Document | Document Title |
---|---|
US11224150B2 |
Electromagnetic mitigation modules for public utility facilities
A method of operating a public utility facility includes receiving a commodity at a processing facility communicably coupled to a control system that includes primary electrical components configured to operate the processing facility, and transitioning operation of the processing facility to an electromagnetic pulse mitigation module communicably coupled to the processing facility via a fiber optic line when the primary electrical components are rendered inoperable. The electromagnetic pulse mitigation module comprises a continuous conductive enclosure that is impervious to radiated and coupled electromagnetic energy. Operation of the primary electrical components is then assumed with one or more backup electrical components housed within the electromagnetic pulse mitigation module. |
US11224147B1 |
Direct cooling of inverter switches
A switch of an inverter module is disposed in a coolant channel, is configured to be immersed in coolant in the coolant channel, and includes: a first terminal disposed on a first plane and configured to connect to a direct current (DC) reference potential; a second terminal disposed on a second plane and configured to connect to an alternating current (AC) reference potential; a gate, an emitter, and a collector; first cooling features that extend away from the first and second planes, that directly contact the first terminal, and that are configured to allow coolant flow therethrough; and second cooling features that extend away from the first cooling features, the first plane, and the second plane, that directly contact the second terminal, and that are configured to allow coolant flow therethrough. |
US11224146B2 |
Apparatus for electronic cooling on an autonomous device
An apparatus to cool electronics in an autonomous vehicle, where the autonomous vehicle includes significant computing power to receive data from on-board sensor, cellular data and user interactions and to navigate an environment to a predetermined location. The cooling system includes a radiator, fan, pump and cold plate. The cold plate is formed from two plates with extended surfaces that are mated together so that the cavities around the extended surfaces form a flow passage. The electronics processing the data and navigating are mounted on the outside surface of the cold plate. |
US11224143B2 |
Charging pile
The present disclosure provides a charging pile including a supporting device, a control module and a power module. The control module is fixed on the supporting device and includes a first housing, a control unit and a waterproof device. The first housing has a first opening. The waterproof device is disposed on and surrounding around the periphery of the first opening. The power module is fixed on the supporting device and disposed on the top of the control module. The power module includes a second housing and a power supply unit. The second housing has a second opening, which is in communication with the first opening of the first housing. The control unit is electrically coupled with the power supply unit. The waterproof device is disposed between the first housing and the second housing, and surrounding around the periphery of the first opening and the periphery of the second opening. |
US11224137B2 |
Hinge module to open and close a device
The present invention relates to a hinge module of a foldable type device, which is connected to two casings for being relatively rotated for being in a folded status or in a unfolded status, each of the casings has a fixed outer casing and a moveable inner casing. The hinge module includes a base and two slide mechanisms. One end of a connection rod of each slide mechanism and one end of the linkage member are respectively pivoted to two pivotal parts at one end of the base; after each inner casing is driven to reversely displace, one end of each plate member is separated from each block part, so as to reversely swing and shift for forming an accommodation space allowing a bent central portion of a flexible monitor to be accommodated. |
US11224136B2 |
Display device for vehicle
A display device for a vehicle includes a main body, a guide, and a flexible display. The flexible display is configured to be inserted between a pair of guide plates of the guide. The pair of guide plates are transparent, and an area of the flexible display positioned between the pair of guide plates is configured to vary. The display device allows a front area of the vehicle to be viewed through the transparent guide plates, and allows a rear area of the vehicle to be disposed on the flexible display. The flexible display is configured to be protected by the pair of guide plates and deformed along the pair of guide plates. |
US11224130B2 |
Composite transparent conductors and methods of forming the same
Composite transparent conductors are described, which comprise a primary conductive medium based on metal nanowires and a secondary conductive medium based on a continuous conductive film. |
US11224127B2 |
Flexible printed circuit board and electronic device using the same
A flexible printed circuit board and an electronic device using the same are provided. The electronic device includes a first casing, a second casing, and a printed circuit board combination. The printed circuit board combination includes a first printed circuit board, a second printed circuit board, and a flexible printed circuit board. The flexible printed circuit board includes a body portion, a first extending end, and a second extending end. The body portion defines an opening. The first extending end bends from a first side of the body portion toward the body portion and extends toward a first direction after passing through the opening to connect the first printed circuit board. The second extending end extends from a second side of the body portion toward a second direction to connect the second printed circuit board. |
US11224124B2 |
Flexible and conformal electronics using rigid substrates
A flexible electronics assembly includes a single-piece substrate having two regions of rigidity separated by a localized region of flexibility. The localized region of flexibility has a lower rigidity than the two regions of rigidity. The two regions of rigidity are angularly deflectable from a planar configuration of the single-piece substrate to a non-planar configuration of the single-piece substrate by hinging action of the localized region of flexibility. At least one electronic component is mounted on at least one of the two regions of rigidity. |
US11224122B2 |
Electronic device including shield can structure
An electronic device and shield can structure are provided. The electronic device includes a housing, a circuit board disposed in the housing and one or more electronic components mounted on the circuit board, a shield can coupled to the circuit board and covering the one or more electronic components, one or more first fastening structures disposed on the circuit board and coupled to the shield can, the one or more first fastening structures having a first width, and one or more second fastening structures extending from the one or more first fastening structures, the one or more second fastening structures having a second width smaller than the first width. |
US11224120B2 |
Print circuit board, optical module, and optical transmission equipment
Provided is a print circuit board including: a ground conductor layer; a pair of strip conductors extending along a first orientation; a first resonator conductor three-dimensionally intersecting with the pair of strip conductors along a second orientation; a pair of first via holes connecting the first resonator conductor and the ground conductor layer; and a dielectric layer including the first resonator conductor therein, and being disposed between the ground conductor layer and the pair of the strip conductors. A distance H1 between the pair of strip conductors and the ground conductor layer is twice or more a distance H2 between the pair of strip conductors and the first resonator conductor, and a line length L of the first resonator conductor is 0.4 wavelength or more and 0.6 wavelength or less at a frequency corresponding to the bit rate. |
US11224116B2 |
Matchless plasma source for semiconductor wafer fabrication
A matchless plasma source is described. The matchless plasma source includes a controller that is coupled to a direct current (DC) voltage source of an agile DC rail to control a shape of an amplified square waveform that is generated at an output of a half-bridge transistor circuit. The matchless plasma source further includes the half-bridge transistor circuit used to generate the amplified square waveform to power an electrode, such as an antenna, of a plasma chamber. The matchless plasma source also includes a reactive circuit between the half-bridge transistor circuit and the electrode. The reactive circuit has a high-quality factor to negate a reactance of the electrode. There is no radio frequency (RF) match and an RF cable that couples the matchless plasma source to the electrode. |
US11224106B2 |
Systems, methods and apparatus for compensating analog signal data from a luminaire using ambient temperature estimates
The described embodiments relate to system, methods, and apparatuses for compensating sensor data from a luminaire based on an ambient temperature estimate that is generated from operating characteristics of the luminaire. The sensor data can be provided from a sensor, such as a passive infrared sensor, that is connected to the luminaire, and by compensating the sensor data, more accurate metrics can be generated from the sensor data. For instance, the compensated sensor data can be used to generate occupancy metrics that can be used as a basis for controlling a network of luminaires or other devices that can be influenced by occupants of an area. The compensated sensor data can also be used to calibrate the sensor. |
US11224105B2 |
Systems and methods with TRIAC dimmers for voltage conversion related to light emitting diodes
System and method for voltage conversion to drive one or more light emitting diodes with at least a TRIAC dimmer. For example, the system includes: a phase detector configured to receive a first rectified voltage generated based at least in part on an AC input voltage processed by at least the TRIAC dimmer, the phase detector being further configured to generate a digital signal representing phase information associated with the first rectified voltage; a voltage generator configured to receive the digital signal and generate a DC voltage based at least in part on the digital signal; and a driver configured to receive the DC voltage and affect, based at least in part on the DC voltage, a current flowing through the one or more light emitting diodes; wherein the current changes with the phase information according to a predetermined function. |
US11224103B2 |
LED lighting apparatus
An LED lighting apparatus includes a first LED light source and a second LED light source included in a first light source group; a third LED light source and a fourth LED light source included in a second light source group; a mode detection circuit configured to determine a mode; a current control unit for serial and parallel connection of the first light source group and the second light source group; balancing circuits for serial and parallel connection of the respective light source groups; and a current path providing circuit for providing current paths. The LED lighting apparatus performs light emission in various states depending on the change of a rectified voltage and the change of a mode. |
US11224099B2 |
Mineral insulated cable having reduced sheath temperature
A mineral insulated heating cable for a heat tracing system. The heating cable includes a sheath having at least a first, and optionally a second layer, wherein the thermal conductivity of the second layer is greater than a thermal conductivity of the first layer. In addition, the first and second layers are in intimate thermal contact. The heating cable also includes at least one heating conductor for generating heat and a dielectric layer located within the sheath for electrically insulating the heating conductor, wherein the sheath, heating conductor and dielectric layer form a heating section. In addition, the heating cable includes a conduit for receiving the heating section. Further, the heating cable includes a cold lead section and a hot-cold joint for connecting the heating and cold lead sections. In addition, a high emissivity coating may be formed on the first layer. |
US11224095B2 |
Adaptive operation of a control channel of a radio frequency site controller
One example radio frequency (RF) site controller is configured to communicate with a first communication device over a control channel to establish a traffic channel over which the first communication device is configured to communicate with a second communication device. The RF site controller may control the control channel to switch between operating in (i) a keyed state (in other words a full-power state) for a first dynamic period of time and (ii) a de-keyed state (in other words, a lower-powered state) for a second dynamic period of time. At least one of the first dynamic period of time and the second dynamic period of time may be based on a characteristic of at least one of a group consisting of a coverage area being serviced by the RF site controller and one or more communication devices being serviced by the RF site controller. |
US11224089B2 |
Measurement procedure for unlicensed band operations
A user equipment (UE) is configured to connect to a primary cell serving a primary component carrier (PCC) in the licensed spectrum and a secondary cell serving a secondary component carrier (SCC) in an unlicensed spectrum. The UE is configured with a Connected Discontinuous Reception (C-DRX) functionality including an onDuration. The UE determines a first duration based on an amount of time between when a first operation related to an exchange of data over the SCC is to be performed and when the exchange of data over the SCC is likely to occur, determines whether the exchange of data over the SCC is likely to occur during the onDuration based on the first duration and when the exchange of data is unlikely to occur during the onDuration, delays when the first operation is to be performed to cause the exchange of data over the SCC to occur during the onDuration. |
US11224085B2 |
Method and apparatus for initiating user plane path re-establishment and communications system
A method and an apparatus for initiating user plane path re-establishment and a communications system are disclosed. The method includes: determining, by a session management function entity based on first location information of a terminal device, a session service area to which a current session of the terminal device belongs; and after receiving second location information of the terminal device sent by a mobility management function entity, if determining that the second location information is not within the session service area, instructing the terminal device to initiate a re-establishment procedure for the current session or initiate a handover procedure. Due to introduction of the session service area, when the terminal device moves back and forth at edges of service areas of two adjacent user plane function entities, a ping-pong effect caused by frequent handover between the two user plane function entities is avoided, and user experience is improved. |
US11224084B2 |
Method for registering terminal in wireless communication system and apparatus therefor
A registration method of a user equipment (UE) in a wireless communication system is disclosed. The registration method includes transmitting a registration request message to an access and mobility management function (AMF), wherein the registration request message includes requested network slice selection assistance information (NSSAI) including single (S)-NSSAI corresponding to a network slice to which the UE intends to register with; and receiving, from the AMF, a registration accept message as a response to the registration request message, wherein if at least one of the S-NSSAI included in the requested NSSAI is rejected by the AMF, the registration accept message includes the rejected S-NSSAI and a reason for refusal for the rejected S-NSSAI. |
US11224079B2 |
Method and apparatus for operating wireless communication system having separated mobility management and session management
The present invention defines signaling required for separating a network entity (NE) responsible for mobility management (MM) and session management (SM), which are main function of a control plane (CP) in a next generation (NextGen) mobile communication system, and presents a basic procedure for providing mobile communication services including the signaling. Therefore, complexity of core equipment responsible for the CP is reduced in order to implement a network slice function and provide various levels of mobility, and an effect of minimizing a signaling load therebetween can be obtain. In addition, it is possible to efficiently manage the resources of a base station (radio access network (RAN)) and a user plane network entity (UP NF). |
US11224078B2 |
Multi-operator MEC sharing based on user equipment location
A network device, in a first wireless network operated by a first network operator, receives a first location of a user equipment device (UE) and a second location of a Multi-Access Edge Computing data center (MEC) operated by a second network operator. The network devices performs at least one of: 1) determining a closest gateway or user plane function (UPF) to the MEC data center within the first wireless network; or 2) deploying a Virtual Network Function (VNF) in a particular hosting center that is close to the MEC. The network device sets up a connection between at least one of the determined closest gateway or UPF and the MEC, or the deployed VNF and the MEC, to enable the UE to access the MEC via the first wireless network. |
US11224077B2 |
Positioning assisted resource configuration and selection for two-step random access channel procedure
In an aspect, a user equipment (UE) determines a resource configuration and a transmit power for a physical random access channel (PRACH) preamble sequence and/or a configuration and a transmit power for a physical uplink shared channel (PUSCH) resource unit (PRU) based on positioning information of the UE relative to the base station, the speed of the UE relative to the base station, and/or a radio resource control (RRC) state of the UE, transmits, to the base station, a message comprising the PRACH preamble sequence on a PRACH occasion and a payload on a PRU occasion based on the determined resource configuration and transmit power for the PRACH preamble sequence and/or the determined resource configuration and transmit power for the PRU, and receives, from the base station, a second message comprising information on a physical downlink control channel (PDCCH) and a payload on a physical downlink shared channel (PDSCH). |
US11224074B2 |
Bandwidth part configuration based on a clear channel assessment
Apparatuses, methods, and systems are disclosed for bandwidth part (“BWP”) configuration based on a clear channel assessment (“CCA”). One method includes configuring at least one BWP. Each BWP of the at least one BWP comprises a downlink BWP and an uplink BWP. The method includes indicating a first BWP of the at least one BWP as an active BWP. The method includes performing a CCA prior to transmitting a message. The method includes, in response to the CCA being successful for the active BWP, transmitting the message using the active BWP. The method includes, in response to the CCA being unsuccessful for the active BWP and the CCA being successful for only a second BWP of the at least one BWP: indicating the second BWP as the active BWP; and transmitting the message using the active BWP. |
US11224071B2 |
On-demand system information delivery for extended coverage
Systems and methods for delivery of on-demand system information in a cellular communications network are disclosed. In some embodiments, a method of operation of a network node comprises transmitting, to a User Equipment (UE), minimum system information including a set of signal quality indication levels and corresponding random access parameter(s) and detecting a random access request from the UE that uses the random access parameter(s) configured for the signal quality indication level that corresponds to a signal quality level measured at the UE. The method further comprises deciding whether to deliver on-demand system information to the UE via a broadcast or dedicated signaling based on the signal quality level measured at the UE, broadcasting on-demand system information upon deciding to deliver on-demand system information via a broadcast, and delivering on-demand system information to the UE via dedicated signaling upon deciding to deliver on-demand system information via dedicated signaling. |
US11224070B2 |
Communications device and method collision avoidance on shared communications resources
A communications device can identify one or more sections of plural predetermined sections, divided into time-units, of shared communications resources of a wireless access interface for transmitting data signals to one or more other communications device. The communications device detects whether another of the one or more communications devices are transmitting signals in one or more of the identified sections of the shared communications resources in at least one time divided unit, and if signals transmitted by another of the communications devices are not detected, the device transmits signals in the identified one or more predetermined sections of the shared communications resources for at least one of the time divided units, and then, after a collision avoidance time, detects for at least one subsequent time unit whether another of the one or more communications devices transmits signals in one or more of the identified sections of the shared communications resources. |
US11224069B2 |
Reliable low latency wireless transfer of virtual reality headset sensor information
Certain aspects of the present disclosure generally relate to wireless communications and, more particularly, to wireless transfer of sensor information between a station (e.g., a VR headset) and an access point (e.g., a server). |
US11224063B2 |
Scheduled medium access for directional multi-gigabit wireless communications systems
A method in a wireless access point (AP) for controlling medium access includes: transmitting a beacon frame defining (i) a beacon header interval (BHI), and (ii) a data transmission interval (DTI) divided into a predetermined number of scheduled periods, each scheduled period containing a set of uplink allocation request sub-periods; sending, to a client device, an uplink allocation request assignment indicating an assigned uplink allocation request sub-period from the set, that corresponds to the client device; during a current one of the scheduled periods, receiving an uplink allocation request from the client device during the assigned uplink allocation request sub-period; determining an uplink allocation sub-period for the client device based on the uplink allocation request; and during a next one of the scheduled periods, sending an indication of the uplink allocation sub-period to the client device. |
US11224060B2 |
Gap transmission in channel occupancy time
A method, a computer-readable medium, and an apparatus are provided that improves the reliability of communication between a base station and a user equipment (UE) using an unlicensed spectrum. A base station transmits an initial signal (IS) to the UE indicating communication to the UE within a Channel Occupancy Time (COT), and transmits a gap transmission during the COT over a time period following the IS and prior to transmitting the communication to the UE. |
US11224058B2 |
Device and method for generating a physical layer convergence procedure (PLCP) using aggregation operation
A wireless communication device includes an aggregation circuit, a processing circuit and a transmitter. The aggregation circuit is arranged to execute an aggregation operation to generate a Physical Layer Convergence Procedure (PLCP) Protocol Data Unit (PPDU). The processing circuit is coupled to the aggregation circuit and arranged to generate a first indicator indicating a length of the PPDU and include the first indicator into a first field in a preamble of the PPDU. The transmitter is coupled to the processing circuit and arranged to transmit the PPDU to an access point. |
US11224057B2 |
Uplink time division multiplexing pattern for 5G non-standalone devices
Systems and methods discussed herein are directed to allocating subframes (or slots) of radio frames for LTE uplink transmissions and NR uplink transmissions. In some instances, subframes (or slots) of radio frames may be allocated for LTE downlink transmissions and NR downlink transmissions. |
US11224056B2 |
Code block group-based autonomous uplink transmission
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may transmit, via an autonomous uplink communication, one or more transport blocks to a base station. Each transport block may include a plurality of code block groups (CBGs). The base station may provide CBG-level feedback to the UE based at least in part on the autonomous uplink communication. In some examples, the base station may provide the CBG-level feedback in one or more downlink feedback information (DFI) packets. In some other examples, the base station may provide the CBG-level feedback via one or more uplink transmission grants. The UE may retransmit one or more CBGs from the autonomous uplink communication based at least in part on the DFI packets or uplink transmission grants. |
US11224054B2 |
Transmission method and apparatus for reducing latency in wireless cellular communication
The present disclosure relates to a 5G or a pre-5G communication system for supporting higher data transmission rates in a beyond-4G communication system, such as LTE. Particularly, the present disclosure relates to a method for a base station in a wireless communication system, comprising the steps of: transmitting resource information of a scheduling request (SR) for each transmission type, to a terminal accessing the base station; and receiving an SR corresponding to the transmission type of the terminal from the terminal, in response to the transmission of the resource information of the SR. |
US11224052B2 |
Method and apparatus for transmitting and receiving SA and data in wireless communication system
One embodiment of the present invention relates to a method for receiving, by a UE, scheduling assignment (SA) and data in a wireless communication system, comprising the steps of: receiving a first SA and a second SA in a first subframe; and receiving first data and second data through subchannels indicated by the first SA and the second SA, respectively, wherein the first data and the second data are received through the first subchannel and the second subchannel, respectively, and each of the first subchannel and the second subchannel is composed of a plurality of clusters spaced apart from each other in a frequency domain. |
US11224048B2 |
Group based scheduled and autonomous uplink coexistence
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, from a base station, a group identifier of the UE. The UE may receive, from the base station, an indication of one or more group identifiers associated with scheduled communications with the base station during a time period. The UE may contend, based at least in part on the group identifier of the UE and the one or more group identifiers received from the base station, for access to a set of autonomous uplink (AUL) resources during the time period. The UE may perform, based at least in part on the contending, an AUL transmission to the base station using the set of autonomous uplink resources. |
US11224047B2 |
Server device, information processing device and method
A server device can effectively apply a network coexistence service to a mobile body whose location can change every moment. The server device includes a control unit configured to provide a plurality of lists in which an available frequency and transmission power of the frequency are described for each predetermined range determined on a basis of a predetermined criterion so that the frequency is not set in an overlapped manner in the same predetermined range, to an external device which uses the frequency. |
US11224044B1 |
Partial spectrum evacuation in citizens broadband radio service (CBRS) networks
Various techniques are provided for spectrum allocation. A method can include receiving a message including a first maximum power setting, a second maximum power setting, and a spatial range associated with the second maximum power setting, transmitting at least one first beam within the first maximum power in a spatial range excluding the spatial range associated with the second maximum power setting, and transmitting at least one second beam within the second maximum power in the spatial range associated with the second maximum power setting. |
US11224042B2 |
Frequency selection method, random access method and apparatuses
The present disclosure provides a frequency selection method, a random access method, and an apparatus. The method comprises: determining a first band set, the first band set comprising at least one first working band supported by a network side device, and the first working band comprising at least one uplink frequency range and at least one downlink frequency range; and broadcasting the first band set, so that the terminal determines, according to the first band set, the at least one uplink frequency range and the at least one downlink frequency range comprised in the first working band supported by the network side device. |
US11224037B2 |
Data transmission method, terminal device, and network device
This application provides a data transmission method, a terminal device, and a network device. The method includes: receiving, by a terminal device, first control information sent by a network device, where the first control information is used to instruct the terminal device to receive, on a first time-frequency resource, a first transport block sent by the network device at an nth time; receiving, by the terminal device, the first transport block on the first time-frequency resource; and receiving, by the terminal device, first indication information sent by the network device, where the first indication information is used to indicate a first code block group CBG in the first transport block, and the first CBG corresponds to a second time-frequency resource during nth transmission of the first transport block, where n is an integer greater than or equal to 0. |
US11224036B2 |
Method for transmitting and receiving control information of a mobile communication system
The method for transmitting control information in a mobile communication system includes: determining a control channel resource for transmitting control information by means of the data channel region; and transmitting the control information using the determined control channel resource. A capacity for control information, which increases for multiple user multiple-input multiple-out (MIMOs) in a heterogeneous network environment, for heterogeneous network interference control using carrier aggregation, for frequent use of a multicast-broadcast single frequency network (MBSFN) subframe, and for a CoMP transmission control, may be satisfied. Further, an adaptive resource allocation based on a requested capacity for control information may be enabled, and the efficient utilization of resources may also be enabled. |
US11224034B2 |
Configuring uplink control channel resources for communications in a shared radio frequency spectrum
A base station may access a channel following a successful channel access procedure. The base station may transmit an indication of a resource allocation to a user equipment (UE). The resource allocation may include an allocation of resources for subsequent communications between the base station and the UE, for example, defining a set of transmission time intervals (TTIs) during which the UE may transmit repetitions of uplink control information. The UE may also perform a channel access procedure to access the channel. The UE may transmit repetitions of the uplink control information using the set of TTIs according to the resource configuration. In some cases, the UE may stop transmitting uplink control information repetitions after a maximum number repetitions also according to the resource configuration. The base station may then receive and combine the uplink control information. |
US11224033B2 |
Control channel for new radio
Systems, methods, and instrumentalities are described herein that may be used to determine one or more control channel operational parameters associated with transmitting first uplink control information (UCI) and second UCI in a same control channel. The parameters may include respective repetition factors and/or spreading factors associated with the first UCI and the second UCI. The parameters may be determined based on respective characteristics of the first UCI and the second UCI. These characteristics may include reliability requirements, usage scenarios, and/or the like. Self-contained subframes may be employed to transmit data and/or control information. The control information may be transmitted using different numerologies than the data. |
US11224032B2 |
Layer 2 relay to support coverage and resource-constrained devices in wireless networks
Embodiments provide a mobile communications device that includes a processor configured to communicate with a transceiver and a memory. The transceiver is configured to exchange control signals with a network node. The memory contains instructions that when executed by the processor configure the processor to operate the transceiver to exchange the control signals. The instructions further configure the processor to pass a first proper subset of the control signals to a remote device without operating according to the control signals, and to operate according to control signals in a second proper subset of the control signals. The processor is thereby configured to operate on behalf of a remote communication device to support communication between the remote communication device and the network node. |
US11224026B2 |
Wireless communication system, wireless station, and mobile object information sharing method
Communication quality such as a delay time is stabilized when a plurality of communication devices on the same mobile object simultaneously perform communication. A wireless communication system that is mounted on a mobile object is a wireless communication system including a first communication device and a second communication device that are mounted on a first mobile object. When information is shared by mobile objects by transmitting packets based on information acquired from a network within the first mobile object to a communication device mounted on a second mobile object, the first communication device and the second communication device transmit packets having the same content by adopting the same communication method and using different channels, and a signal transmission timing from the second communication device is set to be later than a transmission timing from a communication device from the first communication device. |
US11224020B2 |
Uplink transmission power control method and device in wireless cellular communication system
Disclosed are a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security, and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. A power control method for uplink transmission in a wireless cellular communication system is disclosed. |
US11224015B2 |
Dynamic bandwidth switching for reducing power consumption in wireless communication devices
Systems, methods, apparatuses, and computer-program products for performing dynamic bandwidth switching between control signals and data signals of differing bandwidths are disclosed. A mobile device receives a control signal having a first bandwidth. The mobile device receives a data signal having a second bandwidth different from the first bandwidth. The control signal and the data signal are received over a single carrier frequency. The data signal is transmitted after the control signal such that the data signal and control signal are separated by a time interval. The time interval is based on a switching latency of the mobile device. |
US11224011B2 |
Method for supporting NAS signaling by base station in wireless communication system and apparatus therefor
An embodiment of the present invention provides a method for supporting non-access stratum (NAS) signaling of a user equipment (UE) by a base station in a wireless communication system, the method comprising the steps of: transmitting, to the UE, information for supporting a connection to a next generation (NG) core; receiving a NAS-related message from the UE; performing one of MME selection and AMF selection according to whether the NAS-related message includes information regarding the use of NAS; and transmitting an NAS message to an MMF or an AMF which is determined as a result of performing one of the MME selection and the AMF selection. |
US11224010B2 |
Method and apparatus for indicating and using radio access technology preferences in a wireless communication network
Methods and apparatuses exemplified in this disclosure provide mechanisms for a wireless communication device to indicate its Radio Access Technology (RAT) preferences to a wireless communication network, and for a wireless communication network to consider the RAT preferences of a given device when deciding which RAT the device will use. As a non-limiting example of the advantages flowing from these mechanisms, devices operating within a network that includes or is associated with multiple RATs can indicate their preferences for which RAT they use, while still allowing the network to retain control of the RAT selection decisions. Such flexibility offers significant advantages in 5G networks that provide tight integration between multiple RATS—e.g., between LTE and NR air interfaces. However, the methods and apparatuses disclosed herein are not limited to 5G networks. |
US11224008B2 |
Uplink carrier access
One or more devices, systems, and/or methods for facilitating access to an uplink carrier are provided. For example, information corresponding to a plurality of uplink carriers may be received from a wireless node. An uplink carrier may be selected from the plurality of uplink carriers based upon the information. A request to access the uplink carrier may be transmitted to the wireless node. |
US11223997B2 |
Beacon protection in a wireless network
A wireless station implements a technique to reduce the occurrence of collisions between messages in a wireless network by dynamically modify a message interval during a communication session, based on received information indicative of beacon timing. The technique can be implemented by an access point on a wireless local area network to reduce collisions of beacon transmissions. The received information can include information indicative of beacon timing of other wireless stations, difficulty of a wireless station in receiving beacon transmissions, device capabilities, and/or other information. |
US11223994B2 |
System and method for ultra-low latency short data service
Systems and methods provide a short data, low latency service using a Multi-access Edge Computing (MEC) network. A network device receives, in a core network, an attach request from an end device and detect whether a packet size range for data transmissions from the end device is within a configured size threshold. The network device directs, when the packet size is within the configured size threshold, routing of the data transmissions via a control plane function of an edge network to a local instance of an application server in the edge network. The network device directs, when the packet size is over the configured size threshold, routing of the data transmissions via a user plane function of the edge network to a local instance of an application server in the edge network. |
US11223989B2 |
Method for managing handover roaming
A communication system comprises a first LPWAN network of a first operator and a second LPWAN network of a second operator. The first network comprises subnetworks implementing separate respective transport protocols. The subnetworks comprise at least one convergence node and communication nodes integrating gathering gateways. The first network comprises servers interconnected to a server of the second network interfacing an application server and an authentication server. Uplink frames of application data are transported from an end device of the second operator to the application server by successive relayings of the servers. However, when the end device of the second operator requests to join the communication system in order to benefit from the services of the application server, the gathering gateways communicate directly with the authentication server by shortcutting the other servers as well as the convergence nodes to which said gathering gateways are respectively attached. |
US11223988B2 |
Quality of service rule management in 5G
A method of managing default QoS rules for PDU session is proposed. A PDU session defines the association between the UE and the data network that provides a PDU connectivity service. Each PDU session is identified by a PDU session ID, and may include multiple QoS flows and QoS rules. There can be more than one QoS rule associated with the same QoS flow. A default QoS rule is required to be sent to the UE for every PDU session establishment and it is associated with a QoS flow. Within a PDU session, there should be one and only one default QoS rule. In one novel aspect, UE behavior and error handling for proper QoS rule management is defined for PDU session establishment and modification procedures to enforce the one and only one default QoS rule policy. |
US11223987B2 |
Bearer translation
A method for default bearer translation with GBR bearer translation. A GBR bearer is known in UE, 5G-RAN, and SMFs from the existing QoS flow parameters from one or more QoS flows for a PDU session that includes an assigned value for guaranteed bit rate. In case a PDU session has multiple associated QoS flows that each include an assigned value for GBR, then each flow is determined as a candidate GBR bearer for the target E-UTRAN access. Each GBR bearer candidate is arranged in a priority order based on, for example, the QoS flow parameters (e.g., ARP), and the resulting EPS QCI when translating QoS flow parameters in 5G to a 4G representation. Hence common priority rules for 1:1 mapping between 5G representation and 4G representation can be used by the nodes having knowledge of the PDU session and the QoS flows characterized as GBR QoS flows. |
US11223985B2 |
Beam-based connection failure report
A first wireless device receives from a first base station, configuration parameters of one or more beams of a first cell of the first base station. The first wireless device determines a connection failure with the first cell based on considering at least one criterion during a period of time in which the first wireless device employs at least a first beam of the one or more beams. The first wireless device selects a second cell of a second base station in response to the connection failure. The first wireless device transmits to the second base station, a first message comprising a radio link failure report. The radio link failure report comprises: a first beam identifier of the first beam; and a first cell identifier of the first cell. |
US11223984B2 |
Method for operating a user equipment in a cellular network
The present invention relates to a method for operating a user equipment maintaining a normalized transmission power value, indicating the maximum transmission power of the transmitting circuitry of the user equipment, further comprising the step for the user equipment of: receiving a predetermined sufficient power level to be achieved at the base station receiver from the base station, deriving a pathloss value from signals received from the serving base station, determining a signal power value out of the normalized transmission power value of the user equipment and the pathloss value, and when the determined signal power value level is lower than a predetermined sufficient power level at the base station: performing a cell re-selection to another base station. |
US11223980B2 |
Access control method and apparatus for use in mobile communication
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on 5G communication technology and IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A handover method of a terminal in a mobile communication system according to the present disclosure includes transmitting UE capability information including a random access-free handover indicator to a first base station, receiving a handover command message from the first base station, and transmitting, when the handover command message includes uplink resource information, a handover complete message to a second base station based on the uplink resource information. |
US11223977B2 |
Service-based data rate control to enhance network performance
A telecommunications network may adjust service (e.g., data rate) to UE devices within an adjustable zone (AZ) that includes at least two types of coverage (e.g., 4G and 5G), depending on services being utilized by the UE devices and current network conditions of the telecommunications network. When a UE device enters the AZ, the services utilized by the UE device are determined. For instance, if the UE device is moving within the AZ, and the LTE is congested, the data rate for the device may be reduced. If the LTE network is not in a heavy loaded condition and the UE device is utilizing an Enhanced Mobile Broadband (EMBB) service, the AZ can be reduced or disabled. Further, the device data rate can be reduced for different services in the AZ to keep more devices in NR coverage. |
US11223968B2 |
Method, apparatus and system for reporting radio access network traffic
The radio access network data volume report method includes that a node acquires data volume information about a data radio bearer, where the data volume information about the data radio bearer includes data volume of a packet data convergence protocol protocol data unit (PDCP PDU) or a packet data convergence protocol service data unit (PDCP SDU) generated by a packet data convergence protocol (PDCP), and data volume of a PDCP PDU or a PDCP SDU issued by the PDCP to radio link control; the node generates a radio access network data volume report according to the data volume information about the data radio bearer; and the node sends the radio access network data volume report to a core network. |
US11223966B2 |
Transmission speed testing of a wireless local network
A wireless testing system is provided that testing transmission speeds associated with a WLAN or other wireless network. In one instance, a network transmission between a device in a telecommunications network and a modem be measured and initiated via an application executed on a mobile device. One or more Wi-Fi speed tests may also be performed to determine a transmission speed between a wireless device associated with the premises and the modem of the WLAN. To conduct the Wi-Fi speed test, a mobile device (such as the mobile device executing the application) may transmit, in some instances in response to an input to the mobile device, an instruction to the test controller to conduct the Wi-Fi speed test. The measured transmission speeds may be controlled by a controller that may store the speed test results in a network repository available to the mobile device. |
US11223965B2 |
Method and apparatus for controlling network sensors
The disclosure provides a method and an apparatus for controlling ZigBee® sensors. The method comprises: selecting a second coordinator of a second ZigBee® network as a backup coordinator; detecting whether there is a failure of a first ZigBee® coordinator; and if a failure of the working coordinator is detected, designating the second ZigBee® coordinator as the networking coordinator for the end user devices in the first ZigBee® network to join the second ZigBee® network. |
US11223964B2 |
Managing and management of temperature of a wireless system
A dynamic temperature manager of a wireless system determines a threshold temperature defined by one or more operating parameters of the wireless system, the threshold temperature indicating a temperature in response to which power consumption of the wireless system is to be reduced. The dynamic temperature manager receives an indication of a temperature of the wireless system. A determination is made that the temperature exceeds the threshold temperature. The dynamic temperature manager provides an indication to cause a media access control (MAC) processing circuitry of the wireless system to adjust the one or more operating parameters of the wireless system to reduce the power consumption and the temperature of the wireless system based on the determination that the temperature exceeds the threshold temperature. |
US11223960B2 |
Network planning tool for forecasting in telecommunications networks
The disclosed embodiments include a method for forecasting a coverage area of a candidate site in an anchor network. The method can include obtaining cell site information of anchor networks and of the candidate site (e.g., a donor site of a donor network), simulating a spatial layout of the anchor sites in a virtual network, and estimating a coverage area of the candidate site in the virtual network. The estimated coverage area of the candidate site forms a polygon-shaped coverage area in the spatial layout of the virtual network. The method can further include modifying the polygon-shaped coverage area of the candidate site relative to an intersection with a coverage area of a neighboring site, pruning the modified coverage area of any portion that exceeds a predefined coverage radius, and causing an output including the pruned coverage area of the candidate site as an indication of the forecast coverage area. |
US11223958B1 |
Distributing spectral resources between interfering cells
Apparatuses, methods, and systems for distributing resource block between interfering cells, are disclosed. One method includes allocating resource blocks to a plurality of macro-cells and a plurality of sectors of a supercell, wherein the supercell includes a wireless communication cell that provides wireless coverage to a larger region than the plurality of macro-cells and includes the plurality of sectors, wherein each of the macro-cells provide wireless coverage that at least partially overlaps with a region of wireless coverage of the supercell, wherein the supercell includes one or more supercell sector coverage areas that are interfered by at least one macro-cell. The allocating the resource blocks includes determining which of the plurality of macro-cells wirelessly interfere with which of the plurality of sectors, and determining, for each interfered sector, a total unmet demand of the interfered sector and interfering macro-cells for a coverage area of the interfered sector. |
US11223955B2 |
Mitigation of spoof communications within a telecommunications network
The present disclosure describes techniques for detecting and mitigating a spoof communication within a network, such as a Session Internet Protocol (SIP) network. More specifically, a SIP server, may receive a call request to initiate a Voice over Internet Protocol (VoIP) communication between an originating device and a recipient device. In response, the SIP server may analyze registration data associated with a subscriber account of the originating device, and in doing so, infer whether the call request is a spoof communication. |
US11223953B2 |
Communication apparatus, control method, and storage medium
A communication apparatus includes first communication means having a first communication function for wirelessly communicating with a partner apparatus, and second communication means having an electric power supply function for wirelessly supplying electric power to the partner apparatus and a second communication function for wirelessly communicating with the partner apparatus. The second communication function is for transmitting specific data sequence to the partner apparatus in response to reception of specific data from the partner apparatus, and the electric power supply function is for supplying electric power to the partner apparatus in a case of receiving from the partner apparatus, with the first communication means, a signal indicating that the partner apparatus has received the data sequence. |
US11223952B2 |
Data transmission method, transmitter, receiver and storage medium
A data transmission method is provided. The method includes: a transmitter generates a transmission signal on the basis of transmission information and modulates, by means of a carrier modulation, the transmission signal to a target time-frequency resource for transmission. The transmission information at least includes terminal identification information; or at least includes terminal identification information and signaling information; or at least includes terminal identification information and data information; or at least includes terminal identification information, data information and signaling information; or at least includes terminal identification information and cell identification information; or at least includes terminal identification information, cell identification information and signaling information; or at least includes terminal identification information, cell identification information and data information; or at least includes terminal identification information, cell identification information, data information and signaling information. A transmitter, a receiver and a storage medium are further provided. |
US11223949B2 |
Method and device for network slice authentication
Embodiments of the present application provides a method and device for network slice authentication, which is beneficial to realize an authentication of a terminal device by a third-party server. The method includes: acquiring, by a terminal device, first indication information, where the first indication information is used to indicate whether a third-party server corresponding to at least one network slice needs to perform authentication on the terminal device. |
US11223945B2 |
Network outage detection
Systems, apparatuses, and methods are described for detecting network service failure and potential source of failure in a communication network employing registration requests. A current quantity of registration requests may be compared against an expected quantity of registration requests, and a network alert may be sent based on the comparison. |
US11223941B2 |
Data feeds of consumer eSIMS for a subscription management service
One or more consumer Embedded Subscriber Identity Module (eSIM) profiles that are provided by at least one eSIM profile vendor may be received at a subscription management service of a wireless communication carrier. The one or more consumer eSIM profiles are loaded into a Subscription Manager Data Preparation Plus (SM-DP+) profile data store of the subscription management service, each consumer eSIM profile for deployment to an eUICC in a consumer device. At least one corresponding Integrated Circuit Card identifier (ICCID) of the one or more consumer eSIM profiles as loaded into the SM-DP+ data store is then sent via the subscription management service to an eSIM profile management platform of the wireless communication carrier using a service data feed, in which the eSIM profile management platform provides a central interface for a plurality of entities to perform actions with respect to multiple eSIM profiles and multiple eUICC Identifiers (EIDs). |
US11223939B1 |
Environmental conditions monitoring system
A conditions monitoring system may include a system controller. The controller may include a device processor and a non-transitory computer readable medium. The computer readable medium may include instructions executable by the device processor to perform the following steps: receiving positional data from a wearable device of a wearer; receiving physical data regarding the wearer from the wearable device; making a determination of a possible dangerous condition based on the data received from the wearable device; and providing instructions to the wearable device for the wearer to follow to avoid danger related to the dangerous condition. |
US11223931B2 |
Wireless sensor system, wireless terminal device, relay device, communication control method, and communication control program
This wireless sensor system includes: one or a plurality of wireless terminal devices, each wireless terminal device being configured to transmit data including sensor information indicating a result of measurement by a sensor; a management device; and one or a plurality of relay devices, each relay device being configured to transmit the data received from the wireless terminal device, to the management device or another relay device. The wireless terminal device transmits, through one-way communication, a radio signal including the data and being in a first frequency band. The relay device transmits a radio signal including the data and being in a second frequency band partially or entirely different from the first frequency band. |
US11223930B2 |
Method and systems for generating and sending a hot link associated with a user interface to a device
Systems, methods, and computer-readable media for sending links or hotlinks to a device are provided. The device may be on a wireless network, a wired network, or directly coupled to the device sending the link. The link/hotlink contains an associated action that is performed by the device receiving the link. The associated action may be performed when a user interface is activated or automatically when the link/hotlink is received by the device. The action can be a broadcast/streaming action, Internet action, call action, download action, or upload action. The broadcast action instructs the device to tune to a particular broadcast, the streaming action instructs the device to stream specified content/media, the internet action instructs the device to access an Internet site, and the call action instructs the device to call a telephone number. Other embodiments may be described and/or claimed. |
US11223924B2 |
Audio distance estimation for spatial audio processing
A method for spatial audio signal processing including: determining at least one first direction parameter for at least one frequency band based on microphone signals received from a first microphone array; determining at least one second direction parameter for the at least one frequency band based on at least one microphone signal received from at least one second microphone, wherein microphones from the first microphone array and the at least one second microphone are spatially separated from each other; processing the determined at least one first direction parameter and the at least one second direction parameter to determine at least one distance parameter for the at least one frequency band; and enabling an output and/or store of the at least one distance parameter, at least one audio signal, and the at least one first direction parameter. |
US11223922B2 |
Directional sound system for a vehicle
Vehicles and sound systems for vehicles are provided. In one example, the sound system includes a plurality of sound producing devices. An amplifier is in communication with the sound producing devices. The amplifier is configured to receive input channels of audio content, to map the input channels with output channels to the sound producing devices in one of stereo mode and surround sound mode, and to remap the input channels with the output channels to the sound producing devices in the other of the stereo mode and the surround sound mode. |
US11223915B2 |
Detecting user's eye movement using sensors in hearing instruments
A set of one or more processing circuits obtains eye movement-related eardrum oscillation (EMREO)-related measurements from one or more EMREO sensors of a hearing instrument. The EMREO sensors are located in an ear canal of a user of the hearing instrument and are configured to detect environmental signals of EMREOs of an eardrum of the user of the hearing instrument. The one or more processing circuits may perform an action based on the EMREO-related measurements. |
US11223913B2 |
Compact hearing aids
The present disclosure relates to compact hearing aids, components thereof, and support systems therefor, as well as methods of insertion and removal thereof. The compact hearing aids generally include a sensor, such as a microphone, an actuation mass, an energy source for providing power to the compact hearing aid, a processor, and an actuator enclosed in a housing that is designed to be inserted through the tympanic membrane during a minimally-invasive outpatient procedure. In operation, the microphone receives sound waves and converts the sound waves into electrical signals. A processor then modifies the electrical signals and provides the electrical signals to the actuator. The actuator converts the electrical signals into mechanical motion, which actuates the actuation mass to modulate the velocity or the position of the tympanic membrane. |
US11223911B2 |
Intra ear canal hearing aid
The present invention is in the field of an intra ear canal hearing aid, a pair of said hearing aids and use of said hearing aids. Such a hearing aid is designed to improve or support hearing. It typically relates to an electroacoustic device that is capable of transforming sound, thereby reducing noise and typically amplifying certain parts of the audio frequency spectrum. In addition such as hearing aid may improve directional perception of sound. |
US11223907B2 |
Semiconductor structures
The present application relates to structures for supporting mechanical, electrical and/or electromechanical components, devices and/or systems and to methods of fabricating such structures. The application describes a primary die comprising an aperture extending through the die. The aperture is suitable for receiving a secondary die. A secondary die may be provided within the aperture of the primary die. |
US11223906B2 |
Acoustic receiver housing with integrated electrical components
An acoustic receiver includes a cover made from an electrically non-conductive material configured to cover an open end of a housing portion of the acoustic receiver. The cover has an inner surface and an outer surface. A motor is disposed on the inner surface, while electrical contacts are disposed on the outer surface. The motor is connected to the electrical contacts on the outer surface. Various electrical components, such as integrated circuits and sensors, are disposed on the outer surface. In one embodiment, the cover is a printed circuit board. |
US11223905B2 |
Sound generator and electronic product
A sound generator comprises a shell, a vibration system and a magnetic circuit system sequentially accommodated and fixed at a first end of the shell from top to bottom; the magnetic circuit system is provided with a rear sound hole; the shell comprises a first portion corresponding to the vibration system and the magnetic circuit system, and a second portion integrally extending downward from the first portion beyond a bottom surface of the magnetic circuit system. A second end portion of the shell is integrally provided with a shell bottom wall or separately mounted with a lower cover plate; and a rear cavity in communication with the rear sound hole is formed. |
US11223903B2 |
Head support incorporating loudspeakers and system for playing multi-dimensional acoustic effects
A device for audio reproduction comprising a rest element for the head of a user, made of a deformable material; a right lateral support element and a left lateral support element located respectively at the two respective right and left of the rest element, the rest and left lateral support elements being connected to each other by the rest element, the right and left support elements defining between each other a listening space and a longitudinal direction parallel to the lateral support elements; a right loudspeaker and a left loudspeaker mounted respectively to the right and left lateral support elements have respective sound emission faces that face towards a listening space defined between the right and left support elements. The rest element provides a housing for a portion of the head configured to arrange the user with right and left ears oriented towards the right and left loudspeakers, the right and left ears creating a listening axis. The loudspeakers have each a woofer and a tweeter, the tweeters having an axis of symmetry oriented with a predetermined angle of elevation (α) with respect to the listening axis between a first elevation value (α) substantially equal to zero, where the tweeters have the axes of symmetry aligned to each other and parallel to the listening axis, and a second elevation value (α), substantially equal to 45°, where the tweeters have the axes of symmetry converging towards a point that is located higher than the listening axis. A system of binaural recording and a system for playing multi-dimensional effects are also included. |
US11223900B2 |
Bluetooth device and method for controlling a plurality of wireless audio devices with a Bluetooth device
The Bluetooth device (DEV) controlling a plurality of wireless audio devices, comprises: a wireless communication circuit, to receive a wireless audio device identifier from each wireless audio device; a sound processing circuit to apply independent audio effects on a main audio stream such that the sound processing circuit outputs as many modified audio streams as the wireless communication circuit has received identifiers of wireless audio devices, on the basis of the characteristics of each wireless audio device; an allocation circuit to allocate each modified audio stream to a respective wireless audio device, a transmission circuit to wirelessly transmit through a Bluetooth usage each modified audio stream to said respective wireless audio device for emission by the wireless audio devices. |
US11223898B2 |
Audio system including speakers with integrated amplifier and method of detecting speakers
An audio system includes a variable voltage power supply and at least one remotely positioned speaker assembly. The speaker assembly includes a driver (e.g., a tweeter) and a switching amplifier. Moving the switching amplifier to a remote position within the speaker assembly provides numerous design advantages and allows for utilization of a smaller power supply. In addition, the audio system is configured to detect a type of the at least one speaker and to adjust an output voltage of the variable voltage power supply accordingly. This allows for reconfiguration and/or expansion of original systems. A related method of detecting a type of speaker electrically connected to an audio source is also provided. |
US11223893B2 |
Audio output devices with user-based adjustable contact components
Methods and systems are provided for audio output devices with user-based adjustable contact. Information, relating to a user of an audio output element having at least a portion in contact with the user, may be obtained, and conditions affecting outputting of audio signals via the audio output and/or the contact between the audio output element and the user may be assessed based on the obtained information. Adjustments applicable to the audio output element may be determined, based on the assessment of conditions, with at least one adjustment applying to positioning of the at least a portion of the audio output element relative to the user, and with the determining including configuring the at least one adjustment to account for and/or counteract effects of the conditions on one or both of the outputting of the audio signals and the contact between the audio output element and the user. |
US11223891B2 |
System and method thereof
A system, disposed within a wearable hearing device, includes a sound producing device (SPD) driven by a driving voltage, a first sound sensing device, and a subtraction circuit. The first sound sensing device is configured to sense a combined sound pressure produced at least by the SPD and generate a sensed signal accordingly. The subtraction circuit has a first input terminal, a second input terminal, and a first output terminal. The first input terminal is coupled to the first sound sensing device, and the first output terminal is coupled to the SPD. A first phase delay between the driving voltage and the sensed signal is less than 60°. |
US11223890B2 |
Personal audio device with improved outer ear fit
An electronic device for playing audio information to a user includes a body and an ear insert. The body has a speaker therein. The ear insert includes an integrated fin and sound director. The fin and sound director are oriented opposite one another at opposite ends of the ear insert in a longitudinal direction. The fin and sound director each project beyond the body in the longitudinal direction. The sound director is in audio communication with the speaker to direct sound from the speaker through and out of the sound director. |
US11223888B2 |
Bone conduction speaker composed of double magnetic fields
The utility model discloses a bone conduction speaker composed of double magnetic fields, which comprises a mechanical conductive sheet, a conduction shell, an outer housing, a coil and a magnetic assembly, wherein the conduction shell comprises a bottom plate and a side wall, and the magnetic assembly comprises a first magnet, a magnetic conductive sheet and a second magnet; the side wall of the conduction shell surrounds the first magnet, the magnetic conductive sheet and the second magnet; and the coil is arranged in a magnetic gap formed between the side wall of the conduction shell and the magnetic assembly. The second magnet can inhibit leakage of magnetic induction field generated by the first magnet, restrain the form of magnetic induction lines passing through the coil, make more of the magnetic induction field pass through the coil as horizontally and densely as possible, and enhance the magnetic induction sensitivity at the coil position. In addition, a magnetic induction field generated by a magnetic field of the second magnet can further enhance the magnetic induction strength at the magnetic field position (i.e., at the magnetic gap), thereby improving the sensitivity of the bone conduction speaker and further improving the mechanical conversion efficiency of the bone conduction speaker. |
US11223886B1 |
Vehicle mounted sound bar and operation thereof
A sound bar system and method of use are disclosed. The sound bar system, in various embodiments, includes a tubular hollow housing, two woofers, two speaker assemblies, and two baffles. The tubular hollow housing includes two terminal circular openings, one at each end of the tubular hollow housing, and an interior passage that extends between the two terminal circular openings. Each terminal circular opening receives one of the woofers. The tubular hollow housing also includes two speaker assembly openings that each extend from an outer surface of the tubular hollow housing to the interior passage. Each speaker assembly opening receives one of the speaker assemblies. The baffles are located inside the interior passage, such that the baffles divide the interior passage into three isolated sound spaces. One sound space houses one woofer and one speaker assembly. Another sound space houses another woofer and another speaker assembly. The last sound space is located in between the other two sound spaces. |
US11223880B2 |
Picture generation method and apparatus, device, and storage medium
A picture generation method includes: displaying a subtitle list of a target video; obtaining, in response to a selection instruction corresponding to a target subtitle in the subtitle list, a target image frame corresponding to the target subtitle in the target video; displaying the target image frame in a stitching preview region; and generating, in response to a picture generation instruction, a collage picture according to the target image frame included in the stitching preview region. |
US11223879B2 |
Method of adaptive browsing for digital content
Providing adaptive visual browsing of digital content may be accomplished by presenting a scrolling ticker on a display for browsing of digital content available for viewing by a user of a processing system, the ticker having a plurality of items, each item including an image representing at least one of a content title and a content service provider; receiving a user input selection from a remote control device operated by the user, the user input selection selecting one of the ticker items to indicate the user's interest in the selected item; and changing at least one of the items in the ticker to another item in response to the user input selection, wherein the other item has metatags similar to or related to metatags of the selected item. |
US11223857B2 |
Transmission device, transmission method, media processing device, media processing method, and reception device
A container having a predetermined format is transmitted, the container including a media stream. A predetermined number of pieces of media access information associated for a set of media access control, are sequentially inserted into a layer of the media stream or a layer of the container. For example, the media access information includes identification information for making a distinction from different media access information and identification information for making an association with the different media access information. A set of media access control can thereby be favorably performed on a reception side. |
US11223849B2 |
Transform sign compression in video encoding and decoding
There are disclosed various methods, apparatuses and computer program products for video decoding or encoding. In some embodiments the method for decoding or encoding comprises obtaining absolute values of at least a first transform coefficient and a second transform coefficient of a block of a picture (600); determining the sign of at least the first transform coefficient in the block (602); determining a reference measure based on at least said absolute value of the first transform coefficient and the determined sign of the first transform coefficient (604); determining a predicted sign for said second transform coefficient in the block (606); and decoding or encoding the sign of said second transform coefficient based on the determined predicted sign of said second transform coefficient (608). |
US11223847B2 |
Selection and signaling of motion vector (MV) precisions
A decoder including a receiver and a processor configured to receive an encoded bitstream containing a motion vector (MV) candidate index for a current block. The processor is coupled to the receiver, and configured to obtain precisions of candidate motion vectors (MVs) corresponding to neighboring blocks of the current block, perform first rounding of the precisions based on a rounding scheme, perform second rounding of the candidate MVs based on the first rounding, perform pruning of the candidate MVs, generate a candidate list based on the second rounding and the pruning, and select one of the candidate MVs from the candidate list for decoding the current block based on the MV candidate index. |
US11223843B2 |
Apparatus and method for generating a Laplacian pyramid
An image processing apparatus is provided that comprises an input configured to receive an image and a Laplacian generator configured to generate, from the image, a Laplacian pyramid that represents the image as a series of frames that contain different frequency components of the image. The image processing apparatus also comprises a compressor configured to compress the Laplacian pyramid for writing to memory. |
US11223842B2 |
Image decoding device, image decoding method, and image encoding device
To achieve a reduction in the amount of coding taken in the use of an asymmetric partition and to implement efficient encoding/decoding processes exploiting the characteristics of the asymmetric partition. In a case that a CU information decoding unit decodes information for specifying an asymmetric partition (AMP; Asymmetric Motion Partition) as a partition type, an arithmetic decoding unit is configured to decode binary values by switching between arithmetic decoding that uses contexts and arithmetic decoding that does not use contexts in accordance with the position of the binary values. |
US11223840B2 |
Method and apparatus for video coding
Aspects of the disclosure provide a method and an apparatus for video coding. The apparatus includes processing circuitry. The processing circuitry is configured to decode prediction information of a current block in a current picture from a coded video bitstream. The prediction information can indicate a subblock-based merge mode for a plurality of subblocks in the current block. The processing circuitry is configured to determine whether to apply decoder-side motion vector refinement (DMVR) to one of the plurality of subblocks based on at least a mode type of the subblock-based merge mode. In response to the DMVR being determined to be applied to the one of the plurality of subblocks, the processing circuitry is configured to reconstruct the one of the plurality of subblocks according to the subblock-based merge mode with the DMVR. In an example, the mode type of the subblock-based merge mode is not an affine merge mode. |
US11223839B2 |
Method for encoding/decoding block information using quad tree, and device for using same
Disclosed decoding method of the intra prediction mode comprises the steps of: determining whether an intra prediction mode of a present prediction unit is the same as a first candidate intra prediction mode or as a second candidate intra prediction mode on the basis of 1-bit information; and determining, among said first candidate intra prediction mode and said second candidate intra prediction mode, which candidate intra prediction mode is the same as the intra prediction mode of said present prediction unit on the basis of additional 1-bit information, if the intra prediction mode of the present prediction unit is the same as at least either the first candidate intra prediction mode or the second candidate intra prediction mode, and decoding the intra prediction mode of the present prediction unit. |
US11223835B2 |
Encoder, decoder, encoding method, and decoding method
An encoder, includes: circuitry; and memory. Using the memory, the circuitry: in inter prediction for a current block, determines a base motion vector, and writes, in an encoded signal, a delta motion vector representing (i) one direction among a plurality of directions including a diagonal direction and (ii) a distance from the base motion vector; and encodes the current block using the delta motion vector and the base motion vector as a motion vector of the current block. |
US11223833B2 |
Preprocessing image data
A method of preprocessing, prior to encoding with an external encoder, image data using a preprocessing network comprising a set of inter-connected learnable weights is provided. At the preprocessing network, image data from one or more images is received. The image data is processed using the preprocessing network to generate an output pixel representation for encoding with the external encoder. The preprocessing network is configured to take as an input encoder configuration data representing one or more configuration settings of the external encoder. The weights of the preprocessing network are dependent upon the one or more configuration settings of the external encoder. |
US11223832B2 |
Methods and apparatus for encoding video data using block palettes and sub-block and pixel scanning orders
The method includes receiving video blocks that are each associated with a table having entries specifying pixel values used in the blocks. The method further includes dividing the blocks into sub-blocks each having an array of pixels. The method also includes selecting a sub-block scanning order that specifies an order in which the plurality of sub-blocks are to be encoded and a pixel scanning order that specifies an order in which the pixels of each sub-block are to be encoded. The scanning order and the pixel scanning order are selected based at least in part upon pixel value distributions and a bit rate for encoding the block according to the scanning or pixel scanning order, respectively. The blocks are then encoded using the selected scanning order and pixel scanning order and the index values in the table. |
US11223831B2 |
Method and system of video coding using content based metadata
Techniques related to video coding using content based metadata. |
US11223827B2 |
Image encoding device, image decoding device, and the programs thereof
An image coding device is provided with a determination unit which determines whether to apply an orthogonal transform to a transform block obtained by dividing a prediction difference signal indicating a difference between an input image and a predicted image or perform a transform skip by which the orthogonal transform is not applied, and an orthogonal transform unit which performs processing selected on the basis of the determination, the image coding device comprising a quantization unit which, when the transform skip is selected on the basis of the determination, quantizes the transform block using a first quantization matrix in which the quantization roughnesses of all elements previously shared with a decoding side are equal, and when the orthogonal transform is applied to the transform block on the basis of the determination, quantizes the transform block using the first quantization matrix or a second quantization matrix that is transmitted to the decoding side. |
US11223824B2 |
Image processing apparatus and image processing method
A reference direction determination unit 44 detects, using an input image, a scene change, a flash scene, or a monotonous luminance variation section. In a case where an encoding target image is the scene change or flash scene, the reference direction determination unit 44 determines its mode as a fixed reference direction mode in which a reference direction in a screen is fixed uniformly. Further, in a case where the encoding target image is the monotonous luminance variation section, that is, a section where luminance of an entire screen monotonously increases or monotonously decreases, the reference direction determination unit 44 determines as the fixed reference direction mode in which the reference direction in the screen is fixed uniformly. A motion prediction/compensation unit 42 performs inter prediction processing according to a determination result of the reference direction determination unit 44, thereby enabling efficient encoding while suppressing deterioration of image quality. |
US11223821B2 |
Video display method and video display device including a selection of a viewpoint from a plurality of viewpoints
A video display method includes: selecting, as a first selected viewpoint, one first viewpoint from among a plurality of first viewpoints corresponding to a plurality of second videos, and displaying a second video corresponding to the first selected viewpoint; determining whether the first selected viewpoint is included in a plurality of second viewpoints corresponding to a plurality of fourth videos captured after the plurality of second videos; and selecting one second viewpoint from among the plurality of second viewpoints as a second selected viewpoint and displaying a fourth video that is included in the plurality of fourth videos and corresponds to the second selected viewpoint, when the first selected viewpoint is determined to not be included in the plurality of second viewpoints. |
US11223815B2 |
Method and device for processing video
The method of the present invention for processing a video comprises: acquiring a first and a second omnidirectional videos having a stereoscopic parallax in a first direction which is a corresponding column direction when the first and the second omnidirectional videos are unfolded by longitude and latitude; and, determining one or two third omnidirectional videos according to the first and the second omnidirectional videos, the second and the third omnidirectional videos having a stereoscopic parallax in a second direction, wherein, if one third omnidirectional video is determined, the second and the third omnidirectional videos have a stereoscopic parallax in the second direction; if two third omnidirectional videos are determined, the two third omnidirectional videos have a stereoscopic parallax in the second direction; and, the second direction is a corresponding row direction when the first and the second omnidirectional videos are unfolded by longitude and latitude. |
US11223814B2 |
Imaging optics for one-dimensional array detector
In an imaging system, a lens can redirect light from an illuminated portion of a scene toward a one-dimensional focus that is positioned in a focal plane of the lens and is elongated in an imaging dimension. The redirected light can include first light that emerges from the lens and second light that emerges from the lens. A reflector positioned adjacent the lens can reflect the second light to form third light. A linear array of detector pixels can extend along the imaging dimension and can be positioned at the focal plane proximate the one-dimensional focus to receive the first light from the lens and receive the third light from the reflector. A processor can obtain one-dimensional image data from the detector pixels for sequentially illuminated portions of the scene and construct data representing an image of the full scene from the one-dimensional image data. |
US11223813B2 |
Method and apparatus for generating metadata for 3D images
Disclosed are a method and apparatus for generating metadata for a three dimensional (3D) image. The method includes generating metadata for an image rendered to be shaped as a sphere and transmitting the generated metadata, wherein the metadata includes information representing a region of the image. |
US11223806B2 |
Light source system, method for improving light efficiency thereof, and display device
A light source system comprises: an exciting light source for emitting exciting light; a supplemental light source for emitting supplemental light; a wavelength conversion apparatus for converting the wavelength of part of the exciting light and emitting first light; and a guide apparatus comprising a converging lens and a light combining element. The converging lens is used for adjusting a divergence angle of the first light. The light combining element comprises a first region. The supplemental light focuses on the vicinity of the first region, and the supplemental light and the first light emitted from the converging lens are combined with etendue at the light combining element. Light spots of the first light on a surface of the wavelength conversion apparatus form a magnified image at the light combining element by means of the converging lens. |
US11223802B2 |
Image-based determination apparatus and image-based determination system
An image-based determination apparatus includes circuitry configured to receive at least one of first image data, output from image capture apparatuses, and second image data, output from another device, the first image data and the second image data to be subjected to an image-based determination operation; play and display the at least one of the received first image data and the second image data, on a display; designate a detection area, to be subjected to the image-based determination operation, in a first display area being displayed on the display, the first display area displaying the at least one of the first image data and the second image data; and perform the image-based determination operation on an image at the detection area in a second display area being displayed on the display, the second display area displaying the at least one of the first image data and the second image data. |
US11223798B1 |
Methods and system for transmitting content during a networked conference
Methods and systems for transmitting content during a networked conference. In an embodiment, a method is provided that includes establishing a network connection between a first user equipment (UE) and a second UE, generating a video signal at the first UE, selecting content at the first UE, transmitting the video signal from the first UE over a first network channel, and transmitting the content from the first UE over a second network channel. The method also includes receiving the video signal on the first channel at the second UE, receiving the content on the second channel at the second UE, combining the video signal and the content into a combined video signal at the second UE, and displaying the combined video signal on a display device at the second UE. |
US11223796B1 |
Low resolution processing of high resolution video in support of video-based computing services
Techniques for processing video data are described. In an example, a device receives input video data having a first resolution. A first processor of the device sends, based at least in part on the input video data, first video data having the first resolution to a display. The device generates second video data from the input video data by at least down scaling the input video data to a second resolution, the second resolution being lower than the first resolution. A second processor of the device determines, while the first video data is presented, a property of the input video data based at least in part on the second video data. The second processor generates an indication of the property, where the indication is output while the first video data is presented. |
US11223794B2 |
Wearable camera and video data generating method
A wearable camera includes a capturing unit configured to capture video data, a memory configured to store the video data captured by the capturing unit, a plurality of sound collectors that are arranged at different positions of a casing and that are configured to collect a sound and output signals, and a controller that is configured to determine a direction from which the sound is emitted based on a deviation of output timings of the signals and add the direction as attribute information to the video data. |
US11223790B2 |
Pipelined row decoder topology for faster imager row decoding
An imaging array includes a plurality of rows of pixel sensors. A timing pattern generator generates timing pattern control signals and provide the timing pattern control signals to every row in the array. Timing pattern control signals generated during a timing pattern period directed to operate the pixel sensors in a selected row. A latched row driver circuit includes an enable latch in each row of the array responsive to a row address enable signal provided prior to the timing pattern period to gate the timing pattern control signals to the pixel sensors in the selected row at the start of the timing pattern period. A row address generator circuit is coupled to the timing pattern generator and to the enable latches in each row of the array to generate the row address enable signal for each selected row prior to the timing pattern period. |
US11223789B2 |
Driving method of semiconductor device and electronic device
A driving method of a semiconductor device that takes three-dimensional images with short duration is provided. In a first step, a light source starts to emit light, and first potential corresponding to the total amount of light received by a first photoelectric conversion element and a second photoelectric conversion element is written to a first charge accumulation region. In a second step, the light source stops emitting light and second potential corresponding to the total amount of light received by the first photoelectric conversion element and the second photoelectric conversion element is written to a second charge accumulation region. In a third step, first data corresponding to the potential written to the first charge accumulation region is read. In a fourth step, second data corresponding to the potential written to the second charge accumulation region is read. |
US11223786B2 |
Imaging device including signal line and unit pixel cell including charge storage region
An imaging device includes first and second pixels, arranged in a first direction, each of which includes: a photoelectric converter converting incident light into signal charge; an impurity region, in a semiconductor substrate, coupled to the photoelectric converter; a first transistor having a first gate coupled to the impurity region, and first source and drain; and a second transistor having second gate, source and drain. One of the second source and the second drain is the impurity region, and another is coupled to the first source or the first drain. The imaging device further includes a signal line, coupled to the first source or the first drain, and extends along the first direction and overlaps with both of the first and second pixels. The signal line is located on an opposite side from the impurity region across a center line of the first pixel. |
US11223785B2 |
Compressive sensing image sensor for enhancing frame rate and operating method thereof
A compressive sensing image sensor includes: a pixel array; and a readout circuit configured to receive pixel data on a shot image in an analogue form, and to process the pixel data, wherein the pixel array includes a plurality of blocks each having a plurality of pixels and arranged in an array form, wherein the circuit includes: a compressive sensing multiplexer to which a plurality of pixel data outputted from a corresponding block from among the plurality of blocks are inputted; an LFSR configured to arbitrarily select at least one pixel data from the plurality of pixel data inputted to the compressive sensing multiplexer; and a delta-sigma ADC configured to receive the at least one pixel data selected by the LFSR, to delta-sigma modulate the received at least one pixel data, and to generate compressive sensing data for restoring an image of the corresponding block from among the shot images. |
US11223784B2 |
Imaging device and imaging system
An imaging device according to the present disclosure includes: a pixel including a photoelectric converter configured to generate a signal in response to entering light, a storage configured to store data corresponding to the signal, and an output section configured to output the data stored in the storage; and a controller configured to control the output section to output the data in a case where the data stored in the storage satisfies a predetermined condition. |
US11223783B2 |
Multispectral imaging sensors and systems
A multispectral imaging sensor includes at least one superpixel including a plurality of pixels. Each pixel includes an imaging element, and each imaging element includes at least one photodetector. Each pixel further includes a spectral filter associated with the imaging element. The spectral filter permits light to pass to its associated imaging element only within a plurality of passbands. |
US11223780B1 |
Two-stage method to merge burst image frames
A method of multiple-exposure multiple-frame image capture, comprising, capturing a first group of frames at an underexposed setting, selecting a first key frame from the first group of frames, aligning the first group of frames to the first key frame, merging the first group of frames into one first frame, capturing a second group of frames at the underexposed setting, selecting a second key frame from the second group of frames, aligning the second group of frames to the second key frame, merging the second group of frames into one second frame, selecting a main group of frames based on the first key frame and the second key frame, aligning the first key frame and the second key frame based on the main group of frames and merging the first key frame and the second key frame based on the main group of frames. |
US11223774B2 |
Imaging apparatus, lens apparatus, and method for controlling the same
A lens apparatus having a focus lens can be detachably attached to an imaging apparatus. A sensor of the imaging apparatus photoelectrically converts an optical image formed via the lens apparatus. A generation unit generates an image based on an image signal output from the imaging apparatus. The imaging apparatus receives information about a focal length variation from the lens apparatus received by a lens communication control unit configured to control communication with the lens apparatus, and an image magnification variation correction control unit corrects the magnification of the image based on the information. |
US11223773B1 |
WIFI camera with animated LCD screen
A WIFI camera with an animated liquid crystal display (LCD) screen includes a camera body, an induction display mechanism connected to the camera body, and a temperature and humidity detecting mechanism connected to the camera body. The induction display mechanism is configured to display a working state of the camera body. The temperature and humidity detecting mechanism is configured to monitor external temperature and humidity. |
US11223772B2 |
Method for displaying image in photographing scenario and electronic device
Disclosed herein is a method for generating an image using an electronic device having a color camera, comprising: activating the color camera and a camera application on the electronic device; displaying, through the camera application, a preview image generated by the color camera; determining, automatically, whether the preview image includes an image of a first object; displaying, through the camera application in response to a determination that the preview image includes the image of the first object, a first image generated by the color camera, the first image including a color region corresponding to the first object and a gray scale region corresponding to objects that are not the first object; and displaying, through the camera application in response to a determine that the preview image does not include any image of the first object, a second image generated by the color camera, the second image is a grayscale image. |
US11223769B2 |
Method, device, camera and software for performing electronic image stabilization of a high dynamic range image
A system and method for electronic image stabilization for a high dynamic range image captured by a rolling shutter image sensor and more specifically to an algorithm configured to perform electronic image stabilization on the high dynamic range image, by, for each specific block of pixels among the blocks of pixels in the high dynamic range image, the specific block of pixels spatially corresponding to a pixel region of the rolling shutter image sensor, determining whether the specific block of pixels is copied from pixel data of the first image or the second image, or is a blend of pixel data from both the first image and the second image, and use motion data measured when capturing the first and second images for performing electronic image stabilization based on the origin of the specific block of pixels. |
US11223767B1 |
Methods and apparatus for optical image stabilization
Various embodiments of the present technology may provide methods and apparatus for optical image stabilization. A system may include an actuator control circuit responsive to a sensor and a feedback signal from an actuator. The actuator control circuit may be configured to calibrate a gain applied to a drive signal based on a measured difference value of the feedback signal generated by the actuator control circuit and a predetermined difference value. |
US11223762B2 |
Device and method for processing high-resolution image
A device includes an image sensor configured to generate a first signal corresponding to an image having a first resolution in a first mode, a second signal corresponding to an image having a second resolution higher than the first resolution in a second mode. The image sensor is configured to generate frame information regarding a resolution, the first mode and the second mode respectively determined based on a mode signal. The device further includes a channel allocator configured to allocate the first signal and the second signal to different channels, of a plurality of channels, based on the frame information; and an image signal processor (ISP) comprising the plurality of channels, a first channel configured to process the first signal and a second channel configured to process the second signal. The ISP is configured to post-process image data processed by the plurality of channels. |
US11223749B1 |
Scaler, display device and associated data processing method
A scaler includes an input interface, an output Vsync pulse generating circuit and a data buffer circuit. The input interface is arranged to receive an input Vsync pulse and input image data. The output Vsync pulse generating circuit is arranged to accordingly generate a first output Vsync pulse and a first output request in response to the input Vsync pulse. The data buffer circuit is arranged to buffer the input image data and, in response to the first output request, output a first output frame according to the input image data. The output Vsync pulse generating circuit further generates a second output Vsync pulse and a second output request according to the first output Vsync pulse and a first predetermined period and in response to the second output request, the data buffer circuit further outputs a second output frame according to the input image data. |
US11223748B2 |
Color gamut mapping device capable of fine adjustment
There is provided a color gamut mapping device capable of fine adjustment configured to map a color signal to a predetermined color gamut by changing the saturation, hue, and luminance of the corresponding color signal, the color gamut mapping device including a hue angle calculation unit configured to calculate a hue angle using saturation components (Cb, Cr) of a YCbCr-type color signal (Y, Cb, Cr); a parameter generation unit configured to generate at least one of a saturation parameter, a luminance parameter, and a hue parameter using the hue angle; and a color signal changing unit configured to change the YCbCr-type color signal (Y, Cb, Cr) to be mapped to a predetermined color gamut using the parameter, wherein the color signal changing unit includes a saturation changing unit configured to calculate a saturation boundary value determined as a boundary of a predetermined rectangle on a Cb-Cr coordinate plane. |
US11223747B2 |
Image forming apparatus, image reading apparatus, and calibration method for a plurality of imaging sensors
An image forming apparatus performs the following. An imaging range imaged by each of the plurality of imaging sensors includes an overlapping portion between the imaging sensors adjacent in a width direction orthogonal to a conveying direction along the conveying path. A hardware processor performs a calibration operation of a first sensor based on a color measuring result of a predetermined inspection image measured within a standard imaging range of the first sensor among the plurality of imaging sensors, and a standard imaging result within the standard imaging range imaging an inspection image with a same pattern as the inspection image. The hardware processor compares imaging results by the plurality of imaging sensors in the overlapping portions and performs the calibration operation of another sensor different from the first sensor using the standard imaging result as a standard. |
US11223743B2 |
Image processing system, image processing apparatus, method of controlling the image processing apparatus, and storage medium
An image processing system comprises a first image processing apparatus and a second image processing apparatus. The first image processing apparatus obtains image data and transmits, to the second image processing apparatus, the obtained image data and information relating to the image data. The second image processing apparatus receives the image data and sets a condition for determining whether the image data is the image data to be processed, and determines whether or not the received image data is the image data to be processed, based on the set condition and the information. The second image processing apparatus executes, when it is determined that the received image data is the image data to be processed, image processing on the image data, based on the information and stores a result of the execution of the image processing. |
US11223723B2 |
Call center system having reduced communication latency
A call center system for reducing communication latency includes an input/output (I/O) interface for receiving one or more queries from a customer terminal; a processor in communication with the I/O interface; and non-transitory computer readable media in communication with the processor that stores instruction code. The instruction code is executed by the processor and causes the processor to route the one or more queries to a plurality of artificial intelligent (AI) logic modules and receive, from one or more of the AI logic modules, information that facilitates providing, by a call center agent, responses to the one or more queries. The processor also routes actual responses to the one or more queries made by the call center agent to the AI logic modules; and receives from at least one AI logic module one or more scores associated with one or more metrics that rate different aspects if the actual responses. When at least one of the scores is below a threshold, the processor communicates training information to the call center agent. The training information is directed to a subject area associated with the score being below the threshold. Communication of the information to the call center agent reduces a latency between receipt of the one or more queries and communication of correct responses to the one or more queries. |
US11223721B1 |
Methods and systems for customizing interactive voice response calls
Methods and systems described in this disclosure allow customers to personalize their phone experience when calling into an organization. In some embodiments, customers who may benefit from this service are identified based on the content of the customer's previous or current phone calls to the organization. The identified customers may be invited to enroll and to provide preferences for a customized Interactive Voice Response experience. In some embodiments, the customer can elect to hear the balances of one or more of his accounts without going through a phone menu or asking a representative to look up the relevant amounts. Once enrolled, when the customer dials into the organization and upon successful authentication, the organization proactively states the customer's account balances with no further customer request. |
US11223718B2 |
Communication control device, method of controlling communication, and program
[Object] To reduce power consumption even more.[Solution] Provided is a communication control device including a communication necessity information acquisition unit configured to acquire communication necessity information indicating necessity to communicate with an external device, and a drive control unit configured to control drive of a first communication unit and a second communication unit on a basis of the acquired communication necessity information, the first communication unit communicating with the external device using a first communication mode, the second communication unit communicating with the external device using a second communication mode capable of transferring data at a rate higher than the first communication mode. The drive control unit controls a drive state of each of the first communication unit and the second communication unit to be set to one of an active state capable of communicating with the external device, a power-saving state having lower power consumption than the active state, and an inactive state being a power off state. |
US11223715B2 |
Short range wireless location/motion sensing devices and reporting methods
Short range wireless location and motion sensing devices and reporting methods are provided herein. An example device includes a housing configured to couple with a power port of a vehicle. The housing includes a wireless interface, a motion sensor that senses at least one of velocity, acceleration, and orientation of the vehicle, a processor and a memory that stores logic that is executed by the processor to receive motion signals from the motion sensor and transmit the motion signals on the wireless interface to a mobile device that is communicatively coupled with the wireless adapter. |
US11223709B2 |
Exchange, communication system, registration method, and program
An exchange capable of, when a failure occurs, preventing a service from deteriorating without requiring an operation performed by a user is provided. An exchange (1) includes a notification control unit (2) configured to, when the exchange enters an operating state, request a server apparatus to transmit a notification for making a predetermined application installed in a communication terminal registered in the server apparatus register the application in the exchange, and a terminal control unit (3) configured to register the predetermined application in the exchange. |
US11223707B1 |
Methods, systems, and computer program products for sharing information for detecting a time period
In one embodiment, an apparatus and method are provided to: receive, by the apparatus from a node, a set up packet during a setup of a connection, the set up packet for use in a protocol that is not transmission control protocol (TCP); identify first metadata in a time period parameter field in the set up packet, for a time period, where, as a result of a detection of the time period, the connection is at least partial deactivated; and determine, based on the first metadata, a timeout attribute associated with the connection. |
US11223703B2 |
Instruction initialization in a dataflow architecture
Various embodiments are provided for implementing instruction initialization in a dataflow architecture in a computing environment. A data packet may be transmitted from a selected node to one or more of a plurality of nodes using one or more existing data paths in an initialization network. A determination operation is performed to determine whether one or more of a plurality of nodes is a target node intended for the data packet. Those of the plurality of nodes determined to be a target node initialize one or more components of the target node using the data packet. The data packet may be forwarded by each of the one or more of a plurality of nodes to a subsequent node in the initialization network. |
US11223700B2 |
Edge computing node device
An edge computing node device able to process and respond to data received in real-time includes at least one input interface and at least one output interface. The device obtains an identification of the at least one input interface and determines a functional service algorithm corresponding to the identification of at least one input interface by querying a service relationship table. The device further processes the data to obtain a calculation result according to the functional service algorithm and transmits the calculation of the data or the basic data to the output interface. The at least one output interface sends the basic data or the calculation result of the data by the second communication unit. |
US11223699B1 |
Multiple user recognition with voiceprints on online social networks
In one embodiment, a method includes, by one or more computing devices of an online social network, receiving, from a client system of a first user of the online social network, an audio input from a second user, wherein the audio input comprises one or more voice commands, identifying the second user based on a comparison of the audio input to one or more voiceprints stored by the online social network, wherein each voiceprint comprises audio data for auditory identification of a unique user of the online social network, determining a relationship status between the first user and the identified second user within the online social network, and determining whether to perform an action associated with each voice command based on permission settings associated with the action and the determined relationship status between the first user and the identified second user. |
US11223692B2 |
Service execution methods and apparatuses
Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for implementing service execution. One of the methods includes receiving a service request sent by a user by a service device. The service device determines a service execution policy that matches the service request based on a predetermined data analysis model and the service request by performing data analysis on a first-type blockchain transaction in a blockchain of each first-type blockchain network of at least two first-type blockchain networks. A service is executed by the service device for the service request based on the service execution policy. |
US11223689B1 |
Methods for multipath transmission control protocol (MPTCP) based session migration and devices thereof
Methods, non-transitory computer readable media, network traffic management apparatuses, and network traffic management systems that facilitates multipath transmission control protocol (MPTCP) based session migration. The primary network traffic management apparatus migrates the MPTCP session state data associated with a client-server pair flow transactions to a secondary traffic management apparatus. The primary traffic management apparatus then disconnects the first connection for the client-server pair flow transactions and the secondary traffic management apparatus establishes a second connection to continue with the processing of client-server pair flow transactions without introducing application faults. |
US11223682B2 |
Systems and methods for internal and external monitoring for an environmental anomaly within a shipping container and reporting to an external transceiver to initiate a mediation response
Systems and methods are described for detecting and initiating a response to an environmental anomaly in a shipping container. Generally, a system includes two sets of ID nodes within and outside the container and a command node mounted to the container. The command node is specially adapted to monitor the different sets of ID nodes for unanticipated non-broadcasting according to communication profiles for respective ID nodes in each set and detect an unresponsive group of ID nodes and what set of ID nodes the unresponsive ones are in. The command node identifies the anomaly when the number of unresponsive ID nodes exceeds a threshold setting, automatically generates an alert notification on the anomaly with an alert level setting based upon whether the unresponsive ID nodes are in the first and/or second set of ID nodes, and initiates a mediation response by transmitting the notification to the transit vehicle transceiver. |
US11223679B2 |
Host device with multi-path layer configured for detection and reporting of path performance issues
An apparatus in one embodiment comprises a host device configured to communicate over a network with a storage system comprising a plurality of storage devices. The host device comprises a set of input-output queues and a multi-path input-output driver configured to select input-output operations from the set of input-output queues for delivery to the storage system over the network. The multi-path input-output driver is further configured to send a predetermined command to the storage system over each of a plurality of paths from the host device to the storage system, to monitor a response time for the predetermined command on each of the paths, and to detect a performance issue with at least a given one of the paths based at least in part on the monitored response time. The predetermined command illustratively comprises a Small Computer System Interface (SCSI) “immediate” command of a particular type, such as a Test Unit Ready (TUR) command. |
US11223677B2 |
Peer-to-peer syncable storage system
A system for creating a sync group in a distributed system may include an offline electronic device having a short range communication transmitter and a storage service, and a computer-readable storage medium comprising one or more programming instructions. The system may receive a request from an application to create a sync group, and verify that the application has read access to the storage service. In response to verifying that the application has read access to the storage service, the system may create the sync group by receiving an indication of one or more objects stored in the storage service that are to be shared, identifying one or more members of the sync group, and assigning one or more permissions to the one or more members that are identified. The system may synchronize access to the objects among the electronic device and one or more member electronic devices. |
US11223675B2 |
Hash data structure biasing
One embodiment of the present invention sets forth a technique for generating one or more hash data structures. The technique includes generating a hash data structure having entries that correspond to a plurality of content servers, and, for each file included in a first plurality of files, allocating the file to one or more content servers included in the plurality of content servers by comparing a hash value associated with the file to one or more entries included in the entries. The technique further includes comparing a network bandwidth utilization of a first content server to a network bandwidth utilization associated with one or more other content servers included in the plurality of content servers to generate a result, and modifying a first number of entries associated with the first content server and included in the entries based on the result to generate a biased hash data structure. |
US11223669B2 |
In-service quality monitoring system with intelligent retransmission and interpolation
A service request for communication services for communication clients is received. In response, a communication service network is set up to support the communication services. Routing metadata is generated for each of the communication clients. The routing metadata is to be used by each of the communication clients for sharing service quality information with a respective peer communication client over a light-weight peer-to-peer (P2P) network. The routing metadata is downloaded to each of the communication clients. A communication client may exchange service signaling packets or service data packets over the communication service network. When the communication client determines that there is a problematic region in a bitstream received from the communication server, the communication client can request a peer communication client for a service quality information portion related to the problematic region. |
US11223663B1 |
Providing personalized chat communications within portable document format documents
The present disclosure relates to systems, non-transitory computer-readable media, and methods for initiating electronic chats based on conversation workflows identified in response to detected user actions in connection with an embedded document container displaying a PDF file. In particular, in one or more embodiments, the disclosed systems detect user interactions with a PDF file displayed by a document container embedded in a webpage. The disclosed systems can determine whether the detected user interactions include or indicate a conversation workflow trigger associated with a conversation workflow. The disclosed systems can further generate electronic messages based on the conversation workflow and provide the generated electronic messages to the user in connection with the webpage where the document container is embedded. |
US11223659B2 |
Broadcast notifications using social networking systems
A method and notification system for notifying broadcast streams to multiple users. A notifier receives, from a broadcaster, a request to notify a broadcast stream to the multiple users. The notifier receives preferences from a subset of users of two or more social networking systems. The preferences identify: (i) some but not all social networking systems of the two or more social networking systems which should send notifications about the broadcast stream to the subset of users; and (ii) times during which the notifications about the broadcast stream should be sent to the subset of users. The notifier instructs an agent representing a broadcaster in each social networking system of only the some social networking systems to send notifications about the broadcast stream to the subset of users at the times identified in the preferences. |
US11223657B2 |
One-way coupling device, request apparatus and method for feedback-free transmission of data
A one-way coupling device for the feedback-free transmission of data from the first network with high security requirements into a second network with low security requirements, containing a request unit, an eavesdropping unit and a receiving unit, wherein the request unit is formed so as to provide a first communication link within the first network to at least one device and, moreover, to request first data from the at least one device and then to transmit the first data via a second communication link on a separate line loop of the request unit, and the eavesdropping unit, which is formed so as to eavesdrop on data on the separate line loop and to transmit data to a receiving unit which is arranged in the second network. Also, a corresponding request unit, a corresponding method and a corresponding computer program product is also provided. |
US11223655B2 |
Semiconductor tool matching and manufacturing management in a blockchain
An example operation may include one or more of identifying a current tool configuration used by a tool device to construct semiconductor devices, retrieving a smart contract stored in a blockchain to identify whether an updated tool configuration exists, responsive to identifying the updated tool configuration, transmitting an update that includes the updated tool configuration to the tool device, and responsive to receiving the updated tool configuration at the tool device, initiating construction of the semiconductor devices. |
US11223649B2 |
User-added-value-based ransomware detection and prevention
A method for ransomware detection and prevention includes receiving an event stream associated with one or more computer system events, generating user-added-value knowledge data for one or more digital assets by modeling digital asset interactions based on the event stream, including accumulating user-added-values of each of the one or more digital assets, and detecting ransomware behavior based at least in part on the user-added-value knowledge, including analyzing destruction of the user-added values for the one or more digital assets. |
US11223647B1 |
Cybersafety incremental insurance policy utilizing blockchain underwriting process
A cybersafety incremental insurance policy utilizing blockchain underwriting process. A cyber risk event relating to transfer of data to a first party is identified using a first smart contract module. Cyber risk control of the cyber risk event is enabled using a second smart contract module. Cyber risk associated with the cyber risk control is transferred using a third smart contract module. The first smart contract, the second smart contract and the third smart contract are integrated into a multi-tier decentralized interaction that is recorded in a blockchain token utilizing a decentralized append only distributed ledger and a consensus algorithm for agreement to change requests on the distributed ledger. A premium associated cyber risk transfer is paid. Once the first party confirms receipt of the data, proof of premium is released into an insuring entities account. |
US11223646B2 |
Using concerning behaviors when performing entity-based risk calculations
A system, method, and computer-readable medium are disclosed for performing a security operation. The security operation includes: monitoring an entity, the monitoring observing at least one electronically-observable data source; deriving an observable based upon the monitoring of the electronically-observable data source; identifying a security related activity, the security related activity being based upon the observable from the electronic data source, the security related activity comprising a concerning behavior, the concerning behavior comprising a security related activity of analytic utility; analyzing the security related activity, the analyzing the security related activity being based upon the concerning behavior; and, performing a security operation in response to the analyzing the security related activity. |
US11223645B2 |
Deep intelligence context engine
Methods and systems are presented for providing enriched technical security data to a risk engine of an online service provider, and for adjusting security settings based on the enriched data. The enriched security data may be generated by recursively deriving additional security information from an initial security data input. The initial security data input may be associated with a risk source, such as a person or a device that submits an electronic request to the online service provider. Based on the initial security data input, the risk engine may recursively derive additional security information that enriches the initial security data input. The risk engine may then use the derived security information as well as the initial security data input to assess a risk level of the risk source, and then adjust a security setting of the online service provider based on the assessed risk level of the risk source. |
US11223632B2 |
Method and apparatus for managing data in a content management system
The present disclosure relates to methods and apparatuses for data management in a system, in particular a content management system, comprising at least one server 101 and one or more clients 102a, 102b, 102c communicably connectable to the server, the server being configured to manage a plurality of mutable data objects and to enable the one or more clients to access data objects managed by the server. The management process includes executing, by the server, at least one of a plurality of data processing operations being respectively associated with a respective set of the plurality of data objects and outputting respective result data; receiving, by a client, first-type information indicative of the result data of the at least one data processing operation; storing, by the client, result data of the at least one data processing operation in a memory; receiving, by the first client, second-type information indicative of modification of at least one of the data objects; and determining, at the client and before using the result data of the at least one data processing operation stored in the memory, whether the respective result data is valid or not based on the first-type information and the second-type information. |
US11223623B1 |
Method, apparatus and non-transitory processor-readable storage medium for providing security in a computer network
There are disclosed techniques for use in providing security in a computer network. In one embodiment, the techniques comprise a method including multiple steps. The method comprises receiving user access data characterizing user access with a protected resource within a computer network. The method also comprises evaluating the user access data to extract information therefrom that describes user access with respect to a feature of user access. The method also comprises determining a cardinality value in connection with the feature based on the extracted information and a maximum cardinality threshold. It should be appreciated that the cardinality value is limited by the maximum cardinality threshold such that the cardinality value cannot exceed the maximum cardinality threshold. The method also comprises presenting the cardinality value for facilitating fraud detection. |
US11223618B2 |
Control of delegation rights
A method for controlling an action includes: receiving from a server an authorization request relating to at least one action for which a first user has execution rights, and for which a command has been formulated by a second user, the request containing data relating to the action and a delegation token certifying a delegation of the action by the first user to the second user; analyzing the request on the basis of the token; determining whether consent of the first user should be requested; sending to a terminal of the first user, a consent request and receiving a response; and sending to the server a response to the request relating to the action and signaling denial or consent. |
US11223617B2 |
Domain name registrar database associating a temporary access code and an internet related activity of a user
An Internet resource provider (IRP) may authenticate a user and, upon a successful authentication, allow the user to perform one or more actions on webpages that are within an account of the user. The IPR may store the most recent actions of the user in a temporary access code (TAC) database. If the user has a problem, the user may select a TAC button on a webpage within the account of the user. The IPR may generate a TAC, store the TAC in association with the recent activities of the user in the TAC database and transmit the TAC to the user. The user may contact and provide the TAC to a customer support service center. The customer support service center may authenticate the user based solely on the TAC and determine the one or more recent actions of the user in the TAC database. The customer support service center may provide assistance to the user based at least partially on the one or more recent actions of the user. |
US11223613B2 |
Methods and systems for roles and membership management in a multi-tenant cloud environment
Systems and methods for allowing one or more users to access a number of tenant systems in a multi-tenant cloud environment are disclosed. The method includes registering a user to the tenant systems based on an identity information received from the user. The same identity information is associated with each of the tenant systems. The method also includes creating an account corresponding to each of the tenant systems for the user. The method further includes allowing the user to access one or more of the tenant systems based on the identity information entered by the user. The user accesses the tenant systems by entering the same identity information. Further, the same identity information is used for identifying the user in each of the tenant systems. |
US11223611B2 |
Relay apparatus, communication apparatus and relay method
A relay apparatus is connected to a communication apparatus, a service providing apparatus and a browser-equipped apparatus. The relay apparatus includes: a registering unit registering provisional registration information, the provisional registration information being used in an authentication procedure performed between the service providing apparatus and the browser-equipped apparatus; an acquiring unit acquiring permission information representing that use of the service is permitted, the permission information being issued by the service providing apparatus in the authentication procedure; a communication unit transmitting the provisional registration information to the browser-equipped apparatus; a receiving unit receiving input information transmitted from the communication apparatus, the input information being generated in response to the provisional registration information; and a communication unit transmitting the permission information to the communication apparatus which has transmitted the input information if the receiving unit receives the input information. |
US11223609B2 |
Techniques for secure blockchain management
Embodiments of the invention are directed to a method for reducing a computational burden of a blockchain provider. A data processing computer may facilitate an exchange of a data transfer message between respective applications of a first and second device. The data processing computer may maintain an electronic record according to the exchange. A net transfer value may be determined for the record and data comprising the net transfer value may be transmitted to a blockchain provider. Receipt of the data by the blockchain provider may cause the blockchain provider to update a ledger with the net transfer value. |
US11223606B2 |
Technologies for attesting a deployed workload using blockchain
Technologies for attesting a deployment of a workload using a blockchain includes a compute engine that receives a request from a remote device to validate one or more parameters of a managed node composed of one or more sleds. The compute engine retrieves a blockchain associated with the managed node. The blockchain includes one or more blocks, each block including information about the parameters of the managed node. The compute engine validates the blockchain and sends an indication that the blockchain is valid to the requesting device. |
US11223605B2 |
Method and system for connected vehicle communication
The invention is applicable for use in conjunction with a system for connected vehicle communications in which each vehicle in the system is issued a limited number of unique pseudonym certificates that are used by the vehicle to establish trust in messages sent by the vehicle by signing each message with a pseudonym certificate. A method is set forth for selecting a pseudonym certificate for use, from among the vehicle's pseudonym certificates, so as to protect the privacy of the vehicle's activity against attacks by eavesdroppers, including the steps of: tracking and storing vehicle location data; computing, from inputs that include the vehicle location data, the vehicle's relative achievable anonymity in particular geographical regions; prioritizing the pseudonym certificates; and selecting a pseudonym certificate for use from among the pseudonym certificates having a priority that is determined by the relative achievable anonymity for the geographical region in which the certificate is to be used. The method includes authenticating a safety message using the selected pseudonym certificate, and transmitting the authenticated message. |
US11223598B2 |
Internet security
The present disclosure generally discloses an Internet security mechanism configured to provide security for Internet resources of the Internet using an Internet blockchain. The Internet blockchain may be configured to provide security for Internet resources of the Internet by supporting various types of verification related to Internet resources of the Internet, which may include verification of Internet resource ownership, verification of Internet resource transactions, and so forth. The Internet blockchain may be configured to enable Internet participants (e.g., Internet registries, Domain Name Service (DNS) entities, Autonomous Systems (ASes), or the like) to verify Internet resource ownership of Internet resources (e.g., Internet Protocol (IP) addresses, AS numbers, IP prefixes, DNS domain names, or the like) by Internet participants, to verify Internet resource transactions (e.g., allocation of IP addresses, allocation of AS numbers, advertisements of IP prefixes, allocation of DNS domain names, or the like) attempted by Internet participants, and so forth. |
US11223594B2 |
Secret identity pairing and gradual disclosure
A method of pairing and gradually disclosing secret identities of at least two individuals looking to exchange messages on a defined topic, such as a meeting place providing individuals an opportunity of assessing each other suitability as a prospective partner in an intimate relationship. Individuals must select each other in addition to a number of selected contacts from a list of contacts that is presented to them. An application system or a third party individual must aggregate their choices, pair the individuals that have mutually selected each other and, display an intermediate pairing event to each individual paired with a contact, wherein the pairing event consists of the contact paired with the individual positioned among at least one contact of the number of selected contacts. The intermediate pairing event is providing a first disclosure stage in which each individual obtains a clue on the real identity of a prospective partner. |
US11223588B2 |
Using sensor data to control message delivery
A method, computer system, and computer program product for using sensor data to control message delivery to a user. The method may include defining one or more criteria which may include a message delivery, sensor, bypass, or rerouting criterion. The message delivery criterion may include a rule for delivering messages. The method may include operations performed by a device communicating with a communications network. The device may have a computer and may receive a message from a user of a plurality of users and data from a sensor. The method may determine whether the sensor data meets the message delivery criterion and suppress a message notification based on the message delivery criterion. In some embodiments, the sensor is an image sensor and the method includes determining that content of an image captured by the image sensor includes an activity corresponding with a message delivery criterion. |
US11223586B1 |
Techniques for a messaging agent platform
Techniques for a messaging agent platform are described. In one embodiment, an apparatus may comprise a intermediary server operative to send a page-scoped identifier to a front-end application, the front-end application associated with an entity, the page-scoped identifier identifying a user account with a messaging system in relation to a representation for the entity within the messaging system; receive a user information request from a contact application at the intermediary server, the contact application associated with the representation for the entity within the messaging system, the user information request for the page-scoped identifier; determine a user access consent setting for the page-scoped identifier for the user account; and send a user information data package to the contact application in response to the user information request when the user access consent setting for the page-scoped identifier indicates user consent. Other embodiments are described and claimed. |
US11223581B2 |
Virtual agent portal integration of two frameworks
The present approach relates to systems and methods for facilitating a client-agent conversation using dynamic, contextual information related to a client portal. The contextual information for the conversation may be determined using a server side script and/or a client side script that provides relevant portal usage data. The contextual information may be used to determine a conversation topic, which may be used to facilitate routing a request to chat to the appropriate agent for the topic. |
US11223577B2 |
Switch network architecture
One embodiment describes a network system. The system includes a primary enclosure including a network switch system that includes a plurality of physical interface ports. A first one of the plurality of physical interface ports is to communicatively couple to a network. The system further includes a sub-enclosure comprising a network interface card (NIC) to which a computer system is communicatively coupled and a downlink extension module (DEM) that is communicatively coupled with the NIC and a second one of the plurality of physical interface ports of the network switch system to provide network connectivity of the computer system to the network via the network switch system. |
US11223575B2 |
Re-purposing byte enables as clock enables for power savings
Systems, apparatuses, and methods for efficient data transfer in a computing system are disclosed. A source generates packets to send across a communication fabric (or fabric) to a destination. The source generates partition enable signals for the partitions of payload data. The source negates an enable signal for a particular partition when the source determines the packet type indicates the particular partition should have an associated asserted enable signal in the packet, but the source also determines the particular partition includes a particular data pattern. Routing components of the fabric disable clock signals to storage elements assigned to store the particular partition. The destination inserts the particular data pattern for the particular partition in the payload data. |
US11223574B2 |
Multi-stage switching topology
A novel multi-stage folded Clos network and a linecard for use in a network is disclosed. The Clos network can consist of three stages, an access stage, a lower stage, and an upper stage. The access stage and the upper stage can include a plurality of switches or conventional access points. The lower stage can include a plurality of linecards. Each linecard can be made of two switch chips, each of which are connected to the ports of the linecard, and contain the same number of ports. Each switch chip can forward information in only one direction and one is used to send direction from the access stage to the upper stage, and the other from the upper stage to the access stage. The lower stage can consist of a number of sub-stages, each sub-stage can be entirely of either conventional switches or linecards. Accordingly, compared to a conventional Clos network, the provided network can increase the throughput by any power of 2 by replacing the conventional switches used in the lower stage or sub-stages with linecards. |
US11223567B2 |
Transmission control protocol session mobility
A first node in a service mesh is configured to perform one or more services on network traffic obtained from an upstream network element via a pre-existing Transmission Control Protocol (TCP) session and provide the network traffic obtained from the upstream network element via the pre-existing TCP session to a downstream network element. The first node determines that the first node should no longer obtain the network traffic from the upstream network element via the pre-existing TCP session. In response, the first node provides state information for the pre-existing TCP session to the downstream network element. The downstream network element is configured to establish a new TCP session having the state information for the pre-existing TCP session with the upstream network element and to obtain further network traffic from the upstream network element via the new TCP session. The first node terminates the pre-existing TCP session. |
US11223565B2 |
Designs of an MPTCP-aware load balancer and load balancer using the designs
MPTCP connections and their corresponding TCP subfiows are routed by a load balancer toward backends. Each MPTCP connection is routed to a single backend and is able to include primary and secondary TCP subfiows. Routing includes performing, responsive to setting up a primary TCP subflow of an MPTCP connection, load balancing of the connection to select a backend for the connection. The MPTCP connections and their TCP subflows are tracked by the load balancer to route the MPTCP connections and their corresponding TCP subfiows to corresponding selected backends. A backend determines whether a request by a client to set up a primary TCP subflow of an MPTCP connection already includes a key used to generate a token used to uniquely identify the MPTCP connection from other MPTCP connections. The backend generates the token based on the key. The backend uses the token to distinguish subsequent communications for the MPTCP connection. |
US11223563B2 |
Base station load balancing
A base station receiver is described. The base station receiver may comprise at least one processor and memory. The memory may store instructions executable by the at least one processor. The instructions may include, to: receive, via a time-division multiple access (TDMA) scheme, a first carrier frequency comprising a first burst; receive, via the TDMA scheme, a second carrier frequency comprising a second burst; and demodulate and decode both the first and second bursts using a common demodulating and decoding node (DDN). |
US11223560B2 |
System and methods for unified collection of network information
Systems and methods provide a unified collection service for a network. A first network device receives a data reporting message from a data reporting device. The data reporting message includes a first format for a particular data reporting device. The first network device adds routing data to the data reporting message to create an encapsulated data reporting message and forwards the encapsulated data reporting message to a second network device. The second network device transforms the encapsulated data reporting message into a second format that includes a unified message format and forwards, based on the routing data, the unified data reporting message. |
US11223557B1 |
Multicast traffic disruption prevention system
A multicast traffic disruption prevention system includes a first router having a first priority and operating as a designated router such that a second router transmits data traffic to the first router device for forwarding to a destination. A third router coupled to the second router also has the first priority and, in response to a link to the destination device becoming available, transmits an active designated router discovery communication to the first router that identifies the first priority of the third router. In response to receiving an active designated router confirmation communication from the first router that identifies that the first router also has the first priority and that the first router is configured to operate as the designated router, the third router operates as a non-designated router such that the second router continues to transmit data traffic to the first router for forwarding to the destination device. |
US11223556B2 |
Platform for redundant wireless communications optimization
A communication system facilities low-latency, high-availability multipath streaming between terminals (e.g., mobile terminals) and a server platform. In an example application, a remote support service operating on the server platform provides remote teleoperation, monitoring, or data processing services to a mobile terminal embodied as a vehicle or robot utilizing a low latency communication link. The low latency link enables a remote operator to receive video or telemetry feeds, and timely monitor and respond to hazards in substantially real-time. The low latency communication link may be achieved even when the data streams are transmitted over public networks incorporating at least one wireless leg, and where individual connections have varying quality of service in terms of delivery latency due to congestion or stochastic packet losses. Assignment of data streams to particular communication channels may be made on an optimization model derived from a machine-learning process or simulation. |
US11223553B1 |
Techniques for routing messages through a message delivery network
Disclosed are techniques for routing messages from a message delivery network (MDN) to one of a plurality of end user carriers, wherein there are a plurality of message routes capable of servicing each end user carrier. An MDN may receive a message from a sending message service provider. The MDN may identify a destination end user carrier servicing the end user device for the message. The MDN may produce a rank ordered list of message routes from the MDN to the destination end user carrier by solving a linear constrained optimization model configured to converge upon an optimized ranking of message routes from the MDN to the plurality of end user carriers. The MDN may then attach the rank ordered list of message routes to the message before forwarding the message to a gateway within the MDN. The gateway may then initially attempt delivery of the message using the highest ranked message route from the rank ordered list of message routes. If the delivery attempt fails, the next highest ranked message route may be attempted until the message is delivered or no other message routes are available to try. Other embodiments are described herein. |
US11223548B1 |
Variable timeouts for network device management queries
An example device includes a control unit that provides an execution environment for a network management application and a network interface. The network management application generates a request message based at least in part on a predicted amount of time required for the device to receive a response to a request message, wherein the predicted amount of time is based at least in part on object identifier processing time information, and wherein the predicted amount of time satisfies a timeout threshold. The network interface sends the request message and receives the response message. The network management application determines an amount of time that elapsed between when the device sent the request message and received the response message, and, responsive to determining that the amount of time that elapsed does not satisfy the timeout threshold, updates at least one of the object identifier processing time information and the timeout. |
US11223546B2 |
Method, apparatus and system for real-time optimization of computer-implemented application operations using machine learning techniques
Various aspects described or referenced herein are directed to different methods, systems, and computer program products for facilitating real-time optimization of computer-implemented application operations using machine learning techniques. |
US11223545B2 |
Systems and methods for improving quality of service while streaming code-agnostic content
Systems and methods are described for a media guidance application (e.g., implemented on a user device) that improves quality of service while streaming code-agnostic content by optimizing buffering based on bit rate. |
US11223542B2 |
Systems and method for shared visualization library
Visualizations are automatically generated based at least on a received identifier identifying a report. One or more data sets and one or more style configurations are retrieved from a shared visualization library via a backend API based on the received identifier and passed to a router component. The router component includes a switch that renders a score component, which generates a score visualization, if the retrieved data sets include score data. If the data sets include time series data, or the score visualization also includes a time series graph, the router component renders a time series component that passes the data sets and the style configurations to a parser that parses the data sets and the style configurations and outputs one or more highcharts options objects. A highcharts component generates the time series visualizations and/or adds the time series graph to the score visualization based on the highcharts options objects. |
US11223540B1 |
Predictive routing for service sessions
Techniques are described for routing service requests. Actions performed by an individual in an application are detected and used to determine a category of product or service that the individual is interested in. An activity record can be stored in an activity data store, the activity record identifying the individual and the category of interest determined for the individual. On subsequently receiving a service request from the individual, to an environment such as a call center, the activity record can be accessed and used to predict the individual's service need as corresponding to the category determined based on their previous actions. The service request is then automatically routed to a service representative who is suited to handle requests in that particular category. In some implementations, the category can be predicted and/or inferred based on the detected user activities in particular portions of the application. |
US11223539B2 |
Activity-and dependency-based service quality monitoring
Evaluation of a plurality of activities comprising a service includes, for each of the plurality of activities, identification of a network service path of the activity from the source to the user, wherein a network service path of a first activity of the plurality of activities is different from a network service path of at least one other of the plurality of activities, measurement of a service quality metric for each respective network segment of each identified network service path, and, for each of the plurality of activities, determination of a service quality metric based on the service quality metrics measured for each of the network segments of the network service path of the activity. |
US11223536B2 |
Model driven process for automated deployment of domain 2.0 virtualized services and applications on cloud infrastructure
A model-driven system automatically deploys a virtualized service, including multiple service components, on a distributed cloud infrastructure. A master service orchestrator causes a cloud platform orchestrator to retrieve a cloud services archive file, extract a cloud resource configuration template and create cloud resources at appropriate data centers as specified. The master service orchestrator also causes a software defined network controller to retrieve the cloud services archive file, to extract a cloud network configuration template and to configure layer 1 through layer 3 virtual network functions and to set up routes between them. Additionally, the master service orchestrator causes an application controller to retrieve the cloud services archive file, to extract a deployment orchestration plan and to configure and start layer 4 through layer 7 application components and bring them to a state of operational readiness. |
US11223534B2 |
Systems and methods for hub and spoke cross topology traversal
A method comprising: receiving object identifiers associated with each entity of an enterprise network, receiving relationship data indicating directionality of data flow between two or more entities of enterprise network, receiving search query which includes at least one of an object identifier associated with one of the entities or relationship data indicating directionality of data flow associated with one of the entities, traversing a portion of topology to identify objects of the portion of the topology and a pivot point, the pivot point being directionally coupled to at least three objects, identifying two mini-topologies based on two of the least three objects of the pivot point, traversing each of the two mini-topologies to identify further objects within the portion of the topology, generating a partial topology based on the traversal of the portion of the topology and of the mini-topologies, and providing information including objects identified in the partial topology. |
US11223533B2 |
Automatic noise profile generation
A system for noise profile generation includes a customer gateway communicatively coupled to one or more end devices over a communication medium, at least one noise information node communicatively coupled to the customer gateway and programmed to extract noise information present on a communication path from the customer gateway to at least one of the one or more end devices, a noise profile database storing one or more noise profiles, and a noise profile generator. The noise profile generator includes at least one processor and non-transitory computer readable media having a set of instructions executable by the at least one processor to retrieve the extracted noise information associated with the communication path, determine whether the at least one noise characteristic of the extracted noise information matches with one or more noise profiles and identify at least one noise source on the communication path. |
US11223530B2 |
Natural language processing in modeling of network device configurations
In an approach for extracting natural language text from a native device configuration of a network device, a processor converts a native device configuration of a network device to a standard element document. A processor extracts natural language text from the standard element document based on a set of predefined expressions. A processor extracts named entities from the extracted natural language text, according to given categories, via named-entity recognition. A processor maps each of the extracted and categorized named entities to a respective network device, based on respective extraction origin. |
US11223529B1 |
Methods for inventorying and securing public cloud databases and devices thereof
Methods, non-transitory computer readable media, and infrastructure management devices that inventory, and facilitate improved security of, public cloud databases are illustrated. With this technology, access data for one or more accounts associated with one or more public cloud networks is obtained. This technology then periodically identifies, stores an indication of, and obtains and stores a state of, a plurality of databases hosted by the public cloud networks using the obtained access data and one or more application programming interfaces (APIs) provided by the public cloud networks for each of one or more types of the databases. A dashboard comprising an inventory of the databases for a historical time period is then generated, based on the stored indication and state of each of the databases, and output. |
US11223526B1 |
Cloud computing infrastructure pipelines with run triggers
Systems and methods of managing information technology infrastructure are described. A method includes identifying a run trigger between a first node and a second node, each node maintaining a configuration for a portion of a cloud computing infrastructure associated with executing a portion of a cloud-based application. The run trigger initiates in response to an action at the first node and comprises a source identifier identifying the first node and a destination identifier identifying the second node. Then a run is queued on the second node based on the run trigger, the run including a process executed on the second portion of the cloud computing infrastructure with data received by the second node and associated with a run source identifier. The run on the second node is then planned and executed, causing the cloud computing infrastructure to modify infrastructure resources associated with the second portion of the cloud computing infrastructure. |
US11223525B2 |
Gateway device, firmware update method, and recording medium
A gateway device connected to a network used in communication by multiple electronic control units provided on-board a vehicle. The gateway device performs operations including receiving firmware update information that includes updated firmware for one electronic control unit among the electronic control units, and acquiring system configuration information indicating a function of each of the electronic control units connected to the network. The gateway device further performs a controlling operation to update firmware of the one electronic control unit, for which updated firmware is received by the receiving, on a basis of the updated firmware, after an operation verification of the updated firmware is performed in an operating environment appropriately. The operating environment being configured with electronic control units of the same functions as each of the electronic control units indicated by the system configuration information. |
US11223518B2 |
Big telematics data network communication fault identification device
Apparatus, device, methods and system relating to a vehicular telemetry environment for identifying in real time unpredictable network communication faults based upon pre-processed raw telematics big data logs that may include gps data and an indication of vehicle status data, and supplemental data that may further include location data and network data. |
US11223517B2 |
Independent and interlocking redundancy system
An independent and interlocking redundancy system includes one or more control targets, operation processors, and one or more standby processors. The one or more standby processors is configured to make transition from a standby state to a warming-up state when one of the operation processors malfunctions, transmit, in the warming-up state and to the one or more control targets, a control command same as that transmitted to the one or more control targets by non-malfunctioning one of the operation processors, at a timing at which the malfunctioning one of the operation processors is supposed to transmit the control command, and determine and transmit the control command independently from and by taking turns with respect to the non-malfunctioning one or more of the operation processors, after warm-up of the one or more standby processors is completed. |
US11223509B2 |
Transmitter complex- and real-valued in-phase and quadrature mismatch pre-compensators
An in-phase and quadrature mismatch compensator for a quadrature transmitter includes a delay element, a complex-valued filter and an adder. The delay element receives an input transmit signal and outputs a delayed transmit signal. The complex-valued filter receives the input transmit signal and outputs a selected part of a filtered output transmit signal. The adder adds the delayed transmit signal and the selected part of the filtered output transmit signal and outputs a pre-compensated transmit signal. In one embodiment, the selected part of the filtered output transmit signal includes the real part of the complex-valued output transmit signal. In another embodiment, the selected part of the filtered output transmit signal includes the imaginary part of the complex-valued output transmit signal. Two transmit real-valued compensators are also disclosed that combine the in-phase and quadrature signals before being filtered. |
US11223502B2 |
Method for predicting the channel between a transmitter/receiver and a connected vehicle
Predicting a channel between a transceiver and a connected vehicle having a “main antenna”, dedicated to exchanges of payload data with the transceiver, and a “predictor antenna”, placed in front of the main antenna to predict the radio channel dealt with by the main antenna when reaching the current position of the predictor antenna. The method includes: selecting, using an estimate of the vehicle's speed and acceleration, for a multiplet of channel samples measured at the main antenna, a multiplet of channel samples measured at the predictor antenna, each sample of the predictor antenna being selected to correspond to a sample of the main antenna subsequently measured at the same position; calculating a criterion associating multiplets of samples measured at the main and predictor antennas; and selecting samples of the predictor antenna using a speed/acceleration pair optimizing the criterion, to predict the channel between the transceiver and main antenna. |
US11223498B2 |
Network system having a network appliance
Systems, components, and methods for use in a commercial kitchen intelligence system. A network appliance and a plurality of kitchen components are coupled to a data communication network. The network appliance establishes a VPN connection with a portal remote to the commercial kitchen. The network appliance establishes communication with a point-of-sale (POS) system for receipt of POS data. The network appliance facilitates communication among the kitchen components on the data communications network independent of different protocols by which the kitchen components are configured to communicate. |
US11223494B2 |
Service insertion for multicast traffic at boundary
Some embodiments of the invention provide novel methods for providing transparent services for multicast data messages traversing a network edge device operating at a boundary between two networks. The method analyzes data messages received at the network edge device to determine whether they require a service provided at the boundary and whether they are unicast or multicast (including broadcast). The method modifies a multicast destination media access control (MAC) address of a multicast data message requiring a service to be a unicast destination MAC address and provides, without processing by a standard routing function, the modified data message directly to an interface associated with a service node that provides the particular service required by the data message. The method receives the serviced data message, restores the multicast destination MAC address, and forwards the serviced data message to a set of destinations associated with the multicast destination address. |
US11223493B2 |
Method, apparatus and computer program product for generating externally shared communication channels
Creating a shared communication channel in a group-based communication platform is described. A shared communication channel generation request associated with a first organization identifier and a second organization identifier can be received from a first client associated with the first organization identifier. A shared communication channel acceptance request can be sent to a second client associated with the second organization identifier. Based at least in part on receiving a shared communication channel acceptance notification, wherein the shared communication channel acceptance notification includes an electronic approval to associate the shared communication channel identifier with the first organization identifier and the second organization identifier, transmitting, to each of the first client and the second client, a shared group-based communication channel interface of the shared communication channel. |
US11223488B2 |
Client certificate authentication in multi-node scenarios
A routing plane includes an authentication packaging system that receives client authentication information, as part of a request from a requesting client that is to be routed to a target service. The authentication packaging system combines the authentication information with assertion information indicative of an assertion as to the identity of the routing plane, using an entropy, such as a signing key. The authentication package is attached to the request and is sent to the target service. The target service validates the authentication package based on the entropy and authenticates the routing plane based on the assertion information and performs authentication processing based on the authentication information. |
US11223483B2 |
Odd index precomputation for authentication path computation
In one example an apparatus comprises a computer-readable memory, signature logic to compute a message hash of an input message using a secure hash algorithm, process the message hash to generate an array of secret key components for the input message, apply a hash chain function to the array of secret key components to generate an array of signature components, the hash chain function comprising a series of even-index hash chains and a series of odd-index hash chains, wherein the even-index hash chains and the odd-index hash chains generate a plurality of intermediate node values and a one-time public key component between the secret key components and the signature components and store at least some of the intermediate node values in the computer-readable memory for use in one or more subsequent signature operations. Other examples may be described. |
US11223479B1 |
Resilience against denial of availability attacks in a secure decentralized P2P filesystem
A unique identifier id(f) is generated for file f and stored on a content address server. A symmetric encryption key KF is generated for file f. File f is divided into n segments. A unique identifier id(si) is generated for each segment si. Each segment si of the n segments is encrypted using the symmetric key KF using a symmetric encryption algorithm, producing n encrypted segments esi. Each encrypted segment esi is stored with its identifier id(si) on the first peer device and at least one other peer device. For each encrypted segment esi, the identifier id(si) is stored on the content address server with the identifier id(f). A public key KU2 of a second user is retrieved, the symmetric key KF is encrypted with key KU2, producing wrapped key KW2=EAKU2(KF), and key KW2 is stored on the content address server with identifier id(f). |
US11223478B2 |
Biometric authentication with template privacy and non-interactive re-enrollment
An example system can include a reference biometric template (RBT) reader, an authenticator, and an auxiliary system. In some examples, during an initial enrollment process, the RBT reader obtains a biometric from a user, transforms the biometric into an RBT, and provides different shares of the RBT to the authenticator and the auxiliary system. The authenticator and the auxiliary system create respective shares of helper data. In some examples, the authenticator and the auxiliary system use a non-commutative transformation function to embed a secret key in their respective shares of the helper data. The auxiliary system provides its share of the helper data to the authenticator. The authenticator combines its share of the helper data with the share provided by the auxiliary system to create a full version of the helper data. The helper data can be used in a subsequent authentication process between the RBT reader and the authenticator. |
US11223471B2 |
Blockchain-type data storage
This disclosure relates to blockchain-type storage of receipt data. In one aspect, a method includes obtaining a to-be-stored data record including a first service attribute. Execution information of the to-be-stored data record is determined. A previous data record is obtained from a blockchain-type ledger. The previous data record includes a second service attribute that is the same as the first service attribute. Each data block in the blockchain-type ledger includes a block header and a block body. A hash value of the previous data record is determined. A receipt record is generated. The receipt record includes the hash value of the previous data record and the execution information of the to-be-stored data record. The to-be-stored data record and the receipt record are written into a same block body in the blockchain-type ledger. |
US11223468B1 |
Receiver circuit performing adaptive equalization and system including the same
A receiver circuit includes an equalizer configured to generate an equalization signal by equalizing an input data signal transferred through a communication channel based on an equalization coefficient; a clock data recovery circuit configured to generate a data clock signal and an edge clock signal based on the equalization signal, generate a data sample signal including a plurality of data bits by sampling the equalization signal in synchronization with the data clock signal, and generate an edge sample signal including a plurality of edge bits by sampling the equalization signal in synchronization with the edge clock signal; and an equalization control circuit configured to control the equalization coefficient by comparing the plurality of data bits and the plurality of edge bits. |
US11223463B2 |
Wireless communications method and communications device
Provided in the implementations of the present disclosure are a wireless communication method and communication device. The method includes: determining a second time unit according to a time domain position of at least one first time unit in a plurality of first time units used for transmitting data; and transmitting feedback information by using the second time unit, wherein the feedback information is feedback information aiming at the data transmitted on the plurality of first time units. |
US11223462B2 |
Communication apparatus and communication method
[Object] To provide a communication apparatus and a communication method that enable reinforcement of reliability of multicast communication and effective utilization of wireless communication resources to be compatible.[Solution] Provided is a communication apparatus including: a communication unit configured to perform communication of a frame. The communication unit transmits a frequency allocation frame, which includes frequency allocation information that specifies a transmission frequency of a delivery acknowledgment response frame with respect to a multicast frame, and receives the delivery acknowledgment response frame that is transmitted in the transmission frequency specified by the frequency allocation information and is frequency-division multiplexed. |
US11223459B2 |
Mapping user data onto a time-frequency resource grid in a coordinated multi-point wireless communication system
Methods and apparatus are disclosed for receiving user data in a wireless communication system that employs coordinated multi-point transmission of the user data from a first cell serving a wireless terminal and a second cell site neighboring the first cell site. In an exemplary system, the first cell site maps control signals and user data to a time-frequency resources according to a first mapping pattern, while the second cell site maps control data and traffic data to the time-frequency resources according to a second mapping pattern. An exemplary method comprises extracting user data, according to the first mapping pattern, from time-frequency resources of a first transmission for the wireless terminal transmitted from the first cell site; detecting a control element transmitted by one of the first and second cell sites, the control element indicating that user data associated with the control element is mapped to the time-frequency resources according to the second mapping pattern; and, responsive to said detecting, extracting user data according to the second mapping pattern from time-frequency resources of a second transmission for the wireless terminal transmitted from the second cell site. |
US11223454B2 |
Communication apparatus and method thereof
Disclosed are a wireless base station, wireless terminal, and channel signal formation method that can prevent the quality of downstream assignment control data from degrading, while preventing the number of blind determinations from increasing on the wireless terminal on the receiving side of the downstream control channel signal. In a base station (100), a control unit (101) and a data size regulation unit (103) control the data size of downstream assignment control data and upstream assignment control data contained in the PDCCH signal based on the communication format used between the base station (100) and a terminal (200), the number of antennas (M) (nonnegative number) on the base station (100), the number of antennas (N) (nonnegative number) on the terminal (200), the bandwidth of the downstream band, and the bandwidth of the upstream band. Specifically, the control unit (101) determines it is unnecessary to adjust the aforementioned data size when the selected communication format is first established between multiple antennas and when where there are multiple for one of M and N and only one for the other. |
US11223447B1 |
Multiple detector data channel and data detection utilizing different cost functions
Systems and methods are disclosed for a multiple detector data channel and data detection utilizing different cost functions. For example, a digital data channel system can have multiple data detectors where each data detector implements a distinct cost function for detecting data. A cost function analyzer can then selectively choose decisions from the multiple data detectors to generate a data sequence. In some examples, a dual detector system may have one detector implement a Soft-Output Viterbi Algorithm (SOVA) cost function and another detector implement a peak detection algorithm. Further, in some embodiments, the cost function analyzer can implement multiple selection criteria to determine which decisions to include in a data sequence from the multiple data detectors. |
US11223437B1 |
Differential clock recovery using a global reference time
A method, at an egress node, includes synchronizing with a global reference time; receiving a signal including a presentation time for when a specific part of the signal is to be transmitted, wherein the presentation time was determined by the ingress node with reference to the global reference time; determining an actual transmission time when the specific part of the signal is transmitted; and causing adjustment of a clock based on a time error derived from a difference between the presentation time and the actual transmission time. |
US11223434B2 |
Method for combating impulsive interference/noise in multicarrier underwater acoustic communications
A communication system includes a repetitive orthogonal frequency-division multiplexing (“ROFDM”)transmitter communicating with an ROFDM receiver. The ROFDM transmitter includes an ROFDM modulator, which includes a K-point Fast Fourier Transform receiving a block of time-domain data symbols and generating an initial orthogonal frequency-division multiplexing symbol. The initial orthogonal frequency-division multiplexing symbol is based on a block of frequency-domain data symbols corresponding to the block of time-domain data symbols. The initial orthogonal frequency-division multiplexing symbol includes an ending part. The ROFDM modulator includes an orthogonal frequency-division multiplexing symbol repeater generating a repetitive orthogonal frequency-division multiplexing symbol by repeatedly reproducing the initial orthogonal frequency-division multiplexing symbol. The modulator includes a cyclic prefix adder pretending a cyclic prefix to the repetitive orthogonal frequency-division multiplexing symbol to generate a baseband transmitted signal. The cyclic prefix includes the ending part of the initial orthogonal frequency-division multiplexing symbol. The ROFDM receiver includes an ROFDM demodulator. |
US11223433B1 |
Identification of concurrently broadcast time-based media
A real time messaging platform identifies an audio snippet of a time-based media (TBM) event. The messaging platform maintains a real time repository of concurrently broadcasting TBM events as well as a historical repository of previously broadcast TBM events. These repositories contain acoustic fingerprints of their respective TBM events. The messaging platform matches an acoustic fingerprint of the audio snippet with one of the stored acoustic fingerprints to identify the TBM event in the recorded snippet. To identify the TBM event, the messaging platform matches multiple overlapping reference audio segments of the reference audio stream with multiple test audio segments of the audio snippet. This allows the platform to account for time delays between the test and reference audio segments that would otherwise hinder the matching process. |
US11223427B2 |
Optical submarine cable system and optical submarine relay apparatus
When, in each of optical submarine relay apparatuses of the optical submarine cable system in which the optical submarine relay apparatus is arranged in each relay section of an optical submarine cable, a Laser Diode (LD) driving device for excitation (11) for outputting an excitation light to excite an optical amplifier is configured to include a plurality of LD driving circuits whose requiring currents are different from one another, which are, for example, a first LD driving circuit (111a) of a required current Ia and a second LD driving circuit (111b) of a required current (Ib) therein, a power feeding line for feeing power to the first LD driving circuit (111a) and a power feeding line for feeing power to the second LD driving circuit (111b) are configured to be connected in parallel to each other. |
US11223423B1 |
Re-calibrating an in-service optical multiplex section (OMS)
Systems and methods are provided for re-calibrating an in-service Optical Multiplex Section (OMS) while it is operating in an optical system. A method, according to one implementation, includes a step of analyzing a state of at least one component of the in-service OMS in an optical network, whereby the at least component may include, among other things, one or more fiber spans. Based on a need to re-calibrate the at least one component of the OMS, the method also includes the step of transitioning the OMS from an in-service mode to a maintenance mode to prepare the OMS for re-calibration. At this point, a re-calibration procedure can be performed. In response to completing the re-calibration procedure, the method includes the step of transitioning the OMS from the maintenance mode back to the in-service mode. |
US11223421B1 |
Full dimension skew estimation and compensation in coherent optical systems
A skew compensation system for a coherent optical communication network includes a transmitter and a receiver in operable communication with an optical transport medium of a coherent optical network. The transmitter includes a first transmitter-side tunable delay line configured to delay transmission of a first signal by a first skew amount, thereby producing a pre-compensated first signal. The receiver includes a first receiver-side tunable delay line configured to delay transmission of the pre-compensated first signal to a digital signal processor (DSP) of the receiver by a second skew amount, thereby producing a final signal that is both pre-compensated and post-compensated (i.e., fully compensated). |
US11223419B1 |
Optical system and method
An optical system comprising a first emitter and a receiver, said first emitter comprising an encoding unit configured to encode information using phase on a first optical information signal, said first information signal having a single first wavelength, said emitter being configured to output a reference signal, said reference signal having a reference wavelength which is different to the first wavelength, the emitter further comprising a multiplexer configured to multiplex the first information signal and the reference signal to produce a multiplexed first signal and output the multiplexed first signal to a communication channel said receiver comprising: a de-multiplexer configured to de-multiplex the multiplexed first signal received from the emitter to extract the first information signal and the reference signal; a decoder configured to decode the phase information in the first information signal; and a phase compensation unit configured to estimate the phase change of the first information signal caused by the communication channel from the first reference signal and to compensate the decoder for the phase change of the first information signal caused by the communication channel. |
US11223418B2 |
Multi-band satellite terminal estimating a second band based on first band link conditions
Systems and methods for operating a multi-band satellite terminal are disclosed. One aspect disclosed features a method, comprising: controlling a multi-band satellite terminal capable of receiving signals on a plurality of frequency bands to receive a signal transmitted by a satellite on a first frequency band of the plurality of frequency bands; determining link conditions of the first frequency band based on the received signal; generating an estimate of link conditions of a second frequency band of the plurality of frequency bands, wherein the estimate is generated based on the link conditions of the first frequency band; selecting the second frequency band based on the estimate of the link conditions of the second frequency band; and controlling the multi-band satellite ground terminal to receive the signal transmitted by the satellite on the second frequency band. |
US11223414B2 |
Reducing the processing complexity of relay transmission
Disclosed in the present invention are a method and device for relay transmission, and relay terminal apparatus, used to lower processing complexity of relay transmission. The method comprises: a relay terminal apparatus sends to a core network apparatus a bearer establishment request used to request for establishing an EPS bearer for a remote terminal apparatus; and the relay terminal apparatus receives a reconfiguration message sent by an access network apparatus, the reconfiguration message carrying configuration information of the EPS bearer established for the remote terminal apparatus, wherein the EPS bearer comprises a cellular data transmission channel between the access network apparatus and the relay terminal apparatus, and a D2D data transmission channel between the relay terminal apparatus and the remote terminal apparatus. |
US11223412B2 |
Radio node and methods in a wireless communications network
A method performed by a radio node for increasing a throughput of a MIMO channel. The radio node operates in a wireless communication network 100. The beams are beamformed at a transmitter of the radio node. The beams comprise: A first beam comprising a first beam gain in a first direction, and at least one second beam wherein each at least one second beam comprises a respective second beam gain in a respective second direction. When decided that the signal strength on the first beam is a first threshold stronger than the signal strength on each respective at least one second beam, and the signal strength on the at least one second beam is above a second threshold, the radio node increasing the throughput of the MIMO channel by suppressing (302) the first beam with respect to its beam gain. |
US11223410B2 |
Obscuration of the expected beam in a wireless communication
A network node is operable in a wireless communication network, and a wireless device (201) being associated with a serving beam (#4) managed by a radio network node associated with the network node. The method comprises obtaining (120) a position of the wireless device, wherein the position of the wireless device is associated with an expected beam. When the serving beam and the expected beam are different from each other thereby resulting in a deviation, the method comprises determining (140) whether the deviation has occurred at least more than once. When the deviation has occurred at least more than once, the method comprises issuing (160) a notification indicating that the expected beam is at least partially obscured with respect to transmissions for the wireless device. |
US11223405B2 |
Method for reporting channel state information on basis of priorities in wireless communication system and device therefor
The present specification provides a method for reporting channel state information (CSI) on the basis of priorities in a wireless communication system. More specifically, the method performed by a terminal comprises: a step of receiving, from a base station, downlink control information (DCI) including a reporting trigger for a plurality of CSIs of the same type; and a step of reporting a specific CSI determined on the basis of a predetermined rule among the plurality of CSIs if a time resource and a frequency resource for reporting among the plurality of CSIs are the same, wherein the specific CSI is a CSI that has priority among the plurality of CSIs on the basis of the predetermined rule. |
US11223403B2 |
Mobility measurements
Determination of characteristics of a communication environment may be beneficial in many communication systems. For example, certain wireless communication systems, such as fifth generation (5G) communication systems, may benefit from appropriate mobility measurements. A method can include performing, at a user equipment, beam-specific measurements of a plurality of beams of at least one cell. The method can also include calculating a cell quality based on the beam-specific measurements. |
US11223402B1 |
Assisted channel approximation for wireless communication of a supercell base station
Apparatuses, methods, and systems for assisted channel approximation wireless communication of a supercell base station are disclosed. One apparatus includes a wireless network, wherein the wireless network includes a supercell base station comprising a plurality of antennas, a plurality of user devices, wherein the plurality of user devices is located too far away to support omnidirectional electromagnetic communication with the supercell base station, and a separate communication device located proximate to the plurality of user devices. The separate communication device operates to receive omnidirectional wireless signals from the supercell base station, characterized a transmission channel between the supercell base station and the separate communication device, and directionally transmit the characterized channel back to the base station. The supercell base station operates to directionally transmit wireless communication signals through a directional beam to the plurality of user devices based on the characterized channel. |
US11223396B2 |
Apparatus and method for transmitting and receiving information and power in wireless communication system
The disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). An operation of a base station to location-based user classification and power allocation in a wireless communication system is provided. The method performed by a base station includes forming a pre-defined terminal group beam, classifying terminals into a plurality of terminal group by using location information of the plurality of terminals, received from the base station, allocating transmit (Tx) power to a terminal in a terminal group based on the location information of the plurality of terminals existing in each terminal group, and adjusting Tx power distributed to each terminal group so that an overall system communication capacity is greatest. |
US11223395B1 |
System and methods for monitoring and changing dual technology antenna operation
Embodiments herein disclose systems, methods, and computer-readable media for automatically adjusting settings of antenna elements to reduce radio link failures. In embodiments, a base station monitors radio link failures occurring at the base station that are associated with a first technology, such as 5G protocol. When the radio link failures meet or exceed a predefined or predetermined threshold, the base station may adjust a portion of antenna elements in an antenna array controlled by the base station, in some embodiments. For example, the base station may only adjust those antenna elements in the antenna array that are associated with the first technology, while other antenna elements in the same antenna array that are associated with a second technology, such as 4G protocol, are not adjusted. |
US11223392B2 |
Radio module configurations for antennas
In example implementations, a mobile device is provided. The mobile device includes a first antenna, a second antenna, a radio module and a memory. The radio module includes four antenna ports. The first antenna is in communication with a first port of the four antenna ports and the second antenna is in communication with a second port of the four antenna ports. The memory stores a configuration of the radio module that deactivates a third port and a fourth port of the four antenna ports of the radio module. |
US11223391B2 |
Controller for a semiconductor switch can include a transmitter and receiver that communicate across galvanic isolation using an inductive coupling
A controller comprising a driver interface referenced to a first reference potential, a drive circuit referenced to a second reference potential, and an inductive coupling. The driver interface comprises a first receiver configured to compare a portion of signals having a first polarity on the first terminal of the inductive coupling with a first threshold, and a second receiver configured to compare a portion of signals having a second polarity on the second terminal of the inductive coupling with a third threshold. The drive circuit comprises a first transmitter configured to drive current in a first direction in the second winding to transmit first signals, and a second transmitter configured to drive current in a second direction in the second winding to transmit second signals, the second direction opposite the first direction. |
US11223389B2 |
Noncontact communication medium, magnetic tape cartridge, operation method of noncontact communication medium, and program
A noncontact communication medium includes a power generator that generates power with application of an external magnetic field to a coil, a clock signal generator that generates a clock signal using the power, and a processor that operates using the power and executes processing on a command included in the external magnetic field at a processing speed according to a frequency of the clock signal. The clock signal generator generates the clock signal at an activation frequency of the noncontact communication medium, and the processor makes the frequency equal to or lower than a predetermined value in a case where a special command for making the frequency equal to or lower than the predetermined value is included as the command in the external magnetic field after the clock signal is generated at the activation frequency. |
US11223387B2 |
Small cell base station antennas suitable for strand mounting and related system architectures
A small cell base station antenna includes a first backplane, a first linear array of radiating elements extending forwardly from the first backplane, a second backplane that is opposite the first backplane and a second linear array of radiating elements extending forwardly from the second backplane. The first backplane is inclined at a first oblique angle with respect to a vertical axis and the second backplane is inclined at a second oblique angle with respect to the vertical axis. |
US11223384B2 |
Low noise signal chain architecture
Technology for a low-noise signal chain is disclosed. The low-noise signal chain can include a signal path configured to carry a signal. The low-noise signal chain can include a bypassable amplifier communicatively coupled to the signal path. The low-noise signal chain can include a switchable band pass filter communicatively coupled to the signal path. The low-noise signal chain can include an amplifier bypass path communicatively coupled to the signal path. The signal can be configured to be directed to the amplifier bypass path to bypass the bypassable amplifier. The low-noise signal chain can include a band pass filter bypass path communicatively coupled to the signal path. The signal can be configured to be directed to the band pass filter bypass path to bypass the switchable band pass filter. |
US11223372B2 |
Communication throughput despite periodic blockages
Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for improving communication throughput despite periodic blockages. In some implementations, a method includes receiving, by a receiver and from a transmitter, code blocks transmitted according to a first set of communication parameters that includes one or more first interleaver parameters used to interleave information in the code blocks prior to transmission. Corrupted portions of at least some of the received code blocks are identified. A blockage duration and a blockage interval of a blockage of communication channel between the transmitter and the receiver are determined based on the corrupted portions of the received code blocks. A second set of communication parameters that includes one or more second interleaver parameters are determined based on the blockage duration and blockage interval. The second set of communication parameters are communicated to the transmitter for subsequent transmissions by the transmitter to the receiver. |
US11223371B2 |
Methods and apparatus for polar encoding information bits and bits indicating a version of an encoded codeword
A polar code encoder is configured to: map q bits to q positions of q sub-channels, where q is a positive integer, and the q bits are used to indicate a version of encoded codeword; map K-q information bits to K-q positions for the K-q information bits, K is an integer, K>q; and perform polar encoding over an input vector u0N-1, comprising the q bits and the K-q information bits, with the length of N, N is an integer, N>=K and scramble with scrambling vector over the polar encoded bits, where the scrambling vector is associated to the q sub-channels or the scrambling vector is associated to a special frozen bit which is corresponding to the q sub-channels. |
US11223369B2 |
Automatic hash function selection
Compressing data includes hashing a first token length of an incoming data steam into a hash table, where the first token length includes a plurality of bytes. A second token length of the incoming data stream may be hashed into the hash table. The second token may be larger than the first token length and includes the plurality of bytes. The method may further include automatically comparing which token length enabled more efficient data compression, and automatically adjusting at least one of the first and second token lengths based on the comparison. |
US11223365B1 |
Aperture noise suppression using self-referred time measurements
A system and method for suppressing aperture noise resulting from clock jitter associated with a Nyquist analog-to-digital converter (ADC) using self-referred time measurements are provided. The system comprises of a clock, a delay element, a time subtractor, a time-to-digital converter, a filter element, a first digital subtractor, an integrator, a differentiator, and a multiplier. Each of the delay element, time subtractor, time-to-digital converter, filter element, first digital subtractor, integrator, and multiplier is electrically connected in parallel with the ADC, which allows the clock to generate a clock signal that advances into the system and the ADC in order to isolate and suppress the noise aperture associated with the ADC. As such, the architecture of the system is configured to isolate and suppress aperture noise resulting from clock jitter associated with an analog-to-digital converter (ADC) to allow the output signal of the system be independent of the aperture noise. |
US11223364B2 |
Phase-locked loop circuitry and method to prevent fractional N spurious outputs in radar phase-locked loop
A signal generator includes a first phase-locked loop (PLL) configured to receive a first reference signal having a first reference frequency and generate a ramping signal based on the first reference signal, where the ramping signal is between a minimum frequency and a maximum frequency of a radar frequency band; a system clock configured to generate a second reference signal having a common system reference frequency; and a second PLL configured to receive the second reference signal from the system clock, generate the first reference signal based on the second reference signal, and provide the first reference signal to the first PLL. |
US11223363B2 |
Open loop fractional frequency divider
Disclosed is an open loop fractional frequency divider including an integer divider, a control circuit, and a phase interpolator. The integer divider processes an input clock according to the setting of a target frequency to generate a first frequency-divided clock and a second frequency-divided clock. The control circuit generates a coarse-tune control signal and a fine-tune control signal according to the setting. The phase interpolator generates an output clock according to the first frequency-divided clock, the second frequency-divided clock, and the two control signals. The two control signals are used for determining a first current, and their reversed signals are used for determining a second current. The phase interpolator controls a contribution of the first (second) frequency-divided clock to the generation of the output clock according to the first (second) frequency-divided clock, the reversed signal of the first (second) frequency-divided clock, and the first (second) current. |
US11223362B2 |
Phase-locked loop circuit and digital-to-time convertor error cancelation method thereof
A phase-locked loop (PLL) circuit is provided in the invention. The PLL circuit includes a first DTC, a first selection circuit, and a second selection circuit. The first DTC receives a first delay control signal to dither a reference signal or a feedback signal. The first selection circuit is coupled to the first DTC. The first selection circuit receives the reference signal and the feedback signal, and according to the selection signal, transmits the reference signal or the feedback signal to the first DTC. The second selection circuit is coupled to the first DTC and the first selection circuit. The second selection circuit determines the output paths of an output reference signal or an output feedback signal according to the selection signal. |
US11223361B2 |
Interface for parallel configuration of programmable devices
An integrated circuit device may include programmable logic fabric disposed on a first integrated circuit die and having configuration memory. The integrated circuit device may also include a base die that may provide memory and/or operating supporting circuitry. The first die and the second die may be coupled using a high-speed parallel interface. The interface may employ microbumps. The first die and the second die may also include controllers for the interface. |
US11223356B2 |
Driver circuit for analyzing and controlling a piezoelectric component, button providing haptic feedback, and operating method
A driver circuit is disclosed. In an embodiment a drive circuit includes a signal port with a first terminal and a second terminal, a first node and a second node, a comparator with an inverting input, a non-inverting input and an output and an operational amplifier with an inverting input, a non-inverting input and an output, wherein the first terminal is electrically conductively connected with the inverting input of the operational amplifier, wherein the second terminal is electrically conductively connected with the non-inverting input of the comparator, wherein the inverting input of the comparator is electrically conductively connected with the output of the operational amplifier, wherein the first node is electrically conductively connected with the output of the operational amplifier, wherein the inverting input of the comparator is electrically conductively connected with the inverting input of the operational amplifier, and wherein the second node is electrically conductively connected with the non-inverting input of the operational amplifier. |
US11223355B2 |
Inductively-shunted transmon qubit for superconducting circuits
Techniques for modifying the Josephson potential of a transmon qubit by shunting the transmon with an inductance are described. The inclusion of this inductance may increase the confined potential of the qubit system compared with the conventional transmon, which may lead to a transmon qubit that is stable at much higher drive energies. The inductive shunt may serve the purpose of blocking some or all phase-slips between the electrodes of the qubit. As a result, the inductively shunted transmon may offer an advantage over conventional devices when used for applications involving high energy drives, whilst offering few to no drawbacks in comparison to conventional devices when used at lower drive energies. |
US11223347B1 |
All microwave ZZ control
Techniques facilitating dynamic control of ZZ interactions for quantum computing devices. In one example, a quantum coupling device can comprise a biasing component that is operatively coupled to first and second qubits via respective first and second drive lines. The biasing component can facilitate dynamic control of ZZ interactions between the first and second qubits using off-resonant microwave signals applied via the respective first and second drive lines. |
US11223341B2 |
Suppressing parasitic sidebands in lateral bulk acoustic wave resonators
Acoustic wave filter devices are disclosed. In an embodiment, the device includes an acoustic wave resonator and a reflecting layer located below the acoustic wave resonator. The wave resonator includes an input electrode including a first electrode and a counter electrode, a piezoelectric layer sandwiched between the first electrode and the counter electrode, and an output electrode. The piezoelectric layer has a first region covered by the first or the output electrode, and a second region not covered by any of the first and the output electrode. The first region has a second order acoustic thickness-shear resonance (TS2) mode dispersion curve with a first minimum frequency, and the second region has a TS2 mode dispersion curve with a second minimum frequency. The reflecting layer's thickness is such that a difference between the first minimum frequency and the second minimum frequency is less than 2% of a filter center frequency. |
US11223339B2 |
Sound control device for vehicle and sound control method for vehicle
A vehicle speed detecting unit detects a vehicle speed. A threshold changing unit changes a threshold in accordance with the vehicle speed detected by the vehicle speed detecting unit. A gain calculating unit calculates a gain value of an input sound inputted to a microphone. A sound control unit mutes the input sound when the gain value of the input sound is equal, to or greater than the threshold changed by the threshold changing unit, the gain value being calculated by the gain calculating unit. |
US11223338B2 |
Method of forming a semiconductor device and circuit
In one embodiment, an amplifier circuit may be configured with an output transistor that forms an output current and an output voltage at an output. The amplifier circuit may also include a reference circuit that may be configured to form a reference current that is substantially proportional to the output current. An embodiment of the reference circuit may also be configured to control a transistor to sink current from the output in response changes in the reference current. |
US11223337B2 |
Logarithmic power detector
A logarithmic power detector includes a power distributor, a first detection circuit, a second detection circuit and an output circuit. The power distributor is used to generate a first power signal and a second power signal according to an input signal. The first detection circuit is used to attenuate the first power signal to generate a first rectified signal, filter the first rectified signal to generate a first low-pass signal, and amplify the first low-pass signal to generate a first amplification current. The second detection circuit is used to attenuate the second power signal to generate a second rectified signal, filter the second rectified signal to generate a second low-pass signal, and amplify the second low-pass signal to generate a second amplification current. The output circuit is used to receive the first amplification current and the second amplification current to generate a converted voltage related to the input signal. |
US11223336B2 |
Power amplifier integrated circuit with integrated shunt-l circuit at amplifier output
A multiple-path (e.g., Doherty) amplifier includes a semiconductor die, a radio frequency (RF) signal input terminal, a combining node structure integrally formed with the semiconductor die, first and second amplifiers (e.g., main and peaking amplifiers, or vice versa) integrally formed with the semiconductor die, and a shunt circuit electrically connected between an output of the first amplifier and a ground reference node. Inputs of the first and second amplifier are electrically coupled to the RF signal input terminal, and outputs of the first and second amplifier are electrically coupled to the combining node structure. The shunt circuit includes a shunt inductance and a shunt capacitance coupled in series between the output of the first amplifier and the ground reference node, and the shunt capacitance has a first terminal coupled to the shunt inductance, and a second terminal coupled to the ground reference node. |
US11223331B1 |
High efficiency and high powerlinear amplifier
An amplifier includes a Field Effect Transistor (FET) or a Bipolar Junction Transistor (BJT) with “hard saturation.”; where the FET or the BJT to has a nearly constant drain or collector current when the drain or collector voltage is greater than the pinchoff voltage. The amplifier further includes a bias network, configured to provide a DC voltage to the FET or the BJT, a means for isolating the DC voltage from the matching network, an electrical load, and a matching network which transforms the electrical load to a resistance between the drain and the source or the collector and emitter which causes the drain or collector voltage to be greater than the pinchoff voltage over the entire cycle of the sinusoidal voltage applied to the gate, whereby the amplifier is linear. |
US11223327B2 |
Power amplifier
A power amplifier includes a distributor distributing an input first signal to a second signal and a third signal delayed by about 2ϕ degrees (45<ϕ<90) from the second signal, a first amplifier amplifying the second signal and outputting a fourth signal when a first-signal power level is not lower than a first level, a second amplifier amplifying the third signal and outputting a fifth signal when the first-signal power level is not lower than a second level that is greater than the first level, a first phase shifter receiving the fourth signal and outputting a sixth signal delayed by about ϕ degrees from the fourth signal, a second phase shifter receiving the fifth signal and outputting a seventh signal advanced by about ϕ degrees from the fifth signal, and a combiner combining the sixth and seventh signals and outputting an amplified signal of the first signal. |
US11223324B2 |
Multi-level envelope tracking with analog interface
Multi-level envelope trackers with an analog interface are provided herein. In certain embodiments, an envelope tracking system for generating a power amplifier supply voltage for a power amplifier is provided. The envelope tracking system includes a multi-level supply (MLS) DC-to-DC converter that outputs multiple regulated voltages, an MLS modulator that controls selection of the regulated voltages over time based on an analog envelope signal corresponding to an envelope of the RF signal amplified by the power amplifier, and a modulator output filter coupled between an output of the MLS modulator and the power amplifier supply voltage. |
US11223323B2 |
Multi-level envelope tracking systems with separate DC and AC paths
Multi-level envelope tracking systems with separate DC and AC paths are provided. In certain embodiments, an envelope tracking system for generating a power amplifier supply voltage for a power amplifier is provided. The envelope tracking system includes a multi-level supply (MLS) DC-to-DC converter that outputs multiple regulated voltages, an MLS modulator that controls selection of the regulated voltages over time based on an envelope signal corresponding to an envelope of a radio frequency (RF) signal amplified by the power amplifier, an AC path filter coupled between an output of the MLS modulator and the power amplifier supply voltage, and a DC path filter coupled between a DC voltage and the power amplifier supply voltage. |
US11223318B2 |
Integrated external connectors
Connectors, systems with connectors and processes with connectors are described. These include how connectors can actively hold external portions of two frames or other components together during transport and before final installation, as well as, how the connectors can be repositionable on the frame or other component so as to provide a mechanical connection in one position and not to provide a mechanical connection when moved into a second position. The connectors can also function to provide spacing or alignment or both between frames or other components grouped together using the connectors. |
US11223317B2 |
Motor drive system and method capable of suppressing heat generation during low speed operation
A motor drive system capable of suppressing heat generation during a low speed operation may include: an inverter including a plurality of switching elements to convert direct current power to alternating current power having a plurality of phases; a motor driven with the alternating current power converted in the inverter; and a controller determines an operating point of the motor on the basis of a torque command of the motor and generates a d-axis current command and a q-axis current command corresponding to the operating point. In particular, when each of the switching elements is overheated, the controller changes the d-axis current command and the q-axis current command by changing the operating point to a different operating point corresponding to a torque of the same magnitude as the torque command. |
US11223316B2 |
Method and apparatus for controlling three-phase electric motor
Methods and control apparatus for operating a three-phase electric motor are described, in which the motor windings are switched between Star and Delta connections depending on torque requirements, and in which the motor windings are switched to a braking mode when braking torque is required. The electromagnetic torque of the motor is monitored, and a command to switch from Star to Delta is given when the electromagnetic torque rises to reach or exceed a threshold. |
US11223315B2 |
Power tool
A power tool, includes a power supply module for connecting to AC power; a brushless motor including a rotor and a stator winding; a rectifier module configured to receive the AC power from the power supply module and output a DC bus voltage; a position detection module for detecting a position signal of the brushless motor; a MCU chip configured to receive the position signal of the brushless motor detected by the position detection module and output a driving signal according to the position signal, where the MCU chip includes a controller; and a driving circuit configured to receive the driving signal from the MCU chip to drive the brushless motor, where the driving circuit is connected in series between the MCU chip and the stator winding of the brushless motor. |
US11223312B2 |
Rotary machine control device
In a rotary machine control device for controlling a rotary machine having a multi-group multiphase configuration, a phase difference θcoil of 150° to 210° (excluding 180°) is electrically provided between a winding for an odd-number group and a winding for an even-number group in the rotary machine, wherein, when the effective value of a voltage command is smaller than a voltage threshold, the phase difference between the voltage commands for the respective groups is set to 180°, and when a torque command is greater than a torque threshold, the phase difference between the voltage commands for the respective groups is set to θcoil. |
US11223311B2 |
Rotary electric machine and rotary electric machine system
In a rotary electric machine, a rotor, and a stator. The stator includes slots provided in a circumferential direction thereof, and stator windings wound in the slots. The stator windings include n groups of three-phase windings, where n is a power of 2. The slots include first slots each accommodating portions of same-group and same-phase windings in the n groups of three-phase windings. The energizing directions of the same-group and same-phase windings are identical to each other. The second slots each accommodate different-group and same-phase windings in the n groups of three-phase windings. The first slots and the second slots are arranged in the stator at predetermined intervals in a circumferential direction of the stator, and the three-phase windings of each group are wound around the stator with regular intervals therebetween. |
US11223308B2 |
Method of controlling a multi-channel multi-phase electrical machine
Provided is a method of controlling a multi-channel multi-phase electrical machine including a plurality of channels each with a set of phase windings connected to a converter, which method includes the steps of operating the converters to electrically phase-shift the channels; computing harmonic injection currents for a dominant harmonic on the basis of electrical quantities in a rotating reference frame; determining harmonic voltage references for the dominant harmonic on the basis of the harmonic injection currents; and regulating the AC output voltages of the channels according to the fundamental voltage references and the harmonic voltage references. Also provided is a control arrangement of a multi-channel multi-phase electrical machine; a wind turbine; and a computer program product. |
US11223307B2 |
Combination of an electric rotary machine with a converter unit and wind turbine
A rotary machine includes a rotor rotatable about a rotation axis and a stator mechanically divided into stator segments, each covering a respective section in relation to the rotation axis. Coils of one individual multi-phase rotary system are respectively arranged in the stator segments, each having terminals which connect phase lines of an individual multi-phase rotary system and are connected to the coils. A converter unit includes multiple subunits operated independently of one another, each forming an individual multi-phase rotary system. The number of phases of the subunits corresponds to the number of stator segments. The terminals of the stator segments are each connected to a subunit. The stator segments form groups of directly successive stator segments when viewed about the rotation axis. The terminals of the stator segments are connected to the same sub-unit within each group, but connected to different sub-units from group to group of stator segments. |
US11223303B2 |
Motor with force constant modeling and identification for flexible mode control
A method for moving a stage relative to a base includes coupling a magnet assembly to the stage; coupling an array of coils to the base; and directing current to at least one of the coils with a control system that includes a processor to generate a force that levitates the stage relative to the base and moves the stage relative to the base. In one embodiment, the control system generates at least one current command that levitates and moves the stage while inhibiting the excitation of a first targeted flexible mode. |
US11223296B2 |
Power conversion device
There is provided a power conversion device capable of effectively reducing a surge voltage generated by a parasitic inductance of a circuit. The power conversion device 1 is configured to operate a motor 8 driving a compression mechanism 7 of an electric compressor 16 by means of a three-phase inverter circuit 28 having a plurality of switching elements 18A to 18F. The power conversion device calculates a surge voltage value of each phase from a parasitic inductance of the circuit and phase currents iu, iv, and iw of the motor 8 to derive a phase in which the surge voltage value becomes maximum, and suppresses the switching of the switching elements 18A-18F of the phase having the maximum surge voltage value by a discontinuous modulation method. |
US11223294B2 |
Power converter and method of controlling a power converter
The present disclosure provides to a power converter including an AC input terminal (ACin), a neutral terminal (N), an AC output terminal (ACout), an AC/DC converter circuit (210) connected between the AC input terminal, a positive DC terminal (DCP), and a negative DC terminal (DCN), a DC capacitor (C15) connected between the positive DC terminal (DCP) and the negative DC terminal (DCN), a line frequency commutated neutral circuit (220) connected between the positive DC terminal (DCP), the negative DC terminal (DCN), and the neutral terminal (N), and a DC/AC converter circuit (230) connected between the positive DC terminal (DCP), the negative DC terminal (DCN), the AC output terminal (ACout), and the neutral terminal (N). The power converter further includes an auxiliary converter circuit (240) connected between the positive DC terminal (DCP), the negative DC terminal (DCN), and the neutral terminal (N). |
US11223293B2 |
Synchronous flyback converter circuit for operating an illuminant line
The present invention relates to a synchronous flyback converter circuit (1) for operating an illuminant line (4) having at least one illuminant (5), more particularly having at least one light emitting diode, the synchronous flyback converter circuit (1) comprising: a transformer (T), having a primary winding (Np), which is electrically connected to a first switch (S1), and a secondary winding (Ns), which is electrically connected to an output (A1, A1′) of the synchronous flyback converter circuit via a second switch (S2), the illuminant line (4) being able to be connected to the output; and a control unit (2), which is designed to control the first switch (S1) and the second switch (S2). According to a first embodiment according to the invention, the synchronous flyback converter circuit (1) comprises a sensing circuit (3), which is designed to capture a temporal mean of the switch current (IS1) flowing through the first switch (Si) and to feed at least one signal (Sg) conveying said temporal mean to the control unit (2), the control unit (2) being designed to separately determine, on the basis of the signal (Sg) fed from the sensing circuit (3), a temporal mean of the positive component of the switch current (IS1) flowing through the first switch (Si) and a temporal mean of the negative component of the switch current (IS1) flowing through the first switch (S1). According to a second embodiment according to the invention, the synchronous flyback converter circuit (1) comprises a sensing circuit (3), which is designed to separately capture a temporal mean of the positive component of the switch current (IS1) flowing through the first switch and a temporal mean of the negative component of the switch current (IS1) flowing through the first switch and to feed a first signal conveying the temporal mean of the negative component of the switch current (IS1) and a second signal conveying the temporal mean of the positive component of the switch current (IS1) to the control unit (2). |
US11223284B2 |
System and method for determining a primary switching event in an isolated converter
Disclosed is a system for determining a primary switching event in an isolated converter having a primary-side and a secondary-side. The system includes a primary-switch (PS) on the primary-side, a synchronous rectifier (SR) on the secondary-side, an integration circuit, and a SR controller. The integration circuit is in signal communication with the SR on the secondary-side and the SR controller is in signal communication with the SR and the integration circuit. The SR is configured to produce a drain-to-source voltage (VDS) and the integration circuit is configured to integrate a difference between the VDS and a output voltage (VOut) (produced by the secondary-side) over time to produce a VDS over time value (VTime). The SR controller is configured to determine if the VDS is greater than a first threshold voltage (VTH) and determine the primary switching event when the VTime is greater than a second threshold voltage (VSTH). |
US11223280B1 |
Multiphase voltage regulator with multiple voltage sensing locations
A voltage regulator dynamically adjusts the voltage distribution on a voltage rail based on multiple feedback measurements. The voltage regulator provides electrical power to a voltage rail at multiple power supply locations along the voltage rail. The voltage regulator obtains voltage measurements from multiple voltage sensing locations on the voltage rail and detects a spatially unequal voltage deviation in the voltage rail. The voltage regulator adjusts the electrical power provided to the voltage rail at each of the power supply locations to compensate for the spatially unequal voltage deviation in the voltage rail. |
US11223275B2 |
Switching mode power supply circuit
A switching mode power supply (SMPS) circuit is disclosed herein which includes: a first input rectification circuit, a first capacitor, a feedback control and driving circuit, and at least one boost circuit. The first input rectification circuit rectifies an input voltage and charges the first capacitor, forming a first loop. The second input rectification circuit rectifies the input voltage and charges the second capacitor, forming a second loop. The first inductor, second capacitor and first switching component form a third loop in which rectified voltage on the second capacitor charges the first inductor. The first inductor, second capacitor, first capacitor and first output rectification circuit form a fourth loop in which induced voltage on the first inductor and voltage on the second capacitor are superimposed to charge the first capacitor through the first output rectification circuit. The SMPS circuit provides low noise, high efficiency, and no inrush current in the first output rectification circuit. |
US11223269B2 |
Circuit for controlling switching power supply by current limiting and magnetic field detection, and method for controlling switching power supply by using circuit
A circuit for controlling a switching power supply and a method for controlling a switching power supply by using the circuit for controlling the switching power supply, the circuit for controlling a switching power supply is configured to control a power stage circuit of a converter of the switching power supply. The circuit for controlling the switching power supply includes an external magnetic field direct detection unit, a current limit threshold unit, an operating frequency unit, a pulse width unit and a logic unit. The external magnetic field direct detection unit includes a Hall device and a Hall detection component. In accordance with the circuit for controlling the switching power supply of the present disclosure, the intensity of the external magnetic field can be detected directly at the chip level, and the operating mode of the switching power supply system can be adjusted timely. |
US11223268B2 |
DC power supply with adaptive controlled preregulator and postregulator
A DC power supply and a method for operating a DC power supply, wherein the DC power supply comprises at least one feedback-controlled preregulator, at least one feedback-controlled postregulator supplied by the feedback-controlled preregulator, output terminals for supplying regulated constant current or regulated constant voltage to a load, and a control unit for controlling at least one of the feedback-controlled preregulator and the feedback-controlled postregulator, and designed for adjusting a voltage offset or a current offset added to a signal in a feedback loop of at least one of the feedback-controlled preregulator and the feedback-controlled postregulator. |
US11223266B2 |
Power generation device and input device
Magnets are configured to generate absorption force for holding a movable member at each of first and second positions. A power generator includes a mover configured to move in conjunction with the movable member. The power generator is configured to convert kinetic energy of the mover into electrical energy. When an operator moves in a direction in which a first pressing part approaches a second holding part while the movable member is at the first position, a spring member is compressed by the first pressing part and the second holding part. The spring member then generates restoring force for moving the movable member to the second position. When the operator moves in a direction in which a second pressing part approaches a first holding part while the movable member is at the second position, the spring member is compressed by the second pressing part and the first holding part. The spring member then generates restoring force for moving the movable member to the first position. |
US11223264B2 |
Electro-magnetic motor
A magnetic motor comprising a rotating flywheel coupled to rotate a drive output shaft within a support cage. Multiple permanent magnets extend directionally from the flywheel. Pairs of positionally fixed electro-magnets extend from the cage effacing platforms for sequential selective magnetic interaction with permanent magnets rotatable driving the flywheel and the drive output shaft. |
US11223261B2 |
Resin sealing device and resin sealing method for manufacturing magnet embedded core
A magnet embedded core is manufactured in a stable manner even when using a die clamping device having a large rated clamping force by preventing an excessive pressurizing force from being applied to a laminated iron core, performing the clamping with an appropriate pressurizing force so to minimize leakage of the resin out of magnet insertion holes, and suppressing a reduction in the geometric and dimensional precision of the laminated iron core. A die clamping device for driving a moveable platen in a direction toward and away from a fixed lower platen is configured to include a toggle link mechanism. In a fully extended state of the toggle link mechanism, an upper die abuts an end surface of the laminated iron core to close openings of the magnet insertion holes and pressurize the laminated iron core in a laminating direction. |
US11223252B2 |
Rotor for an electric machine
An electric machine is described, and includes a rotor that is rotatably disposed in a stator. The rotor includes a rotatable shaft that is disposed on a longitudinal axis, and a plurality of laminations that are disposed on the rotatable shaft. The plurality of laminations are arranged on the rotatable shaft to form a plurality of axially-disposed cavities, wherein each of the cavities is defined by a surface. A coating is disposed on the surfaces of the cavities, and a curable filler material is introduced into each of the cavities. The curable filler material adheres to the plurality of laminations via the coating. |
US11223248B2 |
Modified rotor of a reluctance machine for increasing torque
In a rotary dynamo-electric reluctance machine, a rotor includes regions of differing magnetic resistances. One region includes material of a first magnetic conductivity. Another region includes material of a second magnetic conductivity which is lower than the first magnetic conductivity. The region having the second magnetic conductivity includes permanent-magnetic material to increase a torque of the reluctance machine. |
US11223246B2 |
Stator
A stator (300) for an electric machine, having a yoke ring (310), and a plurality of teeth (220) arranged side by side within the yoke ring (310) in the circumferential direction, wherein each tooth (220) has a yoke portion (222), wherein the yoke portions (222) of the teeth (220) support one another in the circumferential direction, wherein respectively at least a part of the outer circumference of the yoke portion (222) of each tooth (220) deviates from a circle segment shape that is concentric to a central axis (302) of the stator (300), and the outer circumference encloses at each point an angle of more than 45° with the radius (304) defined by the central axis (302). |
US11223243B2 |
Contactless power supply system, contactless power supply method, and contactless power supply program
A contactless power supply system includes a contactless power supply device and a power receiving device. Power is supplied from the contactless power supply device to the power receiving device while communication is performed therebetween. The power receiving device includes a power receiving coil unit, and a first communication unit that attaches information having continuity to data transmitted to the contactless power supply device. The contactless power supply device includes a power supply coil unit, a second communication unit, and a power supply control unit that, in a steady state where communication is performed between two communication units after the second communication unit begins receiving the data transmitted from the first communication unit, refers to information having continuity attached to the data, and if continuity has been lost, performs correction to increase the output value of the power from the power supply coil unit to the power receiving coil unit. |
US11223241B2 |
Electric power transmission device and electric power transmission system
One aspect of the present invention is an electric power transmission device that periodically shifts a frequency of a magnetic field to a plurality of predetermined shift values and that transmits electric power by utilizing the magnetic field. The device includes a plurality of power transmitters and an instructor. Each of the plurality of power transmitters configured to generate a magnetic field. The instructor outputs an instruction signal indicating a shift value to be shifted to each of the power transmitters to instruct the shift value to be shifted to each of the power transmitters. Further, the instructor instructs the shift value to be shifted in such a manner that at least a part of the magnetic fields of the plurality of power transmitters are different in frequency at the same time point. |
US11223237B2 |
High efficiency power converting apparatus and control method
An apparatus comprises a rectifier configured to convert an alternating current voltage into a direct current voltage, wherein the alternating current voltage is generated by a receiver coil configured to be magnetically coupled to a transmitter coil of a wireless power transfer system, a high efficiency power converter connected to the rectifier, the high efficiency power converter comprising a first stage and a second stage connected in cascade and a controller configured to detect a plurality of operating parameters and generate a control signal applied to a control loop of the first stage. |
US11223236B2 |
Wireless inductive power transfer
A power transmitter (101) of a wireless power transfer system provides wireless power to a power receiver (105). The power transmitter (101) comprises a variable resonance circuit (201) generating an inductive power transfer signal in response to a drive signal. The resonance circuit comprises a capacitive and inductive impedance (201, 203), at least one of which is variable. The resonance frequency can be varied by at least one of the impedances being variable in response to a control signal. A driver (205) generates the drive signal with a variable drive frequency. A frequency modulator (305) applies frequency modulation to the drive signal by varying the variable drive frequency in response to data values to be transmitted to the power receiver (105). An adapter (309) generates the control signal in response to the data values such that the variable resonance frequency follows the variations in the drive frequency resulting from the frequency modulation of the drive signal. |
US11223230B2 |
Wireless charging for an input device
An apparatus including a removable modular insert disposed within a housing of a host device, the housing including one or more magnets, and one or more conductive contacts disposed on the removable modular insert to magnetically couple to the one or more magnets and secure the modular insert within the housing of the host device, and electrically couple the modular insert to the host device. A conductive coil can be coupled to the modular insert to electromagnetically receive power from a base device having a surface, where the host device moves and operates along the surface of the base device. The apparatus can include a communication device and a processor to control the communication device for communication between the modular insert and the host device, and control operation of the conductive coil. The communication device further controls the electromagnetic coupling between the modular insert and the base device. |
US11223228B2 |
Artificially intelligent uninterruptible power supply
An aspect of the disclosure includes an uninterruptible power supply (UPS) system comprising a first input configured to receive input AC power, a second input configured to be coupled to an energy storage device having a backup runtime capacity, and a controller. The controller is configured to operate the UPS system to store a plurality of indications each indicating a number of times that the UPS system has regained access to the input AC power within a respective amount of time after the UPS system has stopped providing the output power, analyze the plurality of indications to determine an additional backup runtime capacity for reducing a number of load drops, determine a number of additional energy storage devices that provide the additional backup runtime capacity, and output the determined number of additional energy storage devices to add to attain the additional backup runtime capacity and reduce the load drops. |
US11223219B2 |
Self-diagnostic fault identification system for emergency lighting unit
An emergency lighting device includes a housing, a light emitter positioned in the housing, a control circuit positioned in the housing and operatively connected to the light emitter, an indicator light positioned in the housing, and a fault indicator circuit positioned in the housing and operatively connected to the indicator light. The fault indicator circuit is configured to monitor the light emitter, analyze activation of the light emitter, and activate the indicator light based on the analysis of the activation of the light emitter. |
US11223215B2 |
Charging apparatus
A charging apparatus includes a plurality of batteries, a changeover relay that can be changed over between a first state where the plurality of the batteries are connected in series to one another and a second state where the plurality of the batteries are connected in parallel to one another, an electric storage device, a main relay that is provided between the electric storage device and an electric load of a vehicle, and a control device that controls the opening/closing of the changeover relay. The control device renders the changeover relay in the first state when the main relay is in an open state. |
US11223214B2 |
Power management system and operating method thereof
A power management system includes a battery charging system, a power supplying system, a first switching module, and a second switching module. The power management system is switched between the battery charging system and the power supplying system via the first switching module and the second switching module. With a charging electric energy generated by the waveform generating module, the battery charging system could restore the aging battery or the battery with degraded performance to a better state when the batteries are charging. By sensing a battery state of batteries, the power supplying system provides a supplementing power to the batteries, and the supplementing power and a power of the batteries could be supplied to a load together. |
US11223210B2 |
Utility meter for use with distributed generation device
An integrated metering device allows a resource provider to control the output of a distributed generation device onto a resource distribution network or grid. The integrated metering device may include a communications module, a metrology module, an inverter and regulator device, and a transfer switch. A resource provider may communicate with the integrated metering device via the communications module and may control the inverter and regulator device or the transfer switch. The metrology module may monitor the energy provided by the distributed generation device to the grid and may send information about the generated energy to the resource provider via the communications module. |
US11223208B2 |
Method and system for controlling integration of DC power source in hybrid power generation system
A hybrid power generation system is presented. The hybrid power generation system includes a generator operable via a prime mover and configured to generate an alternating current (AC) power. The hybrid power generation system further includes a first power converter electrically coupled to the generator, where the first power converter includes a direct current (DC) link. Furthermore, the hybrid power generation system includes a DC power source configured to be coupled to the DC-link. Moreover, the hybrid power generation system also includes a second power converter. Additionally, the hybrid power generation system includes an integration control sub-system operatively coupled to the first power converter and the DC power source. The integration control sub-system includes at least one bypass switch disposed between the DC power source and the DC-link and configured to connect the DC power source to the DC-link via the second power converter or bypass the second power converter. |
US11223202B2 |
Energy management method for an energy system and energy system
The present invention relates to an energy management method for an energy system (1) in a building. The energy system (1) comprises a plurality of uncontrollable energy consumers (HH), at least one controllable energy consumer (WP), an energy storage device (BAT), a net connection point (NAP) through which energy can be drawn from the net and/or fed into the net, and a feedback-control or control device (EMS) which is designed to feedback-control or control the at least one controllable energy consumer (WP) and the energy storage device (BAT). The plurality of uncontrollable energy consumers (HH) is configured to draw energy from the net or from the energy storage device (BAT). The method comprises the following steps: detecting a current state of charge (SOCact) of the energy store device (BAT), defining a period of time (ΔT0) during which the uncontrollable energy consumers (HH) are supplied with energy from the energy storage device, determining a limit value (SOChigh) of the state of charge of the energy storage device (BAT) on the basis of a determined minimum energy demand of the plurality of uncontrollable energy consumers (HH) up to the time of charging (T0), operating the at least one controllable energy consumer (WP) with energy from the energy storage device (BAT) if the current charge state (SOCact) of the energy storage device (BAT) is greater than the determined limit value (SOChigh) of the charge state and operating the at least one controllable energy consumer (WP) with energy from the net if the current charge state (SOCact) of the energy storage device (BAT) is less than or equal to the determined limit value (SOChigh) of the charge state. |
US11223198B2 |
Voltage limiter with overvoltage protection
The submitted voltage limiter consists of the insulating shell (26), closed from the top by the electrically and thermally conductive first contact plate (2) provided with the first connecting point (1) and from the bottom by the electrically and thermally conductive second contact plate (10) provided with the second connecting point (9). The embodiment of the two triggering semiconductor elements (5, 13) oriented in opposing directions and the protection member (17) connected to it in parallel, located between the two inner plates (3, 11), is located inside the insulating shell (26). The semiconductor elements (5, 13) are simultaneously interconnected with the electronic control device and connecting points (1, 9). The limiter is equipped with compressive construction to provide clamping and electrical interconnection of individual parts. The first triggering semiconductor element (5) is located between the thermally and electrically conductive first inner plate (3), which is in contact with its cathode (7) and the first contact plate (2), which is in contact with its anode (6). The second triggering semiconductor element (13) is located between the thermally and electrically conductive second inner plate (11), which is in contact with its cathode (15) and the second contact plate (10), which is in contact with its anode (14). The electronic control device may be located outside or inside the insulating shell (26) and consists of the first control device (4) interconnected with the control electrode (8) of the first triggering semiconductor element (5), the first contact plate (2) and the first inner plate (3) and interconnected with the control electrode (16) of the second triggering semiconductor element (13), with the second contact plate (10) and the second inner plate (11) from the second control device (12). |
US11223196B2 |
Fault-preventing circuit recloser
A fault-preventing circuit recloser includes a ballast impedance, power line current and voltage monitors, and controller that operates the switch based on measurements obtained from the current and voltage monitors. The controller aborts the closing (i.e., reopens the switch) when the controller detects that the switch has closed into faulted line. The circuit recloser temporarily introduces the ballast impedance into the circuit during the closing operation to limit the current spike and voltage dip caused by initially closing the switch into the faulted line. The circuit recloser also temporarily introduces the ballast impedance into the circuit during the opening operation to limit the voltage transient that can be caused by initially opening a load-carrying power line. Different ballast resistor insertion times are applied depending on the type of recloser operation (opening or closing) and whether a fault is detected. |
US11223191B2 |
Redundant and fault-tolerant power distribution system having an integrated communication network
A power distribution and communication system includes nodes connected by power lines and communication links. The system receives power from one or more power sources. Each node contains at least one power port, data port and load port. Associated with each power port and load port is a port monitor for measuring current flowing into or out of the port and the voltage difference between the port outlet and ground, which measurements are passed to a processing element. The processing element and monitor analyze measured values to detect fault conditions. Upon fault condition detection, the port is disabled by opening a switch, disconnecting the port from the system voltage. The processing element receives power directly from the power line, thus receiving power from a live power line even if the associated power port is disabled allowing the processing element to enable a disabled node following a failure. |
US11223187B2 |
Harness protector and harness assembly
Provided are a harness protector 10 that is mounted, in use, to a wire harness 18 including, on an outer circumference thereof, a corrugated tube 20 including a series of ridge portions 34 and valley portions 36, the harness protector including wire lead-out ports 28a to 28h serving as an inlet/outlet of the wire harness 18, wherein protrusions 42a and 42b and a stopper 46 protrude from inner circumferential surfaces 38 and 40 of the wire lead-out ports 28a to 28h, the protrusions 42a and 42b are configured to be fitted to the valley portions 36, and the stopper 46 has a larger width dimension at a protruding end face 52 or a basal portion thereof than a width dimension of the valley portions 36, and a harness assembly including the wire harness 18. |
US11223182B2 |
Method of manufacturing optical module
An optical module includes a light-forming part configured to form light; and a protective member that includes an output window configured to transmit light from the light-forming part and that is disposed so as to surround the light-forming part. The light-forming part includes a base member; a plurality of semiconductor light-emitting devices mounted on the base member and configured to emit light differing from each other in wavelength; and a filter mounted on the base member and configured to directly receive and coaxially multiplex diverging light from the plurality of semiconductor light-emitting devices. |
US11223181B2 |
High harmonic generation radiation source
Methods and corresponding apparatus operable to cause an interaction between a drive radiation beam and a medium for generation of emitted radiation by high harmonic generation, the arrangement comprising: an interaction region positioned at an interaction plane and configured to receive the medium; a beam block positioned upstream of the interaction plane at a beam block plane and configured to partially block the drive radiation beam; a beam shaper positioned upstream of the beam block plane at an object plane and configured to control a spatial distribution of the drive radiation beam; and at least one lens positioned upstream of the interaction plane and downstream of the beam block plane, wherein the lens being positioned such that an image of the spatial distribution of the drive radiation beam is formed at the interaction plane. |
US11223179B1 |
Multi-millijoule holmium laser system
A laser system may include a seed laser formed from a Ti:Sapphire laser providing pulsed light and an optical parametric amplifier to generate pulsed light within a Holmium emission spectrum as seed pulses in response to the pulsed light from the Ti:Sapphire laser. A laser system may further include an amplifier to generate amplified pulses of light in response to the seed pulses from the seed laser, where the amplified pulses include at least some of the seed pulses amplified by the one or more Holmium-doped gain media pumped by the one or more pump lasers. The amplifier may include one or more Holmium-doped gain media and one or more pump lasers providing continuous-wave pump light within an absorption spectrum of the one or more Holmium-doped gain media. |
US11223175B2 |
Plug for use in a wiring duct
A wiring duct plug that does not have a movable part for selecting any of a plurality of conductive lines, and has a high operational reliability is provided. A wiring duct plug can be directly connected to a respectively corresponding conductive line, and comprises a plurality of movable electrode terminals, rotating together with a rotator. At the connection position, at least two but not all of the plurality of movable electrode terminals are joined into one at the base end portion and electrically coupled to one of non-movable electrode terminals, and the remaining movable electrode terminal is electrically coupled to the other non-movable electrode terminal. |
US11223173B2 |
Pluggable module with coaxial connector interface
A pluggable module comprising a housing having a first end and second end, an edge connector disposed at the first end, an F-type coaxial connector at the second end and a release lever including a stamped body that is symmetrical about a centerline bisecting the length of the body. |
US11223172B2 |
Embedded electrical supply plug, electrical supply support arm, and rack electrical supply system
An embedded electrical supply plug has a mounting base and a fastener connected to each other, wherein the mounting base is provided with a power taking contact assembly, a circuit board and a power supply connector that are electrically connected to each other, the mounting base is provided with a first fastening surface, and the fastener is provided with a second fastening surface opposite to the first fastening surface, the fastener and the mounting base are threadedly connected to adjust the distance between the first fastening surface and the second fastening surface. The electrical supply plug is applicable to support arms of different thickness by changing the connection mode, thereby improving the installation flexibility and application range of the electrical supply system. |
US11223170B2 |
Surface mount connector and surface mount connector set
A surface mount connector in which an internal terminal does not extend to a location outside an external terminal is provided. A surface mount connector includes an external terminal that includes a tubular portion that extends in a first direction, an internal terminal that is separated from the external terminal inside the tubular portion when viewed in the first direction, and an insulator that is disposed between the internal terminal and the external terminal and that has a first main surface and a second main surface opposite the first main surface. The insulator inside the tubular portion has a through-hole that extends from the first main surface to the second main surface. |
US11223169B2 |
Coaxial connector and method for producing the outer contact of the same
The present disclosure relates to a coaxial connector and a method for producing an outer contact of the coaxial connector. The coaxial connector comprises a body, an inner contact, an outer contact, and a dielectric spacer. The body may be provided with a through hollow cavity, and the inner contact and the outer contact may be coaxially arranged in the hollow cavity of the body and may be spaced apart radially by the dielectric spacer. The outer contact may be in a shape of thin-wall cylinder and may comprise a plurality of spring fingers. The plurality of spring fingers may be spaced apart circumferentially by a plurality of slots. An end of each spring finger may be provided with a flange, and each flange may extend outwardly in a radial direction and comprises an arc portion and a flat portion. The outer contact with such a structure may provide a good interconnection quality when mating with a corresponding mating connector. The outer contact of the coaxial connector may be formed by stamping a tube, which, compared with prior art method, significantly increases the processing efficiency and reduces material and personnel costs. |
US11223168B2 |
One-piece electrical fitting for snap connection
A one-piece electrical fitting for connecting an electrical cable to a junction box, the electrical fitting formed from a single, flat blank of metal into a cylindrical connector body. The connector body includes a leading end having an exit bore, a trailing end, a cap, an inner bore, and one or more combination tangs including grounding tangs, locking tangs, and flanges extending radially outward from the connector body. According to one embodiment, the trailing end of the fitting includes a rolled edge, and the leading end includes a recessed lip for accommodating an insulating liner within the exit bore. The exit bore in the cap is offset to one side with cable retaining tangs on the fitting configured to push toward the exit bore in order to ease insertion of cables and conductors through the fitting. In a further embodiment, the fitting includes two combination tangs that are positioned 180 degrees apart radially on the fitting body to facilitate easier snap-in insertion into the knockout hole of an electrical box. |
US11223165B2 |
Or relating to protection relays
A protection relay connection assembly (10) for connecting a current transformer (14) and/or a voltage transformer (16) of an electrical network (12) to a protection relay (18) is provided. The protection relay connection assembly (10) includes a protection relay data acquisition board (20) and a protection relay connector (22). The protection relay data acquisition board (20) includes a first current mating member (24) connectable to a current measurement sensor (28), the current measurement sensor (28) being connectable in use to the protection relay (18) and/or a first voltage mating member (26) connectable to a voltage measurement sensor (30), the voltage measurement sensor (30) being connectable in use to the protection relay (18). The protection relay connector (22) includes a second current mating member (36) connectable to the current transformer (14) and/or a second voltage mating member (38) connectable to the voltage transformer (16). The first current mating member (24) and the second current mating member (36) are selectively mateable with one another to permit a measured current waveform of the electrical network (12) to be transmitted from the current transformer (14) to the protection relay (18). The first voltage mating member (26) and the second voltage mating member (38) are shaped to be selectively mateable with one another to permit a measured voltage waveform of the electrical network (12) to be transmitted from the voltage transformer (16) to the protection relay (18). Wherein the first current mating member (24) is shaped to prevent mating of the first current mating member (24) with the second voltage mating member (38), and the first voltage mating member (26) is shaped to prevent mating of the first voltage mating member (26) with the second current mating member (36). |
US11223163B2 |
Power connection module, with a system for locking/unlocking electric cable terminations in the module, terminal block comprising a plurality of independent connection modules
Power connection module, with a system for locking/unlocking electric cable terminations in the module. Terminal block including a plurality of independent connection modules. A connection module, the body of which is provided with cavities into each of which it is possible to insert an electric cable termination that may be fastened and locked by a sliding/translational movement of a locking plate over the body. |
US11223162B2 |
Air cleaner and home appliance
An air cleaner includes a first air cleaner having an output part, a second air cleaner configured to be electrically connectable to the first air cleaner, a power adapter detachably provided to supply power to the second air cleaner, a first input terminal provided in the second air cleaner and configured to be electrically connected to the output part, a second input terminal provided in the second air cleaner and configured to be electrically connected to the power adapter; and a switch configured to electrically connect the first input terminal to the output part or to electrically connect the second input terminal to the power adapter. |
US11223160B2 |
Connector
A connector is provided with a housing including a lock arm and a detector movable to a standby position and a detection position with respect to the housing. The detector includes a locking piece to be locked to the lock arm at the standby position before both housings are connected. At least one of the detector and the housing includes a locking strengthening portion for displacing the detector in a direction to increase a locking engagement of the locking piece and the lock arm in a part configured to slide in contact with the other when the detector moves from the standby position to the detection position. |
US11223158B2 |
Waterproof electronic component and method for assembling the same
This disclosure provides a waterproof electronic component having good waterproofness and a method for assembling the waterproof electronic component. A repeater as a waterproof electronic component includes (i) a substrate having first through holes, (ii) a socket fixed to the substrate, (iii) a housing containing the substrate, (iv) a pin held by the housing and having a first end connected to the substrate, and (v) a sealing section with which an area surrounded by the substrate and the housing is filled, the housing including a support including a supportive wall section capable of supporting a fixation portion of the socket and a seat section having a seating surface on which the substrate is placed, the substrate being placed on the seat section, the socket being oriented in such a manner that at least a portion of an outer surface of the fixation portion is close to and faces the supportive wall section. |
US11223157B2 |
Fitting connector
A first connector includes a first case and a screw member. The first case includes a first fitting part having a tubular shape. The screw member includes a first screw part and is disposed opposite to an outer peripheral surface of the first fitting part at an interval and held rotatably about a screw axis relative to the first case. The screw axis is aligned with a direction in which the first connector and a second connector are inserted and removed relative to the second connector. The second connector includes a second case and a second screw part. The second case includes a second fitting part having a tubular shape. The second screw part is provided in a connector fixation wall to which the second case is fixed and to which the first case is fixed outside of an outer peripheral surface of the second fitting part. |
US11223154B2 |
MSL connector series
Connector apparatus having a female connector assembly and a male connector assembly. The female connector assembly includes a female housing, a connector position assurance (CPA) member for assuring the engagement of the male connector assembly with the female connector assembly, and a first terminal position assurance (TPA) member for assuring that terminals for the female connector assembly are positioned properly. The female housing further includes a connector latch used to securely hold together a connector apparatus. The female housing has TPA protection ribs and CPA protection walls. The male housing has TPA protection ribs. |
US11223152B2 |
Interposer assembly and method
An interposer assembly including a plate and a plurality of conductive contacts extending through plate passages for forming electrical connections with pads on overlying and underlying substrates. |
US11223151B2 |
Electrical connector with translationally movable electrical contacts and magnetic retaining element
An electrical plug and socket having electrical contacts that are magnetically retained to the counterpart electrical contacts, where the electrical contacts may be optionally be mounted for translational movement, optionally including a sprung carrier arranged to provide a counter-force to at least one direction of translational movement. |
US11223149B1 |
Dual elastic plate connector
A dual elastic plate connector includes an engagement portion and a combination portion; the engagement portion including a first elastic plate, a second elastic plate, and a protrusion part; the combination portion combined with a cable; the first elastic plate including a head portion and a stem portion, with a curve structure as a connection portion connected therebetween; the second elastic plate including a head portion and a stem portion, with a curve structure as a connection portion connected therebetween; a bending direction of the two bending structures being arranged in opposite; the stem portion of the first elastic plate overlapping the head portion of the second elastic plate. When the connector is combined with another connector, the yield resistance, the combination stability, and the forward contact force are improved by the reverse stack arrangement between the two elastic plates. |
US11223147B2 |
Stacked dual connector system
An electrical connector includes a housing and a plurality of electrical conductors held within the housing. The housing includes a mating shroud protruding forward from a front wall of the housing and defining a port that receives a mating circuit card therein. Each of the electrical conductors includes a mating contact disposed within the mating shroud and a mounting contact that projects beyond a bottom end of the housing to electrically connect to a circuit board. The mounting contacts are located within a termination area of the electrical connector. The housing defines a nesting cavity extending rearward from the front wall along the bottom end. The nesting cavity is disposed between the mating shroud and the termination area along a longitudinal axis of the electrical connector. The nesting cavity is configured to accommodate a discrete, second connector that is mounted to the circuit board. |
US11223143B2 |
Radar device and aircraft
The present invention is provided with: an antenna 23 having an antenna surface 28 for radiating radio waves so as to have a prescribed plane of polarization; a second rotary mechanism 22 which is connected to the antenna 23 and which rotates the antenna 23 about a second rotation axis I2 that is set in a normal direction orthogonal to the antenna surface 28; and a first rotary mechanism 21 which is connected to the second rotary mechanism 22 and which rotates the antenna 23 and the second rotary mechanism 22 about a first rotation axis I1 that is set in a direction slanted with respect to the second rotation axis I2. |
US11223140B2 |
Electronically-reconfigurable interdigital capacitor slot holographic antenna
A holographic antenna includes a transmission line and a plurality of interdigital capacitor (IDC) slots respectively formed along the transmission line. The holographic antenna also includes an active tuning device connected to each IDC slot from the plurality of IDC slots. Each active tuning device is configured to provide a holographic pattern on the plurality of IDC slots in response to the holographic antenna transmitting or receiving an electromagnetic signal. The holographic pattern is controllable for scanning an electromagnetic beam by the holographic antenna. The holographic antenna also includes a biasing source coupled to each active tuning device and configured to control its respective operation. |
US11223137B2 |
Array antenna device
The present invention provides an antenna device including a ground conductor plate 1 having a first circular hole 6, a disc-shaped conductor plate 5 which has a second circular hole 7 whose center is disposed on a straight line passing through a center of the first hole 6 and orthogonal to the ground conductor plate 1, has a center that coincides with the center of the second hole 7, and is disposed substantially parallel to the ground conductor plate 1, a first linear conductor 4 having a first end passing through the first hole and a second end passing through the second hole, a second linear conductor 3 having a first end connected to the second end of the first conductor and disposed substantially parallel to the ground conductor plate, and an antenna element 2 connected to a second end of the second conductor. |
US11223131B2 |
Antenna device
The invention relates to an antenna device having an emitter element for emitting and/or receiving electromagnetic signals. The emitter element includes at least one coupling point connected to a side of the emitter element, and implemented for capacitively coupling electromagnetic signals in and/or out. |
US11223129B2 |
Connector for antennas, a glazing comprising the connector and an antenna system comprising the connector
A connector for at least two antennas, comprising a base layer, first and second electrical conductors secured on the base layer, wherein the first electrical conductor is suitable for signals in a first frequency band F1 and the second electrical conductor is suitable for signals in a second frequency band F2, wherein F2 is higher than F1; and first and second electrical conductors comprise first and second input portions, first and second output portions and first and second linear portions extending between first and second input portions and first and second output portions respectively, wherein first and second linear portions extend substantially parallel with each other and wherein an average width of the first linear portion is less than an average width of the second linear portion. A glazing comprising the conductor and an antenna system comprising the conductor are also claimed. Connector provides superior performance in double band operation. |
US11223125B2 |
System and method to control movement or orientation of a platform
A portable radar system comprising: a base; a mount connected to the base; a radar antenna pivotally attached to the mount; and a linear actuator pivotally connected between a portion of the base and the radar antenna, the linear actuator comprising a base containing an extendable column, which when deployed is substantially cylindrical, having a corrugated outer wall, and which is configured to raise and lower the radar antenna. |
US11223122B2 |
Antenna
To stabilize radiation characteristics of a radiation element by reducing bending deformation of the radiation element and widen a band of an antenna. An antenna includes: a first flexible dielectric layer; a conductive pattern layer formed on a surface of the first dielectric layer; a second flexible dielectric layer joined to the first dielectric layer on a side opposite to the conductive pattern layer with respect to the first dielectric layer; a conductive ground layer formed between the first dielectric layer and the second dielectric layer; a rigid dielectric substrate joined to the second dielectric layer on a side opposite to the conductive ground layer with respect to the second dielectric layer; and an antenna pattern layer formed between the second dielectric layer and the dielectric substrate and including one or more radiation elements, the conductive pattern layer including a feed line for supplying electric power to the radiation elements. |
US11223119B2 |
Millimeter wave LTCC filter
A millimeter wave LTCC filter includes system ground layers, metallized vias, first and second probes, two adjacent ones of the system ground layers define one closed resonant cavity, each closed resonant cavity is provided with a plurality of metallized vias, and the metallized vias of different closed resonant cavities face right to each other, to form concentric hole structures; an aperture of each first metallized via is equal to an aperture of each fourth metallized via, and is smaller than an aperture of each second metallized via that is equal to an aperture of each third metallized via; one end of the first probe is inserted into the first closed resonant cavity and electrically connected with the first system ground layer, and the second probe is coaxially arranged with the first probe, and is inserted into the fourth closed resonant cavity and electrically connected with the second system ground layer. |
US11223117B2 |
Electronic package and electronic device having the electronic package
An electronic package includes: a carrier structure; a first electronic component disposed on the carrier structure; a first insulating layer formed on the carrier structure; a first antenna structure coupled to the first insulating layer and electrically connected to the first electronic component; and a second antenna structure embedded in the carrier structure. As such, the electronic package provides more antenna functions within a limited space so as to improve the signal quality and transmission rate of electronic products. An electronic device having the electronic package is also provided. The electronic device is applicable to an electronic product having an antenna function. |
US11223115B2 |
Antenna
A main portion of an antenna has a ring-shape with a split and has a first end portion and a second end portion which form the split. A facing portion has a first facing portion provided on the first end portion and a second facing portion provided on the second end portion. The first facing portion and the second facing portion are arranged apart from each other and face each other. A first feeding terminal, a second feeding terminal and an additional terminal are provided on the main portion and used to be fixed to an object when the antenna is mounted on the object. On the main portion, the first feeding terminal is situated nearer to the first end portion than the second feeding terminal is situated, and the additional terminal is situated nearer to the second end portion than the second feeding terminal is situated. |
US11223108B2 |
Mobile terminal
Disclosed herein is a mobile terminal including a body, a display panel coupled to the body with one surface thereof facing outward, the one surface allowing an image to be output therethrough, a fingerprint sensor positioned on an opposite surface of the display panel, a first coil antenna disposed around the fingerprint sensor, a support frame including an opening and configured to support the opposite surface of the display panel, the fingerprint sensor and the first coil antenna being positioned in the opening, and a controller configured to apply electric current to the first coil antenna. The mobile terminal may increase utilization of the rear surface thereof by arranging coil antennas on the front surface thereof. |
US11223107B2 |
Data communications case
A data communications apparatus is disclosed for providing a data communications network. The apparatus includes a portable carrying case. A power supply is securable inside the case. A router device is securable inside the case, the router device including at least one cellular gateway for wide area network communication and configured to enable at least one wireless network for local area network communication. An antenna array is in electrical communication with the router device, the antenna array including at least a first pair of cellular antennas, at least two wireless networking antennas, and a satellite antenna. The first pair of cellular antennas are configured to support multiple input multiple output applications for the at least one cellular gateway, and the at least two wireless networking antennas are configured to support multiple input multiple output applications for the at least one wireless network. |
US11223105B2 |
Coupling structures for electronic device housings
A housing for an electronic device is disclosed. The housing comprises a first component and a second component separated from the first component by a gap. The housing also includes a first molded element disposed at least partially within the gap and defining at least a portion of an interlock feature, and a second molded element disposed at least partially within the gap and mechanically engaging the interlock feature. The first component, the second component, and the second molded element form a portion of an exterior surface of the housing. A method of forming the housing is also disclosed. |
US11223101B2 |
Antenna device, antenna module, and communication apparatus
A radiation conductor is constructed of a metal plate having a pair of main surfaces pointing in opposite directions. Each main surface of the pair of main surfaces includes a first surface region that includes at least part of a peripheral edge portion of the main surface. At least one main surface of the pair of main surfaces includes a second surface region that is a region other than the first surface region. A dielectric member holds the radiation conductor in such a manner that the first surface region of each main surface of the pair of main surfaces is sandwiched between portions of the dielectric member in a thickness direction of the radiation conductor. A housing supports and accommodates the dielectric member. The second surface region of the at least one main surface is exposed. |
US11223098B2 |
Waveguide system comprising a scattering device for generating a second non-fundamental wave mode from a first non-fundamental wave mode
Aspects of the subject disclosure may include, a system that facilitates directing a first electromagnetic wave to a device positioned along a transmission medium, the device facilitating a perturbation of the first electromagnetic wave, and the first electromagnetic wave having a first field intensity near an outer surface of the transmission medium, and generating, by the device, a second electromagnetic wave having a second field intensity near the outer surface of the transmission medium that is lower than the first field intensity of the first electromagnetic wave. Other embodiments are disclosed. |
US11223096B2 |
Dual-channel filter based on dielectric resonator
The present disclosure presents a dual-channel filter based on a dielectric resonator, which includes a metal cavity, a dielectric resonator, two tuning metal probes, and four feeding metal probes. The dielectric resonator is disposed at the center of the metal cavity. The four feeding metal probes are disposed around the metal cavity, and coupled to the dielectric resonator. The two tuning metal probes are connected to the metal cavity, and respectively located at a central position directly above and below the dielectric resonator. The dual-channel filter integrates two channel filters with good isolation between them, and has two input ports and two output ports. |
US11223094B2 |
Filters having resonators with negative coupling
Filter devices are provided herein. A filter device includes a plurality of low-band resonators and a plurality of high-band resonators. In some embodiments, adjacent ones of the plurality of high-band resonators are spaced farther apart from each other than adjacent ones of the plurality of low-band resonators are spaced apart from each other. |
US11223090B2 |
Polymer composite membrane, preparation method thereof, and lithium-ion battery including the same
The disclosure provides a polymer composite membrane, a method for preparing same, and a lithium-ion battery including same. The polymer composite membrane includes a polymer base membrane, where the polymer base membrane includes a first surface and a second surface disposed opposite to each other, and the polymer composite membrane further includes a first ceramic layer, a first heat-resistant fiber layer, and a first bonding layer disposed sequentially from inside out on the first surface of the polymer base membrane, where materials of the first heat-resistant fiber layer contain a first polymeric material and a second polymeric material. |
US11223089B2 |
Heat-resistant multi-layer composite lithium-ion battery separator, and coating device and manufacturing method for same
A heat-resistant multi-layer composite lithium-ion battery separator, and coating device and manufacturing method for same. The battery separator comprises a base membrane (12) having two end faces provided with a coating paste, and the end faces of the base membrane (12) are both adhered with a composite layer via the coating paste. The composite layer comprises one, two, or multiple composite films (13). The composite films (13) are adhered and fixed via the coating paste. The coating device is employed during the manufacturing, and comprises a base membrane uncoiling reel (1), a coating roller (2), a composite film uncoiling mechanism, a heating and drying mechanism, and a coiling reel (6). The coating roller (2) is arranged in a one-to-one correspondence to the composite film uncoiling mechanism, and two sets of the coating roller and the composite film uncoiling mechanism are provided on two sides of the base membrane (12). The composite film uncoiling mechanism comprises a composite film uncoiling reel (3) and a pressing shaft (4), and the composite films (13) are attached to the base membrane (12) after passing through the pressing shaft (4) to form a multi-layer composite separator, and then heated, dried, and shaped to obtain a separator final product. The separator final product has superior heat-resistant stability and a heat-resistant rate of contraction. |
US11223087B2 |
Structural potting material used to increase crush resistance
Methods and systems are provided for a battery encapsulant. In one example, a method may include a battery encapsulant surrounding one or more battery cells of a vehicle battery, where the encapsulant comprises a Young Modulus between 0.05 to 0.15 GPa after being cured. |
US11223086B2 |
Accumulator arrangement
An accumulator arrangement including several separate storage facilities for the storage of electrical energy, wherein every storage facility is incorporated in a bar-shaped hollow profile forming an equipment case, wherein the hollow profiles are connected to one another to form a tight composite. |
US11223085B2 |
Battery pack fixing apparatus
A battery pack fixing apparatus which may effectively prevent a battery pack from being detached or separated from the fixing apparatus and may ensure easy installation regardless of the place where the battery pack is mounted, including a support unit supporting a lower portion of the battery pack and having a support plate with a coupling structure coupled to the lower portion of the battery pack; and a wall fixing unit including a fixing plate located at the rear of the battery pack loaded on the support unit, formed with a plate shape erecting upward, having a lower portion coupled to one side of the support unit and having a coupling structure coupled to a wall located at the rear. |
US11223083B2 |
Package and battery
The present application provides a package and a battery, the package comprises a first surface, the first surface is provided with a first concave part and a first convex part which are connected with each other, the package further comprises an first elastomer, and the first elastomer is disposed in the first concave part. The purpose of the present application is to at least enable a battery to be protected well during the bending process of the battery. |
US11223080B2 |
Battery device for an at least partially electrically operated motor vehicle
A battery device for an at least partially electrically operated motor vehicle. The battery device includes at least one battery module with a module housing device, which provides at least one receiving compartment for a plurality of battery cells and surrounds same in the manner of a housing. A duct system conducts a temperature control medium for controlling the temperature of the battery cells. At least two cooling ducts of the duct system are integrated here in a housing portion of the module housing device and are deflected and/or brought together and/or separated there. |
US11223079B2 |
Battery pack
The present invention relates to a battery pack. The present invention includes: a plurality of battery cells disposed in one direction; a heat transfer oil configured to contact surfaces of the battery cells; a frame configured to accommodate the battery cells and the heat transfer oil; a cooling plate configured to contact bottom surfaces of the battery cells through the frame and having cooling water flowing therein; and a battery management unit configured to manage heat generated from the battery cells by using at least one of a cell temperature of the battery cells, a temperature of the heat transfer oil, and a temperature of the cooling water. |
US11223076B2 |
Battery pack
The present disclosure provides a battery pack including: a plurality of battery cells; a protective circuit module arranged on a side of the plurality of battery cells and including at least one through-hole; an electrode tab inserted into the at least one through-hole and electrically connecting the plurality of battery cells to the protective circuit module; a temperature sensing unit arranged on the protective circuit module; and a heat transfer member connected to a portion of the electrode tab inserted into the at least one through-hole and to the temperature sensing unit and transferring heat from the electrode tab to the temperature sensing unit. |
US11223073B2 |
Threshold discharging C-rates for battery cells in low temperature environments
Techniques described herein relate generally to determining and applying threshold discharging C-rates for battery cells in low temperature environments. To combat internal resistance within a battery cell at low temperature, heat may be generated within a battery cell via a high discharge C-rate. A higher discharge C-rate may cause more heat generation with a battery cell and the higher temperature may mitigate the low temperature environment. As a result of the heat generation, a battery cell's capacity may be increased. Techniques described herein may identify, for a particular low temperature (0 degrees Celsius and below), a threshold discharge C-rate that if a battery cell is discharged above the threshold, the effect of temperature rising would be more dominant than the effect of the internal resistance and more capacity would be obtained from the battery cell. |
US11223070B2 |
Fiber-containing mats with additives for improved performance of lead acid batteries
Fiber-containing mats for lead acid batteries are described. The mats may include a plurality of fibers, a binder holding the plurality of fibers together, and one or more additives incorporated into the mat, where the additives may include one or more compounds selected from benzyl benzoate and a glycol ester. Additional fiber-containing mats include a plurality of woven or non-woven fibers and the one or more additives. The fiber-containing mats having the one or more additives may be used in lead-acid batteries that include a positive and negative electrode, a separator, and one or more pasting mats. |
US11223063B2 |
Battery module
The disclosure relates to a battery module and the technical field of energy storage. The battery module comprises: a frame having an accommodation space; and a plurality of batteries successively arranged in the accommodation space in a thickness direction of the battery, wherein a partition is arranged between adjacent batteries, wherein the partition has a compressibility and a coefficient of compressibility δ1 at a pressure equal to or smaller than 2 MPa, which meets a relation C0×δ1≤A0×0.2, wherein C0 is an initial thickness of the partition, and A0 is an initial thickness of the battery. |
US11223060B2 |
Electrochemical reaction single cell and electrochemical reaction cell stack
An electrochemical reaction single cell including an electrolyte layer containing Zr and at least one of Y, Sc, and Ca, an anode disposed on one side of the electrolyte layer, a cathode containing Sr and Co and disposed on the other side of the electrolyte layer, and an intermediate layer disposed between the electrolyte layer and the cathode. In the electrochemical reaction single cell, an SrZrO3 integrated value calculated by a predetermined method is 600 to 10,300. Also disclosed is an electrochemical reaction cell stack including a plurality of electrochemical reaction single cells. |
US11223057B2 |
Fuel cell system
The present disclosure provides a fuel cell system that achieves a stable operation of a turbo compressor.The fuel cell system includes: a fuel cell; an air supply flow path; a turbo compressor; a bypass flow path configured to discharges air by branching off from the air supply flow path; a pressure regulating valve; a bypass valve; and a control unit, the pressure regulating valve, and the bypass valve, in which the control unit calculates, from a flow rate of air supplied based on an actual rotation speed of the turbo compressor and a target flow rate of air to the fuel cell, a flow rate of excess air discharged from the bypass flow path, and determines a degree of opening of the bypass valve based on the target flow rate of air and the flow rate of excess air. |
US11223053B2 |
Fuel cell
A fuel cell FC that includes a cell structure including an anode electrode, a cathode electrode, and an electrolyte that intervenes between the anode electrode and the cathode electrode; and a pair of separators that forms an anode gas flow area and a cathode gas flow area between the cell structure and an anode-side separator and a cathode-side separator of the pair of separators, respectively. The fuel cell further includes a first sealing portion and a second sealing portion that are disposed on an anode electrode side of the cell structure to enclose respectively the anode gas flow area and an outer periphery of the first sealing portion. A flow path for oxygen-containing gas is formed between the first sealing portion and the second sealing portion. |
US11223052B2 |
Fuel-cell separator
The disclosure provides a fuel-cell separator excellent in conductivity and a method for producing the separator.A fuel-cell separator comprising a metal substrate and a surface layer formed on a surface of the substrate, wherein the surface layer comprises an antimony-containing tin oxide film in an outermost surface thereof, and the antimony-containing tin oxide film has a value (%) representing orientation of the (200) plane and calculated in accordance with Expression (1): [ Mathematical Expression 1 ] Peak intensity of ( 200 ) plane / 21 Peak intensity of ( 110 ) plane / 100 + peak intensity of ( 101 ) plane / 75 + peak intensity of ( 200 ) plane / 21 × 100 Expression ( 1 ) where individual peak intensity values are obtained by X-ray diffraction, of 35 or more. |
US11223047B2 |
Non-aqueous electrolyte secondary battery, and method of producing non-aqueous electrolyte secondary battery
A non-aqueous electrolyte secondary battery includes an electrode array and an electrolyte solution. The electrode array includes a positive electrode that includes a positive electrode current collector and a positive electrode composite material layer; a negative electrode that includes a negative electrode current collector and a negative electrode composite material layer; and a separator. The electrode array includes cellulose nanofibers. At least one of the peel strength between the positive electrode current collector and the positive electrode composite material layer and the peel strength between the negative electrode current collector and the negative electrode composite material layer is smaller than both the peel strength between the separator and the positive electrode composite material layer and the peel strength between the separator and the negative electrode composite material layer. The greater of the two peel strengths is at least 1.5 times greater than the smaller of the two. |
US11223045B2 |
Method for producing organo-sulfur electrode active material
Disclosed is a sulfur-based electrode active material with which a nonaqueous electrolyte secondary battery that has a large capacity and exhibits less deterioration of the cycle characteristics can be obtained even when an electrode is employed in which the sulfur-based electrode active material is used as an electrode active material and an aluminum foil is used as a current collector. Also disclosed is a method for producing an organosulfur electrode active material, including a step of obtaining an organosulfur compound by heat-treating an organic compound and sulfur and a step of treating the organosulfur compound with a basic compound. The organosulfur compound is preferably sulfur-modified polyacrylonitrile, and the basic compound is preferably ammonia. The organosulfur compound may be treated with the basic compound after the organosulfur compound is ground, or may be ground in a medium that contains the basic compound. |
US11223040B2 |
Negative active material and lithium battery including the same
Provided are a negative active material and a lithium battery including the negative active material. The negative active material includes a non-carbonaceous core allowing doping or undoping of lithium ion; and a double coating layer formed on at least one portion of a surface of the non-carbonaceous core and including a first coating layer including a metal and a second coating layer including a metal oxide or a metal nitride. |
US11223037B2 |
Method for manufacturing anode for cable-type secondary battery, anode manufactured thereby, and cable-type secondary battery including same anode
A method for manufacturing an anode for a cable-type secondary battery, includes forming a lithium-containing electrode layer on the outer surface of a wire-type current collector; and surrounding the outer surface of the lithium-containing electrode layer with a substrate for forming a polymer layer spirally, and pressing the outside of the substrate for forming a polymer layer to form a polymer layer on the lithium-containing electrode layer, wherein the polymer layer includes a hydrophobic polymer, an ion conductive polymer, and a binder for binding the hydrophobic polymer and the ion conductive polymer with each other. An anode obtained from the method and a cable-type secondary battery including the anode are also provided. |
US11223035B2 |
Graphene-enabled niobium-based composite metal oxide as an anode active material for a lithium-ion battery
A graphene-enabled hybrid particulate for use as a lithium-ion battery anode active material, wherein the hybrid particulate is formed of a single or a plurality of graphene sheets and a single or a plurality of fine primary particles of a niobium-containing composite metal oxide, having a size from 1 nm to 10 μm, and the graphene sheets and the primary particles are mutually bonded or agglomerated into the hybrid particulate containing an exterior graphene sheet or multiple exterior graphene sheets embracing the primary particles, and wherein the hybrid particulate has an electrical conductivity no less than 10−4 S/cm and said graphene is in an amount of from 0.01% to 30% by weight based on the total weight of graphene and the niobium-containing composite metal oxide combined. |
US11223027B2 |
Display device
The present disclosure includes a substrate, a moisture-transmission delay part, and a protective layer. The substrate includes a display area, and a non-display area disposed outside the display area. The moisture-transmission delay part includes a trench which is formed to surround the display area and which has a cross section in which a lower portion has a width greater than a width of an upper portion. The protective layer covers the display area and the non-display area in which the moisture-transmission delay part is formed. |
US11223023B2 |
Folding display device
A folding display device is provided. 2N+2 cylindrical rotating shafts of the folding display device in a flattened state are arranged side by side and two adjacent cylindrical rotating shafts are in contact with each other. When the folding display device is in an externally bent state, a second layer has N cylindrical rotating shafts arranged side by side, a first layer has N+2 cylindrical rotating shafts arranged side by side, two adjacent cylindrical rotating shafts of the first layer are in contact with each other, N cylindrical rotating shafts of the second layer are stacked on N+2 cylindrical rotating shafts of the first layer and support the flexible display panel corresponding to the rotating shaft assembly, and N is a positive integer greater than or equal to 1. |
US11223022B2 |
Light emitting device and transparent display device using the same
Disclosed are a light emitting device which has improved reliability by increasing bonding force between a cathode and organic layers contacting both surfaces thereof, and a transparent display device using the same. |
US11223021B2 |
Lighting apparatus using organic light emitting device and method of fabricating the same
A lighting apparatus according to an embodiment of the present invention includes an organic light emitting device including a first electrode, an organic light emitting layer, and a second electrode formed on a first substrate, wherein the first electrode is formed of a transparent conductive material having a resistance of approximately 2800Ω to 5500Ω in each pixel. Thus, even if the resistance of the organic light emitting layer is removed in a pixel due to a contact between the first electrode and the second electrode, overcurrent may be prevented from being applied to the pixel due to the resistance of the first electrode. |
US11223020B2 |
Flexible display panel with bent substrate
A display may have an array of organic light-emitting diodes that form an active area on a flexible substrate. Metal traces may extend between the active area and an inactive area of the flexible substrate. Display driver circuitry such as a display driver integrated circuit may be coupled to the inactive area. The metal traces may extend across a bend region in the flexible substrate. The flexible substrate may be bent in the bend region. The flexible substrate may be made of a thin flexible material to reduce metal trace bending stress. A coating layer in the bend region may be provided with an enhanced elasticity to allow its thickness to be reduced. The flexible substrate may be bent on itself and secured within an electronic device without using a mandrel. |
US11223019B2 |
Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
Disclosed are the compound for an organic optoelectronic device, the compound being represented by Chemical Formula 1, a composition for an organic optoelectronic device including the compound for an organic optoelectronic device, an organic optoelectronic device, and a display device. In Chemical Formula 1, each substituent is the same as defined in the specification. |
US11223017B2 |
Organic light emitting device
The present disclosure provides an organic light emitting device having improved driving voltage, efficiency and life time. |
US11223014B2 |
Semiconductor structures including liners comprising alucone and related methods
A semiconductor device including stacked structures. The stacked structures include at least two chalcogenide materials or alternating dielectric materials and conductive materials. A liner including alucone is formed on sidewalls of the stacked structures. Methods of forming the semiconductor device are also disclosed. |
US11223013B2 |
Conductive bridge semiconductor component and manufacturing method therefor
The present disclosure provides a conductive bridge semiconductor device and a method of manufacturing the same. The conductive bridge semiconductor device includes a lower electrode, a resistive switching functional layer, an ion barrier layer and an active upper electrode from bottom to top, wherein the ion barrier layer is provided with certain holes through which active conductive ions pass. Based on this structure, the precise designing of the holes on the barrier layer facilitates the modulation of the quantity, size and density of the conduction paths in the conductive bridge semiconductor device, which enables that the conductive bridge semiconductor device can be modulated to be a nonvolatile conductive bridge resistive random access memory or a volatile conductive bridge selector. Based on the above method, ultra-low power nonvolatile conductive bridge memory and high driving-current volatile conductive bridge selector with controllable polarity are completed. |
US11223012B2 |
Variable resistance semiconductor device having oxidation-resistant electrode
A variable resistance semiconductor device includes a lower conductive wiring; a bottom electrode over the lower conductive wiring; a selection element pattern over the bottom electrode; a first intermediate electrode over the selection element pattern; a second intermediate electrode over the first intermediate electrode; a variable resistance element pattern over the second intermediate electrode; a top electrode over the variable resistance element pattern; and an upper conductive wiring over the top electrode. The first intermediate electrode includes a first material. The second intermediate electrode includes a second material which has a better oxidation resistance and a higher work function than the first material. |
US11223008B2 |
Pillar-based memory hardmask smoothing and stress reduction
A method for fabricating a semiconductor device includes forming a conductive shell layer along a memory stack and a patterned hardmask disposed on the memory stack, and etching the patterned hardmask, the conductive shell layer and the memory stack to form a structure including a central core surrounded by a conductive outer shell disposed on a patterned memory stack. |
US11223006B2 |
Mechanisms for pre-stretching electro-active polymers by a pre-determined amount and methods of use thereof
In some embodiments, the present invention is directed to an exemplary inventive method having steps of: providing at least one housing having a pre-determined physical structure; fixing a first edge of at least one electro-active polymer (EAP) film within the at least one housing; connecting a first edge of at least one pulling mechanism to a second edge of the at least one EAP film; where a second edge of the at least one pulling mechanism extends outside of the at least one housing; sufficiently pulling at the second edge of the at least one pulling mechanism to form at least one pre-stretched EAP film that has been stretched in a first axial direction within the at least one housing by a first pre-determined, pre-stretched amount; and where the pre-determined, pre-stretched amount is limited by the pre-determined physical structure of the housing. |
US11223004B2 |
Thermoelectric device having a polymeric coating
A method of fabricating a thermoelectric device includes providing a thermoelectric device having a thermally conductive first plate, a thermally conductive second plate, and a plurality of thermoelectric elements in a region bounded by and including the first plate and the second plate. The plurality of thermoelectric elements is in thermal communication with the first plate and the second plate. The method further includes forming a polymeric coating in the region on at least one surface of the first plate, at least one surface of the second plate, and at least one surface of the plurality of thermoelectric elements. |
US11223003B2 |
Thermoelectric conversion element and method of manufacturing thermoelectric conversion element
A thermoelectric conversion element that includes a laminated body having a plurality of first thermoelectric conversion portions, a plurality of second thermoelectric conversion portions, and an insulator layer. The first thermoelectric conversion portions and the second thermoelectric conversion portions are alternately arranged in a Y-axis direction and bonded to each other in first regions, and the insulator layer is interposed between the first thermoelectric conversion portions and the second thermoelectric conversion portions in second regions. The insulator layer surrounds a periphery of each of the second thermoelectric conversion portions. A ratio (W2/W1) of a thickness (W2) of the first thermoelectric conversion portion to a thickness (W1) of the second thermoelectric conversion portion in the Y-axis direction is greater than 4 and 11 or less. |
US11223002B2 |
Superlattice thermoelectric material and thermoelectric device using same
The present disclosure relates to a thermoelectric material, and more specifically to a superlattice thermoelectric material and a thermoelectric device using the same. The superlattice thermoelectric material has a composition of a following Chemical Formula 1: (AX)n(D2X′3)m , |
US11223001B2 |
Electrode substrate for transparent light-emitting diode display device, and transparent light-emitting diode display device comprising same
An electrode substrate for a transparent light emitting device display according to an embodiment of the this application comprises: a transparent substrate; (M rows×N columns) light emitting device pad portions provided on the transparent substrate as a matrix; and a first common electrode wiring portion, a second common electrode wiring portion, and a signal electrode wiring portion which are provided on the transparent substrate and connected to the light emitting device pad portions, respectively, in which each of the first common electrode wiring portion, the second common electrode wiring portion, and the signal electrode wiring portion comprises a metal mesh pattern, and line resistance of the first common electrode wiring portion or the second common electrode wiring portion connected to the light emitting device pad portions constituting one row among the light emitting device pad portions satisfies Equation 1 above. |
US11222993B2 |
Cascaded broadband emission
Methods and a device for cascading broadband emission are described. An example device can comprise a substrate, a bottom contact layer above at least a portion of the substrate, and a plurality of emission regions above the bottom contact layer. The plurality of emission regions can be disposed one above another. Each of the plurality of emission regions can be configured with different respective band gaps to emit radiation of different wavelengths. The device can comprise a plurality of tunnel junctions. Each of the tunnel junctions can be disposed between at least two corresponding emission regions of the plurality of emission regions. The device can comprise a top contact layer above the plurality of emission regions. |
US11222985B2 |
Power semiconductor device
An n-type semiconductor layer has a single-crystal structure and is made of a wide-gap semiconducting material. A p-type semiconductor layer is provided on the n-type semiconductor layer and made of a material different from the aforementioned wide-gap semiconducting material, and has either a microcrystalline structure or an amorphous structure. An electrode is provided on at least one of the n-type semiconductor layer and the p-type semiconductor layer. |
US11222980B2 |
Method of manufacturing a semiconductor device and a semiconductor device
A semiconductor device includes a fin structure protruding from a first isolation insulating layer provided over a substrate, a gate dielectric layer disposed over a channel region of the fin structure, a gate electrode layer disposed over the gate dielectric layer, a base semiconductor epitaxial layer disposed over a source/drain region of the fin structure, and a cap semiconductor epitaxial layer disposed over the base semiconductor epitaxial layer. The cap semiconductor epitaxial layer has a different lattice constant than the base semiconductor epitaxial layer, and a surface roughness of the cap semiconductor epitaxial layer along a source-to-drain direction is greater than zero and smaller than a surface roughness of the base semiconductor epitaxial layer along the source-to-drain direction. |
US11222978B2 |
Semiconductor device and method of fabricating the same
A semiconductor device includes at least one active pattern on a substrate, at least one gate electrode intersecting the at least one active pattern, source/drain regions on the at least one active pattern, the source/drain regions being on opposite sides of the at least one gate electrode, and a barrier layer between at least one of the source/drain regions and the at least one active pattern, the barrier layer being at least on bottoms of the source/drain regions and including oxygen. |
US11222972B2 |
Semiconductor device and manufacturing method thereof
A semiconductor device includes a semiconductor substrate, a trench provided in the semiconductor substrate, a trench gate formed in the trench, a vertical transistor having the trench gate, an active region having the vertical transistor, a field region surrounding the active region and having a protection diode, and a field insulating film formed on a surface of the semiconductor substrate, the protection diode being formed on the field insulating film. The trench gate includes a first polysilicon layer and has an embedded part embedded in the trench and an extension part connected to the embedded part and extending onto the surface of the semiconductor substrate, the protection diode includes a second polysilicon layer thicker than the first polysilicon layer, and an overlapping part having the second polysilicon layer is formed on the extension part. |
US11222969B2 |
Normally-off transistor with reduced on-state resistance and manufacturing method
A normally-off electronic device, comprising: a semiconductor body including a heterostructure that extends over a buffer layer; a recessed-gate electrode, extending in a direction orthogonal to the plane; a first working electrode and a second working electrode at respective sides of the gate electrode; and an active area housing, in the on state, a conductive path for a flow of electric current between the first and second working electrodes. A resistive region extends at least in part in the active area that is in the buffer layer and is designed to inhibit the flow of current between the first and second working electrodes when the device is in the off state. The gate electrode extends in the semiconductor body to a depth at least equal to the maximum depth reached by the resistive region. |
US11222965B2 |
Oxide-nitride-oxide stack having multiple oxynitride layers
An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer. |
US11222964B2 |
Multiple planes of transistors with different transistor architectures to enhance 3D logic and memory circuits
Microfabrication of a collection of transistor types on multiple transistor planes in which both HV (high voltage transistors) and LV (low-voltage transistors) stacks are designed on a single substrate. As high voltage transistors require higher drain-source voltages (Vds), higher gate voltages (Vg), and thus higher Vt (threshold voltage), and relatively thicker 3D gate oxide thicknesses, circuits made as described herein provide multiple different threshold voltages devices for both low voltage and high voltage devices for NMOS and PMOS, with multiple different gate oxide thickness values to enable multiple transistor planes for 3D devices. |
US11222960B2 |
Semiconductor device structures with composite spacers and fabrication methods thereof
A semiconductor device structure and fabrication method thereof are disclosed. The method may include providing a substrate; forming a gate structure on the substrate; forming a spacer structure on the gate structure, and forming a contacting conductive structure on the spacer structure. The spacer structure may cover a side wall of the gate structure, and may include a first spacer layer having a first dielectric constant and a second spacer layer having a second dielectric constant different from the first dielectric constant. The contacting conductive structure may cover a side wall of the spacer structure that is defined by a first side surface of the first spacer layer and a second side surface of the second space. The ratio of the area of the second side surface of the second spacer layer to the total area of the side wall of the spacer structure may be in a range from 78% to 98%. |
US11222956B2 |
Distributed current low-resistance diamond ohmic contacts
In some embodiments, a semiconductor structure can include: a diamond substrate having a surface conductive layer; a heavily doped region formed in the diamond substrate; and a metal contact positioned over the conductive surface layer such that a first portion of the heavily doped region is covered by the metal contact and a second portion of the heavily doped region is not covered by the metal contact. |
US11222953B2 |
Optical sensor and image sensor including graphene quantum dots
Provided are an optical sensor including graphene quantum dots and an image sensor including an optical sensing layer. The optical sensor may include a graphene quantum dot layer that includes a plurality of first graphene quantum dots bonded to a first functional group and a plurality of second graphene quantum dots bonded to a second functional group that is different from the first functional group. An absorption wavelength band of the optical sensor may be adjusted based on types of functional groups bonded to the respective graphene quantum dots and/or sizes of the graphene quantum dots. |
US11222951B2 |
Epitaxial source/drain structure and method
A method of semiconductor fabrication includes providing a semiconductor structure having a substrate and first, second, third, and fourth fins above the substrate. The method further includes forming an n-type epitaxial source/drain (S/D) feature on the first and second fins, forming a p-type epitaxial S/D feature on the third and fourth fins, and performing a selective etch process on the semiconductor structure to remove upper portions of the n-type epitaxial S/D feature and the p-type epitaxial S/D feature such that more is removed from the n-type epitaxial S/D feature than the p-type epitaxial S/D feature. |
US11222950B2 |
Method for fabricating embedded nanostructures with arbitrary shape
A layered heterostructure, comprising alternating layers of different semiconductors, wherein one of the atom species of one of the semiconductors has a faster diffusion rate along an oxidizing interface than an atom species of the other semiconductor at an oxidizing temperature, can be used to fabricate embedded nanostructures with arbitrary shape. The result of the oxidation will be an embedded nanostructure comprising the semiconductor having slower diffusing atom species surrounded by the semiconductor having the higher diffusing atom species. The method enables the fabrication of low- and multi-dimensional quantum-scale embedded nanostructures, such as quantum dots (QDs), toroids, and ellipsoids. |
US11222948B2 |
Semiconductor structure and method of fabricating the semiconductor structure
The present disclosure provides a semiconductor structure, including a substrate having a front surface, a fin protruding from the front surface, the fin including: a first semiconductor layer in proximal to the front surface, a second semiconductor layer stacked over the first semiconductor layer, a gate between the first semiconductor layer and the second semiconductor layer, and a spacer between the first semiconductor layer and the second semiconductor layer, contacting the gate, and a source/drain (S/D) region laterally surrounding the fin, wherein the spacer has an upper surface interfacing with the second semiconductor layer, the upper surface including: a first section proximal to the S/D region, a second section proximal to the gate, and a third section between the first section and the second section, wherein an absolute value of a derivative at the third section is greater than an absolute value of a derivative at the second section. |
US11222944B2 |
Integrated circuit device and method of manufacturing thereof
An integrated circuit device includes a semiconductor substrate having a resistivity of at least 100 Ω·cm. An electrically insulating layer contacts the semiconductor substrate. The electrically insulating layer is susceptible of inducing in the semiconductor substrate a parasitic surface conduction layer that interfaces with the electrically insulating layer. An electrical circuit is located on the electrically insulating layer. The electrical circuit includes a section capable of inducing an electrical field in the semiconductor substrate. The integrated circuit device includes a depletion-inducing junction of which at least a portion is comprised in the semiconductor substrate. The depletion-inducing junction can autonomously induce in the semiconductor substrate a depleted zone that interfaces with a section of the electrically insulating layer that lies in-between two sections of the electrical circuit. |
US11222943B2 |
Display apparatus
A display apparatus includes a substrate; a plurality of display units on the substrate, each including a thin film transistor including at least one inorganic layer, a passivation layer on the thin film transistor, and a display device electrically connected to the thin film transistor; and a plurality of encapsulation layers respectively encapsulating the plurality of display units. The substrate includes a plurality of islands spaced apart, a plurality of connection units connecting the plurality of islands, and a plurality of through holes penetrating through the substrate between the plurality of connection units. The plurality of display units are on the plurality of islands, respectively. The at least one inorganic layer and the passivation layer extend on the plurality of connection units. The passivation layer includes a trench exposing the at least one inorganic layer. The encapsulation layer contacts the at least one inorganic layer exposed via the trench. |
US11222940B2 |
Display device including a heat dissipation layer in a curved region
A display device according to an embodiment of the present invention includes: a base material including a display region and a curved region; a wiring line disposed on the base material and disposed from the display region over the curved region; and a heat dissipating layer formed corresponding to a position at which the wiring line is disposed in the curved region. |
US11222939B2 |
Display panel, display device and method for manufacturing display panel
A display panel includes a display substrate, a chip-on-film provided at a bezel away from a display face of the display substrate, an insulation adhesive filled between the display substrate and the chip-on-film, and an integrated circuit chip fixed at a side of the chip-on-film away from the display substrate, the chip-on-film is fixed at the bezel away from the display face of the display substrate by the insulation adhesive, at the bezel there are a plurality of connection holes penetrating through the display substrate and the insulation adhesive, and conductive material filled in the respective connection holes, and signal lines at the bezel at the display face of the display substrate are connected with connection terminals provided at a side of the chip-on-film facing the display substrate via the conductive material. |
US11222938B2 |
Display apparatus with organic filler disposed in groove
A display apparatus includes a substrate including a display area having a plurality of pixel circuits that are spaced apart from each other. An inorganic material layer is arranged in the display area and includes a groove between adjacent pixel circuits of the plurality of pixel circuits. An organic filler is disposed in the groove. The inorganic material layer includes at least one insulating material layer and an etch stop layer. The etch stop layer includes a semiconductor material or a conductive material. The etch stop layer is provided on a bottom surface or a portion of a side wall of the groove. |
US11222934B2 |
Flexible display device with reinforcing members
A display device is improved in terms of bending characteristics, the display device including: a window, a display panel, and a reinforcing member. A protective film is not disposed between the display panel and the reinforcing member, and a protective film is not disposed on a lower surface of the reinforcing member. |
US11222933B2 |
Display panel equipped with function of detecting an object, and method for detecting an object on a display panel
A display panel equipped with function of detecting an object and an associated method are provided. The display panel includes a first photosensitive circuit, a second photosensitive circuit, a detection circuit, a first switch and a second switch. The first photosensitive circuit and the second photosensitive circuit accumulate first charges and second charges in response to first incident light and second incident light to generate a first signal and a second signal, respectively, wherein the object reflects light emitted from the display panel to generate the second incident light. The detection circuit discharges the first charges for converting the first signal into a reference signal on a first input terminal of the detection circuit, and the second signal is transmitted to a second input terminal of the detection circuit, to make the detection circuit to generate a detection signal indicating a difference between the second signal and the reference signal. |
US11222931B2 |
Display device
A display device includes a TFT layer, a light-emitting element layer provided in an upper layer than the TFT layer and including a first electrode, a second electrode, and a light-emitting layer of visible light, and a sealing layer covering the light-emitting element layer. An infrared light emission layer and an infrared light detection element are provided in a lower layer than the sealing layer. |
US11222927B2 |
Foldable OLED display panel
A foldable organic light emitting diode (OLED) display panel includes a bending region and a non-bending region, and includes a plurality of subpixels, formed in the bending region and the non-bending region, a part of or all of the plurality of subpixels having a self-illumination property; and first spacers, configured to provide support and form gaps, wherein the first spacers are disposed in the bending region and distributed in a shape of net, and surrounds the plurality of subpixels. The display panel can enhance an ability of the subpixels in the bending region to endure stress throughout a bending process and ensure reliability of the display panel. |
US11222922B2 |
Resistive random access memory cells integrated with shared-gate vertical field effect transistors
A two-transistor-two-resistor (2T2R) resistive random access memory (ReRAM) structure, and a method for forming the same includes two vertical field effect transistors (VFETs) formed on a substrate, each VFET includes an epitaxial region located above a channel region and below a dielectric cap. The epitaxial region includes two opposing protruding regions of triangular shape that extend horizontally beyond the channel region. A metal gate material is disposed on and around the channel region. A portion of the metal gate material is located between the two VFETs. A ReRAM stack is deposited within two openings adjacent to a side of each VFET that is opposing the portion of the metal gate material located between the two VFETs. A portion of the epitaxial region in direct contact with the ReRAM stack acts as a bottom electrode for the ReRAM structure. |
US11222920B2 |
Magnetic device including multiferroic regions and methods of forming the same
A magnetic device includes a first electrode, a second electrode, a plurality of magnetic junctions each containing a ferromagnetic reference layer and a ferromagnetic free layer located between the first electrode and the second electrode, and a plurality of magnetoelectric multiferroic portions having different structural defect densities located between the first electrode and the second electrode. Each of the plurality of magnetoelectric multiferroic portions is magnetically coupled to the ferromagnetic free layer of a respective one of the plurality of magnetic junctions. |
US11222918B1 |
Image sensor
An image sensor comprising a substrate including an upper surface and a lower surface opposite each other and extending in a first direction and a second direction, a first isolation region in the substrate and apart from the upper surface in a third direction perpendicular to the first direction and second direction, the first isolation region defining a boundary of a photoelectric conversion region, a second isolation region in the substrate and extending in the third direction from the lower surface to the first isolation region, a plurality of transistors on the upper surface in the photoelectric conversion region, and a photoelectric conversion device in the substrate in the photoelectric conversion region. The first isolation region includes a potential well doped with an impurity of a first conductivity type, and the second isolation region includes an insulating material layer. |
US11222917B2 |
Backside illuminated image sensor and method of manufacturing same
Disclosed is a backside illuminated image sensor and a method of manufacturing the same and, more particularly, a backside illuminated image sensor and a method of manufacturing the same, in which a height difference is between a pixel region and a surrounding region having a boundary between on an uppermost or back surface of a substrate, thereby eliminating one or more problems that occur when a thickness of a color filter in the pixel region is uneven. |
US11222911B2 |
Photoelectric conversion element and solid-state imaging device
A photoelectric conversion element encompasses a depletion-layer extension-promotion region having a p-type upper layer, a p-type photoelectric conversion layer in contact with the depletion-layer extension-promotion region, and an n-type surface-buried region buried in an upper portion of the photoelectric conversion layer, configured to implement a photodiode together with the photoelectric conversion layer. A first p-well is surrounded by a first n-tab, the first n-tab is surrounded by a second p-well, the second p-well is surrounded by a second n-tab, and the second n-tab is surrounded by a third p-well. An injection-blocking element blocks injection of carriers of opposite conductivity type to signal charges from the second p-well into the photoelectric conversion layer, and the inside of the photoelectric conversion layer is depleted by a voltage applied to the depletion-layer extension-promotion region. |
US11222900B2 |
Semiconductor memory device
According to one embodiment, a semiconductor memory device includes: a first interconnect layer including a first electrode that extends in a first direction and a second electrode that extends in a second direction and is in contact with one end of the first electrode; a second interconnect layer including a third electrode that is provided adjacently to the first electrode and a fourth electrode that is in contact with one end of the third electrode; a first semiconductor layer provided between the first electrode and the third electrode; a first charge storage layer provided between the first semiconductor layer and the first electrode; a second charge storage layer provided between the first semiconductor layer and the third electrode; and a first bit line provided above the first semiconductor layer and extending in the first direction. |
US11222892B2 |
Backside power rail and methods of forming the same
A semiconductor device according to the present disclosure includes a bottom dielectric feature on a substrate, a plurality of channel members directly over the bottom dielectric feature, a gate structure wrapping around each of the plurality of channel members, two first epitaxial features sandwiching the bottom dielectric feature along a first direction, and two second epitaxial features sandwiching the plurality of channel members along the first direction. |
US11222891B2 |
Semiconductor device and semiconductor circuit
A semiconductor device of the embodiment includes a semiconductor layer including a first semiconductor region, a second semiconductor region, a third semiconductor region, a fourth semiconductor region, a fifth semiconductor region, a sixth semiconductor region, a first trench, and a second trench, a first gate electrode in the first trench; a second gate electrode in the second trench; a first electrode on a first face side; a second electrode on a second face side; a first electrode pad connected to the first gate electrode; and a second electrode pad connected to the second gate electrode. The semiconductor device includes a first region including the first semiconductor region; a second region including the second semiconductor region; and a third region provided between the first region and the second region, the third region having a density of the second trench higher than that of the first region. |
US11222889B2 |
Electrostatic discharge protection circuit
The disclosure relates in some aspects to electrostatic discharge (ESD) protection for an electronic circuit. In some aspects, the ESD protection includes a buffer circuit that increases the slew rate of a signal that controls a discharge circuit. In some aspects, the ESD protection includes a voltage-dependent resistance circuit that adjusts a time constant of a resistive-capacitive filter based on a voltage on a supply node. |
US11222887B2 |
Transient voltage suppression device
A transient voltage suppression device including a substrate of a first conductivity type, a first well of a second conductivity type, a first anode, a first cathode, and a first trigger node is provided. The first well is disposed in the substrate. The first anode is disposed in the substrate outside the first well and includes a second doped region of the second conductivity type and a third doped region of the first conductivity type disposed between the second doped region and the first doped region. The first trigger node is disposed between the first anode and the first cathode, and includes a fourth region of the first conductivity type disposed in the substrate and a fifth doped region of the second conductivity type at least partially disposed in the first well and disposed between the fourth doped region and the third doped region. |
US11222885B2 |
Backend electrostatic discharge diode apparatus and method of fabricating the same
A backend electrostatic discharge (ESD) diode device structure is presented comprising: a first structure comprising a first material, wherein the first material includes metal; a second structure adjacent to the first structure, wherein the second structure comprises a second material, wherein the second material includes a semiconductor or an oxide; and a third structure adjacent to the second structure, wherein the third structure comprises of the first material, wherein the second structure is between the first and third structures. Other embodiments are also disclosed and claimed. |
US11222884B2 |
Layout design methodology for stacked devices
A layout design methodology is provided for a device that includes two or more identical structures. Each device can have a first die, a second die stacked over the first die and a third die stacked over the second die. The second die can include a first through-silicon via (TSV) and a first circuit, and the third die can include a second TSV and a second circuit. The first TSV and the second TSV can be linearly coextensive. The first and second circuit can each be a logic circuit having a comparator and counter used to generate die identifiers. The counters of respective device die can be connected in series between the dice. Each die can be manufactured using the same masks but retain unique logical identifiers. A given die in a stack of dice can thereby be addressed by a single path in a same die layout. |
US11222883B2 |
Package structure and method of manufacturing the same
Provided are a package structure and a method of manufacturing the same. The package structure includes a die, a first passive device, a plurality of through insulator vias (TIVs), an encapsulant, and a plurality of conductive connectors. The die has a front side and a backside opposite to each other. The first passive device is disposed aside the die. The TIVs are disposed between the die and the first passive device. The encapsulant laterally encapsulates the TIVs, the first passive device, and the die. The conductive connectors are disposed on the backside of the die, wherein the conductive connectors are electrically connected to the die and the first passive device by a plurality of solders. |
US11222880B2 |
Package structure for semiconductor device and manufacturing method thereof
A package structure for a semiconductor device includes a first conductive layer, a second conductive layer, a first die, a second die, a plurality of first blind via pillars and a conductive structure. The first conductive layer has a first surface and a second surface. The first die and the second die respectively have an active surface and a back surface, which are disposed opposite to each other. There is a plurality of metal pads disposed on the active surface. The first die is attached to the first surface of the first conductive layer with its back surface, and the second die is attached to the second surface of the first conductive layer with its back surface. The first and second conductive layers, the first and second dies, the first blind hole pillars and conductive structure are covered by a dielectric material. |
US11222877B2 |
Thermally coupled package-on-package semiconductor packages
The present disclosure is directed to systems and methods for improving heat distribution and heat removal efficiency in PoP semiconductor packages. A PoP semiconductor package includes a first semiconductor package that is physically, communicably, and conductively coupled to a stacked second semiconductor package. A thermally conductive member that includes at least one thermally conductive member may be disposed between the first semiconductor package and the second semiconductor package. The thermally conductive member may include: a single thermally conductive element; multiple thermally conductive elements; or a core that includes at least one thermally conductive element. The thermally conductive elements are thermally conductively coupled to an upper surface of the first semiconductor package and to the lower surface of the second semiconductor package to facilitate the transfer of heat from the first semiconductor package to the second semiconductor package. |
US11222874B2 |
Discontinuous patterned bonds for semiconductor devices and associated systems and methods
Discontinuous bonds for semiconductor devices are disclosed herein. A device in accordance with a particular embodiment includes a first substrate and a second substrate, with at least one of the first substrate and the second substrate having a plurality of solid-state transducers. The second substrate can include a plurality of projections and a plurality of intermediate regions and can be bonded to the first substrate with a discontinuous bond. Individual solid-state transducers can be disposed at least partially within corresponding intermediate regions and the discontinuous bond can include bonding material bonding the individual solid-state transducers to blind ends of corresponding intermediate regions. Associated methods and systems of discontinuous bonds for semiconductor devices are disclosed herein. |
US11222873B2 |
Semiconductor packages including stacked substrates and penetration electrodes
A semiconductor package may include first and second substrates, which are vertically stacked, a semiconductor device layer on a bottom surface of the second substrate to face a top surface of the first substrate, upper chip pads and an upper dummy pad on the top surface of the first substrate, penetration electrodes, which each penetrate the first substrate and are connected to separate, respective upper chip pads, lower chip pads on a bottom surface of the semiconductor device layer and electrically connected to separate, respective upper chip pads, and a lower dummy pad on the bottom surface of the semiconductor device layer and electrically isolated from the upper dummy pad. A distance between the upper and lower dummy pads in a horizontal direction that is parallel to the first substrate may be smaller than a diameter of the lower dummy pad. |
US11222870B2 |
Semiconductor device package and method of manufacturing the same
A semiconductor device package includes a first substrate and a second substrate arranged above the first substrate. A first connector is disposed on the first substrate, and a first conductor passes through the second substrate and connects to the first connector. |
US11222869B2 |
Dummy TSV to improve process uniformity and heat dissipation
In a stack of chips which each include active circuit regions, a plurality of through-silicon via (TSV) structures are formed for thermally conducting heat from the multi-chip stack by patterning, etching and filling with thermally conductive material a plurality of TSV openings in the multi-chip stack, including a first larger TSV opening that extends through substantially the entirety of the multi-chip stack without penetrating any active circuit region, and a second smaller TSV opening that extends down to but not through an active circuit region. |
US11222866B2 |
Package process and package structure
A package structure includes: 1) a circuit substrate; 2) a first semiconductor device disposed on the circuit substrate; 3) a first insulation layer covering a sidewall of the first semiconductor device; 4) a second insulation layer covering the first insulation layer; and 5) a third insulation layer disposed on the circuit substrate and in contact with the second insulation layer. |
US11222865B2 |
Semiconductor device including vertical bond pads
The present technology relates to a semiconductor device including semiconductor dies formed with vertical die bond pads on an edge of the dies. During wafer fabrication, vertical bond pad blocks are formed in scribe lines of the wafer and electrically coupled to the die bond pads of the semiconductor dies. The vertical bond pad blocks are cut through during wafer dicing, thereby leaving large, vertically oriented pads exposed on a vertical edge of each semiconductor die. |
US11222862B2 |
High speed handling of ultra-small chips by selective laser bonding and debonding
Techniques for high speed handling of ultra-small chips (e.g., micro-chips) by selective laser bonding and/or debonding are provided. In one aspect, a method includes: providing a first wafer including chips bonded to a surface thereof; contacting the first wafer with a second wafer, the second wafer including a substrate bonded to a surface thereof, wherein the contacting aligns individual chips with bonding sites on the substrate; and debonding the individual chips from the first wafer using a debonding laser having a small spot size of about 0.5 μm to about 100 μm, and ranges therebetween. A system is also provided that has digital cameras, a motorized XYZ-axis stage, and a computer control system configured to i) control a spot size of the at least one laser source and ii) adjust a positioning of the sample to align individual chips with a target area of the laser. |
US11222851B2 |
Method of manufacturing semiconductor device
A back alignment mark on a surface of a semiconductor substrate is detected and a resist mask patterned into a circuit pattern corresponding to a surface element structure is formed on a back of the semiconductor substrate. Detection of the back alignment mark is performed by using a detector opposing the back of the semiconductor substrate and measuring contrast based on the intensity of reflected infrared light irradiated from the back of the semiconductor substrate. The back alignment mark is configured by a step formed by the surface of the semiconductor substrate and bottoms of trenches formed from the surface of the semiconductor substrate. A polysilicon film is embedded in the trenches. The back alignment mark has, for example, a cross-shaped planar layout in which three or more trenches are disposed in a direction parallel to the surface of the semiconductor substrate. |
US11222845B2 |
Semiconductor device package
A semiconductor device includes a dielectric layer, a first conductive layer penetrating the dielectric layer, and a grounding structure disposed within the dielectric layer and adjacent to the first conductive layer. The dielectric layer has a first surface and a second surface opposite the first surface. The first conductive layer has a first portion and a second portion connected to the first portion. The first portion has a width greater than that of the second portion. |
US11222839B1 |
Semiconductor structure
A semiconductor structure includes a substrate, a chip, a first edge pad, a first central pad, a second edge pad, and a second central pad. The substrate has a first surface and a conductive trace extending above the substrate. The chip is above the first surface of the substrate, and has a sidewall, a central area, and an edge area. The first edge pad is on the edge area. The first central pad is on the central area and electrically connected to the first edge pad. The second edge pad is on the edge area of the chip. A distance between the first edge pad and the sidewall of the chip is substantially smaller than a distance between the second edge pad and the sidewall of the chip. The second central pad is on the central area of the chip and electrically connected to the second edge pad. |
US11222837B2 |
Low-inductance current paths for on-package power distributions and methods of assembling same
A micro-trace containing package substrate provides a low-inductance alternating-current decoupling path between a semiconductive device and a die-side capacitor. |
US11222833B2 |
Micro-heaters in a film structure mounted on a substrate between a plurality of electronic components
A film structure, a chip carrier assembly, and a chip carrier device are provided. The film structure includes a film and a plurality of micro-heaters. In which, the film is applied on a substrate, and the plurality of micro-heaters is disposed on top of the film or in the film. The chip carrier assembly includes a circuit substrate and the film structure. In which, the circuit substrate carries a plurality of chips. The chip carrier device includes the chip carrier assembly and a suction unit. In which, the suction unit is arranged above the chip carrier assembly to attach on and transfer the plurality of chips to the circuit substrate. The chips are disposed on the circuit substrate through solder balls, and the micro-heaters heat the solder balls that are in contact with the chips. |
US11222832B2 |
Power semiconductor device package
In a general aspect, an apparatus can include a leadframe. The apparatus can also include a first semiconductor die coupled with a first side of a first portion of the leadframe, and a second semiconductor die coupled with a second side of the first portion of the leadframe. The apparatus can also include a first substrate coupled with a second side of the first semiconductor die. The first substrate can be further coupled with a first side of a second portion of the leadframe and a first side of a third portion of the leadframe. The apparatus can also further include a second substrate coupled with a second side of the second semiconductor die. The second substrate can be further coupled with a second side of the second portion of the leadframe and a second side of the third portion of the leadframe. |
US11222829B2 |
Electronic device mounting structure and mounting device to mount such electronic device
A chip mounting structure and a chip mounting device are provided. The chip mounting structure includes a circuit substrate and a plurality of micro heaters. The circuit substrate has a plurality of solder pads. A plurality of micro heaters are disposed on the circuit substrate adjacent to the solder pad. The plurality of chips are disposed on the circuit substrate, and the chip is electrically connected to the solder pad by a solder ball. Therefore, the soldering yield of the process can be reduced by the chip mounting structure and the chip mounting device. |
US11222827B2 |
Semiconductor device
A semiconductor device is provided. The semiconductor device includes a stack structure disposed on a lower structure; an insulating structure disposed on the stack structure; and a vertical structure extending in a direction perpendicular to an upper surface of the lower structure and having side surfaces opposing the stack structure and the insulating structure. The stack structure includes interlayer insulating layers and gate layers, alternately stacked, and the insulating structure includes a lower insulating layer, an intermediate insulating layer on the lower insulating layer, and an upper insulating layer on the intermediate insulating layer. |
US11222826B2 |
FinFET structure and device
A cut-last process for cutting fin segments of a FinFET structure on a substrate utilizes a two-step process. After the fins are formed, an oxide material is deposited in the trenches of the FinFET structure. The oxide material can be an STI oxide or a low-stress dummy gapfill material. A fin segment can be removed by an etchant and can leave a concave shaped (such as a u-shape or v-shape) portion of silicon at the bottom of the fin. Where the oxide material is an STI oxide, the void left by removing the fin can be filled with replacement STI oxide. Where the oxide material is a dummy gapfill material, the dummy gapfill material can be removed and replaced with an STI oxide or converted to an STI oxide and filled with replacement STI oxide before or after the conversion. |
US11222825B2 |
Integrated circuitry, memory arrays comprising strings of memory cells, methods used in forming integrated circuitry, and methods used in forming a memory array comprising strings of memory cells
A method used in forming integrated circuitry comprises forming a stack comprising vertically-alternating first tiers and second tiers. A stair-step structure is formed into the stack. A first liquid is applied onto the stair-step structure. The first liquid comprises insulative physical objects that individually have at least one of a maximum submicron dimension or a minimum submicron dimension. The first liquid is removed to leave the insulative physical objects touching one another and to have void-spaces among the touching insulative physical objects. A second liquid that is different from the first liquid is applied into the void-spaces. The second liquid is changed into a solid insulative material in the void-spaces. Other embodiments, including structure, are disclosed. |
US11222824B2 |
Method for transferring a layer by using a detachable structure
A method for transferring a superficial layer from a detachable structure comprises the following steps: a) supplying the detachable structure comprising: •a support substrate, •a detachable layer arranged on the support substrate along a main plane and comprising a plurality of walls that are separated from one another, each wall having at least one side that is perpendicular to the main plane; •a superficial layer arranged on the detachable layer along the main plane; b) applying a mechanical force configured to cause said walls to bend, along a direction that is secant to said side, until causing the mechanical rupture of the walls, in order to detach the superficial layer from the support substrate. |
US11222822B2 |
Workpiece cutting method
A workpiece cutting method includes attaching a tape to a lower surface of the workpiece, holding the lower surface through the tape on a holding table including a holding plate, at least a part of a holding surface of the holding plate being an imaging area formed of a material transparent to visible light, cutting the workpiece held on the holding table to divide the workpiece, thereby forming a dividing groove, and imaging at least a part of the dividing groove from a upper surface side of the workpiece by using an upper camera portion located above the holding plate, thereby obtaining an upper image, and also imaging the above part of the dividing groove from the lower surface side of the workpiece through the imaging area of the holding plate and the tape by using a lower camera portion located below the holding plate, thereby obtaining a lower image. |
US11222812B2 |
Semiconductor device with multi-layer metallization
One or more embodiments are related to a semiconductor device, comprising: a metallization layer comprising a plurality of portions, each of the portions having a different thickness. The metallization layer may be a final metal layer. |
US11222811B2 |
Semiconductor device structure with air gap and method for forming the same
The present disclosure provides a semiconductor structure and a method for preparing the semiconductor structure. The semiconductor device structure includes a conductive structure disposed over a semiconductor substrate, and a conductive plug disposed over the conductive structure. The conductive plug is electrically connected to the conductive structure. The semiconductor device structure also includes a first spacer formed on a sidewall surface of the conductive plug, and an etch stop layer disposed over the semiconductor substrate. The etch stop layer adjoins the first spacer. The semiconductor device further includes a first inter-layer dielectric (ILD) layer disposed over the etch stop layer and next to the conductive plug, wherein the first ILD layer is separated from the first spacer by an air gap. |
US11222807B2 |
Processing method and thermocompression bonding method for workpiece
A processing method for a workpiece, which includes a stacking step of stacking a sheet and a flat plate on a front side of the workpiece to form a stack, a thermocompression bonding step of thermocompression bonding the sheet to the workpiece while planarizing the sheet with the flat plate by heating the sheet and applying an external force to the stack, a holding step of holding the workpiece via the sheet by a holding table having a transparent portion, an alignment step of performing an alignment by imaging the workpiece through the transparent portion and the sheet, and a processing step of processing the workpiece by a processing unit. |
US11222806B2 |
Tape, tape attaching method, and tape expanding method
A tape adapted to be attached to a workpiece. The tape has a pattern for checking tension applied to the tape. The pattern is provided on the whole or part of the front side of the tape. The tension may be checked before expansion of the tape, during expansion of the tape, or after expansion of the tape. The tension may be checked after attaching the tape to the workpiece. By using a tape expander having four holding units holding the four side edge portions of the tape, the tape is expanded by moving the four holding units holding the tape so that the holding units are moved away from the workpiece. Deformation of the pattern due to the expansion of the tape is checked by visual inspection or by using an imaging camera to thereby determine the attached condition of the tape to the workpiece. |
US11222790B2 |
Tie bar removal for semiconductor device packaging
A method of tie bar removal is provided. The method includes forming a leadframe including a tie bar and a flag. The tie bar extends from a side rail of the leadframe and has a distal portion at an angle different from a plane of the flag. A semiconductor die is attached to the flag of the leadframe. A molding compound encapsulates the semiconductor die, a portion of the leadframe, and the distal portion of the tie bar. The tie bar is separated from the molding compound with an angled cavity remaining in the molding compound. |
US11222789B2 |
Staircase structure for three-dimensional memory
Staircase structures for a three-dimensional (3D) memory device are disclosed. In some embodiments, the method includes disposing an alternating dielectric stack on a substrate with first and second dielectric layers alternatingly stacked on top of each other. Next, multiple division blocks can be formed in a staircase region. Each division block includes a first plurality of staircase steps in the first direction. Each staircase step in the first direction has two or more dielectric layer pairs. Then, a second plurality of staircase steps along a second direction, perpendicular to the first direction, can be formed. Each staircase step in the second direction includes the first plurality of staircase steps along the first direction. The method further includes forming an offset number of dielectric layer pairs between the multiple division blocks such that each dielectric layer pair is accessible from a top surface of a staircase step. |
US11222784B2 |
Semiconductor device and method for fabricating the same
A semiconductor device includes a gate structure on a substrate, in which the gate structure includes a silicon layer on the substrate, a titanium nitride (TiN) layer on the silicon layer, a titanium (Ti) layer between the TiN layer and the silicon layer, a metal silicide between the Ti layer and the silicon layer, a titanium silicon nitride (TiSiN) layer on the TiN layer, and a conductive layer on the TiSiN layer. |
US11222780B2 |
Method for evaluating silicon wafer and method for manufacturing silicon wafer
A method for evaluating a silicon wafer, including: a pre surface defect measuring step for performing a surface defect measurement on the silicon wafer in advance, a cleaning step of alternately repeating on the silicon wafer an oxidation treatment by ozone water and an oxide film removal treatment by hydrofluoric acid under a condition of not completely removing an oxide film formed on a surface of the silicon wafer, and an incremental defect measuring step of performing a surface defect measurement on the silicon wafer after the cleaning step and measuring incremental defects that increased relative to defects measured in the pre surface defect measuring step, wherein the cleaning step and the incremental defect measuring step are alternately performed repeatedly multiple times and the silicon wafer is evaluated based on a measurement result of the incremental defects after each cleaning step. |
US11222779B2 |
Apparatuses for optical and mass spectrometry detection
Presented herein are apparatuses for use in capillary separations. An apparatus includes a coupling that integrates a capillary with a voltage source, a sheath liquid system, a fluid exit port, and a manifold. The coupling may be an elbow connector or equivalent. The manifold receives incident light from an incident light input, and emitted light is collected by a collected light output. The capillary enters the manifold at an input for the capillary, traverses the coupling, and terminates at the fluid exit port, for example an electrospray emitter. The capillary may also enter the manifold at an input for the capillary and terminates inside the manifold. |
US11222776B1 |
Ion analysis system and method with multiple ionization sources and analyzers
An ion analysis system includes one or more ionization sources that produce ions, one or more analyzers that analyze the ions based on ion mobility or mass to charge ratio of the ions, and one or more ion transfer devices connected between the one or more ionization sources and the one or more analyzers, the one or more ion transfer devices include a plurality of electrodes that are configured to be flexible or flexibly connected to each other, and the one or more ion transfer devices are configured to be flexible or re-configurable while transferring the ions. |
US11222775B2 |
Data independent acquisition of product ion spectra and reference spectra library matching
Systems and methods are disclosed for analyzing a sample using overlapping precursor isolation windows. A mass analyzer of a tandem mass spectrometer is instructed to select and fragment at least two overlapping precursor isolation windows across a precursor ion mass range of a sample using a processor. The tandem mass spectrometer includes a mass analyzer that allows overlapping precursor isolation windows across the mass range of the sample. |
US11222771B2 |
Chemical control features in wafer process equipment
Gas distribution assemblies are described including a first plate and a second plate. The first plate may define a plurality of first apertures, and the second plate may define a plurality of second apertures in a first region of the second plate and a plurality of third apertures in a second region of the second plate. The second apertures may align with the first apertures. An area defined by the second region may be less than an area defined by the first region. The second plate may be sealingly coupled with the first plate to define a volume between the first plate and the second plate. The volume may be fluidly accessible from the third apertures, and fluidly isolated from the first and second apertures. |
US11222769B2 |
Monopole antenna array source with gas supply or grid filter for semiconductor process equipment
A plasma reactor includes a chamber body having an interior space that provides a plasma chamber, a gas distribution port to deliver a processing gas to the plasma chamber, a workpiece support to hold a workpiece, an antenna array comprising a plurality of monopole antennas extending partially into the plasma chamber, and an AC power source to supply a first AC power to the plurality of monopole antennas. The plurality of monopole antennas can extend through a first gas distribution plate. A grid filter can be positioned between the workpiece support and the plurality of monopole antennas. |
US11222768B2 |
Foam in ion implantation system
Disclosed is a semiconductor processing apparatus including one or more components having a conductive or nonconductive porous material. In some embodiments, an ion implanter may include a plurality of beam line components for directing an ion beam to a target, and a porous material along a surface of at least one of the plurality of beamline components. |
US11222766B2 |
Multi-cell detector for charged particles
A multi-cell detector may include a first layer having a region of a first conductivity type and a second layer including a plurality of regions of a second conductivity type. The second layer may also include one or more regions of the first conductivity type. The plurality of regions of the second conductivity type may be partitioned from one another by the one or more regions of the first conductivity type of the second layer. The plurality of regions of the second conductivity type may be spaced apart from one or more regions of the first conductivity type in the second layer. The detector may further include an intrinsic layer between the first and second layers. |
US11222751B2 |
Multi-layer ceramic electronic component and manufacturing method thereof
A multilayer ceramic electronic component includes a ceramic body including first and second surfaces opposing each other in a thickness direction, third and fourth surfaces opposing each other in a width direction, and fifth and sixth surfaces opposing each other in a longitudinal direction, and including a capacitance formation portion having a dielectric layer and first and second internal electrodes disposed to be stacked in the thickness direction with the dielectric layer interposed therebetween; first and second conductive layers disposed on the fifth and sixth surfaces of the ceramic body, respectively, and each including a first conductive metal; and first and second external electrodes each including a second conductive metal and covering the first and second conductive layers, respectively. The first and second conductive layers each have a network structure. |
US11222750B1 |
Hypercapacitor apparatus for storing and providing energy
A hypercapacitor energy storage system or device facilitates fast charging, stable energy retention, high energy to weight storage and the like. The hypercapacitor comprises an ultracapacitor in electrical connection with an energy retainer which may comprise a battery, a battery field, a standard capacitor and/or the like. The electrical connection between the ultracapacitor and energy retainer may stabilize the energy retention of the hypercapacitor and provide for long-term energy storage and prevent self-discharge. The hypercapacitor may be electrically couplable to an energy source such as the utility grid via a low voltage outlet (e.g., 110V or 220V) or other charging system and may undergo fast charging. The hypercapacitor may be electrically couplable to and/or integrated with various systems or devices requiring energy storage and/or usage and may provide energy thereto. |
US11222748B2 |
Multi-layered ceramic electronic component
A multilayer ceramic electronic component includes a ceramic body including a dielectric layer and a plurality of internal electrodes disposed to oppose each other with the dielectric layer interposed therebetween; and an external electrode, wherein the ceramic body comprises an active portion including a plurality of internal electrodes disposed to oppose each other with the dielectric layer interposed therebetween to form capacitance and a cover portion formed in upper and lower portions of the active portion, wherein a plurality of internal electrodes in the upper region and the lower region of the active portion is disposed inwardly of an outer side surface of the ceramic body to be spaced apart by a predetermined distance from the body portion, and the plurality of internal electrodes in the central region of the active portion and the internal electrodes having the same polarities are connected to each other via vias. |
US11222744B1 |
Power-dense bipolar high-voltage capacitor charger
An exemplary rectifying capacitor multiplier is provided for high voltage. The multiplier includes first and second circuit boards, a series of diodes in pattern groups, first and second packs of capacitors, and a pair of high voltage terminals. The circuit boards are disposed mutually in parallel. The pattern groups are disposed between the first and second circuit boards, with the diodes concatenated in series. The packs are disposed respectively on the respective circuit boards. Each pack distributes a capacitor that connects to a corresponding pattern group. The terminals correspond to positive and negative output voltages and are disposed on opposite sides of the circuit boards. |
US11222741B1 |
Magnetic undulator shim
A magnetic undulator shim having three interconnected sections arranged one after the other in a direction substantially parallel to the beam axis. The first section is adapted to magnetically engage a magnet having a horizontal surface and configured to extend partially onto the horizontal surface of the magnet. The magnet is adjacent to a pole and the magnet and the pole form a boundary. The second third sections are interconnected to form a shape. The shape corresponds to the boundary. The third section is adapted to magnetically engage a surface of the pole. |
US11222738B2 |
Method for manufacturing rare earth magnet
The present invention provides a method for manufacturing a rare-earth magnet, the method comprising the steps of preparing a rare-earth magnet raw material powder including R, Fe and B as composition components (R is one or more elements selected from the rare earth elements including Y and Sc); packing the raw material powder into a molding die, and compacting and molding the raw material powder while applying a magnetic field, wherein, in the compacting and molding step, compacting is performed biaxially, in the directions of X and Y axes, when the magnetic field is applied in the direction of Z axis. |
US11222737B2 |
Electric cable
An electric cable for supplying power to aircrafts, rail vehicles, motor vehicles, ships or other devices is a single or multi-conductor cable and includes one or more current conductors with at least one insulation. A single or multi-layer outer casing is distributed over the periphery and is associated with the outwardly protruding reinforcing elements. The reinforcing elements are in the form of cooling ribs protruding preferably over the entire periphery of the cable and enable the surface of the cable to be increased and as a result, improve heat dissipation. The projecting reinforcing elements considerably reduce the risk of burning when the current conductors heat up and also protect the cable against abrasion. The invention also relates to a plug for the electric cable. |
US11222734B2 |
Burst-mode chirped pulse amplification method
A method for increasing the MeV hot electron yield and secondary radiation produced by short-pulse laser-target interactions with an appropriately high or low atomic number (Z) target. Secondary radiation, such as MeV x-rays, gamma-rays, protons, ions, neutrons, positrons and electromagnetic radiation in the microwave to sub-mm region, can be used, e.g., for the flash radiography of dense objects. |
US11222730B1 |
Indirect bio-feedback health and fitness management system
A health and fitness management system utilizing an algorithm to suggest actions to improve a user's health and fitness. The system obtains a user's health indicating measurement from a respective acquisition device. The user is never informed of the acquired data. The health indicating measurement can include a heart/pulse rate, blood pressure measurement, weight, blood sugar level, etc. Base line data (age, ideal age, initial weight, current weight, ideal weight, etc.) can be considered in the algorithm. Examples include the user's environment, sleep habits, exercise routines, medical records, and the like. The health index number is used to determine recommended actions, which can include changes to environments, routines, activities, etc. Data collection, the algorithm, and other features of the system can be provided by an Application operating on a portable computing device. Features of the portable computing device can be employed to automatically acquire data for the algorithm. |
US11222728B2 |
Medical image display apparatus, medical image display method, and medical image display program
A medical image display apparatus includes an image acquisition unit that receives an input of a three-dimensional brain image of a subject, a brain area division unit that divides the three-dimensional brain image of the subject into a plurality of brain areas, an image analysis unit that calculates an analysis value for each brain area from the three-dimensional brain image of the subject, a data acquisition unit that acquires information indicating a correspondence between the brain area and a function of the brain, a display unit, and a display controller that displays an image showing the brain image of the subject divided into the brain areas, a function of the brain corresponding to each of the brain areas, and the analysis value on the display unit in association with each other. |
US11222725B2 |
Device for acquring personal health information and method therefor
The invention relates to a device for acquiring personal health information and a method therefor, the device: easily and periodically acquiring, anytime and anywhere or without regard to place and time, information on ambient temperature/humidity and health information of an individual, such as the state of skin (including hair), a nose, ears, and a mouth associated with an ENT clinic, the teeth associated with a dental clinic, skin moisture, and body temperature, through image information having multiple functions and a multifunctional health care sensor; enabling the acquired health information to be accumulated over in a personal terminal or computer by analyzing, storing, and making the same into data, and continuously managing the periodically accumulated personal health information such that the personal health information can be used as critical information by which a disease cause and the like can be fundamentally understood during an incidence of disease in the future. |
US11222724B2 |
Systems and methods for CGM-based bolus calculator for display and for provision to medicament delivery devices
Disclosed are systems and methods for secure and seamless set up and modification of bolus calculator parameters for a bolus calculator tool by a health care provider (HCP). In one aspect, a method for enabling HCP set up of a bolus calculator includes providing a server accessible by both an HCP and a patient; upon login by the HCP, displaying, or transmitting for display, a fillable form, the fillable form including one or more fields for entry of one or more bolus calculator parameters; receiving data from the fillable form, the data corresponding to one or more bolus calculator parameters; and upon login by the patient, transmitting data to a device associated with the patient, the transmitted data based on the received data, where the transmitted data corresponds to one or more of the bolus calculator parameters in a format suitable for entry to a bolus calculator. |
US11222723B2 |
Method and system for counting and identifying variety of devices
The invention relates to a method and system that uses ultra-high frequency (UHF) radio frequency identification (RFID) for counting and identifying a variety of objects during medical or surgical operations. The method includes passive UHF RFID tag, a RFID scanner to communicate with host equipment and storage in a database cloud. The method includes a water-proof antenna and microchip supported by a substrate with covering overlay materials. The invention further discloses a tracking method for counting process, with software implementation, to assist the count-in count-out function to track multiple medical devices, resulting in reduction of counting errors during surgical procedures when the current UHF RFID process is utilized. |
US11222721B2 |
Peer community based anomalous behavior detection
A peer network may include nodes corresponding to different clinicians. An edge may interconnect the two nodes based on the corresponding clinicians sharing at least one common attribute such as for example, treating the same patients and/or interacting with the same medical devices. A machine-learning model may be applied to identify, in the peer network, one or more peer communities of clinicians. The activity pattern of a clinician may be compared to the activity patterns of other clinicians in the same peer community to determine whether that clinician exhibits anomalous behavior. An investigative workflow may be triggered when the clinician is determined to exhibit anomalous behavior. The investigative workflow may include generating an alert, activating surveillance devices, and/or isolating medication accessed by the clinician. |
US11222720B2 |
Method for tracking consumption of supplements by a user
One variation of a method for tracking consumption of supplements by a user includes, at a software program executing on a mobile computing device: receiving a selection of a supplement, from a set of known supplements, contained in a supplement package of a particular packaging format; loading a supplement profile of the supplement into a user profile; rendering an instruction for placement of a tracker on the supplement based on the packaging format; retrieving a motion model, from a set of motion models for characterizing a consumption event at the packaging format; and uploading the motion model to the tracker. The method also includes, at the tracker: characterizing motion of the supplement package as a consumption event based on the motion model; and transmitting a time of the consumption event to the mobile computing device. |
US11222717B2 |
Medical scan triaging system
A medical scan triaging system is operable to generate a global abnormality probability for each of a plurality of medical scans by utilizing a computer vision model trained on a training set of medical scans. A triage probability threshold is determined based on user input to a client device. A first subset of the plurality of medical scans, designated for human review, is determined by identifying medical scans with a corresponding global abnormality probability that compares favorably to the triage probability threshold. A second subset of the plurality of medical scans, designated as normal, is determined by identifying ones of the plurality of medical scans with a corresponding global abnormality probability that compares unfavorably to the triage probability threshold. Transmission of the first subset of the plurality of medical scans to a plurality of client devices associated with a plurality of users is facilitated. |
US11222716B2 |
System and method for review of automated clinical documentation from recorded audio
A method, computer program product, and computing system for obtaining, by a computing device, encounter information of a patient encounter, wherein the encounter information may include audio encounter information obtained from at least a first encounter participant. The audio encounter information obtained from at least the first encounter participant may be processed. A user interface may be generated displaying a plurality of layers associated with the audio encounter information obtained from at least the first encounter participant. A user input may be received from a peripheral device to navigate through each of the plurality of layers associated with the audio encounter information displayed on the user interface. |
US11222712B2 |
Primer design using indexed genomic information
Techniques for identifying regions in nucleic acid sequences for which to design highly discriminatory primers are provided. In some embodiments, a corpus of nucleic acid sequences may be divided into a first set and a second set, and a respective index may be built containing data structures representing a plurality of k-mers of each nucleic acid sequence. By comparing the data structures of the first index to one another, a system may iteratively determine whether each k-mer over a given region in one of the nucleic acid sequences in the first set are also found in every other sequence in the first set. By comparing against the data structures in the second index, a system may then iteratively determine whether all k-mers in the region can be found in the same order of in any of the nucleic acid sequences in the second set. |
US11222710B1 |
Memory dice arrangement based on signal distribution
A method includes determining, for a plurality of memory dice, a signal reliability characteristic and ranking the plurality of memory dice based, at least in part, on the determined reliability characteristics. The method can further include arranging the plurality of memory dice to form a memory device based, at least in part, on the ranking. |
US11222709B2 |
Memory module with reduced ECC overhead and memory system
A memory system includes a memory module and a memory controller. The memory module includes data chips that store data and are assigned to a first sub-channel that generates a first code word or a second sub-channel that generates a second code word, where the first code word and the second code are used to fill a single cache line. The memory controller, upon detection of a hard-fail data chip among the data chips, copies data from the hard-fail data chip to the ECC chip, releases mapping between the hard-fail data chip and corresponding I/O, and defines new mapping between the ECC chip and the corresponding I/O pins. |
US11222703B2 |
Memory system
According to one embodiment, a memory system includes a semiconductor memory and a controller. The semiconductor memory includes first to fourth word lines and first to fourth memory cells. The controller is configured to issue first and second instructions. The controller is further configured to execute a first operation to obtain a first read voltage based on a threshold distribution of the first memory cell, and a second operation to read data from the second memory cell. |
US11222702B1 |
Noise reduction during parallel plane access in a multi-plane memory device
A memory device includes a memory array comprising a plurality of planes and a plurality of independent plane driver circuits. The memory device further includes control logic to track a status of the plurality of independent plane driver circuits and detect an occurrence of a quiet event associated with a first independent plane driver circuit of the plurality of independent plane driver circuits. The control logic is further to determine whether a high noise event associated with a second independent plane driver circuit of the plurality of independent plane driver circuits is concurrently occurring. Responsive to determining that the high noise event associated with the second independent plane driver circuit is concurrently occurring, the control logic is to determine whether the first independent plane driver circuit has a higher priority than the second independent plane driver circuit. Responsive to determining that the first independent plane driver circuit has a higher priority than the second independent plane driver circuit, the control logic is to suspend the high noise event associated with the second independent plane driver circuit and permitting the quiet event associated with the first independent plane driver circuit to occur. |
US11222695B2 |
Socket design for a memory device
Methods, systems, and devices supporting a socket design for a memory device are described. A die may include one or more memory arrays, which each may include any number of word lines and any number of bit lines. The word lines and the bit lines may be oriented in different directions, and memory cells may be located at the intersections of word lines and bit lines. Sockets may couple the word lines and bit lines to associated drivers, and the sockets may be located such that memory cells farther from a corresponding word line socket are nearer a corresponding bit line socket, and vice versa. For example, sockets may be disposed in rows or regions that are parallel to one another, and which may be non-orthogonal to the corresponding word lines and bit lines. |
US11222694B1 |
Reference current generator control scheme for sense amplifier in NAND design
A storage device is disclosed herein. The storage device, comprises: a non-volatile memory including control circuitry and an array of memory cells formed using a set of word lines and a set of bit lines; and a reference current generator circuit configured to receive an input voltage from a voltage supply and generate therefrom a plurality of outputs, each output of the plurality of outputs used to generate one or more bias voltages/currents for one or more control signals. The control circuitry is configured to: receive a refresh read operation command; and adapt operation of the reference current generator circuit based on receiving the refresh read operation command. This proposal is also applicable for other test modes, such as SA stress, soft and preprogram, and SA test modes. |
US11222692B2 |
Reflow protection
Devices and techniques to reduce corruption of received data during assembly are disclosed herein. A memory device can perform operations to store received data, including preloaded data, in a first mode until the received data exceeds a threshold amount, and to transition from the first mode to a second mode after the received data exceeds the threshold amount. |
US11222691B2 |
Double-pitch-layout techniques and apparatus thereof
Examples pertaining to double-pitch layout techniques in designing a memory circuit layout are described. In a memory circuit, a layout of a first column of M×1 one-bit memory cells of an array of memory cells and a layout of a second column of M×1 one-bit memory cells of the array of memory cells are mirrored in horizontal and vertical axes such that a first group of input/output (I/O) pins, which correspond to the first column of M×1 one-bit memory cells, are on a first side of a layout of the array and the second group of I/O pins, which correspond to the second column of M×1 one-bit memory cells, are on a second side opposite the first side of the layout of the array. |
US11222685B2 |
Refresh management for DRAM
A memory controller interfaces with a dynamic random access memory (DRAM) over a memory channel. A refresh control circuit monitors an activate counter which counts a rolling number of activate commands sent over the memory channel to a memory region of the DRAM. In response to the activate counter being above an intermediate management threshold value, the refresh control circuit only issue a refresh management (RFM) command if there is no REF command currently held at the refresh command circuit for the memory region. |
US11222684B2 |
Refresh control device and memory device for latching an address randomly
A refresh control device, and a memory device may be provided. The latch controller may include a first oscillator configured to generate a first oscillation signal, and a second oscillator configured to generate a second oscillation signal. The latch controller may be configured to receive a precharge signal and prevent the second oscillation signal from being synchronized with the precharge signal. |
US11222682B1 |
Apparatuses and methods for providing refresh addresses
Apparatuses and methods for generating refresh addresses for row hammer refresh operations are disclosed. In some examples, determination of a row address associated with a highest count value may be initiated at a precharge command preceding a row hammer refresh operation. The row address determined to be associated with the highest count value may be provided for generating the refresh addresses. |
US11222679B2 |
Packaged integrated circuit having a photodiode and a resistive memory
A packaged integrated circuit includes a photodiode and a memory. The photodiode generates energy when radiation strikes a surface of the photodiode. The memory includes a plurality of non-volatile memory cells and memory control circuitry. The memory control circuitry is configured to perform an operation to change values stored in at least some of the memory cells of the plurality of non-volatile memory cells while being powered by energy generated by the photodiode. An encapsulant at least partially encapsulates the photodiode and the memory, in which the encapsulant blocks radiation from reaching the surface of the photodiode. |
US11222678B1 |
MRAM cross-point memory with reversed MRAM element vertical orientation
In a memory array with a cross-point structure, at each cross-point junction a programmable resistive memory element, such as an MRAM device, is connected in series with a threshold switching selector, such as an ovonic threshold switch. In a two-layer cross-point structure with such memory cells, the MRAM devices in one layer are inverted relative to the MRAM devices in the other layer. This can allow for the transient voltage spike placed across the MRAM device when the threshold switching selector first turns on in a sensing operation to dissipate more rapidly, reducing the risk of changing a stored data state before it can be sensed. |
US11222675B2 |
Megnetoresistive random access memory
A magnetic memory device includes a core element, a free layer surrounding the core element, a barrier layer surrounding the free layer, and a reference layer surrounding the barrier layer. Two ends of the core element are electrically coupled to a first electrode and a second electrode, respectively. A direction of magnetization of the free layer is switchable between a first direction and a second direction under an influence of an electrical current flowing along the core element. The barrier layer includes an electrically insulating material. The reference layer is electrically coupled to a third electrode. A direction of magnetization of the reference layer remains along the first direction or the second direction. |
US11222671B2 |
Memory device, method of operating the memory device, memory module, and method of operating the memory module
A method is for operating a nonvolatile dual in-line memory module (NVDIMM). The NVDIMM includes a dynamic random access memory (DRAM) and a nonvolatile memory (NVM) device, the DRAM including a first input/output (I/O) port and a second I/O port, and the second I/O port connected to the NVM device. The method includes receiving an externally supplied command signal denoting a read/write command and a transfer mode, driving a multiplexer to select at least one of the first and second I/O ports according to the transfer mode of the command signal, and reading or writing data according to the read/write command of the command signal in at least one of the DRAM and NVM device using the at least one of the first and second I/O ports selected by driving the multiplexer. |
US11222667B2 |
Scene-creation using high-resolution video perspective manipulation and editing techniques
A video editing program is taught by machine learning to conform a video sequence to a known style. For example, some famous filmmakers (e.g., Steven Spielberg, Michael Bay) have signature cinematic “takes” that appear in their acclaimed works. Such takes may involve use of subject tracking, placements and movements of people or objects in the scene, and lighting intensities or shadows in the scene. The editing program may be trained to recognize video sequences that can be modified to conform to one or more of such signature styles and to offer the modification to the user at the user's option. |
US11222664B2 |
Dummy hard disk drive
A server box embodiment is disclosed that generally comprises an array of dummy HDDs that share a common set of universal disk drive components in a master components module, or power module. Each dummy HDDs is constructed without expensive onboard chipsets that control the normal functionality of a standard HDD. By sharing expensive chipsets in a master components module (power module) money can be saved in building and selling the dummy HDD server. Embodiments envision a power module possessing the needed chipset functionality that is missing in a dummy HDD. The power module can be made to move from dummy HDD to dummy HDD supplying the necessary chipset in a shared manner when data is being stored or retrieved for client or end-user. |
US11222662B2 |
Directly printable image recording material and preparation method thereof
The present invention belongs to the field of functional materials, and particularly relates to a directly printable image recording material, a preparation method and application thereof. The image recording material comprises 25 to 78.8 parts by mass of a photopolymerizable monomer, 0.2 to 5 parts by mass of a photoinitiator, 20 to 70 parts by mass of an inert component, and 0.05 to 2 parts by mass of a thermal polymerization inhibitor, and has an initial viscosity of 200 to 800 mPa·s. The photopolymerizable monomer includes a thiol monomer and an olefin monomer, at least one of which is a silicon-based monomer with polyhedral oligomeric silsesquioxane as a silicon core. By introducing a POSS-based thiol or olefin monomer into the photopolymerizable monomer in combination with other material components, the recording material is allowed to have an initial viscosity of 200 to 800 mPa·s, and meanwhile, the low thermal conductivity characteristic of the POSS-based photopolymerizable monomer is utilized, so that image storage quality is ensured, continuous industrial production of the image recording material is achieved, the process cost is reduced and the production efficiency is improved. |
US11222661B2 |
Hexagonal strontium ferrite powder, magnetic recording medium, and magnetic recording and reproducing apparatus
A hexagonal strontium ferrite powder, in which an average particle size is 10.0 to 25.0 nm, a content of one or more kinds of atom selected from the group consisting of a gallium atom, a scandium atom, an indium atom, and an antimony atom is 1.0 to 15.0 atom % with respect to 100.0 atom % of an iron atom, and a coercivity Hc is greater than 2,000 Oe and smaller than 4,000 Oe. A magnetic recording medium including: a non-magnetic support; and a magnetic layer including a ferromagnetic powder and a binding agent on the non-magnetic support, in which the ferromagnetic powder is the hexagonal strontium ferrite powder. A magnetic recording and reproducing apparatus including this magnetic recording medium. |
US11222659B1 |
Specially formatted tape drive for enabling improved performance capabilities in multi-partition magnetic tape
A magnetic tape drive for writing data to a magnetic tape that includes a first data band, a second data band, and a servo band that is positioned between the first data band and the second data band, each of the data bands including a plurality of wraps including a first wrap and a last wrap, includes a drive controller and a tape head. The drive controller defines at least a first partition and a second partition within the magnetic tape. The tape head is configured to write data to the first partition of the magnetic tape and subsequently write data to the second partition of the magnetic tape. The drive controller defines an end of the first partition to be directly after the last wrap of the first data band. The drive controller controls the tape head to write data to all of the plurality of wraps of the first data band. |
US11222657B1 |
Heat-assisted magnetic recording head with a near-field transducer extending beyond the media-facing surface
A recording head has a waveguide that delivers optical energy from an energy source and a write pole extending to a media-facing surface of the recording head. The recording head also has a near-field transducer coupled to receive the optical energy from the waveguide and emit surface plasmons from the media-facing surface towards a recording medium while the write pole applies a magnetic field to the recording medium. The near-field transducer has an extended portion that, as-manufactured, protrudes beyond the media-facing surface by a first distance. |
US11222653B2 |
System and method for determining stroke based on voice analysis
The present invention relates to a system and a method for determining a stroke based on a voice analysis. According to the present invention, voice data of subjects are collected to extract and analyze voice onset times to determine stroke patients based on voices. The system for determining a stroke generates and collects voice data from test subjects reading a predetermined word that includes a plosive sound. The system for determining a stroke extracts and calculates voice onset times from the voice data to calculate probability parameters for the voice onset times of each of a normal group and a stroke patient group. The system for determining a stroke uses a set of probability parameters to determine an integration section, and calculates probabilities of being in the normal group and the stroke patient group. The system for determining a stroke applies the calculated probabilities to the Bayes theorem to determine whether the subjects are stroke patients. |
US11222652B2 |
Learning-based distance estimation
A learning based system such as a deep neural network (DNN) is disclosed to estimate a distance from a device to a speech source. The deep learning system may estimate the distance of the speech source at each time frame based on speech signals received by a compact microphone array. Supervised deep learning may be used to learn the effect of the acoustic environment on the non-linear mapping between the speech signals and the distance using multi-channel training data. The deep learning system may estimate the direct speech component that contains information about the direct signal propagation from the speech source to the microphone array and the reverberant speech signal that contains the reverberation effect and noise. The deep learning system may extract signal characteristics of the direct signal component and the reverberant signal component and estimate the distance based on the extracted signal characteristics using the learned mapping. |
US11222651B2 |
Automatic speech recognition system addressing perceptual-based adversarial audio attacks
A computer-implemented method for creating a combined audio signal in a speech recognition system, the method includes sampling the audio input signal to generate a time-domain sampled input signal, then converting the time-domain sampled input signal to a frequency-domain input signal, afterwards generating perceptual weights in response to frequency components of critical bands of the frequency-domain input signal, creating a time-domain adversary signal in response to the perceptual weights; and combining the time-domain adversary signal with the audio input signal to create a combined audio signal, wherein a speech processing of the combined audio signal will output a different result from speech processing of the audio input signal. |
US11222647B2 |
Cascade echo cancellation for asymmetric references
A system configured to perform cascade echo cancellation processing to improve a performance when reference signals are asymmetric (e.g., dominant reference signal(s) overshadow weak reference signal(s)). The system may perform cascade echo cancellation processing to separately adapt filter coefficients between the dominant reference signal(s) and the weak reference signal(s). For example, the system may use a dominant reference signal to process a microphone audio signal and generate a residual audio signal, using the residual audio signal to adapt first filter coefficient values corresponding to the dominant reference signal. Separately, the system may use a weak reference signal to process the residual audio signal and generate an output audio signal, using the output audio signal to adapt second filter coefficient values corresponding to the weak reference signal. |
US11222641B2 |
Speaker recognition device, speaker recognition method, and recording medium
A speaker recognition device includes: a feature calculator that calculates two or more acoustic features of a voice of an utterance obtained; a similarity calculator that calculates two or more similarities, each being a similarity between one of one or more speaker-specific features of a target speaker for recognition and one of the two or more acoustic features; a combination unit that combines the two or more similarities to obtain a combined value; and a determiner that determines whether a speaker of the utterance is the target speaker based on the combined value. Here, (i) at least two of the two or more acoustic features have different properties, (ii) at least two of the two or more similarities have different properties, or (iii) at least two of the two or more acoustic features have different properties and at least two of the two or more similarities have different properties. |
US11222638B2 |
Communication device and control program for communication device
A communication device includes a calculation unit which calculates class probabilities that are probabilities an input speech belongs to a plurality of respective classified classes previously defined as types of speech contents, a plurality of response generation modules provided for respective types of responses each generates a response speech corresponding to the type, a determination unit which selects one of the plurality of response generation modules based on association probabilities and the class probabilities calculated by the calculation unit and determines the response speech generated by the selected response generation module as an output speech to be emitted to the user, the association probabilities being set for each of the plurality of response generation modules, and the association probabilities each indicating a level of association between the response generation module and each of the plurality of classified classes, and an output unit which outputs the output speech. |
US11222634B2 |
Dialogue method, dialogue system, dialogue apparatus and program
It is an object of the present invention to induce a dialogue to a topic that a dialogue system tries to present. A dialogue system 100 presents a first utterance which is a certain utterance and a target utterance related to the first utterance to a user 101. A humanoid robot 50-1 presents the first utterance. A microphone 11-1 receives a user utterance of the user 101 after the first utterance. A humanoid robot 50-2 presents at least one topic-inducing utterance for inducing the topic to the target utterance based on a recognition result of the user utterance and an utterance sentence of the target utterance after the user utterance. The humanoid robot 50-1 presents the target utterance after the topic-inducing utterance. |
US11222630B1 |
Detecting false accepts in a shopping domain for handling a spoken dialog
A new model is introduced into a particular domain that receives a routing of a dialog from a speech processing component. The speech processing component is engaged in the dialog with a user and the speech processing component routes the dialog to the particular network-based domain according to a determination by the speech processing component that the user has an intent to perform a task handled by the domain. The model detects, at the domain, whether the user has the proper intent associated with the domain by using the user utterance in its entirety to yield a detection result. When the user does not have the proper intent based on the detection result, the domain drops the user utterance. |
US11222629B2 |
Masterbot architecture in a scalable multi-service virtual assistant platform
The present invention is a masterbot architecture in a scalable multi-service virtual assistant platform that can construct a fluid and dynamic dialogue by assembling responses to end user utterances from two kinds of agents, information agents and action agents. A plurality of information agents obtain at least one information value from a parsed user input and/or contextual data. A plurality of action agents perform one or more actions in response to the parsed user input, the contextual data, and/or the information value. A masterbot arbitrates an activation of the plurality of information agents and the plurality of action agents. The masterbot comprises an action agent selector module to select an appropriate action agent; a prerequisite validator module to validate that one or more prerequisite conditions of the selected action agent have been met; and an action invocation module to perform one or more selected actions of the selected action agent. |
US11222628B2 |
Machine learning based product solution recommendation
Aspects of the disclosure describe improving identification of product solutions. An example method includes transcribing in real-time a conversation between a user and an agent into a speech text, processing digital data of the speech text associated with a topic, including parsing the speech text into one or more words and determining collocation information among the one or more words in the speech text. The method also includes providing the one or more words and the collocation information as a first input set to a machine learning engine configured to recommend one or more product solutions from a library of product solutions, generating a recommendation of one or more product solutions for a user based on recommendation parameters for the library of product solutions, and providing the recommendation. |
US11222625B2 |
Systems and methods for training devices to recognize sound patterns
Systems and methods for training a control panel to recognize user defined and preprogrammed sound patterns are provided. Such systems and methods can include the control panel operating in a learning mode, receiving initial ambient audio from a region, and saving the initial ambient audio as an audio pattern in a memory device of the control panel. Such systems and methods can also include the control panel operating in an active mode, receiving subsequent ambient audio from the region, using an audio classification model to make an initial determination as to whether the subsequent ambient audio matches or is otherwise consistent with the audio pattern, determining whether the initial determination is correct, and when the control panel determines that the initial determination is incorrect, modifying or updating the audio classification model for improving the accuracy in detecting future consistency with the audio pattern. |
US11222623B2 |
Speech keyword recognition method and apparatus, computer-readable storage medium, and computer device
A speech keyword recognition method includes: obtaining first speech segments based on a to-be-recognized speech signal; obtaining first probabilities respectively corresponding to the first speech segments by using a preset first classification model. A first probability of a first speech segment is obtained from probabilities of the first speech segment respectively corresponding to pre-determined word segmentation units of a pre-determined keyword. The method also includes obtaining second speech segments based on the to-be-recognized speech signal, and respectively generating first prediction characteristics of the second speech segments based on first probabilities of first speech segments that correspond to each second speech segment; performing classification based on the first prediction characteristics by using a preset second classification model, to obtain second probabilities respectively corresponding to the second speech segments related to the pre-determined keyword; and determining, based on the second probabilities, whether the pre-determined keyword exists in the to-be-recognized speech signal. |
US11222619B2 |
Sound absorption panel
An acoustic sound absorptive panel or block is provided that is made from a plurality of materials and volumes selected such that each discrete volume of material has a sufficiently different sound absorption profile, resulting in a system that provides better overall sound absorption of traffic noise from motorways and railways in a practical and cost-efficient manner. |
US11222614B1 |
Image processing method, assembly and system with auto-adjusting gamma value
An image processing method with auto-adjusting gamma value is provided. This image processing method includes: receiving a detected value dependent upon a view angle between a normal direction of a screen and a sight direction of a viewer to the screen; receiving an original video frame with a plurality of pixels; determining at least one gamma table to obtain a gamma value for a pixel of the plurality of pixels according to the detected value, wherein there is an original pixel value corresponding to the pixel; and generating and outputting a corrected pixel value of the pixel based on the gamma value and the original pixel value of the pixel, wherein the screen is configured to show a corrected video frame having the pixel with the corrected pixel value. An image processing assembly and an image processing system are also provided. |
US11222613B2 |
System and method for output display generation based on ambient conditions
A system and method provides for generating an output display on a display device based on at least one ambient condition. The method and system includes a display device or a component associated with a display device that provides for detecting an ambient condition using one or more environmental sensors. The method and system includes analyzing the ambient condition to determine ambient condition factors and retrieving visual display content from at least one visual content database using the ambient condition factors. Therein, the method and system provides the visual display content to the display device so the output display compliments the ambient condition. |
US11222610B2 |
Protection circuit, power supply circuit, and display panel
A protection circuit (10), a power supply circuit, and a display panel. The protection circuit (10) comprises a feedback circuit (100) and a current adjusting circuit (200). The reaction circuit (100) is used for receiving a supply voltage, adjust the first general resistance thereof according to the temperature of a data drive chip, and generate a reaction voltage according to the supply voltage and the adjusted first resistance. The current adjusting circuit (200) is used for receiving the supply voltage and the reaction voltage, and generate and output a driving current according to the reaction voltage and the supply voltage, the driving current decreasing following a rise in the temperature of the data drive chip; when the driving current is reduced, the thermal energy power consumption of the data drive chip is reduced so as to prevent burnout due to the temperature at the interior thereof being too high. |
US11222604B2 |
Display device
A display device includes a display panel including a first data line, a second data line, and a pixel, the pixel including a first sub-pixel coupled to the first data line, and a second sub-pixel coupled to the second data line, a light stress compensator configured to generate a first data voltage control signal for the first sub-pixel based on a second data value of input image data for the second sub-pixel, in response to a first data value of input image data for the first sub-pixel being equal to or less than a first reference value, and a data driver configured to generate a first data signal based on the first data value for the first sub-pixel, to provide a first data voltage to the first data line, and to vary the first data voltage based on the first data voltage control signal. |
US11222601B2 |
Display device
A display panel includes: a plurality of pixels connected to a plurality of data lines and a peripheral area at the periphery of the display area; a first channel group including a plurality of first shared channels respectively connected to shared data lines among the data lines; a second channel group including a plurality of second shared channels respectively connected to the shared data lines; a first source driver connected to the first channel group, the first source driver being configured to supply data signals to the shared data lines through the first channel group; and a second source driver connected to the second channel group, the second source driver being configured to supply the data signals to the shared data lines through the second channel group, wherein the first channel group and the second channel group forms a pair to be commonly connected the shared data lines. |
US11222595B2 |
Gate driving circuit and display device including the same
A gate driving circuit includes: a plurality of stages, a k-th stage from among the plurality of stages, the k-th stage including: an input circuit to receive a previous carry signal and to pre-charge a first node; a first output circuit to output a k-th gate signal; a second output circuit to output a k-th carry signal; a discharge hold circuit to transmit a clock signal to a second node, and to discharge the second node with a second low voltage; a first pull down circuit to discharge the k-th gate signal with a first low voltage, and to discharge the first node and the k-th carry signal with the second low voltage; and a discharge circuit for discharging the k-th carry signal with the second low voltage in response to the previous carry signal. |
US11222592B2 |
Compensation method for display panel, driving device, display device, and storage medium
A compensation method for an electroluminescent display panel, a driving device, a display device, and a storage medium are provided. The compensation method includes: receiving a first display data signal; performing an optical compensation operation on the first display data signal to obtain a second display data signal; performing an electrical compensation operation on the second display data signal to obtain a third display data signal; and outputting the third display data signal for display. |
US11222590B2 |
Electrical signal detection module, driving method, pixel circuit and display device
An electrical signal detection module includes a photoelectrical signal application circuitry, an operational amplifier, a gain control circuitry and a master control circuitry. The gain control circuitry includes at least two gain control sub-circuitries connected in parallel to each other, and a discharge switching sub-circuitry connected in parallel to the gain control sub-circuitries. Each gain control sub-circuitry includes a gain switching sub-circuitry and a gain capacitive sub-circuitry connected in series to each other. The master control circuitry is configured to apply a discharge switching signal to the discharge switching sub-circuitry, and apply a gain switching control signal to the corresponding gain switching sub-circuitry. The gain switching sub-circuitry is configured to control a first end and a second end of the gain switching sub-circuitry to be electrically connected to each other in accordance with the gain switching control signal. The discharge switching sub-circuitry is configured to enable a first end of the gain capacitive sub-circuitry connected to the gain switching sub-circuitry to be electrically connected to, or electrically disconnected from, a second end of the gain capacitive sub-circuitry in accordance with the discharge switching signal. |
US11222586B2 |
Display panel, manufacturing method thereof, and display device
A display panel is disclosed. The display panel includes a flexible substrate; a display sub-region on the flexible substrate including a light emitting device; a peripheral region of the display sub-region spacing the display sub-region from an adjacent display sub-region; and a current compensator in the peripheral region for compensating a current flowing through the light emitting device of the display sub-region in response to deformation of the flexible substrate. |
US11222584B2 |
Timing controller for controlling emission of emission element for recognizing touch coordinates and electronic device including the same
Disclosed is a timing controller including a coordinate data generation circuit configured to generate X coordinate emission data for each data line group and Y coordinate emission data for each gate line group, a selection circuit configured to output the X coordinate emission data during an X coordinate field and to output the Y coordinate emission data during a Y coordinate field, and a control data generation circuit configured to output control data for allowing each pixel to emit light in units of the data line groups based on the X coordinate emission data during the X coordinate field and allowing each pixel to emit light in units of the gate line groups based on the Y coordinate emission data during the Y coordinate field, wherein the X coordinate emission data for each data line group and the Y coordinate emission data for each gate line group have random color. |
US11222583B2 |
Display and electronic device including the display
A novel display is provided. A display having a small change in chromaticity of a micro light-emitting diode in proportion to current density is provided. A display capable of reducing power consumption in the driver circuit when displaying a still image is provided. The display includes a plurality of pixels each including a display element and a microcontroller. The microcontroller includes a first transistor, a triangular wave generator circuit, a comparator, a switch, and a constant current circuit. The first transistor has a function of retaining a potential corresponding to data written to the pixel by being switched off. The triangular wave generator circuit has a function of generating a triangular wave signal. The comparator has a function of generating an output signal corresponding to the potential and the triangular wave signal. The switch has a function of controlling whether or not to make a current flowing in the constant current circuit flow to the display element in accordance with the output signal. |
US11222582B2 |
Electronic device, tiled electronic apparatus and operating method of the same
An electronic device is provided. The electronic device includes a substrate and the electronic device also includes a light-emitting element, a sensing element and a black matrix disposed on the substrate. The sensing element is disposed adjacent to the light-emitting element. The black matrix has a plurality of openings and a light-shielding portion. The electronic device further includes a driving element disposed adjacent to and electrically connected to the light-emitting element. The sensing element includes a first thin-film transistor, and the driving element includes a second thin-film transistor. In a normal direction of the substrate, one of the openings is disposed corresponding to the sensing element, and the light-shielding portion is disposed corresponding to the driving element. |
US11222580B2 |
Display apparatus and method of manufacturing display apparatus
Provided is a display apparatus including a plurality of light-emitting diode (LED) display modules, wherein each of the plurality of LED display modules includes a plurality of LED pixels; and a controller that controls operation of each of the plurality of LED pixels, wherein each of the plurality of LED pixels is connected to the controller via a different driving signal line, and at least two of the plurality of LED pixels are connected to the controller via a same power line. |