Document | Document Title |
---|---|
US11115274B2 |
Upgrading of a mobile network function
A traffic handling decision method, a network entity, a computer readable medium, and a traffic handling decision apparatus relate to upgrading a network service function within a mobile communication network. In this context the traffic handling decision apparatus distributes incoming request of the control plane to instances implementing the mobile network function either according to the current software version or an upgraded software version. |
US11115269B1 |
System and method for updating an application for a population of computers
A system and method for managing a population of devices and in particular, software updates and version control of applications across the population includes permitting a first device to receive an update from a publisher and generating an update manifest that is propagated to other devices in the population. Applications within a population of devices are selectively disabled and enabled to prevent multiple update versions of the same application across the population. |
US11115265B2 |
Method of wireless discovery and networking of medical devices in care environments
A system for automatically establishing a network. The system includes a main device group including a main wireless transceiver device, a control device and a first network interface and a secondary device group including a secondary wireless transceiver device, a secondary device group slave device and a second network interface. The main wireless transceiver device wirelessly communicating with the secondary wireless transceiver device to instruct the main device group and the secondary device group to form a network wherein the control device communicates with the secondary device group slave device over the first network interface and the second network interface, respectively. The control device wirelessly controls functions of the secondary device group slave device with instructions sent over the network. The main wireless transceiver device only wirelessly communicates with the secondary wireless transceiver device when the main wireless transceiver device and the secondary wireless transceiver device are in a location. |
US11115264B2 |
Apparatuses and methods involving managing port-address assignments
An example apparatus for a local area network. The apparatus includes, at one of a plurality of logic nodes, a plurality of ports and a plurality of shared registers. The plurality of shared registers have a port address table to provide configurable port-address assignments that identify respective ones of the plurality of ports. The apparatus further includes a management interface controller that communicates with the plurality of ports and accesses at least one register via a selected one of the ports, and in response configures or manages the port-address assignments within the port address table. |
US11115263B2 |
Intra-cluster node troubleshooting method and device
Embodiments of this application relate to an intra-cluster node troubleshooting method and device. The method includes: obtaining fault detection topology information of a cluster, where the fault detection topology information includes a fault detection relationship between all nodes in the cluster; obtaining a fault indication message, where the fault indication message is used to indicate unreachability from a detection node to a detected node; determining a sub-cluster of the cluster based on the fault detection topology information and the fault indication message, where nodes that belong to different sub-clusters are unreachable to each other; and determining a working cluster based on the sub-cluster of the cluster. According to the embodiments of this application, available nodes in the cluster can be retained to a maximum extent at relatively low costs. In this way, a quantity of available nodes in the cluster is increased, high availability is ensured. |
US11115258B2 |
Method to implicitly indicate system information in NR
This disclosure pertains to a method for operating a network node (100) in a radio access network. The method comprises transmitting synchronisation signaling, the synchronisation signaling comprising a signaling sequence, the signaling sequence being determined as a combination of a number of sub-sequences, wherein an order of the sub-sequences is mapped to synchronisation information. The disclosure also pertains to related devices and methods. |
US11115252B2 |
Signal transmission method and system
Provided are a signal transmission method and system, which relates to wireless communications. The method includes: transmitting, by a first node, a first signal. The first signal comprises at least one of: at least one first structure, or at least one second structure. The first structure includes at least one symbol group, and the symbol group of the first structure includes a cyclic prefix and at least one symbol or includes a cyclic prefix, at least one symbol and a guard period. Each symbol group of the first structure occupies a same subcarrier or a same frequency resource in a frequency domain. The second structure includes at least one symbol group, and the symbol group of the second structure comprises a cyclic prefix and at least one symbol or includes a cyclic prefix, at least one symbol and a guard period. Each symbol group of the second structure occupies a same subcarrier or a same frequency resource in the frequency domain. |
US11115246B2 |
Sampler offset calibration during operation
Methods and systems are described for sampling a data signal using a data sampler operating in a data signal processing path having a decision threshold associated with a decision feedback equalization (DFE) correction factor, measuring an eye opening of the data signal by adjusting a decision threshold of a spare sampler operating outside of the data signal processing path to determine a center-of-eye value for the decision threshold of the spare sampler, initializing the decision threshold of the spare sampler based on the center-of-eye value and the DFE correction factor, generating respective sets of phase-error signals for the spare sampler and the data sampler responsive to a detection of a predetermined data pattern, and updating the decision threshold of the data sampler based on an accumulation of differences in phase-error signals of the respective sets of phase-error signals. |
US11115242B2 |
Uplink multi-beam operation
Methods, systems, and devices for wireless communications are described. A base station may transmit, and a user equipment (UE) may receive, a downlink control signal indicating that an uplink control signal is to be transmitted using two or more transmission beams during different transmission time intervals (TTIs). The UE may identify the two or more transmission beams based at least in part on the downlink control signal, and may transmit a plurality of repetitions of an uplink signal on the two or more transmissions beams. Each repetition may be transmitted on a different TTI using a different one of the two or more transmission beams based at least in part on the downlink control signal. |
US11115238B2 |
Gateway device
Provided is a gateway device capable of reducing power consumption in a sleep state and relaying an activation signal between networks without delay. When receiving an activation signal, the gateway device according to the present invention transfers the activation signal to another network via a relay switch, and outputs a signal indicating the reception of the activation signal from a transceiver, thereby turning on a microcomputer. |
US11115236B2 |
Subscriber station for a bus system and method for transmitting data in a bus system
Subscriber-stations for a bus-system, and data-transmission method in a bus-system. The subscriber-stations include master-subscriber-station(s) and at least two slave-subscriber-stations for the bus-system. The master-subscriber-station includes a first-transceiver-device for sending/receiving a message to/from at least one slave-subscriber-station that is subordinate control-wise to the master-subscriber-station, via a first-sub-bus of the bus-system, a second-transceiver-device for sending/receiving a message to/from at least one other subscriber-station, via a second-sub-bus of the bus-system, a communication-control-device for creating the message to be sent or for evaluating a message received from one of the sub-buses of the bus-system, and a linking-device for linking a terminal of the first-transceiver-device that is for outputting of a signal generated from the message received from the first-sub-bus and a terminal of the second-transceiver-device for outputting a signal generated from the message received from the second-sub-bus, so that only one signal is forwarded, as a receive-signal, to a communication-control-device terminal. |
US11115231B2 |
Appliance network with messaging
An appliance, communication system, and method thereof for a communicating on a network including an appliance interactive display coupled to an appliance communication module. The appliance communication module is configured to receive a message having an embedded interactive element configured to operate a functionality of the appliance embedded into the message. The message further includes a non-interactive detail. |
US11115228B2 |
Method, apparatus, and computer program product for individual profile telemetry discovery within a group based communication system
Embodiments of the present disclosure provide methods, systems, apparatuses, and computer program products for discovery of individual profile telemetry within a group-based communication system. |
US11115220B2 |
Complete forward access sessions
A system and method wherein an authentication request to verify authentication information submitted to a first system in connection with a first request submitted to the first system is received from the first system. A response to the authentication request is generated that includes information usable by a second system to make, without communicating with the authentication system, based at least in part on the information and one or more cryptographic processes, a determination whether fulfillment of a second request from the first system is allowable under authority of the authentication system, with the determination being based at least in part on policy information included in the information that specifies one or more policies applicable to an identity that is associated with the first request. The response generated is provided to the first system. |
US11115215B2 |
Methods and devices of enabling authentication of a user of a client device over a secure communication channel based on biometric data
In an aspect of the invention, a network node configured to enable authentication of a user of a client device based on biometric data captured by the client device is provided, which network node receives a request to authenticate a user of a client device, the authentication request comprising a user identifier, fetch at least one set of enrolled transformed biometric data corresponding to the user identifier and a secret feature transform key with which the biometric data was transformed at enrolment of the transformed biometric data at the network node, and submit the transformed biometric data and the secret feature transform key over a secure communication channel to the client device. |
US11115213B1 |
Thwarting one-time password theft
Thwarting one-time password (OTP) theft. In one embodiment, a method may include receiving, at a messaging application executing on the mobile device, a text message from a website that includes an original OTP. The method may also include encrypting, by the messaging application, the original OTP included in the text message to thwart theft of the original OTP from the text message. |
US11115211B2 |
Secure container platform for resource access and placement on unmanaged and unsecured devices
A first computing device receives a service access request to access a service provided by another computing device, the request including user authentication characteristics of a user. The first computing device forwards the service access request to the other computing device. The first computing device receives a user interface configuration file from the other computing device, that, when executed by the second computing device, enables the second computing device to display a user interface that provides access to the service. The first computing device modifies the user interface configuration file based on the user authentication characteristics to provide selective access to the service. The first computing device transmits the modified user interface configuration file to the second computing device, that, when executed by the second computing device, enables the second computing device to display a modified user interface that provides selective access to the service. |
US11115203B2 |
System and method for securing personal information via biometric public key
A device, method, and computer readable storage medium generate a biometric public key for an individual based on both the individual's biometric data and a secret, in a manner that verifiably characterizes both while tending to prevent recovery of either by anyone other than the individual. The biometric public key may be later used to authenticate a subject purporting to be the individual, using a computing facility that need not rely on a hardware root of trust. Such biometric public keys may be distributed without compromising the individual's biometric data. In operation, a confident subset of a set of biometric values of the subject is extracted, including by performing a transform of the set of biometric values. The transform may variously be a Gabor transform, a wavelet transform, processing by a machine learning system, etc. |
US11115200B2 |
System, method, and apparatus for quantum key output, storage, and consistency verification
A method for quantum key output is disclosed. The method can be implemented by a first quantum key management device. The method can comprise acquiring a first quantum key from a first quantum key distribution device, according to the obtained first key acquisition request, and storing the acquired first quantum key in a first management device address range in a first storage media, the first management device address range having the same address range indicator as a second management device address range in a second storage media for storing a corresponding second quantum key acquired by a second quantum key management device, wherein the address range indicator is one of a pair of head address and a tail address, a head address and a range length, or a head address and a length of one of the first quantum key or the second quantum key. |
US11115192B2 |
Managing cryptographic keys based on identity information
Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for managing cryptographic keys based on user identity information. One of the methods includes receiving biometric information associated with a user and a request to store a user key pair to a memory on an identity cryptographic chip (ICC); comparing the biometric information associated with the user with biometric information pre-stored in the memory as pre-stored biometric information; in response to determining that the biometric information associated with the user matches the pre-stored biometric information, encrypting the user key pair to provide an encrypted user key pair; and storing the encrypted user key pair to the memory. |
US11115189B2 |
Verifying a blockchain-type ledger
Implementations of this disclosure provide verification in a blockchain-type data storage ledger. An example method performed by a server includes receiving a verification request that includes a hash value to be verified; determining a data record of the blockchain-type data storage ledger that corresponds to the hash value to be verified; obtaining a value of a service attribute included in the data record; determining a set of data records of the blockchain-type storage ledger that correspond to the value of the service attribute in the blockchain-type data storage ledger; determining one or more data blocks of the blockchain-type data storage ledger that store data records included in the set of data records; and performing integrity verification on each one of the data blocks that store the data records included in the set of data records. |
US11115186B2 |
Blockchain management platform for performing asset adjustment, cross sectional editing, and bonding
Aspects of the disclosure relate to processing systems for performing cross-sectional asset editing. A computing platform may receive permission to perform a first subset of event processing steps. The computing platform may delegate permission to an external event processor to perform a second subset of event processing steps and to an external resource management platform to perform a third subset of event processing steps. The computing platform may generate an element chain corresponding to the account. In response to receiving a request to process an event, the computing platform may add a sub-element to the element chain containing a fixed parameter corresponding to an expected value associated with the event and a variable parameter corresponding to an actual value associated with the event. In response to receiving a request to write the actual value to the element chain, the computing platform may modify the variable parameter of the sub-element accordingly. |
US11115184B2 |
Format preserving encryption with padding
Techniques for using padding in format preserving encryption are provided. In one aspect, it may be determined if padding of a plaintext undergoing format preserving encryption is needed. A pseudo random padding length may be calculated when it is determined that padding is needed. The calculated length of padding may be added to the plaintext when it is determined that padding is needed. The plaintext and added padding may be encrypted using format preserving encryption to create a cipher text. |
US11115183B2 |
Terminal device performing homomorphic encryption, server device processing ciphertext and methods thereof
A decryption method includes: receiving a homomorphic ciphertext; and obtaining a result value added an error value at a message from the received homomorphic ciphertext. The error is disposed on the least significant bit (LSB) side in the homogeneous ciphertext, and the message is disposed at a position adjacent to the error. |
US11115180B2 |
System and method for remote clock estimation for reliable communications
An electronic device is provided including a processor, a communications interface coupled to the processor, a memory coupled to the processor, and a module saved in the memory. The module configures the processor to receive a first communications packet from a remote device via the communications interface including information useful for estimating a clock offset of the remote device, and determine an upper bound of the clock offset of the remote device with respect to the electronic device based on the information. |
US11115179B2 |
Signaling system with adaptive timing calibration
A signaling system is disclosed. The signaling system includes a first integrated circuit (IC) chip to receive a data signal and a strobe signal. The first IC includes circuitry to sample the data signal at times indicated by the strobe signal to generate phase error information and circuitry to output the phase error information from the first IC device. The system further includes a signaling link and a second IC chip coupled to the first IC chip via the signaling link to output the data signal and the strobe signal to the first IC chip. The second IC chip includes delay circuitry to generate the strobe signal by delaying an aperiodic timing signal for a first time interval and timing control circuitry to receive the phase error information from the first IC chip and adjust the first time interval in accordance with the phase error information. |
US11115178B1 |
Clock and data recovery device and clock and data recovery method
A clock and data recovery device includes a phase detector circuitry, an analog modulation circuitry, a serial-to-parallel converter circuit, a digital modulation circuitry, and an oscillator circuit. The phase detector circuitry detects a data signal according to first and second clock signals to generate an up signal and a down signal. The analog modulation circuitry generates a first adjustment signal according to the up signal and the down signal. The serial-to-parallel converter circuit generates a first control signal according to the up signal, and to generate a second control signal according to the down signal. The digital modulation circuitry generates a digital code according to the first and the second control signals, and to generate a second adjustment signal according to the digital code. The oscillator circuit generates the first and the second clock signals according to the first adjustment signal and the second adjustment signal. |
US11115176B1 |
System and method for adjusting clock-data timing in a multi-lane data communication link
Clock-data timing in a multi-lane serial data communication link may be adjusted to compensate for drift. A reference lane may be selected and periodically trained to adjust clock-data timing. In response to initiation of a first lane transitioning from an active state to an inactive state, first information representing the clock-data timing of the reference lane at the time that transition is initiated may be determined. Then, in response to initiation of the first lane transitioning back from the inactive state to the active state, second information representing the clock-data timing of the reference lane at the time that transition is initiated may be determined. The clock-data timing of the first lane may be adjusted based on the first information and the second information. |
US11115175B2 |
Narrowband time-division duplex frame structure for narrowband communications
There is a need to support narrowband TDD frame structure for narrowband communications. The present disclosure provides a solution by supporting one or more narrowband TDD frame structure(s) for narrowband communications. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may determine a narrowband TDD frame structure for narrowband communications. The apparatus may also determine a PUSCH format of a group of PUSCH formats for allocating at least one RU to a UE for a NPUCCH. In addition, the apparatus may allocate the at least one RU to the UE using the determined PUSCH format. In one aspect, the RU may include one or more subcarriers in each of one or more slots. |
US11115174B2 |
Base station, user terminal, radio communication system, and communication control method
A radio communication system includes one or more user terminals and one or more base stations that execute time division radio communication using a time division duplex (TDD) system. A radio frame is a radio communication resource used in the time division radio communication, and includes a downlink subframe that is a transmission period of a downlink signal, a special subframe including a guard period that is used neither for transmission of a downlink signal nor for transmission of an uplink signal, and an extended subframe that is used as either a transmission period of a downlink signal or a transmission period of an uplink signal, in accordance with a scheduling by the base station. |
US11115173B2 |
Method and apparatus for transmitting demodulation reference signal
In the present invention, a part of a first demodulation reference signal sequence generated on the basis of a basic subcarrier interval (hereinafter, a first subcarrier interval) is used for a second subcarrier interval which is K times the first subcarrier interval. Values selected one for every K from among values constituting the first demodulation reference signal sequence may be used as values constituting a second demodulation reference signal sequence for the second subcarrier interval. |
US11115170B2 |
Techniques for adjusting clear channel assessment (CCA) window for transmissions in a shared radio frequency spectrum band
Techniques and devices are described for wireless communication. A base station may determine a parameter associated with a transmission such as hybrid automatic repeat request (HARQ) feedback, a signal-to-noise ratio, or a determination regarding whether the transmission was successfully decoded. The base station may then determine a contention window adjustment value based on the parameter. The base station may then apply weighting factor (e.g., based on the time of the transmission, a number of devices being served, aspects of the transmission parameter, etc.) to the contention window adjustment value may adjust a contention window size for a second transmission based on the weighted contention window adjustment value (and, in some cases, other weighted adjustments based on other transmissions). The base station may then perform a clear channel assessment (CCA) based on the contention window size. |
US11115169B2 |
Parent node device, terminal device for wireless network and data transmission method thereof
An indirect data transmission method may include: calculating an estimated arrival time of a next poll data request of a terminal device according to a receipt time of a poll data request, after the poll data request is received from the terminal device; transmitting data for the terminal device to a cache of a Media Access Control (MAC) layer module at a time point which is a predetermined time length ahead of the estimated arrival time responsive to a determination that there is the data for the terminal device in a network layer module; and transmitting, to the terminal device, an acknowledgement packet indicating that there is the data to be transmitted in the cache of the MAC layer module and the data for the terminal device, responsive to receiving the next poll data request. |
US11115164B2 |
Sounding reference signal subframe position in a plurality of scheduled consecutive subframes
A wireless device receives a radio resource control message comprising an aperiodic sounding reference signal (SRS) subframe parameter. A downlink control information is received. The downlink control information indicates uplink resources in a plurality of scheduled consecutive subframes for transmission of transport blocks by the wireless device and triggers an SRS transmission in a subframe of the plurality of scheduled consecutive subframes. The SRS is transmitted in the subframe. A position of the subframe in the plurality of scheduled consecutive subframes is determined based on the aperiodic SRS subframe parameter. |
US11115163B2 |
Enhanced resource unit allocation in wireless local area network
A method for encoding a bitstream is described. The method includes receiving, by an error correction unit, the bitstream; performing, by the error correction unit, encoding on the bitstream to generate an encoded bit stream that includes the bitstream and parity bits; processing, by a constellation unit, the encoded bitstream to generate constellation points in one or more encoded streams; determining, by a low-density parity-check (LDPC) tone mapper, a distance between subcarriers in an Orthogonal Frequency Division Multiplexing (OFDM) symbol of the frame; and performing, by the LDPC tone mapper, LDPC tone mapping based on the one or more encoded streams and on the determined distance to generate a permuted stream of complex numbers, wherein the distance between subcarriers is determined to be either (1) 18 for a first resource unit size used in the frame and (2) 20 for a second resource unit size used in the frame. |
US11115159B2 |
Method and device for processing HARQ feedback in a mobile communication system
A device and method for handling HARQ feedback in a mobile communication system are disclosed. The HARQ feedback handling method includes: analyzing a control message from a base station to recognize presence of HARQ feedback relationships between downlink carriers and uplink carriers; determining an uplink carrier (a downlink carrier) to support HARQ feedback in response to downlink traffic (uplink traffic) sent through a downlink carrier (an uplink carrier); and sending (receiving) HARQ feedback through the determined uplink carrier (downlink carrier). |
US11115156B2 |
Discontinuous reception operations among multiple bandwidth parts
A user equipment (UE) for discontinuous reception (DRX) operation having a Downlink DRX Hybrid Automatic Repeat reQuest (HARQ) Round-Trip Time Timer (drx-HARQ-RTT-TimerDL) is disclosed. The UE comprises one or more non-transitory computer-readable media having computer-executable instructions embodied thereon; at least one processor coupled to the one or more non-transitory computer-readable media, and configured to execute the computer-executable instructions to perform the DRX operation, wherein the DRX operation comprises: starting the drx-HARQ-RTT-TimerDL from an initial value in a first symbol after an end of a corresponding transmission carrying a DL HARQ feedback, the DL HARQ feedback corresponding to downlink data. The initial value is represented in number of symbols of a BWP (bandwidth part) where the downlink data is received. |
US11115142B1 |
Timing synchronization service and distribution system
This disclosure describes techniques for delivering high-accuracy and high-precision clock synchronization in heterogeneous distributed computer clusters. For example, the disclosure describes a synchronization engine that sets efficient clock synchronization processes based on a cluster node's characteristics, pricing, precision, geolocation, and/or cluster topology, while in some cases using a combination of master clock data with internal atomic clocks of computers. The techniques described herein integrate the synchronization engine into a time synchronization process that may provide stability, versatility, precision and cost balance using technical improvements for characterizing timing system delivery channels. |
US11115140B2 |
Signal strength measurement method, and related apparatus and system
A signal strength measurement method is disclosed, the method including: receiving first indication information, where the first indication information includes first sub-information, second sub-information, and third sub-information, the first sub-information indicates a measurement period for measurement, the third sub-information is used to indicate an offset of a start position of a second time unit for measurement relative to a start position of the measurement period, and the second sub-information is used to indicate an offset of a start position of a first time unit for measurement in the measurement period relative to the start position of the second time unit for measurement; determining a measurement resource based on the first indication information; performing signal strength measurement on a signal on the measurement resource; and sending a measurement result. |
US11115137B2 |
Method and electronic testing device for determining optimal test case for testing user equipment
A method is provided. The method includes determining, in a determination by an electronic testing device, one or more locations in a cellular network where a test case is to be executed, a time at which the test case is to be executed at the one or more locations, a number of times the test case is to be executed at the one or more locations, or a type of a test equipment on which the test case is to be executed. A test context for testing a user equipment is determined based on a result of the determination. An optimal test case is determined from a test case repository, based on the test context, and the optimal test case is executed. |
US11115133B2 |
Method and apparatus for a wireless charging and communication system
Circuits, systems and methods that utilize two transducers, of which at least one is a piezoelectric transducer, adapted and coupled to receive and/or generate signals that include a power transmission component and an informational content in the forms of sound waves, mechanical vibrations, and/or electromagnetic energy. In one version, two transducers each receive and/or generate separate vibrational energy signals that bear information and transmit electrical power. Two or more transducers coupled to a switching circuit may send or receive piezo-electrical circuit output signals that include a carrier wave having different frequencies that are within separate frequency ranges. Two or more transducers may generate output signals that are simultaneously processed by or multiplexed by a switching circuit. |
US11115131B1 |
System and method for cryogenic optoelectronic data link
A cryogenic optoelectronic data link, comprising a sending module operating at a cryogenic temperature less than 100 K. An ultrasensitive electro-optic modulator, sensitive to input voltages of less than 10 mV, may include at least one optically active layer of graphene, which may be part of a microscale resonator, which in turn may be integrated with an optical waveguide or an optical fiber. The optoelectronic data link enables optical output of weak electrical signals from superconducting or other cryogenic electronic devices in either digital or analog form. The modulator may be integrated on the same chip as the cryogenic electrical devices. A plurality of cryogenic electrical devices may generate a plurality of electrical signals, each coupled to its own modulator. The plurality of modulators may be resonant at different frequencies, and coupled to a common optical output line to transmit a combined wavelength-division-multiplexed (WDM) optical signal. |
US11115129B2 |
Optical receiver, optical terminal, and optical communication system
An optical receiver includes: a pre-amplifier to convert a current signal into a voltage signal; an LIA to amplify and limit an amplitude of the voltage signal; a transmission line connecting the pre-amplifier with the LIA; an AC coupling capacitor inserted in the middle of the transmission line or at an end of the transmission line; a termination circuit connected with the transmission line, for switching to a first resistance or a second resistance higher than the first resistance in response to a switching signal; and an AC load connected with the transmission line. The AC load is open in a low-frequency range of the voltage signal and having a resistance enabling impedance matching with the pre-amplifier and the transmission line in a high-frequency range of the voltage signal, wherein the termination circuit and the AC load are electrically connected in parallel. |
US11115128B2 |
Optical transmission device, transmission system, and control method for transmission system
The present invention provides an optical transmission device, a transmission system, and a control method for a transmission system which make it possible to adjust the wavelength band of dummy light according to the wavelength band of an added main signal. This optical transmission device comprises: an output branching unit which multiplexes and outputs an added main signal and dummy light; a wavelength adjustment unit which adjusts the wavelength band of the dummy light; a signal detection unit to which an optical signal outputted by the output branching unit is inputted, and which detects the wavelength band of the added main signal and outputs a detection result; and a control unit which controls the wavelength adjustment unit according to the detection result from the signal detection unit. |
US11115127B2 |
Laser communication system and laser communication method
A solid obstacle is removed with a high-power laser beam to establish a transmission path for a spatial laser communication. When a space in which the laser beam is transmitted is blocked off by the solid obstacle, the spatial laser communication cannot be carried out. |
US11115125B2 |
Monolithic integrated coherent transceiver
Various embodiments of a monolithic transceiver are described, which may be fabricated on a semiconductor substrate. The monolithic transceiver includes a coherent receiver module (CRM), a coherent transmitter module (CTM), and a local oscillation splitter to feed a local oscillation to the CRM and the CTM with a tunable power ratio. The monolithic transceiver provides tunable responsivity by employing avalanche photodiodes (APDs) for opto-electrical conversion. The monolithic transceiver also employs a polarization beam rotator-splitter (PBRS) and a polarization beam rotator-combiner (PBRC) for supporting modulation schemes including polarization multiplexed quadrature amplitude modulation (PM-QAM) and polarization multiplexed quadrature phase shift keying (PM-QPSK). |
US11115120B2 |
Disintegrated software defined optical line terminal
The present disclosure relates to an optical line terminal device. The optical line terminal device includes a data center point of presence module, one or more access point of presence modules and one or more aggregation point of presence modules. The data center point of presence module includes a first region and a second region. The first region includes a leaf and spine fabric and a top-of-rack architecture. The second region includes compute infrastructure and storage infrastructure. Further, the one or more access point of presence modules include optical line terminal-Gigabit Passive Optical Networks access input/output and Metro Ethernet Access input/output. The one or more aggregation point of presence include access input/output hardware abstraction, limited compute infrastructure and multi-protocol label switching transfer router. |
US11115119B1 |
RF-FSO linkage method and ground station system performing the same
Provided is a ground station system for performing a radio frequency-free space optics (RF-FSO) linkage method, the ground station system including a first receiver including a first antenna configured to receive an optical signal including data from a satellite; a second receiver including a second antenna configured to receive a radio frequency (RF) signal including data from the satellite; and a processor configured to estimate data that is determined to have been transmitted from the satellite using the data received from the first receiver and thereby decoded and the data received from the second receiver and thereby decoded and transmit the estimated data to a data server, and thereby providing satellite communication through another satellite communication link regardless of a degradation in any one satellite communication link performance. |
US11115117B2 |
Submarine optical communication control device, control method, and non-transitory computer-readable medium
A submarine optical communication system control device (1) according to the present invention includes: a light intensity distribution determination device (2) configured to determine an optimum distribution of signal light intensity of each optical path for each allocated frequency; a light intensity distribution measuring device (3) configured to measure a light intensity distribution of an optical path after transmission through a submarine cable transmission line; an equalization setting calculation unit (4) configured to calculate a gain equalization setting for compensating for the difference between an optimum distribution in the light intensity distribution determination device and a measured distribution in the light intensity distribution measuring device; and a variable gain equalizer (5) configured to compensate for a light intensity distribution of an optical path to the optimum distribution, based on a gain equalization setting in the equalization setting calculation unit. |
US11115108B2 |
Method and system for field agnostic source localization
This disclosure relates generally to field agnostic source localization. Conventional state-of-the-art methods perform source localization for near-field scenario by estimating carrier frequency and direction of arrival (DOA) at or above Nyquist sampling rate. Embodiments of the present disclosure provide a method for source localization at sub Nyquist sampling rate. The method estimates parameters such as range, carrier frequency and DOA of source signals from data sources in a mixed field scenario. i.e., the data sources may reside in far-field as well as near-field. The method considers a delay channel to a sensor receiver architecture for estimating the parameters. The disclosed method can be used in applications like cognitive radio to determine the carrier frequency, DOA and range of various source signals from data sources in mixed field. |
US11115107B2 |
Communication receiving device and method for operating the same
A communication receiving device is provided. The communication receiving device includes a cross-correlation measuring circuit which receives an L-SIG (Legacy signal) symbol and a RL-SIG symbol to measure a cross-correlation degree therebetween, an accumulating circuit which accumulates a real part of a cross-correlation degree measurement value, a comparator which compares the accumulated L-SIG symbol and the RL-SIG symbol with a variable threshold value, and a threshold value calculator for calculating the threshold value. |
US11115104B2 |
Enhanced signaling and use of multiple transmission chains
This disclosure describes systems, methods, and devices related to signaling and use of multiple transmission chains. A device may determine bits indicative of eight or fewer spatial streams. The device may encode the bits by generating an indication of more than eight spatial streams. The device may determine one or more fields of a frame, the one or more fields including the encoded bits. The device may send the frame. |
US11115103B2 |
Method and apparatus for beam measurement and management in wireless systems
A method of user equipment (UE) for beam management in a wireless communication system comprises receiving, from a base station (BS), at least two groups of Tx beams comprising transmit (Tx) signals generated from different antenna panels, the at least two groups of Tx beams transmitted through reference signals; receiving, from the BS, configuration information including a selection constraint for the at least two groups of Tx beams; measuring, based on the configuration information, at least one beam from each of the at least two groups of beams; selecting at least one Tx beam from each of the at least two groups and a same Rx beam set as an Rx beam corresponding to respective selected Tx beams; and transmitting, to the BS, a reporting message including information of the selected Tx beams and the selected same Rx beam set corresponding to the Rx beam. |
US11115096B2 |
Use of uplink beam tracking results in reference symbol sessions
Methods, systems, and devices for wireless communication are described. A network device, such as a base station, may transmit a request message to a user equipment (UE). The request message may include a request for the UE to transmit a set of sounding reference signals (SRSs). The set of SRSs may include two (or more) beamformed signals. The network device may receive the set of SRSs according to the request message. The network device may identify, based on a co-phasing parameter associated with the two (or more) beamformed signals, an antenna port precoder configuration to use for communicating with the UE. |
US11115093B2 |
Electronic device supporting thermal mitigating and a control method of thereof
An electronic device including a plurality of antenna modules configured to wireless communicate with a base station according to a first communication scheme; a plurality of temperature sensors respectively provided in the plurality of antenna modules and configured to detect a temperature of each antenna module; and a modem configured to detect a temperature difference between a highest temperature antenna module and a lowest temperature antenna module among the plurality of antenna modules, and switch from using a first antenna module performing wireless communication with the base station to a second antenna module among the plurality of antenna modules to perform the wireless communication with the base station based on the detected temperature difference being above a preset temperature difference. |
US11115091B2 |
Channel state information feedback and receiving methods, transmit-end device and receive-end device
Embodiments of this application disclose channel state information feedback and receiving methods, a transmit-end device and a receive-end device, and relate to the field of communications technologies. The method includes: generating and sending, by a transmit-end device, codebook indication information of K transport layers, where K is an integer greater than or equal to 2; the codebook indication information includes: L pieces of beam information used by the K transport layers, and indication information used to indicate beam information associated with each of the K transport layers; L is an integer greater than or equal to 2, and a quantity of pieces of beam information associated with at least one of the K transport layers is less than L. Implementing a channel state information feedback and receiving technology provided in this application helps reduce feedback overheads of channel state information. |
US11115089B2 |
Radio apparatuses for long-range communication of radio-frequency information
Radio apparatuses and methods for MIMO matrix phasing that may be used to toggle and/or weight the amount of MIMO processing based on the detected level of isolation between different polarizations of the system. Also described herein are apparatuses including auto-range and/or auto-scaling of a signal strength indicator to aid in precise alignment of the apparatus. Any of these apparatuses and methods may also include dynamic power boosting that adjusts the power (e.g., power amplifier) for an RF apparatus based on the data rate. These apparatuses may include a housing enclosing the radio device that includes a plurality of pin elements that may act as heat transfer pins and a ground pin for making a ground connection to the post or pole to which the devices is mounted. |
US11115084B2 |
Isolated data transfer system
Methods and apparatus for providing data transfer with a drive coil to transmit information, a receive coil magnetically coupled to the drive coil, and a first magnetoresistive sensor proximate the receive coil to detect information from the receive coil. In embodiments, the drive and receive coils are separated by an isolation material. In embodiments, a signal isolator IC packages includes transmit and receive coils and a magnetic field sensing element coupled to the receive coil. |
US11115081B2 |
Routing method for multiple security elements, NFC controller and NFC device
Disclosed are a routing method for multiple security elements (SEs), an NFC controller and an NFC device. The NFC device includes at least three SEs capable of working simultaneously; after receiving a request from an external device for accessing an NFC application, the NFC controller searches a routing table for an SE to be routed according to an AID carried in the request; and in a case where the SE is not found, the request is sent to all other SEs in the NFC device except the part of SEs. |
US11115079B2 |
Signal power reduction systems and methods
A method of reducing transmission power for an encoded data stream includes the steps of receiving an incoming data stream having equal probability for a plurality of incoming data bits, assigning a symbol scheme to the received data bits of the incoming data stream according to probabilities of occurrence of individual ones of the received data bits, and transmitting an outgoing data stream according to the assigned symbol scheme having a second average transmit power, different than the first average transmit power, for a plurality of outgoing symbols. |
US11115072B2 |
Interference processing method and apparatus
Provided are an interference processing method and apparatus. The interference processing method includes: detecting an interference degree of a component of a terminal equipment to the terminal equipment when the component is working; and adjusting component parameters corresponding to the component within a preset range when the interference degree satisfies a preset condition. |
US11115069B2 |
Near-field wireless device for distance measurement
One example discloses a wireless device, including: a first near-field device, including a near-field transmitter or receiver and a controller, configured to be coupled to a near-field antenna having a first conductive surface and a set of feed-points; wherein the controller is configured to receive a transmitter output voltage from the set of feed-points; wherein the controller is configured to generate a correction signal based on a difference between the transmitter output voltage and a target transmitter output voltage; wherein the correction signal varies in response to a change in a distance between the first surface and a second conductive surface; and wherein the controller is configured to calculate the distance, between the first conductive surface and the second conductive surface, based on the correction signal. |
US11115068B2 |
Data-based pre-distortion for nonlinear power amplifier
A system for data-based pre-distortion for a nonlinear power amplifier includes a digital pre-distortion (DPD) component, including a DPD processor and a DPD calibration engine, where the DPD processor applies a set of DPD coefficients to a digital baseband data signal, to generate a pre-distorted digital baseband data signal for conversion to a radio frequency (RF) signal and amplification by a nonlinear power amplifier (PA) to generate an RF output signal, where the DPD calibration engine compares a digitized, down-converted version of the RF output signal with the digital baseband data signal, to determine distortion coefficients of the nonlinear PA, and to update the set of pre-distortion coefficients in the DPD processor to compensate for the distortion coefficients of the non-linear PA, where data transmission is uninterrupted by the transmission of non-data calibration signals. |
US11115061B2 |
Error detection
A datum is written to a memory, by splitting a binary word, representative of the datum and an error correcting or detecting code, into a first part and a second part. The first part is written at a logical address in a first memory circuit. The second part is written at the logical address in a second memory circuit. The error correcting or detecting code is dependent on both the datum and the logical address. |
US11115057B2 |
Efficient erasure coding of mid-size data objects
The disclosed technology generally describes a data protection scheme that for “mid-size” objects directly writes divided object data fragments, and performs erasure coding to directly write object coding fragments, to distributed storage locations in a node cluster. A storage container such as a chunk allocated for mid-size objects is distributed among the storage cluster nodes. When a mid-size object (e.g., between 24 megabytes and 128 megabytes) is to be created, the object data is divided into object data fragments and encoded into object coding fragments, with the data object fragments and object coding fragments written/appended to the distributed storage locations, without needing a preliminary protection scheme. |
US11115056B2 |
Location selection based on erasure code techniques
Systems for location selection based on erasure code techniques are provided. One system includes a monitor module that monitors data speed characteristics for one or more locations on a storage device. Additionally, the system includes a classification module that determines an erasure code technique for an application, wherein data associated with the application is stored on a storage device. Also, the system includes a selection module that selects a location in one or more locations for storing data based on monitored data speed characteristics and a determined erasure code technique. |
US11115052B2 |
Information processing method and communications apparatus
This application discloses an information processing method and apparatus, a communications device, and a communications system. The method includes: encoding an input sequence by using a low density parity check LDPC matrix to obtain a bit sequence D, where a base matrix of the LDPC matrix is represented by a matrix of m rows and n columns, each column corresponds to a group of Z continuous bits in the bit sequence D, and both n and Z are integers greater than 0; and obtaining an output bit sequence based on a bit sequence V, where the bit sequence V is obtained by permuting groups of bits corresponding to at least two parity check columns in the bit sequence D. |
US11115050B1 |
Hardware friendly data decompression
Systems, apparatus and methods are provided for decompressing compressed data. A method may include receiving encoded data to be decompressed, obtaining a “Stotal” of a total number of symbols, numbers of occurrences for distinct symbols in the encoded data, and a final state generated during an encoding process as a first state for decoding, building a decoding table containing a row of the distinct symbols, a row of substitutes for numbers of bits to be recovered and a row of substitutes for new states corresponding to encoding states, decoding using the decoding table including: obtaining a current symbol from the decoding table based on a current state X, dynamically determining a current number of bits to be recovered from the encoded data and a new state X based on corresponding substitutes and outputting symbols recovered. L may be a sum of the numbers of occurrences for the distinct symbols. |
US11115040B1 |
ADC slicer reconfiguration for different channel insertion loss
A receiver having analog-to-digital converters (ADC) is disclosed. The ADCs may be reconfigured based on the insertion loss mode of the receiver. For example, different portions of a plurality of time-interleaved successive approximation (SAR) ADC slices included in at least one sub-ADC of each time-interleaved ADC may be enabled depending on which of a plurality of insertion loss modes is selected for operation of the receiver. |
US11115039B2 |
Voltage-to-time converter and method for reducing parasitic capacitance and power supply influences
The present disclosure provides a voltage-to-time converter and method for reducing parasitic capacitance and power supply influences. The voltage-to-time converter includes: a main sampling network, a compensation sampling network, a discharge network and an over-threshold detection unit. The influence of a traditional VTC parasitic capacitance on a VTC output swing amplitude is reduced by using the compensation sampling network. A sampling common-mode level of the compensation sampling network is compensated, such that the influence of the low-frequency disturbance of a power supply voltage on a threshold of a traditional VTC threshold detection circuit is reduced. The output swing amplitude of the voltage-to-time converter of the present disclosure can reduce the influence of a parasitic capacitance. A voltage common-mode level of a VTC input end is related to a power supply voltage, which reduces a conversion error caused by the influence of the power supply voltage on a threshold. |
US11115035B2 |
Semiconductor devices
A semiconductor device includes first to N-th PLL circuits configured to operate in synchronization with a common reference clock signal to output first to N-th clock signals, respectively; a majority circuit that performs a majority operation on the first to N-th clock signals to generate a majority clock signal; and a filter circuit to which the majority clock signal is provided, the filter circuit operating as a low-pass filter to output an output clock signal. N is an odd number of three or more. |
US11115033B1 |
Speed-up charge pump and phase-locked loop and method for operating the same
A speed-up charge pump includes a first charge pump for receiving an up signal and a down signal in digital form to produce a first voltage control signal at an output node. Further, at least one speed-up phase detector includes a first circuit path to receive the up signal and delay the up signal by a predetermined delay as a delay up signal and operate the up signal and the delay up signal by AND logic into an auxiliary up signal; and a second circuit path to receive the down signal and delay the down signal by the predetermined delay as a delay down signal and operate the down signal and the delay down signal by AND logic into an auxiliary down signal. A second charge pump is respectively receiving the auxiliary up and down signals to produce a second voltage control signal also at the output node. |
US11115028B2 |
Oscillator, electronic apparatus, and vehicle
Provided is an oscillator including: a first resonator; a second resonator; a first oscillation circuit generating a first oscillation signal by oscillating the first resonator; a second oscillation circuit generating a second oscillation signal that has frequency-temperature characteristics different from frequency-temperature characteristics of the first oscillation signal by oscillating the second resonator; a clock signal generation circuit generating a clock signal with a frequency that is temperature compensated by temperature compensation data; a storage unit storing information on a learned model that is machine-learned to output data corresponding to the temperature compensation data with respect to input data; and a processing circuit obtaining the temperature compensation data by performing processing based on the information on the learned model with respect to the input data based on the first oscillation signal and the second oscillation signal. |
US11115025B2 |
Universal transceiver container
The present disclosure relates to modular transceiver-based network circuitries that may include internal configurable interfaces or gaskets. The configurable gaskets may facilitate integration of the network circuitries in electronic devices by providing a transparent interface to processing circuitries coupled to the network circuitries. Moreover, the configurable gaskets may also have a floorplan layout (e.g., a chiplet layout) that may facilitate coupling of multiple network circuitries to a single processing circuitry, in a modular manner. |
US11115024B2 |
Integrated circuit, test method for testing integrated circuit, and electronic device
An integrated circuit of an embodiment includes: a logic circuit; and a switch circuit, the logic circuit including: a first memory; a look-up table circuit having a first output terminal; a first selection circuit having a first input terminal connecting to the first output terminal, a second input terminal receiving scan input data, and a second output terminal, the first selection circuit selecting one of the first and second input terminals and connect the selected one to the second output terminal; a flip-flop having a third input terminal connected to the second and third output terminals; and a second selection circuit having a fourth and fifth input terminals connected to the third output terminal and the first output terminal respectively, and a fourth output terminal, the second selection circuit selecting one of the fourth and fifth input terminals and connect the selected one to the fourth output terminal. |
US11115022B2 |
System and method for integrated circuit usage tracking circuit with fast tracking time for hardware security and re-configurability
An accelerated aging circuit is described to shorten the required stress time to a few seconds of operation. Due to the challenges posed by process variation in advanced CMOS technology, a stochastic processing methodology is also described to reduce the failure rate of the tracking and detection. Combining both circuit and system level acceleration, the creation of a silicon marker can be realized within seconds of usage in contrast with days of operation from previously reported aging monitor. |
US11115019B2 |
Dynamic short circuit protection
Circuitry includes a pair of switches arranged in series, and a gate driver. The gate driver, responsive to a magnitude of current through one of the switches exceeding a threshold, discharges a gate of the one through a first resistor. The gate driver also, responsive to a voltage across a parasitic inductance of the switch becoming zero, discharges the gate through a second resistor but not the first resistor. |
US11115018B1 |
Power transistor overcurrent protection circuit
A power transistor overcurrent protection circuit includes an overcurrent detection circuit, a timing control circuit, and an enable control circuit. The overcurrent detection circuit is configured to detect whether there is an overcurrent flowing in the controlled power transistor. The timing control circuit and the enable control circuit jointly control the controlled power transistor. The power transistor overcurrent protection circuit can turn off the controlled power transistor so as to protect the controlled power transistor when there is an overcurrent flowing in the controlled power transistor for controlling a load to work or not to work. |
US11115017B2 |
Driving apparatus and switching apparatus
Provided is a driving apparatus that includes a gate driving circuit that turns off a first semiconductor element upon receiving a turn-off signal, a measuring circuit that measures a parameter according to a voltage applied to the second semiconductor element, a timing generating circuit that generates a timing signal if the parameter satisfies a first condition during a time period in which the first semiconductor element is tuned off; and a driving condition change circuit that, in response to the timing signal, further decreases a changing speed of a gate voltage of the first semiconductor element than a reference speed during the time period in which the first semiconductor element is tuned off, wherein the gate driving circuit turns off the first semiconductor element in response to that the parameter satisfies a second condition during a time period in which the first semiconductor element is tuned on. |
US11115015B2 |
Device including multi-mode input pad
A circuit component has an address determined from a voltage level applied to a single electrical contact of the circuit component. The circuit component is configured to be assigned one of at least three unique addresses and to select from among the at least three unique addresses based on the voltage level. |
US11115014B2 |
Duty cycle correction circuit
A duty cycle correction circuit includes: a first inverter, a first delayer, and a first adjustment circuit. An input terminal and output terminal of the first inverter are respectively configured to receive a first signal and output a third signal. A first input terminal and an output terminal of the first adjustment circuit are respectively configured to receive the third signal and output a first correction signal. An input terminal and output terminal of the first delayer are respectively configured to input a second signal and output a fourth signal to the first adjustment circuit. The fourth signal has a first delay time relative to the second signal. When the third signal and the fourth signal are at a high level, so is the first correction signal. When the third signal and the fourth signal are at a low level, so is the first correction signal. |
US11115013B2 |
Circuit arrangement with clock sharing, and corresponding method
In an embodiment, a system includes a slave circuit configured to receive an external clock signal from a master circuit, the slave circuit comprising first and second peripherals configured to receive respective clock signals obtained from the external clock signal, wherein the master circuit is configured to send to the slave circuit the external clock signal according to two different timing modes, wherein the slave circuit comprises a logic circuit configured to provide a locking signal to the first peripheral circuit when the logic circuit detects a given operating mode of the slave circuit, wherein the master circuit is configured to send the external clock signal according to a first timing mode before receipt of the locking signal, and wherein the master circuit is configured, following upon receipt of the locking signal, to send the external clock signal according to a second timing mode different from the first timing mode. |
US11115012B2 |
Software-defined pulse orchestration platform
A system comprises pulse program compiler circuitry operable to analyze a pulse program that includes a pulse operation statement, and to generate, based on the pulse program, machine code that, if loaded into a pulse generation and measurement circuit, configures the pulse generation and measurement circuit to generate one or more pulses and/or process one or more received pulses. The pulse operation statement may specify a first pulse to be generated, and a target of the first pulse. The pulse operation statement may specify parameters to be used for processing of a return signal resulting from transmission of the first pulse. The pulse operation statement may specify an expression to be used for processing of the first pulse by the pulse generation and measurement circuit before the pulse generation and measurement circuit sends the first pulse to the target. |
US11115011B1 |
Quantum controller architecture
A system comprises pulse generation and measurement circuitry comprising a plurality of pulse generator circuits and a plurality of ports, and management circuitry. The management circuitry is operable to analyze a specification of a controlled system and controlled elements that comprises a definition of a controlled element of the control system, and a definition of one or more pulses available for transmission by the control system. The management circuitry is operable to configure, based on the specification, the pulse generation and measurement circuitry to: generate the one or more pulses via one or more of the plurality of pulse generator circuits; and output the one or more pulses to the controlled element via one or more of the plurality of ports. |
US11115009B2 |
Semiconductor integrated circuit
A semiconductor integrated circuit includes a first flip-flop that includes a first slave latch, a second flip-flop that includes a second slave latch, and a clock generation circuit that provides a common clock signal to the first flip-flop and the second flip-flop. The first slave latch includes a first inverter, a first feedback inverter that receives an output signal from the first inverter, and a first switch that is connected between an input terminal of the first inverter and an output terminal of the first feedback inverter. The first flip-flop outputs an output signal from the output terminal of the first feedback inverter. |
US11115005B2 |
Ring voltage controlled oscillator (VCO) startup helper circuit
A ring voltage controlled oscillator (VCO) circuit is herein provided. According to one embodiment, a ring VCO circuit includes a plurality of stages connected in series, wherein each stage includes a first inverter, a second inverter, a third inverter and a fourth inverter, the first inverter connected in parallel with the third and fourth inverters and the second inverter connected in parallel with the third and fourth inverters, and a first biasing resistor connected to a first node and coupled to an input of the first inverter. The first biasing resistor includes a first switch configured to set the first biasing resistor to about zero voltage. |
US11115001B2 |
Receiving filter, multiplexer, and communication apparatus
A receiving filter includes a reception terminal which outputs reception signals from an antenna terminal, a second DMS filter configured by a longitudinally coupled double-mode type acoustic wave filter which is located in a signal path from the antenna terminal to the reception terminal, a fourth GND terminal given a reference potential, and a fourth GND wiring connected to the fourth GND terminal and to the second DMS filter. A reception terminal conductor configured by the reception terminal and the reception terminal wiring connected to the reception terminal and A fourth GND conductor configured by the fourth GND terminal and the fourth GND wiring are adjacent and are capacity-coupled with respect to each other. |
US11115000B2 |
Extractor
An extractor includes a band elimination filter that is connected between a common terminal and a first input-output terminal and that has a stop band equal or substantially equal to a first frequency band, and a band pass filter that is connected between the common terminal and a second input-output terminal and that has a pass band equal or substantially equal to a second frequency band that overlaps the first frequency band. The band pass filter includes, series arm resonators, three or more parallel arm resonators, and three or more inductors that are connected between the ground and the parallel arm resonators. The L value of a first inductor that is connected and nearest to the common terminal is smaller than the L value of a third inductor, and the L value of a second inductor that is connected and second-nearest to the common terminal is smaller than the L value of the third inductor. |
US11114994B2 |
Multilayer filter including a low inductance via assembly
A multilayer filter may include a dielectric layer having a top surface, a bottom surface, and a thickness in a Z-direction between the top surface and the bottom surface. The multilayer filter may include a conductive layer formed on the top surface of the dielectric layer. The multilayer filter may include a via assembly formed in the dielectric layer and connected to the conductive layer on the top surface of the dielectric layer. The via assembly may extend to the bottom surface of the dielectric layer. The via assembly may have a length in the Z-direction and a total cross-sectional area in an X-Y plane that is perpendicular to the Z-direction. The via assembly may have an area-to-squared-length ratio that is greater than about 3.25. |
US11114992B2 |
Motor drive with a filter including a three-phase differential mode reactor with common mode damping
Motor drive with a T-type filter with at least two three-phase differential mode reactors and three capacitors, wherein at least one of the three-phase differential mode reactor comprises an auxiliary coil (6) wound around three wound core elements (2.1, 2.2, 2.3) such that the common mode current is induced in the auxiliary coil (6). |
US11114990B2 |
Apparatus and method of power management using envelope stacking
An envelope stacking power amplifier system reduces current for a given output power level without sacrificing the ability to support large voltage swings at saturation and therefore increases efficiency at the maximum linear operating power and all power levels below that. The system includes a stack/unstack controller including circuitry configured to switch the RF power amplifier system between a stacked mode in which first and second RF amplifiers are coupled in a stacked configuration and an unstacked mode in which the first and second RF amplifiers are coupled in an unstacked configuration in response to one or more mode-control signals, the stacked configuration providing reduced current compared to the unstacked configuration. |
US11114988B2 |
Doherty amplifier circuit with integrated harmonic termination
In a Doherty amplifier, outputs of first (main) and second (peak) transistors are connected by a combined impedance inverter and harmonic termination circuit. The harmonic termination circuit incorporates a predetermined part of the impedance inverter, and provides a harmonic load impedance at a targeted harmonic frequency (e.g., the second harmonic). Control of the amplitude and phase of the harmonic load impedance facilitates shaping of the drain current and voltage waveforms to maximize gain and efficiency, while maintaining a good load modulation at a fundamental frequency. Particularly for Group III nitride semiconductors, such as GaN, both harmonic control and output impedance matching circuits may be eliminated from the outputs of each transistor. The combined impedance inverter and harmonic termination circuit reduces the amplifier circuit footprint, for high integration and low power consumption. |
US11114973B2 |
Motor control device, method for controlling motor control device, control program, and storage medium
In a technique for reducing the number of input terminals of a motor control device, flexibility of designing is improved. A terminal allocating section (23) is provided for setting, in accordance with selection by a user, which of a plurality of input terminals (11) is to be allocated to each of a plurality of function input terminals (21). |
US11114970B2 |
Motor driver, heat pump system and refrigeration and air conditioning equipment using motor driver
A motor driver includes an inverter used for driving a motor and configured to apply an alternating-current voltage to the motor. The inverter drives, during start operation, a switching element of the inverter with a first PWM signal that is PWM modulated with a carrier frequency that is a first integer multiple of a frequency of the alternating-current voltage, and thereafter drives the switching element with a second PWM signal that is PWM modulated with a carrier frequency that is a second integer multiple of the frequency of the alternating-current voltage. The second integer is smaller than the first integer. |
US11114964B2 |
Method for determining a direct-axis inductance and a quadrature-axis inductance of an electric machine, corresponding computer program and device
A method for determining a direct inductance and a quadrature inductance of an electrical machine is included. The method includes controlling the electrical machine so that a stator generates a first magnetic field rotating at a first rotation frequency to rotationally drive a rotor of the electrical machine, and a second magnetic field that varies periodically at a second frequency for measuring a portion of the phase currents flowing through the stator windings of the electrical machine during controlling of the electrical machine. The method further includes determining an amplitude spectrum of a given electrical quantity determined based on a portion of the phase currents, searching in the amplitude spectrum for a peak present at a frequency that is dependent on the second frequency, determining an amplitude of each peak found, and determining the direct inductance and the quadrature inductance from the amplitudes of two peaks found. |
US11114963B2 |
Method and system for enhancing electrical power production by a power generation system by controlling switches to place a rotor-side converter in parallel with a line-side converter
A power generation system (100, 200, 300, 400) is presented. The power generation system includes a prime mover (102), a doubly-fed induction generator (DFIG) (104) having a rotor winding (126) and a stator winding (122), a rotor-side converter (106), a line-side converter (108), and a secondary power source (110, 401) electrically coupled to a DC-link (128). Additionally, the power generation system includes a control sub-system (112, 212, 312) having a controller, and a plurality of switching elements (130, and 132 or 201). The controller is configured to selectively control switching of one or more switching elements (130, and 132 or 201) based on a value of an operating parameter corresponding to at least one of the prime mover, the DFIG, or the secondary power source to connect the rotor-side converter in parallel to the line-side converter to increase an electrical power production by the power generation system. |
US11114960B2 |
Electric drive train and method for feeding an electric drive train
The present invention discloses an electric drive train comprising:—a rotor or propeller shaft (R),—an electric motor assembly (GEMD) configured to drive the rotor or propeller shaft (R), the electric motor assembly (GEMD) comprising a plurality of stacked electric motor elements (Ee1, Ee2, Ee3, Ee4),—a power branch of a first topology feeding a stacked electric motor element (Ee1) of the electric motor assembly (GEMD), said power branch (b1) comprising a RESS and an electric generator (G) supplying a power signal to said power branch (b1),—a power branch (b3) of a second topology dissimilar from the first topology, said power branch feeding another stacked electric motor element of the electric motor assembly (GEMD), said power branch (b3) comprising: # an electric generator (G) supplying a power signal to said power branch, a matrix converter (Mc3) feeding the another stacked electric motor element (Ee3), # or, an electric generator supplying Direct Current to said power branch and a motor controller feeding the second stacked electric motor element (Ee3). |
US11114944B2 |
Fully integrated multi-phase buck converter with coupled air core inductors
A multi-phase buck switching converter having grouped pairs of phases, each phase using two magnetically coupled air-core inductors. For each group, a first driver circuit controlling switching of a first power transistor switching circuit coupled to a first air-core inductor output for driving an output load at the first phase. A second driver circuit controlling switching of a second power transistor switching circuit coupled to a second air-core inductor output for driving said output load at the second phase. The first and second phases are spaced 180° apart. The coupled air-core inductors per group of such orientation, separation distance and mutual inductance polarity relative to each other such that magnetic coupling between the two or more inductors at each phase results in a net increase in effective inductance per unit volume. Each air-core inductor is a metal slab of defined length, height and thickness formed using back-end-of-line semiconductor manufacturing process. |
US11114939B2 |
Power supply system with current compensation
A power supply system includes a current driver circuit, a sensor circuit, a control circuit, a voltage generator circuit and a signal generator circuit. The current driver circuit generates, based on a pulse signal, an output current for driving a load unit that includes series connected loads. The sensor circuit senses the output current to generate a sensed voltage. For each load, the control circuit is operable, based on a control input, to allow or not to allow the output current to flow through the load. The voltage generator circuit generates a reference voltage based on the control input. The signal generator circuit generates the pulse signal based on the reference voltage and the sensed voltage. |
US11114933B2 |
System and method providing over current protection based on duty cycle information for power converter
System and method for protecting a power converter. An example system controller for protecting a power converter includes a signal generator, a comparator, and a modulation and drive component. The signal generator is configured to generate a threshold signal. The comparator is configured to receive the threshold signal and a current sensing signal and generate a comparison signal based on at least information associated with the threshold signal and the current sensing signal, the current sensing signal indicating a magnitude of a primary current flowing through a primary winding of a power converter. The modulation and drive component is coupled to the signal generator. |
US11114932B1 |
Method and apparatus for reduction of ripple current
A ripple current reduction circuit is disclosed. The circuit includes a set of first coupled inductors, each comprising a primary winding configured to receive at a first end a respective phase voltage, and a secondary winding. The circuit also includes a set of second coupled inductors and a set of first capacitors, each first capacitor having an upstream end and a downstream end, wherein the set of first capacitors are coupled together at the downstream end to define a first node. The circuit further includes a set of auxiliary circuits each corresponding to a respective phase voltage, and coupled between the second end of the primary winding of a respective first inductor and the first node, wherein each auxiliary circuit comprises a respective second coupled inductor, a respective first capacitor, and the secondary winding of a respective first coupled inductor coupled in series. |
US11114924B2 |
Squirrel-cage rotor for an asynchronous machine
Various embodiments include a squirrel-cage rotor for an asynchronous machine comprising: a first shaft journal; a second shaft journal; a laminated rotor core; and a filler body cast onto the laminated rotor core connecting the filler body and the laminated rotor core in a rotationally fixed manner. The filler body is connected to the shaft journals in a rotationally fixed manner and a torque applied to the shaft journals is transmitted to the laminated rotor core. |
US11114918B2 |
Differential drive
A differential drive for manipulating an elongated device includes a drive mechanism configured to provide rotational and linear movement to the elongated percutaneous device. The drive mechanism including a platform rotatably supported by a support and a linear drive operatively coupled to the platform. A first motor operatively rotates the platform relative to the support and moving a portion of the linear drive relative to the platform. A second motor operatively rotates the platform relative to the support and moving a portion of the linear drive relative to the platform. |
US11114917B1 |
Electric motor rotor for hybrid module
An electric motor rotor for a hybrid module includes a rotor carrier, a piston carrier, and a tapered snap ring. The rotor carrier includes a first inner circumferential surface with an inner spline for receiving a first plurality of clutch plates, a second inner circumferential surface, radially outside of the first inner circumferential surface, a radial wall connecting the first inner circumferential surface to the second inner circumferential surface, and a groove with a conical wall. The piston carrier includes a radial outer ring installed between the groove and the radial wall. The tapered snap is ring installed in the groove and urges the piston carrier into contact with the radial wall. |
US11114914B2 |
Motor
A motor includes a stator core, a first coil, and a second coil provided adjacent to the first coil in the radial direction. The first coil and the second coil do not coincide in position with each other as seen in the axial direction of the stator core. A first coil end portion of the first coil and a second coil end portion of the second coil respectively include a first facing portion and a second facing portion facing each other in the radial direction. The motor further includes an out-slot insulator interposed at least between the first facing portion and the second facing portion and provided so that at least a part of the first coil end portion and the second coil end portion is exposed. |
US11114910B2 |
Method for manufacturing an armature for an EC motor
An EC motor is provided having a stator, in which an armature is rotatably supported, the armature including an armature shaft, on which an armature core having a plurality of permanent magnets is held, the armature core being electrically insulated against the armature shaft with the aid of a casting compound, and a balance ring being provided on at least one axial end of the armature core, which is accommodated on the armature shaft by a central recess, a gap between the armature shaft and the central recess of the balance ring being filled with casting compound, and the permanent magnets being held in pockets of the armature core by casting compound. |
US11114906B2 |
Stator in an electric motor
A stator in an electric motor and to a method for producing the stator in which a plurality of individual coils are wound on laminated stator poles and are provided with an insulation, wherein the insulation bears connection contacts for bringing the individual coils into contact with a printed circuit board, wherein the connection contacts are press-fitted into the printed circuit board. The present stator provides for a compact size and for simple and economical joining processes. In a preferred embodiment, the electric motor is a dosing pump motor for drug delivery systems. |
US11114903B2 |
Wireless power systems with concurrently active data streams
A wireless power system may have a wireless power transmitting device and a wireless power receiving device. The wireless power transmitting device may include a coil and wireless power transmitting circuitry coupled to the coil. The wireless power receiving device may include a coil that is configured to receive wireless power signals from the wireless power transmitting device and rectifier circuitry that is configured to convert the wireless power signals to direct current power. The wireless power transmitting device and the wireless power receiving device may exchange data packets using in-band communication in order to transfer various types of data. For increased flexibility of data transmission, multiple data streams may be used concurrently when conveying data between the power receiving device and power transmitting device. Each data packet may include a stream header that identifies a corresponding data stream. Different types of data may be transmitted with each data stream. |
US11114901B2 |
Cradle device having wireless charging function
A cradle device for providing a wireless charging function according to the present invention comprises: a cradle part provided for being mobile terminal-mountable; a wireless charging module which is disposed inside the cradle part and includes a transmitting coil, a switching part for switching a connecting passage between an external power supply and the transmitting coil, and a control part for controlling the switching part; and an NFC tag coupled to the wireless charging module, wherein, when receiving a tag recognition signal from the NFC tag, the control part performs a turn-on control of the switching part. According to the present invention, the cradle device can simultaneously provide a mobile terminal with a wireless charging function and a user via the mobile terminal with various contents provided through NFC tag information. |
US11114898B2 |
Device and method for supporting improved communication speed in wireless power transmission system
The present invention relates to a device and method for supporting improved communication speed in a wireless power transmission system. The present specification provides a method comprising the steps of: generating wireless power at an operating frequency; configuring n, as the number of cycles per bit, which is used for transmitting one bit at the operating frequency; aligning each bit of the data with the n cycles; causing the operating frequency to transition between differential biphases according to the value of said each bit during the n cycles; and transmitting the wireless power to a wireless power receiving device on the basis of magnetic coupling at the transitioning operating frequency. |
US11114896B2 |
Wireless power system modules
A wireless power system for powering a television includes a source resonator, configured to generate an oscillating magnetic field, and at least one television component attached to at least one device resonator, wherein the at least one device resonator is configured to wirelessly receive power from the source resonator via the oscillating magnetic field when the distance between the source resonator and the at least one device resonator is more than 5 cm, and wherein at least one television component draws at least 10 Watts of power. |
US11114893B2 |
Smart outlet system with fast frequency tracking for power system frequency control using distributed appliances
Systems and methods are disclosed to control the power grid frequency by capturing the frequency change using an extended Kalman filter method with the distributed smart outlet devices at the low-voltage distribution level; and locally control the relay that provides power to the appliance by comparing the captured frequency with the threshold sent from the cloud control center. |
US11114886B2 |
Powering or charging small-volume or small-surface receivers or devices
Provided is a wireless power receiver for powering or charging an electric or electronic device or battery or a mobile electronic system such as a vehicle or robot. The receiver may consist of or consist essentially of a receiver coil of a blade or thin solenoid shape/geometry that includes a larger surface in a first dimension and a smaller surface in a second and/or third dimension, which receives power inductively from a wireless charger. The charger may be a source of an alternating magnetic field to charge or power one or multiple wireless power receivers or devices having small surface areas or volumes. The receiver coil has the smaller surface facing a charging surface of the charger. The wireless charger may include a charger coil designed to provide a substantially uniform magnetic field over an area larger than 50% of the charger surface. |
US11114885B2 |
Transmitter and receiver structures for near-field wireless power charging
A wireless charging system comprises (i) a transmitter structure comprising a first metallic core disposed in an opening of the transmitter structure and (ii) a receiver structure comprising a second metallic core disposed in an opening of the receiver structure. The transmitter structure is configured to carry one or more radio frequency (RF) signals to the first metallic core when the receiver structure is within a threshold distance from the transmitter structure. In addition, the receiver structure is configured to be excited by the one or more RF signals from the transmitter structure, whereby the one or more RF signals are transferred from the first metallic core to the second metallic core when the transmitter structure and the receiver structure are within the threshold distance from each other. |
US11114884B2 |
Sensing coil system
A sensor system can include a sensor coil and a sensor coupled to the sensor coil. The sensor coil can include coil portions that generate signals based on magnetic coupling induced in the coil portions by a receiving coil device (e.g., a NFC tag) and magnetic distortion induced in the coil portions by magnetic coupling of a power transmitting unit (PTU). The sensor can reduce the magnetic distortion induced in the first and the second coil portions by the PTU, detect the receiving coil device based the first and the second signals, and control the PTU based on the detected receiving coil device. |
US11114877B2 |
Battery device and vehicle
A device according to an embodiment includes at least one assembled battery; first switches that switch an electrical connection state of main circuits connected between the assembled battery and the load; second switches that switch an electrical connection state of second main circuits branched from the main circuits and are connected between the assembled battery and the load; a BMU that controls operations of the first switches based on an operation command supplied from the load; and a power supply circuit that supplies power to the BMU and second switches when a start command supplied from the outside is ON. |
US11114876B2 |
Battery safety mechanism for battery fault conditions
A battery charger circuit associated with a portable electronic device is disclosed. The battery charger circuit comprises a charging circuit configured to charge a battery and a discharging circuit configured to discharge the battery. The battery charger circuit further comprises a battery fault detection circuit configured to detect a battery fault condition, based on monitoring one or more battery parameters. In some aspects, the battery charger circuit further comprises a battery charge control circuit configured to selectively activate the discharging circuit, in order to discharge the battery, and deactivate the charging circuit, in order to suspend charging the battery during the discharge of the battery, when the battery fault condition is detected. |
US11114873B2 |
Contingency battery charging system
The system and method described herein provide a contingency battery charging system that can be deployed on demand to a location in need of an alternate power system to power industrial vehicles (such as forklifts or other industrial vehicles used in a transportation and distribution operation). The contingency battery charging system can be transported from a centrally-located standby location to support a fleet of industrial vehicles at a deployment location. The contingency battery charging system may include a truck trailer that is wired to facilitate quick deployment of one or more transportable battery charging stations. Each transportable battery charging station may include at least one battery charger capable of concurrently charging multiple lead-acid batteries for use in industrial vehicles. |
US11114868B2 |
Supplemental capacitor based battery charging system
A system and method are presented relating to a hybrid portable charging device having an internal battery and an internal supercapacitor. Input logic is implemented as part of the management system for the charging device. In one embodiment, input power is analyzed to determine whether the input power level is low, medium, or high, with input power being diverted to the battery or supercapacitor depending on the determined input power level. At high input power, the supercapacitor is charged first. At low input power, the battery is charged first. At medium power, the input power is split between the supercapacitor and the battery. In another embodiment, output can be directed using output logic so that power flows first from the supercapacitor so that the supercapacitor is fully discharged before battery power is output to the load on the charging device. |
US11114862B2 |
Localized power point optimizer for solar cell installations
In one embodiment, a solar cell installation includes several groups of solar cells. Each group of solar cells has a local power point optimizer configured to control power generation of the group. The local power point optimizer may be configured to determine an optimum operating condition for a corresponding group of solar cells. The local power point optimizer may adjust the operating condition of the group to the optimum operating condition by modulating a transistor, such as by pulse width modulation, to electrically connect and disconnect the group from the installation. The local power point optimizer may be used in conjunction with a global maximum power point tracking module. |
US11114861B2 |
Power optimization for battery powered street lighting system
A network is disclosed of a plurality of outdoor lighting units. Each lighting unit comprises a light fixture, for example a LED lamp; a power generating means, such as a solar panel or a wind turbine; and a storage means for electric energy, for example a battery.The energy storage means of neighboring lighting units are connected by a conductor. An imbalance in power generation or power consumption results in a balancing current through the conductor. The balancing current equalizes the charge levels of the energy storage means in the system.In an embodiment the conductor comprises a single core wire and ground. |
US11114856B2 |
Method and apparatus for protecting electrical components from a transient electromagnetic disturbance
The present disclosure provides a method of protecting a component using a deliberately created impedance mismatch between conductive impedance transition elements and an electric power line. The method comprises coupling a plurality of conductive impedance transition elements having a greater diameter than the power line at a position between an extended length of the power line and the component. The difference between the diameters of the conductive transition elements and the power line causes an intentional impedance mismatch between the two or more impedance transition elements with adjacent portions of the power line, and the mismatch causes high-frequency components of the transient electromagnetic signals induced on the power line by the transient electrical disturbance to be reflected by at least one of two or more impedance transition elements away from the protected component. |
US11114855B2 |
Load management in hybrid electrical systems
Various implementations described herein are directed to systems and methods for managing a plurality of loads connected to a plurality of power sources using a switching apparatus. Apparatuses described herein may include multi-throw switches designed for fast and efficient switching of loads. Methods described herein may include selecting one or more loads from a group of loads to connect to one or more alternative power sources, and selecting one or more loads to connect to a main (e.g. utility) electrical grid. |
US11114854B1 |
Dual current controller of inverter interfaced renewable energy sources for accurate phase selection method and grid codes compliance
A method for correct operation of the current-angle-based phase-selection method (PSM) is based on a proper dual current controller (DCC) for inverter interfaced sources during unbalanced fault conditions. The fault type is determined in the inverter using voltage-angle-based PSM. Accordingly, fault-type zones' bisectors of the current-angle-based are determined. Consequently, an initial negative-sequence current angle reference is determined to force the relative angle between the negative- and zero-sequence currents in the center of its correct fault-type zone. The initial positive-sequence current angle is determined according to reactive current requirements by grid codes. These initial angles are updated for accurate operation of the PSM and appropriate reactive current injection. Negative- and positive-sequence current references are determined in the stationary frame to comply with the reference angles and inverter's thermal limits. These references are regulated by a proportional-resonance controller. |
US11114853B2 |
Grid-tied variable frequency facility
A micro grid system comprises a secondary energy source and a power controller. The secondary energy source is associated with the micro grid, and the secondary energy source is configured to generate first DC power signal. The power controller is in communication with the secondary energy source and an electric grid, and configured to receive first AC power signal from the electric grid and the first DC power signal from the secondary energy source and to output a second AC power signal to loads in communication with the power controller. The power controller comprises a frequency converter configured to change frequency of the second AC power signal, a processor, and a memory configured to store instructions that, when executed, cause the processor to control the frequency converter to change the frequency of the second AC power signal. |
US11114852B2 |
Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
Power distribution modules are configured to distribute power to a power-consuming component(s), such as a remote antenna unit(s) (RAU(s)). By “hot” connection and/or disconnection, the power distribution modules can be connected and/or disconnected from a power unit and/or a power-consuming component(s) while power is being provided to the power distribution modules. Power is not required to be disabled in the power unit before connection and/or disconnection of power distribution modules. The power distribution modules may be configured to protect against or reduce electrical arcing or electrical contact erosion that may otherwise result from “hot” connection and/or connection of the power distribution modules. |
US11114847B1 |
High speed data transient protection
A high bandwidth data interface in an aircraft includes a pulse tolerant, non-inductive resistor for reducing surge current due to lightning transients, and a very low capacitance transient voltage suppressor to suppress the lightning transient voltages. A cable equalizer/redriver then recovers the original high bandwidth input signal. The high bandwidth interface is thereby able to survive DO-160 section 22 level 3 and 4 lightning transients. |
US11114843B2 |
Method and system for protection in a mixed line
The invention provides a method and system for protection in response to a fault in a mixed line. The mixed line comprises two or more sections, with a first substation at a first end and a second substation at a second end. Every two consecutive sections of the mixed line are separated at a junction. The method is performed by an IED, and comprises obtaining one or more measurements of current at the first end, and one or more measurements of current at the second end. The method also comprises identifying a section of the two or more sections having the fault, by estimating a value of current for each junction and comparing the estimated value with the one or more measurements of current. In addition, the method comprises controlling a switching device based on the section identified with the fault. |
US11114841B2 |
DC PLC PV rapid shutdown device circuit based on SunSpec communication protocol
A PV module, which includes PV+ and PV− output ports. An output capacitor Cout is connected to PV+ or PV− port through an electric switch. One end of a power inductor L1 is connected to OUT−, and the other end is grounded. The power inductor L1 is connected with a resonant capacitor C1 and an impedance resistor R2 in parallel. One end of a blocking capacitor C2 is used as the PLC+ port, one end of a blocking capacitor C3 is used as the PLC− port, and signal sources are connected to OUT+ and OUT− in parallel and send “Keep Alive” signals based on SunSpec communication protocol. PLC+ port and PLC− port are connected to a signal coupling input port of a control IC, and the control IC controls the electric switch. When the signal is decoded and extracted, the electric switch will remain on, otherwise it will be off. |
US11114839B2 |
System and method for mitigating overvoltage on a DC link of a power converter
A system and method for mitigating overvoltage on a DC link of a power converter of an electrical power system connected to a power grid includes receiving a voltage feedback signal from the DC link for a predetermined time period. The method also includes determining a rate of change of the voltage feedback signal during the predetermined time period. Further, the method includes predicting a future voltage value on the DC link as a function of the voltage feedback signal and the rate of change of the voltage feedback signal. Moreover, the method includes controlling the electrical power system based on the future voltage value. |
US11114836B2 |
Semiconductor device, intelligent power module and power conversion apparatus
The present invention relates to a semiconductor device and it is an object of the present invention to provide a semiconductor device that makes it easy to change a specification on driving of a power semiconductor element or control of a protection operation thereof. The semiconductor device includes a power semiconductor element, a main electrode terminal of the power semiconductor element, a sensor section that emits a signal corresponding to a physical state of the power semiconductor element, a sensor signal terminal connected to the sensor section, a drive terminal that supplies power to drive the power semiconductor element and a case that accommodates the power semiconductor element, the main electrode terminal, the sensor section, the sensor signal terminal and the drive terminal, and the sensor signal terminal and the drive terminal are provided so as to be connectable from outside the case. |
US11114827B2 |
Deep fiber push connector that allows for rotation during tightening without damaging cable
A connector includes a first connector body and a second connector body configured to be coupled to one another. The first connector body has a through hole and a cavity. The through hole and the cavity are configured to receive a shield of a hardline coaxial cable. A first washer is disposed in the first connector body and is configured to permit the shield to be pushed in a first direction through the through hole and into the cavity while resisting movement of the shield in a second direction opposite to the first direction. The second connector body has a through hole and a cavity. The through hole and the cavity of the second connector body are configured to receive a tubular member. A second washer is disposed in the second connector body and is configured to permit the tubular member to be pushed in the second direction through the through hole of the second connector body and into the cavity of the second connector body while resisting movement of the tubular member in the first direction. The second connector body is rotatable relative to the second washer and the tubular member until the second connector body and the first connector body are coupled together to a predetermined degree of tightness. |
US11114819B2 |
Laser carrier-on-chip device
A semiconductor laser chip-on-carrier (CoC) device comprising: a semiconductor laser component comprising an electric laser terminal; a driver circuit for producing on an electric driver terminal an alternating current electric driving signal; and an electric signal conductor electrically connecting the driver terminal to the laser terminal, wherein the electric signal conductor comprises: a first printed trace which is not arranged on the semiconductor laser component and which comprises a first trace elongated section and a first trace downstream terminal section; and a first wire bond, connecting the first trace downstream terminal section to the laser terminal, and wherein the first trace elongated section is adapted to the semiconductor laser component such that the first trace elongated section and an internal capacitance of the semiconductor is laser component together correspond to an impedance which is at the most 20% from an output impedance of an output terminal of the driver circuit. |
US11114814B2 |
Relative phase measurement for coherent combining of laser beams
A phase control system for controlling the relative phase (φ) of two laser beams of a laser system, which are to be coherently combined, is disclosed that enables providing a phase-controlled sum laser beam. An optical system of the phase control system includes a beam input for receiving a measuring portion of two collinear coherent laser beams, which are superimposed to form a sum laser beam, and provides measuring beams or measuring beam regions, which are used with associated photodetectors for outputting photodetector signals. For determining the relative phase from the photodetector signals, the phase control system has an evaluation device and a delay device for being inserted into the beam path of at least one of the two laser beams. The optical system is configured such that the measuring beams or measuring beam regions are related to different phase offsets. |
US11114806B2 |
Coaxial connector device having main connector to which cable is connected and board connector to which main connector is connected
There is provided a coaxial connector device that enables a reduction in deterioration in signal quality and transmission characteristics at high frequencies. A coaxial connector device 1 includes a main connector 10 and a board connector 20. A main connector body 11 has a first fitting part R1 for a coaxial cable connector at one end and a second fitting part R2 at the other end. Inside the main connector body 11, a center contact 13 and a card edge substrate 17 electrically connected to the center contact 13 are included. In a board connector body 21 a slot 23 is formed. When the second fitting part R2 of the main connector 10 is fitted to the board connector 20, the end portion of the card edge substrate 17 is coupled to the slot 23 of the board connector body 21, a plurality of substrate contacts included in the card edge substrate 17 electrically contacts a plurality of inner contacts 25 of the board connector body 21, and the second fitting part R2 of the main connector body 11 electrically contacts an outer conductor contact 27. |
US11114805B2 |
Marine shore power component
A shore power cord is provided. The shore power cord includes a connector plug rated at a first amperage, wherein the connector plug is configured to connect to an electrical power source, and a connector receptacle rated at a second amperage, wherein the connector receptacle is configured to connect to an electrical power receiver, and wherein the connector plug and the connector receptacle are electrically coupled via at least one electrically conductive line. The shore power cord further includes an overcurrent protection apparatus, wherein the overcurrent protection apparatus is positioned along the at least one line, between the connector plug and the connector receptacle, and wherein the overcurrent protection apparatus includes at least one circuit breaker, the at least one circuit breaker having an amperage, the amperage of the at least one circuit breaker being a lower of the first amperage and the second amperage. |
US11114804B2 |
Shielded-cable pass-through assembly with boundry contact
A shielded-cable pass-through assembly configured to provide electrical contact between a shielding-layer of a shielded-cable and a boundary through which the shielded-cable passes includes a metallic-sleeve and a contact-terminal. The metallic-sleeve defines a shield-surface used to make electrical contact with a shielding-layer of a shielded-cable. The contact-terminal defines a contact-feature used to make electrical contact with the boundary through which the shielded-cable passes. The contact-terminal also defines a plurality of inner-contact-fingers extending from the contact-terminal in a longitudinal-direction parallel to a longitudinal-axis of the shielded-cable. The plurality of inner-contact-fingers is urged in a radial-direction to make electrical contact with a contact-surface of the metallic-sleeve after the assembly is assembled. |
US11114801B2 |
Connector
A connector (10) includes a housing (20) and a connection detecting member (60) that is displaceable between a connection assurance position and a connection assurance release position. The connection detecting member (60) is mountable on the housing (20) and pushed from a pre-assembling position to the connection assurance release position. First arms (74) are on sides of the connection detecting member (60). Two first guide grooves (44) and two second guide grooves (48) are in the side walls (42) of the housing (20) and extend along a sliding direction of the connection detecting member. First claws (76) of the first arms (74) are in the first guide grooves (44) at the connection assurance position and the connection assurance release position, and are in the second guide grooves (48) at the pre-assembling position. The first arms (74) deflect by pushing the connection detecting member (60) to the connection assurance release position. |
US11114800B2 |
Release with tab and connector
The present disclosure disclosed a release with tab and a connector. The release with tab is disposed on a connector head. The release with tab comprises an elastic clip and a tab assembly. The elastic clip comprises a first chuck part, a second chuck part and an elastic part disposed on the connector head. The first chuck part is pivotally connected to the second chuck part. The elastic part is disposed between the first chuck part and the second chuck part. One end of the tab assembly is disposed on the elastic clip. The tab assembly moves in a direction away from the elastic clip to compress the elastic part and the tab assembly drives one end of the first chuck part to approach one end of the second chuck part. When the tab assembly is no longer subjected to external force, the tab assembly restores to the initial position. |
US11114799B2 |
Housing for a plug comprising a display unit
A housing includes a display unit indicating a complete plugging of a counter-plug into the housing and a first stop. The display unit is movable along a longitudinal axis between an initial position and an assembly position. The display unit includes a locking element, a guide element, and a supporting element. The locking element has a resilient bridge with a first end fixed to the guide element. The first stop prevents the display unit from moving in the initial position by abutment with a free end of the bridge. The free end is bent in a bending plane in a direction of the guide element when moving toward the first stop. The supporting element supports the bridge at the guide element when the bridge deforms in the direction of the guide element and prevents a deformation of the bridge away from the abutment on the first stop. |
US11114793B2 |
Electrical installation for connecting male terminals to female terminals
The installation comprises a connector with a body and input openings connected to a housing used for receiving the male terminals. The installation also comprises output openings through which the female terminal wiring is passed, separation walls, side tabs and a first cover hinged to the connector and characterised in that it incorporates a second hinged cover on the aforementioned connector that is facing the first cover, which blocks the side tabs when closed and defines a base, and female terminals made of an electrical conductive material and housed in the connector housing. The female terminals expand when the male terminals are inserted inside them and the area of the housing is greater than the area occupied by the female terminals prior to expanding. |
US11114790B2 |
Reversible dual-position electric connector
A reversible dual-position electrical connector includes: an insulation seat provided with a base seat and a tongue; two rows of terminals, wherein the two rows of terminals are embedded into and plastic injection molded with the insulation seat, the terminal is integrally provided with, from front to rear, a connection portion, a contact, an extension and a pin, the contact is in flat surface contact with the tongue, elastically non-movable and exposed from two connection surfaces, and a bent segment is formed between the connection portion and the contact, so that the connection portion is lower than the two connection surfaces and embedded into the tongue; an inner insulating structure embedded and plastic injection molded with the insulation seat, wherein the contacts and the extensions of the two rows of terminals are in flat surface contact with and rest against the inner insulating structure. |
US11114785B2 |
Connector
The present disclosure provides a connector, comprising a connector body, a plurality of signal terminals, a plurality of wiring terminals, and a circuit board. The connector body comprises an electrical connection slot, a circuit board slot, and a wiring slot. The plurality of signal terminals and the plurality of wiring terminals are disposed on the sidewall of the electrical connection slot. The plurality of signal terminals is corresponded to the plurality of wiring terminals, respectively. The circuit board comprises a circuit board body and a plurality of conductive pads. The circuit board is inserted into the circuit board slot. The plurality of conductive pads is in contact with the corresponding signal terminal. |
US11114784B2 |
Electrical connector structure
A connector structure configured to electrically connect an electrical component to a circuit board is disclosed. The connector structure may include a female connector secured to the circuit board; and a male terminal extending from the electrical component and inserted into the female connector. The female connector may include a connector housing secured to the circuit board; a connector-side terminal located within the connector housing and including a female contact configured to receive the male terminal; and a contact sleeve located within the connector housing and secured to the female contact. The female contact may be displaceable within the connector housing. The male terminal may be deformed so as to press the contact sleeve against a frictional inner surface of the connector housing by a restoring force of the male terminal. |
US11114783B1 |
System and method for incorporating an inline inductor into a connector
A multidrop cable may include multiple nodes electrically coupled thereon. The nodes may each include a respective PCB layer and a respective connector. The connector may provide connection between the transmission lines of the multidrop cable and the PCB layer. The PCB layer may include circuitry to reduce an induced noise of the multidrop cable by adding twist to the respective signals of the transmission lines. The PCB layer may also preserve the characteristic impedance of the multidrop cable by providing inductance in series between the respective signals of the transmission lines. |
US11114779B2 |
Terminal base and electrical connection structure of devices
A terminal base includes a plurality of terminals configured to electrically connect a first device and a second device to each other, each of the plurality of terminals being electrically conductive and a housing configured to hold the plurality of terminals, the housing being made of an electrically insulating resin in which each of the plurality of terminals includes a first connection portion exposed to an outside of the housing so as to be connected to the first device, a second connection portion exposed to the outside of the housing so as to be connected to the second device, and an insert portion insert-molded in the housing and in which he insert portion has a solid cylindrical shape or a hollow cylindrical shape. |
US11114775B2 |
Contacting device for contacting a shielding conductor of an electrical line with a grounding section
A contacting device for contacting a shielding conductor of an electrical line with a grounding portion includes: a housing which encloses a receptacle space into which the electrical line including the shielding conductor is insertable, the housing being attachable to the grounding portion such that the grounding portion extends in the receptacle space; and a spring element which is arranged on the housing so as to be pivotable about a pivot axis from an open position into a clamping position, in order, in the clamping position, to contact the shielding conductor of the electrical line inserted into the receptacle space with the grounding portion to which the housing is attached. |
US11114770B2 |
Antenna structure and wireless communication device using the same
An antenna structure suitable for 5G use includes first and second antenna units. Each second antenna unit is positioned between adjacent first antenna units. Each first antenna unit is positioned between adjacent second antenna units. Each first antenna unit and each second antenna unit are restricted to emit a radio beam in a single polarization. The first antenna unit emits radio waves in a first polarization, the second antenna unit emits waves in a second polarization. The first polarization direction and the second polarization direction are perpendicular to each other. |
US11114762B2 |
Method of outputting a signal using an antenna disposed adjacent to a conductive member of a connector and an electronic device using the same
An electronic device is provided and includes a first housing forming a portion of an outside surface of the electronic device, a second housing coupled with the first housing and forming another portion of the outside surface of the electronic device, an antenna formed in at least a portion of the second housing, a connector including one or more connection pins for connection with an external device, at least a portion of an outside surface of the connector being formed of a conductive member, an adjusting circuit electrically connected with, at least, the portion of the outside surface of the connector formed of the conductive member, wherein an impedance of the adjusting circuit is variable. The electronic device may further include a processor configured to vary the impedance of the adjusting circuit based on a signal to be output through the antenna, and output the signal through the antenna, with the impedance of the adjusting circuit being varied. |
US11114761B2 |
Antenna with partially saturated dispersive ferromagnetic substrate
The invention concerns an antenna, comprising at least two non-ferrous metal plates, at least one first plate forming a radiating portion and a second plate forming a mass plane, at least one substrate, arranged between the mass plane and the radiating portion, and an excitor of length at least equal to the thickness of the substrate, extending between the mass plane and the radiating portion and connected to the radiating portion, and adapted to supply the antenna, characterised in that the substrate is a dispersive ferromagnetic substrate, called dispersive ferrite presenting, as magnetic features, a high relative magnetic permeability comprised between 10 and 10,000 and a high magnetic loss tangent greater than 0.1, said antenna comprising means for gradually and locally reducing magnetic features of the dispersive ferrite. |
US11114757B2 |
Embedded antenna array metrology systems and methods
An antenna array testing circuit can include a circuitry including a plurality of memory registers, a testing sequence generation logic, and a testing control logic. The memory registers can store, for each antenna element of a plurality of antenna elements of the phased antenna array, a corresponding antenna element ID. The memory registers can store a testing step ID indicative of a testing step of a sequence of testing steps. The testing sequence generation logic can determine, for each antenna element of the phased antenna array, using the corresponding antenna element ID and the testing step ID, a corresponding testing signal indicative of a testing state of the antenna element during the testing step. The testing control logic can cause each antenna element the phased antenna array to be configured according to the corresponding testing signal during the testing step. |
US11114754B2 |
Radar antenna device and method for shielding a radar antenna device
A radar antenna device (16) having an antenna arrangement (19) that is accommodated in a housing (17) and is provided with a protective plate (20) for being separated with respect to a furnace atmosphere formed within a furnace chamber, said protective plate (20) being disposed on the housing, a radar-transparent limp material layer (21) comprising pores being disposed as a shield at a distance upstream of the protective plate (20) in such a manner that a space which is separated by the material layer (21) with respect to the furnace chamber is formed, a fluid line opening into said space for applying a fluid flow to the material layer (21). |
US11114753B2 |
Antenna windows for base covers
In one example, a base cover for a lower housing of a convertible device is described, which may include a metal body and an antenna window attached to the metal body. The antenna window may include a non-metallic structure and a metallic structure disposed within the non-metallic structure such that the metallic structure corresponds to an antenna slot defined in an upper housing of the convertible device. |
US11114752B2 |
Three-dimensional antenna apparatus having at least one additional radiator
An antenna apparatus is provided, including: a substrate extending in a substrate plane, wherein the substrate includes a first side and an opposite second side, wherein a first antenna is arranged on the first side of the substrate, and a three-dimensional shape structure arranged on the first side and extending out of the substrate plane and across the first antenna so that the first antenna is arranged between the substrate and the three-dimensional shape structure. In addition, a second antenna is arranged on the three-dimensional shape structure. |
US11114748B2 |
Flexible printed circuit structures for electronic device antennas
An electronic device may have peripheral conductive housing structures divided into first and second segments. First and second antennas may be formed from the segments and may be fed using a flexible printed circuit structure. The structure may include a first substrate attached to the first segment, a second substrate soldered to the first substrate and attached to the second segment, and a third substrate soldered to the second substrate. Third and fourth antennas may be formed on the first substrate whereas fifth and sixth antennas are be formed on the second substrate. The second substrate may be folded and may have a lateral area oriented perpendicular to the third, fourth, fifth, and sixth antennas. Modularly forming the structure in this way may maximize the flexibility with which the structure can accommodate other components, thereby minimizing the space consumption associated with mounting and feeding the antennas without sacrificing wireless performance. |
US11114744B2 |
Antenna having single non-conductive portion and electronic device including the same
An electronic device is provided. The electronic device includes a foldable housing including, a hinge structure, a first housing structure including a first surface, a second surface, and a first side member, wherein the first side member encloses at least a portion of a space between the first surface and the second surface and includes a first conductive portion, a first non-conductive portion, and a second conductive portion, and a second housing structure including a third surface, a fourth surface, and a second side member, a printed circuit board, at least one wireless communication circuit including a first electrical path and a second electrical path, a first variable element including a first terminal, a second terminal, and a third terminal, and a second variable element including a fourth terminal, a fifth terminal, and a sixth terminal. |
US11114742B2 |
Window antennas
In one aspect, an apparatus is described that includes a transparent pane having a first surface and a second surface. An electrochromic device is arranged over the second surface that includes a first conductive layer adjacent the second surface, a second conductive layer, and an electrochromic layer between the first and the second conductive layers. The apparatus further includes at least one conductive antenna structure arranged over the second surface. |
US11114741B2 |
Antenna module and electronic device comprising same
An electronic device is provided. The electronic device including a housing comprising a front plate which faces a first direction, a back plate which faces a second direction opposite from the first direction, and a lateral member which surrounds a space between the front plate and the back plate and has at least one part formed from a metal material, a display seen through a first part of the front plate, an antenna module positioned inside the space, and a wireless communication circuit. The antenna module includes a first surface facing a third direction forming an acute angle with the second direction, a second surface facing a fourth direction opposite from the third direction, at least one first conductive element disposed on the first surface or inside the antenna module so as to face the third direction, and at least one second conductive element which is adjacent to the lateral member between the first surface and the second surface and extends in a fifth direction different from the third direction and the fourth direction and facing between the lateral surface and the first part of the front plate. |
US11114739B2 |
Mitigating wind damage to wind exposed devices
Disclosed are devices, system, and method for mitigating wind damage to satellite antennas and for reducing the amount of ballast required to secure the satellite antennas. The device, system, and method include a mast on which an antenna may be affixed, a pivot gear capable of rotating between two or more positions, and a tension force or retention force on the pivot gear. A load force applied to the antenna creates a risk of damage proportional to the load force. The antenna system is capable of transitioning from a first orientation into a second orientation when the load force exceeds tension force or retention force, or the sum thereof, such that the antenna system experiences a reduced load force and therefore a reduced risk of damage. The device, system, and method also reduce the amount of ballast required to secure a non-penetrating antenna installation against tipping or sliding. |
US11114726B2 |
Battery box
A battery box including a lower box body, where the lower box body includes a first plate and a second plate. The first plate includes: a bottom wall; a peripheral wall connected to a periphery of the bottom wall and extending upward; and the bottom wall and the peripheral wall form an accommodating space opening upwards; the second plate is fixed to the bottom wall from a bottom and engages with the bottom wall to form a flow passage. The second plate is provided with: a second protrusion protruding to the first plate from a side facing away from the first plate and extending along a transverse direction; and an opening running through the second protrusion in a height direction and extending along the transverse direction, the second protrusion of the second plate being connected to the bottom wall of the first plate in a sealed manner. |
US11114725B2 |
Capacitance reduction in battery systems
A battery system includes a battery cell, a thermally insulating layer, and a thermally conducting layer which includes a fin. The fin pushes against an interior surface of a case which surrounds the battery cell, the thermally insulating layer, and the thermally conducting layer. The thermally conducting layer includes a discontinuity where the discontinuity is configured to reduce a capacitance associated with the thermally conducting layer compared to when the thermally conducting layer does not include the discontinuity. |
US11114724B2 |
Battery module, and battery pack and energy storage system including the same
A battery module having a plurality of battery cells and a module case configured to accommodate the plurality of battery cells is provided. The module case includes first and second cases coupled to each other by hooking and having shapes corresponding to each other. |
US11114720B2 |
Cylindrical battery housing case
A cylindrical battery housing case has a plurality of cylindrical battery housing chambers each housing one cylindrical battery, and a plurality of elongated resilient members each having a protrusion for holding a cylindrical portion of the cylindrical battery is formed in a cantilevered manner inside notches in a side wall of each of the cylindrical battery housing chambers. |
US11114718B2 |
Energy storage apparatus and method of manufacturing energy storage apparatus
An energy storage apparatus which includes an energy storage device, an outer case, and an adhesive material which is injected between at least one surface out of a first surface and a second surface which are two surfaces of the energy storage device disposed adjacently to each other and an inner surface of the outer case thus making the at least one surface and the inner surface of the outer case adhere to each other by surface adhesion. |
US11114709B2 |
Battery module
A battery module includes a battery stack having a plurality of stacked batteries, a first heat radiator facing first surface of battery stack, a first heat transfer component that is in contact with the first heat radiator and first surface to transfer heat from the battery stack to the first heat radiator, and a second heat radiator facing a second surface of the battery stack. The second surface extends in a direction intersecting with the first surface. The second heat radiator is thermally connected to the second surface directly or through the second heat transfer component. A positional relationship between the first heat transfer component and the battery stack is formed such that the center of the first heat transfer component (84) is more away from the second heat radiator than the center of the battery stack is in a direction along the first surface. |
US11114704B2 |
Depassivation of completion tool batteries
Methods and systems for depassivating completion tool batteries are provided. In one embodiment, the methods comprise: providing a completion tool disposed within a wellbore penetrating at least a portion of a subterranean formation, wherein the completion tool is electrically coupled to an at least partially passivated lithium battery; depassivating the at least partially passivated lithium battery in the wellbore by discharging the lithium battery; and powering the completion tool with the at least partially depassivated lithium battery. |
US11114700B2 |
Pouch-shaped secondary battery having structure in which bidirectional cell is changed to unidirectional cell
Disclosed herein is a pouch-shaped secondary battery configured to have a structure in which a unit cell, including an electrode assembly constituted by a positive electrode and a negative electrode, stacked in the state in which a separator is interposed between the positive electrode and the negative electrode, electrode tabs, and electrode leads, or a cell assembly, including two or more stacked unit cells, is mounted in a pouch-shaped case, wherein the pouch-shaped secondary battery includes a unidirectional structure in which electrode terminals oriented in two directions are changed to electrode terminals oriented in one direction. In the case in which a battery pack is constituted using a bidirectional cell, a large space is required, whereby the energy density of the battery pack is reduced. The disclosed pouch-shaped secondary battery has the effect of solving the above problem. |
US11114696B2 |
Electrolyte system for lithium-chalcogen batteries
An electrolyte system for an electrochemical cell having an electrode comprising a chalcogen-containing electroactive material is provided, along with methods of making the electrolyte system. The electrolyte system includes one or more lithium salts dissolved in one or more solvents. The salts have a concentration in the electrolyte of greater than or equal to about 2M to less than or equal to about 5M. The electrochemical cell including the electrolyte system has a minimum potential greater than or equal to about 0.8 V to less than or equal to about 1.8 V and a maximum charge potential of greater than or equal to about 2.5 V to less than or equal to about 3 V. |
US11114688B2 |
Lithium-ion mixed conductor membrane improves the performance of lithium-sulfur battery and other energy storage devices
A lithium ion mixed conduction membrane includes an optional polymeric binder and a partially lithiated ion conductive material having lithium ion conductivity and electrical conductivity dispersed within the polymeric binder that is capable of improving the performance and cycle life of lithium-sulfur rechargeable batteries and other batteries exhibiting the polysulfide shuttle. One or more lithium ion conduction membranes are placed between the positive and negative electrodes, or adjacent to the negative electrode of a battery and in particular, of a lithium sulfur battery. |
US11114687B2 |
Battery
A battery includes a first electrode layer; and a second electrode layer disposed on the first electrode layer and serving as a counter electrode for the first electrode layer, wherein the first electrode layer includes a first current collector, a first active material layer, and a first solid electrolyte layer, the first active material layer is disposed to be in contact with the first current collector and to occupy a smaller area than the first current collector, the first solid electrolyte layer is disposed to be in contact with the first current collector and the first active material layer and to occupy the same area as the first current collector, the first active material layer faces the second electrode layer with the first solid electrolyte layer therebetween, and the first electrode layer includes a peripheral portion including a first rounded portion. |
US11114684B2 |
Fuel cell membrane-electrode assembly
A membrane-electrode assembly for a fuel cell is provided. The membrane-electrode assembly includes a cathode electrode and an anode electrode which are positioned oppositely to each other; and a polymer electrolyte membrane positioned between the cathode electrode and the anode electrode. The cathode electrode and the anode electrode each includes an electrode substrate; a micropore layer which is positioned on the electrode substrate; and a first catalyst layer positioned on the micropore layer, at least one of a second catalyst layer is positioned between the first catalyst layer and the polymer electrolyte membrane, and the second catalyst layer includes a reaction inducing material which is a metal or alloy. |
US11114682B2 |
Fuel cell system and method for controlling the same
A method for controlling a fuel cell system is provided. The method includes upon start of a fuel cell stack, obtaining a flow rate of air supplied into a cathode after an air regulator for regulating the air supplied into the cathode is opened. A sealing state of the fuel cell stack is then determined based on the obtained flow rate of the air. |
US11114681B2 |
Fuel cell system and method of controlling the same
The fuel cell system performs prevention control for preventing an anode gas detector from erroneously detecting anode gas discharged from an exhaust port as leakage of anode gas from an anode gas flow path, when at least one of (i) a flow rate proportion, found by dividing a measured flow rate of cathode gas by an assumed flow rate of the cathode gas, is smaller than a predetermined flow rate proportion threshold, (ii) a pressure proportion, found by dividing a measured gas pressure by an assumed gas pressure, is larger than a predetermined pressure proportion threshold, and (iii) a voltage proportion, found by dividing a measured voltage of the fuel cell by an assumed voltage of the fuel cell, is smaller than a predetermined voltage proportion threshold, is satisfied. This prevents the anode gas detector from erroneous detection as leakage of anode gas. |
US11114677B2 |
Fuel cell interconnector and method for making a fuel cell interconnector
An interconnector for a solid oxide fuel cell is manufactured by single-press compacting a powder blend to form a green interconnector with a desired shape of a final interconnector. The powder blend includes chromium and iron, and may include an organic lubricant. At least 50 wt % or more of an iron portion of the powder blend comprises iron particles smaller than 45 um. The green interconnector is then sintered and oxidized to form the final interconnector. The oxidation step occurs in a continuous flow furnace in which a controlled atmosphere (e.g., humidified air) is fed into the furnace in the travel direction of the interconnector. The final interconnector comprises at least 90 wt % chromium, at least 3 wt % iron, and less than 0.2 wt % nitrogen. An average density within a flow field of the final interconnector may be less than 6.75 g/cc. |
US11114676B2 |
Fuel cell separator
A fuel cell separator having high corrosion resistance and electrical conductivity is provided. This fuel cell separator includes, on a substrate, a composite film containing an antimony-doped tin oxide and a tin-doped indium oxide, in which an element ratio of tin to indium (Sn/In) in the composite film is 1.4 or smaller. |
US11114675B2 |
Bipolar plate for fuel cells, and production method
The bipolar plate of the invention for electrochemical cells, especially for proton-exchange membrane (PEM) fuel cells, is made with a metallic substrate and on the surface is made with an electrical contact resistance-reducing, carbon-based layer, a layer system or a boundary layer which is made of a near-surface, primarily sp2-bonded, carbon-based layer having a carbon fraction ranging from 50% to 100%, this layer being applied on a metallic substrate surface that is modified relative to the starting material. There may also be a surface region of the substrate in the form of an edge layer made with nitride and/or carbon by nitriding and/or carburizing. On the surface which is in touching contact with a gas-permeable element within the electrochemical cell, the metallic substrate may have a structuring made with elevations and/or depressions in the respective surface. |
US11114674B2 |
Proton conductive two-dimensional amorphous carbon film for gas membrane and fuel cell applications
Described is a fuel cell comprising an electrode catalyst assembly, and a two-dimensional (2D) amorphous carbon, wherein the 2D amorphous carbon has a crystallinity (C)≤0.8. |
US11114673B2 |
Cathode for lithium air battery comprising hollow structure and method of manufacturing same
The present disclosure relates to a cathode for a lithium air battery and a method of manufacturing the same, and more particularly to a method of manufacturing a cathode for a lithium air battery, in which a hollow structure including a carbon material having a nitrogen functional group is synthesized through electrospinning of a thermally decomposable polymer, coating with a nitrogen-containing polymer and heat treatment, and is utilized without a binder as a cathode carbon material for a lithium air battery, thereby increasing the performance and lifespan of a lithium air battery. |
US11114668B2 |
Electrode materials and processes for their preparation
This application describes an electrode material comprising an indigoid compound, i.e. indigo blue or a derivative thereof, for instance, together with particles of an electrochemically active material dispersed in a binder. Processes for the preparation of the electrode material and electrodes containing the material, as well as to the electrochemical cells and their use are also contemplated. |
US11114667B2 |
Electrode-forming composition
The present invention pertains to an electrode-forming composition, to use of said electrode-forming composition in a process for the manufacture of an electrode, to said electrode and to an electrochemical device comprising said electrode. The electrode-forming composition comprises at least one partially fluorinated fluoropolymer comprising recurring units derived from at least one fluorinated monomer and at least one functional hydrogenated monomer comprising at least one carboxylic acid end group, at least one electro-active compound, at least one liquid medium comprising at least one organic carbonate or at least one ionic liquid, and at least one metal salt. |
US11114666B2 |
Modified graphite negative electrode material, preparation method thereof and secondary battery
The present invention provides a modified graphite negative electrode material, preparation method thereof and a secondary battery. The modified graphite negative electrode material includes a graphite and a multilayer graphene. The multilayer graphene are dispersed in the graphite. The multilayer graphene are loaded with a conductive agent by bonding of a binder. The modified graphite negative electrode material can achieve a higher compaction density for the negative electrode, and can effectively improve the lithium precipitation of the negative electrode of the secondary battery while improving the cycle performance of the secondary battery when being applied to the secondary battery. |
US11114665B2 |
Energy storage device and method for producing same
There is provided is an energy storage device having improved power performance at a relatively large current. In the present embodiment, an energy storage device is provided, which has a negative active material layer containing particulate amorphous carbon, wherein a distribution curve of differential pore volume in the negative active material layer has a peak appearing within the range from 0.1 μm to 2 μm inclusive and the differential pore volume at the peak is 0.9 cm3/g or more. |
US11114661B2 |
Electrochemical cell having a serpentine anode with a plurality of interleaved cathode plates having extending tabs stacked and connected to each other by a welded surrounding metal hoop
An electrochemical cell comprising an electrode assembly formed from an elongate anode that is folded into a serpentine configuration with a plurality of cathode plates interleaved between the folds is described. To make a robust and secure connection of the respective cathode tabs to a cathode terminal, the tabs are folded into an overlapping and stacked relationship. The proximal end of a metal strip is wrapped around the stacked cathode tabs and then a laser is used to weld through all layers of the metal strip and each of the bound cathode tabs. The laser welds are visible from the opposite side of the thusly formed strip-shaped hoop surrounding the stacked cathode tabs from which the laser beam first contacted the assembly. This provides the welding engineer with a visual indication that the welded connection of the metal strip-shaped hoop to the stacked cathode tabs is robust and structurally sound. |
US11114658B2 |
Positive active material for rechargeable lithium battery, positive electrode including same and rechargeable lithium battery including same
Provided are a positive active material for a rechargeable lithium battery and a positive electrode including the same. The positive active material for a rechargeable lithium battery includes a first positive active material and a second positive active material, wherein the first positive active material includes at least one nickel-based lithium composite oxide, and the second positive active material is represented by Chemical Formula 2 and has an average particle diameter of about 300 nm to about 600 nm: Lia1Fe1-x1M1x1PO4. [Chemical Formula 2] In Chemical Formula 2, 0.90≤a1≤1.8, 0≤x1≤0.7, and M1 may be Mg, Co, Ni, or a combination thereof. |
US11114657B2 |
Negative electrode for metal secondary battery, metal secondary battery, and method of producing metal secondary battery
A negative electrode is a negative electrode for a metal secondary battery. In a full-charge state of the metal secondary battery, the negative electrode includes a first metal and a second metal. A carbon fiber aggregate includes a plurality of carbon fibers. The first metal is an alkali metal or an alkaline earth metal. The second metal is a metal alloyable with or an alloy alloyable with the first metal. The second metal is carried at least at a central portion of the carbon fiber aggregate in a thickness direction of the carbon fiber aggregate. The second metal is in the form of particles. |
US11114648B2 |
UV-protected component for OLEDs
The present invention relates to an organic radiation-emitting component with an active organic layer constituted to generate radiation and one or two radiation-output sides, characterised in that, on at least one radiation-output side of the component, a UV protective film is arranged and connected to the component, wherein the UV protective film contains at least one first layer (A) and a second layer (B), wherein the first layer (A) contains 0.01 to 20% by weight, with reference to the total weight of the first layer (A), of a UV absorber, and wherein the second layer (B) contains polycarbonate. Furthermore, the invention relates to the use of a component according to the invention as an organic light-emitting diode, and for lighting, especially for general lighting. |
US11114644B2 |
OLED display panel and OLED display device
The present disclosure provides an OLED display panel and a display device. The OLED display panel includes a substrate, a light-emitting functional layer disposed on the substrate, and at least two optical coupling layers disposed on the light-emitting functional layer, wherein refractive indices of the at least two optical coupling layers are gradually decreased in a direction in which light emits from the light-emitting functional layer. By adjusting an interaction between an angular width and a multiple-beam interference in the OLED display panel, efficiency of optical coupling is improved. Therefore, luminous efficiency of the OLED display panel is greatly improved. Brightness of the OLED display panel is increased, and a lifetime of the OLED display panel is extended. |
US11114636B2 |
Organic electroluminescent display panel, manufacturing method thereof, and display device
The present disclosure relates to an organic electroluminescent display panel, a method of manufacturing the same, and a display device that can alleviate or avoid the occurrence of pixel crosstalk problems due to lateral conduction of the charge generation layer. An organic electroluminescent display panel is provided which comprises: a substrate; an anode layer and a pixel defining layer over the substrate, the pixel defining layer defining pixel units, wherein a recess is provided in the pixel defining layer between adjacent pixel units; a stack of organic electroluminescent units over the anode layer and the pixel defining layer, the stack comprising at least two organic electroluminescent units and a charge generation layer disposed between organic electroluminescent units which are adjacent to each other; a cathode layer over the stack, wherein the corresponding charge generation layers of the adjacent pixel units are disconnected at the recesses, and wherein the cathode layer is continuous at the recess. |
US11114630B2 |
Display panel, manufacturing method thereof, display device
A display panel is provided, including a substrate on a base, a transistor stack on the substrate, and a fluorescent layer between the base and the transistor stack. The fluorescent layer is configured to prevent light from damaging an active layer in the transistor stack in a laser lift-off process, and an orthographic projection of the fluorescent layer on the base overlaps an orthographic projection of the active layer on the base. A display device comprising the display panel, and a manufacturing method of the display panel are further provided. |
US11114629B2 |
Foldable display device
A display device for reducing a stress applied to a display panel in a folded state is provided. The display device includes a display panel and a panel support portion. The display panel includes a bendable area. The panel support portion is combined to the display panel and includes a multi-joint member supporting the bendable area. The multi-joint member includes joint portions that are sequentially arranged, and a sliding member passing through the joint portions and moving inside the panel support portion. The sliding member includes a plate portion for arranging the joint portions, and a hook-shaped portion connected to a side of the plate portion and arranging the joint portions in a circular arc shape. |
US11114623B2 |
Organic salts for high voltage organic and transparent solar cells
Photo-active devices including a substrate, a first electrode, an active layer including an organic salt or salt mixture that selectively or predominantly harvests light from the near infrared or infrared regions of the solar spectrum, and a second electrode. The devices are either visibly transparent or visibly opaque and can be utilized in single- or multi-junction devices. |
US11114621B2 |
Electroactive materials
There is disclosed an electroactive composition including (a) a host compound having Formula I and (b) a photoactive dopant. In Formula I: R1 is the same or different at each occurrence and is D, alkyl, silyl, germyl, deuterated alkyl, deuterated silyl, or deuterated germyl; a is an integer from 0-7; b is an integer from 0-8; c is an integer from 0-4; and d is an integer from 0-7. |
US11114617B2 |
Spiroacridine derivatives
Provided is a composition comprising a compound having structure (I) wherein each of A1, A2, A3, A4, A5, A6, A7, and A8 is independently CR12 or N; wherein one to four of A1, A2, A3, A4, A5, A6, A7, and A8 are N; wherein J1 is C or Si; wherein J2 is C(R13)n, O, (C(R13)n)2, S, NR13, or Se; wherein n is 1 or 2; wherein each of R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, and R13 is independently H, deuterium, or an organic group. Also provided is a method of making the composition, a method of making an organic light-emitting diode using the composition, and an organic light-emitting diode made by that method. |
US11114615B2 |
Chalcogenide memory device components and composition
Systems, devices, and methods related to or that employ chalcogenide memory components and compositions are described. A component of a memory cell, such as a selector device, storage device, or self-selecting memory device, may be made of a chalcogenide material composition. A chalcogenide material may have a composition that includes one or more elements from the boron group, such as boron, aluminum, gallium, indium, or thallium. The chalcogenide material, for instance, may have a composition of selenium, germanium, and at least one of boron, aluminum, gallium, indium, or thallium. The chalcogenide material may in some cases also include arsenic, but may in some cases lack arsenic. |
US11114614B2 |
Process for fabricating resistive memory cells
A oxide-based direct-access resistive nonvolatile memory may include within the interconnect portion of the integrated circuit a memory plane including capacitive memory cells extending in orthogonal first and second directions and each including a first electrode, a dielectric region and a second electrode. The memory plane may include conductive pads of square or rectangular shape forming the first electrodes. The stack of the dielectric layer and the second conductive layer covers the pads in the first direction and forms, in the second direction, conductive bands extending over and between the pads. The second electrodes may be formed by zones of the second bands facing the pads. |
US11114613B2 |
Cross-point memory and methods for forming of the same
The disclosed technology generally relates to integrated circuit devices, and in particular to cross-point memory arrays and methods for fabricating the same. Line stacks are formed, including a storage material line disposed over lower a conductive line. Upper conductive lines are formed over and crossing the line stacks, exposing portions of the line stacks between adjacent upper conductive lines. After forming the upper conductive lines, storage elements are formed at intersections between the lower conductive lines and the upper conductive lines by removing storage materials from exposed portions of the line stacks, such that each storage element is laterally surrounded by spaces. A continuous sealing material laterally surrounds each of the storage elements. |
US11114611B2 |
Method to make MRAM with small footprint
A method to make magnetic random access memory with small footprint using O-ion implantation to form electrically isolated memory pillar and electric (bottom and top) leads, which are made from some oxygen gettering materials, Mg, Zr, Y, Th, Ti, Al, Ba. The doped O-ions react with metal atoms to form fully oxidized metal oxide after high temperature anneal. The method only needs two photolithography patterning and oxygen implantations and no etch and dielectric refill are needed, thus significantly reduce process cost. The method can produce extremely small MRAM cell size with perfectly vertical pillar edges (FIG. 1). |
US11114608B2 |
Combined spin-orbit torque and spin-transfer torque switching for magnetoresistive devices and methods therefor
Spin-Hall (SH) material is provided near free regions of magnetoresistive devices that include magnetic tunnel junctions. Current flowing through such SH material injects spin current into the free regions such that spin torque is applied to the free regions. The spin torque generated from SH material can be used to switch the free region or to act as an assist to spin-transfer torque generated by current flowing vertically through the magnetic tunnel junction, in order to improve the reliability, endurance, or both of the magnetoresistive device. Further, one or more additional regions or manufacturing steps may improve the switching efficiency and the thermal stability of magnetoresistive devices. |
US11114605B2 |
Composite storage layer for magnetic random access memory devices
A composite storage layer for magnetic memory devices includes a first ferromagnetic layer, a tri-layered spacer stack disposed on the first ferromagnetic layer, a second ferromagnetic layer disposed on the tri-layered spacer stack, and an oxide capping layer on the second ferromagnetic layer. The tri-layered spacer stack comprises a first non-magnetic layer, a discontinuous, insulating oxide layer, and a second non-magnetic layer. The discontinuous, insulating oxide layer is sandwiched by the first non-magnetic layer and the second non-magnetic layer. |
US11114603B2 |
Medical instrument including high frequency ultrasound transducer array
Disclosed is a medical device that includes a phased array ultrasound transducer. The transducer includes a number of transducer elements that are electrically coupled to corresponding electrical conductors. In one embodiment, the conductors are included in a flex circuit and engage corresponding transducer elements though a conductive surface formed on outwardly extending ribs of a frame that holds the ultrasound array. In one embodiment, the phased array is forward facing in the medical device and has an element pitch of 0.75 lambda or less and more preferably 0.6 lambda or less. In one embodiment, the transducer is rotatable over an angle of +/−90 degrees to provide a 360 degree view of tissue surrounding the distal end of the device. |
US11114601B2 |
Thermoelectric material
Novel compounds with thermoelectric properties are presented. The novel compounds belong to the group of phosphides. They are characterized by excellent thermoelectric properties, in particularly in the temperature range of 400° C. to 700° C. Also a production method for the production of the compounds is presented, with which the thermoelectric substances can be prepared with high yield and quality. |
US11114597B2 |
Display device having an electronic device disposed on a first pad and a second pad
A display device is provided. The display device includes a substrate and a first metal line and a second metal line disposed on the substrate. The display device includes a first pad and a second pad disposed on the substrate and electrically connected to the first metal line and the second metal line respectively. The display device further includes an electronic device disposed on the first pad and the second pad. The electronic device includes a first connecting post and a second connecting post, wherein a distance between the first connecting post and the second connecting post is in a range from 1 um to 200 um. A portion of the first connecting post is embedded in the first pad and a portion of the second connecting post is embedded in the second pad. |
US11114595B2 |
Optical component and transparent body
The present invention relates to an optical component and a transparent body used in the optical component. The optical component includes at least one optical element that radiates ultraviolet light, and a package that accommodates the optical element. The package includes a mounting substrate on which the optical element is mounted, and a transparent body that is bonded to the mounting substrate with an organic-based adhesive layer therebetween. The package has a structure in which the ultraviolet light is transmitted through the transparent body but not guided to the adhesive layer, and the ultraviolet light does not directly come into contact with the adhesive layer. |
US11114592B2 |
Light emitting diode
A light emitting assembly comprising a solid state device, when and if coupleable with a power supply constructed and arranged to power the solid state device to emit from the solid state device a first wavelength radiation, and an enveloping vessel enhancing the luminescence of the solid-state device and providing a mechanism for arranging luminophoric medium in receiving relationship to said first, radiation, and which in exposure to said first radiation, is excited to responsively emit second wavelength radiation or to otherwise transfer its energy without radiation to a third radiative component. In a specific embodiment, monochromatic blue or UV light output from a light-emitting diode is converted to achromatic light without hue by packaging the diode with fluorescent organic and/or inorganic fluorescers and phosphors on the walls of the solid-state light envelope which keeps the diode and the fluorescers and phosphors under a vacuum or a rare or Noble gas. |
US11114591B2 |
Core-shell materials with red-emitting phosphors
A coated phosphors that include a shell comprising a first Mn4+ doped phosphor of formula I Ax[MFy]:Mn4+ I directly disposed on a core comprising a second phosphor. The second phosphor is a material other than a compound of formula I or formula II Ax[MFy] II wherein A is, independently at each occurrence, Li, Na, K, Rb, Cs, or a combination thereof; M is, independently at each occurrence, Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; and y is 5, 6 or 7. |
US11114589B2 |
Fluoride phosphor and light-emitting device using same
Provided is a fluoride phosphor that has a good external quantum efficiency and is suitable for stably producing white LEDs. The fluoride phosphor has a composition represented by a general formula (1) and a repose angle of 30° or more and 60° or less. general formula: A2M(1-n)F6:Mn4+n (1), wherein 0 |
US11114579B2 |
Method for preparing ultrathin two-dimensional nanosheets and applications thereof
A method for preparing an ultrathin two-dimensional (2D) monocrystalline nanosheet, the method including: 1) placing BiX3 powder where X=I, Br, or Cl in a crucible, and putting the crucible on a first heating zone of a furnace disposed at a gas inlet of a quartz tube; placing substrates covered with metal sheets on a second heating zone of the furnace disposed at a gas outlet of the quartz tube; 2) vacuumizing the quartz tube; pumping Ar gas into the quartz tube until the air pressure is 101.325 kPa; pumping a carrier gas into the quartz tube; and 3) heating and maintaining the second heating zone; heating the first heating zone for BiX3 evaporation until producing chemical reaction between BiX3 and the metal sheets, and preparing ultrathin 2D nanosheets on the substrates simultaneously; and cooling the substrate naturally to 15-30° C. |
US11114575B1 |
Solar cell
Disclosed is a solar cell, including: a substrate; an emitter, a first passivation film, an antireflection film and a first electrode sequentially disposed on an upper surface of the substrate; a tunneling layer, a retardation layer, a field passivation layer, a second passivation film and a second electrode sequentially disposed on a lower surface of the substrate. The retardation layer is configured to retard a migration of a doped ion in the field passivation layer to the substrate. The retardation layer includes a first retardation sub-layer overlapping with a projection of the second electrode and a second retardation sub-layer misaligning with a projection of the second electrode, and at least the second retardation sub-layer is an intrinsic semiconductor. A thickness of the first retardation sub-layer is smaller than a thickness of the second retardation sub-layer in a direction perpendicular to the surface of the substrate. |
US11114569B2 |
Semiconductor device with an oxidized intervention and method for fabricating the same
The present application discloses a semiconductor device with an oxidized intervention layer and a method for fabricating the semiconductor device. The semiconductor device includes a substrate, a memory unit including a memory unit conductive layer positioned above the substrate and a lateral oxidized intervention layer positioned below the memory unit conductive layer, and a control unit positioned in the substrate and below the lateral oxidized intervention layer. The lateral oxidized intervention layer includes a sidewall portion and a center portion, and the sidewall portion has a greater concentration of oxygen than the center portion. |
US11114568B2 |
Semiconductor device
The purpose of the invention is to form the TFT of the oxide semiconductor, in which influence of variation in mask alignment is suppressed, thus, manufacturing a display device having a TFT of stable characteristics. The concrete measure is as follows. A display device including plural pixels, each of the plural pixels having a thin film transistor (TFT) of an oxide semiconductor comprising: a width of the oxide semiconductor in the channel width direction is wider than a width of the gate electrode in the channel width direction. |
US11114566B2 |
Semiconductor device and method of manufacturing the same
A semiconductor device includes a substrate, a first fin, a second fin, a dummy fin, a first metal gate, a second metal gate, and an isolation structure. The first, the second and the dummy fins are on the substrate, and the dummy fin is disposed between the first fin and the second fin. The first metal gate and the second metal gate are over the first fin and the second fin, respectively. The isolation structure is on the dummy fin, and the dummy fin and the isolation structure separate the first metal gate and the second metal gate. |
US11114561B2 |
LDMOS device and method for manufacturing same
LDMOS device including a drift region, a body region, a gate dielectric layer, a polysilicon gate, a source region, a drain region and a common dielectric layer, the common dielectric layer covers a portion, between a second side of the polysilicon gate and the drain region, of the surface of the drift region, extends onto the surface of the polysilicon gate and also covers part of the surface of the drain region, a self-aligned metal silicide is formed on portions, not covered by the common dielectric layer, of the surfaces of the polysilicon gate, the source region and the drain region, and the common dielectric layer serves as a growth barrier layer of the self-aligned metal silicide; a drain terminal field plate is formed on a portion of the surface of the common dielectric layer; and a portion of the common dielectric layer serves as a field plate dielectric layer. |
US11114559B2 |
Semiconductor device having reduced gate charges and superior figure of merit
A semiconductor device includes a first group of trench-like structures and a second group of trench-like structures. Each trench-like structure in the first group includes a gate electrode contacted to gate metal and a source electrode contacted to source metal. Each of the trench-like structures in the second group is disabled. The second group of disabled trench-like structures is interleaved with the first group of trench-like structures. |
US11114558B2 |
Shielded gate trench MOSFET integrated with super barrier rectifier
An integrated circuit comprising a surrounding gate transistor (SGT) MOSFET and a super barrier rectifier (SBR) is disclosed. The SBR horizontally disposed in different areas to the SGT MOSFET on single chip creates a low potential barrier for majority carrier in MOS channel, therefore has lower forward voltage and reverse leakage current than conventional Schottky Barrier Rectifier. Moreover, in some preferred embodiment, a multiple stepped oxide (MSO) structure is applied to the shielded gate structure to further reduce the on-resistance. |
US11114556B2 |
Gate stack design for GaN e-mode transistor performance
A gate stack structure is disclosed for inhibiting charge leakage in III-V transistor devices. The techniques are particularly well-suited for use in enhancement-mode MOSHEMTs but can also be used in other transistor designs susceptible to charge spillover and unintended channel formation in the gate stack. In an example embodiment, the techniques are realized in a transistor having a III-N gate stack over a gallium nitride (GaN) channel layer. The gate stack is configured with a relatively thick barrier structure and wide bandgap III-N materials to prevent or otherwise reduce channel charge spillover resulting from tunneling or thermionic processes at high gate voltages. The barrier structure is configured to manage lattice mismatch conditions, so as to provide a robust high-performance transistor design. In some cases, the gate stack is used in conjunction with an access region polarization layer to induce two-dimensional electron gas (2DEG) in the channel layer. |
US11114554B2 |
High-electron-mobility transistor having a buried field plate
A high-electron-mobility semiconductor device includes: a buffer region having first, second and third cross-sections forming a stepped lateral profile, the first cross-section being thicker than the third cross-section and comprising a first buried field plate disposed therein, the second cross-section interposed between the first and third cross-sections and forming oblique angles with the first and third cross-sections; and a barrier region of substantially uniform thickness extending along the stepped lateral profile of the buffer region, the barrier region being separated from the first buried field plate by a portion of the buffer region. The buffer region is formed by a first semiconductor material and the barrier region is formed by a second semiconductor material. The first and second semiconductor materials have different band-gaps such that an electrically conductive channel including a two-dimensional charge carrier gas arises at an interface between the buffer and barrier regions due to piezoelectric effects. |
US11114543B2 |
Group III-V device structure
A group III-V device structure is provided. The group III-V device structure includes a channel layer formed over a substrate and an active layer formed over the channel layer. The group III-V device structure also includes a gate structure formed over the active layer and a source electrode and a drain electrode formed over the active layer. The source electrode and the drain electrode are formed on opposite sides of the gate structure. The group III-V device structure further includes a through via structure formed through the channel layer, the active layer and a portion of the substrate, and the through via structure is electrically connected to the source electrode or the drain electrode. |
US11114542B2 |
Semiconductor device with reduced gate height budget
The present disclosure relates to semiconductor structures and, more particularly, to semiconductor device with reduced gate height budget and methods of manufacture. The method includes: forming a plurality of gate structures on a substrate; recessing material of the plurality of gate structures to below a surface of an insulator material; forming trenches in the insulator material and underlying material adjacent to sidewalls of the plurality of gate structures; and filling the recesses and trenches with a capping material. |
US11114539B2 |
Gate stack for heterostructure device
A heterostructure semiconductor device includes a first active layer and a second active layer disposed on the first active layer. A two-dimensional electron gas layer is formed between the first and second active layers. A sandwich gate dielectric layer structure is disposed on the second active layer. A passivation layer is disposed over the sandwich gate dielectric layer structure. A gate extends through the passivation layer to the sandwich gate dielectric layer structure. First and second ohmic contacts electrically connected to the second active layer. The first and second ohmic contacts are laterally spaced-apart, with the gate being disposed between the first and second ohmic contacts. |
US11114530B2 |
Quantum well stacks for quantum dot devices
Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer, wherein the quantum well layer includes an isotopically purified material; a gate dielectric above the quantum well stack; and a gate metal above the gate dielectric, wherein the gate dielectric is between the quantum well layer and the gate metal. |
US11114529B2 |
Gate-all-around field-effect transistor device
A method of forming a semiconductor device includes forming semiconductor strips protruding above a substrate and isolation regions between the semiconductor strips; forming hybrid fins on the isolation regions, the hybrid fins comprising dielectric fins and dielectric structures over the dielectric fins; forming a dummy gate structure over the semiconductor strip; forming source/drain regions over the semiconductor strips and on opposing sides of the dummy gate structure; forming nanowires under the dummy gate structure, where the nanowires are over and aligned with respective semiconductor strips, and the source/drain regions are at opposing ends of the nanowires, where the hybrid fins extend further from the substrate than the nanowires; after forming the nanowires, reducing widths of center portions of the hybrid fins while keeping widths of end portions of the hybrid fins unchanged, and forming an electrically conductive material around the nanowires. |
US11114526B2 |
Semiconductor device
A semiconductor device includes a semiconductor substrate of a first conductivity type. The semiconductor substrate includes a first semiconductor region of a second conductivity type at a surface thereof, a second semiconductor region of the second conductivity type at the surface and surrounding the first semiconductor region, a third semiconductor region of the second conductivity type provided in the second semiconductor region at the surface and surrounding the first semiconductor region. The third semiconductor region has a concentration of a second conductivity type impurity higher than that of the second semiconductor region. A first insulating film is provided on a part of the first surface at which the second semiconductor region is provided. the first insulating film having an opening that exposes. A first electrode is provided on the first insulating film and electrically connected to the third semiconductor region via the opening. |
US11114521B2 |
Display device and manufacturing method thereof
A display device includes a substrate and a pixel disposed on the substrate. The pixel includes a first transistor, a second transistor electrically connected to the first transistor, a third transistor electrically connected to the first transistor, and a light-emitting diode element electrically connected to at least one of the first transistor and the third transistor. The first transistor includes a first semiconductor member and a first gate electrode. The first semiconductor member includes an oxide semiconductor material. The first gate electrode is disposed between the first semiconductor member and the substrate. The second transistor includes a second semiconductor member and a second gate electrode. The second semiconductor member includes the oxide semiconductor material. The second semiconductor member is disposed between the second gate electrode and the substrate. The third transistor includes a third semiconductor member including silicon. |
US11114519B2 |
Organic light emitting display device and method of manufacturing the same
An organic light emitting display device and a method of manufacturing the same are provided that may reduce the resistance of a second electrode and may prevent corrosion and metal migration of a pad electrode without adding a separate mask process, or while reducing the number of mask processes. In the organic light emitting display device, an auxiliary line is connected to a second electrode through an auxiliary electrode, which is provided in the same layer as a first electrode, and a pad cover electrode is configured to cover an upper surface and a side surface of a pad connection electrode so as to prevent the pad connection electrode connected to a pad from being exposed outward. |
US11114517B2 |
Organic EL display apparatus and method of manufacturing organic EL display apparatus
The present invention is equipped with: a substrate (10) that has a surface upon which a drive circuit containing a TFT (20) is formed; a planarizing layer (30) that makes the surface of the substrate (10) planar by covering the drive circuit; and an organic light emitting element (40) that is provided with a first electrode (41) formed upon the surface of the planarization film and connected to the drive circuit, an organic light emitting layer (43) formed upon the first electrode, and a second electrode (44) formed upon the organic light emitting layer. In addition, the planarizing layer (30) includes a first inorganic insulating layer (31) and an organic insulating layer (32) that are layered upon the drive circuit, and the surface of the organic insulating layer (32) is formed with an arithmetic mean roughness Ra of no more than 50 nm. |
US11114516B2 |
Display device
Disclosed is a display device possessing: a substrate having a display region and a peripheral region surrounding the display region; a pixel over the display region; a passivation film over the pixel; a resin layer over the passivation film; a first dam over the peripheral region and surrounding the display region; and a second dam surrounding the first dam. The passivation film includes; a first layer containing an inorganic compound; a second layer over the first layer, the second layer containing an organic compound; and a third layer over the second layer, the third layer containing an inorganic compound. The second layer is selectively arranged in a region surrounded by the first dam. The resin layer is selectively arranged in a region surrounded by the second dam. |
US11114515B2 |
Organic light-emitting diode display panel and manufacturing method thereof
An organic light-emitting diode (OLED) display panel and a manufacturing method thereof are provided. The OLED display panel includes a substrate, a pixel defining layer, an organic light-emitting layer, and an organic encapsulating layer. The pixel defining layer is disposed on the substrate and includes a plurality of recessed regions and a plurality of grooves. The recessed regions communicate with each other through the grooves. The recessed regions and the grooves form a mesh structure. The mesh structure defines a plurality of pixel regions. The organic light-emitting layer is disposed on the pixel defining layer and the organic encapsulating layer is disposed on the organic light-emitting layer. |
US11114514B2 |
Organic electroluminescent display panel, manufacturing method thereof, and display device
An organic electroluminescent display panel is provided, including a pixel defining layer. The pixel defining layer includes a plurality of openings and a bank surrounding each of the plurality of openings and defining a plurality of pixel areas. The bank is composed of a hydrophilic material pattern layer and a conductive hydrophobic pattern layer which are stacked from bottom to top. |
US11114513B2 |
Display substrate, manufacturing method thereof, display panel
A display substrate including a base substrate and a pixel defining layer is provided. The pixel defining layer includes a first defining layer and a second defining layer, which define a plurality of lower openings and a plurality of upper openings corresponding to the plurality of lower openings, respectively. An orthographic projection of a bottom surface of each upper opening on the base substrate covers that of a corresponding lower opening on the base substrate, orthographic projections of bottom surfaces of the plurality of upper openings on the base substrate have an equal area. The plurality of lower openings include a first lower opening, a second lower opening and a third lower opening, which form a first cavity, a second cavity and a third cavity respectively together with a corresponding upper opening. |
US11114512B2 |
Organic light emitting diode display
An organic light emitting diode display is disclosed. The organic light emitting diode display includes a first substrate and a second substrate facing each other. The first substrate includes an anode included in an organic light emitting diode, an auxiliary electrode, a barrier on the auxiliary electrode, a bank layer including a first opening exposing at least a portion of the anode and a second opening simultaneously exposing at least a portion of the auxiliary electrode and at least a portion of the barrier, a cathode included in the organic light emitting diode and divided by the barrier, a contact electrode disposed on the cathode and divided by the barrier, and a protective layer interposed between the cathode and the contact electrode. The contact electrode and the power line directly contact each other. |
US11114511B2 |
Display device
A display device includes a display panel comprising two pixels spaced apart from each other and a transmission area between the two pixels. An input sensing section is disposed on the display panel and comprises sensing electrodes and trace lines electrically connected to the sensing electrodes. A metal layer is on the display panel. The metal layer is disposed between the two pixels and surrounds the transmission area. The metal layer comprises a first hole located in the transmission area. The first hole has a first width. An optical functional section is on the metal layer. The optical functional section includes a second hole that overlaps the first hole. The second hole has a second width that is greater than the first width. |
US11114509B2 |
OLED display device with fingerprint on display
The present disclosure proposes an OLED display device with FOD that includes an OLED display panel and a fingerprint recognition module disposed under the OLED display panel. Sub-pixels arranged in an array on a substrate are located in an effective display area of the substrate. A fingerprint recognition block is disposed in the effective display area. The fingerprint recognition module is disposed corresponding to the fingerprint recognition block. A number of TFTs in each of the sub-pixels located in the fingerprint recognition block is less than a number of TFTs in each of the sub-pixels outside the fingerprint recognition block. Through decreasing the number of the TFTs in each of the sub-pixels in the fingerprint recognition block, the number of films in the stack of the fingerprint recognition block is reduced. Accordingly, the transmittance of the fingerprint recognition block and the accuracy of fingerprint recognition are improved. |
US11114503B2 |
Memory device
According to one embodiment, a memory device includes first and second electrically conductive portions, a first variable resistance portion, and a first region. A direction from the first electrically conductive portion toward the second electrically conductive portion is aligned with a first direction. The first variable resistance portion is provided between the first and second electrically conductive portions. A second direction from the first variable resistance portion toward the first region crosses the first direction. The first region includes a first layer portion, and a second layer portion provided between the first layer portion and the first variable resistance portion in the second direction. A first distance between the first and second layer portions is longer than first or second lattice length. The first lattice length is a lattice length of the first layer portion. The second lattice length is a lattice length of the second layer portion. |
US11114502B2 |
Resistive memory cell having an ovonic threshold switch
The disclosure concerns a resistive memory cell, including a stack of a selector, of a resistive element, and of a layer of phase-change material, the selector having no physical contact with the phase-change material. In one embodiment, the selector is an ovonic threshold switch formed on a conductive track of a metallization level. |
US11114493B2 |
Image sensors with vertically stacked photodiodes and vertical transfer gates
Image sensors may include multiple vertically stacked photodiodes interconnected using vertical deep trench transfer gates. A first n-epitaxial layer may be formed on a residual substrate; a first p-epitaxial layer may be formed on the first n-epitaxial layer; a second n-epitaxial layer may be formed on the first p-epitaxial layer; a second p-epitaxial layer may be formed on the second n-epitaxial layer; and so on. The n-epitaxial layers may serve as accumulation regions for the different epitaxial photodiodes. A separate color filter array is not needed. The vertical transfer gates may be a deep trench that is filled with doped conductive material, lined with gate dielectric liner, and surrounded by a p-doped region. Image sensors formed in this way may be used to support a rolling shutter configuration or a global shutter configuration and can either be front-side illuminated or backside illuminated. |
US11114492B2 |
Image sensor
An image sensor includes a photoelectric conversion element structured to receive incident light and convert the received light into electric charges; a plurality of transfer transistors electrically coupled to the photoelectric conversion element to respond to a transfer signal to selectively transfer the electric charges out of the photoelectric conversion element; and a lag prevention structure formed at a center of the photoelectric conversion element and structured to receive the transfer signal to operate together with the plurality of transfer transistors to facilitate transfer the electric charges out of the photoelectric conversion element. |
US11114489B2 |
Back-illuminated sensor and a method of manufacturing a sensor
An image sensor for electrons or short-wavelength light includes a semiconductor membrane, circuit elements formed on one surface of the semiconductor membrane, and a pure boron layer on the other surface of the semiconductor membrane. The circuit elements are connected by metal interconnects comprising a refractory metal. An anti-reflection or protective layer may be formed on top of the pure boron layer. This image sensor has high efficiency and good stability even under continuous use at high flux for multiple years. The image sensor may be fabricated using CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) technology. The image sensor may be a two-dimensional area sensor, or a one-dimensional array sensor. |
US11114485B2 |
Metal mirror based multispectral filter array
A device may include a multispectral filter array disposed on the substrate. The multi spectral filter array may include a first metal mirror disposed on the substrate. The multi spectral filter may include a spacer disposed on the first metal mirror. The spacer may include a set of layers. The spacer may include a second metal mirror disposed on the spacer. The second metal mirror may be aligned with two or more sensor elements of a set of sensor elements. |
US11114484B2 |
Photoelectric conversion apparatus, photoelectric conversion system, moving body, and manufacturing method for photoelectric conversion apparatus
A photoelectric conversion apparatus includes, a semiconductor substrate having a photoelectric conversion unit performing photoelectric conversion on entering light and accumulating first electric charges, a first transistor electrically connected to the photoelectric conversion unit and having a first gate on a second surface, and a second transistor having a second gate shorter than the first gate on the second surface, a first fixed charge film continuously provided directly or with an insulating film in between in an area overlapping the photoelectric conversion unit on a first surface and the second transistor, the first fixed charge film having fixed charges of the first polarity, and a second fixed charge film provided directly or with an insulating film in between in an area overlapping the second transistor and the first fixed charge film, the second fixed charge film having fixed charges of a second polarity. |
US11114476B2 |
Manufacturing method of TFT array substrate, TFT array substrate and display panel
A manufacturing method of a TFT array substrate is provided, comprising: depositing and forming a gate and a gate scanning line; depositing sequentially a gate insulating layer, an active layer and a second metal layer; depositing and forming a first photoresist layer and a second photoresist layer on the second metal layer; first photoresist layer comprising a first-stage photoresist layer, second-stage photoresist layer and third-stage photoresist layer with increasing thickness, the first-stage photoresist layer being in the middle of the first photoresist layer and a channel being formed; ashing to remove first-stage photoresist layer, forming a source and a drain by etching; and ashing to remove the second-stage photoresist layer, and then depositing a passivation layer as a whole; stripping third-stage photoresist layer and second photoresist layer, depositing and forming a pixel electrode and a common electrode. |
US11114470B2 |
Semiconductor device, electronic component, and electronic device
A novel semiconductor device formed with single-polarity circuits using OS transistors is provided. Thus, connection between different layers in a memory circuit is unnecessary. This can reduce the number of connection portions and improve the flexibility of circuit layout and the reliability of the OS transistors. In particular, many memory cells are provided; thus, the memory cells are formed with single-polarity circuits, whereby the number of connection portions can be significantly reduced. Further, by providing a driver circuit in the same layer as the cell array, many wirings for connecting the driver circuit and the cell array can be prevented from being provided between layers, and the number of connection portions can be further reduced. An interposer provided with a plurality of integrated circuits can function as one electronic component. |
US11114469B2 |
Array substrate and fabricating method thereof, display panel and display device
The present disclosure is in the field of display technologies, and provides an array substrate including an IGZO film layer, a gate layer, and a gate insulating layer. The gate layer is provided with broken lines at a position thereof overlapping the IGZO film layer to form a first gate line and a second gate line. The gate insulating layer is disposed between the IGZO film layer and the gate layer, and is provided with at least two through holes thereon, in which the first gate line is connected with the IGZO film layer through one of the through holes, and the second gate line is connected with the IGZO film layer through another through hole, thus, connecting the IGZO film layer in series into the gate layer. |
US11114466B2 |
IC products formed on a substrate having localized regions of high resistivity and methods of making such IC products
One illustrative IC product disclosed herein includes an (SOI) substrate comprising a base semiconductor layer, a buried insulation layer and an active semiconductor layer positioned above the buried insulation layer. In this particular example, the IC product also includes a first region of localized high resistivity formed in the base semiconductor layer, wherein the first region of localized high resistivity has an electrical resistivity that is greater than an electrical resistivity of the material of the base semiconductor layer. The IC product also includes a first region comprising integrated circuits formed above the active semiconductor layer, wherein the first region comprising integrated circuits is positioned vertically above the first region of localized high resistivity in the base semiconductor layer. |
US11114465B1 |
Memory device, semiconductor device and associated method
A memory device, including: memory cells, first conductive lines, second conductive lines, third conductive lines and fourth conductive lines. The memory cells are arranged in an array. Each memory cell includes a transistor and a capacitor connected to a gate terminal of the transistor in series. The first conductive lines extend in a first direction. Each first conductive line connects to gate terminals of transistors arranged in same column in the array. The second conductive lines extend in the first direction. Each second conductive line connects to source terminals of transistors arranged in same column in the array. The third conductive lines extend in the first direction. Each third conductive line connects to drain terminals of transistors arranged in same column in the array. The fourth conductive lines extend in a second direction. Each fourth conductive line couples to the capacitor arranged in same row in the array. |
US11114464B2 |
3D semiconductor device and structure
A 3D device, the device including: a first level including logic circuits; a second level including a plurality of dynamic memory cells; and a third level including a plurality of non-volatile memory cells, where the first level is bonded to the second level, and where the device includes refresh circuits to refresh the dynamic memory cells. |
US11114462B1 |
Three-dimensional memory device with composite charge storage structures and methods for forming the same
A memory device includes an alternating stack of insulating layers and electrically conductive layers located over a substrate, and a memory stack structure extending through the alternating stack. The memory stack structure includes a composite charge storage structure, a tunneling dielectric layer, and a vertical semiconductor channel. The composite charge storage structure may include a vertical stack of tubular charge storage material portions including a first charge trapping material located at levels of the electrically conductive layers, and a charge storage layer including a second charge trapping material extending through a plurality of electrically conductive layers of the electrically conductive layers. The first charge trapping material has a higher charge trap density than the second charge trapping material. Alternatively, the composite charge storage material portions may include discrete charge storage elements each containing a silicon nitride portion and a silicon carbide nitride liner. |
US11114461B2 |
Three-dimensional semiconductor memory devices having source structure overlaps buried insulating layer
A three-dimensional (3D) semiconductor memory device including: first and second semiconductor layers horizontally spaced apart from each other; a buried insulating layer between the first and second semiconductor lavers; a first cell array structure disposed on the first semiconductor layer, and a second cell array structure disposed on the second semiconductor layer; and an isolation structure disposed on the buried insulating layer between the first and second cell array structures, wherein the first cell array structure includes: an electrode structure including electrodes, which are stacked in a direction perpendicular to a top surface of the first semiconductor layer; and a first source structure disposed between the first semiconductor layer and the electrode structure, the first source structure is extended onto the buried insulating layer, and the isolation structure is between the first source structure of the first cell array structure and a second source structure of the second cell array structure. |
US11114458B2 |
Three-dimensional memory device with support structures in gate line slits and methods for forming the same
Embodiments of structure and methods for forming a three-dimensional (3D) memory device are provided. In an example, the 3D memory device includes a memory stack having interleaved a plurality of conductor layers and a plurality of insulating layers extending laterally in the memory stack. The 3D memory device also includes a plurality of channel structures extending vertically through the memory stack into the substrate. The 3D memory device further includes at least one slit structure extending vertically and laterally in the memory stack and dividing a plurality of memory cells into at least one memory block, the at least one slit structure each including a plurality of slit openings and a support structure between adjacent slit openings. The support structure may be in contact with adjacent memory blocks and contacting the substrate. |
US11114456B2 |
Memory stacks having silicon oxynitride gate-to-gate dielectric layers and methods for forming the same
Embodiments of 3D memory devices and methods for forming the same are disclosed. In an example, a 3D memory device includes a substrate, a memory stack, and a NAND memory string. The memory stack includes a plurality of interleaved gate conductive layers and gate-to-gate dielectric layers above the substrate. Each of the gate-to-gate dielectric layers includes a silicon oxynitride layer. The NAND memory string extends vertically through the interleaved gate conductive layers and gate-to-gate dielectric layers of the memory stack. |
US11114454B2 |
Semiconductor device
A semiconductor device includes a source structure penetrated by a first penetrating portion, a first stack structure disposed on the source structure and penetrated by a second penetrating portion overlapping the first penetrating portion. |
US11114444B2 |
Semiconductor device with conductive cap layer over conductive plug and method for forming the same
A semiconductor device includes a semiconductor substrate, a first word line and a second word line disposed over the semiconductor substrate, and a conductive plug disposed between the first word line and the second word line. The semiconductor device also includes a conductive cap layer disposed over the conductive plug, wherein a top surface and a portion of a sidewall surface of the conductive plug are covered by the conductive cap layer. The semiconductor device further includes a bit line disposed over the conductive cap layer, wherein the bit line is electrically connected to the conductive plug. |
US11114439B2 |
Multi-division 3D NAND memory device
Disclosed is a method for forming a staircase structure of 3D memory. The method includes providing a substrate, forming an alternating layer stack over the substrate, forming a plurality of block regions over a surface of the alternating layer stack, forming a first plurality of staircase structures to expose a portion of a first number of top-most layer stacks at each of the block regions and removing the first number of the layer stacks at a second plurality of staircase structures at each of the block regions. |
US11114436B2 |
Metal gate structure and methods thereof
Provided is a metal gate structure and related methods that include performing a metal gate cut process. The metal gate cut process includes a plurality of etching steps. For example, a first anisotropic dry etch is performed, a second isotropic dry etch is performed, and a third wet etch is performed. In some embodiments, the second isotropic etch removes a residual portion of a metal gate layer including a metal containing layer. In some embodiments, the third etch removes a residual portion of a dielectric layer. |
US11114433B2 |
3DIC structure and method of fabricating the same
Provided is a three dimensional integrated circuit (3DIC) structure including a first die, a second die, and a hybrid bonding structure bonding the first die and the second die. The hybrid bonding structure includes a first bonding structure and a second bonding structure. The first bonding structure includes a first bonding dielectric layer and a first bonding metal layer. The first bonding metal layer is disposed in the first bonding dielectric layer. The first bonding metal layer includes a first via plug and a first metal feature disposed over the first via plug, wherein a height of the first metal feature is greater than or equal to a height of the first via plug. A method of fabricating the 3DIC structure is also provided. |
US11114419B2 |
Multi-color LED pixel unit and micro-LED display panel
A multi-color light emitting pixel unit includes a substrate, a bottom conductive layer formed on the substrate and a top conductive layer formed over the bottom conductive layer, and a light emitting layer formed between the top conductive layer and the bottom conductive layer. The light emitting layer includes a plurality of micro-gap structures. |
US11114417B2 |
Through-silicon via (TSV) test circuit, TSV test method and integrated circuits (IC) chip
An integrated circuit (IC) with a TSV test circuit, a TSV test method are provided, pertaining to IC technologies. The IC may include a first TSV, a second TSV and a phase detector. A first end of the first TSV may be coupled to a predetermined signal output, and a second end of the first TSV may be coupled to a first end of the second TSV. A second end of the second TSV may be coupled to a first input of the phase detector, and a second input of the phase detector may be coupled to the predetermined signal output. The phase detector may be configured to determine a phase difference between signals at the first and the second inputs. In this IC, a defective TSV can be identified and segregated with a redundant TSV. This IC facilitates efficient fault correction and signal routing in the IC. |
US11114412B2 |
Electronic package and method for fabricating the same
An electronic package is provided, including: a first carrying structure having a first circuit layer; a package module disposed on the first carrying structure and electrically connected to the first circuit layer; a first electronic component disposed on the first carrying structure and electrically connected to the first circuit layer; and a second electronic component stacked on and electrically connected to the first electronic component. As the second electronic component is stacked with the first electronic component, a surface area of the first carrying structure that the first and second electronic components occupy is reduced, and the electronic package can have sufficient space to accommodate the package modules. A method for fabricating an electronic package is also provided. |
US11114409B2 |
Chip on wafer on substrate optoelectronic assembly and methods of assembly thereof
Examples herein relate to optoelectronic assemblies. In particular, implementations herein relate to an optoelectronic assembly formed via a chip on wafer on substrate (CoWoS) process. The optoelectronic assembly includes a substrate, an interposer, and an electronic integrated circuit (EIC). Each of the substrate, interposer, and EIC includes opposing first and second sides. The EIC is flip-chip assembled to the first side of the interposer, and the interposer with the EIC assembled thereto is flip-chip assembled to the first side of the substrate. An overmold layer extends over the first side of the interposer and encapsulates the EIC. The overmold layer includes a cavity such that a region of the first side of the interposer is exposed. An optical component is positioned within the cavity and coupled to the first side of the interposer. |
US11114408B2 |
System and method for providing 3D wafer assembly with known-good-dies
Systems and methods for providing 3D wafer assembly with known-good-dies are provided. An example method compiles an index of dies on a semiconductor wafer and removes the defective dies to provide a wafer with dies that are all operational. Defective dies on multiple wafers may be removed in parallel, and resulting wafers with all good dies stacked in 3D wafer assembly. In an implementation, the spaces left by removed defective dies may be filled at least in part with operational dies or with a fill material. Defective dies may be replaced either before or after wafer-to-wafer assembly to eliminate production of defective stacked devices, or the spaces may be left empty. A bottom device wafer may also have its defective dies removed or replaced, resulting in wafer-to-wafer assembly that provides 3D stacks with no defective dies. |
US11114403B2 |
Semiconductor device and method of manufacturing semiconductor device
A semiconductor device includes a first chip including a first substrate, a first cell array, a first metal wire, and a first bonding structure, wherein the first bonding structure includes a first through portion that passes through the first metal wire and a first bonding portion that is formed in the first substrate, and a second chip, bonded to the first chip, including a second substrate, a second cell array, a second metal wire, and a second bonding structure, wherein the second bonding structure includes a second through portion that passes through the second metal wire and a second bonding portion that is formed in the second substrate, and bonded to the first chip. The first bonding portion of the first chip is configured to be bonded to the second through portion of the second chip. |
US11114398B2 |
Integrated circuit device including support patterns and method of manufacturing the same
An integrated circuit (IC) device includes a lower electrode formed on a substrate, and an upper support structure disposed around the lower electrode and supporting the lower electrode. The upper support structure includes an upper support pattern surrounding the lower electrode and extending in a lateral direction parallel to the substrate, the upper support pattern having a hole through which the lower electrode passes, and an upper spacer support pattern between the upper support pattern and the lower electrode inside the hole and having an outer sidewall in contact with the upper support pattern and an inner sidewall in contact with the lower electrode, wherein a width of the upper spacer support pattern in the lateral direction decreases in a direction toward the substrate. To manufacture an IC device, an upper support pattern is formed on a substrate. An upper spacer support film is formed to cover a sidewall and a top surface of the upper support pattern. A plurality of lower electrodes are formed inside a plurality of holes formed in the upper support pattern. Portions of the upper spacer support film are removed to form a plurality of upper spacer support patterns between the upper support pattern and the lower electrodes, respectively. |
US11114396B2 |
Reduced-length bond pads for broadband power amplifiers
In a transistor formed on a semiconductor die mounted on a substrate, where the transistor output is connected to a circuit on the substrate, a bond pad electrically connected to a transistor drain finger manifold extends less than the full length of the manifold. By controlling the length of the bond pad, the parasitic capacitance it contributes may be controlled. In applications such as a Doherty amplifier, this parasitic capacitance forms part of the quarter-wave transmission line of an impedance inverter, and hence directly impacts amplifier performance. In particular, by reducing the parasitic capacitance contribution from transistor output bond pads, the bandwidth of a Doherty amplifier circuit may be improved. At GHz frequencies and with state of the art transistor device feature sizes, concerns about phase mismatch between drain finger outputs are largely moot. |
US11114392B2 |
Wireless communication device
A wireless communication device that includes a first electrode connected to a first terminal electrode of an RFIC element and a second electrode connected to a second terminal electrode of the RFIC element. Moreover, the first electrode has a longitudinal direction and a lateral direction and has a first portion connected to the first terminal electrode and a second portion that faces the first portion and the second electrode. The first portion has an extended portion that extends in the longitudinal direction beyond a connection point between the second electrode and the second terminal electrode. |
US11114391B2 |
Antenna package structure and antenna packaging method
The present disclosure provides an antenna package structure and an antenna packaging method. The package structure includes a rewiring layer, wherein the rewiring layer comprises a first dielectric layer and a first metal wiring layer in the first dielectric layer; metal connecting column, formed on the first metal wiring layer of the rewiring layer; a packaging layer, disposed on the rewiring layer, an antenna metal layer, formed on the packaging layer, an antenna circuit chip, bonded to the first metal layer of the rewiring layer, and electrically connected to the antenna metal layer through the metal connecting column; and a metal bump, formed on the first metal wiring layer of the rewiring layer, to achieve electrical lead-out of the rewiring layer. |
US11114388B2 |
Warpage control for microelectronics packages
Techniques for reducing warpage for microelectronic packages are provided. A warpage control layer or stiffener can be attached to a bottom surface of a substrate or layer that is used to attach the microelectronics package to a motherboard. The warpage control layer can have a thickness approximately equal to a thickness of a die of the microelectronics package. A coefficient of thermal expansion of the warpage control layer can be selected to approximately match a CTE of the die. The warpage control layer can be formed from an insulating material or a metallic material. The warpage control layer can comprise multiple materials and can include copper pillar segments to adjust the effective CTE of the warpage control layer. The warpage control layer can be positioned between the microelectronics package and the motherboard, thereby providing warpage control without contributing to the z-height of the microelectronics package. |
US11114384B2 |
Oxide-peeling stopper
A power semiconductor die has a semiconductor body, an insulation layer on the semiconductor body, a passivation structure arranged above the insulation layer so as to expose a first insulation layer subsection that extends to an edge of the power semiconductor die, and an interruption structure in the first insulation layer subsection. |
US11114383B2 |
Semiconductor devices having integrated optical components
Semiconductor devices having optical routing layers, and associated systems and methods, are disclosed herein. In one embodiment, a method of manufacturing a semiconductor device includes forming conductive pads on a first side of a substrate and electrically coupled to conductive material of vias extending partially through the substrate. The method further includes removing material from a second side of the substrate so that the conductive material of the vias projects beyond the second side of the substrate to define projecting portions of the conductive material. The method also includes forming an optical routing layer on the second side of the substrate and at least partially around the projecting portions of the conductive material. |
US11114380B2 |
Manufacturing method of memory device
A memory device and a manufacturing method thereof are provided. The memory device includes a word line, a bit line, an active region and a bit line contact structure. The word line is disposed in the substrate, and extends along a first direction. The bit line is disposed over the substrate, and extends along a second direction. The active region is disposed in the substrate, and extends along a third direction. The bit line contact structure is disposed between the active region and the bit line. A top view pattern of the bit line contact structure has a long axis. An angle between the extending direction of this long axis and the third direction is less than an angle between the extending direction of this long axis and the first direction, and is less than an angle between the extending direction of this long axis and the second direction. |
US11114373B1 |
Metal-insulator-metal structure
Semiconductor devices, integrated circuits and methods of forming the same are provided. In one embodiment, a semiconductor device includes a metal-insulator-metal structure which includes a bottom conductor plate layer including a first opening and a second opening, a first dielectric layer over the bottom conductor plate layer, a middle conductor plate layer over the first dielectric layer and including a third opening, a first dummy plate disposed within the third opening, and a fourth opening, a second dielectric layer over the middle conductor plate layer, and a top conductor plate layer over the second dielectric layer and including a fifth opening, a second dummy plate disposed within the fifth opening, a sixth opening, and a third dummy plate disposed within the sixth opening. The first opening, the first dummy plate, and the second dummy plate are vertically aligned. |
US11114368B2 |
Base material, mold package, base material manufacturing method, and mold package manufacturing method
A base material includes one surface, and a side surface continuous with the one surface. Each of the one surface and the side surface has a sealed region to be sealed with mold resin. The one surface has a one surface rough region in the sealed region thereof. The side surface has a side surface rough region in the sealed region thereof. |
US11114366B2 |
Semiconductor structure with buried conductive line and method for forming the same
A semiconductor structure is provided. The semiconductor structure includes a first well region over a substrate, and an isolation structure over the first well region. The semiconductor structure also includes a first transistor over the first well region, and a first buried conductive line over the first well region and electrically connected to a source structure of the first transistor. A top surface of the first buried conductive line is substantially level with or lower than a top surface of the isolation structure. |
US11114362B2 |
Stacked semiconductor package having heat dissipation structure
A stacked semiconductor package includes a first die, a second die stacked on a surface of the first die, a heat dissipation layer disposed on the surface, a heat insulation layer disposed on the surface to cover the heat dissipation layer and the first die, a heat sink disposed on the second die, and a heat conduction structure spaced apart from the second die in a lateral direction on the surface to connect the heat dissipation layer to the heat sink. |
US11114361B2 |
Electronics assemblies and methods of manufacturing electronics assemblies with improved thermal performance
Electronics assemblies and methods of manufacturing electronics assemblies having improved thermal performance. One example of these electronics assemblies includes a printed circuit board (PCB), an integrated circuit package mounted to the PCB, the integrated circuit packing having a heat generating component, and a heat spreader soldered to the PCB such that the heat spreader is thermally coupled to the heat generating component of the integrated circuit package to dissipate heat generated by the heat generating component. |
US11114359B2 |
Wafer level chip scale package structure
At least one redistribution layer (RDL) is provided on a silicon die. A passivation layer is deposited on the RDL. First openings having a first diameter are etched in the passivation layer where copper posts are to be formed. A seed layer is deposited over the passivation layer and within the openings. A photoresist layer is coated on the seed layer and patterned to form second openings having a second diameter over the first openings larger than the first diameter. Copper is plated on the seed layer to form copper posts filling the second openings. The silicon die is die attached to a metal substrate. A lamination layer is coated over the silicon die and the copper posts. Third openings are formed through the lamination layer to the copper posts and to metal pads on the metal substrate. Metal vias are formed in the third openings. |
US11114356B2 |
Glass substrate and laminated substrate
The present invention provides a glass substrate in which in a step of sticking a glass substrate and a silicon-containing substrate to each other, bubbles hardly intrude therebetween. The present invention relates to a glass substrate for forming a laminated substrate by lamination with a silicon-containing substrate, having a warpage of 2 μm to 300 μm, and an inclination angle due to the warpage of 0.0004° to 0.12°. |
US11114354B2 |
Printed wiring board, printed circuit board, prepreg
A printed wiring board includes: an inner insulating layer including a conductive wire; a first outermost insulating layer disposed on a first surface of the inner insulating layer; and a second outermost insulating layer disposed on a second surface of the inner insulating layer. A bending elastic modulus of each of the first outermost insulating layer and the second outermost insulating layer ranges from ¼ to ¾, inclusive, of a bending elastic modulus of the inner insulating layer. A glass transition temperature of each of the first outermost insulating layer and the second outermost insulating layer falls within ±20° C. of a glass transition temperature of the inner insulating layer. |
US11114352B2 |
Process monitor circuitry with measurement capability
A process monitor circuitry is described that can measure the electron mobility (μ), oxide capacitance (Cox) and threshold voltage (Vth) of an integrated circuit. |
US11114351B2 |
Dummy element and method of examining defect of resistive element
A dummy element includes: a semiconductor substrate; a lower insulating film deposited on the semiconductor substrate; a first resistive layer deposited on the lower insulating film; an interlayer insulating film covering the first resistive layer; a first pad-forming electrode deposited on the interlayer insulating film so as to be connected to the first resistive layer, and including an extending portion to be in Schottky contact with the semiconductor substrate; a relay wire connected to the first resistive layer and connected to the semiconductor substrate with an ohmic contact; and a counter electrode allocated under the semiconductor substrate, the dummy element simulating a defective state in the lower insulating film and the interlayer insulating film immediately under the first pad-forming electrode included in a corresponding resistive element as a target to be examined. |
US11114349B2 |
System and method for allowing restoration of first interconnection of die of power module
The present invention concerns a system for allowing the restoration of a first interconnection of a die of a power module connecting the die to an electric circuit. The system comprises: at least one other interconnection of the power module, a periodic current source that is connected to the at least one other interconnection for generating a periodic current flow through the at least one other interconnection in order to reach, in at least a part of the first interconnection, a predetermined temperature during a predetermined time duration. The present invention concerns also the associated method. |
US11114341B2 |
Laser processing method
A laser processing method for a substrate with a device formed on a front surface thereof and including an electrode pad, the method including: a laser beam applying step of applying the laser beam to the back surface of the substrate to form a fine hole in the substrate at a position corresponding to the electrode pad; a detecting step of detecting first plasma light emitted from the substrate at the same time that the fine hole is formed in the substrate by the laser beam applied thereto, and second plasma light emitted from the electrode pad; and a laser beam irradiation finishing step of stopping application of the laser beam when the second plasma light is detected in the detecting step. A peak power density of the laser beam to be applied is set in a range from 175 GW/cm2 or less to 100 GW/cm2 or more. |
US11114340B2 |
Method for producing an interconnection comprising a via extending through a substrate
The invention relates to a method for producing an interconnection comprising a via (V) extending through a substrate (1), said method successively comprising: (a) the deposition of a layer (11) of titanium nitride or tantalum nitride on a main surface (1A) of the substrate and on the inner surface (10A, 10B) of at least one hole (10) extending into at least part of the thickness of said substrate; (b) the deposition of a layer (12) of copper on said layer (11) of titanium nitride or tantalum nitride; and (c) the filling of the hole (10) with copper, said method being characterized in that, during step (a), the substrate (1) is arranged in a first deposition chamber (100), and in that said step (a) comprises the injection of a titanium or tantalum precursor in a gaseous phase into the deposition chamber via a first injection path according to a first pulse sequence, and the injection of a nitrogen-containing reactive gas into the deposition chamber via a second injection path different from the first injection path according to a second pulse sequence, the first pulse sequence and the second pulse sequence being dephased. |
US11114330B2 |
Substrate support having customizable and replaceable features for enhanced backside contamination performance
A workpiece support has a support surface where one or more standoffs are selectively removably coupled to the support surface. The one or more standoffs are operable to support a workpiece at a predetermined standoff distance from the support surface. A gap may be defined between the support surface and the workpiece. The one or more standoffs may be an electrically insulative film, such as a polyimide film that is selectively removably coupled to the support surface by an adhesive. The workpiece support may be an electrostatic chuck (ESC). Electrodes positioned below the support surface may electrostatically attract the workpiece toward the support, where a gas may be introduced in the gap. |
US11114328B2 |
Devices, systems and methods for electrostatic force enhanced semiconductor bonding
Various embodiments of microelectronic devices and methods of manufacturing are described herein. In one embodiment, a method for enhancing wafer bonding includes positioning a substrate assembly on a unipolar electrostatic chuck in direct contact with an electrode, electrically coupling a conductor to a second substrate positioned on top of the first substrate, and applying a voltage to the electrode, thereby creating a potential differential between the first substrate and the second substrate that generates an electrostatic force between the first and second substrates. |
US11114327B2 |
ESC substrate support with chucking force control
Embodiments described herein provide methods and apparatus used to reduce or substantially eliminate undesirable scratches to the non-active surface of a substrate by monitoring and controlling the deflection of a substrate, and thus the contact force between the substrate and a substrate support, during substrate processing. In one embodiment a method for processing a substrate includes positioning the substrate on a patterned surface of a substrate support, where the substrate support is disposed in a processing volume of a processing chamber, applying a chucking voltage to a chucking electrode disposed in the substrate support; flowing a gas into a backside volume disposed between the substrate and the substrate support, monitoring a deflection of the substrate, and changing a chucking parameter based on the deflection of the substrate. |
US11114326B2 |
Substrate chucking and dechucking methods
Methods for chucking and de-chucking a substrate from an electrostatic chucking (ESC) substrate support to reduce scratches of the non-active surface of a substrate include simultaneously increasing a voltage applied to a chucking electrode embedded in the ESC substrate support and a backside gas pressure in a backside volume disposed between the substrate and the substrate support to chuck the substrate and reversing the process to de-chuck the substrate. |
US11114325B2 |
Fume-removing device
The present invention relates to an apparatus for removing fume which includes, a wafer cassette for stacking wafers; and an exhaust for exhausting the fume of the wafers stacked in the wafer cassette, wherein the wafer cassette includes stacking shelves provided at both sides for stacking wafers; and a front opening for incoming and outgoing of the wafers which are being stacked in the stacking shelf, wherein the stacking shelves include multiple inclined ramp portions which are slanted towards the wafers stacked in the stacking shelves as they travel towards the front opening, wherein a purge gas outlet is provided in the inclined ramp portion for supplying purge gas for the wafers stacked in the stacking shelves. According to the present invention, the residual process gases on wafers can be removed efficiently. |
US11114323B2 |
Vehicle
A vehicle includes one or more travel portions each configured to travel along a rail track, a travel controller configured to perform an image recognition to determine a shape of a portion of the rail track based on an image captured by an imaging device supported by the vehicle and to control the one or more travel portions based on a result of the image recognition, an information obtaining portion configured to obtain position information of each of a plurality of locations that the vehicle travels past as a result of traveling along the rail track, and to obtain the order in which the vehicle travels past such plurality of locations, and memory configured to store information obtained by the information obtaining portion. |
US11114322B2 |
Mold and transfer molding apparatus
According to one embodiment, a mold includes a substrate clamping surface, a cavity, a suction part, a vent, an intermediate cavity, and an opening/closing part. The substrate clamping surface contacts a surface of a processing substrate. The cavity is recessed from the substrate clamping surface. The suction part is recessed from the substrate clamping surface. The vent is provided on a path between the cavity and the suction part, communicates with the cavity, is recessed from the substrate clamping surface to a vent depth. The intermediate cavity is provided between the vent and the suction part on the path, communicates with the vent, and is recessed from the substrate clamping surface to an intermediate cavity depth deeper than the vent depth. The opening/closing part opens and closes the path and is provided between the intermediate cavity and the suction part on the path. |
US11114311B2 |
Chip package structure and method for forming the same
A method for forming a chip package structure is provided. The method includes forming a conductive structure over a substrate. The substrate includes a dielectric layer and a wiring layer in the dielectric layer, and the conductive structure is electrically connected to the wiring layer. The method includes forming a first molding layer over the substrate and surrounding the conductive structure. The method includes forming a redistribution structure over the first molding layer and the conductive structure. The method includes bonding a chip structure to the redistribution structure. |
US11114308B2 |
Controlling of height of high-density interconnection structure on substrate
An interconnection layer carrying structure for transferring an interconnection layer onto a substrate is disclosed. The interconnection layer carrying structure includes a support substrate, a release layer on the support substrate; and an interconnection layer on the release layer. The interconnection layer includes an organic insulating material and a set of pads embedded in the organic insulating material. The set of the pads is configured to face towards the support substrate. The support substrate has a base part where the interconnection layer is formed and an extended part extending outside the base part. |
US11114306B2 |
Methods for depositing dielectric material
Embodiments of the present invention provide an apparatus and methods for depositing a dielectric material using RF bias pulses along with remote plasma source deposition for manufacturing semiconductor devices, particularly for filling openings with high aspect ratios in semiconductor applications. In one embodiment, a method of depositing a dielectric material includes providing a gas mixture into a processing chamber having a substrate disposed therein, forming a remote plasma in a remote plasma source and delivering the remote plasma to an interior processing region defined in the processing chamber, applying a RF bias power to the processing chamber in pulsed mode, and forming a dielectric material in an opening defined in a material layer disposed on the substrate in the presence of the gas mixture and the remote plasma. |
US11114302B2 |
Substrate processing apparatus and substrate processing method
A substrate processing apparatus includes an upper cup part including a first tubular portion and a second tubular portion that are formed each in a tubular shape capable of surrounding a substrate held by a substrate holder, the second tubular portion being connected to an upper side of the first tubular portion. The substrate processing apparatus also includes a cup moving unit that moves the upper cup part in a vertical direction with respect to the substrate holder to stop the upper cup part at each of a position where the first tubular portion surrounds the substrate, and a position where the second tubular portion surrounds the substrate. |
US11114301B2 |
Semiconductor device and manufacturing method thereof
A semiconductor device includes a semiconductor substrate, a gate structure, and source/drain regions. The gate structure comprises an yttrium oxide layer over the semiconductor substrate, an aluminum oxide layer over the yttrium oxide layer, and a gate electrode on the aluminum oxide layer. The source/drain regions are on the semiconductor substrate and on opposite sides of the gate structure. |
US11114298B2 |
Light generator including debris shielding assembly, photolithographic apparatus including the light generator, and method of manufacturing integrated circuit device using the photolithographic apparatus
A method of manufacturing an integrated circuit (IC) device includes forming a photoresist layer on a substrate, and exposing the photoresist layer to light by using a photolithographic apparatus including a light generator. The light generator includes a chamber having a plasma generation space, an optical element in the chamber, and a debris shielding assembly between the optical element and the plasma generation space in the chamber, and the debris shielding assembly includes a protective film facing the optical element and being spaced apart from the optical element with a protective space therebetween, the protective space including an optical path, and a protective frame to support the protective film and to shield the protective space from the plasma generation space. |
US11114295B2 |
Epitaxial silicon carbide single crystal wafer and process for producing the same
An epitaxial silicon carbide single crystal wafer having a small depth of shallow pits and having a high quality silicon carbide single crystal thin film and a method for producing the same are provided. The epitaxial silicon carbide single crystal wafer according to the present invention is produced by forming a buffer layer made of a silicon carbide epitaxial film having a thickness of 1 μm or more and 10 μm or less by adjusting the ratio of the number of carbon to that of silicon (C/Si ratio) contained in a silicon-based and carbon-based material gas to 0.5 or more and 1.0 or less, and then by forming a drift layer made of a silicon carbide epitaxial film at a growth rate of 15 μm or more and 100 μm or less per hour. According to the present invention, the depth of the shallow pits observed on the surface of the drift layer can be set at 30 nm or less. |
US11114294B2 |
Structure including SiOC layer and method of forming same
A method for forming a layer comprising SiOC on a substrate is disclosed. An exemplary method includes selectively depositing a layer comprising silicon nitride on the first material relative to the second material and depositing the layer comprising SiOC overlying the layer comprising silicon nitride. |
US11114292B2 |
Segmented linear ion trap for enhanced ion activation and storage
A linear ion trap system includes a linear ion trap having at least two discrete trapping regions for processing ions. An RF electrical potential generator produces two RF waveforms applied to a pair of pole electrodes of the linear ion trap forming a RF trapping field component to trap ions radially. A multi-output DC electrical potential generator produces a first set of multiple DC field components superimposed to the RF trapping field component and distributed across the length of the linear ion trap to control ions axially. A control unit is configured to switch the DC electrical potentials and DC field components collectively forming a first trapping region of the at least two discrete trapping regions that is populated with ions to alter ion potential energy from a first level to a second level, and to enable at least a first ion processing step in at least one of the first and second levels. |
US11114288B2 |
Physical vapor deposition apparatus
Methods and apparatus for physical vapor deposition are provided. The apparatus, for example, includes A PVD apparatus that includes a chamber including a chamber wall; a magnetron including a plurality of magnets configured to produce a magnetic field within the chamber; a pedestal configured to support a substrate; and a target assembly comprising a target made of gold and supported on the chamber wall via a backing plate coupled to a back surface of the target so that a front surface of the target faces the substrate, wherein a distance between a back surface formed in a recess of the backing plate and a bottom surface of the plurality of magnets is about 3.95 mm to about 4.45 mm, and wherein a distance between the front surface of the target and a front surface of the substrate is about 60.25 mm to about 60.75 mm. |
US11114282B2 |
Phased array modular high-frequency source
Embodiments described herein include a modular high-frequency emission source comprising a plurality of high-frequency emission modules and a phase controller. In an embodiment, each high-frequency emission module comprises an oscillator module, an amplification module, and an applicator. In an embodiment, each oscillator module comprises a voltage control circuit and a voltage controlled oscillator. In an embodiment, each amplification module is coupled to an oscillator module, in an embodiment, each applicator is coupled to an amplification module. In an embodiment, the phase controller is communicatively coupled to each oscillator module. |
US11114278B2 |
Power supply device for plasma, plasma device, and method for controlling power supply device for plasma
A plasma power supply device includes an AC power supply configured to generate an AC voltage of a predetermined frequency for application to a pair of electrodes by way of a power supply harness which is replaceable partially or wholly to change a wiring length and which is flexible, and a control section configured to set the predetermined frequency of the AC power supply so that the frequency becomes lower as the power supply harness becomes longer. |
US11114274B2 |
Method and system for testing an integrated circuit
A method for analyzing an integrated circuit includes: applying an electric test pattern to the IC; delivering a stream of primary electrons to a back side of the IC on an active region to a transistor of interest, the active region including active structures such as transistors of the IC; detecting light resulting from cathodoluminescence initiated by secondary electrons in the IC; and analyzing the detected light regarding a correlation with the electric test pattern applied to the IC. A system for analyzing an IC is provided. |
US11114273B2 |
Screening method and apparatus for detecting an object of interest
The invention relates to a screening method. The method comprises the step of providing a sample, wherein said sample comprises a sample carrier with a surface structure, as well as an object of interest. The method further comprises the step of acquiring an image of said sample. According to the disclosure, the method comprises the steps of providing information on said surface structure of said sample carrier, which may in particular comprise the step of acquiring an image of said sample carrier. In that case two images are obtained: one more sensitive to the objects of interest, and one more sensitive to the surface structure of the sample carrier. This allows manipulation of the acquired image, using said information on the surface structure of the sample carrier. With this, said manipulated image may be screened for easy and reliable detection of said object of interest. |
US11114270B2 |
Scanning magnet design with enhanced efficiency
A scanning magnet is positioned downstream of a mass resolving magnet of an ion implantation system and is configured to control a path of an ion beam downstream of the mass resolving magnet for a scanning or dithering of the ion beam. The scanning magnet has a yoke having a channel defined therein. The yoke is ferrous and has a first side and a second side defining a respective entrance and exit of the ion beam. The yoke has a plurality of laminations stacked from the first side to the second side, wherein at least a portion of the plurality of laminations associated with the first side and second side comprise one or more slotted laminations having plurality of slots defined therein. |
US11114269B2 |
Bremsstrahlung target for radiation therapy system
Described herein is a medical linear accelerator including an accelerator target structure constructed of a material having a thickness of less than 0.2 radiation lengths, and an accelerator structure to receive an electromagnetic wave and generate an output therapy dose rate of electrons having a beam energy between 4-25 mega-electronvolts (MeV). |
US11114268B2 |
X-ray generating tube, X-ray generating apparatus, and radiography system
The present disclosure provides a reliable X-ray generating tube that forms a focus with a stable size and shape. The X-ray generating tube includes an electron gun including an electron emitting portion, a plurality of grid electrodes, and an insulating support member that supports the plurality of grid electrodes. The electron gun includes a conductive section that hides the insulating support member to prevent the insulating support member from being directly viewed from an electron through path of electrons emitted from the electron emitting portion and passing through the grid electrodes. |
US11114264B2 |
Insertion structure between static spring and bobbin
The present disclosure relates to an insertion structure between a stationary spring and a bobbin, comprising: a stationary spring and a bobbin; wherein the stationary spring is inserted into the bobbin by a flip-chip method, and the bobbin is provided with slots, each having a groove shape with a laterally open in formed by an L-shaped side wall connecting with a convex wall, and each of two sides of the stationary spring is provided with a convex part, and two convex parts of the stationary spring are respectively fitted into the two opposite slots; a first blocking wall is provided along a horizontally extending direction of protruding of the convex wall, and a second blocking wall is further provided between the first blocking wall and the L-shaped side wall to connect them, and the convex parts of the stationary spring are mounted. |
US11114260B2 |
Scissor-leg structural key and its switch device, and a keyboard applying the key
A switch device, having a reset assistant part arranged at the second end of a male leg, and a ram; the reset assistant part being provided with a holding station, both sidewalls of which are each provided with a saddle, both sides of the ram being provided, with a cam matching with the saddle, the ram is hung from the saddle through two cams. Accordingly, a photoelectrical type switch of scissor-leg structure is realized, and the key is enabled to have an obvious stage sense and sound. |
US11114258B2 |
Switching apparatus for carrying and disconnecting electric currents, and switchgear having a switching apparatus of this kind
A switching apparatus for carrying and disconnecting electric currents includes: a first mechanical contact arrangement; a second mechanical contact arrangement which is connected in series with the first mechanical contact arrangement; a semiconductor switch which is connected in parallel to the first mechanical contact arrangement; a switching electronics system for switching on and switching off the semiconductor switch; and a control circuit for ascertaining a voltage across the first mechanical contact arrangement as an ascertained voltage and generating an actuation signal for the switching electronics system, which actuation signal switches on the semiconductor switch, depending on the ascertained voltage. During a switching process, the switching apparatus closes the two mechanical contact arrangements with a time delay in relation to one another. |
US11114257B2 |
Methods and apparatus for DC arc detection/suppression
Some embodiments are directed to an apparatus for detecting and suppressing DC electric arcs at a component, and are particularly adapted for vehicle wiring harnesses. The apparatus can include a detector circuit electrically connected to input and output terminals so as to be electrically connected in parallel to the component, the detector circuit being configured to detect a significant voltage spike across the component upon the component actuating between open and closed positions. The detector circuit can also be configured to transmit a control signal upon detecting the significant voltage spike. The detector circuit can include multiple circuit elements, enabling both the detection of the significant voltage spike and the transmission of the control signal, that are directly electrically connected to each other. A switching circuit conducts electricity from the power source side of the component to the load side of the component upon receipt of the control signal. |
US11114255B2 |
Anti-rebounding lever within a switching device
An electrical switching device with separable contacts includes a switching apparatus including a fixed electrical contact and a mobile electrical contact that can be moved between a closing position and an opening position; a control lever mechanically coupled to the mobile electrical contact, the control lever being rotatable, about a first axis of rotation, between a first position and a second position; an anti-rebound lever arranged so as to move from a rest position to an opened-out position when the control lever reaches the second position. The anti-rebound lever engages a stop when it is in the opened-out position thereof and when the control lever is in the second position so as to prevent the control lever from leaving the second position. |
US11114254B2 |
Silver-graphene tungsten material electrical contact tips of a low voltage circuit breaker
A circuit breaker including at least two contact tip that comprise an electrical contact material comprising silver (Ag) and tungsten (W). The contact tip further comprises a graphene material (Gr) additively mixed in Ag as being denoted as AgGr0.3% or AgGr0.5% which is mixed with tungsten (W) to form (AgGr0.3)W50 or (AgGr0.5)W50 called a silver-graphene tungsten composite material. |
US11114251B2 |
Polymer, method for preparing the same and solar cell comprising the polymer
The present invention provides a polymer, a method for preparing the same, and a solar cell comprising the polymer having a structure represented by Formula I, the polymer has excellent interface-modified property, water resistance and/or excellent electron-transporting property, and thus can be effectively used to prepare solar cells. The polymer not only can significantly improve the hydrophobic property of the thin film surface of the solar cell, thereby protecting the intermediate active layer of the cell from moisture in the air so as to improve the lifetime of the cell device, but also can be used for large-area processing to prepare a flexible cell device. |
US11114245B2 |
Ceramic dielectric and method of manufacturing the same and ceramic electronic component and electronic device
A method of manufacturing a ceramic dielectric, including: heat-treating a barium precursor or a strontium precursor, a titanium precursor, and a donor element precursor to obtain a conducting or semiconducting oxide, preparing a mixture including the conducting or semiconducting oxide and a liquid-phase acceptor element precursor, and sintering the mixture to form a ceramic dielectric, wherein the ceramic dielectric includes a plurality of grains and a grain boundary between adjacent grains, and wherein the plurality of grains including an insulating oxide comprising an acceptor element derived from the acceptor element precursor. |
US11114240B2 |
Multilayer electronic component
A multilayer electronic component includes a body comprising dielectric layers, and first and second internal electrode layers alternately stacked in a stacking direction with respective dielectric layers interposed therebetween. The first internal electrode layer includes first and second internal electrodes arranged with a first spacer interposed therebetween, and the second internal electrode layer includes third and fourth internal electrodes arranged with a second spacer interposed therebetween. |
US11114239B2 |
Electronic device, device package, and method of fabrication
A device includes a leadframe and an electronic component. The leadframe includes a first leadframe element having a first surface and a second leadframe element adjacent to the first leadframe element, the first and second leadframe elements being separate from one another, the second leadframe element having a second surface. A first flange extends from a first outer edge of the first leadframe element and extends away from the first surface of the first leadframe element. A second flange extends from a second outer edge of the second leadframe element and extends away from the second surface of the second leadframe element. The electronic component is coupled to the first and second surfaces of the first and second leadframe elements such that the first and second flanges are located at opposing first and second sidewalls of the electronic component. |
US11114238B2 |
Multilayer substrate, structure of multilayer substrate mounted on circuit board, method for mounting multilayer substrate, and method for manufacturing multilayer substrate
A multilayer substrate includes a lamination body including first and second resin substrates and a bonding layer that are hot-pressed. The first resin substrate includes a first surface provided with a first conductor pattern including a surface defined by a plated film, and a second surface provided with a second conductor pattern including a surface defined by a plated film. The second resin substrate includes a third surface provided with a third conductor pattern including a surface defined by a plated film, and a fourth surface provided with a fourth conductor pattern including a surface defined by a plated film. The first conductor pattern is located closer to a first outermost layer than the second conductor pattern. T1 |
US11114236B2 |
Band feeding process and system as well as plant for the production of laminated cores for transformers
A band feeding process, a band feeding system and a plant for the production of cores with stacked grain-oriented laminations for transformers are disclosed. The plant includes a processing unit to cut a band made of a ferromagnetic metal material, in particular made of magnetic silicon steel, so as to obtain one or more laminations. The processing unit includes an input, and the plant includes a feeding system having plurality of feeding stations. Each feeding station is configured to feed a respective band to the input. |
US11114235B2 |
Magnetic coupling coil component
A magnetic coupling coil component includes: a main body including a first region, a second region disposed on a top side of the first region, and a third region disposed on a bottom side of the first region; a top-side coil conductor provided in the second region of the main body and wound around a coil axis extending in a top-bottom direction; and a bottom-side coil conductor provided in the third region of the main body and wound around the coil axis. The top-side coil conductor includes a plurality of top-side conductive patterns, and the plurality of top-side conductive patterns include a first top-side conductive pattern which is positioned closest to the first region among the plurality of top-side conductive patterns, and a number of turns of the first top-side conductive pattern is larger than an average of numbers of turns of the plurality of top-side conductive patterns. |
US11114234B2 |
Transformer arrangement and method for controlling pressure in a liquid-filled transformer
A transformer including a transformer tank, an expansion tank, and piping connecting the tanks enabling liquid to flow there between. The piping includes a valve configured for liquid to flow from the transformer to the expansion tank when the pressure is above a predefined first threshold and for preventing the liquid to flow from the transformer to the expansion tank when the pressure is below the first threshold. The valve is also configured for liquid to flow from the expansion to the transformer tank when the pressure is below a predefined second threshold and for preventing the liquid to flow from the expansion to the transformer tank when the pressure is above the predefined second threshold. |
US11114232B2 |
Inductor assemblies
An inductor assembly includes a coil including a spirally wound metal foil. |
US11114230B2 |
Monitoring device for cryogenic device
A monitoring device for use in a cryogenic system. The monitoring device comprises first and second conducting elements and a current detector. The first conducting element comprises high temperature superconducting, HTS, material and is configured for connection to a current source and insertion into the cryogenic system. The second conducting element comprises HTS material and is connected in parallel to the first conducting element by first and second joints. The current detector is configured to detect a current in the second conducting element. When the HTS material in each of the first and second conducting elements is in a superconducting state, the resistance, RT, of the first conducting element between the first and second joints, is less than the sum, RB, of the resistance of the second conducting element between the first and second joints and the resistances of the first and second joints. |
US11114227B2 |
Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
A non-oriented electrical steel sheet has low iron loss even under inverter excitation and can be suitably used as the iron core of a motor. The non-oriented electrical steel sheet has a specific chemical composition and an average grain size r of 40 μm to 120 μm. An area ratio R of a total area of grains having a grain size of ⅙ or less of the thickness of the steel sheet to a cross-sectional area of the steel sheet is 2% or greater, and the average grain size r (μm) and the area ratio R (%) satisfy a condition represented by Expression (1), R>−2.4×r+200 (1). |
US11114224B2 |
Magnet material, permanent magnet, motor, and power generator
A magnet material of an embodiment includes a composition represented by a formula 1: (Fe1-x-yCoxTy)2(B1-aAa)b, and a metallic structure having a CuAl2 crystal phase as a main phase. T is at least one element selected from V, Cr, and Mn. A is at least one element selected from C, N, Si, S, P, and Al. An atomic ratio x of Co and an atomic ratio y of the element T satisfy 0.01≤y≤0.5 and x+y≤0.5. When the element T includes at least one element selected from V and Cr, a total atomic ratio of V and Cr is 0.03 or more. When the element T includes Mn, an atomic ratio of Mn is 0.3 or less. An atomic ratio a of the element A satisfies 0≤a≤0.4. A total atomic ratio b of B and the element A satisfies 0.8≤b≤1.2. |
US11114222B2 |
Resistive element and method of manufacturing the same
A resistive element includes: a semiconductor substrate; a field insulating film deposited on the semiconductor substrate; a plurality of resistive layers separately deposited on the field insulating film; an interlayer insulating film deposited to cover the field insulating film and the resistive layers; a pad-forming electrode deposited on the interlayer insulating film, and electrically connected to one edges of the resistive layers; a relay wire deposited on the interlayer insulating film separately from the pad-forming electrode, and including a first terminal electrically connected to another edges of the resistive layers and a second terminal provided so as to form an ohmic contact to the semiconductor substrate; and a rear surface electrode provided under the semiconductor substrate to form an ohmic contact to the semiconductor substrate, wherein the resistive element uses, as a resistor, an electric channel between the pad-forming electrode and the rear surface electrode. |
US11114221B2 |
Interlocking insulator and conductor cover for electrical distribution systems
A dielectric cover for an insulator and conductor in an electrical distribution includes an insulator cover for covering the insulator, an arm for covering a portion of the conductor extending from under the insulator cover, and an arm adapter for securing the arm to the insulator cover. The arm adapter has a raised outer first rib, and the arm has a raised outer second rib and an inner first groove. The lineman positions the insulator cover and arm adapter over the insulator, such as by using a hotstick. Then, the lineman slides the arm down over the arm adapter so that the first rib enters the first groove to secure the arm to the arm adapter. Retaining pins are then inserted through holes in the insulator cover and arm to secure the dielectric cover over the insulator and conductor. The arm's raised second rib acts as a water dam to prevent flashovers. |
US11114218B2 |
Mechanical stress isolation conductors in lead frames
An electrical device includes an electrically conductive member, an overmold material disposed about a portion of the electrically conductive member and a membrane disposed between the overmold material and at least a portion of the electrically conductive member. The membrane has a compressibility greater that a compressibility of the overmold material such that at least a portion of relative thermal expansion between the electrically conductive member relative to the overmold material is absorbed by the membrane. |
US11114217B2 |
Shield conduction path
A shield conduction path that includes a wire; and a pipe with a circular cross-section that accommodates the wire. The pipe is formed by combining a first divided body and a second divided body that are divided in a diameter direction using, as boundaries, divided surfaces that extend in an axial direction of the pipe. The first divided body and the second divided body include a metal material that can be held in a combined state through welding, and a circumferential length of the first divided body is set to be longer than a circumferential length of the second divided body. |
US11114215B2 |
Core electric wire for multi-core cable and multi-core cable
An object of the present disclosure is to provide a core electric wire for a multi-core cable that is superior in flex resistance at low temperature, and a multi-core cable employing the same. A core electric wire for a multi-core cable according to an aspect of the present disclosure comprises a conductor obtained by twisting element wires, and an insulating layer covering the conductor, wherein a linear expansion coefficient C of the insulating layer at from 25° C. to −35° C. is no less than 1×10−5 K−1 and no greater than 2.5×10−4 K−1. |
US11114211B2 |
Helical screw ion exchange and desiccation unit for nuclear water treatment systems
Disclosed herein are systems, methods, processes, and apparatuses for treating radioactive waste, through systems designed to bind and dry radioactive media. In some of its various embodiments, the system includes at least one helical screw designed to receive and mix liquid wastes with ion exchange media, as well as convey the resulting slurry through one or more of a binding, dewatering, and drying/off-gassing region. |
US11114207B2 |
Medical system capable of artificial intelligence and internet of things
A medical system capable of artificial intelligence and Internet of Things includes a conditioner, a control terminal device and a computation device. A patient may perform a physiological tissue stimulation treatment through the conditioner, which may adjust a stimulation parameter according to a feedback result of the stimulation, and transmits a signal of a feedback result indicative of an abnormal stimulation through the Internet of Things to the control terminal device, which has a disease analysis module built therein capable of further identifying an abnormal signal indicative of a disease and the physiological tissue for the feedback result indicative of the abnormal stimulation, so that a medical caring staff adjusts the stimulation parameter for the conditioner with respect to the abnormal signal. Moreover, the medical caring staff may interact with the computation device through the control terminal device to perform a big data analysis for optimization of the stimulation treatment. |
US11114202B2 |
Information provision method, information processing system, information terminal, and information processing method
To objectively grasp a stress state of a user and to prevent a mental disorder of the user, the following steps are performed: acquiring, via a network, biogas information at multiple timings and time information corresponding to each of the multiple timings, wherein the biogas information represents a concentration of benzyl alcohol of a user acquired by a sensor that detects benzyl alcohol discharged from a skin surface of the user; obtaining reference information representing an upper limit of a normal range of the concentration of benzyl alcohol per unit period of time, using a memory storing the reference information representing the upper limit of the normal range; determining a stress time period during which a concentration of the benzyl alcohol of the user is more than the upper limit of the normal range, based on the acquired biological gas information; and outputting time period information indicating the determined stress time period to an information terminal of the user, to display the stress time period indicated by the time period information on a display of the information terminal. |
US11114200B2 |
Smart monitoring safety system using sensors
A smart monitoring system comprising a plurality of sensor devices coupled to appliances and fixtures within a dwelling environment, at least one of the plurality of sensor devices comprising sensor elements including an accelerometer configured to detect a usage associated with the appliances and fixtures, and a computing device operative to receive event signals from the plurality of sensor devices, generate a collection of data with the event signals, analyze the collection of data, generate analytics and pattern data based on the analysis, and generate notifications based on abnormalities in the analytics and pattern data. |
US11114194B2 |
Network-based systems and methods for providing readmission notifications
Networks and methods include receiving healthcare information and with a computer identifying when a patient is readmitted to a healthcare provider. A readmission notification is generated for identified readmissions. The notification may identify the patient being readmitted, the readmitting event, prior event(s) and provider(s), substantive healthcare and clinical status for the patient, treatment dates, and/or any other desired information. Readmission alerts can be formatted and provided in accordance with their consumers' parameters. Example methods and embodiments may receive, process, store, compare, and otherwise use any of HL7 messages, CCDA information, clinical feeds, or any other type of electronic healthcare record. This information may be received from any number of different healthcare information sources and providers. With example networks and methods, readmitting providers or other consumers of readmission notifications can know exactly when a patient is readmitted and adjust the healthcare response accordingly. |
US11114193B2 |
Methods and systems for optimizing dietary levels utilizing artificial intelligence
A system for optimizing dietary levels utilizing artificial intelligence. The system includes at least a server designed and configured to receive at least a dietary request from a user device. The at least a server includes an alimentary instruction set generator module designed and configured to generate at least an alimentary instruction set as a function of the at least a dietary request. The at least a server includes a physical performance instruction set generator designed and configured to receive at least a provider datum, receive at least a physical performance datum, select at least a provider and at least a physical performance executor and generate at least a provider instruction set and at least a physical performance instruction set. |
US11114188B2 |
System for monitoring a physiological parameter of a user
The present disclosure provides an electronic device that includes at least one sensor indicative of a physiological condition of a user, the at least one sensor worn by a patient. The electronic device can further include a location determination module configured to determine a location of a patient. The electronic device can receive a measured information from the sensor and determine if the physiological condition of the user indicates an urgent medical need. When the physiological condition of the user indicates an urgent medical need, the electronic device can contact emergency services and access and contact one or more of a contact in an electronic address book associated with the processing system. The electronic device can provide a location of the user based on information determined by the location determination module. |
US11114183B2 |
System and method for designing simulant composition
In one embodiment, a method for identifying and forming a simulant includes identifying a composition, identifying a plurality of ingredients, the simulant being a combination of the ingredients, identifying for evaluation one or more metrics of the simulant, determining proportions of each of the ingredients by optimizing a quadratic function based on the one or more metrics of the simulant, rendering, via a GUI, a 3D plot that depicts the metrics and a target point specified by the target values of the composition, when the target point is contained within a convex set defined by the identified ingredients, outputting the determined proportions of each of the identified ingredients and, otherwise, receiving user input to adjust the convex set by user selecting and moving the data points of the 3D plot to modify the metrics of the simulant to produce a new 3D plot, and identifying alternative ingredients and/or alternative proportions. |
US11114181B1 |
Memory devices with redundant memory cells for replacing defective memory cells, and related systems and methods
Memory devices are disclosed. A memory device may include a memory array including a number of memory cells partitioned into a number of memory segments. Each of the number of memory segments may include a redundant memory-cell group configurable to be accessed instead of a defective memory-cell group of the memory segment. The memory device may also include a set of latches configurable to indicate that a redundant memory-cell group of a memory segment of the number of memory segments is to be accessed instead of a defective memory-cell group of the memory segment. The set of latches may include segment latches configurable to indicate the memory segment or a status of the set of latches. The set of latches may also include address latches configurable to indicate the defective memory-cell group within the memory segment. Related systems and methods are also disclosed. |
US11114180B1 |
Non-volatile memory device
A non-volatile memory device includes a first memory cell array, a first error correction code (ECC) decoder and a controller. The first memory cell array is divided into a first sub-array and a second sub-array by a first address boundary. The first ECC decoder is coupled to the first memory cell array, performs an ECC operation on read-out data from first memory cell array. The controller is coupled to the first memory cell array and the first ECC decoder, adjusts the first address boundary according to a first ECC failure bit number. |
US11114177B2 |
Bidirectional shift register circuit
A display device including a bidirectional shift register circuit, including: a plurality of cascade-connected register circuits; various circuits for setting various nodes to various voltage levels responsive to various signals input to various terminals; and an output circuit which outputs the clock pulse as an output pulse when the voltage of the first node is high level, wherein, at the forward shift operation, the bottom dummy register circuit is not input the reset signal and the first node of the bottom dummy register circuit is reset if the initial reset circuit of the bottom dummy register circuit receives the backward trigger signal, and wherein, at the backward shift operation, the top dummy register circuit is not input the reset signal and the first node of the top dummy register circuit is reset if the initial reset circuit of the top dummy register circuit receives the forward trigger signal. |
US11114172B2 |
Memory system and method of operating the same
Provided herein may be a memory system and a method of operating the same. The memory system may include a memory device including super blocks, each of the super blocks including a plurality of memory blocks, and a controller configured to control the memory device so that a program operation is performed on a selected memory block within any one of the super blocks based on a request from a host, wherein, when a program fail occurs during the program operation that is performed on the selected memory block of the selected super block, the controller is configured to control the memory device so that a test read operation is performed on remaining memory blocks, besides the selected memory block, of the selected super block. |
US11114170B2 |
Memory system
A semiconductor memory device includes a memory cell array, an input/output circuit configured to output read data from the semiconductor memory device, a first data latch configured to latch data read from the memory cell array as the read data, a second data latch to which the read data is transferred from the first data latch and from which the read data is transferred to the input/output circuit, a signaling circuit configured to output a ready signal or a busy signal, and a control circuit configured to control the signaling circuit to output the busy signal while the read data is being latched in the first data latch during a read operation performed on the memory cell array and to output the ready signal while the read data latched in the first data latch is being transferred from the first latch to the second latch. |
US11114167B2 |
Page buffer and memory device including the same
Systems and methods are described including a page buffer to reduce a threshold voltage distribution skew of memory cells and improve programming performance. The page buffer includes a first circuit element connected to a first terminal for supplying a first bitline voltage, a second circuit element connected to a second terminal for supplying a second bitline voltage, and a latch configured to control the first and second circuit elements. |
US11114161B2 |
Phase change device configured to modify a plurality of reconfigurable layer regions among a plurality of contacts
A reconfigurable phase change device with methods for operating and forming the same are disclosed. An example device can comprise a reconfigurable layer comprising a phase change material, and a set of contacts connected with the reconfigurable layer. The set of contacts can comprise at least a first contact, a second contact, and a third contact. The device can comprise at least one control element electrically coupled with one or more of the set of contacts. The at least one control element can be configured to supply a first control signal to one or more of the set of contacts. The first control signal can be configured to modify a first portion of the reconfigurable layer thereby isolating the first contact from the second contact and the third contact. |
US11114159B2 |
Dedicated read voltages for data structures
In an example, a first data structure can be read with a first read voltage dedicated to the first data structure. A second data structure that stores a larger quantity of data than the first data structure can be with a second read voltage that is dedicated to the second data structure. The first data structure can be with a third read voltage in response to a quantity of errors in reading the first data structure being greater than or equal to a first threshold quantity. The second data structure can be read with the third read voltage in response to a quantity of errors in reading the second data structure being greater than or equal to a second threshold quantity. The read voltages can be based on a temperature of an apparatus that includes the first and second data structures. |
US11114158B1 |
Reducing column switch resistance errors in RRAM-based crossbar array circuits
Systems and methods for reducing column switch resistance error RRAM-based crossbar array circuits are disclosed. An example crossbar array circuit includes: a crossbar array including a row wire, a column wire, and a cross-point device connected between the row wire and the column wire; a column switch having a column switch input and a column switch output, connected to the cross-point device; an Op-amp device having a non-inverting input, an inverting input, and an Op-amp output; a three-terminal switch having a first terminal, a second terminal, and a third terminal. The three-terminal switch is connected to the inverting input and is configured to switch between the column switch input and the column switch output; a load resistor is connected with the column switch output and the Op-amp output. |
US11114157B1 |
Low resistance monosilicide electrode for phase change memory and methods of making the same
This disclosure relates to a low-resistance monosilicide electrode and method of making the monosilicide electrode. A cell film stack is first formed on a substrate of a wafer. The top layer of this cell film stack is silicon. The cell film stack is then etched to form at least one pillar. Dielectric is deposited to fill the gaps between the pillars. The wafer is then planarized to expose the top silicon layer. The exposed top silicon layer is converted into a nickel monosilicide layer by way of a thermal solid-state reaction between nickel and the silicon layer. This nickel monosilicide layer forms the monosilicide electrode. |
US11114153B2 |
SRAM devices with reduced coupling capacitance
The current disclosure is directed to a SRAM bit cell having a reduced coupling capacitance. In a vertical direction, a wordline “WL” and a bitline “BL” of the SRAM cell are stacked further away from one another to reduce the coupling capacitance between the WL and the BL. In an embodiment, the WL is vertically spaced apart from the BL with one or more metallization level that none of the WL or the BL is formed from. Connection island structures or jumper structures are provided to connect the upper one of the WL or the BL to the transistors of the SRAM cell. |
US11114152B1 |
Semiconductor memory device including page buffers
A semiconductor memory device includes a memory cell; and a page buffer including a sensing circuit that is coupled to the memory cell through a bit line. The page buffer includes a first transistor included in the sensing circuit; and a second transistor not included in the sensing circuit. A cross-sectional dimension of a first contact which is coupled to the first transistor and a cross-sectional dimension of a second contact which is coupled to the second transistor are different from each other. The cross-sectional dimension of the second contact is smaller than the cross-sectional dimension of the first contact. |
US11114150B2 |
Memory system with multiple open rows per bank
A dynamic random access memory (DRAM) component (e.g., module or integrated circuit) can be configured to have multiple rows in the same bank open concurrently. The controller of the component divides the address space of the banks into segments based on row address ranges. These row address ranges do not necessarily correspond to row address ranges of the bank's subarrays (a.k.a. memory array tiles—MATs). When a command is sent to open a row, the controller marks a plurality of the segments as blocked. The controller thereby tracks address ranges in a bank where it will not open a second row unless and until the first row is closed. The memory component may store information about which, and how many, segments should be blocked in response to opening a row. This information may be read by the controller during initialization. |
US11114148B1 |
Efficient ferroelectric random-access memory wordline driver, decoder, and related circuits
A wordline driver may include the following: a first transistor having a first node at the input and a second node at an input voltage; a second transistor having a first node at the input node, a second node at a third node of the first transistor, and a third node at ground; a third transistor having a first node at the input voltage, a second node at the first internal node and a third node at a second internal node; a fourth transistor having a first node at an internal node, a second node at a boosted voltage, and a third node at a wordline; a fifth transistor having a first node at an internal node, a second node at the wordline, and a third node at ground; and a sixth transistor between the wordline, the boosted voltage, and the second internal node. |
US11114147B2 |
Self-boost, source following, and sense-and-hold for accessing memory cells
Methods, systems, and devices for operating a memory cell or cells are described. A capacitor coupled with an access line may be precharged and then boosted such that the charge stored in the capacitor is elevated to a higher voltage with respect to a memory cell. The boosted charge in the capacitor may support sensing operations that would otherwise require a relatively higher voltage. Some embodiments may employ charge amplification between an access line and a sense component, which may amplify signals between the memory cell and the sense component, and reduce charge sharing between these components. Some embodiments may employ “sample-and-hold” operations, which may re-use certain components of a sense component to separately generate a signal and a reference, reducing sensitivity to manufacturing and/or operational tolerances. In some embodiments, sensing may be further improved by employing “self-reference” operations that use a memory cell to generate its own reference. |
US11114144B2 |
Magnetoelectric spin orbit logic with paramagnets
An apparatus is provided which comprises: a first paramagnet; a stack of layers, a portion of which is adjacent to the first paramagnet, wherein the stack of layers is to provide an inverse Rashba-Edelstein effect; a second paramagnet; a magnetoelectric layer adjacent to the second paramagnet; and a conductor coupled to at least a portion of the stack of layers and the magnetoelectric layer. |
US11114137B2 |
Bidirectional data pin, clock input pin, shift register, debug circuitry
A two pin communication interface bus and control circuits are used with circuit boards, integrated circuits, or embedded cores within integrated circuits. One pin carries data bi-directionally and address and instruction information from a controller to a selected port. The other pin carries a clock signal from the controller to a target port or ports in or on the desired circuit or circuits. The bus may be used for serial access to circuits where the availability of pins on ICs or terminals on cores is minimal. The bus is used for communication, such as serial communication related to the functional operation of an IC or core design, or serial communication related to test, emulation, debug, and/or trace operations of an IC or core design. |
US11114136B2 |
Circuit, system, and method for reading memory-based digital identification devices in parallel
A system and method for simultaneously reading a plurality of readable memory-based digital identification devices, including: a host microcontroller; and a plurality of readable memory-based digital identification devices electrically coupled to the host microcontroller in a parallel configuration; wherein the host microcontroller is configured to assert a read prompt to each of the plurality of the plurality of readable memory-based digital identification devices during a same clock cycle; wherein each of the plurality of readable memory-based digital identification devices is configured to send a response to the host microcontroller in a same clock cycle; and wherein the host microcontroller is configured to capture identification data from each of the plurality of readable memory-based digital identification devices in a same clock cycle. |
US11114132B2 |
Media recording system
A system and method for synchronizing clocks including synchronizing a first clock to a second clock, the first clock associated with a first device, the first device associated with a first device type, the second clock associated with a second device, the second device associated with a second device type; subsequent to synchronizing the first clock to the second clock, synchronizing a third clock to the first clock, where the third clock is associated with a third device, the third device associated with the first device type; synchronizing the second clock to a fourth clock, the fourth clock associated with a fourth device, the fourth device associated with a third device type; subsequent to synchronizing the second clock to the fourth clock, resynchronizing the first clock to the second clock; and subsequent to resynchronizing the first clock to the second clock, resynchronizing the third clock to the first clock. |
US11114124B2 |
Magnetic disk device
According to one embodiment, a control device to be used for a magnetic disk device includes a power source control section and a control section. The power source control section configured to change an output voltage value of a voltage supplied to the control device from a power source on the basis of a voltage control parameter. The control section configured to, when a magnetic head makes access to a zone set on a magnetic disk, set a voltage control parameter provided in such a manner as to be correspondent to the zone to the power source control section. |
US11114121B2 |
Air-bearing surface (ABS) design to reduce particle scratch risk
A slider design for a hard disk drive (HDD) features a shallow cavity adjacent to a leading edge that has patterns of sub-cavities of various shapes etched into its base to reduce its original surface area. The presence of these patterns of sub-cavities significantly reduces the probability that the slider will capture particles on the surface of a rotating disk and thereby reduces the corresponding probability of surface scratches that such captured particles inevitably produce. |
US11114120B2 |
Plural heat-sink layers for an On-Wafer Laser of a heat-assisted magnetic recording device
An apparatus includes a substrate and a reader deposited on the substrate. A laser is formed on a non-self supporting structure and bonded to the substrate. A plurality of heat sink layers are deposited between the reader and the laser and configured to provide thermal coupling between the substrate and the laser and sink heat away from the laser. A waveguide is deposited proximate the laser. The waveguide is configured to communicate light from the laser to a near-field transducer that directs energy resulting from plasmonic excitation to a recording medium. |
US11114116B2 |
Information processing apparatus and information processing method
To provide an information processing apparatus, an information processing method, and a program capable of specifying the privacy risk for a user. The information processing apparatus includes a privacy risk specification unit that specifies privacy risk information indicating a privacy risk for a user on the basis of action information indicating an action state of the user. |
US11114114B2 |
Voice interpretation device
An apparatus that includes a microphone and a processor. The processor is configured to receive, via the microphone, audio comprising voice of a person, and determine whether the received audio is an actual voice or a synthesized voice. The apparatus also provides a first notification indicating that the received audio is the actual voice when the received audio is the actual voice, and provides a second notification indicating that the received audio is the synthesized voice when the received audio is the synthesized voice. |
US11114105B2 |
Estimation of background noise in audio signals
Background noise estimators and methods are disclosed for estimating background noise in an audio signal. Some methods include obtaining at least one parameter associated with an audio signal segment, such as a frame or part of a frame, based on a first linear prediction gain, calculated as a quotient between a residual signal from a 0th-order linear prediction and a residual signal from a 2nd-order linear prediction for the audio signal segment. A second linear prediction gain is calculated as a quotient between a residual signal from a 2nd-order linear prediction and a residual signal from a 16th-order linear prediction for the audio signal segment. Whether the audio signal segment comprises a pause is determined based at least on the obtained at least one parameter; and a background noise estimate is updated based on the audio signal segment when the audio signal segment comprises a pause. |
US11114102B2 |
Appliance including voice recognition device
An appliance including a voice recognition device, the voice recognition device including a sound output device and a voice input device, wherein the sound output device is configured to output sound toward the inside of the panel, and the voice input device is configured to collect voice transmitted from the outside of the panel toward the panel. |
US11114098B2 |
Control of interaction between an apparatus and a user based on user's state of reaction
An apparatus estimates, based on an input from a user to an interaction performed during a conversation between the user and the apparatus, an interest degree indicating a degree of interest of the user in a first topic included in the interaction, and estimates, based on the input from the user to the interaction, acceptability of the interaction by the user. The apparatus selects, in accordance with the interest degree and the acceptability, as an operation mode for performing the interaction, one of a first mode of leaving an interaction initiative to the user and a second mode in which the interaction proceeds under an initiative of a system for a specific topic. The apparatus generates interaction data according to the selected operation mode, and causes an output device to output the generated interaction data. |
US11114095B2 |
Information processing device
Provided is an information processing device that includes a reception unit that receives inquiry information, an acquisition unit that acquires answer information in response to the inquiry information from at least one or more acquisition destination candidates determined on a basis of the inquiry information, and a sending unit that sends response information that is generated on a basis of the answer information. The acquisition unit sends a request using a common data format to the at least one or more acquisition destination candidates, and acquires the answer information using a common data format based on the request. |
US11114094B2 |
Audio processing in a low-bandwidth networked system
The present disclosure is generally directed a system to detect activation phrases within input audio signals transmitted over a low-bandwidth network. The system can use a two-stage activation phrase detection process. First a sensing device, which can include a plurality of microphones for detecting an input audio signal, can detect an input audio signal that includes a candidate activation phrase. Second, the sensing device can transmit the recordings of the input audio signal to a client device for confirmation that the input audio signal includes the activation phrase. |
US11114090B1 |
User profile linking
Described are techniques for linking generating a skill-stored user profile, and linking same with a natural language processing (NLP) system-stored user profile. In at least some examples, a user may provide a natural language input to a NLP system. The NLP system may determine a skill is to process to perform an action responsive to the natural language input. To perform the action, the skill may require the user have a user profile stored by the skill, but the user may not have such a user profile. However, the NLP system may store a user profile for the user. The NLP system may determine the user profile stored thereby and may send, with user permission, information in the user profile to the skill. The skill may use the received information to generate and store a user profile for the user. Thereafter, the skill may provide the NLP system with a user profile identifier that the skill may use to identify the user's profile stored thereby. The NLP system may store the received user profile identifier in the user's profile stored by the NLP system, thereby linking the user profiles and enabling the skill to thereafter personalize processing with respect to natural language inputs of the user. |
US11114087B1 |
Automated digital conversation manager
An example system and method for monitoring digital conversations is described. In particular, conversations are monitored for periods of inactivity, where upon identifying a particular period of inactivity, further communications are automatically generated to refresh and restart the conversations based on one or more predefined messages. In one example method, a communication target is identified, where the communication target is associated with an existing conversation. An inactivity-based rule is associated with the target and the conversation, the rule associated with an inactivity time and at least one message. Activity associated with the conversation is monitored to determine whether a time of inactivity exceeds the inactivity time. In response to determining that the inactivity time exceeds the inactivity-based rule, a new message is automatically generated and transmitted to the target based on the at least one message of the inactivity-based rule. |
US11114081B2 |
Device agnostic audio path sealing
In accordance with some embodiments, an apparatus that seals the audio path of an enclosed device is provided. The apparatus includes a first housing portion and a second housing portion, when mated, are arranged to enclose a device, where a surface of the second housing portion is arranged to impart pressure on the device toward the first housing portion. The apparatus further includes a first supporting portion disposed along one side of the first housing portion and arranged to support the device. The apparatus also includes a first liner disposed in the first housing portion and arranged to form a first cavity, where the first cavity is adjacent to the first supporting portion. The apparatus further includes a noise generator operable to provide noise signal stream and a first audio output device coupled to the noise generator operable to output first masking signals to the first cavity. |
US11114079B2 |
Interactive music audition method, apparatus and terminal
An interactive music audition method, apparatus and terminal are provided. The method includes: generating audition inquiry information according to audition requirement information, wherein the audition inquiry information includes a plurality of audition music options associated with the audition requirement information; generating a plurality of audition inquiry voices corresponding to the respective audition music options based on the audition inquiry information, and playing the generated audition inquiry voices; acquiring music selection information for the generated audition inquiry voices; and playing audition music according to the music selection information. Not only the interaction experience between a user and a smart device is improved, but also the accuracy of mining a user's interest is increased. |
US11114078B2 |
Keybed device
The present disclosure proposes a keybed device, including: a keybed support; a keybed arranged on the keybed support; a key height limiting column arranged in one-to-one correspondence with each key in the keybed, and an end of the key height limiting column is fixed on a bottom surface of the corresponding key; a pressure detecting device arranged in one-to-one correspondence under each key height limiting column to detect a pressing strength of each key height limiting column; and a flexible support structure arranged below each key height limiting column and located on at least one side of each pressure detection device. The keybed device includes a flexible support structure, which can avoid false triggering of the Aftertouch effect. A same depth is pressed down from the flexible support structure to obtain a consistent Aftertouch effect, and the performance effect is controllable. |
US11114072B2 |
Guitar support pad and playing method
A guitar pad include a sheet of flexible material including a peripheral edge and a middle region extending entirely and continuously within the peripheral edge. The middle region includes surface area dimensions substantially greater than the thickness of the sheet, a first surface that is compressible, and a second surface which is at least partially conformably drapable over a portion of a guitar. |
US11114071B2 |
Percussion instrument
Provided is a percussion instrument including a substantially cylindrical barrel and a weight fixed to the barrel. More specifically, a plurality of weights 5A to 5D may be provided on the inner circumferential surface of a shell 2 of a drum 1 (a percussion instrument). The weights 5A to 5D may be provided at positions where the weights 5A to 5D have four-fold rotational symmetry in the circumferential direction of the shell 2. The weights 5A to 5D may be each provided between lugs 3 that are provided adjacent to each other on the outer circumferential surface of the shell 2. |
US11114070B2 |
Attachable accessory for changing the timbre of a stringed instrument
An accessory for changing the timbre of a stringed instrument is provided, comprising a body having a vertical opening and a horizontal slot formed in the bottom surface from one edge into the vertical opening; an adjustment rod within the horizontal slot; and a dampener within the vertical opening associated with at least one string of the stringed instrument to which the accessory is attached. The adjustment rod has an upwardly angled inner end within the vertical opening in the body. The dampener comprises a dampener body; a soft fabric covering a top surface; and a bottom surface having a horizontal groove with a downwardly angled top surface matching the angle of the angle of the adjustment rod. Moving the adjustment rod inwardly moves the dampener upward and applies pressure to the string; moving the adjustment rod outwardly moves the dampener downward and reduces the pressure on the string. |
US11114062B2 |
Projection brightness adjustment method for controlling current output of power source and projector thereof
A projection brightness adjustment method includes a power source driving a projector to project an image, a temperature sensor detecting a working temperature of the projector, the projector calculating a pixel average amount corresponding to each pixel brightness level of the image by dividing a total pixel amount of the image by a total brightness level amount of the image, and the projector controlling the power source to output an overload current to the projector for image projection when determining the working temperature is less than an upper operating-temperature limit and determining a level amount of at least one pixel brightness level having a pixel amount larger than the pixel average amount is less than or equal to half of the total brightness level amount. The magnitude of the overload current is between a maximum current limit and the upper operating-current limit. |
US11114061B2 |
Light-emission control signal generating device and display device
The present disclosure relates to a light-emission control signal generating device and a display device. The light-emission control signal generating device includes: a state detection circuit configured to detect whether a current frame is a static frame or a dynamic frame and output an indication signal indicating the static frame or the dynamic frame; and a plurality of light emission control signal generation circuits; wherein the plurality of light emission control signal generation circuits are divided into a plurality of blocks, and individual blocks are input with different light emission enable signals based on the indication signal to generate light emission control signals. |
US11114060B2 |
Cursor image detection comparison and feedback status determination method
A cursor image detection comparison and feedback status determination method is disclosed. The method is based on a non-invasive data-extraction system architecture, and uses an image processing unit to perform detection comparison on a cursor image shown on an operation screen outputted from a machine controller. The method includes steps of obtaining cursor foreground and background images set by a user, and selecting an algorithm to process the cursor foreground and background images to generate a cursor mask, and reading a cursor image and applying the cursor mask on the cursor image for pattern comparison, transmitting information of a comparison result and a cursor feedback status to a software control system, so as to provide a correction system to perform a cursor process program and check whether the movement of the cursor meet a position controlled by a feedback and correction system, thereby completing closed-loop control for the cursor. |
US11114052B2 |
Common voltage feedback compensation circuit, method, and flat display device
The utility model relates to a voltage conditioning circuit, and particularly relates to an AD voltage conditioning circuit. The conditioning circuit comprises a voltage-dividing circuit and a voltage translation circuit. The voltage-dividing circuit and the voltage translation circuit share an output end. The voltage-dividing circuit and the voltage translation circuit are integrated together and share the output end so that the voltage-dividing circuit and the voltage translation circuit can be isolated without using an isolation circuit, AD voltage can be conditioned to an appropriate value, three arithmetic units required to be used by an original conditioning circuit is reduced to only two arithmetic units, and four resistors required to be used by the voltage-dividing circuit and the translation circuit of the original conditioning circuit are reduced to only three resistors. Therefore, the circuit is simplified, cost is greatly reduced and assembling efficiency of circuit boards is enhanced in batch production. |
US11114049B2 |
Liquid crystal display device
A liquid crystal display device includes: a display unit including a first liquid crystal panel and a second liquid crystal panel disposed on a rear surface side of the first liquid crystal panel; and an image processor that generates first and second output image signals respectively output to the first and second liquid crystal panels based on an input image signal. The image processor includes; a distributor that distributes the input image signal into first and second distribution image signals used to generate the first and second output image signals, respectively; and a first unevenness corrector that generates the first output image signal by performing first unevenness correction to prevent display unevenness of the display unit on the first distribution image signal output from the distributor, and outputs the generated first output image signal to the first liquid crystal panel. |
US11114048B1 |
Driving circuit adaptable to an electrophoretic display
A driving circuit adaptable to an electrophoretic display includes a first transistor and a second transistor electrically connected in series between a first positive voltage node and a first negative voltage node, the first transistor and the second transistor being interconnected at an output node; a third transistor electrically connected between the output node and a ground; a first voltage regulator that switchably provides one of a plurality of positive supply voltages to the first positive voltage node; a second voltage regulator that provides a negative supply voltage to the first negative voltage node; a switching circuit having a plurality of outputs electrically connected to the first transistor, the second transistor and the third transistor to turn on or off the first transistor, the second transistor and the third transistor respectively; and a controller that controls the first voltage regulator, the second voltage regulator and the switching circuit. |
US11114047B2 |
Electronic device, operation method of the electronic device, and moving vehicle
Provided is an electronic device whose display quality is independent of environment light. The electronic device is provided with an optical sensor, an acceleration sensor, and the like so that information including the brightness of external light, the angle of external light incident on the electronic device, and the orientation of the display portion in the electronic device is obtained, and the luminance and color tone of the display portion in the electronic device are corrected on the basis of the information. As the correcting method, calculation using a neural network is performed using the luminance and color tone meeting the preference of the user as teacher data and the obtained information as input data. The calculation result is reflected on the luminance and color tone of the display portion in the electronic device, whereby an image with display quality that suits the user's preference can be displayed. |
US11114046B2 |
Display device and method for driving the same, driving apparatus, and computer-readable medium
The present disclosure relates to a method for driving a display device, a driving apparatus, a display device and a computer-readable medium. The method includes: determining backlight signal values of backlight partitions in a backlight module according to input grayscale values of pixels; adjusting the backlight signal values of the backlight partitions by performing peak stretching processing on the backlight partitions in the condition that a total power consumption of the adjusted backlight module is less than a power threshold of the backlight module; determining backlight signal values of the pixels; determining output grayscale values of the pixels according to the backlight signal values of the pixels and the input grayscale values of the pixels; driving a display panel to display an image according to the output grayscale values of the pixels; and driving the backlight module according to the adjusted backlight signal values of the backlight partitions. |
US11114045B1 |
Method of enhancing the visibility of screen images
A method and system for enhancing the visibility of screen images in a high ambient light condition or environment by processing the object images comprising a first stage to increase the brightness of transmission light from the back-light of an LCD screen and a second stage to further enhance the brightness as well as the contrast of the images to be displayed. |
US11114044B2 |
Blue light compensation film and OLED display
The present invention provides a blue light compensation film and an OLED display. The blue light compensation film of the present invention effectively absorbs blue light with wavelength longer than blue wavelength and excite blue light by using a blue light upconversion luminescent material, and effectively improves color shift white OLED device caused by short lifespan of blue electroluminescent material to achieve blue light compensation of the white OLED device and solve the of yellowing in traditional OLED display with age. The OLED display of the present invention comprises the blue light compensation film to avoid color shift problem and provides good display quality. |
US11114042B2 |
Blue light compensation film and OLED display
The present invention provides a blue light compensation film and an OLED display. The blue light compensation film of the present invention effectively absorbs blue light with wavelength longer than blue wavelength and excite blue light by using a blue light upconversion luminescent material, and effectively improves color shift white OLED device caused by short lifespan of blue electroluminescent material to achieve blue light compensation of the white OLED device and solve the of yellowing in traditional OLED display with age. The OLED display of the present invention comprises the blue light compensation film to avoid color shift problem and provides good display quality. |
US11114041B2 |
Blue light compensation film and OLED display
The present invention provides a blue light compensation film and an OLED display. The blue light compensation film of the present invention effectively absorbs blue light with wavelength longer than blue wavelength and excite blue light by using a blue light upconversion luminescent material, and effectively improves color shift white OLED device caused by short lifespan of blue electroluminescent material to achieve blue light compensation of the white OLED device and solve the of yellowing in traditional OLED display with age. The OLED display of the present invention comprises the blue light compensation film to avoid color shift problem and provides good display quality. |
US11114037B1 |
Gate driver on array (GOA) circuit and display apparatus
Embodiments of the application provide a gate driver on array (GOA) circuit and a display apparatus, which is capable of outputting signals of negative pulse waveforms using a simplified circuit design and improving output capability of the GOA circuit by changing a high voltage level of a clock signal to a voltage level of a first high level signal. Thus, the GOA circuit is improved by the first capacitor and the second capacitor, which make the GOA circuit more stable. |
US11114036B2 |
Scan driver and display device for driving a plurality of scan lines
A scan driver includes a plurality of circuit stages, each circuit stage including a first input part configured to transfer a carry signal to a first node in response to a first clock signal, a second input part configured to transfer the first clock signal to a second node in response to a signal of the first node, a first output part configured to transfer a third clock signal to an output terminal in response to a signal of the second node, a holding part configured to maintain a signal of a third node response to a second clock signal, and a second output part configured to transfer a signal of the third node to the output terminal in response to the second clock signal. |
US11114035B2 |
Pixel circuit and display device
A pixel circuit and a display device. The pixel circuit includes a charging unit, a light-emitting unit and an error compensation unit; a voltage storage terminal of the charging unit is connected to a voltage input terminal of the light-emitting unit; one end of the error compensation unit is connected to the voltage storage terminal of the charging unit, a voltage at the voltage storage terminal of the charging unit is used to determine a magnitude of a current flowing through the light-emitting unit; a control terminal of the error compensation unit is configured to receive a light-emitting control signal which is used to control the light-emitting unit to emit light or stop emitting light, the error compensation unit is configured to lower the voltage at the voltage storage terminal of the charging unit when the light-emitting control signal controls the light-emitting unit to emit light. |
US11114034B2 |
Display device
A display device is proposed, the display device including a display panel and a driving circuit, and pixels included in the display panel includes a driving transistor, a light emitting element, a capacitor, and first to sixth switching transistors T1 to T6. T1 senses threshold voltage of the driving transistor, the capacitor stores data voltage and a threshold voltage in both electrodes, T2 applies data voltage to the capacitor, T3 initializes the storage capacitor to reference voltage, and T4 initialize the light emitting element to reference voltage, T5 controls current flow between the driving transistor and the light emitting element, and T6 connects both electrodes of the capacitor. The driving circuit divides one frame into an initialization period, a program period, and a light emission period to drive a pixel, and stops light emission of the light emitting device and make equal voltage across the capacitor, in the initialization period. |
US11114033B2 |
Pixel and display device including the same
A pixel including: a light emitter; a first transistor including first and second electrodes respectively connected to power and the light emitter, the first transistor controlling driving current; a first capacitor between a second and third node; a second transistor between the third node and data line and turned on by a scan signal; a third transistor between a first and second node, and turned on by a control signal; a fourth transistor between power and the third node, and turned on by a emission control signal; a fifth transistor between power and the first electrode, and turned on by the emission control signal; a sixth transistor between the second node and the light emitter, and turned on by another emission control signal; and a second capacitor between power and the first node, wherein the fourth, fifth and sixth transistors turn-on/off at least four times in a non-emission period. |
US11114031B2 |
Display device and method for driving same
The present disclosure discloses a current-driven display device that uses an internal compensation method and can display a good-quality image with no bright dots that are not included in intended display content. In a pixel circuit of an organic EL display device, a voltage of a gate terminal of a drive transistor is initialized before the voltage of a data signal line is written to a holding capacitor via the diode-connected drive transistors. At this time, an initialization voltage is applied to the gate terminal via a display element initialization transistor, a second light emission control transistor, and a threshold compensation transistor. By initializing the gate terminal with a configuration not including an initialization transistor provided between the gate terminal and an initialization voltage supply line as in the related art, voltage drop at the gate terminal due to leakage current of the transistor in an off state is suppressed. |
US11114027B2 |
OLED pixel circuit, and driving method thereof, and a display apparatus
The present application discloses a pixel circuit, including a data-input sub-circuit configured to apply a data voltage from the data line to a first node; a reset sub-circuit configured to reset the second node; a driving-control sub-circuit coupled to a first power supply, the first node, and the second node; a power-storage sub-circuit configured to regulate a voltage difference between the first node and the second node; a light-emitting device coupled to the second node and a second power supply; and a sampling sub-circuit coupled to the data line and the second node and being configured to control the data line to connect with the second node for collecting a voltage signal containing information about electrical properties of the driving-control sub-circuit and being used to generating a compensation voltage for compensating any drifts of the electrical properties. |
US11114025B2 |
Method for sensing light
A method is proposed for sensing light being incident on an electronic device. The electronic device comprises a display and a light sensor arrangement which is mounted behind the display such as to receive incident light through the display. The method comprises the step of repeatedly switching the display on and off depending on a modulation signal, wherein a sub-frame is defined by an on-state and a consecutive off-state of the display. The modulation signal depends on at least one modulation parameter. In a first sub-frame a display brightness is set to a first level depending on a first value of the at least one modulation parameter. Then a first frame count is determined by integrating the incident light by means of the light sensor arrangement during the first sub-frame. In a second sub-frame the display brightness is set to a second level depending on a second value of the at least one modulation parameter. Then a second frame count is generated by integrating the incident light by means of the light sensor arrangement during the second frame. Finally, an ambient light level is determined depending on the first frame count and the second frame count. |
US11114016B2 |
Pixel arrangement structure, display panel and display apparatus
Provided are a pixel arrangement structure, a display panel, and a display apparatus. The pixel arrangement structure includes a plurality of first sub-pixels, a plurality of second sub-pixels, and a plurality of third sub-pixels, and the plurality of first, second and third sub-pixels form a plurality of virtual polygons. In each virtual polygon, the second sub-pixels and the third sub-pixels are located at a first vertex and a second vertex of the virtual polygon, respectively, the first vertex and the second vertex are alternated and spaced apart from each other, the first sub-pixel is located inside the virtual polygon, a first distance from a center of the first sub-pixel to a center of any third sub-pixel is equal, a second distance from a center of the first sub-pixel to a center of any second sub-pixel is equal, and the first distance is equal to the second distance. |
US11114007B2 |
Display panel for precharging according to data signal and display panel driving method thereof
A display panel includes multiple data lines, a scan lines, pixel circuit and a driving circuit. The data lines are configured to receive multiple data signals in a display period. There is a buffer period before the display period. The scan line is configured to receive a scan signal during the display period. The pixel circuit is electrically connected to the data lines and the scan line for receiving the data signals and the scan signal. The driving circuit is electrically connected to the data line, and configured to receive multiple charging signals during the buffer period. The charging signals are corresponding to the data lines and gradually increase so that the driving circuit charges the data lines according to the charging signals. |
US11114006B2 |
Display device, drive method therefor, and drive system therefor
A display device, a drive method therefor, and a drive system therefor are provided by embodiments of the present application. The drive method includes: detecting whether a spectrum of a drive signal is spread when the drive signal is received, and the drive signal is configured to drive the display panel; outputting a clock signal output from the control module to the source drive module if the spectrum of the drive signal is spread; performing spectrum spread on the clock signal according to a preset spread spectrum ratio if the spectrum of the drive signal is not spread; and outputting the clock signal with the spread spectrum to the source drive module. |
US11114001B2 |
Image processing device, method of controlling image processing device, and display device
A projector configured to generate a first image and a second image to be displayed by a projection section, the projection section displaying first pixels constituting the first image and second pixels constituting the second image so that the second pixels are shifted with respect to corresponding ones of the first pixels, includes a filter processing circuit configured to execute a filter process of limiting a frequency band of an image signal of an input image with a one-dimensional filter to generate an intermediate image, an image expanding circuit configured to expand the intermediate image to generate a second expanded image, and an image dividing circuit configured to divide some of second expanded pixels constituting the second expanded image into the first image and the second image. |
US11113994B2 |
Label clip
The present disclosure is directed to a label clip assembly comprising an annular clip having an inner surface and an outer surface radially positioned around a primary axis, and having a height extending in the direction of the primary axis, a label member attached to the outer surface of the clip, and a plurality of projections extending radially from the inner surface of the clip towards the primary axis. The projections may be configured to permit sliding of the clip onto a cable in a first direction and to avoid the clip sliding off the cable in an opposite direction when the clip is engaged with the cable by the projections. |
US11113982B2 |
Programmable education device
A programmable device configured for education and entertainment is described. In one embodiment, the programmable device includes a circuit board with a magnetic reed switch and a plurality of light emitting diodes (LEDs), speakers, and other electronic components. In one embodiment, the magnetic reed switch is configured to activate one or more modes of the programmable device. The LEDs is configured to display a pattern of light. The speakers are configured to emit audio. In one embodiment, the programmable device includes a polymer disk with a cylindrical receptacle to connect the programmable device to the polymer disk. |
US11113974B1 |
System and method for automated routing of mass transit vehicles
A computer implemented system and method for routing a vehicle. The method includes establishing, in a computer memory, a set of parameters comprising a plurality of hub stops and a threshold time, receiving a service request comprising a service location, determining a current location of the vehicle, determining an upcoming travel time for the vehicle to travel from the current location to the service location, and determining, via a processor, a next stop for the vehicle selected from: if the upcoming travel time does not exceed the threshold time, the service location; and if the upcoming travel time exceeds the threshold time, one of the plurality of hub stops. |
US11113973B2 |
Autonomous vehicle operational management blocking monitoring
Autonomous vehicle operational management including blocking monitoring may include traversing, by an autonomous vehicle, a vehicle transportation network. Traversing the vehicle transportation network may include operating a blocking monitor instance, which may include identifying operational environment information including information corresponding to a first external object within a defined distance of the autonomous vehicle, determining a first area of the vehicle transportation network based on a current geospatial location of the autonomous vehicle in the vehicle transportation network and an identified route for the autonomous vehicle, and determining a probability of availability for the first area based on the operational environment information. Traversing the vehicle transportation network may include traversing a portion of the vehicle transportation network based on the probability of availability. |
US11113968B2 |
Method for mobile parking assistance
A method for assisting in the parking of a vehicle in a vacant parking area, wherein the position of at least one vacant parking area is calculated on the basis of a vehicle-to-vehicle and/or a vehicle-to-infrastructure communication from the current position of the vehicle and is conveyed to a navigation apparatus of the vehicle, wherein a parking process is started by virtue of a radio key of the vehicle being placed onto a smartphone display, so that a lens in the vehicle key captures a flashing code and the radio key returns the flashing codes to the vehicle by radio. |
US11113967B2 |
Method for determining parking spaces and free-parking space assistance system
A method for determining parking spaces, traffic participants ascertaining information about free parking spaces and communicating the information to a cloud computing system, the cloud computing system storing information about the free parking spaces in retrievable fashion in a parking space map, information about the provided parking space being visually presented on a display device of the traffic participant. A computer program and a free parking space assistance system, which are suitable in particular for carrying out the method, are also provided. |
US11113966B2 |
Vehicular information systems and methods
Disclosed is a method and system that receives sensor information from each of a plurality of sensors. Each sensor in the plurality is associated with a vehicle. The sensor information includes location coordinates of each vehicle in the plurality. The sensor information associated with each vehicle in the plurality then is translated to parking statistics information. In one embodiment, the translation is based on an aggregate of sensor information corresponding to the plurality of vehicles. The system then communicates parking statistics information to the vehicle. |
US11113960B2 |
Intelligent traffic management for vehicle platoons
Various systems and methods for implementing intelligent traffic management for vehicle platoons are described herein. A road controller system includes A road controller system comprising: a data store to store an active traffic policy; a processor subsystem to: determine a speed or platoon size of a vehicle platoon traveling on an area controlled by the road controller system; and determine a change to the speed or platoon size of the vehicle platoon, the change based on the active traffic policy; and a transceiver to transmit a control message to the vehicle platoon to implement the change to the speed or platoon size of the vehicle platoon. |
US11113959B2 |
Crowdsourced detection, identification and sharing of hazardous road objects in HD maps
Systems, apparatuses and methods may provide for vehicle technology that detects one or more differences between a crowdsourced map of an ambient environment and a real-time volumetric map of the ambient environment and sends a first message via a vehicle-to-vehicle (V2V) link, wherein the difference(s) are represented in the first message at a first resolution. Additionally, the vehicle technology sends a second message via a vehicle-to-infrastructure (V2I) link, wherein the difference(s) are represented in the second message at a second resolution, and wherein the first resolution is less than the second resolution. Moreover, server technology may integrate a first octree representation and a second octree representation into a dynamic layer associated with the crowdsourced map. |
US11113955B2 |
Data collection system
A data collection system includes sensors which are synchronized with each other and an optical signal distributor, wherein each of the sensors comprises a first delay unit which delays a second electrical signal for a first delay time set such that a sum of the first delay time and a first conversion time is same in all of the sensors, and the optical signal distributor comprises second delay units each of which delays a first electrical signal for a second delay time set such that all of sums of the second delay times and conversion times are same as each other. |
US11113953B2 |
Vehicle-paired device range extension method and system
An exemplary method of controlling a vehicle from a remote location includes receiving a first signal from a vehicle-paired device and initiating a vehicle function in response to the first signal. The first signal is sent by the vehicle-paired device in response to a second signal sent from a secondary triggering device. An exemplary range extending system includes a vehicle-paired device configured to transmit a first signal to a vehicle, and a secondary triggering device that transmits a second signal to the vehicle-paired device to initiate a transmission of the first signal from the vehicle-paired device. |
US11113950B2 |
Gateway integrated with premises security system
An integrated security system is described comprising a gateway located at a first location. The gateway includes a takeover component that establishes a coupling with a first controller of a security system installed at the first location. The security system includes security system components coupled to the first controller. The takeover component automatically extracts security data of the security system from the first controller. The gateway automatically transfers the security data extracted from the controller to a second controller. The second controller is coupled to the security system components and replaces the first controller. |
US11113949B1 |
Hygiene apparatus and method
A system for monitoring and maintaining hand washing compliance. The system may be configured to monitor hand washing compliance at any hand washing station having a water faucet and cleaning agent. The system may comprise a wristband, a wash node, a control unit, and a database. The wash node may be configured to capture the activity within an area encompassing the hygiene station. The system is configured to monitor and notify the user of when to clean their hands. Further, the system can provide real time and historical monitoring of hygiene compliance and policy violation by users. Further, the system can provide the user with notifications of their compliance through visual or wireless device notifications indications of the time elapsed since a previous washing. |
US11113948B2 |
Method for reminding a first user to complete a task based on position relative to a second user
A method of monitoring a user is provided. The method comprising: receiving a reminder request from a first user device, the reminder request requesting an alarm to activate on the first user device when the first user device is within a selected distance of a second user device; detecting a first current position of the first user device; detecting a second current position of the second user device; determining a distance between the first current position and the second current position; determining whether the distance is less than or equal to the selected distance; and activating an alarm on the first user device when the distance is less than or equal to the selected distance. |
US11113947B2 |
Smart reminder alarm for cars and other devices
A reminder device includes a frame-shaped base defining an opening and configured to be mounted over and around an operational button/handle located in a vehicle or in a home; a lid coupled to the frame-shaped base and configured to close over said frame-shaped base, covering said opening and blocking access to said operational button/handle; a circuit configured to product an audible message upon receiving a trigger signal, said circuit being located in at least one of said framed-shaped base and said lid; and a switch including a first component located on said frame-shaped base and a second component located on said lid and so configured that when said first component and second component are separated from each other by a predetermined distance, when the lid is opened, the switch causes the creation of said trigger signal and the production of said audible alarm. |
US11113946B1 |
Method and system for determining correspondence relationship between sensing target and sensor
A method for determining a correspondence relationship between a sensing target and a sensor is a correspondence relationship determination method for determining whether or not a correspondence relationship between a sensing target and a sensor attached to the sensing target is correct. The method includes acquiring position information of a first sensor fixed and attached to the sensing target, acquiring position information of a second sensor detachably attached to the sensing target, and obtaining a distance by comparing the position information of the first sensor and the position information of the second sensor, and determining that the correspondence relationship between the sensing target and the second sensor indicates discrepancy when the distance is equal to or more than a threshold value. |
US11113945B2 |
Automated robot alert system
A robot alert system includes a robot server that receives contextualized sensor data from one or more mobile robots and generates alerts to one or more individuals according to a set of configured alert rules. The contextualized sensor data includes location data indicating a location of the mobile robot and sensor data obtained by the mobile robot representing sensed conditions of an environment associated with the location. The robot server accesses staff member data associated with each of a plurality of staff members from a staff member database and accesses a set of stored alert rules specifying alert criteria for triggering the alert. Responsive to determining that the contextualized sensor data meets the alert criteria for s target staff member, the robot server generates and transmits an alert to a client device associated with the target staff member. |
US11113943B2 |
Systems and methods for predictive environmental fall risk identification
In various exemplary embodiments, the present technology is directed to systems and methods for predictive environmental fall risk identification for a user. |
US11113941B2 |
Ambient light sensor in a hazard detector and a method of using the same
A method of operating an alarm device including a processor and a light detector, the method including for operating the light detector to sample a light intensity within an interior space a plurality of times to produce a plurality of light intensity measurements, operating the processor to determine a light intensity value, wherein the light intensity value is based upon the plurality of light intensity measurements, and operating the processor to decide whether a night cycle can be determined based on the light intensity values. |
US11113940B2 |
Wireless merchandise security system
Security systems and methods for protecting retail display merchandise from theft are provided. For example, a security system includes a sensor configured to be secured to an item of merchandise, and a monitoring component configured to wirelessly communicate with the sensor, wherein the monitoring component and the sensor are configured to communicate with one another to determine a proximity of the item of merchandise relative to the monitoring component, wherein the monitoring component and/or the sensor is configured to initiate a security signal when the proximity between the monitoring component and the sensor is within a predetermined range or distance. |
US11113938B2 |
Audio/video recording and communication devices with multiple cameras
Audio/video (A/V) recording and communication devices with multiple cameras in accordance with various embodiments of the present disclosure are provided. In one embodiment, an A/V recording and communication device is provided, the device comprising a first camera having a first resolution; a second camera having a second resolution, wherein the second resolution is higher than the first resolution; a communication module; and a processing module operatively connected to the first camera, the second camera, and the communication module, the processing module comprising: a processor; and a camera application, wherein the camera application configures the processor to: maintain the first camera in a powered-on state; maintain the second camera in a low-power or powered-off state; and determine when to power up the second camera based on an output signal from the first camera. |
US11113935B2 |
Patient support apparatuses with nurse call audio management
A patient support apparatus includes a frame, a support surface for supporting a patient, and a nurse call interface adapted to provide an interface between a bed and a wall-mounted nurse call outlet having a plurality of pins to thereby allow a patient supported on the bed to communicate with a remotely positioned nurse. The nurse call interface coordinates the duplex signals of the bed's microphone and speaker with the half duplex nurse audio signals from the nurse call system. More particularly, the interface includes a nurse call audio channel communicatively coupled to first and second audio pins of the plurality of pins of the nurse call outlet, a bed microphone channel to a bed microphone, a bed speaker channel to a bed speaker, and a switch controller adapted to selectively connect the nurse call audio channel to the bed microphone channel or to the bed speaker channel. |
US11113930B2 |
Multi-level wagering competitions
Various embodiments that may generally relate to one or more competitions. Such competitions may include a plurality of rounds. A round may include a player attempting to choose a winner of an event on which a round is based. A surviving player after a number of rounds may be a winner of a competition. Various apparatus and methods are described. |
US11113926B2 |
System and method for utilizing mobile device to track gaming data
The present disclosure relates generally to a system that utilizes an application running on a mobile device to collect game-based data regarding a player's experience at a gaming establishment. |
US11113923B2 |
Gaming table systems for overlapping game play
Gaming table systems can include multiple electronic gaming tables, multiple gaming terminals, and a system server. Each gaming terminal can have a terminal controller adapted to facilitate the overlapping or simultaneous play by a single player of multiple wager-based table games at multiple electronic gaming tables. A server in communication with the gaming tables controls starting times of the wager-based table games by sending signals to the tables indicating when each game is allowed to start. Signals can be sent due to triggering events and/or can cause staggered starting times across games, which can allow faster players to play more games. The server can also control which gaming tables starts a next game, distribute table usage, and confirm that wagers are placed within a proper time frame for their respective games. A compliance server can verify eligibility of remote gaming terminals to participate in wager-based game play in the system. |
US11113921B2 |
Ice vending machine and related methods
Implementations of ice vending machines may include a cabinet having a frame, an ice maker coupled to the frame, and an ice storage section coupled to the frame and below the ice maker. The ice storage section may include one or more agitators. Implementations may also include an ice feed coupled below the ice storage section, a bagging system coupled to the frame and below the ice feed, a retrieval section coupled to the frame and below the bagging system, and an interactive panel coupled to an outer surface of the cabinet. The interactive panel may be configured to receive a purchase request from a customer for a bag of ice. The ice vending machine, in response to the purchase request, may be configured to fill and dispense the bag of ice on demand. |
US11113919B2 |
Optical switch devices
An optical device includes an array of lenses and a plurality of first and second segments disposed under the array of lenses. At a first viewing angle, the array of lenses presents a first image for viewing without presenting the second image for viewing, and at a second viewing angle different from the first viewing angle, the array of lenses presents for viewing the second image without presenting the first image for viewing. In some examples, individual ones of the first and second segments can comprise specular reflecting, transparent, diffusely reflecting, and/or diffusely transmissive features. In some examples, individual ones of the first and second segments can comprise transparent and non-transparent regions. Some examples can incorporate more than one region producing an optical effect. |
US11113917B2 |
Method for implementing banknote counting of banknote counting device, and banknote counting device
A method for implementing banknote counting includes: if counterfeit banknote is detected in the banknote counting process, recording the sequence, the denomination, and the quantity of the counterfeit banknote; extracting the counterfeit banknote and calculating the amount of the counterfeit banknote; determining, according to a user identity information, whether a circulation amount of counterfeit currency and number of times of circulation of counterfeit currency having a mapping relationship to the user identity information exist in a preset counterfeit currency circulation database; if existing, updating the circulation amount of counterfeit currency and changing the number of times of circulation of counterfeit currency; and if the updated circulation amount of counterfeit currency is greater than a preset amount threshold and the updated number of times of circulation of counterfeit currency is greater than a preset number of circulation threshold, sending an investigation instruction to the public security department. |
US11113913B1 |
Temperature based access control
The present disclosure relates to systems and methods of control access to a controlled-access area. The method includes receiving offsite sensor data, receiving offsite user identification data corresponding to the offsite sensor data, determining that the offsite sensor data satisfies an organizational standard, determining that the offsite user identification data corresponds to an approved user, and transmitting a notification to a user device. The method may also include receiving onsite user information and using the offsite sensor data and the onsite user information to determine if a user is approved for access to an access-controlled area. In some examples, the offsite sensor data may be temperature data associated with a febrile condition of a user attempting to gain access to the controlled-access area. |
US11113910B2 |
Anti-passback method, apparatus and system
Embodiments of the present application disclose an anti-passback method, apparatus and system. A plurality of access controllers are communicatively connected to a server. After detecting that a card reader has successfully read an identifier of an access card, an access controller sends the identifier of the access card, an identifier of the card reader, and its own identifier to the server. The server searches for the identifier of the card reader that read the access card last time, and the identifier of the access controller corresponding to the card reader, and determines a route for the door opening request. When the determined route exists in a preset list of routes, the sever sends a door opening instruction to the access controller. The route list may include routes between doors under the control of the plurality of access controllers. When a user swipes on a card reader on any of the doors with an access card, the access controller that controls the card reader will transmit information to the server. The server determines whether to allow the passing based on the route list. As can be seen, such solution achieves the anti-passback feature among a plurality of access controllers. |
US11113904B2 |
On-road running test system
Provided is an on-road running test system including: a running data acquisition part that successively acquires pieces of actual running data on a vehicle on which a driver performs a running test on a road; a calculation part that compares predetermined test conditions for the running test and the pieces of actual running data to calculate a driving operation style including at least one of an accelerator operation mode, a brake operation mode, and a shift operation mode for satisfying the test conditions; and a presentation part that presents the driving operation style to the driver. |
US11113902B2 |
On board diagnostics drive cycle advisor
Provided is a method of completing an incomplete drive cycle test on a vehicle resulting from an incomplete vehicle monitoring process. The method includes establishing a communication link between a portable electronic device and a vehicle computer, and receiving initial diagnostic data from the vehicle computer using the portable electronic device. The initial diagnostic data is analyzed to identify the incomplete vehicle monitoring process and a driving procedure for resetting an incomplete vehicle monitor associated with the incomplete vehicle monitoring process. Live data is received from the vehicle computer while the vehicle is in motion to track progression through the driving procedure. The method may include receiving subsequent diagnostic data from the vehicle while the vehicle is in motion. The subsequent diagnostic data is analyzed while the vehicle is in motion to determine if the status of the incomplete vehicle monitoring process transitions to complete. |
US11113901B2 |
Method and apparatus for driver-tuned diagnostics and reporting
A system includes a processor configured to determine a vehicle-specific parameter including a vehicle-specific modifier for modifying a vehicle-state reporting trigger. The processor is further configured to detect an occurrence of the vehicle-state reporting trigger that has been modified based on the vehicle-specific parameter, such that the reporting trigger triggers a report based on a different vehicle-state than an unmodified predefined version of the reporting trigger. Also, the processor is configured to report the occurrence to an occupant, responsive to the detection. |
US11113900B2 |
Image processing device, number-of-axles detection system, toll setting device, toll setting system, and non-transitory computer-readable medium storing program
Disclosed is an image processing device including a hardware processor that: specifies a position of a plurality of tires of a moving vehicle from a captured image showing at least the plurality of tires of the vehicle; makes a determination of whether or not each of the plurality of tires is in contact with a ground on the basis of a position of the specified plurality of tires; and counts the number of axle of a tire in contact with the ground of the vehicle according to a result of the determination. |
US11113898B2 |
Half box for ultrasound imaging
A method for generating an ultrasound image, comprising displaying a rendered image of a target from an edge of a full box encompassing the target. An input regarding a selection of a half box may be received from a user. When the half box is not selected, the rendered image may continue to be displayed. When the half box is selected, a new image may be rendered from a reference of the full box, and the rendered image may be displayed. |
US11113897B2 |
Systems and methods for presentation of augmented reality supplemental content in combination with presentation of media content
Systems and methods are provided herein for providing supplemental Augmented Reality (AR) content. Media content is provided to a user device located within a viewing area. A determination is made that a supplemental three dimensional (3D) AR content related to the media content is available. 3D characteristics of the supplemental AR content are determined. Such characteristics include a viewing angle and body position of an actor from the supplemental AR content. 3D characteristics of the viewing area are determined. Such characteristics include shape and position of the furniture within the viewing area and a position of a user within the viewing area. A position is determined within the viewing area by comparing the 3D characteristics of the supplemental AR content and the 3D characteristics of the viewing area. The supplemental AR content is then provided for display at the determined position. |
US11113896B2 |
Geophysical sensor positioning system
An augmented reality (AR) object positioning system receives a target coordinate for a location of interest within a physical environment. The AR object positioning system then determines an AR device coordinate of an AR device within the physical environment and orientation information of the AR device at the AR device coordinate. The AR object positioning system calculates a plurality of image frame coordinates of an image frame based on the AR device coordinate and the orientation information when the image frame was captured. The AR object positioning system, in response to an image frame coordinate of the plurality of image frame coordinates corresponding with the target coordinate, renders on a display of the AR device, first annotation content relative to the image frame coordinate according to rendering instructions for the first annotation content. |
US11113895B2 |
Systems and methods for selecting spheres of relevance for presenting augmented reality information
Augmented reality information may be presented to a user without overloading the user with an extraordinary amount of information. AR information may be selectively presented to the user in iterative ranges from the user in the user's field of view. Real-world objects in the user's field of view may be detected. A first group of objects may be selected that are less than a first distance from the user in the field of view, and a second group of objects selected that are between the first distance and a second greater distance in the field of view. At a first time, the first group of objects may be augmented to the user. At a second time after the first time, the second group of objects may be augmented to the user. The first group may stop being augmented prior to the second time. |
US11113893B1 |
Artificial reality environment with glints displayed by an extra reality device
The present embodiments relate to display of glints associated with real-world objects in an environment displayed on an extra reality (XR) device. The glint can include a virtual object associated with a real-world object, such as an indication of a social interaction associated with a real-world object, a content item tagged to an object, etc. The system as described herein can present glints on a display of an XR device based on a distance between the XR device and a location associated with the glint. Responsive to selection of a glint in the environment, additional information can be presented relating to the glint or another action can be taken, such as to open an application. In some instances, a glint can include a series of search results relating to a corresponding real-world object to provide additional information relating to the real-world object. |
US11113891B2 |
Systems, methods, and media for displaying real-time visualization of physical environment in artificial reality
Particular embodiments are directed to a passthrough feature. A computing system may display a virtual-reality scene on a device worn by a user. The system may receive a request to display a visual representation of at least a portion of a physical environment surrounding the user. The system may access data associated with the physical environment captured by camera(s) of the device. The system may generate, based the data, depth measurements of one or more objects in the physical environment. The system may generate, based on the depth measurements, one or more models of the one or more objects in the physical environment. The system may render an image based on a viewpoint of the user and the one or more models and, based on the image, generate the visual representation requested by the user. The visual representation may then be displayed with the virtual-reality scene to the user. |
US11113888B2 |
Device and method for generating dynamic virtual contents in mixed reality
Dynamic virtual content(s) to be superimposed to a representation of a real 3D scene complies with a scenario defined before runtime and involving real-world constraints (23). Real-world information (22) is captured in the real 3D scene and the scenario is executed at runtime (14) in presence of the real-world constraints. When the real-world constraints are not identified (12) from the real-world information, a transformation of the representation of the real 3D scene to a virtually adapted 3D scene is carried out (13) before executing the scenario, so that the virtually adapted 3D scene fulfills those constraints, and the scenario is executed in the virtually adapted 3D scene replacing the real 3D scene instead of the real 3D scene. Application to mixed reality. |
US11113884B2 |
Techniques for immersive virtual reality experiences
Various embodiments of the invention disclosed herein provide techniques for generating a three-dimensional virtual environment. A 3D object/effects generator executing on a client device receives a media content item. The 3D object/effects generator receives content metadata associated with the media content item. The 3D object/effects generator generates at least a portion of a 3D virtual environment based on the content metadata. The 3D object/effects generator displays the media content item and the at least a portion of the 3D virtual environment on a display associated with a virtual reality device. |
US11113883B2 |
Techniques for recommending and presenting products in an augmented reality scene
Described herein is an augmented reality application-based service, which facilitates techniques for aiding a first end-user (e.g., a room designer) with the selection and placement of objects (e.g., images of home furnishing and related products) in an augmented reality scene that is being, or has been, generated via a mobile computing device that is remote from the first end-user, such that a second end-user (e.g., a potential consumer) operating the mobile computing device can view objects, in the augmented reality scene, as placed by the first, remote end-user. |
US11113879B2 |
Systems and methods for generating augmented reality environments from two-dimensional drawings
Systems and methods for generating augmented reality environments from 2D drawings are provided. The system performs a camera calibration process to determine how a camera transforms images from the real world into a 2D image plane. The system calculates a camera pose and determines an object position and an object orientation relative to a known coordinate system. The system detects and processes a 2D drawing/illustration and generates a 3D model from the 2D drawing/illustration. The system performs a rendering process, wherein the system generates an augmented reality environment which includes the 3D model superimposed on an image of the 2D drawing/illustration. The system can generate the augmented reality environment in real time, allowing the system to provide immediate feedback to the user. The images processed by the system can be from a video, from multiple image photography, etc. |
US11113878B2 |
Screen tile pair-based binocular rendering pipeline process and method
The invention discloses A screen tile-pair based binocular rendering pipeline process and method, comprising: completing space division according to a spatial relationship of two visual angles in stereo rendering, and generating input primitive lists corresponding to the divided space; searching non-full primitive lists of space divisions and obtaining a surface with spatial partition; and dispatching all generated spatial divisions, and simultaneously performing rasterizing and rendering of two visual angles for primitives in each space division. According to the new measures, a spatial correlation of two visual angles in stereo rendering is considered, and in a rendering process the two visual angles are rasterized and rendered at the same time, thereby reducing a bandwidth required for repeated reading of triangular data in the rendering process. |
US11113876B2 |
Method for displaying a 3D scene graph on a screen
The invention relates to a method for displaying a three-dimensional (3D) scene graph on a screen, the method comprising: attaching 3D resources to a set of application scene nodes; separating a first process running in a first application context on an operating system of a computer system from a second process running in a second application context on the operating system by connecting a first sub-set of the application scene nodes to the first process and connecting a second sub-set of the application scene nodes to the second process; loading the first process and the second process to a 3D display server of the computer system; constructing the 3D scene graph based on the first process and the second process; and displaying the 3D scene graph on the screen. |
US11113875B1 |
Visualization tools for point clouds and 3D imagery
Provided is a three-dimensional (“3D”) analysis tool or device for generating visualizations for attributes in different multi-plane slice of a point cloud or 3D image. The device may receive a point cloud with a plurality of data points that are distributed across a plurality of different planes and that collectively produce a 3D image. The device may select a set of the plurality of data points that are located within a particular slice of the point cloud, may generate a visualization from one or more attributes of the set of data points, and may present the visualization of the one or more attributes for the set of data points in a different format than a rendering of the set of data points. |
US11113874B2 |
Displaying rich text on 3D models
A computer-implemented method for displaying rich text on a 3D model includes obtaining, by one or more processing devices, a target rich text; invoking a rendering tool corresponding to a file format of the target rich text; rendering the target rich text using the rendering tool, to obtain a rendering result; invoking a graphical programming interface; and texture mapping the rendering result to an area of the 3D model using the graphical programming interface. |
US11113873B1 |
Modeling articulated objects
Navigation systems can identify objects in an environment and generate representations of those objects. A representation of an articulated vehicle can include two segments rotated relative to each other about a pivot, with a first segment corresponding to a first portion of the articulated vehicle and the second segment corresponding to a second portion of the articulated vehicle. The representation can be based on a model fit to points that are derived from sensor data and are associated with the object. In some examples, the model can be fit to the points using an expectation maximization algorithm and can be parameterized using attributes of the first and second segments. |
US11113872B2 |
Adaptive multisampling based on vertex attributes
Systems, apparatuses and methods may provide for technology that selects an anti-aliasing mode for a vertex of a primitive based on a parameter associated with the vertex and generates a coverage mask based on the selected anti-aliasing mode. Additionally, one or more pixels corresponding to the vertex may be shaded based at least partly on the coverage mask, wherein the selected anti-aliasing mode varies across a plurality of vertices in the primitive. |
US11113871B1 |
Scene crop via adaptive view-depth discontinuity
A method, apparatus, and system provide the ability to crop a three-dimensional (3D) scene. The 3D scene is acquired and includes multiple 3D images (with each image from a view angle of an image capture device) and a depth map for each image. The depth values in each depth map are sorted. Multiple initial cutoff depths are determined for the scene based on the view angles of the images (in the scene). A cutoff relaxation depth is determined based on a jump between depth values. A confidence map is generated for each depth map and indicates whether each depth value is above or below the cutoff relaxation depth. The confidence maps are aggregated into an aggregated model. A bounding volume is generated out of the aggregated model. Points are cropped from the scene based on the bounding volume. |
US11113868B2 |
Rastered volume renderer and manipulator
A method for visualizing two-dimensional data with three-dimensional volume enables the end user to easily view abnormalities in sequential data. The two-dimensional data can be in the form of a tiled texture with the images in a set row and column, a media file with the images displayed at certain images in time, or any other way to depict a set of two-dimensional images. The disclosed method takes in each pixel of the images and evaluates the density, usually represented by color, of the pixel. This evaluation allows the user to set threshold values and return accurate representations of the data presented, instead of a culmination of all data along a ray trace. |
US11113866B2 |
Method and apparatus for point cloud compression
Aspects of the disclosure provide methods and apparatuses for point cloud compression and decompression. In some examples, an apparatus for point cloud compression/decompression includes processing circuitry. For example, the processing circuitry determines, from a point cloud, at least a first set of candidate source points that are associated with a target point in a geometry image reconstructed from a compressed geometry image for the point cloud. Then, the processing circuitry weights a color of each candidate source point in the first set based on a combination of a location difference between the candidate source point and the target point, and a color difference between the color of the candidate source point and an aggregate color of the first set of candidate source points. Further, the processing circuitry determines a color of the target point based on a first weighted color average of the first set of candidate source points. |
US11113861B2 |
Imitating motion capture clips using a neural network
This disclosure presents a process to generate one or more video frames through guiding the movements of a target object in an environment controlled by physics-based constraints. The target object is guided by the movements of a reference object from a motion capture (MOCAP) video clip. As disturbances, environmental factors, or other physics-based constraints interfere with the target object mimicking the reference object. A tracking agent, along with a corresponding neural network, can be used to compensate and modify the movements of the target object. Should the target object diverge significantly from the reference object, such as falling down, a recovery agent, along with a corresponding neural network, can be used to move the target object back into an approximate alignment with the reference object before resuming the tracking process. |
US11113855B2 |
Expression interpretation engine for computer map visualizations
A process, and corresponding system for performing the process, is described for editing and representing property values for a digital map. The process stores a library of expressions for styling a digital map. The process retrieves electronic map data and displays a user interface including a property editor panel and a visual map portion. The property editor panel displays a plurality of map styles. The visual map portion displays a representation of the electronic map data. For a selected map style, the process displays a plurality of style properties and a text field for receiving expressions corresponding to a style property. The process receives, via the text field, an expression and determines a set of suggested expressions corresponding to the style property. The process applies the received expression to the electronic map data and renders in the visual map portion an edited representation of the electronic map data. |
US11113853B2 |
Systems and methods for blending and aggregating multiple related datasets and rapidly generating a user-directed series of interactive 3D visualizations
Systems and methods that enable blending and aggregating multiple related datasets to a blended data model (BDM), manipulation of the resulting data model, and the representation of multiple parameters in a single visualization. The BDM and each visualization can be iteratively manipulated, in real-time, using a user-directed question-answer-question response so patterns can be revealed that are not obvious. |
US11113852B2 |
Systems and methods for trending patterns within time-series data
Systems and methods for trending patterns within a set of time-series data are described. In one or more embodiments, a set of one or more groups of data points that are associated with a particular seasonal pattern are generated within volatile and/or non-volatile storage. A set of pairwise slopes is determined for data point pairs within the set of one or more groups of data points. Based, at least in part on the plurality of pairwise slopes, a representative trend rate for the particular seasonal pattern is determined. A set of forecasted values is then generated within volatile or non-volatile storage based, at least in part, on the representative trend rate for the particular seasonal pattern. |
US11113844B2 |
Systems and methods for automatic quality assessment of multiple-camera calibration
Systems and methods for assessing the calibration of an array of cameras. The method including inputting into a processor captured images from at least two cameras of the array of cameras, the captured images having features from an image. The method further including extracting one or more extracted features from the captured images, matching one or more extracted features between pairs of the at least two cameras to create a set of matched features, selecting matching points from the set of matched features, generating a three-dimensional reconstruction of objects in a field of view of the at least two cameras, and outputting the three-dimensional reconstruction wherein the three-dimensional reconstruction comprises indicators of calibration errors. |
US11113839B2 |
Method, apparatus, and system for feature point detection
An approach is provided for feature point detection and representation. The approach, for example, involves processing (e.g., using a neural network or equivalent) image data associated with a grid cell of an image to determine a feature point corresponding to a position of a feature detected in the image data. The approach also involves encoding the position of the feature with respect to a coordinate system referenced to the grid cell. The output comprises one or more parameters indicating the encoded position, one or more attributes of the feature, or a combination thereof. |
US11113838B2 |
Deep learning based tattoo detection system with optimized data labeling for offline and real-time processing
A computer-implemented method executed by at least one processor for detecting tattoos on a human body is presented. The method includes inputting a plurality of images into a tattoo detection module, selecting one or more images of the plurality of images including tattoos with at least three keypoints, the at least three keypoints having auxiliary information related to the tattoos, manually labeling tattoo locations in the plurality of images including tattoos to create labeled tattoo images, increasing a size of the labeled tattoo images identified to be below a predetermined threshold by padding a width and height of the labeled tattoo images, training two different tattoo detection deep learning models with the labeled tattoo images defining tattoo training data, and executing either the first tattoo detection deep learning model or the second tattoo detection deep learning model based on a performance of a general-purpose graphical processing unit. |
US11113837B2 |
Sensor mapping to a global coordinate system
An object tracking system includes a sensor and a tracking system. The sensor is configured to capture a first frame of a global plane for at least a portion of a space. The tracking system is configured to receive a first coordinate in the global plane where a first marker is located in the space and to receive a second coordinate in the global plane where a second marker is located in the space. The tracking system is further configured to identify the first marker and the second marker within the first frame, to determine a first pixel location in the first frame for the first marker, to determine a second pixel location in the first frame for the second marker, and to generate a homography based on the first coordinate, the second coordinate, the first pixel location, and the second pixel location. |
US11113830B2 |
Method for generating simulated point cloud data, device, and storage medium
Embodiments of the present disclosure are directed to a method for generating simulated point cloud data, a device, and a storage medium. The method includes: acquiring at least one frame of point cloud data collected by a road collecting device in an actual environment without a dynamic obstacle as static scene point cloud data; setting, according to set position association information, at least one dynamic obstacle in a coordinate system matching the static scene point cloud data; simulating in the coordinate system, according to the static scene point cloud data, a plurality of simulated scanning lights emitted by a virtual scanner located at an origin of the coordinate system; and updating the static scene point cloud data according to intersections of the plurality of simulated scanning lights and the at least one dynamic obstacle to obtain the simulated point cloud data comprising point cloud data of the dynamic obstacle. |
US11113829B2 |
Domain adaptation for analysis of images
A system for analyzing images includes a processing device including a receiving module configured to receive an image associated with a target domain, and a domain adaptation module configured to characterize one or more features represented in the received image based on a domain adaptation model. The domain adaptation model is generated using a machine learning algorithm to train the domain adaptation model, and the machine learning algorithm is configured to train the domain adaptation model based on one or more source domain images associated with a source domain, one or more previously acquired images associated with the target domain, and acquired characterization data associated with the target domain. The system also includes an output module configured to output the received image with characterization data identifying one or more features characterized by the domain adaptation module. |
US11113828B2 |
Determining sensor installation characteristics from camera image
An image of at least a portion of a room may be received, the image of the room comprising an image of a sensor mounted in the room. At least one optical parameter related to the image of the room may also be received. A distance may be determined between the sensor and a camera that captured the image of the room, wherein the determination of the distance is based at least in part on the optical parameters and on known physical dimensions of the sensor. A sensitivity requirement of the sensor may be determined, based on the distance. The determined sensitivity may be sent to control logic of the sensor. |
US11113818B1 |
Timing controller and operating method thereof
A timing controller includes an image compensator for generating compensated image data. The image compensator is configured to: divide an input image into plural image blocks; select plural pixels located at one column of the image block as plural target pixels; generate an average representative gray level of the image block according to a histogram of gray levels of the image block; input the average representative gray level into a first lookup table to obtain a first gain; input a vertical pixel position of the target pixel and the average representative gray level into a second lookup table to obtain a second gain; obtain the compensated gray level by multiplying the gray level, the first gain, and the second gain of the target pixel; and replace the gray levels with the compensated gray levels to acquire the compensated image data. |
US11113816B2 |
Image segmentation apparatus, method and relevant computing device
The present disclosure provides an image segmentation apparatus, method and relevant computing device. The image segmentation apparatus comprises: a feature extractor configured to extract N image semantic features having different scales from an input image, where N is an integer not less than 3; and a feature processor comprising cascaded dense-refine networks and being configured to perform feature processing on the N image semantic features to obtain a binarized mask image for the input image. A dense-refine network is configured to generate a low-frequency semantic feature from semantic features input thereto by performing densely-connected convolution processing on the semantic features respectively to obtain respective image global features, performing feature fusion on the image global features to obtain a fused image global feature, and performing pooling processing on the fused image global feature to generate and output the low-frequency semantic feature. The semantic features are selected from a group consisting of the N image sematic features and low-frequency semantic features generated by dense-refine networks. The feature processor is configured to obtain the binarized mask image based on low-frequency semantic features generated by the dense-refine networks. |
US11113811B2 |
Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, a normalization device is configured to facilitate normalization of medical images of a coronary region of a subject for an algorithm-based medical imaging analysis. The normalization device can include a substrate and a plurality of compartments positioned within the substrate, each of the plurality of compartments configured to hold a sample of a known material. A first subset of the plurality of compartments can hold at least one sample of a contrast material, a second subset of the plurality of compartments can hold samples of materials representative of materials to be analyzed by the algorithm-based medical imaging analysis, and a third subset of the plurality of compartments hold at least one sample of a phantom material. |
US11113806B2 |
Systems and methods for menu directed inspection
A non-destructive testing (NDT) system can provide a tree model of an inspection on a display of an NDT device and on a web page configured in a web browser on a computing device coupled to the NDT device. Inspection data acquired using the NDT device can be provided in real-time as the inspection data is associated with a node configured in the tree model. The NDT system can generate an inspection tree model based on an inspection template including a template tree model. Defect properties, inspection instructions, and/or image transforms can be applied to nodes of the template tree model such that the generated inspection tree model includes the applied defect properties, inspection instructions, and/or image transforms, which can then be applied to the inspection data acquired at the inspection point location corresponding to each node. |
US11113799B2 |
Display method and display device
A display method and a display device are provided. The display method may be applied to a display device having a lens unit and a display unit for normal display, and may include steps of: detecting a first distance between the lens unit and the display unit; calculating correction information according to the first distance and transmitting the correction information to the display unit; and displaying a corrected image by the display unit according to the correction information, so that the corrected image is converged into eyes of a user via the lens unit, wherein the corrected image is obtained by correcting an original image according to the first distance. |
US11113795B2 |
Image edge processing method, electronic device, and computer readable storage medium
An image edge processing method is disclosed. The method includes steps of: extracting a brightness component from an input image; calculating an edge probability value mp of each pixel in the image according to the extracted brightness component; calculating an enhancement coefficient A for each pixel based on the edge probability value mp; performing a noise detection according to the brightness component, and determining if each pixel in the image is a noise point; when the pixel is not a noise point, performing a logarithmic processing to the pixel in order to obtain a data w; enhancing an edge of the image according to the λ, the w and the brightness component in order to obtain an enhanced brightness component data; and after performing a brightness component synthesis according to the enhanced brightness component data, outputting an enhanced image. An electronic device and computer readable storage medium are also disclosed. |
US11113794B2 |
Systems and methods for generating defocus blur effects
In one embodiment, a computing system may receive current eye-tracking data associated with a user of a head-mounted display. The system may dynamically adjust a focal length of the head-mounted display based on the current eye-tracking data. The system may generate an in-focus image of a scene and a corresponding depth map of the scene. The system may generate a circle-of-confusion map for the scene based on the depth map. The circle-of-confusion map encodes a desired focal surface in the scene. The system may generate, using a machine-learning model, an output image with a synthesized defocus-blur effect by processing the in-focus image, the corresponding depth map, and the circle-of-confusion map of the scene. The system may display the output image with the synthesized defocus-blur effect to the user via the head-mounted display having the adjusted focal length. |
US11113793B2 |
Method and apparatus for smoothing a motion trajectory in a video
Disclosed is a method and apparatus for smoothing a motion trajectory in a video. According to this method, an original rotation matrix sequence of a video frame sequence of an input video is acquired. Then an objective function is determined according to the Riemann manifold architecture, and the smooth rotation matrix that minimizes the objective function is iteratively solved for according to the Riemannian manifold constrained smoothing algorithm, thus obtaining a smooth rotation matrix sequence after the smoothing. Then the video frame sequence is subjected to image stabilization based on the smooth rotation matrix sequence, thereby eliminating motion jitter, making the motion in the video smoother, and improving the video quality. |
US11113791B2 |
Image noise reduction using spectral transforms
Various techniques are provided for reducing noise in captured image frames. In one example, a method includes determining row values for image frames comprising scene information and noise information. The method also includes performing first spectral transforms in a first domain on corresponding subsets of the row values to determine first spectral coefficients. The method also includes performing second spectral transforms in a second domain on corresponding subsets of the first spectral coefficients to determine second spectral coefficients. The method also includes selectively adjusting the second spectral coefficients. The method also includes determining row correction terms based on the adjusted second spectral coefficients to reduce the noise information of the image frames. Additional methods and systems are also provided. |
US11113789B2 |
Method and device for digital image restoration
The invention concerns a method and a device for digital image restoration. The digital image to be restored comes from an initial image acquired by an image acquisition device having an associated acquisition instrumental noise. The method comprises the following steps: —obtaining (30) an intermediate digital image with restoration of the acquisition instrumental noise, —denoising (32) the intermediate digital image in order to obtain a denoised intermediate digital image, —deconvolution (34) of the denoised digital image in order to obtain a restored digital image. |
US11113786B2 |
ASTC interpolation
A binary logic circuit for performing an interpolation calculation between two endpoint values E0 and E1 using a weighting index i for generating an interpolated result P, the values E0 and E1 being formed from Adaptive Scalable Texture Compression (ASTC) colour endpoint values C0 and C1 respectively, the colour endpoint values C0 and C1 being low-dynamic range (LDR) or high dynamic range (HDR) values, the circuit comprising: an interpolation unit configured to perform an interpolation between the colour endpoint values C0 and C1 using the weighting index i to generate a first intermediate interpolated result C2; combinational logic circuitry configured to receive the interpolated result C2 and to perform one or more logical processing operations to calculate the interpolated result P according to the equation: (1) P=└((C2«8)+C2+32)/64┘ when the interpolated result is not to be compatible with an sRGB colour space and the colour endpoint values are LDR values; (2) P=└((C2«8)+128.64+32)/64┘ when the interpolated result is to be compatible with an sRGB colour space and the colour endpoint values are LDR values; and (3) P=(C2+2)»2 when the colour endpoint values are HDR values. |
US11113784B2 |
Sparse optimizations for a matrix accelerator architecture
Embodiments described herein include, software, firmware, and hardware logic that provides techniques to perform arithmetic on sparse data via a systolic processing unit. Embodiment described herein provided techniques to skip computational operations for zero filled matrices and sub-matrices. Embodiments additionally provide techniques to maintain data compression through to a processing unit. Embodiments additionally provide an architecture for a sparse aware logic unit. |
US11113783B2 |
Programmable re-order buffer for decompression
Examples described herein relate to a decompression engine that can request compressed data to be transferred over a memory bus. In some cases, the memory bus is a width that requires multiple data transfers to transfer the requested data. In a case that requested data is to be presented in-order to the decompression engine, a re-order buffer can be used to store entries of data. When a head-of-line entry is received, the entry can be provided to the decompression engine. When a last entry in a group of one or more entries is received, all entries in the group are presented in-order to the decompression engine. In some examples, a decompression engine can borrow memory resources allocated for use by another memory client to expand a size of re-order buffer available for use. For example, a memory client with excess capacity and a slowest growth rate can be chosen to borrow memory resources from. |
US11113782B2 |
Dynamic kernel slicing for VGPU sharing in serverless computing systems
Various examples are disclosed for dynamic kernel slicing for virtual graphics processing unit (vGPU) sharing in serverless computing systems. A computing device is configured to provide a serverless computing service, receive a request for execution of program code in the serverless computing service in which a plurality of virtual graphics processing units (vGPUs) are used in the execution of the program code, determine a slice size to partition a compute kernel of the program code into a plurality of sub-kernels for concurrent execution by the vGPUs, the slice size being determined for individual ones of the sub-kernels based on an optimization function that considers a load on a GPU, determine an execution schedule for executing the individual ones of the sub-kernels on the vGPUs in accordance with a scheduling policy, and execute the sub-kernels on the vGPUs as partitioned in accordance with the execution schedule. |
US11113780B2 |
Watermarking digital content
Examples relating to watermarking digital content are described herein. According to one example, a digital quality of digital content received for watermarking is determined. From a library of watermark tints comprising a plurality of preformed watermark tints of predefined sizes, a watermark tint set for watermarking the digital content is retrieved, the watermark tint set comprising a plurality of watermark tints having a first size. The first size of the plurality of watermark tints is determined based on the digital quality of the digital content. The plurality of watermark tints having the first size are overlaid over the digital content to watermark the digital content. |
US11113779B2 |
Digital watermarking leveraging anomalous mesh elements
A technique is described herein for adding a digital watermark to a mesh. The mesh describes a three-dimensional object using a plurality of vertices and edges, which together define a plurality of polygonal shapes (e.g., triangles). The technique involves identifying at least one anomalous element of the mesh. The technique then supplements one or more of the anomalous elements by adding a computer-readable code to the anomalous element(s). That computer-readable code includes a digital watermark. An anomalous element corresponds to a part of the mesh that qualifies as a statistically atypical occurrence within the mesh, based on a specified rule that defines what constitutes a statistically atypical occurrence. In a reading stage, the technique finds the anomalous element(s). It then reads the digital watermark that has been encoded into the anomalous element(s). |
US11113775B1 |
System and method for standardized evaluation of driver's license eligibility
Systems and methods are provided for standardized evaluation of new drivers seeking driver's licenses. A driving license acquisition system may determine the requirements for a new driver to obtain a full driver's license in a particular state, track the driver's driving performance to determine when the requirements are met, and administer a written test and a driving test. Upon passing the written test and the driving test, the driving license acquisition system may communicate with a driver's license issuing authority system (e.g., Department of Motor Vehicles) to recommend issuing a driver's license to the driver. The driving license acquisition system may reduce the need for a parent or other supervisor to monitor the new driver's driving record, and may reduce the need for the new driver visiting a local driver's license issuing authority to obtain a driver's license. |
US11113772B2 |
Method and apparatus for activity networking
An apparatus for activity networking, comprising: a memory coupled to at least one processor, the processor being configured to: transmit, to a server, a request to form a crew, the request including an indication of an activity associated with the crew, an indication of a time for performing the activity, and an indication of a number of available spots on the crew; receive from the server a message indicating that all spots on the crew are occupied by a plurality of users; and provide the plurality of users with a calendar appointment for the activity. |
US11113767B1 |
Systems and methods for enhanced situation visualization
An augmented reality (AR) system for generating and displaying an enhanced situation visualization (ESV) is provided. The AR system may include an ESV computing device, a user computing device operated by a user and a reference database. The user computing device may transmit a reference request message to the ESV device, the reference request message including an image representative of a current view of a user. The ESV computing device may determine a subject of the image, retrieve reference information associated with the subject from the reference database, and determine situation information specific to the subject. The reference and situation information may be displayed on the user computing device to provide an ESV of the subject. The ESV may be used for insurance-related activities, such as handling, adjusting, and/or generating homeowner's insurance claims, and/or for instructional guidance. |
US11113765B1 |
Determining appliance insurance coverage/products using informatic sensor data
A computer device and method for processing risk related data to determine one or more insurance products for appliances and other systems located in or on an insured property. Informatic data is received from one or more informatic sensor devices relating to one or more appliances located in or on an insured property. Analysis is performed on the received informatic data to determine one or more insurance products to be recommended for at least one appliance located in or on the insured property. Notification is provided regarding determination of the one or more insurance products for the at least one appliance located in or on the insured property. |
US11113764B1 |
Method and system for creating and tracking life insurance policies in separate accounts including modified stable value protected funds
A system and method for administering an insurance policy in general accounts and in separate accounts including a modified stable value protected investment including an improved surrender payment protocol. The system and method includes tracking the value of investments and an MSVP value in a life insurance contract after a termination of life insurance coverage has occurred. When the system determines that the value of the MSVP equals a predetermined value (e.g., zero) or that a maturity date for the policy or stable value protected investment has occurred, the system causes an amount equal to the value of the MSVP division to be paid to the contractholder. Upon such payment, the MSVP product provider shall have no further liability under the MSVP. The contractholder may have an option to elect at any time to receive a payment amount equal to the value of the underlying assets of the stable value protected investment. In such event, the MSVP product provider shall have no further liability under the MSVP. |
US11113762B2 |
System and method for creating on-demand user-customized deposit strategies using data extracted from one or more independent systems
Interactive graphical user interfaces (GUI) are provided. An interactive GUI is generated on a display of a user device, comprising one or more screens to display baseline portfolios and user adjustment tools for customizing variables of the baseline portfolios. The portfolios comprise a combination of data structures, with each data structure defined by a combination of components and/or parameters. The variables comprise a portfolio strategy and/or a customizable parameter. An adjustment indication is received from the user device via the interactive GUI via the user adjustment tools. A variable is adjusted responsive to the adjustment indication. The interactive GUI dynamically updates and displays the adjusting and an impact of the adjusting on at least one other variable as the adjusting occurs. A confirmation indication is received from the user device via the interactive GUI. A user-customized portfolio of data structures is created and issued responsive to the confirmation indication. |
US11113759B1 |
Account vulnerability alerts
Systems and methods are provided for assessing an account takeover risk for one or more accounts of an individual. The account security procedures for each of a number of services with which the user has an account may be analyzed. Publicly accessible information regarding the user may also be collected and analyzed. The collected information and security procedures may be compared in order to determine one or more vulnerabilities to hostile account takeover of one or more of the analyzed accounts. An alert may be generated regarding a determined takeover risk, which may include suggested actions for remedying the risk. |
US11113757B1 |
Systems and methods for filtering digital content having a negative financial influence
A computer implemented method for filtering information delivered via a social media service. The method includes receiving social media data from the social media service at a social media computing system and analyzing the received social media data. Analyzing the received social media data comprises categorizing content within the received social media data as one or more of restricted content elements and unrestricted content elements. The restricted content elements and the unrestricted content elements are determined based on one or more predetermined parameters associated with a user profile. The method further including transmitting the unrestricted content elements to a user device. |
US11113753B1 |
Network access system for a shopping application and related methods
A network access system may include first and second WiFi networks in a physical store. The network access system may also include a mobile wireless communications device associated with a shopper. The mobile wireless communications device may include a controller and a device wireless network interface associated therewith to execute a shopping application associated with the physical store, and enable the shopping application to communicate via the first WiFi network responsive to the mobile wireless communications device being geographically located within the physical store. The controller and device wireless network interface may also enable at least one other application to communicate via the second WiFi network responsive to the mobile wireless communications device being geographically located within the physical store. |
US11113742B2 |
Capturing and extracting fragmented data and data processing using machine learning
One or more aspects of the disclosure generally relate to computing devices, computing systems, and computer software that may be used for capturing and extracting fragmented data and for data processing using machine learning. Some aspects disclosed herein are directed to, for example, a system and method comprising generating a display for receiving fragmented data associated with a user. The method may comprise sending, to a user device associated with the user, the display for receiving fragmented data. A computing device may receive, from the user device and via the display for receiving fragmented data, first fragmented data associated with the user. The computing device may extract a plurality of data entries from the first fragmented data. A request for data associated with a first data entry of the plurality of data entries may be sent to the user device. The computing device may determine a data category for each data entry of the plurality of data entries. Based on the determined data category for each data entry of the plurality of data entries, the method may comprise determining one or more of a number of entries in each data category or an amount associated with each data category. |
US11113740B2 |
System and methods for personalization and enhancement of a marketplace
A system comprising a computer-readable storage medium storing at least one program, and a computer-implemented method for enhancing and personalizing an interactive marketplace. The method may include receiving one or more images depicting one or more products owned by a user and identifying the one or more products based on a comparison of the one or more images to a product database. The method may further include determining a market value for each of the one or more products. In response to determining the market value of at least one product exceeds a predefined threshold value, an alert is transmitted to a computing device of the user. |
US11113736B1 |
Method, apparatus, and computer program product for estimating inventory based on distribution data
A method, apparatus and computer program product are provided for estimating inventory based on distribution data. A requesting computer may submit an order request (e.g., benefit request) indicating a product and merchant attributes. Inventory information of the merchant may not be accessible, so inventory information may be estimated based on distribution data relating to the distribution of product to the merchant. Estimates regarding quantities, high or low inventories, and/or the like may be made based on distribution history and/or estimated subsequent distributions. A prescriber computer, such as one used by a physician, may therefore receive estimated inventory information regarding prescription medication at various pharmacies, prior to submitting the prescription to a pharmacy. |
US11113734B2 |
Generating leads using Internet of Things devices at brick-and-mortar stores
Techniques for generating leads for consumers using IoT devices at brick-and-mortar stores are provided. A retailer can determine a consumer's level of interest in a product and provide information or other benefits to the consumer. In some embodiments, sensor data from at least one of one or more consumer devices or IoT devices are received, the sensor data being indicative of interaction of a consumer with a product. One or more interactions of the consumer with the product are determined based on the received sensor data. An interaction database is searched for an interaction mapped to specific sensor data requirements matching the received sensor data. A leads score is calculated based on the one or more interactions, the leads score indicating an interest level of the consumer in the product. When the leads score exceeds a threshold, a lead is generated for the consumer. |
US11113732B2 |
Controlling use of negative features in a matching operation
A computer-implemented technique is described herein for assisting an administrative user in generating negative feature information. The negative feature information, which includes a list of negative features (e.g., negative keywords), defines when queries submitted by end users are expressly disqualified as matching one or more parts of an identified web resource. The technique then automatically assesses the manner in which the negative feature information conflicts with matching between the queries submitted by end users and positive trigger information associated with the web resource, to provide conflict output information. The technique then modifies the negative feature information based on the conflict output information, e.g., by eliminating one or more negative keywords that contribute to conflicts. |
US11113731B2 |
Systems and methods for customer valuation and merchant bidding
A mediator system, which serves as a conduit between a customer and merchants, includes customer profile data. The mediator system analyzes the customer profile data, and assigns an indication to a customer represented by the customer profile data. The mediator system then provides the indication to the merchants, and then receives bids from the merchants. The bids are for establishing a connection between the merchants and the customer. The mediator system provides to a portion of the merchants, based on the bids, a connection to the customer. |
US11113730B1 |
Parallel data pool processing and intelligent item selection
Systems, methods, and computer-readable media are disclosed for parallel data pool processing and intelligent item selection. In one embodiment, an example method may include determining a first bid request comprising a first user identifier, determining a first set of product identifiers in a first user interaction history of the first user identifier, determining a second bid request comprising a second user identifier, and determining a second set of product identifiers in a second user interaction history of the second user identifier. Example methods may include determining estimated values for one or more product identifiers in the first set of product identifiers and the second set of product identifiers in parallel, and generating respective first and second responses to the first bid request and the second bid request using the estimated values. |
US11113722B2 |
Providing content related to sentiment of product feature
Embodiments of the present invention provide systems, methods, and computer storage media directed to providing targeted content related to sentiment associated with products. In one embodiment, content of a referral source from which a user navigates to arrive at a product page having an item of interest is analyzed. A sentiment of the item based on the analysis of the content within the referral source is determined. Based on the sentiment of the item, targeted content related to the item is identified and provided to the user in an effort to reconcile the determined sentiment of the item. |
US11113714B2 |
Filtering machine for sponsored content
A filtering machine receives sponsored content and filters the sponsored content according to a quality metric generated by quality model circuitry and assigned to the instance of sponsored content. The quality model circuitry generates the quality metric in accordance with historical feedback received about other sponsored content and a collection of quality factors pertaining to the sponsored content. Based on the quality metric for the sponsored content, the filtering machine can effect service of the sponsored content to a user device for display thereon. |
US11113713B2 |
Linking a transaction with a merchant to an interaction with an augmented reality advertisement
Customers receive an incentive with use of an installed cellphone app to image an AR-bearing ad. Matches between data from the customer's accounts for each merchant are compared to the data in association with the customer's logical identifier for their cellphone, and particularly with each incidence of a rendering on their display screen of an AR view of a product advertisement containing the AR-triggering symbol to initiate the corresponding AR enhanced view of the ad. In conjunction with chronological time stamping of occurrences, a likelihood is derived that the customer's viewing of the AR enhanced product advertisement influenced the potential customer's subsequent purchase of the corresponding advertised product as evidenced within the potential customer's rich transactional data from the customer's debit and/or credit accounts. The certainty of each match is determined to further initiate the merchant's incentive to the customer which may be the merchant's donation to a community program. |
US11113709B2 |
Distribution of fractional equity rewards based on purchase behavior
Herein disclosed are systems and methods for distributing fractional equity rewards to users of a loyalty platform based on tracked user loyalty purchases. The disclosed systems and methods may reduce time between a user loyalty purchase and distribution of a fractional equity reward determined based on the user loyalty purchase. In one example, by maintaining a pre-purchased supply of shares within an inventory account of the loyalty platform, and by distributing fractional equity rewards to user accounts on the loyalty platform from the pre-purchased supply, a reduction in reward distribution time may be enabled. Further, by maintaining the pre-purchased supply of shares of stock within the inventory based on a running average rate of fractional equity reward distribution, and predicted events, the amount of stock in the inventory may be intelligently controlled to reduce excess inventory, while reducing a probability of reward distribution delay. |
US11113706B2 |
Scoring information matching method and device, storage medium and server
Scoring information matching method and device, storage device and server. This scoring information matching method comprises: obtaining a target scoring information and a target scoring message which corresponds to the target scoring information; obtaining a first telephone number which sends out the target scoring message; obtaining the second telephone number which sends out the target scoring information; extracting a first identity number from the first telephone number; searching in preset service records for a service record of which an identity number is the same as the first identity number, a telephone number of a recipient of a corresponding scoring message is the same as the second telephone number, and a transmission time of the corresponding scoring message satisfies a preset condition; and determining the searched service record as a target service record that matches with the target scoring information. |
US11113702B1 |
Online product subscription recommendations based on a customers failure to perform a computer-based action and a monetary value threshold
Devices and methods are provided for used segmented impact analysis to determine high-valued computer-based actions. The device may determine a first user account associated with performance of a first computer-based action and a second computer-based action associated with a network-accessible resource. The device may determine a second user account associated with performance of the first computer-based action, but not with the second computer-based action. The device may determine a first value for the first user account, the first value based on the performance of the second computer-based action. The device may determine a second value for the second user account, the second value based on the failure to perform the second computer-based action. The device may determine a third value, wherein the third value is a difference between the first value and the second value. The device may send the third value with a product recommendation. |
US11113701B2 |
Consumer profiling using network connectivity
A method and associated apparatus (30) which, based on profiles of shoppers (100), along with the time spent by shoppers at each of a plurality of retail establishments, suggest offers most suitable to that particular profile. Shoppers' trails (past and present) are considered in order to generate and update profiles and predict future behavior and offer tailored incentives. For locating shoppers, an active Wi-Fi receiver on a mobile phone or other personal communication device can be identified by an access point (20, 22, 24) in a shop (10, 12, 14) by its MAC address as the shopper moves through a shopping centre, even if the device never connects to the access point. It is not necessary to identify the shoppers as named individuals; rather, it is possible to anonymously recognize them based on the MAC address. |