a non-contact state, the battery electrically connected to the power supplying pad; and an underwater sailing body configured to shuttle between the apparatus and a surface ship or an underwater station suspended from the surface ship, the body configured to carry a second battery unit to the apparatus, detach the first battery unit from the apparatus, and attach the second battery unit to the apparatus, the second battery unit including a power supplying pad and battery, the pad configured to supply the electric power to the power receiving pad in a non-contact state, the battery electrically connected to the power supplying pad.
US11239668B2 Charger case for wearable electronics
A charger case for storing and charging two electronic devices includes a docking tray having two storage compartments to hold the two electronic devices. The charger case includes two device connectors, with each device connector exposed to a respective one of the two storage compartments to establish electrical communication with a respective one of the two electronic devices. A portable charger is included in the case and electrically coupled to the two device connectors.
US11239667B2 Desktop item with LED means has USB-unit(s) or USB-module to charge other electric or digital data device(s)
Desk top items with LEDs also include USB-unit(s) or USB-module(s) and, optionally, additional outlet-units, to supply power to other electric or digital devices such as a smart phone or digital data device.
US11239666B2 Energy-storage integrated application device and operation thereof
The present invention relates to an application device comprising an integrated energy storage, an application controller and a method of operating an application system, supporting different operation modes. In a first operation mode, AC power is provided via a distribution line to operate the application device. In a second mode, the AC power transmission at the distribution line is replaced by data communication, wherein the application device is run by energy from the energy storage during the second operation mode. Preferably in a third operation mode, DC power from the energy storage of an application device may be provided via the distribution line to another application device.
US11239663B2 Energy storage device and power system and control method thereof
An energy storage device for a power system is provided. The energy storage device is electrically connected with a high voltage DC transmission grid. The energy storage device includes at least one energy storage element, at least one bidirectional inverter module, at least one medium frequency transformer and at least one bidirectional AC/DC conversion module. A DC terminal of each bidirectional inverter module is electrically connected with the corresponding energy storage element. A first transmission terminal of each medium frequency transformer is electrically connected with an AC terminal of the corresponding bidirectional inverter module. An AC terminal of each bidirectional AC/DC conversion module is electrically connected with a second transmission terminal of the corresponding medium frequency transformer. A DC terminal of each bidirectional AC/DC conversion module is electrically connected with the high voltage DC transmission grid.
US11239661B2 Method for feeding electrical power into an electrical supply network
Provided is a method for exchanging electric power with an electricity supply grid that has a grid frequency using a converter-controlled generation unit that may be a wind power installation or a wind farm, at a grid connection point. The method includes exchanging electric power depending on a control function. The electric power includes active and reactive power and the control function controls the power depending on at least one state variable of the electricity supply grid. It is possible to switch between a normal control function and a support control function, different from the normal control function, as the control function. The normal control function is used when it has been recognized that the electricity supply grid is operating stably and the support control function is used when a grid fault or an end of the grid fault has been recognized.
US11239657B2 AC switching arrangement
An AC switching arrangement is provided with an energy transfer arrangement connected in parallel with a switching mechanism. The energy transfer arrangement comprises a capacitance arrangement and a diode arrangement. The switching mechanism normally closed in a first state, and on reception of a signal indicating the second state, the switching mechanism is arranged to open. When the switching mechanism is in the second state, the diode arrangement is arranged in each AC half cycle to enable energy (source energy, stored inductance energy, etc.) to transfer from the grid to the capacitance arrangement but to prevent energy transfer from the capacitance arrangement back to the grid.
US11239653B2 Measuring device and electrical switching unit
A device having an armature including a main wall; a rotary part intended to be mechanically coupled to a control shaft of an electrical switching unit; a bar integral with the rotary part and able to rotate between a first position and a second position and extending through a slot in the main wall; a position sensor having a movable contact pushed into a retracted position by the bar when the bar is in the first position; a stabilizing device having a resilient strip extending along the slot in order to exert a retaining force on the bar when it is in the first position.
US11239652B2 Compliant, hazardous environment circuit protection devices, systems and methods
Solid state and hybrid circuit protection devices include improved arc-less switching capability and overcurrent protection, improved terminal assemblies and improved thermal management features that reduce or eliminate ignition sources for hazardous environments. The solid state and hybrid circuit protection devices are ignition protected and avoid possible explosions and therefore obviate a need for conventional explosion-proof enclosures to ensure safe operation of an electrical power system in hazardous locations.
US11239651B2 Electronic temperature switch
An electronic temperature switch (10), comprises a measurement circuit (11) that measures temperature and generates an temperature signal corresponding to the sensed temperature; an evaluator circuit (12) that receives said temperature signal and compares said temperature signal to a lower threshold value and an upper threshold value, and generates an evaluation signal indicating when said temperature signal is between the lower temperature threshold value and an higher temperature threshold value; and a loading circuit (13) that in response to the evaluator circuit, generates a first pre-set output signal indicating when the temperature signal is between the lower threshold value and the higher threshold value, and a second pre-set output signal when the temperature signal is not between the lower threshold value and the higher threshold value.
US11239650B2 Digital input circuit for receiving digital input signals from a signal generator
A digital input circuit for receiving digital input signals of at least one signal generator comprises first and second subcircuits. Each subcircuit includes a digital input to receive a digital input signal and a threshold value element to determine a logic state of the subcircuit. Each subcircuit adopts a first state in response to its digital input signal reaching or falling below a lower threshold value and adopts a second state in response to its digital input signal reaching or exceeding an upper threshold value. The digital input circuit further comprises a combined test and current increasing apparatus to generate a driving signal such that a function test of both the first and second subcircuits is conducted simultaneously with the driving signal and an input current of the digital inputs is increased.
US11239649B2 Solid state circuit interrupter
A circuit interrupter including a current sensor having a normal sensor output and an over current detection output, a solid state switch module structured to have a closed state to allow current to flow through the circuit interrupter and an open state to interrupt current flowing through the circuit interrupter, a gate driver structured to control the solid state switch module including a desaturation function output, wherein the gate driver is structured to cause the solid state switch module to interrupt current flowing through the circuit interrupter when the DESAT function output changes to the on state, and an electronic trip circuit structured to output a trip signal to the gate driver when the normal sensor output reaches a first threshold level or the overcurrent detection output changes to the on state.
US11239648B2 Sensing a high frequency arc noise in an arc fault detection circuit interruption (AFCI) device
An arc fault detection circuit interruption (AFCI) device includes a high frequency arc noise sensor and an arc fault detection circuit for sensing a high frequency arc noise. The high frequency arc noise sensor is disposed across a hot conductor and a neutral conductor and includes a surge protection device and a surge protection circuit such that the surge protection device protects against a first voltage surge in a first range of thousands to hundreds volts and the surge protection circuit protects against a second voltage surge in a second range of hundreds to few volts. The arc fault detection circuit is coupled in series with the high frequency arc noise sensor. The arc fault detection circuit is coupled to a series combination of a trip solenoid or electromagnet and a silicone-controlled rectifier disposed across the hot conductor and the neutral conductor.
US11239646B1 Cable management structure applied in table
A cable management structure applied in a table is disclosed. A revolving column has a first end and a second end. A pair of revolving rollers are disposed in the revolving column and includes a first revolving roller and a second revolving roller arranged spacedly. A pair of supporting columns include a first supporting column forming a first sleeve segment and a second supporting column forming a second sleeve segment. A pair of adjusting rollers include a first and a second adjusting roller disposed in the first sleeve segment and in the second sleeve segment. A cable penetrates the first supporting column and passes around the first adjusting roller, and revolves to the first revolving roller, and passes around the first revolving roller and passes around the second adjusting roller, and revolves to the second revolving roller so as to turn and penetrate into the second supporting column.
US11239644B2 Conducting busbar used in an electrical cabinet
A busbar applied in electrical cabinet disclosing an electrical cabinet set containing main busbars and secondary busbars built in a closed tubular shape, assembled in the referred electrical cabinet, which also presents insulators and secondary insulators, protection system in the main busbar systems, extension set and finally derivation connectors.
US11239641B2 Self-set home automation and method for operating the home automation
A self-set home automation and method for handling the self-set home automation and the related devices including cascading intelligent support boxes and plug-in devices to provide simple to install and operate, with less wiring wherein the cascaded devices are optically linked, to include separated low voltage grid and related devices, and a converter for communicating RF, wifi and IR.
US11239640B2 Sheathing member and wire harness
A sheathing member includes: a plurality of tubular units into each of which a wiring material having conductivity is inserted; and a connecting unit configured to connect respective open ends of the plurality of tubular units with each other, in which the tubular units respectively include lap portions in which the open ends to be connected overlap each other along a diameter direction, and the connecting unit includes a projection that is provided in the lap portion of one of the tubular units to be connected and projects along the diameter direction, and a groove unit that is provided in the lap portion of the other of the tubular units to be connected, includes a first groove extending from the open end along an axis direction and a second groove extending from an axially-extended end of the first groove along a circumference direction, and has the projection passed therethrough.
US11239632B2 Laser driving apparatus with current control circuitry and multi-channel circuitry
A laser driving apparatus includes a driver, a tracking circuit, a comparator and a control circuit. The driver includes a laser driving circuit, and the tracking circuit includes a reference current source and a replica circuit. The laser driving circuit generates a driving current to drive a laser. The reference current source generates a reference current as a reference for the laser driving apparatus. The replica circuit corresponds to at least a portion of the laser driving circuit, generates a sensing current according to the reference current and track the driving current. The comparator compares voltages respectively on the laser driving circuit and the replica circuit to generate a comparison signal. The control circuit adjusts the sensing current or the driving current according to the comparison signal. The laser driving apparatus can include multiple channels with multiple drivers.
US11239626B2 Multi-pass etalon filter
The invention relates to a multi-pass etalon-based optical filter in which input light once reflected from the etalon is returned back to the etalon for a second reflection to enhance etalon contrast. The external mirror may be tilted relative to the etalon so that two planes of incidence are orthogonal. The multi-pass etalon-based optical filter may be used to clean scattered light from an excitation wavelength in Raman and Brillouin spectroscopy.
US11239624B2 Laser device and line narrow optics
A laser device may include a chamber accommodating a pair of discharge electrodes, a grating provided outside the chamber, first beam-expanding optics provided between the chamber and the grating and configured to expand a beam width of light outputted from the chamber at least in a first direction perpendicular to a direction of discharge between the pair of discharge electrodes, and second beam-expanding optics having a plurality of prisms provided between the chamber and the grating, the second beam-expanding optics being configured to expand a beam width of light outputted from the chamber at least in a second direction parallel to the direction of discharge between the pair of discharge electrodes.
US11239623B2 Laser burst logging systems and methods
A burst logging system logs and transmits to a local or remote computing system event data related to errors in and or potential failures of laser system components. The system further provides for capturing data at different rates from different sensors, synchronization of data capture associated with system events and the possibility for aggregation of data from multiple systems, which can in turn be leveraged to predict and or remediate future system events.
US11239621B2 Double-row plug for a ribbon or foil cable, method for the production thereof, and apparatus for the transmission of current
An electrically conductive, single-piece flat part (100) for a plug with first and second contact pins (112, 114) are arranged in two parallel rows, and with a connector region for a cable. The part has a connecting element (102). Conductors (108, 110) which open into the first and second contact pins (112, 114) extend from the first and from the second side of the connecting element, the conductors (108, 110) which lie on the opposite sides of the connecting element (102) being connected to the connecting element (102) in a manner which is offset with respect to one another in such a way that the imaginary straight extension of a conductor (108, 110) runs on the one side of the connecting element (102) next to one or between two conductors (108, 110) on the opposite side of the connecting element (102). The first contact pins (112) are connected via an offset region (132) to the first conductors (108) which extend from the first side of the connecting element (102), which offset region (132) compensates for the offset of the first and second conductors (108, 110) on the connecting element (102).
US11239620B2 Terminal connecting method
A method includes a placing step in which an end portion of a covered electric wire is placed on an inner surface of a barrel portion along an axial direction such that a tip of the aluminum core wire overlaps a second portion of a seal member attached close to a terminal portion, and a crimping step in which the barrel portion is wound around and crimped to the end portion, thereby fixing the crimp terminal to the end portion and sealing, with the seal member, a space between the inner barrel piece and the outer barrel piece, an opening of the barrel portion formed cylindrical located on a side of the terminal portion, and a space between the covered portion and the barrel portion.
US11239614B2 Sofa USB socket
The present invention discloses a sofa USB socket including: a USB female socket including a tongue core, wherein the tongue core includes 5 pins, and the fifth pin is an ID pin; and a USB circuit including a power circuit, a filter circuit, a control chip and a buck chopper circuit, wherein the buck chopper circuit includes a transistor, and the ID pin is electrically connected with the transistor. When an external USB male plug is inserted into the USB female socket, the power circuit supplies power to the USB female socket; when the USB female socket is in an unloaded state, the fifth pin is suspended, the control chip enters a sleep state, and the USB female socket has no output voltage, which greatly reduces the no-load energy consumption, thereby being beneficial to extending the endurance time and the service life of a power supply battery.
US11239611B2 Cable assembly with dielectric clamshell connector for impedance control
A connector for controlling impedance for use in a connector assembly, the connector has a housing made of dielectric material. The housing has a first conductor receiving opening and a second conductor receiving opening which are dimensioned to receive exposed conductors of a cable. The first conductor receiving opening and the second conductor receiving opening have conductor receiving portions, the conductor receiving portions extending at an angle relative to a longitudinal axis of the housing. The first conductor receiving opening and the second conductor receiving opening have conductor spacing portions which extend from the conductor receiving opening. The conductor spacing portions extend in a direction which is essentially parallel to the longitudinal axis of the housing. The spacing portions are spaced apart by a distance. The dielectric material and the distance the spacing portions are spaced apart being selected to match the impedance of the cable.
US11239605B2 Transition block fixing assembly
A transition block fixing assembly has a transition block mounting unit that includes a support member and a connecting member. The support member is configured to support a transition block and a pair of cables that are received within the transition block, and the connecting member is configured to mount the transition block mounting unit within a base station antenna.
US11239602B2 ECU assembly with rotating PCB
A method of assembling an electronic control unit comprises assembling a printed circuit board (PCB) substrate with a terminal carrier holding a plurality of terminal pins comprising a right angle bend into a housing using a rotational motion. The terminal carrier generally extends perpendicularly from the PCB substrate. A first end of each of the plurality of terminal pins is inserted into the PCB substrate and a second end of each of the plurality of terminal pins extends through the terminal carrier. The second ends of the plurality of terminal pins generally extend into one or more connector openings in one of four sides of the housing and the terminal carrier interlocks with the housing to hold the PCB substrate with the terminal carrier and the plurality of terminal pins in place.
US11239598B2 Connector housing having a latch arm with a lower rigidity
A connector housing includes a housing main body formed from a first material and a latch arm formed from a second material having a lower rigidity than the first material. The latch arm extends in a cantilever form, forms a boundary portion at a connection between the latch arm and the housing main body, and is configured to elastically deform in relation to the housing main body to latch a latched member. A transition region having a continuously variable mixing ratio between the first material and the second material is present within an expanded boundary region including the boundary portion and expanding into the housing main body and into the latch arm.
US11239594B2 Electrical contact material, terminal fitting, connector, and wire harness
The electrical contact material includes a base material, a coating layer provided on a surface of the base material, and an oxide layer provided on a surface of the coating layer. The base material contains Cu. The coating layer includes an undercoat layer, a first layer, and a second layer that are provided in that order from the base material side. The undercoat layer contains Ni. The first layer contains Ni, Zn, Cu, and Sn. The second layer contains Sn. The oxide layer is constituted by an oxide containing Zn, Cu, and Sn. The undercoat layer has a thickness larger than 0.5 μm.
US11239592B2 Connecting device for feed lines
The invention relates to a device for connecting feed lines, comprising: first electrical connector elements which can each be connected to a power supply, and first fluid connection elements which can be connected to a working fluid source, all of said elements being grouped together in a fixed manner in a first stationary connector; a power feed line, a working fluid feed line; and a second fluid connection element coupled to a first end of a flexible tube and second electrical connector elements, grouped together in a fixed manner in a first movable connector. According to the invention, at least first end segments of the second electrical connector elements and of the flexible tube are disposed inside an elastically flexible hose that is connected to the first movable connector.
US11239591B2 Connector and electronic device
A connector (10) according to the present disclosure includes a first insulator (20), a second insulator (30) that is to be fitted to a connection object (70) and movable relative to the first insulator (20), and a contact (60) attached to the first insulator (20) and the second insulator (30). The contact (60) includes a first elastic portion (64A) that extends from a first base (61) supported by the first insulator (20) and is elastically deformable; an adjustment portion (64B) that is formed to be continuous with the first elastic portion (64A) and has a higher electrical conductivity than the first elastic portion (64A); a second elastic portion (64C) that extends to the second insulator (30) from the adjustment portion (64B) and is elastically deformable; and a contact portion (69) that electrically connects to the connection object (70) when the second insulator (30) and the connection object (70) are fitted together.
US11239590B2 Electrical connector with reduced resonance between ground terminals
An electrical connector includes an insulating block and multiple terminals arranged along a left-right direction of the insulating block. The insulating block has multiple opening holes along a vertical direction thereof. Each terminal has a fixing portion fixed to the insulating block. The fixing portion has an adjustment portion. The terminals in one row include multiple first ground terminals, multiple second ground terminals and multiple pairs of differential signal terminals, correspondingly arranged along the left-right direction sequentially as: one of the first ground terminals, one of the pairs of differential signal terminals, one of the second ground terminals, another one of the pairs of differential signal terminals, and another one of the first ground terminals. The adjustment portion of each second ground terminal is exposed in the opening hole along the vertical direction, and the adjustment portion of each first ground terminal is not exposed in the opening hole.
US11239587B2 Configurable smart object system with clip-based connectors
Configurable smart object systems with grid or frame-based connectors are provided. Example systems implement machine learning based on neural networks that draw low power for use in smart phones, watches, drones, automobiles, and medical devices, for example. Example assemblies can be configured from pluggable, interchangeable modules that have compatible ports with magnetic electrical contacts for interconnecting and integrating functionally dissimilar sensor systems. An example system has a clip attachable to a substrate for securing a smart object module to the substrate, and a housing of the clip with a geometry for aligning electrical contacts of the smart object module with electrical contacts of the substrate. The clip may have a compliant layer to provide spring, resilience, or pressure to securing the smart object module to the substrate. The clip may also integrate features of a secure digital (SD) port and a universal serial bus (USB) port. The clip may be either permanently affixed to the substrate, or removable, to make an expandable smart object system.
US11239586B2 Cable assembly modules detachably mounted upon corresponding circuit pads
A cable assembly module includes: a front mating member; a rear cable linked behind the mating member and including a pair of signal wires; a pair of signal contacts retained upon the front mating member, each of said signal contacts including a middle retaining section associated with the front mating member, a front mating section spaced from the front mating member in a deflectable manner, and a rear connecting section mechanically and electrically connected to the corresponding signal wires, respectively; and a pair of grounding contacts located by two sides of the pair of signal contacts; wherein the front mating sections are adapted for being directly mated with circuit pads of a printed circuit board disposed in a plane, and the rear cable extends along a direction inclined with the plane.
US11239582B2 Electrical apparatus having entrapping structure
An electrical apparatus includes an electrical connector having a plurality of terminals and a connector housing retaining the terminals, a case containing the electrical connector, a circuit board electrically connected with the terminals, and an entrapping structure corresponding to at least a portion of a gap between the connector housing and the case. The entrapping structure has a dead end with an opening facing the gap.
US11239580B2 Plug-in connection arrangement for an electrical terminal block
A plug-in connection arrangement for arranging a relay includes a terminal block comprising a relay holder configured to hold a relay. The relay has a bottom wall, a side wall, and a contact plug which projects out of the bottom wall. The side wall is arranged perpendicular to the bottom wall and includes an offset section which contacts the bottom wall and projects out into the relay in a direction of a surface normal of the side wall. The relay holder includes a socket configured to hold the contact plug of the relay when the relay is inserted into the relay holder. The relay holder also includes an insulating wall which, when the relay is inserted into the relay holder, is aligned parallel to the side wall and projects beyond the bottom wall to form an angled insulation section for the contact plug along a surface of the insulating wall.
US11239577B2 Assembly for clamping and grounding objects
In various representative aspects, an apparatus for clamping and grounding solar panel frames to a mounting rail is disclosed herein. The apparatus comprises a fastener with an enlarged end, and a shank, with the enlarged end having one or more sharp protrusions that resemble teeth, and a washer with one or more sharp protrusions, and an opening. When installed, the shank is inserted through the opening of the washer, the sharp protrusions of the enlarged end penetrate either the lower or upper surface of the mounting rail and the sharp protrusions of the washer penetrate the other surface of the solar panel frames while at the same time creating a grounding path through the apparatus.
US11239576B2 High frequency electrical connector
An electrical connector that has a conductive shell supporting at least one signal contact therein and that has a front end for mating with a mating connector and a back end opposite the front end for electrically connecting to a coaxial cable. A ground connection is located inside of the conductive shell. A coupling member is rotatably coupled to the conductive shell and has an engagement feature for mechanically engaging a support panel associated with the mating connector. A sealing member is disposed on the conductive shell that is configured to provide an environmental seal between the conductive shell and the support panel when the conductive shell is mated with the mating connector.
US11239573B2 Sub-module L-shaped millimeter wave antenna-in-package
An antenna-in-package (AiP) module is described. The AiP module includes an antenna sub-module. The antenna sub-module is composed of a first package substrate including an antenna side surface having a first group of antennas placed along a first portion of the antenna side surface and a second group of antennas placed along a second portion of the antenna side surface. The first package substrate is composed of a non-linear portion between the first group of antennas and the second group of antennas. The AiP module includes an active circuit sub-module placed on an active side surface of the first package substrate opposite the first group of antennas or the second group of antennas on the antenna side surface of the first package substrate.
US11239572B2 Beam-steering reconfigurable antenna arrays
There are disclosed antenna arrays for portable electronic devices. In one aspect, the antenna array comprises at least two antennas, each antenna comprising at least two radiating elements; and at least two control networks each comprising a plurality of impedance matching circuits and RF switches, each antenna being connected to a respective control network. Each control network connects the radiating elements of its respective antenna to a single RF port. Each antenna element is connected to a respective first RF switch in its respective control network allowing selection between different ones of the plurality of impedance matching circuits. Each port is connected to a respective second RF switch in its respective control network allowing selection between different ones of the plurality of impedance matching circuits. The impedance matching circuits are connected between the first RF switches and the second RF switch in each control network. In another aspect, the antenna array comprises a plurality of leaky-wave antennas; a plurality of control networks each comprising a plurality of impedance matching circuits and RF switches, each leaky-wave antenna being connected to a respective control network; and a digital control processor configured to send control signals to the control networks so as to control operation of the leaky-wave antennas. Each control network connects its respective leaky-wave antenna to a single RF port.
US11239571B2 Antenna device
Even a thin communication device is enabled to transmit or receive a polarized wave having a polarization direction substantially coinciding with a thickness direction of the communication device.An antenna device includes a first substrate extending in a first direction, a second substrate supported on the first substrate, and extending in both the first direction and a second direction orthogonal to the first direction, and an antenna element supported on a surface of the second substrate, the surface having a normal direction substantially coinciding with a third direction orthogonal to both the first direction and the second direction, and configured to transmit or receive a wireless signal having a polarization direction substantially coinciding with the second direction.
US11239570B2 Wireless communications system with scalable architecture
A configurable wireless communications module may include a first antenna layer having one or more antenna operating at a first wireless radio band; a second antenna layer having one or more antenna operating at a second wireless radio band; and a support structure for supporting the first antenna layer and the second antenna layer in a stacked configuration. A scalable modular processor within the communication may be customized based on the particular use scenario and configured to provide a number of functions in the RF domain and in concert with a variety of sensors and components.
US11239567B2 Antenna
An antenna having a reflector mounted on a rigid boom uses a line feed or phased array feed to operate in the Ka band with frequencies up to 36 gigahertz while maintaining the ability to operate at frequencies down to L-Band of 1-2 GHz.
US11239561B2 Patch antenna for millimeter wave communications
An antenna has at least one resonant frequency within a millimeter wave frequency range. The antenna includes a ground plane disposed in a first plane, the ground plane having a first aperture at which the antenna is fed with an RF signal by a feed line; and a main patch disposed in a second plane parallel to the first plane, the first and second planes spaced apart to form a first cavity between the ground plane and the main patch, the main patch having a second aperture.
US11239560B2 Ultra wide band antenna
A monopole-radiating element of antenna has a single order fractal signal feed. No series or shunt impedance matching elements are connected to the radiating element to control the antenna operating parameters.
US11239559B2 Communication device and notebook computer device
A communication device includes a ground element, an antenna structure, a first reflector, a second reflector, a first tuning element, and a switch element. The first reflector is disposed adjacent to the antenna structure. The second reflector is disposed adjacent to the antenna structure. The second reflector is separate from the first reflector. The switch element is coupled to the first tuning element. When the switch element is enabled, the switch element couples the first tuning element to the first reflector or the second reflector. When the switch element is disabled, the first tuning element is separate from the first reflector and the second reflector.
US11239556B2 Multi-band antenna
A multi-band antenna (100) including a metal base plate (10) forming an electrical ground plane, and a plurality of metal patches (1 to 3) superimposed on top of the metal base plate. The metal patches are connected in parallel between a signal lead wire (11A) and the metal base plate. The metal patches have respective surface areas which increase with the distance of each metal patch from the metal base plate. The antenna provides as many different resonant frequency values as there are patches.
US11239553B2 Uni-dimensional steering of phased array antennas
A phased array antenna system configured for communication with a satellite that emits or receives radio frequency (RF) signals travels in a first direction, the antenna system includes a phased array antenna including a plurality of antenna elements distributed in a plurality of M columns oriented in the first direction and a plurality of N rows extending in a second direction normal to the first direction, and a plurality of fixed phase shifters aligned for phase offsets between antenna elements in the first direction and a gain-enhancement system configured for gain enhancement in the second direction of radio frequency signals received by and emitted from the phased array antenna.
US11239552B2 Beamforming device, calibration method and calibration system for the same
A beam forming device, a calibration method and a calibration system using the same are provided. The beam forming device includes a processor, a memory unit, a baseband circuit, and a plurality of antenna modules. The antenna modules each includes multiple antenna elements, and multiple phase shifters and multiple of amplifiers respectively corresponding to the antenna elements. The memory unit stores a reference codebook, a plurality of calibration codebooks and instructing data, each of the plurality of calibration codebooks includes a plurality of records of calibration control data divided by a plurality of target patterns, and a plurality of predetermined phase differences that are different from each other respectively existed between the plurality of calibration codebooks and the reference codebook. The instruction data is used for instructing the beamforming device to use one of the reference codebook and the plurality of calibration codebooks in transmitting and receiving signals.
US11239551B2 System and method for an antenna system co-located at a speaker grill
An information handling system to wirelessly transmit and receive data may include a processor; a memory; an input/output (I/O) device; a wireless adapter; a metal C-cover to house a speaker grill, the speaker grill covering a speaker to emit audio waves; the speaker grill formed within the C-cover to emit a target radio frequency (RF), including: a slot formed around an operative antenna portion of the speaker grill forming a peninsula of the speaker grill in the C-cover; an antenna cavity formed on a back side of the peninsula, the antenna cavity including walls formed around the cavity in the back side of the peninsula; and a tuning module operatively coupled to the speaker grill to excite the speaker grill and dynamically switch frequencies based on the target frequency to be emitted by the speaker grill.
US11239550B2 Electronic devices having compact ultra-wideband antennas
An electronic device may be provided with an antenna for receiving signals in first and second ultra-wideband communications bands. The antenna may include a shielding ring that runs around first and second arms. The first arm may radiate in the first band and the second arm may radiate in the second band. The first arm may have an end formed from a first segment of the ring and a radiating edge facing the second arm. The second arm may have an end formed from a second segment of the ring and a radiating edge facing the first arm. First and second sets of conductive vias may couple the ring to ground. The first set may form a return path for the first arm. The second set may form a return path for the second arm.
US11239547B2 Terahertz element and semiconductor device
A terahertz element of an aspect of the present disclosure includes a semiconductor substrate, first and second conductive layers, and an active element. The first and second conductive layers are on the substrate and mutually insulated. The active element is on the substrate and electrically connected to the first and second conductive layers. The first conductive layer includes a first antenna part extending along a first direction, a first capacitor part offset from the active element in a second direction as viewed in a thickness direction of the substrate, and a first conductive part connected to the first capacitor part. The second direction is perpendicular to the thickness direction and first direction. The second conductive layer includes a second capacitor part, stacked over and insulated from the first capacitor part. The substrate includes a part exposed from the first and second capacitor parts. The first conductive part has a portion spaced apart from the first antenna part in the second direction with the exposed part therebetween as viewed in the thickness direction.
US11239546B2 Multiple feed slot antenna
Multiple feed, front-shielded, coplanar waveguide, direct-fed, cavity-backed slot antennas are described. Various implementations form an antenna unit capable of millimeter waveform and/or microwave waveform transmissions. An antenna comprises a conductive plate that includes an aperture. The aperture has a shape that extends along an axis that bisects the aperture into first and second bisected portions, the first bisected portion having a first geometry type, and the second portion having a second geometry type that is a bilateral symmetry shape type of the first geometry type. In implementations, the aperture is configured to radiate waveforms within a frequency range from about between 600 Megahertz (MHz) to 72 Gigahertz (GHz) by applying multiple signal feeds to the conductive plate.
US11239545B2 Multiple co-frequency microwaves detection antenna, manufacture method thereof and detection method thereof
A multiple co-frequency microwaves detection antenna includes an oscillation circuit unit, a reference ground and at least two radiation sources. The radiation sources each has a feed point and are arranged spacedly at the reference ground. A radiation gap is formed between each of the radiation sources and the reference ground. The feed point of the radiation source is electrically connected to the oscillating circuit unit.
US11239544B2 Base station antenna and multiband base station antenna
A base station antenna that extends along a first longitudinal axis includes a first array configured to emit electromagnetic radiation. The first array includes a first column of radiating elements, the first column including a first radiating element and a pair of second radiating elements. The first radiating element is a cross dipole radiating element and the pair of second radiating elements includes a pair of second radiating elements that are disposed facing each other on both sides of the first longitudinal axis, where each of the second radiating elements includes first and second radiating arms that extend respectively in opposite directions substantially along the first longitudinal axis, and a third radiating arm that extends toward the first longitudinal axis substantially perpendicular to the first and second radiating arms.
US11239543B2 Base station antennas having phase-error compensation and related methods of operation
Base station antennas are provided herein. A base station antenna includes consecutive vertical columns of radiating elements. The base station antenna includes a phase shifter that is electrically connected to one of the vertical columns of radiating elements. Moreover, the base station antenna includes a phase-error compensation component that is configured to provide phase-error compensation at an input to the phase shifter based on movement of the phase-error compensation component. Related methods of operation are also provided.
US11239539B1 Substrate-mountable electromagnetic waveguide
An electromagnetic waveguide including conductive material on upper lower, and side surfaces of a dielectric is disclosed. A conductive excitation member is electrically coupled to the conductive material on the upper surface of the dielectric and extends to the lower surface of the dielectric at or near an end surface of the dielectric. The conductive excitation member includes a host interface flange separated and electrically isolated from the conductive material on the lower surface of the dielectric. The conductive material on the lower surface of the dielectric can be a ground plane and the waveguide can be a surface-mountable component.
US11239537B2 Microwave resonator, a microwave filter and a microwave multiplexer
A microwave resonator comprising a hollow tube comprising fan electrically conductive tube wall which defines a tube bore, the tube extending along a length axis from a first end to a second end; a first electrically conductive closing plate closing the first end of the tube; a second electrically conductive closing plate closing the second end of the tube; a plurality of dielectric resonant pucks, each puck comprising first and second end faces and a side wall extending therebetween, each puck being dimensioned such that its dominant mode is a doubly degenerate mode; the pucks being arranged within the tube bore spaced apart from each other and the closing plates, each puck being arranged with its end faces normal to the length axis and centered on the length axis and its side wall abutting the tube wall such that there is no air gap between the puck and tube wall which extends from one end face to the other of the puck, the puck adjacent to the first closing plate being termed the input puck; each puck being separated from the adjacent puck in the tube bore by a coupling gap, each coupling gap having ah electrically conductive iris plate arranged therein, each iris plate being arranged normal to the length axis, each iris plate comprising at least one coupling slot extending therethrough; an input microwave coupler adapted to receive a microwave signal and provide it to the input puck; each puck comprising a symmetry breaking structure for modifying the frequency of one of the degenerate modes relative to the other and the coupling between the two modes.
US11239530B2 Microporous membrane lithium ion secondary battery and method of producing the microporous membrane
A method suppresses membrane thickness variation and air resistance variation after a compression at 60° C. or 80° C. Stretching is performed at least twice in at least different axial directions before the extraction of the solvent, and at the same time, at least one of (i) and (ii) is satisfied. (i) The step (c) is a first stretching step of stretching the sheet-shaped product at least once in a sheet transport direction (MD direction) and at least once in a sheet width direction (TD direction) individually, and the MD stretching magnification and the TD stretching magnification in the step (c) satisfy (TD stretching magnification≥MD stretching magnification−2). (ii) The stretching temperature (T1) of a first axial stretching performed firstly in the step (c) and the maximal stretching temperature (T2) of a second stretching performed after the first axial stretching satisfy (T1−T2≥0).
US11239527B2 Tray for secondary batteries and jig for forming the same
Provided are a tray for a secondary battery, which is environmentally friendly and can reduce the manufacturing cost while improving formability of the tray, and a jig for forming the tray. The tray includes a series of receiving spaces for receiving a series of cylindrical secondary batteries, and a flange portion at an outer part of the receiving space. Each receiving space includes a bottom surface configured to support one cylindrical secondary battery, a series of fixing ribs protruding upwardly from the bottom surface, and a series of bridges protruding upwardly from the bottom surface. The fixing ribs are spaced apart from each other and spaced around an outer portion of the bottom surface. Each bridge of the series of bridges connects adjacent fixing ribs.
US11239526B2 Energy storage apparatus
An energy storage apparatus includes an energy storage device, a first wiring electrically connected to the energy storage device, a harness plate holding the first wiring, and a first connector connected to the first wiring, the first connector being located at a central portion of the harness plate and capable of detachably attaching an external wiring.
US11239524B2 Cell module
A cell module includes: a battery cell group configured with a plurality of cylindrical battery cells; a positive current collector; and a negative current collector. The negative current collector has: a substrate disposed on a sealing body side of the cylindrical battery cells such that the negative current collector covers the battery cell group; and a current collecting pin protruding toward the battery cell group from the substrate. The current collecting pin is inserted into a gap between the cylindrical battery cells along an axial direction of such battery cells, and presses the side surfaces of outer cans of at least two cylindrical battery cells neighboring each other.
US11239520B2 Assemblies for supporting battery arrays and other components within battery packs
This disclosure details assemblies for mounting and supporting components within battery packs. Exemplary battery packs may include a first battery array, a second battery array positioned adjacent to the first battery array, a crossmember positioned between the first battery array and the second battery array, and a support bracket connected to the crossmember. Together, the crossmember and the support bracket established an assembly. Both the first battery array and the second battery array may be secured to the crossmember, and the support bracket may support a second tier structure above at least one of the first battery array or the second battery array.
US11239516B2 Power storage device and electronic device
To improve the flexibility of a power storage device, or provide a high-capacity power storage device. The power storage device includes a positive electrode, a negative electrode, an exterior body, and an electrolyte. The outer periphery of each of the positive electrode active material layer and the negative electrode active material layer is a closed curve. The exterior body includes a film and a thermocompression-bonded region. The inner periphery of the thermocompression-bonded region is a closed curve. The electrolyte, the positive electrode active material layer, and the negative electrode active material layer are in a region surrounded by the thermocompression-bonded region.
US11239514B2 Lithium ion battery
A lithium ion battery (100) of the invention includes a battery main body (10) which includes one or more power generation elements configured by laminating a positive electrode layer, an electrolyte layer, and a negative electrode layer, in this order; an outer package (20) which includes at least a heat-fusion resin layer (21) and a barrier layer (23), and in which the battery main body (10) is sealed; and a pair of electrode terminals (30), each of which is electrically connected to the battery main body (10) and at least a part of which is exposed to the outside of the outer package (20). The outer package (20) includes an accommodation portion (25) which accommodates the battery main body (10), a joint portion (27) where the heat-fusion resin layers (21) positioned on a peripheral portion of the accommodation portion (25) are joined with each other directly or through the electrode terminal (30), and an extruded resin portion (29) which is formed by extrusion of a part of the heat-fusion resin layer (21) of the joint portion (27) from the joint portion (27) to the accommodation portion (25) side, and a difference (Lmax−Lmin) between a maximum length Lmax and a minimum length Lmin of the extruded resin portion (29) is equal to or greater than 0.0 mm and equal to or smaller than 1.0 mm.
US11239511B2 Battery module having heat dissipation plate
A battery module includes a cell assembly having a plurality of secondary batteries and a plurality of heat dissipation plates interposed between the plurality of secondary batteries. At least a portion of a front end and a rear end of the heat dissipation plates is recessed to form an inlet portion and an outlet portion so that a coolant is introduced from the outside or discharged to the outside, and the heat dissipation plates have a coolant moving portion so that the coolant moves to a front end, an upper end, a lower end and a rear end of the secondary batteries. A bus bar assembly has a plurality of bus bars and a bus bar frame having insert holes into which the electrode leads of the secondary batteries are inserted; an end cover having a vent hole communicating with the coolant moving portion and a plurality of side plates.
US11239505B2 Apparatus and method for estimating capacity retention ratio of secondary battery
An apparatus for estimating a capacity retention rate of a secondary battery from a degree of calendar aging and a degree of cycle aging of the secondary battery included in a battery pack, including a control unit that receives current information and temperature information of the secondary battery from a sensing unit installed in the battery pack in each cycle having a preset time length, and performs a first main process and a second main process in a sequential order, a memory that stores a predetermined weighting factor, and further stores a state of charge, a degree of cycle aging and a degree of calendar aging of the secondary battery updated in each cycle when the first main process is performed.
US11239502B2 Three-dimensional electrode structure and battery having the electrode structure
A three-dimensional (“3D”) electrode structure includes an electrode collector plate, a plurality of active material plates disposed on the electrode collector plate and protruding from the electrode collector plate, and partition walls arranged on the electrode collector plate and substantially perpendicular to the plurality of active material plates in a plan view so as to provide structural stability of the plurality of first active material plates where the 3D electrode structure may be one of two electrode structures that are spaced apart from each other with an electrolyte layer therebetween.
US11239500B2 Lithium-ion battery and apparatus
This application provides a lithium-ion battery and an apparatus. The lithium-ion battery includes an electrode assembly and an electrolyte. The electrode assembly includes a positive electrode plate, a negative electrode plate, and a separator. A positive active material of the positive electrode plate includes Lix1Coy1M1-y1O2-z1Qz1, where 0.5≤x1≤1.2, 0.8≤y1<1.0, 0≤z1≤0.1, M is selected from one or more of Al, Ti, Zr, Y, and Mg, and Q is selected from one or more of F, Cl, and S. The electrolyte contains an additive A, an additive B, and an additive C. The additive A is a polynitrile six-membered nitrogen-heterocyclic compound with a relatively low oxidation potential. The additive B is a silyl phosphite compound or a silyl phosphate compound or a mixture thereof. The additive C is a halogen substituted cyclic carbonate compound.
US11239495B2 Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
Nanofilm-encapsulated sulfide glass solid electrolyte structures and methods for making the encapsulated glass structures involve a lithium ion conducting sulfide glass sheet encapsulated on its opposing major surfaces by a continuous and conformal nanofilm made by atomic layer deposition (ALD). During manufacture, the reactive surfaces of the sulfide glass sheet are protected from deleterious reaction with ambient moisture, and the nanofilm can be configured to provide additional performance advantages, including enhanced mechanical strength and improved chemical resistance.
US11239492B2 Solid electrolyte material and battery
A solid electrolyte material according to an aspect of the present disclosure is represented by the following Compositional Formula (1): Li6-3zYzX6 where, 0
US11239486B2 Cell stack device, module, and module housing device
A cell stack in which a plurality of cells may have a cylindrical shape and may include gas flow passages may be arranged uprightly and may be electrically connected may include: a manifold configured to fix lower ends of the plurality of cells and supply gas to the gas flow passages of the plurality of cells, and a gas supply pipe configured to supply the gas to the manifold. The gas supply pipe may include one end connected to a gas supply portion and another end inserted into a first through hole provided in the manifold, and may be joined to the manifold via a first joining portion. The gas supply pipe may include a first protruding portion protruding toward an inner side of the gas supply pipe and located at a position corresponding to the first joining portion in any cross-section along an insertion direction of the gas supply pipe.
US11239484B2 Fuel cell system and operation method thereof
A fuel cell system and a method for operating the fuel cell system, wherein the fuel cell system includes a fuel cell, a controller, a switch, an oxygen supply device and an output circuit. The fuel cell includes an anode and a cathode. The fuel cell is a cathode enclosed fuel cell. The controller is used to drive control signal for adjusting the electrochemical metering ratio of oxygen flow, supplied by the oxygen supply device, to output current, wherein the electrochemical metering ratio is ‘a’, and ‘a’ satisfies: 1≤a≤4. The method of the present disclosure uses the fuel cell system of the present disclosure, which optimizes the performance of a fuel cell and makes the output interruption time very short; hence it is highly beneficial for providing a more stable output.
US11239483B2 Stack of redox-flow electrochemical cells with decreased shunt
The invention relates to a stack of several electrochemical cells stacked on top of one another in a stacking direction. The stack comprises at least: a first electrochemical cell, a second electrochemical cell, and an intercalary plate. Each cell includes an upper frame housing a first electrode and a lower frame housing a second electrode, the first electrode and the second electrode being separated from one another by a membrane. The second electrode of the first electrochemical cell and the first electrode of the second electrochemical cell are separated by an intercalary plate. The stack includes an intercalary frame arranged on the periphery of the intercalary plate.
US11239477B2 Purge circuit of a fuel cell
A purging circuit for purging an anodic compartment of a cell of a fuel cell, this circuit including: a capacity, forming a related volume at least equal to 500 ml, for containing and homogenising a recovery gas, including an inlet and an outlet; a first nonreturn valve to prevent the recovery gas from returning through the outlet and allowing gas to flow from the first outlet to an inlet of the compartment; a second nonreturn valve to prevent gas from being discharged from the capacity through the inlet; a pressure sensor able to measure the pressure of a fluid present in the circuit; a valve controlling the flow of a supply gas to and from the compartment as a function of data of the sensor and allowing gas to flow from the first nonreturn valve to the inlet of the compartment.
US11239476B2 Fuel cell system and fuel cell vehicle
A fuel cell system of a fuel cell vehicle includes an injector device disposed side by side with a fuel cell stack in a stacking direction of a plurality of power generation cells, and a heat exchanger. The injector device includes an injector body, and a support part. The support part has a fuel gas inlet channel, and supports the injector body. The heat exchanger is fixed to the support part.
US11239472B2 Method of manufacturing electrolyte membrane for fuel cell and electrolyte membrane manufactured thereby
Disclosed is a method of manufacturing an electrolyte membrane including an antioxidant. The method may include forming a first dispersion liquid including deionized water, a first ionomer dispersion solution and an antioxidant, and forming a second dispersion liquid including the first dispersion liquid and a second ionomer dispersion solution.
US11239471B2 Cathode electrode design for electrochemical fuel cells
A membrane electrode assembly including: an anode electrode; a cathode electrode; and a polymer electrolyte membrane; wherein the cathode includes a first cathode catalyst sublayer including a first precious metal catalyst composition and a first ionomer composition including a first ionomer and a second ionomer; and a second cathode catalyst sublayer including a second precious metal catalyst composition and a second ionomer composition including a third ionomer; wherein the first ionomer is different from the second ionomer in at least one of chemical structure and equivalent weight.
US11239470B2 Integrated fuel cell and combustion system
A topping cycle fuel cell unit includes a support plate having internal flow passages that extend to combustion outlets, a first electrode layer, an electrolyte layer, and a second electrode layer. The second electrode layer is configured to be coupled to another support plate of another fuel cell unit. The internal flow passages are configured to receive and direct air across the first electrolyte layer or the second electrolyte layer and to receive and direct fuel across another of the first electrolyte layer or the second electrolyte layer such that the first electrode layer, the electrolyte layer, and the second electrode layer create electric current. The internal flow passages are configured to direct at least some of the air and at least some of the fuel to the combustion outlets where the at least some air and the at least some fuel is combusted.
US11239469B2 Pre-lithiation of anodes for high performance capacitor assisted battery
A hybrid lithium-ion battery/capacitor cell comprising at least a pair of graphite anodes assembled with a lithium compound cathode and an activated carbon capacitor electrode can provide useful power performance properties and low temperature properties required for many power utilizing applications. The graphite anodes are formed of porous layers of graphite particles bonded to at least one side of current collector foils which face opposite sides of the activated carbon capacitor. The porous graphite particles are pre-lithiated to form a solid electrolyte interface on the anode particles before the anodes are assembled in the hybrid cell. The pre-lithiation step is conducted to circumvent the irreversible reactions in the formation of a solid electrolyte interface (SEI) and preserve the lithium content of the electrolyte and lithium cathode during formation cycling of the assembled hybrid cell. The pre-lithiation step is also applicable to other anode materials that benefit from such pre-lithiation.
US11239468B2 Secondary battery and electrode plate thereof having insulating layer
A secondary battery and an electrode plate are provided. The electrode plate includes a current collector, an active material layer, a conductive structure, and a first protective layer. The current collector includes an insulating layer and a conductive layer disposed on the insulating layer. The conductive layer includes a main body portion and a protrusion portion. A surface of the main body portion facing away from the insulating layer is covered by the active material layer, while a surface of the protrusion portion facing away from the insulating layer is uncovered by the active material layer. The conductive structure is welded to the protrusion portion and thus a welded zone is formed. The first protective layer has elasticity, and is disposed on a side of the protrusion portion facing away from the insulating layer and is located between the welded zone and the active material layer.
US11239465B2 Sulfur-carbon composite, preparation method therefor, and lithium-sulfur battery comprising same
A sulfur-carbon composite including a carbon-based material of which surface is modified by acid treatment is provided, as well as a method for preparing the same, and a lithium-sulfur battery including the same. A sulfur-carbon composite suppresses polysulfide elution when used as a positive electrode active material of a lithium-sulfur battery by including a carbon-based material of which surface is modified to have a hydroxyl group and a carboxyl group capable of adsorbing polysulfide on the surface. Accordingly, capacity property and life time property of the battery may be enhanced. In addition, a surface of the carbon-based material can be modified using a simple process of treating with a mixed solution of nitric acid and sulfuric acid, and a content of functional groups on the surface can be controlled depending on a mixing ratio of the nitric acid and the sulfuric acid.
US11239463B2 Process for producing cathode active material, cathode active material, positive electrode, and lithium ion secondary battery
To provide a process for producing a cathode active material capable of obtaining a lithium ion secondary battery which has a high discharge capacity and a high initial efficiency, a cathode active material, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery. A process for producing a cathode active material, which comprises a mixing step of mixing a lithium compound, an alkali metal compound other than Li, and a transition metal-containing compound containing at least Ni and Mn to obtain a mixture, a step of firing the mixture at a temperature of from 900 to 1,100° C. to obtain a first lithium-containing composite oxide containing the alkali metal other than Li, and a step of removing the alkali metal other than Li from the first lithium-containing composite oxide to obtain a second lithium-containing composite oxide represented by the following formula: aLi(Li1/3Mn2/3)O2·(1−a)LiMO2 wherein 0
US11239462B2 Nonaqueous electrolyte battery and battery pack
A nonaqueous electrolyte battery according to one embodiment includes a negative electrode, a positive electrode and a nonaqueous electrolyte. The negative electrode includes a negative electrode active material-containing layer. The negative electrode active material-containing layer contains a negative electrode active material containing an orthorhombic Na-containing niobium titanium composite oxide. The positive electrode includes a positive electrode active material-containing layer. The positive electrode active material-containing layer contains a positive electrode active material. A mass C [g/m2] of the positive electrode active material per unit area of the positive electrode and a mass A [g/m2] of the negative electrode active material per unit area of the negative electrode satisfy the formula (1): 0.95≤A/C≤1.5.
US11239453B2 Non-flexible substrate having base layer including inorganic film between resin layers, flexible display device and method for producing same
A method of manufacturing a flexible display device, includes forming a base layer on a non-flexible substrate, the base layer including a first resin layer, an inorganic film, and a second resin layer, wherein the forming of the base layer includes a first step of forming the first resin layer inward from an end portion region of the non-flexible substrate, a second step of forming the inorganic film on the first resin layer such that the non-flexible substrate and/or the first resin layer is exposed, and a third step of forming the second resin layer in contact with the non-flexible substrate exposed from the inorganic film and/or the first resin layer exposed from the inorganic film, and the method further includes peeling the non-flexible substrate and bonding a flexible substrate to the first resin layer via an adhesive layer.
US11239450B2 Display panel, method for manufacturing the same and method for controlling the same
Embodiments of the present disclosure relate to a method for manufacturing a display panel. The method includes providing a hardness-variable material layer and a flexible layer on the hardness-variable material layer, and bonding a chip to the flexible layer. The hardness-variable material layer is set to be in a hard state before bonding the chip to the flexible layer. After bonding the chip to the flexible layer, the hardness-variable material layer is peeled off. The hardness-variable material layer is set to be in a flexible state before peeling off the hardness-variable material layer.
US11239449B2 Organic electroluminescence element including carrier injection amount control electrode
An organic electroluminescence element in an embodiment according to the present invention includes a first electrode, a third electrode including a region overlapping the first electrode, a first insulating layer between the first electrode and the third electrode, a second insulating layer between the first insulating layer and the third electrode, an electron transfer layer between the first insulating layer and the third electrode, a light emitting layer, containing an organic electroluminescence material, between the electron transfer layer and the third electrode, and a second electrode located between the first insulating layer and the second insulating layer and electrically connected with the electron transfer layer. The organic electroluminescence element includes an overlap region where the third electrode, the light emitting layer, the electron transfer layer, the first insulating layer and the first electrode overlap each other in an opening of the second insulating layer.
US11239448B2 Organic light-emitting display panel and display apparatus
Provided is an organic light-emitting display panel, including: a thin film transistor layer provided in a display area; an organic light-emitting layer provided in the display area and including light-emitting pixels; a microlens array layer provided in the display area and including microlenses corresponding to the light-emitting pixels; a refractive index matching layer provided in the display area; and a filling layer provided in the non-display area. The refractive index matching layer and the microlens array layer have different refractive indexes. Each microlens includes a first surface that is in contact with the refractive index matching layer. The first surface is a curved surface protruding towards one of the microlens array layer and the refractive index matching layer, which has a smaller refractive index. A material of the filling layer is same as at least one of materials of the microlens array layer and the refractive index matching layer.
US11239443B2 Display panel, method for preparing the same, and display device
The present disclosure relates to a display panel, a method for preparing the same and a display device. The display panel includes a first electrode, a light emitting structure, a second electrode and a scattering layer stacked in sequence. The second electrode is a transparent electrode. One side of the scattering layer away from the second electrode is configured as a light emergent side. The surface of the one side of the scattering layer away from the second electrode is a rough surface, and the RMS of the roughness of the rough surface ranges from 50 nm to 200 nm.
US11239442B2 Display panel and display device
A display panel includes a base substrate including a first surface; another base substrate including a second surface disposed face the first surface; a first insulating layer disposed above the first surface of the base substrate, a plurality of grooves being disposed in a surface of the first insulating layer away from the base substrate; a first conductive layer disposed at a side of the first insulating layer away from the base substrate, the first conductive layer at least covering bottom faces and side walls of the plurality of grooves; a plurality of support portions disposed above the second surface of the another base substrate; and a second conductive layer disposed at a side of the plurality of support portions away from the another base substrate, the second conductive layer at least covering surfaces of the plurality of support portions facing away from the another base substrate and side faces of the plurality of support portions. Each support portion is embedded into a respective one of the plurality of grooves, and the first conductive layer is in electrical contact with the second conductive layer at the bottom faces and side walls of the plurality of grooves.
US11239440B2 Electronic semiconducting device and method for preparing the electronic semiconducting device
The present invention relates to an electronic device comprising between a first electrode and a second electrode at least one first hole transport layer, wherein the first hole transport layer comprises (i) at least one first hole transport matrix compound consisting of covalently bound atoms and (ii) at least one electrical p-dopant selected from metal sate and from electrically neutral metal complexes comprising a metal cation and a at least one anion and/or at least one anionic ligand consisting of at least 4 covalently bound atoms, wherein the metal cation of the electrical p-dopant is selected from alkali metals; alkaline earth metals, Pb, Me, Fe, Co, Ni, Zn, Cd; rare earth metals in oxidation state (II) or (III); Al, Ga, In; and from Sn, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W in oxidation state (TV) or less; provided that a) p-dopants comprising anion or anionic ligand having generic formula (Ia) or (Ib) wherein A1, A2, A3 and A4 are independently selected from CO, SO2 or POR1; R1=electron withdrawing group selected from the group comprising halide, nitrile, halogenated or perhalogenated C1 to C20 alkyl, halogenated or perhalogenated C6 to C20 aryl, or halogenated or perhalogenated heteroaryl with 5 to 20 ring-forming atoms; B1, B2, B3 and B4 are same or independently selected from substituted or unsubstituted C1 to C20 alkyl, substituted or unsubstituted C1 to C20 heteroalkyl, substituted or unsubstituted C6 to C20 aryl, substituted or unsubstituted C5 to C20 heteroaryl, or B1 and B2 form a ring; and b) p-dopants consisting of Li cation and an anion selected from perchlorate and tetrafluoroborate are excluded, and the first hole transport layer comprises a sublayer, wherein the electrical dopant is comprised in an amount, by weight and/or by volume, exceeding the total amount of other components which may additionally be comprised in the sublayer, and a method for preparing the same.
US11239437B2 Photoactive layer and organic solar cell including same
The present specification provides a photoactive layer including: an electron donor; and an electron acceptor, in which the electron donor includes: a single molecular material; and a polymer material, a content of the electron donor is higher than a content of the electron acceptor, and in the electron donor, a content of the single molecular material is higher than a content of the polymer material, and an organic solar cell including the same.
US11239429B1 Superluminescent halide perovskite light-emitting diodes with a sub-bandgap turn-on voltage
An emissive perovskite ternary composite thin film comprising a perovskite material, an ionic-conducting polymer and an ionic-insulating polymer is provided. Additionally, a single-layer LEDs is described using a composite thin film of organometal halide perovskite (Pero), an ionic-conducting polymer (ICP) and an ionic-insulating polymer (IIP). The LEDs with Pero-ICP-IIP composite thin films exhibit a low turn-on voltage of about 1.9V (defined at 1 cd m−2 luminance) and a luminance of about 600,000 cd m−2.
US11239428B2 Boron-containing organic compound and applications thereof, organic mixture, and organic electronic device
An organic compound containing boron and uses thereof, an organic mixture, and an organic electronic device, the structure of said organic compound containing boron being as shown in formula (1). The substituents in formula (I) have the same definitions as in the description.
US11239427B2 Heterocyclic compound and organic light emitting device using same
The present application provides a hetero-cyclic compound capable of significantly enhancing lifespan, efficiency, electrochemical stability and thermal stability of an organic light emitting device, and an organic light emitting device containing the hetero-cyclic compound in an organic compound layer.
US11239424B2 Polymer and method for preparing the same, electron injection layer, OLED device and display device
A polymer for an electron injection layer, an electron injection layer, an OLED device, and a display device are disclosed. The polymer includes a unit A and a unit B, in which the unit A is an aromatic group; and the unit B is a group represented by one of six possible formulae disclosed herein. The electron injection layer includes the polymer. The OLED device includes an anode, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, the electron injection layer, and a cathode stacked in sequence.
US11239423B2 Method and device for modifying film deposition position
A method and device for modifying a film deposition position in a film deposition process with a mask component are disclosed. The mask component includes a mask frame and a mask body fixed to the mask frame. The method includes obtaining a first offset displacement between a plurality of second mark points on the mask component and a plurality of first mark points on the mask body, obtaining a second offset displacement between the plurality of third mark points on the substrate and the plurality of second mark points on the mask component, determining an actual offset displacement between an actual forming position and a preset forming position of the film, according to the first offset displacement and the second offset displacement, and modifying the preset forming position of the film, according to the actual offset displacement between the actual forming position and the preset forming position of the film.
US11239422B2 3D printed active electronic materials and devices
Disclosed is a process whereby diverse classes of materials can be 3D printed and fully integrated into device components with active properties. An exemplary embodiment shows the seamless interweaving of five different materials, including (1) emissive semiconducting inorganic nanoparticles, (2) an elastomeric matrix, (3) organic polymers as charge transport layers, (4) solid and liquid metal leads, and (5) a UV-adhesive transparent substrate layer, demonstrating the integrated functionality of these materials. Further disclosed is a device for printing these fully integrated 3D devices.
US11239421B2 Embedded BEOL memory device with top electrode pillar
Embedded BEOL memory devices having a top electrode pillar are provided. In one aspect, a method of forming an embedded memory device includes: depositing a first ILD on a substrate; forming first/second interconnect in the first ILD over logic/memory regions of the substrate; depositing a capping layer onto the first ILD; forming a memory film stack on the capping layer; patterning the memory film stack into a memory device(s) including a bottom electrode, a dielectric element, and a top electrode; patterning the top electrode to form a pillar-shaped top electrode; depositing a conformal encapsulation layer over the capping layer and memory device(s); depositing a second ILD over the conformal encapsulation layer; and forming a first metal line(s) in the second ILD in contact with the first interconnect(s), and a second metal line(s) in the second ILD in contact with the pillar-shaped top electrode. A device is also provided.
US11239419B2 Structure of memory device and fabrication method thereof
The present invention relates to a structure of a memory device. The structure of a memory device includes a substrate, including a bottom electrode layer formed therein. A buffer layer is disposed on the substrate, in contact with the bottom electrode layer. A resistive layer surrounds a whole sidewall of the buffer layer, and extends upward vertically from the substrate. A mask layer is disposed on the buffer layer and the resistive layer. A noble metal layer is over the substrate, and fully covers the resistive layer and the mask layer. A top electrode layer is disposed on the noble metal layer.
US11239417B1 Resistive random access memory and method of manufacturing the same
Provided is a resistive random access memory (RRAM) including a dielectric layer, a lower electrode, a data storage layer, an isolation structure, a first oxygen reservoir layer, a second oxygen reservoir layer, and an upper electrode. The lower electrode protrudes from a top surface of the dielectric layer. The data storage layer conformally covers the lower electrode and the dielectric layer. The isolation structure is disposed on the lower electrode. The first oxygen reservoir layer is disposed on the data storage layer at a first side of the isolation structure. The second oxygen reservoir layer is disposed on the data storage layer at a second side of the isolation structure. The isolation structure separates the first oxygen reservoir layer from the second oxygen reservoir layer. The upper electrode is disposed on and shared by the first and second oxygen reservoir layers. A method of manufacturing the RRAM is also provided.
US11239415B2 Memory device and fabrication method thereof
A method of forming a memory device includes the following steps. A plurality of carbon nanotubes are formed over a substrate as a first electrode. An insulating layer is formed over the carbon nanotubes. A graphene is formed over the insulating layer as a second electrode separated from the first electrode by the insulating layer.
US11239414B2 Physical unclonable function for MRAM structures
An integrated circuit including a memory array and a physical unclonable function array is obtained by causing metal back sputtering in specific regions of the integrated circuit during ion beam etch. MRAM pillars within the memory array have larger widths than the underlying bottom electrodes while those within the physical unclonable function array have smaller widths than the underlying bottom electrodes. Metal residue deposited over tunnel barrier layers causes random electrical shorting of some of the MRAM pillars within the physical unclonable function array.
US11239412B2 Semiconductor structure
A semiconductor structure includes an electrode element with an upper surface. The upper surface includes at least one convex curved portion.
US11239408B2 Acoustic transducer and related fabrication and packaging techniques
An acoustic transducer includes a first flexible structure having a top surface and a bottom surface. A transducer is attached to the top surface of the first flexible structure, wherein the transducer causes deformation of the first flexible structure when an input electrical signal is applied to the transducer. A second flexible structure has a convex top surface and a concave bottom surface. The convex top surface of the second flexible structure is in contact with the bottom surface of the first flexible structure. Deformation of the first flexible structure causes deformation of the second flexible structure.
US11239407B2 Frequency adjustment method of vibrator element
A frequency adjustment method of a vibrator element includes preparing a vibrator element that has a vibrating arm, a first weight placed on one principal surface of the vibrating arm, and a second weight placed on the other principal surface of the vibrating arm, in which the first weight has a non-overlapping region which does not overlap the second weight in a plan view in a normal direction of the principal surface, preparing a substrate including a wiring portion, and fixing the vibrator element to the substrate by causing the other principal surface side of the vibrator element to face the substrate side, and irradiating the non-overlapping region of the first weight with an energy ray from one principal surface side, removing a portion of the non-overlapping region of the first weight, and adjusting a resonance frequency of the vibrating arm.
US11239403B2 Light emitting diodes with enhanced thermal sinking and associated methods of operation
Solid state lighting devices and associated methods of thermal sinking are described below. In one embodiment, a light emitting diode (LED) device includes a heat sink, an LED die thermally coupled to the heat sink, and a phosphor spaced apart from the LED die. The LED device also includes a heat conduction path in direct contact with both the phosphor and the heat sink. The heat conduction path is configured to conduct heat from the phosphor to the heat sink.
US11239400B1 Curved pillar interconnects
A light-emitting diode (LED) array is formed by bonding an LED chip or wafer to a backplane substrate via curved interconnects. The backplane substrate may include circuits for driving the LED's. One or more curved interconnects are formed on the backplane substrate. A curved interconnect may be electrically connected to a corresponding circuit of the backplane substrate, and may include at least a portion with curvature. The LED chip or wafer may include one or more LED devices. Each LED device may have one or more electrical contacts. The LED chip or wafer is positioned above the backplane substrate to spatially align electrical contacts of the LED devices with the curved interconnects on the backplane substrate. The electrical contacts are bonded to the curved interconnects to electrically connect the LED devices to corresponding circuits of the backplane substrate.
US11239399B2 Architecture for hybrid TFT-based micro display projector
For small, high-resolution, light-emitting diode (LED) displays, such as for a near-eye display in an artificial-reality headset, LEDs are spaced closely together. A backplane can be used to drive an array of LEDs in an LED display. A plurality of interconnects electrically couple the backplane with the array of LEDs. As spacing between LEDs becomes smaller than interconnect spacing, a thin-film circuit layer can be used to reduce a number or interconnects between the backplane and the array of LEDs, so that interconnect spacing can be larger than LED spacing. This can allow LEDs in the LED display to be more densely arranged while still allowing use of a silicon backplane with drive circuitry to control operation of the LEDs in the LED display.
US11239398B2 Optoelectronic semiconductor component and biometric sensor
An optoelectronic semiconductor component may include at least one optoelectronic semiconductor chip, a reflector, a lens, and a connecting layer. The reflector may have a reflector recess where the semiconductor chip may be arranged. The lens may be fully located in the reflector recess, and the lens may have a lens recess. The connecting layer may fasten the lens on the reflector. The lens may have a lens outer side facing toward a reflector inner wall of the reflector recess. A gap may be between the reflector and the lens, and the gap may be filled only partially with the connecting layer. The semiconductor chip may not touch the lens. The optoelectronic semiconductor component may be incorporated into a biometric sensor.
US11239392B2 Optoelectronic semiconductor chip, high-voltage semiconductor chip and method for producing an optoelectronic semiconductor chip
An optoelectronic semiconductor chip may include a semiconductor layer sequence having at least one n-doped semiconductor layer, at least one p-doped semiconductor layer, and an active layer arranged between the at least one n-doped semiconductor layer and the at least one p-doped semiconductor layer. A p-terminal contact may be electrically contacted to the p-doped semiconductor layer. An n-terminal contact may be electrically contacted to the n-doped semiconductor layer. The n-terminal contact may be arranged in direct contact with the p-doped semiconductor layer at least in regions.
US11239391B2 Nanostructure
A composition of matter comprising at least one nanostructure grown epitaxially on an optionally doped β-Ga2O3 substrate, wherein said nanostructure comprises at least one group III-V compound.
US11239390B2 Light emitting apparatus, projector, method for manufacturing light emitting apparatus
A light emitting apparatus including a light emitting device including a first base at which a laminate is provided, a second base at which the light emitting device is provided, and a first member provided between the first base and the second base, wherein the laminate includes a light emitter, the light emitter includes a first semiconductor layer, a second semiconductor layer of a conductivity type different from the conductivity type of the first semiconductor layer, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer and capable of emitting light when current is injected into the light emitting layer, the first member has one end connected to the first base and another end connected to the second base, and the laminate is connected to the second base on the side opposite the first base.
US11239388B2 Semiconductor device
A semiconductor device includes a first type semiconductor structure, an active structure, and a contact layer. The first type semiconductor structure includes a first lattice constant, a first side and a second side opposite to the first side. The active structure is on the first side of the first type semiconductor structure and emits a radiation, and the radiation has a peak wavelength between 1000 nm and 2000 nm. The contact layer is on the second side of the first type semiconductor structure and includes a second lattice constant. A difference between the first lattice constant and the second lattice constant is at least 0.5%.
US11239386B2 Optoelectronic semiconductor component
An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, side areas connecting the top area and the bottom area, and epitaxially produced layers; electrical n- and p-side contacts at the bottom area of the optoelectronic semiconductor chip; and an electrically insulating shaped body, wherein the shaped body surrounds the optoelectronic semiconductor chip at its side areas, and the epitaxially produced layers are free from the shaped body.
US11239385B2 Light emitting device
A light emitting device is provided. The light emitting device includes a first semiconductor layer; a second semiconductor layer provided on a bottom surface of the first semiconductor layer; an active layer interposed between the first semiconductor layer and the second semiconductor layer; a dielectric layer provided on a bottom surface of the second semiconductor layer; a plurality of first n-contacts provided on a first etched surface of the first semiconductor layer; and a plurality of first p-contacts and a plurality of second p-contacts provided on the bottom surface of the second semiconductor layer. One first n-contact is disposed along a first edge region of the first semiconductor layer, one first p-contact is closer to the one first n-contact than one second p-contact, and an area of the one first p-contact is greater than an area of each of the second p-contacts.
US11239383B2 SPAD image sensor and associated fabricating method
A single photon avalanche diode (SPAD) image sensor is disclosed. The SPAD image sensor includes: a substrate having a front surface and a back surface; wherein the substrate includes a sensing region, and the sensing region includes: a common node heavily doped with dopants of a first conductivity type, the common node being within the substrate and abutting the back surface of the substrate; a sensing node heavily doped with dopants of a second conductivity type opposite to the first conductivity type, the sensing node being within the substrate and abutting the front surface of the substrate; and a first layer doped with dopants of the first conductivity type between the common node and the sensing node.
US11239382B2 Semiconductor photomultiplier
A semiconductor photomultiplier includes a microcell, a photosensitive diode, and an anti-reflective coating. The microcell has an insulating layer formed over an active region. The photosensitive diode is formed in the active region beneath the insulating layer. The anti-reflective coating is provided on the insulating layer.
US11239381B2 Photodiode structured photosensitive imaging surfaces, methods and apparatus
In an example, a photosensitive imaging surface is provided by an extended photodiode structure.
US11239374B2 Method of fabricating a field effect transistor
A method for producing an FET transistor includes producing a transistor channel, comprising at least one semiconductor nanowire arranged on a substrate and comprising first and second opposite side faces; producing at least two dummy gates, each arranged against one of the first and second side faces of the channel; etching a first of the two dummy gates, forming a first gate location against the first side face of the channel; producing a first gate in the first gate location and against the first side face of the channel; etching a second of the two dummy gates, forming a second gate location against the second side face of the channel; and producing a second gate in the second gate location and against the second side face of the channel.
US11239368B2 Semiconductor device and method
In an embodiment, a device includes: a semiconductor substrate having a channel region; a gate stack over the channel region; and an epitaxial source/drain region adjacent the gate stack, the epitaxial source/drain region including: a main portion in the semiconductor substrate, the main portion including a semiconductor material doped with gallium, a first concentration of gallium in the main portion being less than the solid solubility of gallium in the semiconductor material; and a finishing portion over the main portion, the finishing portion doped with gallium, a second concentration of gallium in the finishing portion being greater than the solid solubility of gallium in the semiconductor material.
US11239366B2 Transistors with an asymmetrical source and drain
Structures for a field-effect transistor and methods of forming a structure for a field-effect transistor. A gate structure extends over a semiconductor body, a first source/drain region includes an epitaxial semiconductor layer on a first portion of the semiconductor body, and a second source/drain region is positioned in a second portion of the semiconductor body. The gate structure includes a first sidewall and a second sidewall opposite the first sidewall, the first source/drain region is positioned adjacent to the first sidewall of the gate structure, and the second source/drain region is positioned adjacent to the second sidewall of the gate structure. The first source/drain region has a first width, and the second source/drain region has a second width that is greater than the first width.
US11239364B2 Semiconductor device and method for manufacturing the same
The present disclosure discloses a semiconductor device, which comprises: an embedded gate structure with a bottom embedded in a semiconductor substrate; a channel region formed below the bottom surface of the embedded gate structure; a source region and a drain region formed on the two sides of the embedded gate structure; an embedded epitaxial layer formed in the source region or the drain region, the bottom surface of the embedded gate structure being in flush with the maximum stress position of the embedded epitaxial layer. The present disclosure further discloses a method for manufacturing a semiconductor device. The present disclosure can enable the channel region to be located in the maximum stress region of the embedded epitaxial layer, thereby improving the mobility of channel carriers to the utmost extent and improving the conduction current of the device.
US11239358B2 Semiconductor structure with isolation structures in doped region and fabrication method thereof
A semiconductor structure and fabrication method are provided. The method includes: providing a substrate with a first doped region and a second doped region; forming discrete first isolation structures in the second doped region; forming a third doped region in the second doped region between adjacent first isolation structures and under the first isolation structures; forming a gate structure; forming a source region in the first doped region; and forming a drain region in the second doped region. The first doped region includes first doping ions and the second doped region includes second doping ions with a conductivity type opposite to a conductivity type of the first doping ions. The third doped region includes third doping ions with a conductivity type opposite to the conductivity type of the second doping ions. A portion of the first isolation structure is located between the gate structure and the drain region.
US11239356B2 Semiconductor device and method of manufacturing semiconductor device
A semiconductor device includes an N-type silicon carbide layer, a P-type region, an N-type source region, a P-type contact region, a gate insulating film, a gate electrode, and a source electrode on the front surface side of an N-type silicon carbide substrate. A drain electrode is located on the back surface of the N-type silicon carbide substrate. A life time killer introduction region is located along an entire interface of the N-type silicon carbide layer and the bottom face of the P-type region. The life time killer is introduced by implanting helium or protons from the back surface side of the N-type silicon carbide substrate after forming a surface structure of an element on the front surface side of the N-type silicon carbide substrate and before forming the drain electrode.
US11239352B2 Self-aligned and robust IGBT devices
A vertical IGBT device is disclosed. The vertical IGBT structure includes an active MOSFET cell array formed in an active region at a front side of a semiconductor substrate of a first conductivity type. One or more column structures of a second conductivity type concentrically surround the active MOSFET cell array. Each column structure includes a column trench and a deep column region. The deep column region is formed by implanting implants of the second conductivity type into the semiconductor substrate through the floor of the column trench. Dielectric side wall spacers are formed on the trench side walls except a bottom wall of the trench and the column trench is filled with poly silicon of the second conductivity type. One or more column structures are substantially deeper than the active MOSFET cell array.
US11239350B2 Semiconductor device, method of manufacturing semiconductor device, power conversion device
A semiconductor device including a first conductivity type substrate, a first conductivity type carrier store layer formed on an upper surface side of the substrate, a second conductivity type channel dope layer formed on the carrier store layer, a first conductivity type emitter layer formed on the channel dope layer, a gate electrode in contact with the emitter layer, the channel dope layer and the carrier store layer via a gate insulating film, and a second conductivity type collector layer formed on a lower surface side of the substrate, wherein the gate insulating film has a first part in contact with the emitter layer and the channel dope layer, a second part in contact with the carrier store layer, and a third part in contact with the substrate, and at least a part of the second part is thicker than the first part and the third part.
US11239347B2 Method for making a transistor of which the active region includes a semimetal material
Method for making a transistor, comprising: making, on a substrate, a gate surrounded by a dielectric material; depositing a stop layer on the gate and the dielectric material; etching the stop layer in accordance with an active region pattern, forming a channel location located on the gate; etching the dielectric material located in the active region pattern, forming source and drain locations; depositing a semimetal material in the channel, source and drain locations; planarizing the semimetal material; crystallizing the semimetal material, forming the channel and the source and drain; and wherein the semimetal material of the channel is semiconductive and the semimetal material of the source and drain is electrically conductive.
US11239346B2 Split gate memory cell fabrication and system
A method of forming an integrated circuit relative to a wafer comprising a semiconductor substrate. The method first forms a first dielectric layer having a first thickness and along the substrate, the first forming step comprising plasma etching the wafer in a first substrate area and a second substrate area and thereafter growing the first dielectric layer in the first substrate area and the second substrate area. After the first step, the method second forms a second dielectric layer having a second thickness and along the substrate in the second substrate area, the second thickness less than the first thickness, the second forming step comprising removal of the first dielectric layer in the second substrate area without plasma and until a surface of the substrate is exposed and growing the second dielectric layer in at least a portion of the surface.
US11239339B2 Gate structure and method
A semiconductor structure includes a first active region over a substrate and extending along a first direction, a gate structure over the first active region and extending along a second direction substantially perpendicular to the first direction, a gate-cut feature abutting an end of the gate structure, and a channel isolation feature extending along the second direction and between the first active region and a second active region. The gate structure includes a metal electrode in direct contact with the gate-cut feature. The channel isolation feature includes a liner on sidewalls extending along the second direction and a dielectric fill layer between the sidewalls. The gate-cut feature abuts an end of the channel isolation feature and the dielectric fill layer is in direct contact with the gate-cut feature.
US11239338B2 High electron mobility transistor and method for fabricating the same
According to an embodiment of the present invention, a method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a first barrier layer on the buffer layer; forming a second barrier layer on the first barrier layer; forming a first hard mask on the second barrier layer; removing the first hard mask and the second barrier layer to form a recess; and forming a p-type semiconductor layer in the recess.
US11239335B2 Structure and method for semiconductor devices
The present disclosure provides an integrated circuit (IC) device, including: a semiconductor substrate having a top surface; a first source/drain feature and a second source/drain feature disposed on the semiconductor substrate; and a plurality of semiconductor layers including a first semiconductor layer and a second semiconductor layer. Each of the first semiconductor layer and the second semiconductor layer extends longitudinally in a first direction and connects the first source/drain feature and the second source/drain feature. The first semiconductor layer is stacked over the second semiconductor layer in a second direction perpendicular to the first direction. A length of the first semiconductor layer along the first direction is less than a length of the second semiconductor layer along the first direction. The IC device further includes a gate structure engaging center portions of the first semiconductor layer and the second semiconductor layer.
US11239333B2 Semiconductor device and manufacturing method of semiconductor device
A semiconductor device and a manufacturing method thereof includes a source contact structure, a gate stack structure including a side region adjacent to the source contact structure, and a center region extending from the side region. The semiconductor device further includes a source gate pattern disposed under the side region of the first gate stack structure. The source gate pattern has an inclined surface facing the source contact structure. The semiconductor device also includes a channel pattern penetrating the center region of the gate stack structure, the channel pattern extending toward and contacting the source contact structure.
US11239331B2 Thin film transistor substrate and method of fabricating same
A thin film transistor substrate and a method of fabricating same are provided.The thin film transistor substrate includes a substrate, a light shielding layer disposed on the substrate, a buffer layer disposed on the light shielding layer, an active layer disposed on the buffer layer, and a gate insulating layer disposed on the active layer. The gate insulating layer includes a stacked structure including a first insulating layer and a second insulating layer.
US11239329B2 Semiconductor device
According to an aspect of the present disclosure, a semiconductor device includes a semiconductor substrate, a lower electrode provided on the semiconductor substrate, an insulating film that is provided on the semiconductor substrate and surrounds the lower electrode and a metal film that is provided on the lower electrode and includes a convex portion on an upper surface thereof, wherein the convex portion includes a first portion extending in a first direction parallel to an upper surface of the semiconductor substrate, and a second portion extending in a second direction that is parallel to the upper surface of the semiconductor substrate and intersects the first direction, and the metal film is thinner than the insulating film.
US11239327B2 HEMT and method of adjusting electron density of 2DEG
A high electron mobility transistor (HEMT) includes a gallium nitride layer. An aluminum gallium nitride layer is disposed on the gallium nitride layer, wherein the aluminum gallium nitride layer comprises a tensile stress. A source electrode and a drain electrode are disposed on the aluminum gallium nitride layer. A gate electrode is disposed on the aluminum gallium nitride layer between the source electrode and the drain electrode. At least one silicon oxide layer is embedded in the aluminum gallium nitride layer, wherein the silicon oxide layer is formed by a flowable chemical vapor deposition, and the silicon oxide layer increases the tensile stress in the aluminum gallium nitride layer.
US11239326B2 Electrode structure for field effect transistor
A Field Effect Transistor (FET) structure having: a semiconductor; a first electrode structure; a second electrode structure; and a third electrode structure for controlling a flow of carriers in the semiconductor between the first electrode structure and the second electrode structure; a dielectric structure disposed over the semiconductor and extending horizontally between first electrode structure, the second electrode structure and the third electrode structure; and a fourth electrode passing into the dielectric structure and terminating a predetermined, finite distance above the semiconductor for controlling an electric field in the semiconductor under the fourth electrode structure.
US11239324B2 Semiconductor device and semiconductor device manufacturing method
Provided is a semiconductor device including a semiconductor substrate; a hydrogen donor that is provide inside the semiconductor substrate in a depth direction, has a doping concentration that is higher than a doping concentration of a dopant of the semiconductor substrate, has a doping concentration distribution peak at a first position that is a predetermined distance in the depth direction of the semiconductor substrate away from one main surface of the semiconductor substrate, and has a tail of the doping concentration distribution where the doping concentration is lower than at the peak, farther on the one main surface side than where the first position is located; and a crystalline defect region having a crystalline defect density center peak at a position shallower than the first position, in the depth direction of the semiconductor substrate.
US11239323B2 Oxide semiconductor device and method for manufacturing same
An object is to provide a technology for enabling prevention of deterioration of characteristics of an oxide semiconductor device. The oxide semiconductor device includes an n-type gallium oxide epitaxial layer, a p-type oxide semiconductor layer, and an oxide layer. The p-type oxide semiconductor layer is disposed above the n-type gallium oxide epitaxial layer, contains an element different from gallium as a main component, and has p-type conductivity. The oxide layer is disposed between the n-type gallium oxide epitaxial layer and the p-type oxide semiconductor layer, and is made of a material different from gallium oxide and different at least partly from a material of the p-type oxide semiconductor layer.
US11239322B2 P-type oxide semiconductor and semiconductor device having pyrochlore structure
Provided are an oxide semiconductor excellent in transparency, mobility, and weatherability, etc., and a semiconductor device having the oxide semiconductor, a p-type semiconductor being realizable in the oxide semiconductor. The oxide semiconductor consists of a composite oxide, which has a crystal structure including a pyrochlore structure, containing at least one or more kinds of elements selected from Nb and Ta, and containing Sn element, and its holes become charge carriers by the condition that Sn4+/(Sn2++Sn4+) which is a ratio of Sn4+ to a total amount of Sn in the composite oxide is 0.124≤Sn4+/(Sn2++Sn4+)≤0.148.
US11239321B2 GaN lateral vertical HJFET with source-P block contact
A vertical JFET is provided. The JFET is mixed with lateral channel structure and p-GaN gate structure. The JFET has an improved barrier layer for p-GaN block layer and enhanced Ohmic contact with source. In one embodiment, regrowth of lateral channel is provided so that counter doping surface Mg will be buried. In another embodiment, a dielectric layer is provided to protect p-type block layer during the processing, and later make Ohmic source and p-type block layer. Method of a barrier regrown layer for enhanced lateral channel performance is provided where a regrown barrier layer is deposited over the drift layer. The barrier regrown layer is an anti-p-doping layer. Method of a patterned regrowth for enhanced Ohmic contact is provided where a patterned masked is used for the regrowth.
US11239314B2 Semiconductor device and method of manufacturing the same
A MOSFET that has a drain region and a source region on an upper surface of a semiconductor substrate and a gate electrode that is formed on the semiconductor substrate, and an element separation insulating film that includes an opening portion which exposes an active region, on the semiconductor substrate, are formed. At this point, a gate leading-out interconnection that overlaps the element separation insulating film when viewed from above, and that is integrally combined with the gate electrode is formed in a position where the gate leading-out interconnection does not extend over a distance between both the drain region and the source region when viewed from above, on a region that is exposed from the gate electrode.
US11239311B2 Semiconductor device and method of manufacturing the semiconductor device
A semiconductor device including a device isolation layer defining an active region; a first trench in the device isolation layer; a second trench in the active region; a main gate electrode structure filling a portion of the first trench and including a first barrier conductive layer and a main gate electrode; a pass gate electrode structure filling a portion of the second trench and including a second barrier conductive layer and a pass gate electrode; a support structure filling another portion of the second trench above the pass gate electrode; a first capping pattern filling another portion of the first trench above the main gate electrode; and a second gate insulating layer extending along a bottom and sidewall of the second trench, wherein the second barrier conductive layer is between the second gate insulating layer and the pass gate electrode and extends along a bottom and sidewall thereof.
US11239309B2 Isolation features and methods of fabricating the same
Semiconductor devices and methods of fabricating semiconductor devices are provided. The present disclosure provides a semiconductor device that includes a first fin structure and a second fin structure each extending from a substrate; a first gate segment over the first fin structure and a second gate segment over the second fin structure; a first isolation feature separating the first and second gate segments; a first source/drain (S/D) feature over the first fin structure and adjacent to the first gate segment; a second S/D feature over the second fin structure and adjacent to the second gate segment; and a second isolation feature also disposed in the trench. The first and second S/D features are separated by the second isolation feature, and a composition of the second isolation feature is different from a composition of the first isolation feature.
US11239306B2 Electronic panel, display device, and method for manufacturing the display device
A display device includes a substrate including a display area and a non-display area, driving elements disposed in the display area, a plurality of pads disposed in the non-display area and electrically connected to the driving elements, an insulating layer partially disposed on the pads to partially expose the pads, a plurality of signal pads disposed on the pads exposed by the insulating layer and electrically connected to the pads, respectively, and an electronic component including a plurality of driving bumps disposed on the signal pads and electrically connected to the signal pads, respectively. A first portion of a first driving bump of the driving bumps is in direct contact with a first signal pad of the signal pads, and a second portion of the first driving bump is in direct contact with a portion of the insulating layer not overlapping with the first signal pad.
US11239305B2 Display device and manufacturing method thereof
A display device includes a semiconductor substrate, an isolation layer, a light-emitting layer and a second electrode. The semiconductor substrate has a pixel region and a peripheral region located around the pixel region. The semiconductor substrate includes first electrodes and a driving element layer. The first electrodes are disposed in the pixel region and the first electrodes are electrically connected to the driving element layer. The isolation layer is disposed on the semiconductor substrate. The isolation layer includes a first isolation pattern disposed in the peripheral region, and the first isolation pattern has a first side surface and a second side surface opposite to the first side surface. The light-emitting layer is disposed on the isolation layer and the first electrodes, and covers the first side surface and the second side surface of the first isolation pattern. The second electrode is disposed on the light-emitting layer.
US11239302B2 Display panel including a non-display area within a display area
A display panel includes a substrate having a first area, a second area at least partially surrounding the first area, and a third area disposed between the first area and the second area. A plurality of display elements is disposed in the second area. A plurality of wirings detours around an edge of the first area in the third area. A first electrode layer covers at least a portion of the plurality of wirings. A second electrode layer is disposed over the first electrode layer and contacts at least a portion of the first electrode layer.
US11239300B2 Display apparatus and method of manufacturing the same
A display apparatus includes a base substrate including a display area and a peripheral area, a conductive layer formed on the base substrate in an entirety of the peripheral area and the display area, a buffer layer on the conductive layer, a thin film transistor on the buffer layer in the display area, an electrode in a contact hole that is formed through the buffer layer to expose a side surface of the conductive layer in the peripheral area, the electrode making contact the conductive layer, an insulating pattern in the contact hole on the electrode, and a wiring on the insulating pattern and electrically connected to the electrode.
US11239298B2 OLED display substrate, method of forming the same and display device
An Organic Light-emitting Diode (OLED) display substrate, a method of forming the same and a display device are provided. The OLED display substrate includes: a driving thin film transistor located on a base substrate and configured to drive an OLED light-emitting unit to emit light; and a photosensitive thin film transistor located on the base substrate and configured to be capable of detecting light emitted by the OLED light-emitting unit and generating an electrical signal, at least a part of film layers of the photosensitive thin film transistor and at least a part of film layers of the driving thin film transistor are disposed at a same layer and made of a same material.
US11239294B2 Display device and manufacturing method thereof
A display device including a partition wall disposed on a substrate between a first electrode and a second electrode. The partition wall has an opening. A light emitting layer is disposed in the opening. An auxiliary layer having lyophobicity is disposed between the partition wall and the second electrode.
US11239290B2 Display apparatus
A display apparatus includes a substrate including a display area and a sensor area, the display area including main pixels and the sensor area including auxiliary pixels and a transmission area, a plurality of display elements included in each of the main pixels and each of the auxiliary pixels, a first stack structure overlapping the plurality of display elements, a second stack structure overlapping the transmission area, and a thin film encapsulation layer covering the first stack structure and the second stack structure, wherein the first stack structure has a thickness that is different from a thickness of the second stack structure.
US11239289B2 Foldable AMOLED display employing all-in-one substrate and auxiliary means
The present invention relates to an AMOLED display, more specifically, to an AMOLED display employing an ultra-thin all-in-one substrate and an auxiliary supporting means to achieve true foldable display devices.
US11239288B2 Organic light emitting display and method of fabricating the same
Disclosed are an organic light emitting display, which may achieve weight reduction and slimming, and a method of fabricating the same. An encapsulation part of the organic light emitting display includes a plurality of inorganic encapsulation layers and at least one organic encapsulation layer disposed between the inorganic encapsulation layers, and a plurality of touch electrodes disposed on one of the inorganic encapsulation layers and the at least one organic encapsulation layer of the encapsulation part, each touch electrode having electrically independent self capacitance, thereby achieving weight reduction and slimming of the organic light emitting display.
US11239285B2 Organic electroluminescent display panel, display device, and detection method
Embodiments of the present disclosure provide an organic electroluminescent display panel, a display device, and a detection method. For the organic electroluminescent display panel, the light-emitting control lines include two first light-emitting control lines electrically connected to the two light-emitting control circuits; and each first light-emitting control line includes: a surrounding portion surrounding the hole area, and a connecting portion electrically connecting two ends of the surrounding portion to the two light-emitting control circuits, the connecting portion is electrically connected by a control component at a position of being connected to one light-emitting control circuit, and the control component is configured to disconnect the light-emitting control circuit from the connecting portion when defect detection is performed, to determine a cracking state of the hole area according to a light-emitting state of pixels driven by the connecting portion between the control component and the hole area.
US11239283B2 Pixel structure, display substrate and display device
A pixel structure includes a plurality of pixels, and each of the plurality of pixels includes at least one green sub-pixel and at least one other color sub-pixel. A display region determined by the plurality of pixels includes a main display region and at least one special-shaped display region. A boundary of the at least one special-shaped display region includes an arc-shaped edge. The plurality of pixels include a plurality of pixels disposed in the main display region and a plurality of pixels disposed in the at least one special-shaped display region. In each pixel disposed at a corresponding position of the arc-shaped edge, the at least one green sub-pixel is disposed at a side of the at least one other color sub-pixel proximate to the arc-shaped edge.
US11239281B2 Lighting apparatus
A lighting apparatus comprising a lighting part that includes a light emitting area having a plurality of first light emitting areas that are separated apart from each other and a plurality of second light emitting areas separated apart from each other and a non-light emitting area including a first non-light emitting area surrounding the plurality of first light emitting areas and the plurality of second light emitting areas and a plurality of second non-light emitting areas extending from the first non-light emitting area, the lighting apparatus comprises a substrate; a plurality of first electrodes disposed on the substrate in the light emitting area; an organic layer disposed on the plurality of first electrodes; a second electrode disposed on the organic layer; and an encapsulation part disposed on the second electrode; wherein the plurality of first light emitting areas are arranged in a first direction, and the plurality of second light emitting areas are arranged in a second direction intersecting with the first direction, and wherein the second non-light emitting areas correspond to an area in which a plurality of patterns are included.
US11239264B2 Thin film transistor, display substrate, method for preparing the same, and display device
The present disclosure provides a thin film transistor, a display substrate, a method for preparing the same, and a display device including the display substrate. The method for preparing the thin film transistor includes: forming an inorganic insulating film layer in contact with an electrode of the thin film transistor by a plasma enhanced chemical vapor deposition process at power of 9 kW to 25 kW, at a temperature of 190° C. to 380° C. and by using a mixture of gases N2, NH3 and SiH4 in a volume ratio of N2:NH3:SiH4=(10˜20):(5˜10):(1˜2), such that a stress value of the inorganic insulating film layer is reduced to be less than or equal to a threshold, and the inorganic insulating layer comprises silicon nitride.
US11239262B2 Array substrate combining sensing material with thin film transistor, method of fabricating same, and display panel including same
An embodiment of the present invention discloses an array substrate, a method of fabricating the same, and a display panel. Compared with the conventional technology, the present invention combines a sensing material with thin film transistors to prepare a sensing layer on the thin film transistors, and since the thin film transistors can be formed by a large-area preparation, the sensors can be formed by a large-area preparation accordingly, thereby improving a performance of the sensors and reducing the production cost of the sensors.
US11239260B2 Substrate for electronic device, display apparatus, method of fabricating substrate for electronic device
A substrate for an electronic device includes an insulating layer; a via extending into the insulating layer; a light shielding layer in the via; and a thin film transistor comprising an active layer on the light shielding layer and in the via. The light shielding layer is configured to shield light from irradiating on the active layer.
US11239257B2 Display backplane and method for manufacturing the same, display panel and display device
The present disclosure provides a display backplane and a method for manufacturing the same, a display panel and a display device, and relates to the field of display technology. The display backplane includes a first backplane and a second backplane. The first backplane includes a first substrate, and a first thin film transistor, on the first substrate, configured to drive a light emitting unit. The second backplane, which is attached to a surface of the first substrate facing away from the first thin film transistor, includes a second substrate and at least one second thin film transistor located between the second substrate and the first substrate.
US11239249B2 Vertical-type memory device
A vertical-type memory device includes: a first gate structure including first gate electrodes spaced apart from each other and stacked on a substrate; first channel structures penetrating through the first gate structure and being in contact with the substrate; a second gate structure including second gate electrodes spaced apart from each other and stacked on the first gate structure; and second channel structures penetrating through the second gate structure and being in contact with the first channel structures. The first channel structures each may include a first channel layer penetrating the first gate structure, and a first channel pad disposed on the first channel layer and including a first pad region including n-type impurities and a second pad region including p-type impurities.
US11239242B2 Integrated assemblies having dielectric regions along conductive structures, and methods of forming integrated assemblies
Some embodiments include a method of forming an integrated assembly. A construction is formed to include a conductive structure having a top surface, and a pair of sidewall surfaces extending downwardly from the top surface. Insulative material is over the top surface, and rails are along the sidewall surfaces. The rails include sacrificial material. The sacrificial material is removed to leave openings. Sealant material is formed to extend within the openings. The sealant material has a lower dielectric constant than the insulative material. Some embodiments include an integrated assembly having a conductive structure with a top surface and a pair of opposing sidewall surfaces extending downwardly from the top surface. Insulative material is over the top surface. Voids are along the sidewall surfaces and are capped by sealant material. The sealant material has a lower dielectric constant than the insulative material.
US11239241B2 Bit line utilized in DRAM
A fabricating method of a semiconductive element includes providing a substrate, wherein an amorphous silicon layer covers the substrate. Then, a titanium nitride layer is provided to cover and contact the amorphous silicon layer. Later, a titanium layer is formed to cover the titanium nitride layer. Finally, a thermal process is performed to transform the titanium nitride layer into a nitrogen-containing titanium silicide layer.
US11239240B2 Methods of forming a semiconductor device
A semiconductor device comprises semiconductive pillars; digit lines laterally between the semiconductive pillars; nitride caps vertically overlying the digit lines; nitride structures overlying surfaces of the nitride caps; redistribution material structures comprising upper portions overlying upper surfaces of the nitride caps and the nitride structures, and lower portions overlying upper surfaces of the semiconductive pillars; a low-K dielectric material laterally between the digit lines and the semiconductive pillars; air gaps laterally between the low-K dielectric material and the semiconductive pillars, and having upper boundaries below the upper surfaces of the nitride caps; and a nitride dielectric material laterally between the air gaps and the semiconductive pillars. Memory devices, electronic systems, and method of forming a semiconductor device are also described.
US11239235B2 Transistor and logic gate
A transistor includes a substrate having a plurality of source/drain regions and a channel region between the source/drain regions, a gate, and a gate dielectric layer between the gate and the substrate. The substrate tapers in a direction away from the gate dielectric layer in top view. The gate is embedded in the gate dielectric layer. The transistor structure density can be improved.
US11239229B2 Self-biased bidirectional ESD protection circuit
Disclosed examples provide an ESD protection circuit including a protection structure to selectively conduct current between a first terminal at a protected node and a second terminal at a reference node in response to the protected node voltage and a control voltage signal rising above a trigger voltage during an ESD event, and a bias circuit configured to bias a protection structure control terminal at a control voltage corresponding to a higher one of a first voltage of the first terminal and a second voltage of the second terminal to control the trigger voltage of the ESD protection structure to keep the ESD protection structure off during normal operation.
US11239228B2 Integrated circuit layout and method of configuring the same
An integrated circuit includes at least one first active region, at least one second active region adjacent to the first active region, and a plurality of third active regions. The first active region and the second active region are staggered. The third active regions are present adjacent to the first active region, wherein the third active regions are substantially aligned with each other.
US11239226B2 Semiconductor apparatus
A semiconductor apparatus that includes a semiconductor substrate having a first main surface and a second main surface, a first electrode opposing the first main surface of the semiconductor substrate, a dielectric layer between the semiconductor substrate and the first electrode, a second electrode opposing the second main surface of the semiconductor substrate, and a resistance control layer between the semiconductor substrate and the second electrode. The resistance control layer includes a first region having a first electrical resistivity and electrically connecting the semiconductor substrate and the second electrode, and a second region having a second electrical resistivity higher than the first electrical resistivity of the first region and adjacent to the first region.
US11239225B2 Three-dimensional integrated circuit structures and methods of manufacturing the same
Three-dimensional integrated circuit structures and methods of forming the same are disclosed. One of the three-dimensional integrated circuit structures includes a first die, a plurality of second dies and a dielectric structure. The second dies are bonded to the first die. The dielectric structure is disposed between the second dies. The dielectric structure includes a first dielectric layer and a second dielectric layer. The first dielectric layer has a sidewall and a bottom, a first surface of the sidewall and a first surface of the bottom are in contact with the second dielectric layer and form a first angle. A second angle smaller than the first angle is formed by a second surface of the sidewall and a second surface of the bottom.
US11239222B2 Cooled optical transmission module device and method of manufacturing the same
Provided is a cooled optical transmission module device including a silicon wafer having a plurality of platform mounting grooves, each of which serves as a space for mounting in which an optical transmission platform therein, a thermoelectric cooler bonded to the platform mounting groove to transfer heat to outside, the optical transmission platform provided on the thermoelectric cooler and configured to output an optical signal by generating and reflecting the optical signal, a dielectric sub-mount bonded to the platform mounting groove of the silicon wafer and electrically connected to the mounted optical transmission platform, and a cover configured to cover the platform mounting groove of the silicon wafer and seal the platform mounting groove while providing an electric path.
US11239217B2 Semiconductor package including a first sub-package stacked atop a second sub-package
A semiconductor package includes a first sub-package and a second sub-package. The first sub-package is stacked atop the second sub-package. Each of the first sub-package and the second sub-package includes at least two first semiconductor dies, a second semiconductor die, a plurality of molding pieces, a bond-pad layer, a plurality of redistribution layers (RDLs) and a plurality of bumps. The bumps of the first sub-package are attached to the bond-pad layer of the second sub-package.
US11239214B2 Display panel and manufacturing method thereof, and display device
The present disclosure provides a display panel and a manufacturing method thereof, a display device. The display panel includes: a substrate; a plurality of driving electrodes and a micro light emitting diode located on a surface of the substrate, wherein respective electrodes of the micro light emitting diode are located at a side of the micro light emitting diode facing away from the substrate; and a plurality of driving wires respectively electrically coupling the respective electrodes of the micro light emitting diode to the plurality of driving electrodes.
US11239204B2 Bonded assembly containing laterally bonded bonding pads and methods of forming the same
A bonded assembly includes a first die containing first bonding pads having sidewalls that are laterally bonded to sidewalls of second bonding pads of a second die.
US11239202B2 Display panel and display device
A display panel is provided. The display panel includes a frame area, and the frame area includes an array substrate and a color filter substrate. The array substrate includes a fanout area configured to dispose a fanout trace. The color filter substrate is disposed opposite to the array substrate. The color filter substrate includes a gate driver on array (GOA) circuit and a signal trace disposed at a side of the GOA circuit. The GOA circuit is electrically connected to the signal trace. The GOA circuit and the signal trace both overlap the fanout area.
US11239201B2 3D integrated circuit (3DIC) structure
An embodiment bonded integrated circuit (IC) structure includes a first IC structure and a second IC structure bonded to the first IC structure. The first IC structure includes a first bonding layer and a connector. The second IC structure includes a second bonding layer bonded to and contacting the first bonding layer and a contact pad in the second bonding layer. The connector extends past an interface between the first bonding layer and the second bonding layer, and the contact pad contacts a lateral surface and a sidewall of the connector.
US11239199B2 Package stacking using chip to wafer bonding
Embodiments are generally directed to package stacking using chip to wafer bonding. An embodiment of a device includes a first stacked layer including one or more semiconductor dies, components or both, the first stacked layer further including a first dielectric layer, the first stacked layer being thinned to a first thickness; and a second stacked layer of one or more semiconductor dies, components, or both, the second stacked layer further including a second dielectric layer, the second stacked layer being fabricated on the first stacked layer.
US11239198B2 Chip bonding method and bonding device
A chip bonding method and a bonding device. The chip bonding method is used for bonding a chip to a display module, the display module includes a substrate and a functional layer on the substrate, the substrate includes a first substrate portion and a second substrate portion, the functional layer is on the first substrate portion, and an electrode is on an upper side of the second substrate portion. The chip bonding method includes: forming a light absorbing film layer on a side of the second substrate portion facing away from the electrode; coating a conductive adhesive film on the electrode, and placing the chip on the conductive adhesive film; and irradiating, by using a laser beam, a side of the second substrate portion facing away from the electrode.
US11239197B2 Wire bonding apparatus threading system
A method for automatically threading wire in a wire bonding apparatus includes the steps of extending a wire tail of a wire from a wire spool, locating the wire tail in a wire locating device and positioning the wire tail at a straightening location of the wire locating device. The wire tail is straightened at the straightening location with a wire manipulating device and then conveyed to a threading location. With a wire threading device, the straightened wire tail is received at the threading location and is threaded through a capillary of the wire bonding apparatus.
US11239193B2 Integrated circuit package and method
In an embodiment, a device includes: a semiconductor device; and a redistribution structure including: a first dielectric layer; a first grounding feature on the first dielectric layer; a second grounding feature on the first dielectric layer; a first pair of transmission lines on the first dielectric layer, the first pair of transmission lines being laterally disposed between the first grounding feature and the second grounding feature, the first pair of transmission lines being electrically coupled to the semiconductor device; a second dielectric layer on the first grounding feature, the second grounding feature, and the first pair of transmission lines; and a third grounding feature extending laterally along and through the second dielectric layer, the third grounding feature being physically and electrically coupled to the first grounding feature and the second grounding feature, where the first pair of transmission lines extend continuously along a length of the third grounding feature.
US11239191B2 Semiconductor device and a method of manufacturing the same
A technique which improves the reliability in coupling between a bump electrode of a semiconductor chip and wiring of a mounting substrate, more particularly a technique which guarantees the flatness of a bump electrode even when wiring lies in a top wiring layer under the bump electrode, thereby improving the reliability in coupling between the bump electrode and the wiring formed on a glass substrate. Wiring, comprised of a power line or signal line, and a dummy pattern are formed in a top wiring layer beneath a non-overlap region of a bump electrode. The dummy pattern is located to fill the space between wirings to reduce irregularities caused by the wirings and space in the top wiring layer. A surface protection film formed to cover the top wiring layer is flattened by CMP.
US11239189B2 Electronic component and semiconductor device
An electronic component includes a substrate having a first main surface on one side and a second main surface on the other side, a chip having a first chip main surface on one side and a second chip main surface on the other side, and a plurality of electrodes formed on the first chip main surface and/or the second chip main surface, the chip being arranged on the first main surface of the substrate, a sealing insulation layer that seals the chip on the first main surface of the substrate such that the second main surface of the substrate is exposed, the sealing insulation layer having a sealing main surface that opposes the first main surface of the substrate, and a plurality of external terminals formed to penetrate through the sealing insulation layer so as to be exposed from the sealing main surface of the sealing insulation layer, the external terminals being respectively electrically connected to the plurality of electrodes of the chip.
US11239185B2 Embedded resistor-capacitor film for fan out wafer level packaging
A panel type fan-out wafer level package with embedded film type capacitors and resistors is described. The package comprises a silicon die at a bottom of the package wherein a top side and lateral sides of the silicon die are encapsulated in a molding compound, at least one redistribution layer connected to the silicon die through copper posts contacting a top side of the silicon die, at least one embedded capacitor material (ECM) sheet laminated onto the package, and at least one embedded resistor-conductor material (RCM) sheet laminated onto the package wherein the at least one redistribution layer, capacitors in the at least one ECM, and resistors in the at least one RCM are electrically interconnected.
US11239184B2 Package substrate, electronic device package and method for manufacturing the same
The present disclosure provides a package substrate and method of manufacturing the same. The package substrate includes a substrate, an electronic component and a conductive trace. The electronic component is disposed in the substrate, and the electronic component includes a magnetic layer and a conductive wire. The conductive wire includes a first section embedded in the magnetic layer, and a second section connected to the first section and thinner than the first section. A first upper surface of the first section is covered by the magnetic layer, a second upper surface of the second section is lower than the first upper surface, and the magnetic layer includes a first recess disposed in the upper surface and exposing the second upper surface of the second section. The first conductive trace is in the first recess and electrically connected to the second upper surface of the second section of the conductive wire.
US11239182B2 Controlled induced warping of electronic substrates
An integrated circuit (IC) package incorporating controlled induced warping is disclosed. The IC package includes an electronic substrate having an active side upon which semiconducting dies and functional circuits have been lithographed or otherwise fabricated, leading to an inherent warping in the direction of the active side. One or more corrective layers may be deposited to the opposing, or inactive, side of the semiconducting die via thin film deposition (TFD) instrumentation and techniques in order to induce corrective warping of the electronic substrate back toward the horizontal (e.g., in the direction of the inactive side) to a desired degree.
US11239181B2 Integrated assemblies
Some embodiments include an integrated assembly having a semiconductor die with memory array regions and one or more regions peripheral to the memory array regions. A stack of alternating insulative and conductive levels extends across the memory array regions and passes into at least one of the peripheral regions. The stack generates bending stresses on the die. At least one stress-moderating region extends through the stack and is configured to alleviate the bending stresses.
US11239180B2 Structure and formation method of package structure with stacked semiconductor dies
A structure and a formation method of a package structure are provided. The method includes disposing a first semiconductor die over a carrier substrate and forming a first protective layer to surround the first semiconductor die. The method also includes forming a dielectric layer over the first protective layer and the first semiconductor die. The method further includes patterning the dielectric layer to form an opening partially exposing the first semiconductor die and the first protective layer. In addition, the method includes bonding a second semiconductor die to the first semiconductor die after the opening is formed. The method includes forming a second protective layer to surround the second semiconductor die.
US11239179B2 Semiconductor package and fabrication method thereof
A semiconductor package includes a substrate having thereon a high-frequency chip and a circuit component susceptible to high-frequency signal interference; a ground pad on the and between the high-frequency chip and the circuit component; a metal-post reinforced glue wall on the ground pad; a molding compound surrounding the metal-post reinforced glue wall and surrounding the high-frequency chip and the circuit component; and a conductive layer disposed on the molding compound and in contact with the metal-post reinforced glue wall. The metal-post reinforced glue wall comprises first metal posts and glue attached to the first metal posts. An interface between a base of each of the first metal posts and the ground pad has a root mean square (RMS) roughness that is less than 1.0 micrometer.
US11239178B2 Semiconductor package structures and methods of manufacturing the same
A semiconductor package structure includes a substrate structure having a first surface and a second surface opposite to the first surface; at least two electronic components electrically connected to the first surface of the substrate structure; at least one shielding pad disposed on the first surface of the substrate structure; a plurality of vias connected to the at least one shielding pad; a plurality of shielding wirebonds disposed between the electronic components. Each of the shielding wirebonds includes a first bond and a second bond opposite to the first bond, the first bond and the second bond being electrically connected to the at least one shielding pad, and the vias being free from overlapping with any of the plurality of vias.
US11239165B2 Method of forming an interconnect structure with enhanced corner connection
Interconnect structures and methods for forming the interconnect structures generally include forming a bulk metal encapsulated in first and second interlayer dielectrics, a liner layer about a lower surface of the bulk metal and a metal cap layer about an upper surface of the bulk metal. The liner layer is in the first interlayer dielectric and the metal cap layer is in the second interlayer dielectric, wherein liner layer and the metal cap layer are different metals.
US11239162B2 Semiconductor device including via and wiring
A semiconductor device includes a lower wiring, an upper wiring on the lower wiring, and a via between the lower wiring and the upper wiring. The lower wiring has a first end surface and a second end surface opposing each other, the upper wiring has a third end surface and a fourth end surface opposing each other, and the via has a first side adjacent to the second end surface of the lower wiring and a second side adjacent to the third end surface of the upper wiring. A distance between a lower end of the first side of the via and an upper end of the second end surface of the lower wiring is less than ⅓ of a width of a top surface of the via, and a distance between an upper end of the second side of the via and an upper end of the third end surface of the upper wiring is less than ⅓ of the width of the top surface of the via.
US11239161B2 Semiconductor memory device
A memory device includes a semiconductor layer including adjacent cell and non-cell areas in a first direction, first and second conductive lines on the layer, extending along the first direction and arranged away from each other in a second direction crossing the first direction, conductor layers arranged above the semiconductor layer in a third direction crossing the first and second directions, pillars on the cell area, passing through the conductor layers in the third direction and forming memories at intersections with the conductor layers, and shunt lines extending along the second direction and arranged in the first direction above the cell area, each of the shunt lines connected to the first and second lines via third conductive lines. A length between the shunt line closest to the non-cell area and a boundary between the cell and non-cell areas is less than a length between adjacent shunt lines.
US11239155B2 Conductive contact structures for electrostatic discharge protection in integrated circuits
Disclosed herein are structures, devices, and methods for electrostatic discharge protection (ESDP) in integrated circuits (ICs). In some embodiments, an IC component may include a conductive contact structure that includes a first contact element and a second contact element. The first contact element may be exposed at a face of the IC component, the first contact element may be between the face of the IC component and the second contact element, the second contact element may be spaced apart from the first contact element by a gap, and the second contact element may be in electrical contact with an electrical pathway in the IC component.
US11239153B2 MIM capacitor of embedded structure and method for making the same
The present application has disclosed an MIM capacitor of an embedded structure, wherein an interlayer film is formed between a first metal wire layer and a second metal wire layer; the MIM capacitor is formed on the surface of the interlayer film; a capacitor lower electrode is connected to the first metal wire layer by means of a bottom first via, the first metal wire layer is connected, by means of a second via outside the capacitor lower electrode, to a lower electrode lead-out structure formed by the second metal wire layer; and an upper electrode lead-out structure formed by the second metal wire layer covers the surface of the capacitor upper electrode of the MIM capacitor. The present application has further disclosed a method for manufacturing an MIM capacitor of an embedded structure. In the present application, the performance and stability of the capacitor can be improved.
US11239151B2 Integrated circuit including standard cell
A standard cell of an IC includes a cell area including a transistor configured to determine a function of the standard cell; a first dummy area and a second dummy area respectively adjacent to two sides of the cell area in a first direction; and an active area extending in the first direction across the cell area, the first dummy area, and the second dummy area. The active area includes a first active area and a second active area spaced apart from each other in a second direction perpendicular to the first direction and extend parallel to each other in the first direction. At least one of the first active area and the second active area provided in the first dummy area is biased, and at least one of the first active area and the second active area provided in the second dummy area is biased.
US11239148B2 Semiconductor package
A semiconductor package includes a core layer formed of a ferromagnetic material, and includes a frame passing through the core layer and having a through-hole, a semiconductor chip disposed in the through-hole of the frame, and having an active surface on which a connection pad is disposed, and an inactive surface opposite to the active surface, an encapsulant covering at least a portion of the semiconductor chip, and a first connection structure including a first redistribution layer disposed on the active surface of the semiconductor chip and electrically connected to the connection pad.
US11239146B2 Package structure
A package structure is provided. The package structure includes a substrate. The package structure also includes a hybrid pad disposed on the substrate. The hybrid pad includes a metal layer and a buffer layer connected to the metal layer. The Young's modulus of the buffer layer is less than the Young's modulus of the metal layer. The package structure further includes an electrically connecting structure disposed on the hybrid pad. The package structure includes a chip layer electrically connected to the electrically connecting structure. The package structure also includes a bonding pad disposed between the electrically connecting structure and the chip layer.
US11239145B2 Electronic component module
According to one embodiment, the electrode pads are provided at a surface of the substrate. The metal pad is provided at the surface of the substrate. The electronic component is mounted to the surface of the substrate. The electronic component includes a plurality of opposing electrodes. The opposing electrodes oppose the electrode pads in a direction toward the surface direction and are electrically connected to the electrode pads. The positioning component is fixed to the metal pad. A gap between the positioning component and the electronic component in an in-plane direction of the surface of the substrate is shorter than a minimum distance of the electrode pads.
US11239130B2 Selective molding for integrated circuit
A method includes performing a first molding process to enclose a portion of a first semiconductor die in a first package structure with an opening that exposes a portion of a second semiconductor die mounted to the first semiconductor die, as well as performing a deposition process to deposit a stress absorbing material in the opening of the first package structure to cover the portion of the second semiconductor die, and performing a second molding process to enclose a portion of the stress absorbing structure in a second package structure that extends on a side of the first package structure.
US11239125B2 Carrier structure and package structure
A carrier structure includes: a plurality of substrates; a separation portion provided between the substrates; and a periphery portion provided at the periphery of the substrates and formed with at least one opening. With the configuration of the opening, the area of an insulating layer of the carrier structure can be reduced. Therefore, the overall space of electrostatic buildup in the carrier structure can also be reduced.
US11239122B2 Display module with improved electrical test and manufacturing method of the display module
A display module including a glass substrate; a thin film transistor layer disposed in a first area of the glass substrate; a plurality of connection pads disposed in a second area extending from the first area of the glass substrate and electrically connected to the thin film transistor layer; a plurality of test pads disposed in a third area extending from the second area of the glass substrate and electrically connected to the plurality of connection pads, respectively, and a plurality of connection wirings electrically connecting the plurality of connection pads and the plurality of test pads.
US11239121B2 Metal gate contacts and methods of forming the same
A method of forming a semiconductor device includes providing a structure that includes a substrate, a first fin and a second fin, a first gate structure engaging the first fin, and a second gate structure engaging the second fin; depositing a dielectric layer over the first and second gate structures; etching the dielectric layer, thereby forming a first gate contact opening exposing the first gate structure and a second gate contact opening exposing the second gate structure, wherein the first gate contact opening has a first length that is larger than a second length of the second gate contact opening; and filling the first and second gate contact openings with conductive material, thereby forming a first gate contact engaging the first gate structure and a second gate contact engaging the second gate structure.
US11239113B2 Array substrate and preparation method thereof
The present disclosure discloses an array substrate and a preparation method thereof. After a first passivation layer is formed, residual gas is directly drawn out of a closed chamber to prevent the residual gas from reacting to form an unstable layer on the first passivation layer. Furthermore, after the residual gas is drawn out, a preset gas fills the closed chamber, and is retained for a preset time period and then drawn out. The retaining of the preset gas can effectively alleviate the damage to the passivation layer by static electricity.
US11239112B2 Passivating silicide-based approaches for conductive via fabrication and structures resulting therefrom
Passivating silicide-based approaches for conductive via fabrication is described. In an example, an integrated circuit structure includes a plurality of conductive lines in an inter-layer dielectric (ILD) layer above a substrate. Each of the plurality of conductive lines is recessed relative to an uppermost surface of the ILD layer. A metal silicide layer is on the plurality of conductive lines, in recess regions above each of the plurality of conductive lines. A hardmask layer is on the metal silicide layer and on the uppermost surface of the ILD layer. A conductive via is in an opening in the hardmask layer and on a portion of the metal silicide layer on one of the plurality of conductive lines.
US11239108B2 Method for producing a donor substrate for creating a three-dimensional integrated structure, and method for producing such an integrated structure
A process for producing a donor substrate for creating a three-dimensional integrated structure comprises the following steps: providing a semiconductor substrate comprising a surface layer, referred to as an active layer, and a layer comprising a plurality of cavities extending beneath the active layer, each cavity being separated from an adjacent cavity by a partition, forming an electronic device in a region of the active layer located plumb with a cavity, depositing a protective mask on the active layer so as to cover the electronic device while at the same time exposing a region of the active layer located plumb with each partition, and implanting atomic species through regions of the active layer exposed by the mask to form a weakened zone in each partition.
US11239106B2 Source/drain isolation structure and methods thereof
A method and structure directed to providing a source/drain isolation structure includes providing a device having a first source/drain region adjacent to a second source/drain region. A masking layer is deposited between the first and second source/drain regions and over an exposed first part of the second source/drain region. After depositing the masking layer, a first portion of an ILD layer disposed on either side of the masking layer is etched, without substantial etching of the masking layer, to expose a second part of the second source/drain region and to expose the first source/drain region. After etching the first portion of the ILD layer, the masking layer is etched to form an L-shaped masking layer. After forming the L-shaped masking layer, a first metal layer is formed over the exposed first source/drain region and a second metal layer is formed over the exposed second part of the second source/drain region.
US11239104B2 Chip ejecting apparatus
A chip ejecting apparatus includes a table configured to be provided with a dicing tape and a target chip adhered to an upper surface of the dicing tape, an ejector unit including a plurality of gas holes configured to inject a gas toward a lower surface of the dicing tape, and a control unit configured to separately control on/off operations of the plurality of gas holes and select an active gas hole group from the plurality of gas holes. The active gas hole group is selected to overlap the target chip, and is configured to inject the gas toward the dicing tape along a direction from a first edge of the target chip toward a second edge of the target chip opposite to the first edge of the target chip.
US11239103B2 Package-on-package structure
A method comprises forming a plurality of interconnect structures including a dielectric layer, a metal line and a redistribution line over a carrier, attaching a semiconductor die on a first side of the plurality of interconnect structures, forming an underfill layer between the semiconductor die and the plurality of interconnect structures, mounting a top package on the first side the plurality of interconnect structures, wherein the top package comprises a plurality of conductive bumps, forming an encapsulation layer over the first side of the plurality of interconnect structures, wherein the top package is embedded in the encapsulation layer, detaching the carrier from the plurality of interconnect structures and mounting a plurality of bumps on a second side of the plurality of interconnect structures.
US11239102B2 Stocker system
A stocker is disposed above a processing device and includes: a plurality of shelves provided in multiple stages in an up-down direction, to place articles thereon; and a crane to place an article on the shelves or take out an article placed on the shelves. The shelves include: a carry-in/out port used for an overhead transport vehicle to place an article thereon; and storage shelves used for the crane to place an article thereon. The carry-in/out port has a vertical dimension that allows a grip of the overhead transport vehicle to place the article from above. More storage shelves are provided than the carry-in/out port and are provided to have a smaller vertical dimension than that of the carry-in/out port. The crane places an article on the carry-in/out port onto the storage shelves or place an article on the storage shelves onto the carry-in/out port by a transfer device.
US11239099B2 Tool monitoring device and method of monitoring tool
In some embodiments, a system for monitoring a tool is provided. The system includes a tool monitoring device, a transporting system and an external apparatus. The tool monitoring device is configured to monitor an environmental parameter of a load port of a tool. The tool monitoring device includes a wafer pod and a monitoring module disposed in the wafer pod. The monitoring module includes at least one sensor, a computer coupled to the at least one sensor, a power supply electrically coupled to the at least one sensor and the computer, and a wireless unit coupled to the computer. The transporting system is configured to transfer the tool monitoring device from one load port to another load port. The external apparatus is coupled to the tool monitoring device.
US11239098B2 Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
According to one aspect of technique described herein, there is provided a technique including; a process chamber in which at least one substrate is processed; an electromagnetic wave supply part configured to supply an electromagnetic wave to the at least one substrate; a substrate holding part configured to hold the at least one substrate and at least one susceptor for suppressing the electromagnetic wave from being adsorbed to an edge of the at least one substrate; a substrate transfer part configured to transfer the at least one substrate; and a controller configured to control the substrate transfer part so as to correct a position of the at least one susceptor.
US11239097B2 Etching apparatus and etching method and detecting apparatus of film thickness
In thickness/depth measurement of a wafer in etching, variation occurs in detected light quantity due to fluctuation of light quantity of a light source or fluctuation of air in a region through which light passes, and measurement accuracy of thickness/depth is reduced, and thus the total light quantity or average light quantity of an arbitrary wavelength is calculated from an optical spectrum measured at each time instant during etching, estimated total light quantity or estimated average light quantity at the present time, which is estimated using total light quantity or average light quantity measured prior to the present time, is calculated, a change rate, as a ratio of the total light quantity at the present time to the estimated total light quantity or a ratio of the average light quantity to the estimated average light quantity, is calculated, the calculated change rate is used to correct light quantity of each wavelength at the present time, and the corrected light quantity of each wavelength is used to perform thickness/depth measurement.
US11239096B2 Integrated fan-out package and manufacturing method thereof
An integrated fan-out package includes a first redistribution structure, a die, an insulation encapsulation, and at least one first through interlayer via. The first redistribution structure includes a dielectric layer, a feed line at least partially disposed on the dielectric layer and a signal enhancement layer covering the feed line, wherein the signal enhancement layer has a lower dissipation factor (Df) and/or a lower permittivity (Dk) than the dielectric layer. The die is disposed on the first redistribution structure. The insulation encapsulation encapsulates the die. The at least one first TIV is embedded in the insulation encapsulation and the signal enhancement layer.
US11239091B2 Etching of metal oxides using fluorine and metal halides
Embodiments of this disclosure provide methods for etching oxide materials. Some embodiments of this disclosure provide methods which selectively etch oxide materials over other materials. In some embodiments, the methods of this disclosure are performed by atomic layer etching (ALE). In some embodiments, the methods of this disclosure are performed within a processing chamber comprising a nickel chamber material.