Document | Document Title |
---|---|
US10817041B2 |
Energy efficient computer process
Described is a process for optimizing energy utilization in a computer processing device, including sampling energy and power measurements for given hardware components, storing the energy and power measurements, computing metrics for a sample based on current power consumption and current power limits, comparing the current sample metrics against a metric threshold, classifying the current sample based on the comparison, assigning a classification type based on the classifying the current sample, determining if an actual number of a computational intensity characteristic exceeds a maximum allowed reference number in a sample window for the classification type, if the actual number of a computational intensity characteristic exceeds the maximum for the classification type, computing a new maximum allowed for the classification type, and constraining the hardware components to the new maximum energy and power measurements. |
US10817037B2 |
Device for managing power supply and method therefor
A method for managing a power supply comprises an Extension Power over Ethernet System receiving a trigger event. A determination is made as to whether the trigger event would cause a power budget of a power supply management device to increase or decrease; if the power is increased, the power is provided to a switch with a higher priority; if the power is decreased, power can be provided to a switch with a higher priority from a lower priority. A device for power supply management is also disclosed, the method and the device can effectively allocate power as required and avoid equipment overload. |
US10817036B2 |
Computer system having redundant power supply and system board
The invention relates to a computer system, comprising a chassis, a system board, which is arranged in the chassis, and a first power supply unit, which is directly connected to the system board via at least one first plug connector. Furthermore, the computer system comprises an expansion board, which is arranged in the chassis and connected to the system board via at least one second plug connector. Furthermore, the computer system comprises a second power supply unit, which is directly connected to the expansion board via at least one third plug connector, and a circuit, which is arranged on the system board, wherein the circuit is connected to the at least one first plug connector and the at least one second plug connector and is configured to enable a power supply of the computer system selectively by the first power supply unit and/or the second power supply unit. |
US10817031B2 |
Multiple mode display apparatus
A multiple mode display apparatus and methods of use. An apparatus includes a display surface with a first and a second display area. A housing pivotally attached with the display proximate a first edge of the housing is displaceable from a coplanar position with the surface of the display device to a position wherein an angle of at least 90 degrees between the surface of the display and the housing is formed along said first edge. In the first position, the first display area is visible and activated to receive user input or to display output. The second display area is covered by the housing and placed in a mode of reduced power consumption. In the second position, the second display area is visible and activated to display output. |
US10817030B2 |
Portable information handling system flexible display with alternating slide support frame
A portable information handling system integrates a sliding support with interlaced fingers below a flexible display to adjust support the display based upon rotational orientation of housing portions of the information handling system. In a closed position, the sliding support compresses by fully engaging the fingers so that room is provided over a hinge assembly that rotationally couples the housing to provide folding of the flexible display without wrinkling or compression. |
US10817028B2 |
Sealed light-emitting keypad module for mobile computing devices
A keypad module for a mobile computing device includes: a base member including: a base plate having (i) a lower surface configured to engage with a keypad mount of the mobile computing device, (ii) an opposing upper surface, and (iii) a light receiving region at the lower surface; a light pipe riser extending from the base plate and having a light emission region at an input surface of the keypad module; wherein the base plate and the light pipe riser define a light path from the light receiving region to the light emission region, configured to receive light from the mobile computing device and emit the light at the light emission region; and a keypad assembly supported on the upper surface of the base plate, the keypad assembly including a plurality of keys exposed at the input surface of the keypad module. |
US10817027B2 |
Window
A window includes a window that includes a first hole, a second hole, and a third hole between the first and second holes, a front protection film disposed on a front surface of the window that covers the first, second, and third holes, a first protection film disposed on a rear surface of the window that covers the first hole, a second protection film disposed on the rear surface of the window that covers the second hole, a cover disposed on the rear surface of the window and inserted into the third hole, the cover including a plurality of holes, and a cap disposed on the rear surface of the window and on the first and second protection films and the cover. |
US10817025B2 |
Narrow-bezel display module and display device
A narrow-bezel display module includes a display panel, a drive chip, and a flexible printed circuit board. The display panel includes a glass substrate and a TFT substrate. The glass substrate includes a bottom border. The drive chip is attached on the bottom border of the glass substrate. The drive chip includes an output end and an input end arranged opposite to each other and two side surfaces. The input end is connected to a first metal layer of the TFT substrate. The output end is connected to a second metal layer of the TFT substrate. The flexible printed circuit board includes conductive leads and a first connection portion and a second connection portion extended from one side of the conductive leads. The first connection portion and the second connection portion are connected to the input end from the two side surfaces respectively. |
US10817021B2 |
Deformation controllable display based display method and display apparatus, and user equipment
The embodiments of the present application disclose a deformation controllable display based display method and display apparatus, and a UE. The method comprises: acquiring target shape information of a spherical surface display object in response to an operation performed on the spherical surface display object; controlling, according to the target shape information, at least a part of a display area of a deformation controllable display to be deformed to a target screen shape, wherein the target screen shape is consistent with a shape of a to-be-displayed part of the spherical surface display object corresponding to the target shape information; and displaying the to-be-displayed part at the at least a part of the display area according to the target shape information. In the technical solutions of the embodiments of the present application, a deformation controllable display is controlled to be deformed to a shape consistent with a shape of a to-be-displayed part of a spherical surface display object, such that the to-be-displayed part is displayed with relatively little distortion by the deformed deformation controllable display. |
US10817020B1 |
Laptop with multi-display functionality
A portable laptop computing device includes an internal casing that stores secondary displays which extend outward from the device's primary display to thereby increase the amount of displays a user can view while operating the device. The secondary displays are positioned inside a casing of the primary display which is large enough to house at least two displays. The two displays are connected to a hinge which is configured to provide inward and outward movement and rotational movement of the secondary display about 360°. The system can also be implemented with an expansive ecosystem of interoperable components, including an add-on component from which secondary displays can extend, vertical screen adapters which can replace the customary horizontal configuration, a stand to which the add-on component can connect, and a horizontal screen adapter that connects with the stand to provide a convenient three-display set-up when used with the add-on component. |
US10817019B2 |
Display unit and its manufacturing method
A display unit which can realize reduction in thickness and weight of the display unit by omitting a void between a touch panel and a display panel, and its manufacturing method. Whole faces of the touch panel and the display panel are directly bonded together with an adhesive layer in between. The display panel has a structure wherein a driving substrate in which organic light emitting devices are formed and a sealing substrate are bonded together with an adhesive layer in between. |
US10817012B2 |
System, apparatus and method for providing a local clock signal for a memory array
In an embodiment, a processor includes at least one processor core and at least one graphics processor. The at least one graphics processor may include a register file having a plurality of entries, where at least a portion of the at least one graphics processor is to operate at a first operating frequency and the register file is to operate at a second operating frequency greater than the first operating frequency, to enable the at least one graphics processor to issue a plurality of write requests to the register file in a single clock cycle at the first operating frequency and receive a plurality of data elements of a plurality of read requests from the register file in the single clock cycle at the first operating frequency. Other embodiments are described and claimed. |
US10817008B2 |
Semiconductor device
A semiconductor device includes a circuit-to-be-adjusted in which an output characteristic thereof can be adjusted by a fuse that is controlled based on a fuse signal. The semiconductor device includes a control circuit using, as a power source, an internal power source that has a converted voltage obtained by converting a voltage of an external power source, the control circuit being configured to generate control signals A, B based on an inputted test signal, the control signals being able to adjust the circuit-to-be-adjusted in place of the fuse signal. The semiconductor device includes a selector circuit that selects the fuse signal before the internal power source reaches a stable state after the external power source is turned on, and selects the control signal CS after the internal power source has reached a stable state. |
US10817007B2 |
Multi-standard, automatic impedance controlled driver with supply regulation
A pre-driver circuit generates a driver bias signal based on a swing command, a driver impedance characteristic, and an input signal. A driver receives the driver bias signal and generates, in response, a driver signal having a swing and having an output impedance corresponding to the bias signal. Optionally, the driver receives power from a switchable one of multiple supply rails, according to the swing. Optionally, the driver has voltage controlled resistor elements and the driver bias signal is generated based on the swing command and a replica of the driver voltage controlled resistor elements. |
US10817004B2 |
Valve system with a pressure sensing displacement member
A system and method of monitoring and controlling the open and close states of a manifold diaphragm type valve includes using an actuator mechanism with feedback control. A pressure transducer and/or force gauge located on the contact end of the actuator mechanism monitors the pressure and/or force applied to the end of the actuator mechanism. A controller instructs the actuator mechanism to move forward or backward an appropriate distance based on the monitored pressure and/or force. Temperature and pressure changes in the system and material changes to the diaphragm are sensed immediately and positioning correction is applied to the actuator in real-time, thereby maintaining the same valve state while monitoring pressure separately. The linear actuator functions as a ‘smart’ actuator, capable of fine tune adjustments without additional outside monitoring and providing a more accurate and reliable method of closing the valve in a dynamic environment. |
US10817000B2 |
Unmanned aerial vehicle and control method of unmanned aerial vehicle
A flying device configured to communicate with a controller device operated by a user, the flying device includes: a memory; and a processor coupled to the memory and configured to: determine whether the flying device is in contact with an object based on a signal from a contact detector; and move the flying device in a direction corresponding to an operation command transmitted from the controller device while causing a thrust force to be produced so that a contact between the object and the flying device is maintained when it is determined that the flying device is in contact with the object. |
US10816999B2 |
System and method for controlling rotorcraft
In an embodiment, a rotorcraft includes: a flight control computer configured to: receive a first sensor signal from a first aircraft sensor of the rotorcraft; receive a second sensor signal from a second aircraft sensor of the rotorcraft, the second aircraft sensor being different from the first aircraft sensor; combine the first sensor signal and the second sensor signal with a complementary filter to determine an estimated vertical speed of the rotorcraft; adjust flight control devices of the rotorcraft according to the estimated vertical speed of the rotorcraft, thereby changing flight characteristics of the rotorcraft; and reset the complementary filter in response to detecting the rotorcraft is grounded. |
US10816994B2 |
Method and system for providing remote robotic control
A virtual pointer object is displayed within a virtualized environment corresponding to a physical environment currently surrounding a robot. The virtualized environment is generated and updated in accordance with streaming environment data received from sensors collocated with the robot. First user input is detected via a haptic-enabled input device that causes the virtual pointer object to move along a movement path in the virtualized environment, where the movement path is constrained by simulated surfaces in the virtualized environment. Haptic feedback is generated via the haptic-enabled input device in accordance with simulated material and/or structural characteristics of the movement path. The virtualized environment is modified at the locations of marking inputs along the movement path and affects path planning for the robot within the first physical environment. |
US10816993B1 |
Smart vehicle
Smart car method to navigate a road includes detecting one or more objects using a camera and a sensor to delimit boundaries of a road; creating a 3D model based on outputs of the camera and sensor; and navigating the road with a vehicle. |
US10816987B2 |
Responsive vehicle control
Acceleration determination for controlling a vehicle, such as an autonomous vehicle, is described. In an example, objects in an environment of the vehicle are identified and a probability that each object will impact travel of the vehicle is determined. Individual accelerations for responding to each object may also be determined. Weighting factors for each of the accelerations may also be determined based on the probabilities. A control acceleration may be determined based on the weighting factors and the accelerations. |
US10816986B2 |
Systems for vehicle collision avoidance
A mining vehicle control system includes a detection unit configured to determine a proximity of a monitored mining vehicle to a first mining vehicle and a controller configured to determine first protection lines that linearly project from the first mining vehicle and second protection lines that linearly project from the monitored mining vehicle. The first protection lines are determined based on a moving speed of the first mining vehicle. The second protection lines are determined based on a moving speed of the monitored mining vehicle. The controller is configured to direct the first mining vehicle to change movement of the first mining vehicle responsive to intersection of one or more of the first protection lines with one or more of the second protection lines. |
US10816982B2 |
Vehicle control device mounted on vehicle and method for controlling the vehicle
A vehicle control device for a vehicle includes: a communication unit configured to receive vehicle-to-everything (V2X) information, the V2X information including position data; and a control unit configured to generate a control signal associated with driving of the vehicle based on the V2X information. The control unit generates the control signal associated with driving of the vehicle by: determining an expected driving route of the vehicle; based on the determination of the expected driving route of the vehicle, determining a region of interest; and based on the determination of the region of interest, selectively receiving first V2X information associated with the region of interest by: transmitting, through the communication unit, a request for transmission of the first V2X information associated with the region of interest to communication-enabled devices; and receiving, through the communication unit, the first V2X information transmitted by the communication-enabled devices. |
US10816978B1 |
Automated vehicle artificial intelligence training based on simulations
Examples described herein relate to apparatuses and methods for or simulating and improving performance of an artificial intelligence (AI) driver, including but not limited to generating sensor data corresponding to a virtual environment, generating a pixelated image corresponding to the virtual environment based on the sensor data, determining actuator commands responsive to pixels in the pixelated image, wherein the decision module determines the actuator commands based on the AI driver, and simulating behaviors of the ego vehicle object using the actuator commands. |
US10816977B2 |
Path and speed optimization fallback mechanism for autonomous vehicles
According to some embodiments, a system calculates a first trajectory based on a map and a route information. The system performs a path optimization based on the first trajectory, traffic rules, and an obstacle information describing obstacles perceived by the ADV. The path optimization is performed by performing a spline curve based path optimization on the first trajectory, determining whether a result of the spline curve based path optimization satisfies a first predetermined condition, performing a finite element based path optimization on the first trajectory in response to determining that the result of the spline curve based path optimization does not satisfy the first predetermined condition, performing a speed optimization based on a result of the path optimization, and generating a second trajectory based on the path optimization and the speed optimization to control the ADV. |
US10816976B2 |
Control aerial movement of drone based on line-of-sight of humans using devices
Examples disclosed herein relate to control of a drone. In one example, aerial movement of the drone is controlled. In the example, it is determined, based on a plurality of devices, whether the drone is within a line-of-sight with at least a respective one of a plurality of humans within a physical proximity to a respective one of a the devices. In the example, the devices are used by the drone to track the humans. In the example, when the drone is determined to lack the line-of-sight, aerial movement of the drone is controlled to move the drone to become within the line-of-sight. |
US10816975B2 |
Autonomous acceleration profile feedback system
A system for adjusting acceleration of a vehicle based on user preference includes a memory designed to store first and second base vehicle acceleration modes each corresponding to a different pre-selected acceleration profile of the vehicle, and a power source for generating power. The system also includes an input device designed to receive a selected base acceleration mode and a user acceleration adjustment indicating a desired adjustment to the selected base acceleration mode. The system also includes an ECU designed to control the power source to accelerate the vehicle using the selected base acceleration mode during an initial trip of the vehicle, create a first user acceleration profile that corresponds to the desired adjustment to the selected base acceleration mode when the user acceleration adjustment is received, and control the power source to accelerate the vehicle using the first user acceleration profile during a second trip of the vehicle. |
US10816971B2 |
Autopilot recoupling for rotorcraft
An autopilot recoupling system for a rotorcraft having an automatic flight control system with multiple layers of flight augmentation. The autopilot recoupling system includes an autopilot recoupling input operable to generate an autopilot recoupling signal. An autopilot recoupling signal processor is communicably coupled to the autopilot recoupling input. The autopilot recoupling signal processor is configured to receive the autopilot recoupling signal from the autopilot recoupling input and responsive thereto, determine a state of the automatic flight control system, activate a trim systems layer of the automatic flight control system if the trim systems layer is not active, engage an attitude retention systems layer of the automatic flight control system if the attitude retention systems layer is disengaged and recouple an autopilot systems layer of the automatic flight control system. |
US10816968B2 |
System and method for access to restricted areas by an autonomous vehicle
A system to enable restricted area entrance, including a memory configured to include one or more executable instructions; a controller configured to execute the executable instructions; a vehicle including a vehicle controls device, the vehicle configured to communicate with the controller, the vehicle controls device configured to command the vehicle to autonomously perform rideshare task(s); and the executable instructions enable the controller to receive vehicle reservation information from a mobile computing device; generate first and second vehicle identification aspects from the received vehicle reservation information, where the first and second vehicle identification aspects can be compared and, when the first and second vehicle identification aspects are determined to correspond via the comparison, an access operator can operate an access gate to enable restricted area entrance; and communicate the first vehicle identification aspect to the vehicle and the second vehicle identification aspect to the access operator. |
US10816967B2 |
Magic wand interface and other user interaction paradigms for a flying digital assistant
Methods and systems are described for new paradigms for user interaction with an unmanned aerial vehicle (referred to as a flying digital assistant or FDA) using a portable multifunction device (PMD) such as smart phone. In some embodiments, a magic wand user interaction paradigm is described for intuitive control of an FDA using a PMD. In other embodiments, methods for scripting a shot are described. |
US10816965B2 |
Manufacturing facility management optimization device
This manufacturing facility management optimization device: on the basis of an operation condition of a manufacturing facility, creates, in a simulated manner in time series, an operation state which includes a measurement value, product yield, and quantities of raw materials consumed, of the manufacturing facility; detects an anomaly from the created operation state; identifies maintenance which corresponds to the detected anomaly, corrects the operation condition on the basis of the identified maintenance, and creates a plurality of post-correction operation condition candidates; creates, in a simulated manner in time series, a plurality of post-correction operation state candidates on the basis of the plurality of post-correction operation condition candidates; on the basis of the product yield and the quantities of raw materials consumed in the plurality of pre- and post-correction operation state candidates, and a unit price, creates a management index for the operation state and each of the plurality of post-correction operation state candidates; and, from among the plurality of post-correction operation condition candidates, identifies the candidate which optimizes the management index. |
US10816964B1 |
Self-recovering orchestrator for control systems
Embodiments herein describe a fault tolerant network connected orchestrator which can handle network outages or hardware resets in a work cell. In one embodiment, the orchestrator determines the next task to assign to the work cell depending on whether the previous task was successfully completed. However, a network outage or a hardware failure may prevent the orchestrator from receiving the results of the previous action from the work cell. In one embodiment, the orchestrator recovers from a communication error by requesting the current state of sensors. Using this information, the orchestrator can deduce or determine the current state of the work cell and determine the next task for the work cell. In this manner, the orchestrator is fault tolerant such that it can recover from communication errors. |
US10816963B2 |
Systems and methods for automated welding
An automated welding system includes a mounting platform, a welding tool, an imaging device configured to acquire data associated with an object, and a controller. The controller is configured to receive the acquired data, determine an area to be welded in the acquired data, retrieve stored master model data associated with the object, and compare the acquired data to the stored master model data to identify a master model area in the acquired data. The controller is also configured to mask the master model area in the acquired data, such that the master model area is excluded from the area to be welded, and generate control instructions for controlling at least one of the mounting platform and the welding tool to weld the area to be welded. |
US10816959B2 |
Method and system for compensating offset of resolver
A method and a system for compensating an offset of a resolver, may include sampling an output signal of the resolver at a predetermined sampling frequency, comparing magnitudes of the sampled output signals of the resolver, when a difference in magnitude between the sampled output signals of the resolver is greater than a predetermined reference value, controlling the motor by a random pulse width modulation (RPWM) scheme in which switching frequencies of the switching elements in the inverter are arbitrarily changed, and compensating an offset of the resolver coupled to the motor while controlling the motor with the RPWM scheme. |
US10816955B2 |
Process and device for manufacturing a dental restoration
Methods for manufacturing a dental restoration for a patient and dental ceramics production devices are disclosed. A dental restoration may be designed based on a scan of the patient's mouth, using a CAD software module. The software module may produce conveyor channels for a positive model based on the dimensions of a muffle in relation to the size and shape of the positive model. The conveyor channels may extend at an angle of between 0° and 130° away from an axis of the pressing channel, the axis being located essentially along an isotherm inside the muffle. A docking site may be selected based on a position with the greatest wall thickness of the positive model. The present disclosure allows the creation of a high-quality dental restoration in a very efficient fashion, in particular when lithium disilicate is used as the dental ceramics material. |
US10816953B2 |
Method for adjusting the energy consumption of two tools during the machining of pipe section ends
A method for machining a longitudinal profile section having an actual length and a first and a second end, wherein the first and the second end are machined using respectively a first and a second tool head and material is continuously abraded by the first and second rotating tool head during a machining period, the machining period is divided into time increments (Δti), a torque (M(ti,) M′(ti)) of the tool head is measured for each time increment (Δti) and an individual energy consumption (E(Δti), E′(Δti)) is determined for each time increment (Δti), said individual energy consumption corresponding to an individual quantity of material abraded during the time increment (Δti), and a total energy consumption (E(t), E′(t)) both of the first and of the second tool head is determined from the individual energy consumptions (E(Δti), E′(Δti)), said total energy consumption corresponding to the total quantity of abraded material. |
US10816951B2 |
Emulation of a control system and control method for abnormality detection parameter verification
A control system and a control method are provided. A control device in the control system includes a computation processing unit related to control of a control target, a collection unit that executes a process of collecting data associated with the control target, and a monitoring processing unit that executes a process of monitoring a state of the control target and includes a feature quantity generation unit that executes a process for generating a feature quantity from the collected data, and a detection unit that executes a for detecting an abnormality occurring in the control target using the generated feature quantity and an abnormality detection parameter suitable for detection of an abnormality occurring in the control target that is set based on a result of machine learning. An information processing device executes emulation of the monitoring process using the data associated with the control target from the control device. |
US10816949B1 |
Managing coordinated improvement of control operations for multiple electrical devices to reduce power dissipation
Techniques are described for implementing automated control systems that repeatedly perform automated modifications to control system actuator components' ongoing operations to improve functionality for electrical devices in target systems, such as to reduce power dissipation while using the electrical devices. The described techniques further include synchronizing a particular control system's state improvements with corresponding control system state improvements being performed for one or more other control systems that are each controlling one or more distinct electrical devices in the target system(s), so as to improve the collective control system functionality according to one or more criteria (e.g., to reduce power dissipation)—such synchronizing may include, for example, generating a mean field representation of the overall control system state for the target system(s) and using the mean field representation to improve the overall control system state. |
US10816941B2 |
Energy efficiency of a building at the planning stage
Various embodiments may include methods and systems for improving the energy efficiency of a building at the planning stage, such as: building a basic digital model of the building using a computer; defining a plurality of different function-related room categories; assigning existing technical building automation functions, previously stored in a memory coupled to the computer, to the different room categories; arranging rooms by assigning the defined categories to the model on the basis of an occupancy plan; coupling the rooms to supply lines of a automation system based on the assigned functions; determining an energy efficiency of the virtual building; and selecting suitable technical system modules from available modules based on the determined energy efficiency. |
US10816935B2 |
Motor driving apparatus, motor control method, and timepiece
A motor driving apparatus is a pulse generation circuit applying a drive pulse for rotating a rotor to a two stepping motor including the rotor magnetized in two poles and a stator in which a two-phase coil is wound around a yoke. The drive pulse is constituted of a drive pulse P1 and a drive pulse P2. The pulse generation circuit applies the drive pulse P1 having a stable stationary position at which a rotor rotation angle from a reference position is 90 degrees or less and applies the drive pulse P2 having a stable stationary position at which the rotor rotation angle from the reference position is 90 degrees or more continuously to the application of the drive pulse P1. |
US10816934B2 |
Movement with power reserve extension
A timepiece movement is provided, including a first regulating member and a first escapement associated therewith; a first train connecting the first escapement to a first energy source; a second regulating member and a second escapement associated therewith; a second train connecting the second escapement to a second energy source; a display of a current time; at least one differential gear including a first input wheel meshing with the first train and a second input wheel meshing with the second train, the at least one differential gear driving the display, where the second regulating member consumes less energy than the first regulating member. |
US10816933B2 |
Mechanical braking device for timepiece wheel set
A timepiece mechanism includes a structure in which at least one arbor of a wheel set is pivoted about an axis of rotation and a braking device for the mechanical braking at constant torque of this arbor. The braking device includes a braking component which is removable with respect to the structure and includes, for attachment thereof to the structure, a solid felloe, which carries a plurality of resilient elements, regularly distributed around a common axis about which these resilient elements each have a contact area. The contact areas together defining an opening, arranged to engage, in a press fit with elastic gripping, with the arbor, to make the common axis coincide with the axis of rotation of the arbor, and to apply to the arbor a substantially constant tangential braking force. |
US10816932B2 |
Apparatus for displaying a hologram
An apparatus for displaying a hologram comprises: a hologram display panel that represents light having the hologram images to an observer; a detecting camera that decides a position of the observer; a deflector that forms a prism pattern to refract the light corresponding to the detected position of the observer; and a deflector driver that supplies a driving voltage corresponding to a inclined angle for forming the prism pattern, wherein the deflector includes: a plurality of first electrodes running to a first direction and divided into a plurality of electrode groups; a plurality of connection electrodes running to a second direction crossing with the first direction, and connecting same numbered first electrodes of the electrode groups, wherein each end of the connection electrodes forms a pad portion; and a second electrode facing to the plurality of the first electrodes with a liquid crystal cell therebetween. |
US10816930B2 |
Image forming apparatus
In a configuration in which a cartridge is removably mounted from a longitudinal direction of the cartridge (a side-oriented configuration), an image bearing member is disposed at a position farther from a light emitting unit in a state in which a cover is opened than a state in which the cover is closed in a direction perpendicular to the longitudinal direction of the cartridge. |
US10816929B2 |
Image forming apparatus
An image forming apparatus including a drawer and a main body. The drawer includes a frame holding a photosensitive drum rotatable about an axis extending in a first direction and a drawer-side connector including a drawer-side electrical contact part. The main body includes: a housing including a main body-side electrical contact part; a shaft extending in the first direction; a unit removably insertable to the housing; and a connection member. One end in a third direction intersecting with the first and second directions of the unit is fitted to the housing and the other end is supported to the shaft via the connection member. The main body-side connector is supported to the unit. The drawer-side electrical contact part and the main body-side electrical contact part are interconnected when the drawer is accommodated. |
US10816927B2 |
Transport device and image forming apparatus
A transport device includes a first rotary part that rotates; a second rotary part that contacts the first rotary part, that forms a pinch region where an object to be transported is pinched between the second rotary part and the first rotary part, and that rotates together with the first rotary part; and a positioning mechanism that positions the second rotary part with respect to the first rotary part. The positioning mechanism includes a swing part that supports one end portion side of the second rotary part, that is supported at one end portion side of the first rotary part, and that is swingable around a rotation center of the first rotary part; and a fixing section that fixes the swing part. |
US10816925B1 |
Image forming apparatus having controller to control stabilization process depending on toner amount
An image forming apparatus includes a photosensitive drum, a developing device, a transfer unit, an image sensor configured to detect a toner image on the transfer unit, and a processor. The processor is configured to determine whether the remaining amount of toner in a toner cartridge has decreased to a predetermined level or below. The processor is configured to carry out an image quality stabilization process when the remaining amount of toner is above the predetermined level. The image quality stabilization process being based on a detection result from the image sensor detecting a test pattern formed on the transfer unit. The processor is further configured to perform print process without performing an image stabilization process, without carrying out the image quality stabilization process. |
US10816924B2 |
Image forming apparatus capable of suppressing occurrence of damage to image holding body caused by carrier
An image forming apparatus includes an image holding body that rotates, an image forming unit, and a return operation controller. The image forming unit includes a charger, an exposure unit, a developing unit, a transfer unit, and a cleaning unit. The return operation controller causes a clean-up step to be executed in which the image holding body is cleaned while rotating the image holding body when returning from an emergency stop. In the clean-up step, the return operation controller reduces or zeroes out a pressing force between the transfer unit and the image holding body at least until a developing operation area on a surface of the image holding body that is stopped upon the emergency stop facing toward a direction in which the developing unit operates passes through a pressing area pressed by the transfer unit. |
US10816922B2 |
Image forming apparatus having fixing device that responds to request when using decolorable ink
An image forming apparatus includes: a first image forming unit which forms a first image on a first recording medium with a first material that is not thermally decolorizable; a second image forming unit which forms a second image on a second recording medium with a second material that is thermally decolorizable; a fixing device which is on a common carrying path shared by the first recording medium and the second recording medium and fixes the first image to the first recording medium; and a controller which controls the fixing device so that a temperature of the fixing device is lower than a decolorizing temperature of the second material when the second recording medium reaches the fixing device. |
US10816921B1 |
Fixing apparatus and image forming apparatus
A fixing apparatus includes a heating section including a belt having a layered structure in which a metal layer is held between nonmetal layers. The belt has a front surface that comes into contact with a toner image and a back surface that does not come into contact with the toner image. The belt has a first thickness from the front surface to the metal layer inside the belt and a second thickness from the back surface to the metal layer inside the belt.The fixing apparatus also includes a pressure section that holds, between the pressure section and the belt, a transported sheet of paper holding the toner image and that applies pressure to the sheet of paper.The fixing apparatus further includes a first static eliminating section that eliminates static from the belt while being in contact with a surface of the belt. The surface is the front surface or the back surface that is on a side of the first thickness or the second thickness having a smaller thickness when the first thickness and the second thickness are compared. |
US10816920B1 |
Fixing member and projector
A fixing member adapted to fix a first optical member and a second optical member is provided, the fixing member is disposed between a first module and a second module. The fixing member includes a frame body, a first fixing structure and a second fixing structure. The frame body is fixed to the first module. The first fixing structure is connected with the frame body and configured to fix the first optical member to the first module. The second fixing structure is connected with the frame body and configured to fix the second optical member to the second module. A projector comprising the fixing member above is further provided. |
US10816917B2 |
Developing apparatus
A developing apparatus includes a developer bearing member, a developer container, and a storage tank arranged within the developer container to store liquid developer to be supplied to the developer bearing member. The storage tank includes a first bottom surface including an inclined portion that is inclined downward with respect to a horizontal direction in a rotational axis direction of the developer bearing member, and a discharge port arranged on a lower end of the inclined portion of the first bottom surface. The developer container includes a second bottom surface including an inclined portion that is inclined downward with respect to the horizontal direction toward an opposite direction as the inclined portion of the first bottom surface in the rotational axis direction of the developer bearing member, and a discharge port arranged on a lower end of the inclined portion of the second bottom surface. |
US10816915B2 |
Image forming device, and control method and program thereof
An image forming device that forms an image through exposure of any one of a plurality of photosensitive members to light, image developing, and image transfer. The image forming device includes a holder, a conveyance unit, a first developer unit, and a second developer unit. The holder holds one or more containers of developer and causes the developer to flow out from a container selected from the held containers. The conveyance unit conveys the developer from the container to a destination and can switch the destination between at least the first developer unit and the second developer unit. The first developer unit uses the developer to develop an electrostatic latent image formed on a first photosensitive member. The second developer unit uses the developer to develop an electrostatic latent image formed on a second photosensitive member. The image is the same color regardless of which developer unit is used. |
US10816912B2 |
Toner cartridge and image forming apparatus using toner characteristics for improving image quality
According to one embodiment, there is provided a toner cartridge used in an image forming apparatus including a processor which forms a toner pattern image on a photoconductive member, transfers the toner pattern image on a medium, and changes an image forming condition based on a detection result obtained by optically detecting the toner pattern transferred onto the medium, the toner cartridge including: a toner accommodating container accommodating a toner, and a memory. The memory stores a plurality of reference data which are determined according to toner characteristics in the toner accommodating container and a value indicating an image forming execution amount, and are used for applying reference values for an optical detection result of a toner pattern formed by the toner on the medium. |
US10816911B2 |
Charging roller for image forming
A charging roller for an image forming apparatus is provided, which includes a shaft, an elastic layer disposed around the shaft, and a coating layer formed on the elastic layer, wherein the coating layer includes a urethane resin formed by crosslinking of a polyol mixture with polyisocyanate, and the polyol mixture includes polyester polyol and polyether polyol having 60% by weight or more and 90% by weight or less of an ethylene oxide content. |
US10816910B2 |
Vibration isolator, lithographic apparatus and device manufacturing method
The invention relates to a vibration isolator, comprising: a base; a coupling element to be coupled to a vibration sensitive object; a decoupling mass; a first vibration isolator part arranged between the base and the decoupling mass; and a second vibration isolator part arranged between the decoupling mass and the coupling element, and wherein at least one of the first and second vibration isolator part comprises a pneumatic isolator. |
US10816908B2 |
Light-exposure method and light-exposure apparatus
According to one embodiment, a correction plot in which a slit width is set different depending on overlay deviation in a shot region is generated. Then, a light-exposure scanning speed defined by a relative speed between a photomask stage with a photomask mounted thereon and a stage with a processing object mounted thereon is set, to obtain a desired light-exposure amount at each coordinate position, in accordance with the slit width in the correction plot. Then, a light-exposure process is performed, while controlling the slit width of a light-exposure slit, the photomask stage, and the stage, in accordance with the correction plot and the light-exposure scanning speed. |
US10816906B2 |
HHG source, inspection apparatus and method for performing a measurement
Disclosed is a method of performing a measurement in an inspection apparatus, and an associated inspection apparatus and HHG source. The method comprises configuring one or more controllable characteristics of at least one driving laser pulse of a high harmonic generation radiation source to control the output emission spectrum of illumination radiation provided by the high harmonic generation radiation source; and illuminating a target structure with said illuminating radiation. The method may comprise configuring the driving laser pulse so that the output emission spectrum comprises a plurality of discrete harmonic peaks. Alternatively the method may comprise using a plurality of driving laser pulses of different wavelengths such that the output emission spectrum is substantially monochromatic. |
US10816905B2 |
Wavelength stabilization for an optical source
A wavelength error for each pulse in a first subset of pulses emitted from an optical source is determined, the wavelength error being the difference between a wavelength for a particular pulse and a target wavelength; a pulse-by-pulse correction signal is determined based on the determined wavelength error, the pulse-by-pulse correction signal including a correction signal associated with each pulse in the first subset of pulses; and a correction based on the determined pulse-by-pulse correction signal is applied to each pulse in a second subset of pulses emitted from the optical source, where applying a correction to a pulse in the second subset of pulses reduces the wavelength error of the pulse in the second subset of pulses. |
US10816903B2 |
Photolithography method and system based on high step slope
A photolithography system based on a high step slope may include a depositing unit configured to manufacture a sacrificial layer having high step slope on a substrate. The system may also include a coating unit configured to coat a photoresist layer on the sacrificial layer by performing a spin-on PR coating process to form a photolithographic layer. The system may further include a photolithography unit configured to perform one or more photolithography processes to the photolithographic layer. The photolithography unit may comprise a plurality of masks of compensation patterns. The compensation pattern may comprise a slope-top compensation pattern and a slope compensation pattern. |
US10816900B2 |
Tetracarboxylic acid diester compound, polymer of polyimide precursor and method for producing same, negative photosensitive resin composition, patterning process, and method for forming cured film
A polymer of a polyimide precursor which includes a structural unit represented by the following general formula (7), where X1 represents a tetravalent organic group, X2 represents a divalent organic group, and R1 represents a group represented by the following general formula (2), where the dotted line represents a bonding, Y1 represents an organic group with a valency of k+1, Rs represents a group containing at least one silicon atom, “k” represents 1, 2 or 3, and “n” represents 0 or 1. |
US10816890B2 |
X-ray phosphor plate system
An x-ray phosphor plate system has an x-ray phosphor plate, which is configured to be exposed by x-ray light in a recording region, and which carries a shadowing marker, which is arranged in the recording region, on at least one side of the x-ray phosphor plate. The system also has a phosphor plate reader, which is configured to read the exposed x-ray phosphor plate in order to produce an x-ray recording. The shadowing marker has a shadowing effect in respect of x-ray light that is so small that the shadowing marker is only weakly identifiable, and/or only identifiable by way of image artefacts, and/or not identifiable when the x-ray recording is observed by a user. The phosphor plate reader instead has an identification algorithm, which is configured to identify whether or not the x-ray light was shadowed by the shadowing marker during the exposure. |
US10816888B1 |
Projector, power control circuit and method for the same
A power control circuit for a projector for controlling a light source of the projector. The power control circuit includes: a detector for detecting an AC input voltage is a first value or a second value; a switch coupled to the detector, conducting or disconnecting of the switch being based on the detector detecting whether the AC input voltage is the first value or the second value, the switch further outputting a first control signal; and a laser driver coupled to the switch and the light source, in response the first control signal from the switch to change power consumption of the light source. When the AC input voltage is the first value, power consumption of the light source is a default value. When the AC input voltage is the second value, power consumption of the light source decreased from the default value. |
US10816881B2 |
Wavelength conversion module
A wavelength conversion module for being disposed on a light path of light of a projector is provided. The wavelength conversion module includes a driving module and a wheel. The wheel has an axial hole, a heat dissipation area and a complementary dissipation area. The axial hole is connected to the driving module, the heat dissipation area surrounds the axial hole, and the wavelength conversion area surrounds the heat dissipation area and the light is projected to the wavelength conversion area. The heat dissipation area includes a plurality of through holes penetrating through the wheel, in which the plurality of through holes has a plurality of first through holes and a plurality of second through holes. The plurality of first through holes is arranged circularly on the wheel around the axial hole. Each of the plurality of second through holes is arranged between every two adjacent first through holes. |
US10816877B1 |
Shutter assembly with linear drive
A shutter assembly includes a base plate defining a shutter opening having a central axis, and a drive assembly coupled to the base plate. The drive assembly includes a rotatable pinion gear, and a drive rack mating with the pinion gear and moveable in a substantially linear direction in response to rotation of the pinion gear. The shutter assembly also includes a plurality of shutter blades operably connected to the drive rack. The plurality of shutter blades are configured to rotate between an open position exposing the shutter opening and a closed position substantially occluding the shutter opening in response to movement of the drive rack in the substantially linear direction. |
US10816875B2 |
Blade drive device
To enable adjustment of a lens frame (lens barrel) independently, and also to enable a reduction in thickness along the optical axial direction. A blade driving device having a driving member for moving on a plane; a frame for containing the driving member; a thin blade supporting unit that protrudes to the outside, along the direction of movement of the driving member, from a portion of the thickness of the frame, and that has an opening, around the optical axis, along the direction of thickness of the frame; and a blade member that is supported on the blade supporting unit, and that is moved by the driving member, to advance into the opening; wherein the outer peripheral edge of the frame has a recessed portion at the position at which the blade supporting unit protrudes. |
US10816874B2 |
Lens driving mechanism and electronic device having the same
A lens driving mechanism is provided for moving a lens unit along a light axis, including a frame, a base, a lens holder, and a driving assembly. The frame has plastic material and forms an opening. The base is in contact with and fixed to the frame, wherein a space is formed between the base and the frame. The lens holder is movably disposed in the space for holding the lens unit, wherein an external light enters the space through the opening to the lens unit. The driving assembly is disposed in the space and is connected to the lens holder and the frame, to impel the lens unit to move along the light axis. |
US10816873B2 |
Optical amplifier, optical amplification system, wavelength converter, and optical communication system
An optical amplifier includes: a pump-light source unit outputting pump light beams having respective phases modulated; a polarization multiplexer/demultiplexer having first, second, and third ports, demultiplexing a light beam, input from the first port, into polarization components and outputting the demultiplexed light components from the second port and the third port; a first polarization-sensitive optical amplifying fiber unit connected to the second port of the polarization multiplexer/demultiplexer; a second polarization-sensitive optical amplifying fiber unit connected to the third port of the polarization multiplexer/demultiplexer; optical multiplexers/demultiplexers connected to the first polarization-sensitive optical amplifying fiber unit and the second polarization-sensitive optical amplifying fiber unit, respectively; an optical discharge unit, connected between the first polarization-sensitive optical amplifying fiber unit and the second polarization-sensitive optical amplifying fiber unit, discharging the pump light beams to outside the optical loop; and an optical circulator, having first, second, and third ports, outputting a signal light beam. |
US10816870B2 |
Active prism structure and fabrication method therefor
An active prism structure includes: an isotropic layer made of a photocurable isotropic polymer having a predetermined refractive index np and stacked on a substrate; and a birefringent layer made of a birefringent material having an ordinary refractive index no and an extraordinary refractive index ne and stacked on the isotropic layer, an interface between the isotropic layer and the birefringent layer is formed in a prism shape, and refractive index differences occurring at the interface between the isotropic layer and the birefringent layer are different according to a polarization direction of incident light. The active prism structure is configured such that the refractive index differences are different according to the polarization direction of the incident light, and thus, it is possible to change a refraction angle and refraction direction of the prism by controlling the polarization direction of the incident light. |
US10816863B2 |
Reflective LCD panel including transparent pixel electrode and color filter layer stacked together
The invention provides a reflective LCD panel. The reflective LCD panel of the invention is disposed with white sub-pixel unit in the pixel unit. When the pixel electrode is disposed below the CF layer, the white sub-pixel unit is a transparent film layer and the pixel electrode is a reflective electrode, or when the white sub-pixel unit is a reflective film layer, the pixel electrode is a transparent electrode or a non-transparent electrode; when the pixel electrode is disposed above the CF layer, the white sub-pixel unit is a reflection film layer and the pixel electrode is a transparent electrode. The reflective LCD panel of the invention utilizes the combination of the white sub-pixel unit and the pixel electrode to improve the utilization of the ambient light, so as to enhance the brightness of the pixel unit and further enhance the brightness of the reflective LCD panel. |
US10816862B2 |
Device for controlling transmission of radiation
Device for controlling transmission of radiation, comprises a first substrate comprising a first conductive layer; a second substrate comprising a second conductive layer; an active layer positioned between the first and second conductive layers for controlling the transmission of radiation by altering its light transmissivity dependent on a voltage applied to the first and second conductive layers; a first contact providing a first electrical connection to the first conductive layer; a first portion of an adhesive or solder for attaching a first proximal end of the first contact to the first conductive layer; a second contact providing a second electrical connection to the second conductive layer; and a second portion of adhesive or solder for attaching a second proximal end of the second contact to the first or second conductive layer. |
US10816859B1 |
Display panel, manufacturing method and display apparatus
The present application discloses a display panel, a manufacturing method and a display apparatus. First common lines and first electrodes are disposed on a first substrate; an overlapped shading zone and a photic zone are provided between each of the first electrodes and each of the first common lines; each of the photic zones includes an edge photic zone; and a film thickness of each of the edge photic zones is greater than a film thickness of each of the overlapped shading zones. |
US10816858B2 |
Electrically tunable phase modulation element
An electrically tunable optical phase modulation element includes a first substrate, a second substrate, a liquid crystal layer, a transparent layer, a first compensation layer. The second substrate is opposite to the first substrate. The liquid crystal layer is between the first substrate and the second substrate. The transparent layer is between the first substrate and the liquid crystal layer. The transparent layer has a first portion and a second portion. The first compensation layer is in between the first portion and the second portion of the transparent layer. The first compensation layer has a flat surface adjacent the liquid crystal layer. |
US10816857B2 |
Display device
According to one embodiment, a display device comprises first and second flexible substrates, a sealant, a liquid crystal layer, a film, a first protrusion, scan signal lines, and video signal lines. The first flexible substrate includes first and second surfaces. The second flexible substrate includes third and fourth surfaces. The film is disposed on the fourth surface. The first protrusion is disposed on one of first and third surfaces. The scan signal lines extend in a first direction. The video signal lines extend in a second direction. The first protrusion overlaps one of the scan signal lines and the video signal lines, and extends in one of first and second 0directions. |
US10816846B2 |
Display device, display panel, color filter substrate and color filter
The present disclosure provides a display device, a display panel, a color filter substrate, and a color filter, and relates to the field of display technology. The color filter of the present disclosure includes a grating layer and a photo-luminescent layer. The grating layer is configured to generate a surface plasmon effect under the action of incident light. The photo-luminescent layer is disposed on the light exiting surface of the grating layer. |
US10816839B2 |
Display device and manufacturing method thereof
Disclosed is a display device provided to solve any problem caused when a source PCB is provided on the lateral rear side or the rear side of a middle frame, to solve any additional problem caused when the source PCB is provided on the side surface of the middle frame, and to ensure rigidity of the middle frame and optimize the number of processes and associated costs. The display device includes a display panel, a middle frame comprising a rear-surface portion located in a rear of the display panel and a support portion configured to form a sidewall on one side edge of the rear-surface portion, a guide panel coupled to the middle frame so as to surround an outer periphery of a side surface of the middle frame, a seating portion provided on the guide panel so as to form a portion of a side surface of the guide panel and surround the support portion, a source PCB seated on an outer surface of the seating portion, a member layer configured to connect one side of the display panel and the source PCB to each other, and a top case configured to cover the seating portion and the side surface of the guide panel and to define a space along with the source PCB. |
US10816831B2 |
Optical modulator and optical transmission apparatus
An optical modulator using an optical modulation element in which an optical waveguide and a plurality of electrodes for controlling light waves propagating through the optical waveguide are formed on a substrate, in which at least one stress relieving structure is provided on an upper surface of the electrode opposite to a surface of the substrate in order to relieve stress generated due to pressure applied at the time of wire-bonding of a metal wire. |
US10816830B2 |
Optoelectronic device
An optoelectronic device and method of making the same. The device comprising: a substrate; an epitaxial crystalline cladding layer, on top of the substrate; and an optically active region, above the epitaxial crystalline cladding layer; wherein the epitaxial crystalline cladding layer has a refractive index which is less than a refractive index of the optically active region, such that the optical power of the optoelectronic device is confined to the optically active region. |
US10816826B2 |
Eyeglass frames with dynamic vent
Eyeglass frames include a face member and two temple members connected to the face member. The face member includes a rim with a brow configured to retain at least one lens. A nose member is connected to the face member and supports the rim separated from a face of a wearer by a gap. A vent passage is provided in the brow and extends from a front portion of the brow to a rear portion of the brow. A vent adjustment member provided on the brow directly above the at least one lens. The vent adjustment member is configured to move between a first position wherein the vent passage is substantially closed and a second position wherein the vent passage is open. The vent adjustment member is substantially flush with a medial portion and a lateral portion of the brow when the vent adjustment member is in the first position and offset from the medial portion and lateral portions of the brow when the vent adjustment member is in the second position. |
US10816825B2 |
Head-mounted display
A head-mounted display according to an embodiment of the present technology includes a main body, a nose pad, and a holding mechanism. The main body includes a display portion capable of presenting an image to a user and is configured to be mountable on a head of the user. The nose pad is configured to be attachable to and detachable from the main body. The holding mechanism is configured to be capable of holding correction glasses between the main body and the nose pad mounted to the main body, the correction glasses facing the display portion. |
US10816817B2 |
Microlens array film and display module
The present disclosure discloses a microlens array film including a film-shaped main body layer and a plurality of microlenses arranged on the top of the main body layer, the top surface of the microlens is a cambered surface, and the projected image on the main body layer is rectangular. The disclosure also discloses a display module. The microlens array film of the present disclosure includes a plurality of microlenses arranged in an array, the top surface of the microlens is a cambered surface and has a rectangular projected image on the film like main body layer. The filling ratio of the microlens array reaches 100%, which can fully cover all the sub-pixels. During the 3D display, all the pixel information can be restored in space to avoid the missing of the 3D scene information and ensure the naked eye 3D viewing effect. |
US10816815B2 |
Achromatic metasurface optical components by dispersive phase compensation
Multi-wavelength light is directed to an optic including a substrate and achromatic metasurface optical components deposited on a surface of the substrate. The achromatic metasurface optical components comprise a pattern of dielectric resonators. The dielectric resonators have distances between adjacent dielectric resonators; and each dielectric resonator has a width, w, that is distinct from the width of other dielectric resonators. A plurality of wavelengths of interest selected from the wavelengths of the multi-wavelength light are deflected with the achromatic metasurface optical components at a shared angle or to or from a focal point at a shared focal length. |
US10816812B2 |
Display devices with multimodal audio
A head-mounted display system is disclosed that includes a housing; a visual system associated with the housing to facilitate image and/or video display; a wearable support connectable to the housing; and an audio component pivotably connected to the support such that the audio component is movable between a first position in which the audio component is in general alignment with the support, and a second position in which the audio component is out of general alignment with the support. Movement from the first position to the second position transitions the audio component from a first mode (i.e., an extra-aural mode) in which sound is projected through a first port in communication with a driver to a user to a second mode (i.e., an intra-aural mode) in which sound is projected through a second port in communication with the driver to the user. |
US10816808B2 |
Head-mounted display apparatus, information processing device, system, and method for controlling use of captured images from head-mounted display apparatus
An HMD mounted on a head of a user includes a storage unit configured to store process flow data that defines a process flow including a plurality of work blocks in which an order of execution is predetermined, a camera configured to capture an external scene, and a control unit configured to execute the process flow according to the process flow data. At least any one of the plurality of work blocks in the process flow data includes a setting that determines whether use of captured image data of the camera is permitted. The control unit controls, when executing the process flow, propriety of using the captured image data in each of the work blocks according to the setting of the process flow data about the work block. |
US10816792B2 |
Wavelength tunable optical sources, filters and detectors
Wavelength division multiplexing (WDM) has enabled telecommunication service providers to fully exploit the transmission capacity of optical fibers. State of the art systems in long-haul networks now have aggregated capacities of terabits per second. Moreover, by providing multiple independent multi-gigabit channels, WDM technologies offer service providers with a straight forward way to build networks and expand networks to support multiple clients with different requirements. In order to reduce costs, enhance network flexibility, reduce spares, and provide re-configurability many service providers have migrated away from fixed wavelength transmitters, receivers, and transceivers, to wavelength tunable transmitters, receivers, and transceivers as well as wavelength dependent add-drop multiplexer, space switches etc. However, to meet the competing demands for improved performance, increased integration, reduced footprint, reduced power consumption, increased flexibility, re-configurability, and lower cost it is desirable to exploit/adopt monolithic optical circuit technologies, hybrid optoelectronic integration, and microelectromechanical systems (MEMS). |
US10816791B1 |
Insulated notch design for pixels in an electrowetting device
Subject matter disclosed herein relates to arrangements and techniques that provide for controlling motion of an electrowetting oil within an electrowetting display device. An electrowetting display device comprises a substrate, an electrode on the substrate, a dielectric layer on a first portion of the electrode. The electrode extends along the substrate one of either entirely from a first end of a pixel area to a second end of the pixel area, or from the first end of the pixel area to the second end of the pixel area such that a portion of the substrate is an electrode free portion to thereby define a notch. A first fluid is disposed on a hydrophobic layer and a second fluid is disposed on the first fluid, the second fluid being immiscible with the first fluid. A dielectric constant of the dielectric layer is greater than a dielectric constant of the first fluid. |
US10816787B2 |
Airy beam light sheet and airy beam light sheet microscope
An optical system for generating an Airy beam light sheet comprising an optical arrangement for generating a Gaussian beam, and an optical element for converting the Gaussian beam into an Airy beam light sheet, wherein a single optical element is provided for converting the Gaussian beam into an Airy beam light sheet. |
US10816784B1 |
Interferometric scattering microscopy methods and systems
A method comprising the steps of: measuring a first series of interferometric scattering microscopy (iSCAT) signals and a second series of iSCAT signals of a sample on a sample holder, the sample comprising a particle dissolved in solution; deriving an illumination heterogeneity for the first series of iSCAT signals; deriving a reflectance profile for the first series of iSCAT signals based on the illumination heterogeneity and/or the second series of iSCAT signals; measuring a third series of iSCAT signals of the sample on the sample holder; and normalizing an interferometric contrast for the third series of iSCAT signals with the reflectance profile. |
US10816783B2 |
Magnifying observation apparatus
When an observation target is enabled to be observed by a plurality of types of measuring methods having different principles, to make it possible switch an illuminating method in a plurality of ways to increase types of observation targets that can be observed. An observation target SP is illuminated by at least one of coaxial epi-illumination 24 and non-coaxial epi-illumination 25. A focus search is performed on the basis of an image acquired by a first light receiving element 50. The observation target SP is illuminated by a light source 26. The focus search is performed on the basis of a signal acquired by a second light receiving element 51. |
US10816779B2 |
Wide-angle lens assembly and imaging device
The present disclosure provides a wide-angle lens assembly and an imaging device equipped with the wide-angle lens assembly. The wide-angle lens assembly includes, sequentially from an object side to an image side: a first lens having a negative refractive power, where an image-side surface of the first lens is a concave surface; a second lens having a positive refractive power, where an object-side surface of the second lens is a convex surface; a third lens having a refractive power; and a fourth lens having a positive refractive power, where an image-side surface of the fourth lens is a convex surface. A sagittal height SAG12 of the image-side surface of the first lens at a maximum effective radius and the air spacing T12 on the axis between the first lens and the second lens satisfy: 1.5≤SAG12/T12<2.0. |
US10816777B2 |
Imaging optical system, projection-type display apparatus, and imaging apparatus
In the imaging optical system that consists of a first optical system and a second optical system in order from a magnified side, and has an intermediate image formed between the first optical system and the second optical system, a focus group moving during focusing is included between a most magnified side of the first optical system and a position at which a principal ray of light having a maximum angle of view and an optical axis of the first optical system intersect each other, and a predetermined conditional expression relating to the focus group is satisfied. |
US10816776B2 |
Imaging lens
A compact imaging lens with high-resolution, low profile, low F-value, and wide field of view, properly corrects various aberrations and comprises a first lens having positive refractive power and a convex surface facing the object side, a second lens having a meniscus shape with negative refractive power and a concave surface facing the image side, a third lens having positive refractive power and a convex surface facing the object side, a fourth lens having a meniscus shape with positive refractive power and a convex surface facing the image side, and a fifth lens having negative refractive power and a concave surface facing the image side as a double-sided aspheric lens. A pole point at an off-axial point is provided on the image-side surface, and 40<|r6/f|<90 where f: the focal length of the overall optical system and r6: curvature radius of the image-side surface of the third lens. |
US10816775B2 |
Imaging lens
A compact imaging lens with high-resolution, low profile, low F-value, and wide field of view, properly corrects various aberrations and comprises a first lens having positive refractive power and a convex surface facing the object side, a second lens having a meniscus shape with negative refractive power and a concave surface facing the image side, a third lens having positive refractive power and a convex surface facing the object side, a fourth lens having a meniscus shape with positive refractive power and a convex surface facing the image side, and a fifth lens having negative refractive power and a concave surface facing the image side as a double-sided aspheric lens. A pole point at an off-axial point is provided on the image-side surface, and 40<|r6/f|<90 where f: the focal length of the overall optical system and r6: curvature radius of the image-side surface of the third lens. |
US10816774B2 |
Image system lens assembly, image capturing unit and electronic device
An image system lens assembly includes seven lens elements which are, in order from an object side to an image side: a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element and a seventh lens element. At least one surface among object-side surfaces and image-side surfaces of the fifth lens element, the sixth lens element and the seventh lens element has at least one critical point in an off-axis region thereof. |
US10816769B2 |
Camera optical lens
The present disclosure discloses a camera optical lens. The camera optical lens including, in an order from an object side to an image side, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens. The first lens is made of plastic material, the second lens is made of glass material, the third lens is made of plastic material, the fourth lens is made of plastic material, the fifth lens is made of plastic material, and the sixth lens is made of plastic material. The camera optical lens further satisfies specific conditions. |
US10816765B2 |
Six lens optical image capturing system having visible and infrared image planes
An optical image capturing system is provided. In order from an object side to an image side, the optical image capturing system includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens. At least one lens among the first lens to the fifth lens has positive refractive power. The sixth lens may have negative refractive power and an object side and an image side thereof are aspherical wherein at least one surface of the sixth lens has an inflection point. The optical image capturing system has six lenses with refractive power. When meeting some certain conditions, the optical image capturing system may have outstanding light-gathering ability and an adjustment ability about the optical path in order to elevate the image quality. |
US10816763B2 |
Optical imaging system
An optical imaging system includes lenses sequentially disposed from an object side toward an imaging plane. A third lens, a fourth lens, and a fifth lens of the lenses each have a negative refractive power. An F number of the optical imaging system is 1.7 or less. |
US10816762B2 |
Mobile device and optical imaging lens thereof
An optical imaging lens comprises first, second, third, fourth, fifth and sixth lens elements arranged sequentially from an object side to an image side along an optical axis. Each of the lens elements has an object-side surface facing toward the object side and an image-side surface facing toward the image side. The object-side surface of the first lens element has a convex portion in the vicinity of the optical axis. The third lens element has positive refracting power. The object-side surface of the third lens element has a concave portion in the vicinity of the optical axis. The object-side surface of the fourth lens element has a concave portion in the vicinity of the optical axis. The object-side surface of the fifth lens element has a concave portion in the vicinity of its periphery. |
US10816760B2 |
Miniature camera module
A camera module is provided and includes a lens assembly and an illuminating module. The lens assembly includes a plurality of lenses and a lens barrel disposed around the lenses for supporting the lenses. The lens assembly includes an incident surface, an emergent surface and a lateral surface. The lens barrel includes a bearing part parallel to the lenses, and the bearing part is disposed on the emergent surface of the lens assembly and is not disposed on the incident surface of the lens assembly. The illuminating module includes at least one light source and an annular circuit board, and disposed on the incident surface of the lens assembly. |
US10816758B2 |
Camera optical lens
A camera optical lens, includes a first lens power, a second lens, a third lens, a fourth lens, and a fifth lens. A focal length of the camera optical lens is f, a focal length of the first lens is f1, a focal length of the third lens is f3, a focal length of the fourth lens is f4, a refractive power of the fourth lens is n4, an axial distance from an image side of the fourth lens to an object side of the fifth lens is d8, an effective half caliber of an image side of the fourth lens is SD8, the maximum image height of the camera optical lens is ImgH, an optical total length of the camera optical lens is TTL. The camera optical lens satisfies conditions: 0.5 |
US10816753B2 |
Lens driving apparatus
The present disclosure provides a lens driving apparatus comprising: a base comprising insulated first and second conductive terminals; a supporting frame provided with third conductive terminal electrically connected to second conductive terminal; a barrel comprising insulated first and second conductive wires; and elastic members made of memory alloys and comprising first and second elastic members. The first elastic member has one end fixed to supporting frame and electrically connected to third conductive terminal and another end fixed to barrel and electrically connected to first conductive wire to form current loop for driving barrel to move in positive or negative direction of optical axis. The second elastic member has one end fixed to base and electrically connected to first conductive terminal, and another end fixed to barrel and electrically connected to second conductive wire to form current loop for driving barrel to move in negative or positive direction of optical axis. |
US10816751B2 |
Voice coil motor
An exemplary embodiment of the present invention a rotor including a lens and formed with a first driving unit, a stator formed with a second driving unit driving the rotor in response to electromagnetic interaction with the first driving unit, and a base on which the stator is fixed, wherein the rotor is brought into contact with the base, in a case the lens is in a UP posture, and the rotor is distanced from the base, in a case the lens is in a DOWN posture. |
US10816750B2 |
Lens module
A lens module, including: a lens barrel in which a lens is accommodated, and a holder disposed at periphery of the lens barrel and holding the lens barrel. The lens barrel is provided with a mounting portion, the holder includes an object side surface and a side wall extending from the object side surface and surrounding the periphery of the lens barrel. The side wall is provided with a guiding groove formed by recessing from the side wall, and a locking groove communicating with the guiding groove. The guiding groove extends along axial direction of the holder, and end of the guiding groove communicates with the locking groove. The locking groove extends from the guiding groove along circumferential direction. The mounting portion matches with the guiding groove and slides into the locking groove, the mounting portion rotates along circumferential direction and is received and locked in the locking groove. |
US10816749B2 |
Optical image capturing module and system with multi-lens frame and manufacturing method thereof
An optical imaging module utilizes conductive lines and electric conductors to reduce the overall thickness of an image sensor element. With the configuration of a fixed lens assembly and a multi-lens frame, incident light passes through the fixed lens assembly and is accurately focused on the image sensor element. Hereby, the image sensor element is thus fully imaged. Besides, the invention can ensure the image quality and prevent the element from deforming during encapsulation and causing the problems such as short circuit, and can reduce the size of the optical image capturing module. |
US10816743B2 |
High-density optical fiber ribbon and ribbon cable interconnects employing small diameter optical fibers
A high-density optical fiber cable interconnect includes a fiber ribbon or fiber ribbon cable having at least one fiber ribbon and first and second ends. The fiber ribbon is formed from small diameter optical fibers arranged in at least one row, with each fiber having a glass section and a non-glass coating section surrounding the glass section. The diameter of the non-glass coating section can be less than 205 microns. A matrix layer encapsulates the small diameter optical fibers to define the fiber ribbon. A first optical connector terminates the first end of the fiber ribbon or fiber ribbon cable and has a first fiber pitch correspond to a standard optical fiber connector. A second optical connector terminates the second end of the fiber ribbon or fiber ribbon cable and has a second fiber pitch less than that of a standard optical fiber connector. |
US10816742B2 |
Integrated circuit packages including an optical redistribution layer
Disclosed is a package comprising a substrate having a patterned surface with an optical contact area, an optical redistribution layer (oRDL) feature, and a build-up material extending over the patterned surface of the substrate and around portions of the oRDL features. In some embodiments, the package comprises a liner sheathing the oRDL features. In some embodiments, the oRDL feature extends through openings in an outer surface of the build-up material and forms posts extending outward from the outer surface. In some embodiments, the package comprises an electrical redistribution layer (eRDL) feature, at least some portion of which overlap at least some portion of the oRDL feature. In some embodiments, the package comprises an optical fiber coupled to the oRDL features. |
US10816741B2 |
Fiber optics printed circuit board assembly surface cleaning and roughening
The present disclosure generally relates to printed circuit boards or printed circuit board assemblies for fiber optic communications. In one example, a method may include coupling at least one optoelectronic component to a surface of a printed circuit board. The method may include lasering the surface of the printed circuit board to form a laser-roughened area on the surface of the printed circuit board. The method may include coupling an optical component to the printed circuit board at the laser-roughened area on the surface of the printed circuit board. |
US10816739B2 |
Horizontal flex circuit with resistance weldable cover
A resistance weldable cover for an OSA may include multiple walls, one or more supports, and an opening disposed in one of the walls. The walls may define an interior cavity within the walls. The one or more supports may extend from one or more of the walls. Each of the one or more supports may be weldable to a heat sink stiffener. The opening may be sized and shaped to receive at least a portion of a barrel such that optical signals are transmittable between the interior cavity and the barrel. |
US10816738B2 |
Turning mirror optical couplers
One example includes an optical coupler. The optical coupler includes a waveguide formed in a first layer of a layered structure that is to propagate an optical signal. The waveguide includes an end portion. The optical coupler also includes a turning mirror that includes a bulk structure and a reflective material deposited on an angular face of the bulk structure to form a surface of the turning mirror. The bulk structure can have a greater cross-sectional size than a cross-sectional size of the waveguide, such that the angular face extends above the first layer of the layered structure and extends into a second layer of the layered structure below the first layer. The surface of the turning mirror can be arranged to reflect the optical signal that is provided from the end portion of the waveguide. |
US10816736B2 |
Optical fiber connector
An optical fiber connector includes a main unit and a housing unit. The main unit includes a boot and a connector module that has a rear part connected to a front end of the boot, and a front coupling end distal from the boot. The housing unit includes a sliding sleeve sleeved slidably around the connector module, and a light blocking member pivotally connected to the sliding sleeve. The sliding sleeve is operable between a light blocking position, where the light blocking member blocks light from the front coupling end, and a fiber coupling position, where the light blocking member rotates relative to the sliding sleeve and allows the front coupling end to be exposed from the sliding sleeve. |
US10816733B2 |
Piezoelectrically actuated mirrors for optical communications
Embodiments of the invention include an optical routing device that includes an organic substrate. According to an embodiment, an array of cavities are formed into the organic substrate and an array of piezoelectrically actuated mirrors may be anchored to the organic substrate with each piezoelectrically actuated mirror extending over a cavity. In order to properly rout incoming optical signals, the optical routing device may also include a routing die mounted on the organic substrate. The routing die may be electrically coupled to each of the piezoelectrically actuated mirrors and is able to generated a voltage across the first and second electrodes of each piezoelectrically actuated mirror. Additionally, a photodetector may be electrically coupled to the routing die. According to an embodiment, an array of fiber optic cables may be optically coupled with one of the piezoelectrically actuated mirrors and optically coupled with the photodetector. |
US10816730B2 |
Optical fiber coating removal device, external device, optical fiber coating removal system, and optical fiber coating removal method
An optical fiber coating removal device which heats a coating of an optical fiber with a heater and removes the coating with a blade includes a communicator which receives information based on optical fiber type information to specify an optical fiber type selected by a user from among a plurality of optical fiber types, transmitted from an external device to which the optical fiber type information has been input, and a heater which heats a coating of an optical fiber using the received information based on the optical fiber type information. The heater can heat a coating under a plurality of conditions according to the optical fiber type information. |
US10816723B2 |
Three port transceiver
An optical coherent transceiver comprising a polarization and phase-diversity coherent receiver and a polarization and phase-diversity modulator on the same substrate interfaced by three grating couplers, on grating coupler coupling in a signal, one grating coupler coupling in a laser signal, and a third grating coupler coupling out a modulated signal. |
US10816721B1 |
Hollow-core fiber with anti-resonant arches and method of manufacturing thereof
A hollow-core fiber with a single layer of robust anti-resonant optical arches is disclosed, which is designed and made of infrared soft glass and allows the transmission of mid- to long-infrared wavelengths (1-15 microns). Each curved arch is solidly attached at two locations on the outer solid region surface and together the arches define the core diameter. The thickness and spacing between the arches are selected to minimize the fiber transmission loss <1 dB/m at wavelengths in the mid- to long-infrared where the infrared soft glass has high absorption >30 dB/m. A hollow-core preform with anti-resonant arches is made by extrusion of infrared soft glasses through a die specifically designed to produce the hollow-core fiber with anti-resonant arches. |
US10816719B2 |
Display device
A display device is disclosed. The display device of the present invention comprises: a display panel; a frame positioned at the back of the display panel; a main optical assembly positioned on the frame between the display panel and the frame; and a side optical assembly positioned on the frame between the display panel and the frame, and positioned adjacent to the main optical assembly, wherein the frame comprises: a bottom forming a lower surface; and a side support extending from the bottom toward one side of the display panel, wherein: the side support is closer to the display panel than the bottom; the main optical assembly is positioned on the bottom; and the side optical assembly can be positioned on the side support. |
US10816711B2 |
Optical device and display device
An optical device includes a first polarizer which has an absorption axis in a thickness direction; a second polarizer which has an absorption axis in a thickness direction; and a functional layer which is disposed between the first polarizer and the second polarizer and is capable of switching between a state in which an in-plane retardation is 0 and a state in which an in-plane retardation is greater than 0. A display device includes a display element; and the optical device. |
US10816694B2 |
Light curtain safety system
A system to detect obstacles includes a power beam transmission circuit, a power beam reception circuit arranged to receive a power beam from the power beam transmission circuit, an emitter module, and a detector module arranged to distinguish between a first characteristic and a second characteristic. The emitter module includes a first emitter arranged to emit a first signal having the first characteristic, the first signal emitted in proximity to the power beam, and a second emitter arranged to emit a second signal having the second characteristic, the second characteristic different from the first characteristic, the second signal emitted in proximity to the first signal. The detector module includes a first detector arranged to respond to the first signal emitted by the first emitter, wherein the detector module is arranged to determine when an obstacle is in or near a line-of-sight transmission path between the first emitter and the first detector. |
US10816692B2 |
Package structure of optical apparatus
The present invention provides a package structure of an optical apparatus which includes a substrate, a light emitting device, a light sensing device, and a light barrier member. The light emitting device is disposed on the substrate and electrically connected to the substrate. The light emitting device is for emitting light. The light sensing device is disposed on the substrate and is a chip scale package (CSP) device. The light sensing device is for receiving light reflected by an object. The light barrier member is disposed around a periphery of the light sensing device. |
US10816691B2 |
Multi-element detector systems
The invention provides methods, systems and detector arrangements for scanning an object moving in a first direction that includes the steps of irradiating the object with radiation having a peak energy of at least 900 keV, providing a first detector region having a thickness of at least 2 mm and a second detector region having a thickness of at least 5 mm where the second detector region is arranged to receive radiation that has passed through the first detector region, and detecting the radiation after it has interacted with or passed through the object in order to provide information relating to the object. |
US10816689B2 |
Formation resistivity measurement apparatus, systems, and methods
Apparatus, systems, and methods may operate to correct measured voltage data for selected weak differential measurements to provide corrected voltage data. Additional activity may include adjusting the corrected voltage data to remove level shifts in the measured voltage data caused by downhole tool impedance to provide adjusted voltage data, converting the adjusted voltage data into apparent resistivity data, inverting the apparent resistivity data to determine true resistivity values for a geological formation, and operating a controlled device according to the true resistivity values for the geological formation. Additional apparatus, systems, and methods are disclosed. |
US10816688B2 |
Method and apparatus for measuring seismic data
The present invention relates to a method of processing seismic data. The method may include calculating a number of calculated structure tensors for each of a number of seismic data lines, the seismic data lines being spatially distributed about an area of the surface of the Earth. The method also may include interpolating the calculated structure tensors to find interpolated structure tensors in a region of the area between the lines of the seismic data lines, and calculating calculated seismic data from the interpolated structure tensors. |
US10816687B2 |
Method for estimating petrophysical properties for single or multiple scenarios from several spectrally variable seismic and full wavefield inversion products
A computer-implemented method for determining rock and fluid parameters of a subsurface region from measured seismic reflection data, said method including: generating, with a computer, a geophysical data volume by combining a plurality of angle stacks obtained from the measured seismic reflection data and geophysical property data obtained from a full wavefield inversion of the measured seismic reflection data; for each point of the geophysical data volume, determining, with a computer, a petrophysical model that is a probability of a rock state based on initial values of the rock and fluid parameters and the geophysical data volume; iteratively determining, using a computer, updated values for the rock and fluid parameters, wherein the iteratively determining includes determining a petrophysical parameter estimate for the rock and fluid parameters from the petrophysical model as constrained by the geophysical data volume and the initial values of the rock and fluid parameters, minimizing a misfit between the geophysical data volume and synthetic data generated from a forward modeling of the initial values of the rock and fluid parameters using a cost function that includes the petrophysical parameter estimate of the rock and fluid parameters, and repeating the iteratively determining until a predetermined stopping criteria is satisfied and final values for the rock and fluid parameters are generated, and each subsequent iteration of the iteratively determining replaces the initial values for the rock and fluid parameters with the updated values for the rock and fluid parameters from a previous iteration; determining, with a computer, uncertainty in the final values for the rock and fluid parameters; and exploring for or producing hydrocarbons using the final values for the rock and fluid parameters and there uncertainty. |
US10816685B2 |
System and method for reconstructed wavefield imaging
Computer systems and methods are provided for time domain reconstructed seismic wavefield imaging. The original source signal or extended source can be forward propagated based on a model of a subsurface region, in order to generate a residual by comparison to field data. The residual can be back-propagated to generate a reconstructed source signal, which can be forward propagated to generate a reconstructed source wavefield. Seismic images can be generated by cross correlating the forward-propagated reconstructed source wavefield and the back-propagated receiver wavefield. The model can include seismic parameters such as velocity, density, anisotropy and attenuation characterizing the subsurface region, and can be iteratively refined to improve image quality, based on the reconstructed source wavefield in comparison to the field data. |
US10816680B2 |
Detection device and electronic equipment
The present disclosure relates to a detection device and electronic equipment, in which a detection accuracy of minute light can be improved.A detection device includes: a pixel array portion in which a plurality of first pixels including a photoelectric conversion unit, and a plurality of second pixels not including a photoelectric conversion unit, are arranged; and a driving unit configured to drive the first pixel and the second pixel. The present technology, for example, can be applied to a light detector, a radiation counter device performing radiation counting by using the light detector, and a biological examination device using the light detector, such as a flow cytometer. |
US10816679B2 |
Staggered detector array for locating radioactive sources
A large-area directional radiation detection system may include a large number of slab-shaped detectors stacked side-by-side and alternately displaced frontward and rearward, thereby providing a longitudinally-staggered array of protruding and recessed detectors. The protruding detectors collimate or restrict the lateral field of view of the recessed detectors, thereby enabling the angular position and distance of a source to be determined. The high detection efficiency and large solid angle of the staggered detector array enable rapid detection of even well-shielded threat sources at substantial distances, while simultaneously determining the positions of any sources detected. This detector array will be essential for guarding against clandestine delivery of nuclear materials in the coming century. |
US10816676B2 |
GNSS/INS integration deep inside of inertial sensors
Embodiments of systems and methods for GNSS and INS integration are described In an embodiment, the method includes receiving a GNSS signal from a GNSS signal source at an antenna coupled to a GNSS receiver. The method may also include generating GNSS data in response to the GNSS signal. Additionally, the method may include communicating the GNSS data to an INS system. The method may also include generating an IMU signal with an IMU sensor. The method may further include generating IMU data in response to the IMU signal. Also, the method may include integrating the IMU data with the GNSS data in a navigation processing unit of an INS. The method may further include generating INS data in response to the integrated IMU data and the GNSS data. |
US10816673B2 |
Memory optimized GNSS correlator
A personal navigation device includes a correlator for processing GNSS signals from a constellation of satellites A signal is received from a navigation beacon containing a repeating code word, in which the code word includes a number N of samples corresponding to N phases, and in which reception of each code word occurs within a defined time period T. The sequence of N code samples is correlated with a known code word to determine a maximum value of correlation for a particular phase of the received signal. The correlation is performed using a correlator of size M, in which M is less than N, such that N/M=P complete correlations for a partial code phase are performed such that each correlation of a partial code phase is performed within a time period of approximately T/P. All P correlations of partial code phases are completed within time T. |
US10816670B2 |
Navigation satellite system positioning with enhanced satellite-specific correction information
The invention relates to methods, notably carried out by global or regional navigation satellite system (NSS) receivers, which involve receiving satellite-specific, nadir-angle dependent correction information associated with each of at least two NSS satellites among a plurality of NSS satellites. The correction information is useful to correct observed NSS signals, so as to mitigate the effects of satellite-specific, nadir-angle dependent biases in the NSS signals, and thus improve the performance of position determination systems. The invention also relates to methods for generating such correction information, to methods for designing a satellite, to NSS receivers, to apparatuses for generating correction information to be sent to the receivers, and to computer programs and storage mediums. |
US10816667B2 |
Imaging apparatus and imaging control method
Provided is an imaging apparatus and an imaging control method, which can change a distance measuring accuracy according to a distance from the imaging apparatus to an object. The imaging apparatus includes a control unit that controls outputs of an irradiation signal including an irradiation code and a reference signal including a reference code, and an imaging unit that includes a photoelectric conversion element. The imaging unit generates a pixel signal indicating correlation between reception light incident into the photoelectric conversion element and the reference signal, and generates a distance pixel signal based on a distance to an object on the basis of a ratio between a first pixel signal in a case where a first combination of the irradiation signal and the reference signal is used and a second pixel signal in a case where a second combination of the irradiation signal and the reference signal is used. |
US10816661B2 |
Airborne ice detector using quasi-optical radar
An aircraft ice detection system is configured to determine a condition of a cloud and includes a radar transmitter, a radar receiver, optics and a splitter. The radar transmitter is configured to produce quasi-optical radiation. The optics are configured to direct the quasi-optical radiation from the radar transmitter to the cloud and receive reflected quasi-optical radiation from the cloud. The radar receiver is configured to receive the reflected quasi-optical radiation from the optics and the splitter is configured to direct the reflected quasi-optical radiation from the optics to the radar receiver. |
US10816653B2 |
Swimming speedometer system with near-eye display
An apparatus and method for measuring a swimmer's speed and conveying the speed to the swimmer in real time includes a plurality of ultrasonic beacons each having a transducer configured to emit ultrasonic signals in a pool or other body of water within which the swimmer is swimming. A wearable, waterproof, ultrasonic receiver worn by the swimmer, receives the ultrasonic signals and generates corresponding signal data. The receiver's microcontroller captures and uses the signal data to calculate the swimmer's position and speed in real time, and conveys this information to a wearable, waterproof, user interface device worn by the swimmer, the user interface device including a near-eye display disposed on the swimmer's googles. |
US10816651B2 |
Ultrasonic diagnosis device
The purpose of the present invention is to improve the accuracy of Doppler measurements. An ultrasonic diagnosis device comprises: a transmission unit 12 for transmitting, through a probe 14, an ultrasonic wave for each of a plurality of transmit beams formed at different positions or in different directions; a reception unit 20 for receiving, through the probe 14, an ultrasonic wave for each receive beam included in a receive beam set formed to correspond to each transmit beam; a Doppler processing unit 24 for determining a Doppler measurement for each of the receive beams; and a combining/selecting unit 26 for combining a first Doppler measurement determined for a first receive beam belonging to a receive beam set formed to correspond to a first transmit beam and a second Doppler measurement determined for a second receive beam belonging to a receive beam set formed to correspond to a second transmit beam when the first receive beam and the second receive beam are in a predetermined positional relationship. |
US10816648B2 |
Methods and systems for LIDAR optics alignment
A method is provided that involves mounting a transmit block and a receive block in a LIDAR device to provide a relative position between the transmit block and the receive block. The method also involves locating a camera at a given position at which the camera can image light beams emitted by the transmit block and can image the receive block. The method also involves obtaining, using the camera, a first image indicative of light source positions of one or more light sources in the transmit block and a second image indicative of detector positions of one or more detectors in the receive block. The method also involves determining at least one offset based on the first image and the second image. The method also involves adjusting the relative position between the transmit block and the receive block based at least in part on the at least one offset. |
US10816647B2 |
Lidar system and method
A Lidar system may comprise a rotor and a stator. The rotor is configured to rotate with respect to the stator. The rotor comprises at least one supporting body and a plurality of light sources disposed on the at least one supporting body, the plurality of light sources configured to emit a plurality of first light beams. The plurality of light beams are non-uniformly distributed along a vertical direction in a vertical field of view of the Lidar system. |
US10816646B2 |
Distance measurement instrument
A distance measurement instrument and a method of operating a distance measurement instrument are disclosed. According to some embodiments, a transmit light signal is transmitted by a transmitter unit along a transmit path at an emission time and a return light signal is received by a receiver unit at a receive time along a receive path. The return light signal is converted to a return electrical signal. At least one of the transmit path and the receive path is deflected by a deflection module at a deflection angle relative to an optical axis of the instrument. A time-dependent attenuation function is selected based on information relative to the deflection angle and attenuation is applied by an attenuator to at least one of the return light signal and the return electrical signal according to the selected time-dependent function. A measured distance may be determined by a processor unit based on at least the emission time and the receive time. |
US10816645B2 |
Device for optically measuring the distance from a reflective target object
A device for optically measuring the distance from a reflective target object is disclosed. The device includes a beam source, a detector, a beam shaping system having an optical transmission system and an optical receiving system, and a laser beam shaping element that can be arranged in the path of the laser beam. The laser beam shaping element is designed as a transmission aperture array with a first array of transmission pixels, where the transmission pixels are switchable by a first control unit between a transmission state impermeable to the laser beam and a transmission state at least partially permeable to the laser beam. |
US10816638B2 |
Ultrasonic locationing interleaved with alternate audio functions
Ultrasonic locationing interleaved with alternate audio functions includes a plurality of transmitters for emitting ultrasonic bursts and alternate audio signals. A backend controller schedules the ultrasonic bursts and alternate audio signals from each transmitter. The backend controller can characterize an interference effect of defined interference parameters for each alternate audio signal, with respect to the ultrasonic bursts, and modify interleave scheduling of the ultrasonic bursts and alternate audio signals in accordance with the respective interference effect. A mobile device can receive the ultrasonic bursts for locationing of the mobile device, while a user or other device that can act on information in the alternate audio signals. Input from a user to an interface device can trigger the backend controller to schedule an alternate audio signal containing information related to the input. |
US10816637B2 |
Site matching for asset tracking
A wireless RF tracking system comprising a transmitter (tag) and a receiver, the transmitter having a motion sensor, an RF communication module and a processor. The system has an algorithm configured to send a data ping from the transmitter via the RF communication module to the receiver, the algorithm being a smart location algorithm including both event-based ping methodology and time-based ping methodology. The system additional utilizes a geofencing system to expand the area around the smart location. |
US10816636B2 |
Autonomous vehicle localization system
Autonomous vehicles may communicate with each other to avoid hazards, mitigate collisions, and facilitate the flow of traffic. To enhance such cooperation, it would be highly advantageous if each vehicle were able to determine which vehicle in view corresponds to each communication message, which is generally unknown if a plurality of vehicles are in range. Systems and methods provided herein can enable autonomous vehicles to determine the spatial location of each proximate vehicle by detecting a pulsed localization signal emitted by each of the other vehicles. In addition, each vehicle can transmit a self-identifying code, synchronous with the emitted localization signal, so that other vehicles can associate the proper code with each vehicle. After such localization and identification, the vehicles can then cooperate more effectively in mitigating potential collisions. |
US10816635B1 |
Autonomous vehicle localization system
Autonomous vehicles may communicate with each other to avoid hazards, mitigate collisions, and facilitate the flow of traffic. To enhance such cooperation, it would be highly advantageous if each vehicle were able to determine which vehicle in view corresponds to each communication message, which is generally unknown if a plurality of vehicles are in range. Systems and methods provided herein can enable autonomous vehicles to determine the spatial location of each proximate vehicle by detecting a pulsed localization signal emitted by each of the other vehicles. In addition, each vehicle can transmit a self-identifying code, synchronous with the emitted localization signal, so that other vehicles can associate the proper code with each vehicle. After such localization and identification, the vehicles can then cooperate more effectively in mitigating potential collisions. |
US10816632B1 |
360-degree 6-degrees-of-freedom tracking system with small form factor devices enabled by Lambertian diffusers
To accomplish 360-degree 6-DoF LED-based visual tracking, a tracked object has to be covered with sufficient number of LEDs so that when observed at any angle from an optical sensor, there are enough features to estimate the 6-DoF pose. Depending on the algorithm, typically, at least 4 feature points need to be seen in order to calculate the 6 DoF pose accurately. However, that would require many LEDs to be placed on the device for 360-degree visual coverage. As the number of LEDs increase, the device size increases because the LEDs need to be spaced out so that they will not fuse together into connected/overlapped blobs when seen from the optical sensor. Uniquely designed Lambertian Diffusers significantly reduce the number of LEDs required for 360 degree-6 DoF tracking and hence enable tracking with small form factor devices. |
US10816627B2 |
System, method and computer program for magnetic resonance scanners
The invention relates to a system for providing at least part of a pulse sequence for acquiring imaging information using a magnetic resonance scanner, a corresponding method and a corresponding computer program. The system comprises a sequence module providing unit, wherein one or more sequence modules comprise a hierarchy description and a parameter description, a sequence hierarchy generating unit for generating a sequence hierarchy based on the sequence modules and the hierarchy description, a parameter dependency graph generating unit for generating a parameter dependency graph based on the parameter dependencies comprised in the parameter description of the sequence modules. The parameter dependencies are decoupled from the sequence hierarchy. The system, method and computer program of the invention allow for an improved determination of at least part of a pulse sequence. |
US10816626B2 |
System and method for magnetic resonance imaging a subject via a hybrid encoding scheme
A system for magnetic resonance imaging a subject is provided. The system includes a magnet assembly and a controller. The controller is in electronic communication with the magnet assembly and operative to: perform an inversion recovery pulse on the subject via the magnet assembly; acquire an ultrashort echo from the subject via the magnet assembly using a hybrid encoding scheme; and generate an image of the subject based at least in part on the ultrashort echo. |
US10816625B2 |
Silent 3D magnetic resonance fingerprinting
The invention provides for a magnetic resonance imaging system (100) for acquiring magnetic resonance data (142) from a subject (118) within an imaging zone (108). The magnetic resonance imaging system comprises a memory (134, 136) for storing machine executable instructions (160), and pulse sequence commands (140, 400, 502, 600, 700), wherein the pulse sequence commands are configured to cause the magnetic imaging resonance system to acquire the magnetic resonance data according to a magnetic resonance fingerprinting technique. The pulse sequence commands are further configured to control the magnetic resonance imaging system to perform spatial encoding using a zero echo time magnetic resonance imaging protocol. Execution of the machine executable instructions causes the processor controlling the MRI system to: acquire (200) the magnetic resonance data by controlling the magnetic resonance imaging system with the pulse sequence commands; and calculate (202) a spatial distribution (146) of each of a set of predetermined substances by comparing the magnetic resonance data with a magnetic resonance fingerprinting dictionary (144). |
US10816615B2 |
Magnetic sensor
To more improve detection accuracy of a magnetic sensor. A magnetic sensor includes a substrate; an element part in which a free layer, a non-magnetic layer, and a pinned layer are stacked on the substrate; and a magnetic flux concentrator, wherein an area of the free layer is larger than an area of the pinned layer in a top view, and the free layer and the magnetic flux concentrator have a first overlap region in which the free layer and the magnetic flux concentrator at least partially overlap in the top view. |
US10816614B2 |
Magnetic field sensing systems and methods
A magnetic field sensor system comprises an electrically conducting film of ferromagnetic nanoparticles printed directly on a supporting structure, and electrically conducting contacts coupled to the film for injecting an electric current into the film and measuring a voltage generated across said film responsive to said injected current in a direction that is generally perpendicular to the current direction in the plane of the film. |
US10816603B1 |
Determining available battery current in a portable electronic device
Systems and methods for determining available current for a battery in a portable electronic device. One method includes, in response to determining that a received current level of an auxiliary supply rail is equal to or below a predetermined threshold, acquiring a plurality of unloaded voltages for the battery and calculating an unloaded voltage based on the unloaded voltages. The method includes activating a switchable load coupled between the battery and ground, acquiring a plurality of loaded voltages for the battery, and calculating a loaded voltage based on the loaded voltages. The method includes calculating an impedance for the battery based on the unloaded and loaded voltages and an impedance for the switchable load. The method includes determining a current budget based on the impedance, a minimum operating voltage, and a maximum allowable current draw, and adjusting an operating parameter of the portable electronic device based on the current budget. |
US10816596B2 |
Test chamber for memory device, test system for memory device having the same and method of testing memory devices using the same
A test system for a memory device includes: a chamber including at least one test socket column having a plurality of test sockets arranged in a first direction, wherein memory devices to be tested are in respective ones of the plurality of test sockets, a temperature adjusting apparatus configured to supply air into the chamber according to a temperature control signal to control a temperature of the chamber, a test device electrically connected to the test sockets and configured to test the memory devices, and a temperature controller configured to receive temperature information of the memory devices from temperature sensors of the memory devices and to output to the temperature adjusting apparatus the temperature control signal to compensate for a temperature difference between a detected temperature of the memory devices and a target temperature. |
US10816595B2 |
Self-test apparatuses having distributed self-test controller circuits and controller circuitry to control self-test execution based on self-test properties and method thereof
A self-test apparatus for use in an electronic system includes an inter-chip communication bus, a plurality of circuit devices, circuitry including memory, and test controller circuitry. The plurality of circuit devices each has a distributed self-test controller circuit and analog, mixed signal or digital circuit elements. The distributed self-test controller circuits are integrated communicatively via the inter-chip communication bus and negotiate a self-test protocol with each other. The circuitry including memory stores self-test properties of the circuit elements, the self-test properties corresponding to an identifier of each of the circuit elements and a manner or protocol in which the circuit elements are tested. The test controller circuitry collects the self-test properties of the circuit elements and controls execution of the self-test according to the negotiated self-test protocol and the self-test properties. |
US10816592B2 |
Sampling clock testing circuit and sampling clock testing method
A sampling clock testing circuit includes a clock circuit, a processing circuit and a phase determining circuit. The clock circuit generates a clock signal and switches phases of the clock signal according to a horizontal synchronous signal. The processing circuit samples a data signal according to the clock signal with the phases to generate pixel data groups each of which is corresponding to one phase. The phase determining circuit generates calculated values according to the pixel data groups, in which each phase is corresponding to one calculated value. The phase determining circuit selects a specific calculated value from the calculated values according to a predetermined condition, and determines a specific phase corresponding to the specific calculated value. The processing circuit samples a subsequent data signal according to the clock signal switched to the specific phase to generate subsequent pixel data. |
US10816590B2 |
Test system
A test system is a test system for conducting a test including a static characteristic test of a device under test, the test system comprising: a plurality of static characteristic units used for measurement of the static characteristic test; and a replacement unit configured to be able to attach and detach specific units among the plurality of static characteristic units, the specific units selectively used according to a measurement item. |
US10816585B2 |
Tracking quality control for electromagnetic guidance
An electromagnetic field quality assurance system employing an electromagnetic field generator (10) for emitting an electromagnetic field (12), and one or more quality assurance electromagnetic sensors (11, 21, 31, 41, 50) for sensing the emission of the electromagnetic field (12). The system further employs a quality assurance controller (74) for assessing a tracking quality of the electromagnetic field (12) derived from a monitoring of a sensed position of each quality assurance electromagnetic sensor (11, 21, 31, 41, 50) within a field-of-view of the electromagnetic field (12). The electromagnetic field generator (10), an ultrasound probe (20), an ultrasound stepper (30) and/or a patient table (40) may be equipped with the quality assurance electromagnetic sensor(s) (11, 21, 31, 41, 50). |
US10816580B2 |
Electric meter contact arc detector employing dual-purposed inductive components
An electricity meter includes a pair of terminals configured to connect in-line with a power line, an electrical conductor within the electric meter connecting the pair of terminals through a switch that includes an electric motor with an inductive coil, an inductive coil coupled to the electrical conductor, and a metrology circuit operatively connected to the electric motor in the switch. The metrology circuit includes a current sensor electrically connected to the inductive coil to measure an electric current that flows between the pair of terminals through the electrical conductor and an arc detection circuit electrically connected to one of the inductive coil coupled to the electrical conductor or the inductive coil in the electric motor, the arc detection circuit being configured to detect electrical arcs between the pair of terminals and the power line. |
US10816579B2 |
Sensor, sensor signal processor, and power line signal encoder
Provided is a sensor in which a current sensor that detects a current of a power line as a change in a magnetic field and a voltage sensor that detects a voltage of the power line using capacitive coupling are integrally formed. The transmission of signals related to substantially the same sections is omitted in order to effectively compress an output signal from the sensor and an output signal from the voltage sensor. When the amplitude and phase of a fundamental wave which are estimated from the output signal from the sensor and the amplitude and phase of harmonics are encoded, the amplitude and phase of the harmonics are relativized with a value for the fundamental wave. |
US10816573B2 |
Enhanced mounting system for panel mount test switches and test blocks
A mounting mechanism comprising: a first end and a second end; and a shaft extending from the first end to the second end, the shaft including: a peripheral wall; threading extending along at least a portion of the peripheral wall of the shaft; a first port hole opening and a second port hole opening; a through-hole extending from the first port hole opening to the second port hole opening to provide a via for wiring to pass within the shaft from the first port hole opening to the second port hole opening. |
US10816572B2 |
Radio frequency measuring device module and radio frequency measuring device
A radio frequency measuring device module having a first sub-module, a second sub-module, and a third sub-module. The radio frequency measuring device module has a modular structure. The sub-modules are interchangeably mounted on each other. Further, a radio frequency measuring device is described. |
US10816569B2 |
Z axis accelerometer using variable vertical gaps
Z-axis microelectromechanical systems (MEMS) accelerometers are described. The z-axis MEMS accelerometers are of a teeter-totter type, having a pivoting beam suspended above a substrate. A non-uniform gap distance between the pivoting beam and the substrate is provided to increase the sensitivity of the accelerometer to z-axis acceleration. In some embodiments, the non-uniform gap distance is created by one or more substrate layers, such as one or more layers of polysilicon on the substrate above which the pivoting beam is suspended. In some embodiments, the non-uniform gap distance is created by the use of one or more bumps on the beam. In some embodiments, both substrate layers and bumps are used to provide a non-uniform gap distance for different electrodes of the accelerometer. The non-uniform gap distance may include a gap of reduced height, resulting in increased sensitivity of the accelerometer to z-axis accelerations. |
US10816564B2 |
Sample test automation system
A sample test automation system which is capable of reducing the workload of an operator and precisely carrying out necessary processes of each of samples without stagnation. In the sample test automation system, a sample tray 120 on which a plurality of samples 150 can be installed is prepared, an identifier for distinguishing the sample tray 120 is attached to the sample tray 120, a sample introducing unit 10 is provided with an identifier reading apparatus 111 which reads the identifier of the sample tray 120, and information about the samples 150 is switched based on the read identifier of the sample tray 120. |
US10816559B2 |
Blood testing system and method
Some embodiments of a blood coagulation testing system include an analyzer console device and a single-use cartridge component configured to releasably install into the console device. In some embodiments, the blood coagulation testing system can operate as an automated thromboelastometry system that is particularly useful, for example, at a point-of-care site. |
US10816558B2 |
Electrode and biosensor for measuring ascorbic acid
An ascorbic acid responsive electrode comprising an electrode, and a detection layer comprising a non-catalytic electron acceptor that receives an electron from ascorbic acid, an amino acid, and a saccharide and/or a soluble protein; wherein in the detection layer the electron acceptor is reduced by the ascorbic acid, and the reduced electron acceptor is oxidized at the electrode. |
US10816552B2 |
Organotellurium compounds, compositions and methods of use thereof
A compound of formula (I): as described herein and methods and uses thereof as for mass tagging a biosensor or biologically active material. |
US10816547B2 |
Artificial transcription factors comprising a sliding domain and uses thereof
The present invention relates to compositions which may comprise a non-naturally occurring or engineered artificial transcription factor, wherein the transcription factor may comprise a sequence specific DNA binding domain, a sliding domain, and one or more linkers, wherein the DNA binding domain and the sliding domain are operably connected by the one or more linkers, and uses thereof. Methods involving the use of a non-naturally occurring or engineered artificial transcription factors and pharmaceutical compositions, methods for treating cancer, a degenerative disease, a genetic disease or an infectious disease as well as diagnostic methods are also contemplated by the present invention. |
US10816546B2 |
Binding a target substance
Magnetic particles capable of binding a target substance, which comprise a magnetic material and a matrix material, wherein the magnetic material is remanent upon exposure to a magnetic field and the matrix material has a surface comprising functional groups which promote disaggregation of the particles in the presence of a liquid phase. |
US10816545B2 |
Automated medical sample collection, testing, and analysis
An automated method of evaluating a collected fluid sample includes: filling a sample cavity with the collected fluid sample; adding a buffer solution; separating the collected fluid sample into a first portion and a second portion; mixing the second portion with tagged antibodies; removing leftover tagged antibodies; and measuring a difference between the first portion and the second portion. A sample collection and testing device includes: a reference cavity comprising a reference fluid sample; a test cavity comprising a test fluid sample; a reference measurement element associated with the reference cavity; and a test measurement element associated with the test cavity. A method of evaluating a collected fluid sample including: separating the sample; pumping a first portion to a first measurement cavity; adding a solution to a second portion and pumping the mixture to a second measurement cavity; and measuring a charge difference between the first and second measurement cavities. |
US10816537B2 |
Formation and calibration of nanopore sequencing cells
Improved multi-cell nanopore-based sequencing chips and methods can employ formation, characterization, calibration, and/or normalization techniques. For example, various methods may include one or more steps of performing physical checks of cell circuitry, forming and characterizing a lipid layer on the cells, performing a zero point calibration of the cells, forming and characterizing nanopores on the lipid layers of each cell, performing a sequencing operation to accumulate sequencing signals from the cells, normalizing those sequencing signals, and determining bases based on the normalized sequencing signals. |
US10816535B2 |
Method of assessing drying depth of cementitious material
The present invention relates to the field of material determination or analysis, and provides a method of assessing drying depth of cementitious materials including the following steps: preparing a plurality of cementitious material specimens; drying the cementitious material specimens; conducting electrochemical impedance spectrum measurement on each cementitious material specimen; accordingly determining a model for analyzing the drying depth of the cementitious material specimen. The method of assessing drying depth of the cementitious material provided by the present invention takes the influence of the resistivity changes on the model into consideration, and the drying depth of the cementitious material is reflected and reckoned with regularly changes of the electrochemical parameters, not only increasing the accuracy but also saving much testing labor, time and cost. |
US10816533B2 |
Method of marking hydrocarbon liquids
The invention concerns a method of marking a hydrocarbon liquid comprising the step of adding to said liquid, as a tracer compound, a compound of Formula I or Formula II: wherein at least one of R1-R6 in Formula I and at least one of R7-R14 in Formula II is selected from: i. a bromine or fluorine atom; ii. a partially or fully halogenated alkyl group; iii. a branched or cyclic C4-C20 alkyl group; iv. an aliphatic substituent linking two positions selected from R1-R6 in Formula I to one another or two positions selected from R7-R14 in Formula II to one another; or v. a phenyl group substituted with a halogen atom, an aliphatic group or halogenated aliphatic group and none of R1-R6 in Formula I and none of R7-R14 in Formula II being a sulphonate group or COOR15, where R15 represents H, C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C3-C15 cycloalkyl or aryl. |
US10816529B2 |
System and process for jet fuel equipment and procedure quality control
The present invention is directed to a system and process for monitoring jet fuel quality control procedural compliance. One system of the current invention includes a portable computer in communication with a server over network, an equipment database, and a report module. In exemplary process, jet fuel equipment is input into the system and stored in the equipment database, along with the process for its inspection. Inspector profiles are input into the system. The system facilitates notification of required inspections for a facility. The system presents an interface guiding an inspector through inspection of jet fuel and jet fuel equipment inspections. The input is stored by the system, whereby the report module generate reports based on inspection reports, equipment, and facilities. |
US10816528B2 |
Multi parameter swimming pool fluid analysis and regulating method and device
There may be provided a system comprising a spectroscopic device; wherein the spectroscopic device is configured to analyze a fluid of a pool. |
US10816525B2 |
Method and measuring apparatus for determining physical properties of gas
A method using a gas reservoir and a critical nozzle for determining physical properties and/or quantities relevant to combustion of gas or gas mixtures, the method includes: flowing a gas or gas mixture under pressure from the gas reservoir through the critical nozzle; measuring pressure drop in the gas reservoir as a function of time; determining a gas property factor (Γ*), dependent on physical properties of the gas or gas mixture, based on the measured values of the pressure drop; and determining a desired physical property or quantity relevant to combustion based on the gas property factor (Γ*) through correlation. |
US10816524B2 |
Method for calculating amount of ammonia in gas sample
A method for calculating an amount of ammonia present in a gas sample is provided. The method includes receiving a first gas sample by a hydrogen analyzer. The first gas sample contains ammonia. The method also includes receiving a second gas sample by the hydrogen analyzer. The second gas sample is formed by eliminating ammonia from the gas sample. The method further includes measuring, by the hydrogen analyzer, an output signal for each of the first and second gas samples. The method includes calculating the amount of ammonia present in the gas sample based on the measured output signal for each of the first and second gas samples and a hydrogen error correction value. |
US10816522B2 |
Continuous gas detection and monitoring apparatus for harsh environments
A continuous gas detection and monitoring apparatus includes a gas detection and monitoring unit mounted in a sealable case, and a gas sensor in sealed fluid communication with an ambient atmosphere outside the case, a temperature and humidity sensor in sealed fluid communication with the inner volume of the case, a pressure sensor, data storage, and a gas sensor operatively connected to a data processor, and an externally operable switch for selectively connecting the data processor to the data storage to allow data transfer from the data storage to the data processor. A plumbing system includes a pump system, a solenoid system, and tubes interconnecting the gas sensor, pumping system, solenoid system, and ambient external environment. The gas sensor is mounted to the gas sensor housing and is in sealed fluid communication with the external environment via the plumbing system. |
US10816521B2 |
Sensor hub and method for operating the same
The present disclosure relates a sensor hub that allows users to visually and easily check the air environment and power consumption of a room, and a method for operating the same. The sensor hub may include a housing having ventilation ports on lateral and rear sides. A fine dust sensor may be provided to sense a concentration of fine dust introduced through the ventilation ports. A CO2 sensor may be provided in the housing that senses a concentration of CO2. A display plate and a display unit and an illumination plate including a plurality of light emitting units may be provided in the housing. A main board and processor may be disposed in the housing to control the plurality of light emitting units and the display unit based on data on the fine dust concentration and the CO2 concentration received respectively from the fine dust sensor and the CO2 sensor. |
US10816516B2 |
Autosamplers and gas chromatographic systems and methods including same
A gas chromatographic system includes a gas chromatographic (GC) subsystem and an autosampler. The autosampler includes a carrier including a plurality of seats and a plurality of sample holders disposed in respective ones of the seats. Each of the sample holders includes: a container defining a chamber configured to hold a sample; and visible indicium on the container; wherein the container is positioned in its seat such that the visible indicium is visible. The autosampler further includes an optical sensor, a controller, at least one mirror, and a sampling system. The optical sensor is configured to read the visible indicia and to generate an output signal corresponding thereto. The controller is configured to receive the output signal. The at least one mirror is arranged and configured to simultaneously reflect images of the visible indicia of a set of the sample holders in the seats to the optical sensor. The sampling system to configured to extract an analyte from at least one of the sample holders and transfer the extracted analyte to the GC subsystem. |
US10816515B2 |
Method of introducing a sample into a separation column and corresponding system
A method of introducing a sample into a separation column includes introducing the sample into a trap column, isolating the trap column from ambient atmosphere and pressurizing the trap column to a first pressure while the trap column is isolated from ambient atmosphere, providing a fluid connection between the trap column and the separation column after pressurizing the trap column to the first pressure, supplying the sample from the trap column to the separation column. |
US10816514B2 |
System and method for analysis of fibre reinforced composites
A system for analyzing fiber reinforced composite including: an ultrasonic transmitter configured to provide ultra-sonic pulses to the fiber reinforced composite; an ultrasonic receiver configured to receive ultrasonic signal data related to the ultrasonic pulses; a filter module configured to filter the ultrasonic signal data; a signal processing module configured to process the filtered ultrasonic signal data; an analysis module configured to analyze the processed ultrasonic signal data by: calculating a characteristic value based on the ultrasonic signal data; comparing the characteristic value to a baseline established for the characteristic value; and determining a percentage of design strength based on the comparison; and an output module configured to output the percentage of design strength. |
US10816513B2 |
Wireless damage assessment during manufacturing
A non-intrusive monitoring method and system for the detection and potential assessment of damage that may occur during a manufacturing process is described. Potential damage events such as impact events can be detected by one or more sensors located on a workpiece or on a machine utilized in the manufacturing process. Through wireless monitoring of the sensors, potential damage events are detected and products of the manufacturing process can be examined to determine if the event has led to damage. |
US10816511B2 |
Method for detecting a defect in a metal wire of a set of metal wires, in particular for an anchoring area of a civil engineering structure
The invention relates to a method for detecting defects of at least one metal wire of a set of metal wires, in particular in a cable, the method including: a step of emitting a high-frequency ultrasound signal around a so-called specific frequency in the metal wire; a step of reflecting said ultrasound signal in the metal wire; and a step of receiving the reflected ultrasound signal. The emitted ultrasound signal enables the energisation of at least one high-frequency wave capable of propagating in a longitudinal direction of the metal wire and having a phase velocity that is slightly higher than a compression volume wave velocity in the metal from which the metal wire is made. |
US10816506B2 |
Method for measuring analytes using large scale chemfet arrays
Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis. |
US10816505B2 |
Method for treating a semiconductor device
A sensor array includes a plurality of sensors. A sensor of the plurality of sensors has a sensor pad exposed at a surface of the sensor array. A method of treating the sensor array includes exposing at least the sensor pad to a wash solution including sulfonic acid and an organic solvent and rinsing the wash solution from the sensor pad. |
US10816504B2 |
Chemical sensor array having multiple sensors per well
In one embodiment, a device is described. The device includes a material defining a reaction region. The device also includes a plurality of chemically-sensitive field effect transistors have a common floating gate in communication with the reaction region. The device also includes a circuit to obtain respective output signals from the chemically-sensitive field effect transistors indicating an analyte within the reaction region. |
US10816500B2 |
Gas sensor, method for producing conductive paste, and method for manufacturing gas sensor
A gas sensor capable of measuring a high concentration range is provided. A sensing electrode provided in a sensor element of a mixed-potential gas sensor for measuring the concentration of a predetermined component in a measurement gas is formed of a cermet including a noble metal and an oxygen-ion conductive solid electrolyte. The noble metal includes Pt and Au. A Au abundance ratio, which is an area ratio of a portion covered with Au to a portion at which Pt is exposed in a surface of noble metal particles forming the sensing electrode, is 0.1 or more and less than 0.3. |
US10816496B2 |
Differential sand compaction sensor
A device for monitoring the effectiveness of sand compaction on a production line comprising one or more sensors. The sensor's response measures the changes in sand compaction, which is affected by the mechanics of the vibration system, changes in the sand properties, and environmental changes. A sensor comprises multiple chambers where the sand is compacted, with each of these chambers having a different difficulty in resisting sand filling and compaction. The difficulty of filling and compacting the sand in these chambers can be controlled using factors such as geometry of each of the chambers and direction of the fill and compaction of sand. |
US10816493B2 |
Electrical measurement method, electrical measurement device, and blood condition analysis system
Provided is a technique that allows high-accuracy electrical measurement without the influence of blood sedimentation in a case where various measurements or evaluations are performed using blood samples containing a blood cell component and a plasma component. Provided is an electrical measurement method for electrically measuring a blood sample including at least a blood cell component and a plasma component, the electrical measurement method including the step of adding a blood sedimentation inhibitor to the blood sample. Also provided is a blood sedimentation inhibitor for use in electrical measurement of a blood sample including at least a blood cell component and a plasma component, the blood sedimentation inhibitor including a non-cationic water-soluble compound and being capable of increasing specific gravity and/or viscosity of the plasma component. |
US10816492B2 |
Lateral flow assays with thermal contrast readers
Assays used in conjunction with a thermal contrast reader are disclosed. In the assay, the test strip includes materials that can develop a thermal response if a target analyte is present in a sample. Linear flow assays include nanoparticles with high affinity binding to the analyte. Binding of the nanoparticles with an analyte in the sample is detected using thermal contrast. Analytes over a broad range of concentrations are detected in the linear flow assays. Methods of detecting target analytes and kits comprising lateral flow assays and thermal contrast reader are also disclosed. |
US10816487B2 |
Image contrast in X-ray topography imaging for defect inspection
A system for X-ray topography, the system includes a source assembly, a detector assembly, a filter and a processor. The source assembly is configured to direct at least an X-ray beam to impinge, at an angle, on a first surface of a sample, the X-ray beam is divergent when impinging on the first surface. The detector assembly is configured to detect the X-ray beam that had entered the sample at the first surface, diffracted while passing through the sample and exited the sample at a second surface that is opposite to the first surface, and to produce an electrical signal in response to the detected X-ray beam. The filter is mounted between the source assembly and the first surface, and is configured to attenuate an intensity of a selected spectral portion of the X-ray beam. The processor is configured to detect one or more defects in the sample based on the electrical signal. |
US10816485B2 |
Material identification system
A method and apparatus for identifying a material in an object. An image of the object generated from energy passing through the object is obtained by a computer system. The computer system estimates attenuations for pixels in a sensor system from the image of the object to form estimated attenuations. The estimated attenuations represent a loss of the energy that occurs from the energy passing through the object. The computer system also identifies the material in the object using the estimated attenuations and known attenuation information for identifying the material in the object. |
US10816482B2 |
High throughput, high resolution optical metrology for reflective and transmissive nanophotonic devices
The present disclosure regards a large area functional metrology system for inspecting nanophotonic devices. The large area functional metrology system can include one or more light sources, optical components such as lenses and polarizers, and one or more camera sensors. The light source can irradiate light onto a nanophotonic device while the optical components can guide the light through the system and modulate states of the light. The camera sensor can record images of the nanophotonic device interacting with the irradiated light. The images can be taken as a function of one or more states. The system can also include a detector which can processes the images in order to detect defects. The defects can then be classified using one or more defect signatures. Based on this classification, the root causes of the defects can be automatically identified. |
US10816481B2 |
Non-destructive measurement unit of the gas concentration in sealed flexible containers and automatic filling and/or packaging line using such a unit
A non-destructive measurement unit of gas concentration in sealed containers and an automatic filling and/or packaging line using such a unit are provided. The flexible containers are at least partially optically transparent, and the measurement unit comprises a light source for emitting a light beam at a wavelength tunable with an absorption wavelength of a gas contained in the sealed flexible container. The light source directs the light beam toward at least one inspection area, and a detector detects at least a portion of the beam after the beam passes through the inspection area and outputs data representative of an absorption spectrum of the gas. Means for generating a head space of predefined width into the sealed flexible container is adapted to advance the sealed flexible container by an advancement path which crosses the inspection zone and to maintain the predefined width of the head space during the advancement. |
US10816480B2 |
Method of detecting a defect on a substrate, apparatus for performing the same and method of manufacturing semiconductor device using the same
In a method of detecting a defect on a substrate, an incident beam may be radiated to a surface of the substrate to generate reflected light beams. A second harmonic generation (SHG) beam among the reflected light beams may be detected. The SHG beam may be generated by a defect on the substrate. A nano size defect may be detected by examining the SHG beam. |
US10816469B2 |
Kit for quantitatively determining substance to be measured in biological sample and method for quantitatively determining substance to be measured in biological sample
An object of the present invention is to provide a kit and a method by which a quantitative determination of a substance to be measured in a biological sample can be carried out with high accuracy while avoiding the influence of an antibody such as an anti-serum albumin antibody present in blood. According to the present invention, a kit for quantitatively determining a substance to be measured in a biological sample, the kit including: a labeled particle that has a first binding substance capable of binding to the substance to be measured, and a first blocking agent; and a substrate that has a detection region having a second binding substance capable of binding to any one of the substance to be measured and the first binding substance, and a second blocking agent, in which the first blocking agent and the second blocking agent are different from each other, is provided. |
US10816465B2 |
Oil sensor for a compressor
An oil sensor comprising a holder to which an elongated crystal is fastened that is transparent to infrared light and with a refractive index greater than the refractive index of the oil to be examined, whereby a light source is provided in the holder at a first end of the elongated crystal for transmitting light in the infrared spectrum in the elongated crystal, and detector at a second end of the elongated crystal for measuring the intensity of the light, which during the passage through the elongated crystal undergoes total reflection at a boundary plane at least four times in succession in a contact zone where the elongated crystal comes into contact with the oil, wherein the oil sensor is further provided with at least one temperature sensor to determine the temperature of at least one of the components of the oil sensor. |
US10816461B2 |
Gas sensor and constant-temperature apparatus
A gas sensor includes: a gas detection unit including a light source and a detector; and a gas passage including a first end, a second end and a hollow part. The hollow part has a shape in which a cross-sectional area of a flow passage grows smaller. The gas passage includes: a member that divides the hollow part into at least a first area and a second area; a gas inflow port; and a gas outflow port. The gas flows from the gas inflow port into the hollow part, flows in the first area to arrive at the gas detection unit, and the gas located in the gas detection unit flows in the second area and flows out from the gas outflow port. |
US10816460B2 |
Method and device for measuring lifespan of red blood cell
A method and device for measuring the lifespan of a red blood cell is discussed. The method is a non-dispersive infrared spectrometry and comprises: injecting a small amount of sample at a constant speed; using an interference component absorption pack to remove interference components; measuring an alveolar gas sample and a background gas sample in pair and using a level difference-concentration difference fitting method to obtain the endogenous CO concentration in alveolar gas; using a dual-gas chamber method to measure the CO2 concentration and the CO concentration; and removing the influence of air, which is mixed into the alveolar gas when the alveolar gas is acquired, on the measured value of the endogenous CO concentration in the alveolar gas according to the obtained CO2 concentration, thereby obtaining the accurate value of the endogenous CO concentration in the alveolar gas and calculating the lifespan of the red blood cell. |
US10816459B2 |
Polymeric device suitable for ultraviolet detection
The present invention relates to a flow cell (10) comprising a fluid inlet (16) and a fluid outlet (18) separated by a sample flow-through chamber (12) comprising at least one UV-transparent window (22′), wherein the at least one UV-transparent window (22′) is made of a polymer material and has been subjected to Gamma radiation sterilisation. In one aspect, the flow cell is combustible. |
US10816458B2 |
Gas analysis system
A gas analysis system includes spectroscopy assembly coupled to a vehicle. The spectroscopy assembly includes a plurality of emitters configured to emit a plurality of light beams toward a target surface. Each light beam of the plurality of light beams comprises a predetermined wavelength. The spectroscopy assembly includes a collection optic configured to receive a plurality of reflected light beams reflected from the target surface. Additionally, the spectroscopy assembly includes a detector configured to receive the plurality of reflected light beams from the collection optic and to detect a spectral intensity of the plurality of reflected light beams. Further, the spectroscopy assembly includes a controller configured to receive a light beam signal from the detector indicative of the spectral intensity of the plurality of reflected light beams. The controller is configured to detect a target fluid based on the light beam signal. |
US10816455B2 |
Multi-photon counting for high sensitivity flow cytometer systems and methods for using the same
Aspects of the present disclosure include methods and systems for detecting light from a sample in a flow stream by multi-photon counting. Methods according to certain embodiments include irradiating a sample in a flow stream with a light source and detecting light from the sample in the flow stream and counting photons of the detected light by integrating photo-electron charge over a time interval. Methods also include irradiating a sample in a flow stream with a light source, detecting light from the sample in the flow stream and outputting a digital output signal and an analog output signal produced by the detected light. Systems for detecting light from a sample in a flow stream with a detector and counting photons by integrating photo-electron charge over a time interval are also described. Kits having a detector, a photon counter and a flow cell configured to propagate a sample in flow stream are also provided. |
US10816451B2 |
Pressure response method for determining properties of species-dependent leakages in gas processing equipment
A system for building a gas processing apparatus includes a compressed gas source, a pressure modulator in communication with the gas source, and a chamber configured to receive a gas permeable material. The chamber is further configured with a first chamber area on one side of the material and with a second chamber area on a second side of the material. A sensor is configured to measure over time a pressure differential between the first and second chamber areas. A memory stores performance characteristic data for a plurality of gas processing apparatus. A processor converts the pressure differential to a material characteristic of the gas permeable material, and compares the material characteristic to at least one selected performance characteristic of the gas processing apparatus. |
US10816450B2 |
Particle counter and classification system
A particle counter and classification system and method wherein a first stage magnetometer sensor subsystem for the fluid is tuned to detect and determine the size of ferrous and/or conducting particles in the fluid above a predetermined size. A pump is configured to drive a volume of the fluid through the first stage magnetometer sensor subsystem. A processing subsystem is responsive to the first stage magnetometer sensor subsystem and is configured to count the number of ferrous and/or conducting particles above the predetermined size based on the output of the first stage magnetometer sensor subsystem and to determine and report the concentration of the ferrous and/or conducting particles above the predetermined size as a function of the size of the particles, their number, and the volume of the fluid. |
US10816445B2 |
Particle sensor and particle sensing method
A particle sensing system is for sensing particles entrained in a fluid. The system comprises a flow channel having a longitudinal direction along which the fluid is to be passed, a heating arrangement for heating the fluid and thereby applying a positive thermophoretic force on the fluid in a direction perpendicular to the longitudinal direction of the flow channel and a first sensor for sensing the particles in the fluid after heating by the heating arrangement. The thermophoretic force increases the concentration of the particles at the first sensor. |
US10816444B2 |
Opposables incorporating fluid control elements and automated specimen processing systems
Disclosed are specimen processing systems capable of processing specimens carried on slides. The specimen processing systems comprise opposables having at least one fluid control element. The fluid control elements may be positioned between spacers or gapping elements the opposable edges. The fluid control elements may comprise an edge, such as a beveled edge or a stepped edge, as described herein, and the edge may be continuous or segmented. |
US10816443B2 |
Automated batch stainer for immunohistochemistry
An automated batch stainer for staining biological specimens on microscope slides. The automated batch stainer includes a slide rack assembly configured to hold microscope slides, a robotic arm that manipulates the slide rack assembly, at least one bath containing reagents and capable of receiving the slide rack assemblies, a heating chamber capable of heating multiple slide rack assemblies, a bar code reader, at least one software program including a graphical user interface and configured to calculate the timing and sequence of the staining protocol and implement the staining protocol by controlling the movements of the robotic arm. |
US10816441B2 |
In situ measurement of soil fluxes and related apparatus, systems and methods
The disclosed apparatus, systems and methods relate to measuring the ability of the soil to transport gases at any location of the soil column, rather than just the flow of gases out of the soil. This enables the measurement of gas transport for various reactive and non-reactive species that often do not reach the ground level, such as methane, as it is used by microbes as a carbon source when there is sufficient oxygen for aerobic respiration. Thus, the invention helps understand transport and reactive processes at different locations in the soil, rather than just the limited information available at ground level. The disclosed apparatus, systems and methods relate to conducting microcosm studies in situ which enables direct estimates of degradation rate of specific soil contaminants. |
US10816439B2 |
Methods of testing washing machine appliances
A method of testing a washing machine appliance includes performing a first fill test, performing a second fill test, performing an agitate test, performing a drain test, and performing a spin test. Each of the steps of performing the first fill test, performing the second fill test, performing the agitate test, performing the drain test, and performing the spin test are performed in a continuous process. |
US10816438B2 |
Machine learning for misfire detection in a dynamic firing level modulation controlled engine of a vehicle
Using machine learning for misfire detection in a Dynamic firing level modulation controlled internal combustion engine is described. A neural network is used to calculate expected crank acceleration from various inputs, including the dynamically defined cylinder skip fire sequence. The output of the neural network is then compared to a signal indicative of the measured crank acceleration. Based the comparison, a prediction is made if a misfire has occurred or not. In alternative embodiment, the neural network is expanded to include the measured crank acceleration as an additional input. With the latter embodiment, the neural network is arranged to directly predict misfire events. |
US10816437B2 |
Contactless rotor state/speed measurement of x-ray tube
A contactless and/or non-invasive system and method of determining the rotational state and/or speed of a rotor for an X-ray tube including a liquid metal bearing includes a vibration sensor that is affixed to the exterior of the x-ray tube and is utilized to detect the vibrations generated by the spinning of the rotor and liquid metal bearing assembly within the x-ray tube. The x-ray tube has signature vibration signal based on the construction and rotor speed of the x-ray tube. The system and method of the invention used to detect the rotor state/speed includes a sensor to pick up the vibration from the x-ray tube and perform signal processing, and a software algorithm stored within the device or on an operably connected device or system that can analyze the vibration data from the sensor to indicate whether the anode in the x-ray tube is spinning. |
US10816435B2 |
Multi-directional water sensor with alarm
A multi-directional water sensor comprises a housing having multiple conductive pads on the outer surface of the housing at locations spaced around the periphery of the housing, an electrical power source located inside the housing, a buzzer located inside the housing, and multiple electrical conductors located inside the housing and connecting multiple pairs of the contacts so that electrical current can flow between different pairs of the contacts when they are connected by water. The buzzer produces a sound when electrical current flows between any pair of the contacts. |
US10816431B1 |
Leak detection system for underground access chambers using conductivity
An electrically conductive probe, such as a probe similar to those utilized in other electric leak detection systems, is positioned electrically adjacent to different regions of a wall of an underground access chamber, for detection of leaks therein. In one embodiment, the probe is positioned at an elevation and circumferential position which is sequentially adjusted so that the probe can scan regions of the wall for leaks. In another embodiment, a modified probe remains centrally located within the underground access chamber and only moved vertically. The modified probe is fitted with whiskers extending radially. The modified probe includes sectors circumferentially spaced from each other and with each whisker associated with one of the sectors. A selector switch electrically connects one sector to the electrically conductive cable. Data collected by either probe can be graphed or otherwise analyzed with regions of high conductivity correlating with leaks in the underground access chamber. |
US10816426B2 |
Pressure sensor for detecting a pressure differential
In one aspect, a pressure sensor for detecting a pressure differential between first and second fluid sources may include sensor body defining a cavity and a seal plate slidably positioned within the cavity. The seal plate may define first and second chambers within the cavity, which may respectively be in fluid communication with the first and second fluid sources. The sensor may also include a sensing element configured to detect a position of the seal plate relative to the sensor body, which may be indicative of the pressure differential between the first and second fluid sources. The sensor may further include a first spring positioned within the first chamber and compressed between a first side of the seal plate and the sensing element. Additionally, the sensor may include a second spring positioned within the second chamber and compressed between a second side of the seal plate and the sensor body. |
US10816421B2 |
Metal elastic element and diaphragm using the same
An object of the present invention is to provide a metal elastic element which is suitable for sensing or the like of a fluid pressure change and exhibits favorable resilience even in the case of receiving a sudden pressure change, and also provide a diaphragm using the same. A metal elastic element of the present invention is composed of a two-phase stainless steel having a γ-phase and an α-phase, wherein the area ratio of the γ-phase is 40% or less, and the two-phase structure is a marble-like metal structure. In the invention, it is preferred that the element has a fiber texture in which <111>γ and <110>α are preferentially oriented parallel to the thickness direction. |
US10816419B2 |
Tripedal flexure member and load/torque measurement systems using same
A flexure structure comprising the unitary combination of three modified S-shaped beams arranged in parallel and sharing common top and bottom structures. The outside beams are oriented alike in one direction while the inside or center beam is oriented in the opposite direction. The outside edge surfaces of the beams are flat and are instrumented with strain sensors connected in bridge circuits. |
US10816417B2 |
Force detector
A force detector includes a support, fluid bags, a contact portion, a detector, and a computer. The contact portion is opposite to a side on which the fluid bags are in contact with the support and is adjacent to the fluid bags. The computer obtains information regarding the internal pressures of the fluid bags from the detector. Upon application of an external force to the contact portion from an object, the computer calculates a force acting in a tangential direction on a contact surface between the object and the contact portion based on a difference between the internal pressures of the fluid bags. |
US10816416B2 |
Pressure sensor, electronic device, and method for manufacturing pressure sensor
In the pressure sensor, at least two resistors are simultaneously molded at the first mounting surface and the second mounting surface of the substrate component ensuring uniformity and consistency of resistance of all resistors, at least one of resistors is a strain sensing resistor, and the resistors are electrically connected to form a pressure measuring circuit. Connecting the pressure sensor to the desired panel to accurately detect the curved deformation amount of the panel. The resistors in a pressure measuring circuit are adjacently distributed, and the resistance value of the resistor changes with temperature at the same time, so that the influence of the temperature change on the pressure measuring circuit is very small, and the interference against the external environment is good. |
US10816412B2 |
Thermometer and body temperature measuring apparatus including the same
A thermometer is provided that includes a main body having a first body including first and second regions and a second body mounted on the first body, the main body extending in a first direction; a rubber cap surrounding the second region and formed to be inserted into the ear; a temperature sensor disposed in the second region and having a specific temperature sensing range with respect to the first direction; and first and second circuit boards electrically connected to the temperature sensor and disposed in the second region in a second direction intersecting the first direction. |
US10816411B1 |
Temperature sensing within integrated microheater
A microheater performs a self measurement of its own temperature. The microheater has an electrically resistive element which generates heat when a voltage has been applied across the resistive element. The resistive element has an electrical conductivity that is a function of its temperature. A measurement device is positioned within the microheater body and is configured to measure conductivity of the resistive element. An electronic processor, that may be incorporated into the microheater, controls brief interruption of the heating voltage and application of a lower voltage for measuring conductivity. The lower voltage is insufficient to increase the heat output of the microheater, and is applied for too short of a period to allow excessive cooling of the microheater. A microprocessor receives and processes the data obtained from measuring conductivity. |
US10816409B1 |
Temperature sensing device and server
The present disclosure provides a temperature-sensing device and a server, with the server including a chassis and a mainboard. A temperature-sensitive element is disposed at an inlet of the chassis, and the temperature-sensitive element is used for converting a temperature sensed in the inlet of the chassis to a temperature sensing data. The mainboard is disposed in the chassis and includes a temperature sensor and a host. An external temperature-sensing channel of the temperature sensor is communicatively connected to the temperature-sensitive element for transferring the temperature sensing data to the host. The function of sensing the temperature in the inlet of the chassis of the server can be implemented by the temperature sensing device and the server disclosed in the present disclosure, which reducing the product manufacturing costs. There is no need to test I2C signals on a temperature-sensor board, which reducing labor costs. |
US10816408B1 |
Wavelength shifting in spectrally-controlled interferometry
A light source capable of spectral modulation is modulated conventionally to produce a correlogram at the test surface position of an SCI interferometer. The mean wavelength of the light source is changed to obtain multiple corresponding phase-shifted correlograms that can be processed by applying conventional multiple-wavelength interferometric analysis to determine physical attributes of the test surface. One simple way to achieve this result is by splitting the light beam produced by the source into at least three simultaneous beams passed through filters with corresponding different mean-wavelength transmission bands. Because the correlograms are produced simultaneously, they can be used to practice instantaneous phase-shifting interferometry using conventional analysis algorithms. |
US10816406B2 |
Infrared detector pixel structure and manufactureing method thereof
The present invention provides an infrared detector pixel structure and manufacturing method thereof. The bottom portion of a silicon substrate is bonded with a bonding substrate, an infrared absorbing layer in the bonding substrate is used for absorbing a part of infrared light, a closed cavity filled with infrared-sensitive gas is set in the silicon substrate, and a piezoelectric transforming unit is bonded onto the closed cavity. When the infrared-sensitive gas absorbs the infrared light to expand, the infrared sensitive gas will press the piezoelectric transforming unit, which causes piezoelectric signal generated by the piezoelectric transforming unit to be changed, thereby achieving the detection on the infrared light. |
US10816402B2 |
Spectrometry device and spectrometry method
A spectrometry device includes: an integrating sphere which includes an inner wall surface and an attachment hole; an adapter which includes a guide hole guiding the measurement target light and is disposed in the integrating sphere; a plate which includes a first surface covering the guide hole from the outside of the integrating sphere and allowing a sample to be mounted thereon and a second surface and through which the measurement target light is transmitted; a holder which includes a concave portion mounting the plate thereon and is attached to the attachment hole; and a spectral detector configured to detect the measurement target light. The concave portion includes a bottom surface facing the second surface and a side surface surrounding the periphery of the plate. The bottom surface and the side surface are coated with a reflective material reflecting the measurement target light. |
US10816401B2 |
Hyperspectral thermoreflectance imaging
A method for providing a high spatial resolution thermal imaging of an active electronic device. The method includes placing an electronic device on a testing stage of an imaging system. The method, calibrating the imaging system by determining thermoreflectance coefficient for a plurality of pixels forming thermal images, each pixel having a coordinate (x,y) captured from the electronic device at each of a plurality of wavelengths of illumination (CTRi(x,y,λi), activating the electronic device, and determining changes in reflection for each of the plurality of pixels at each of the plurality of wavelengths (ΔR/R), determining ΔR/R vs. CTRi(x,y,λi) for each of the plurality of pixels for each of the plurality of wavelengths, fitting ΔR/R vs. CTRi(x,y,λi) to a predetermined mathematical function and use the parameters to calculate the temperature at each pixel. |
US10816399B2 |
Transmissive sampling module and transmissive spectrometer
The transmissive sampling module includes a light emitting element, an accommodation tank, and a lens group having a positive refractive power. The light emitting element is configured to emit an illumination beam. The accommodation tank is configured to accommodate an object to be measured. The lens group includes a first lens and a second lens. The first lens and the second lens are respectively located at a first side and a second side of the accommodation tank. The accommodation tank is located between the first lens and the second lens. The illumination beam is transmitted to the object after passing through the first lens. The object converts the illumination beam into a sample beam. The sample beam is transmitted to a main body of the spectrometer after passing through the second lens. A transmissive spectrometer having a transmissive sampling module is also provided. |
US10816397B2 |
Device and system for measuring flicker
Techniques are disclosed for measuring an amount of flicker produced by a light source. In one embodiment, a flicker measuring device includes a photo sensor to measure the amount of light produced by the light source, a dedicated processor to receive and process data from the photo sensor, a memory bus coupled to an analog-to-digital converter (ADC) and to a first memory, and a direct memory access (DMA) bus coupled to the ADC and to a second memory. In another embodiment, a flicker measuring system uses a light sensor, an associated circuit and a portable computing device (PCD), such as a smart phone, to measure an amount of flicker produced by a light source by sending an electrical signal from the light source and associated circuit via an audio output to an audio sub-system of the PCD, so that the PCD may calculate the flicker value. |
US10816396B2 |
Adjustable security sensing device
A sensing device comprising an electromagnetic sensor having a surface with a plurality of different electromagnetic radiation interception areas arranged one above the other, one or more controllable flaps adapted to cover one or more of the different electromagnetic radiation interception areas preventing the electromagnetic sensor from intercepting electromagnetic radiation on the covered electromagnetic radiation interception areas, at least one control mechanism adapted to maneuver the controllable flaps so as to change the covered electromagnetic radiation interception areas and a plurality of lenses located in front of the electromagnetic sensor, each having a different focal length. One of the lenses has a certain focal length and focuses electromagnetic radiation to at least one of the different electromagnetic radiation interception areas, and another of the lenses has a different focal length and focuses electromagnetic radiation to another electromagnetic radiation interception area. |
US10816392B2 |
Method and apparatus for obtaining vibration information and user equipment
Embodiments of the present application disclose a method and an apparatus for obtaining vibration information and user equipment. The method comprises: obtaining at least one reflected electromagnetic wave signal, wherein the at least one reflected electromagnetic wave signal is formed by reflecting an electromagnetic wave signal by at least one electromagnetic wave reflective module when the at least one electromagnetic wave reflective module vibrates in response to a sound in an environment; analyzing the at least one reflected electromagnetic wave signal to obtain at least one piece of vibration information corresponding to the at least one reflected electromagnetic wave signal. In technical solutions of the embodiments of the present application, by obtaining and analyzing the reflected electromagnetic wave signal, the sound vibration at the electromagnetic wave reflective module in the environment may be restored, and obtaining sound information in an environment by using a wireless electromagnetic wave is especially applicable to some scenarios where an active component is not suitable for use at a sound collecting location and a scenario where sound information at multiple locations needs to be collected in a space. |
US10816389B2 |
Method and apparatus for peak weight detection
A method for determining a peak weight associated with an agricultural machine includes the step of determining a weight associated with the agricultural machine. Operational parameters are stored in response to determining that the weight is above a threshold. The threshold can be based on a maximum weight associated with the agricultural machine and set via user input to a machine control indicator. In one embodiment, a new weight associated with the agricultural machine is determined. The new weight is compared to a previous peak weight associated with the agricultural machine. The new weight is stored as a peak weight in response to determining that the new weight is higher than the previous peak weight. Operational parameters associated with the new weight can also be stored in response to determining that the new weight is higher than the previous peak weight. |
US10816387B2 |
Regression-based animal weight estimation
In one embodiment, a method executed by a computing system, comprising: receiving pixel samples from three-dimensional (3D) data corresponding to one or more images comprising one or more animals; fitting curves for the received pixel samples; deriving parameters from the curves; determining measurements based on variations in the parameters; and estimating a weight of the one or more animals by applying one or more regression algorithms to the measurements. |
US10816384B2 |
Radar level gauge system and method for interface measurement
A method of determining at least a first interface level of a first interface in a tank containing a stratified substance composition, comprising the steps of generating and transmitting an electromagnetic transmit signal; guiding the transmit signal at least partly through the stratified substance composition; returning an electromagnetic reflection signal resulting from reflection of the transmit signal; receiving, the reflection signal; determining, based on the reflection signal and a timing relation between the reflection signal and the transmit signal, an echo signal exhibiting an echo signal strength as a function of a propagation parameter indicative of position along the probe; and determining, the first interface level based on a first propagation parameter value indicative of a first threshold position for which the echo signal has reached a predetermined first threshold signal strength, and a first offset indicative of a first offset distance from the first threshold position. |
US10816381B2 |
Meter roller and cutoff system
A system includes an agricultural metering system a meter roller configured to meter product from an agricultural product storage compartment to a product distribution system via rotation of the meter roller. The meter roller includes a first meter roller segment having a first plurality of flutes and a corresponding first plurality of recesses, and a second meter roller segment having a second plurality of flutes and a corresponding second plurality of recesses. The first meter roller segment includes a first profile, the second meter roller includes a second profile, and the first profile is different from the second profile. The system also has a dividing ring axially positioned between the first meter roller segment and the second meter roller segment. |
US10816379B2 |
Coolable device for measuring through-flow processes of fluids
A device for measuring through-flow processes of fluids. The device includes an inlet, an outlet, a flow housing in which a fluid flows, a drivable displacement meter in the flow housing, a bypass line which bypasses the drivable displacement meter, a pressure difference sensor in the bypass line and in the flow housing, an evaluation and control unit which controls the drivable displacement meter based on a pressure difference existing at the pressure difference sensor, and a cooling channel in the flow housing which has a coolant flow therethrough. |
US10816378B2 |
Method for operating a Coriolis mass flowmeter
A method for operating a Coriolis mass flowmeter in which the interferences when calculating the medium parameters is considered by the eigenfrequency (f01) of the oscillation of the measuring tube being determined in the first and second natural modes during operation of the Coriolis mass flowmeter, and at least one medium parameter ({dot over (m)}) is calculated with the aid of the oscillation measuring variable (Δt) by means of a calculation rule representing a mathematic relation between the oscillation measuring variable (Δt), the medium parameter ({dot over (m)}) and the eigenfrequencies (f01, f02) of the oscillations of the measuring tube in the first natural mode and the second natural mode, and the medium parameter ({dot over (m)}) being determined taking into consideration the current determined eigenfrequencies (f01, f02) of the oscillations of the measuring tub in the first natural mode and the second natural mode as well as the oscillation measuring variable (Δt). |
US10816376B2 |
Thermal flowmeter and flow rate compensation method
A thermal flowmeter includes: a first thermal resistive element disposed on a pipe and sensing a first temperature of a fluid; a second thermal resistive element disposed on the pipe downstream relative to the first thermal resistive element and sensing a second temperature thereof; a control unit causing the second thermal resistive element to generate heat so that the second temperature is kept higher than the first temperature by a predetermined value; a power measurement unit measuring a power supplied to the second thermal resistive element; a temperature difference gradient calculation unit calculating a gradient of a difference between the second and first temperatures; a power compensation unit compensating the measured power based on the gradient of the difference and a value of the power when no fluid is in the pipe; and a flow rate calculation unit calculating a flow rate of the fluid based on the compensated power. |
US10816374B2 |
Signal processing apparatus and system including the same
A signal processing apparatus for processing a signal is provided. The apparatus includes a comparator having one input terminal to which a signal is inputted, a first switch configured to switch between application and non-application of a reference voltage, a second switch configured to switch between application and non-application of an envelope reference voltage; a third switch configured to switch between application and non-application of an error detection reference voltage; and a controller configured to perform switching control of the first switch, the second switch and the third switch based on an output of the comparator. |
US10816371B2 |
Liquid level sensor with improved removability
Embodiments of the present disclosure relate generally to a liquid level sensor system that allows ease of connection and disconnection of a removable vessel (such as a toilet bowl) from a stationary unit (such as a toilet frame). The system provides at least one liquid level sensor (a first part of the sensor probe connection) mounted to the removable vessel, a liquid level sensor circuit board mounted to the unit, and a connection feature (a second part of a sensor probe connection) configured to extend between the sensor and the circuit board. When the removable vessel is removed from the vessel, the sensor probe connection is disconnected without the need for manual intervention. Installation of multiple probes and varying their location can support detection of a single or several discrete levels, or provide for any required redundancy of detection. |
US10816369B2 |
Methods and apparatus for interferometric interrogation of an optical sensor
A high-speed interrogation system is provided for interferometric sensors, one example of which is an EFPI sensor, that operates based on spectral interference. The system uses a two mode operation that includes a lower speed, accurate absolute measurement mode and a higher speed, relative measurement mode. The system achieves greater overall measurement accuracy and speed than known sensor interrogation approaches. |
US10816367B2 |
Cargo restraint assurance system
The latch detection system and latch detection method disclosed herein determines an orientation of one or more latches used to secure cargo in a cargo hold, and thus improves latch security and cargo transportation safety. To that end, aspects presented herein provide an optical latch detection system that detects whether one or more latches are in the locked or unlocked orientation. More particularly, aspects presented herein rely on a reflective laser system to determine the orientation of one or more latches based on the amount of reflected light detected by the laser system. In so doing, the disclosed latch detection system provides a reliable and repeatable option for determining the orientation of latch(es) in a cargo hold. |
US10816366B2 |
Magnetic field sensor for detecting an absolute position of a target object
A magnetic field sensor for sensing an absolute position of a target object can include one or more magnetic field sensing elements disposed proximate to a mechanical intersection of first and second portions of a target object, wherein the one or more magnetic field sensing elements are operable to generate a first magnetic field signal responsive to the movement of both the first and second portions. The magnetic field sensor can also include a position detection module operable to use the first magnetic field signal to generate a position value indicative of the absolute position. The magnetic field sensor can also include an output format module coupled to receive the position value and to generate an output signal from the magnetic field sensor indicative of the absolute position. |
US10816364B2 |
Inductive position sensor with secondary turns extending through a printed circuit board
An inductive position sensor including at least two secondary windings consisting of a plurality of turns that are formed on two opposite faces of a printed circuit board and divided into first and second sectors. The first and second sectors are divided, in one turn width, into a first portion on one face of the printed circuit board and a second portion on an opposite face. The second portion of the first sector is extended by a first portion of the second sector and the first portion of the first sector is connected to the second portion of the second sector of a neighboring turn. The portions are connected pairwise by a respective via passing through the printed circuit board. |
US10816363B2 |
Angular sensor system and method of stray field cancellation
A system for determining angular position includes a magnet having at least four poles and an axis of rotation, wherein the magnet produces a magnetic field. A first magnetic field sensor produces a first output signal and a second magnetic field sensor produces a second output signal in response to the magnetic field. The magnetic field sensors are operated in a saturation mode in which the magnetic field sensors are largely insensitive to the field strength of the magnetic field. Thus, the first output signal is indicative of a first direction of the magnetic field and the second output signal is indicative of a second direction of the magnetic field. Methodology performed by a processing circuit entails combining the first and second output signals to obtain a rotation angle value of the magnet in which angular error from a stray magnetic field is at least partially canceled. |
US10816356B2 |
Autonomous feature optimization for a connected vehicle based on a navigation route
The disclosure includes embodiments for autonomous feature optimization. In some embodiments, a method includes generating one or more candidate navigation routes for a driver of a vehicle. In some embodiments, the method includes determining a set of autonomous features to be provided by the vehicle for each of the one or more candidate navigation routes. In some embodiments, the method includes determining that the set of autonomous features includes an unsafe autonomous feature that is not safe to use during any part between the start point and the end point of the one or more candidate navigation routes. In some embodiments, the method includes displaying a user interface that includes the one or more candidate navigation routes and corresponding autonomous features that are available for each of the one or more candidate navigation routes, wherein the user interface excludes the unsafe autonomous feature. |
US10816351B1 |
Generation of trip estimates using real-time data and historical data
A system uses machine models to estimate trip durations or distance. The system trains a historical model to estimate trip duration using characteristics of past trips. The system trains a real-time model to estimate trip duration using characteristics of recently completed trips. The historical and real-time models may use different time windows of training data to predict estimates, and may be trained to predict an adjustment to an initial trip estimate. A selector model is trained to predict whether the historical model, the real-time model, or a combination of the historical and real-time models will more accurately estimate a trip duration, given features associated with a trip duration request, and the system accordingly uses the models to estimate a trip duration. In some embodiments, the real-time model and the selector may be trained using batch machine learning techniques which allow the models to incorporate new trip data as trips complete. |
US10816350B2 |
Restricting travel for vehicle passengers
One embodiment provides a method, including: obtaining, using a processor, a user identification of a vehicle passenger; obtaining, based on the user identification, a travel restriction; and providing, to a vehicle, an indication of the travel restriction. Other aspects are described and claimed. |
US10816349B2 |
Systems and methods for route planning based on deep convolutional neural network
The preset application discloses a method for route planning. At least one device including at least one processor and a storage may implement the method. The method may include one or more of the following operations. The device may first obtain a start location and a destination, road characteristic information and a plurality of historical routes. The device may then train a model based on the plurality of historical routes. Then the device may run the trained model to sequentially determine a plurality of road intersections between the start location and the destination, and a target entrance and target exit that corresponding to each of the plurality of the road intersections based on characteristic information. Finally, the device may generate a recommended route from the start location to the based on the target entrances and target exits. |
US10816347B2 |
Tunnel mapping system and methods
A process for constructing highly accurate three-dimensional mappings of objects along a rail tunnel in which GPS signal information is not available includes providing a vehicle for traversing the tunnel on the rails, locating on the vehicle a LiDAR unit, a mobile GPS unit, an inertial navigation system, and a speed sensor to determine the speed of said vehicle. A stationary GPS, whose geolocation is well-defined, is located near the entrance of the tunnel. Image-identifiable targets having a well-defined geodetic locations are located at preselected locations within the tunnel. The vehicle traverses the tunnel, producing mass point cloud datasets along said tunnel. Precise measurements of 3D rail coordinates are also obtained. The datasets are adjusted based on the mobile GPS unit, the inertial navigation system, the speed sensor, the location of the image-identifiable targets, and the precise measurements of 3D rail coordinates, to thereby produce highly accurate, and substantially geodetically correct, three-dimensional mappings of objects along the tunnel. |
US10816333B2 |
Pattern measurement method and pattern measurement device
A pattern measurement method and device realize high-precision measurement of a pattern in a depth direction. The method includes forming an inclined plane in a sample region having a deep hole, a deep groove, or a three-dimensional structure, setting the field of view of a scanning electron microscope to include a boundary between the inclined plane and the sample surface, acquiring an image based on a detection signal, specifying a first position which is the boundary between the inclined plane and a non-inclined plane and a second position which is the position of a desired deep hole or deep groove positioned in the inclined plane, and calculating the height-direction dimension of a pattern constituting the circuit element having the deep hole, deep groove, or three-dimensional structure based on a dimension in the sample surface direction between the first position and the second position and the angle of the inclined plane. |
US10816330B1 |
Shape measuring apparatus
A head provided to a shape measuring apparatus includes a translucent stylus head that displaces integrally with a light source and a photoreceiver, and is arranged between the light source and the photoreceiver. The stylus head includes an incident portion that causes the light from the light source to be incident on an interior of the stylus head, a reflection portion that totally reflects the incident light, and a light emission portion that emits the light that is totally reflected toward the photoreceiver. Evanescent light is generated at the measurement surface by the light that is totally reflected by the total reflection surface. The stylus head brings the measurement surface and a surface of a measurable object to face each other, separates the measurement surface from the surface of the measurable object, and is arranged such that the evanescent light reaches the surface of the measurable object. |
US10816329B2 |
Outline measurement of moving objects
An apparatus for non-contact monitoring of travelling objects being produced in an unguided linear process comprising: a toroidal structure with an open aperture defining a measuring zone, a source of radiation configured by a plurality of radiation devices circumferentially disposed within the measuring zone whereby the radiation source emits rays that generate a planar screen of radiation across the object circumferentially to envelop the object, a plurality of circumferentially disposed recording devices for receiving radiation from the radiation devices following interception of the rays by the objects, and analysis means for analyzing imaging information of the emitted radiation recorded by the recording devices thereby to provide a measure of the physical characteristics of the object. |
US10816323B2 |
Film-thickness measuring apparatus, polishing apparatus, and polishing method
A film-thickness measuring apparatus includes: a light source; an illuminating fiber coupled to the light source and having a distal end disposed at a predetermined position in a wafer supporting structure; a spectrometer configured to decompose reflected light from a wafer in accordance with wavelength and measure an intensity of the reflected light at each of wavelengths; a first light-receiving fiber having a distal end disposed at the predetermined position; a second light-receiving fiber having a distal end which is disposed at the predetermined position and is adjacent to the distal end of the first light-receiving fiber; a processor configured to determine a film thickness of the wafer based on a spectral waveform indicating a relationship between the intensity of the reflected light and the wavelength; and an optical-path selecting mechanism configured to optically connect and disconnect the second light-receiving fiber and the spectrometer. |
US10816313B2 |
Angle bisector gauge
An angle measuring gauge incorporates four arms pivotally connected to form a quadrilateral. The arms are connected to a guide bar that attaches to the quadrilateral along a diagonal and forms an axis of symmetry. A first corner of the quadrilateral is pivotally attached to the guide bar and the opposite corner of the quadrilateral is pivotally connected and is slidable along the guide bar to adjust the angles of the quadrilateral. In practice, the first corner of the quadrilateral is adjusted to conform to a desired angle, and the guide bar bisects the angle formed by the first corner and can be used to either ride in a miter slot of a cutting tool, or adjust a miter gauge of a cutting tool to cut accurate miters. |
US10816311B2 |
Electronic time delay fuse
A system and a method of providing a reliable and consistent time delay in an oil and gas exploration/recovery device inserted in a bore hole is presented. The reliability and consistency of the time delay is a result of the use of electronic circuitry in determining the length of time delay. The system and method presented provide a time delay unit that is modular/commoditized, facilitating quick and easy integration of each component of the time delay unit in the field. Further, assembly and disassembly of the time delay unit is easily accomplished in the field and may be designed to operate with standard percussion and detonation elements. |
US10816306B2 |
Weapon targeting system
A point of aim shows where a weapon is aimed on a target. An electronic device determines an impact location on the target of a projectile fired from the weapon, determines a distance from the point of aim to the impact location, and moves the point of aim in order to sight the weapon to the target. |
US10816304B2 |
Archery bow riser with stabilizing damper
In some embodiments, an archery bow comprises a riser comprising a grip location and a cavity. A first limb is supported by the riser and attached by a first limb fastener. A second limb is supported by the riser and attached by a second limb fastener. A bowstring extends between the limbs. A vibration damper is located in the cavity, the vibration damper comprising a resilient member and a weight. A first distance from the bowstring to the first limb fastener is less than a second distance from the bowstring to the vibration damper. |
US10816296B2 |
Tritium firearm safety selector
A safety selector for switching a firearm between at least two firing modes. The safety selector includes a cavity for placing a vial of tritium to provide a visual indication of the selected firing mode. A lock member extends through a portion of the firearm to regulate movement of a firing mechanism. A lever arm and a faceplate are connected to one end of the lock member to rotate the lock member between positions and an endcap is connected to the opposite end of the lock member to rotate therewith. At least one of the lever arm, the faceplate, and the endcap define the cavity for nesting the tritium vial. Another lever arm and faceplate may be located on the other side of the lock member for ambidextrous usage. The additional lever arm and/or faceplate may also include a cavity for nesting another tritium vial. |
US10816295B1 |
Enhanced bolt catch
A bolt catch to be utilized in conjunction with an upper receiver and the lower receiver of a firearm, including at least some of a bolt catch having a bolt catch upper button portion and a bolt catch lower button portion, wherein the bolt catch is pivotally attached or coupled within at least a portion of a lower bolt catch recess of a lower receiver, wherein at least a portion of a bolt catch upper button portion recess extends above a planar surface formed by the lower receiver proximate the lower bolt catch recess; and an upper bolt catch recess formed in at least a portion of the upper receiver, wherein at least a portion of the bolt catch upper button portion recess is received at least partially within the upper bolt catch recess if the upper receiver is operably attached or coupled to the lower receiver. |
US10816289B2 |
Double stack box magazine for rimmed cartridges of varying length
A multi-column box magazine for rimmed ammunition cartridges of varied lengths has an elongated housing with a neck portion where cartridges are arranged in a single column and a mouth at an upper feed end through which cartridges are inserted and extracted. In a multi-column portion, cartridges are arranged in laterally alternating columns, and in a transition portion the alternating columns are transitioned into the single column as the cartridges are moved toward the mouth within the housing. A follower is biased by a spring toward the mouth. The multi-column portion has a forward interior surface limiting forward movement position of cartridges, which varies depending on individual cartridge length, and the neck portion having a forwardly sloped rearward wall which confronts the cartridge rim and shifts the cartridge forward, as needed, as cartridges are moved upwardly within the housing to the mouth. |
US10816287B1 |
Bolt carrier speed control apparatus
A bolt carrier speed control apparatus that is configured to provide adjustable speed control of the bolt carrier during firing of a round of ammunition. The bolt carrier speed control apparatus is configured to be mounted in a first location or a second location. The bolt carrier speed control apparatus includes a body that is cylindrical in form. The body includes and interior volume and further includes a central bore extending longitudinally therethrough. Circumferentially disposed around the central core are a plurality of movement assemblies. The movement assemblies are configured to move in an inward-outward direction that is facilitated by traversal of an adjustment screw through the central bore. The movement assemblies include a wall engagement member that is configured to extend beyond the external surface of the body so as to engage a portion of the firearm and provide speed control of the bolt carrier through added friction. |
US10816285B2 |
Thermoelectric deposit monitor
Fluid flow systems can include one or more thermoelectric devices in contact with the fluid flowing through the system. One or more thermoelectric devices can be operated in a temperature control mode and a measurement mode. Thermal behavior of the one or more thermoelectric devices can be analyzed to characterize a level of deposit formed on the thermoelectric device(s) from the fluid flowing through the system. Characterizations of deposition on thermoelectric devices operated at different temperatures can be used to establish a temperature-dependent deposition profile. The deposition profile can be used to determine if depositions are likely to form at various locations in the system, such as at a use device or in a flow vessel. Detected deposit conditions can initiate one or more corrective actions that can be taken to remove deposits, or to prevent or minimize deposit formation before deposits negatively impact operation of the system. |
US10816282B2 |
Fluid flow management assembly for heat exchanger
A heat exchanger includes a core section defining a plurality of first fluid channels and a plurality of second fluid channels. The heat exchanger also includes a header section defining a plurality of first fluid layers and a plurality of second fluid layers. The heat exchanger further includes a transition region located between the header section and the core section, the transition region fluidly coupling the plurality of first fluid layers to the first fluid channels, each of the first fluid layers routing a first fluid to a respective group of first fluid channels. |
US10816280B2 |
Integrated multi-chamber heat exchanger
A one-piece heat exchanger manufactured using an additive manufacturing process is described. The heat exchanger includes a plurality of channels formed therein. At least some of the plurality of channels may be configured to provide structural support to the heat exchanger to reduce its weight. Different coolant media may be used in a first set and a second set of the plurality of channels to provide different types of cooling in an integrated one-piece heat exchanger structure. |
US10816278B2 |
Fin assembly for heat exchanger and heat exchanger having the fin assembly
The present invention provides a fin assembly for a heat exchanger and a heat exchanger having the fin assembly. The fin assembly includes a plurality of fins each having a corrugated fin body formed by a plate. The plurality of fins are arranged side by side in a width direction of the fin assembly. Wave crests or wave troughs, on one side in a height direction of the fin assembly, of two adjacent ones of the plurality of fins are staggered by a predetermined distance relative to each other in a length direction of the fin assembly. With the fin assembly and the heat exchanger according to the present invention, for example, heat exchange performance of the heat exchanger can be improved. |
US10816276B2 |
Heat pipe
To provide a heat pipe where the heat pipe has an excellent capacity for absorbing a non-condensable gas such as a hydrogen gas thus exhibiting excellent heat transfer characteristics.The heat pipe includes: a container having a cavity portion inside the container; a wick structure disposed in the cavity portion; a working fluid sealed in the cavity portion; and a metal which absorbs hydrogen at 350° C. or below and releases no hydrogen at 350° C. or below, the metal being disposed in the cavity portion. |
US10816273B2 |
Boiling cooling device and boiling cooling system
A boiling cooling device and a boiling cooling system which can promote boiling and restrain the cooling capacity of the device from deteriorating. A boiling cooling device includes: a pump to circulate refrigerant; a microbubble generator to produce microbubbles and incorporate the microbubbles into the refrigerant discharged from the pump; a boiling cooler to which the refrigerant containing the microbubbles is supplied and which boils the refrigerant; a radiator to cool the refrigerant after the refrigerant is boiled and before the refrigerant is taken in by the pump 11; and a gas-liquid separator 15 to separate gas from the circulating refrigerant after the refrigerant is boiled and before the refrigerant is taken in by the pump. |
US10816266B2 |
Low pressure laundry treating appliance
An apparatus and method for a low pressure laundry treating appliance having a cabinet defining an interior, and a drum provided within the interior, the drum including at least an inner wall and an outer wall. Pressure differentiations and flash evaporation can enable drying without excess use of conventional heating methods. |
US10816262B2 |
Production equipment and production method of liquefied hydrogen and liquefied natural gas
Provided is a production facility for liquefied hydrogen and a liquefied natural gas from a natural gas, including: a first heat exchanger configured to cool a hydrogen gas through heat exchange between the hydrogen gas and a mixed refrigerant for liquefying a natural gas containing a plurality of kinds of refrigerants selected from the group consisting of methane, ethane, propane, and nitrogen; a second heat exchanger configured to cool the mixed refrigerant through heat exchange between the mixed refrigerant and propane; and a third heat exchanger configured to cool the hydrogen gas through heat exchange between the hydrogen gas and a refrigerant containing hydrogen or helium, wherein the first heat exchanger has a precooling temperature of from −100° C. to −160° C. |
US10816257B2 |
Refrigeration apparatus
A refrigeration apparatus (10) is configured to be shipped in generally flat boxes and assembled near a location of use. A plurality of enclosure panels (12) bound an interior area (15). A cover panel (18) including a door (22) closes a top of the interior area. A platform panel (30) including an evaporator (32) closes the interior area at an end opposed of the cover panel. The platform which includes heat transfer components is supported on a base (52) with casters (60) that facilitate the movement of the apparatus. |
US10816251B2 |
Heat pump
An exemplary heat pump includes: a compressor configured to compress a refrigerant; a first heat exchanger configured to condense the compressed refrigerant; a flow rate adjustment valve configured to adjust a flow rate of the condensed refrigerant; an expansion valve having an adjustable opening and configured to decompress the refrigerant having passed the flow rate adjustment valve; a second heat exchanger configured to cool a temperature control target by using the refrigerant decompressed by the expansion valve; and a control device configured to control the opening of the expansion valve based on a difference between the temperature of the refrigerant flowing into the second heat exchanger and the temperature of the refrigerant flowing out from the second heat exchanger, and to control the opening of the flow rate adjustment valve based on the flow rate of the refrigerant to be supplied to the second heat exchanger. |
US10816250B2 |
Air conditioner and method for controlling the same
An air conditioner and a control method thereof are provided. The air conditioner includes: a compressor including a coil; an oil pool connected to the compressor through an oil piping; a main control board configured to receive a power-on signal of the air conditioner, obtain an actual temperature of the oil pool after receiving the power-on signal, generate a required heating amount in response to the actual temperature of the oil pool being lower than a preset startup temperature, and generate timing control signals according to the required heating amount; a power device, wherein two sides of the power device are respectively connected to the main control board and the coil, and the power device is configured to drive the coil to heat the oil pool according to the timing control signals generated by the main control board. |
US10816243B2 |
Refrigeration system having a variable speed compressor
A two-stage cascade refrigeration system is provided having a first refrigeration stage and a second refrigeration stage. The first refrigeration stage defines a first fluid circuit for circulating a first refrigerant, and has a first compressor, a condenser, and a first expansion device. The second refrigeration stage defines a second fluid circuit for circulating a second refrigerant, with the second refrigeration stage having a second compressor that is a variable speed compressor, a second expansion device, and an evaporator. A heat exchanger is in fluid communication with the first and second fluid circuits to exchange heat between the first and second refrigerants. A controller stages operation of the first and second compressors and runs the second compressor at an initial speed less than a maximum speed initially when a staging protocol is performed during start up or re-starting of the refrigeration system. |
US10816240B2 |
Multi-level mounting system
A tiered mounting system includes a base plate including a mounting guide rail having a plurality of mounting grooves that extend along opposing sides of the guide rail. The system also includes an object mount connector having a plurality of mounting ridges. The object mount connector is configured to: slidingly engage the mounting guide rail via insertion of one or more of the plurality of mounting ridges within a corresponding one or more of the plurality of mounting grooves, and lock in place along the mounting guide rail via a bolt placed through the object mount connector and secured tightly to an inner track of the mounting guide rail. |
US10816239B2 |
Heat exchanger
The present invention relates to a heat exchanger enabling the reduction of the number of components constituting the heat exchanger, the simplification of the coupling structure thereof, and also, the decrease of combustion gas flow resistance and the minimization of noise and vibration generation, the heat exchanger being provided with a heat exchange unit having heating medium flow channels through which a heating medium flows and combustion gas flow channels through which combustion gas combusted in the burner flows to be alternately formed and adjacent to each other in spaces between a plurality of plates, wherein the heat exchange unit comprises: a sensible heat unit which surrounds the outer side of a combustion chamber, is formed of one side area of the plates, and heats the heating medium by using sensible heat of combustion gas generated by the combustion of the burner; and a latent heat unit which is formed of the other side area of the plates, and heats the heating medium by using latent heat of water vapor included in combustion gas that has finished undergoing heat exchange in the sensible heat unit, wherein bent flange units are formed on the edges of the plurality of plates, and in a state where the flange units of neighboring plates overlap, certain areas among the edges of the plurality of plates have formed thereon combustion gas pass-through units having combustion gas flowing through the combustion gas flow channels pass therethrough. |
US10816238B2 |
Indoor unit of air-conditioning apparatus
An indoor unit of an air-conditioning apparatus eliminates a possibility of condensation on a front panel without deteriorating a quality of design. In an off state, an auxiliary air-directing plate is positioned above an up-down air-directing plate inside an air outlet such that a free end of the auxiliary air-directing plate opposite from one end of the auxiliary air-directing plate fixed to a rotating shaft is positioned closer to a rear surface of a casing than is the rotating shaft. In an on state, the auxiliary air-directing plate is rotated in a direction from the rear surface to a front surface of the casing, and the free end is protruded from the air outlet to an outside of the casing. |
US10816236B2 |
Condensate recycling system for HVAC system
Embodiments of the present disclosure relate to a climate management system that includes a condensate pan configured to collect condensate from a first heat exchanger of the climate management system, a pump fluidly coupled to the condensate pan, and a nozzle fluidly coupled to the pump, wherein the nozzle is configured to receive the condensate from the pump and direct the condensate toward an airflow across a second heat exchanger of the climate management system. |
US10816235B2 |
Building energy system with predictive control of battery and green energy resources
A building energy system includes HVAC equipment, green energy generation, a battery, and a predictive controller. The HVAC equipment provide heating or cooling for a building. The green energy generation collect green energy from a green energy source. The battery stores electric energy including at least a portion of the green energy provided by the green energy generation and grid energy purchased from an energy grid and discharges the stored electric energy for use in powering the HVAC equipment. The predictive controller generates a constraint that defines a total energy consumption of the HVAC equipment at each time step of an optimization period as a summation of multiple source-specific energy components and optimizes the predictive cost function subject to the constraint to determine values for each of the source-specific energy components at each time step of the optimization period. |
US10816232B2 |
Systems and methods for pumping down flammable refrigerant
In one embodiment, an HVAC system includes an indoor unit having a furnace, an outdoor heat pump unit having a compressor and an outdoor coil, a refrigerant line coupled to the indoor unit and the outdoor heat pump unit, and an EEV coupled to the refrigerant line. The HVAC system further includes one or more controllers operable to determine an occurrence of a first event, initiate a closure of the EEV, initiate operation of the compressor at a completion of the air conditioning cycle to pump down a refrigerant to the outdoor coil, and cease operation of the compressor when a low-pressure switch is tripped. |
US10816225B2 |
Movable air conditioner
A movable air conditioner provides a structure in which a drain pan is disposed above an outdoor heat exchange part disposed in a lower accommodation space, an indoor heat exchange part is disposed in an upper accommodation space above the drain pan, and a control box is mounted on the drain pan. A portion of the heat sink of the control box is exposed to the upper accommodation space, and another portion of the heat sink is exposed to the lower accommodation space. |
US10816221B2 |
Method for treating domestic water supply installations
A method for treating a domestic supply water circuit, that comprises injecting a treatment product comprising silicates into the water flowing in said circuit in order to form a film on the inner surfaces of said circuit, characterised in that the injection of the treatment product comprises at least one step of injecting silicates at a concentration of between 100 and 200,000 milligrams per litre (mg/L) into the water flowing in said circuit for a period of between 10 minutes (min) and 24 hours (h), the flow rate of water flowing in the circuit being controlled within a range of between 0.05 and 100 litres per minute (L/min) and the temperature of water flowing in the circuit being controlled within a range of between 40 and 65° C. |
US10816219B2 |
Modular vent hood blower kit for in-line or external application
A vent hood kit comprises a canopy assembly having an intake end and an outlet end, a blower housing selectively and alternatively coupled with the exhaust end of the canopy assembly in an in-line position and an external position, a blower assembly disposed within a blower housing and in communication with the intake end in both the in-line and external positions and an exhaust duct adapter of the blower housing is configured to be in communication with the intake end in both the in-line and external positions. |
US10816214B2 |
Sealed damper
A sealed chimney damper is provided for preventing flow of air between an interior and exterior of a structure through a chimney. The sealed damper includes a damper body having an inlet aperture and an outlet aperture; an upper flange formed around the outlet aperture of the damper body; a valve plate hingedly secured to the damper body adjacent the outlet aperture, the valve plate sized to substantially cover the outlet aperture when the valve plate is in a closed position; and a gasket secured to the upper flange of the damper body and surrounding the outlet aperture, wherein the gasket is positioned between the valve plate and damper body when the valve plate is in a closed position. |
US10816211B2 |
Axially staged rich quench lean combustion system
A combustion system and a method of combustion for a gas turbine engine includes a combustor liner defining a combustion chamber. A plurality of fuel nozzle sets extend into, and supply fuel flow to, the combustion chamber. A pilot fuel nozzle injects a first fuel spray in a tangential direction relative to the combustion liner and toward the upstream end of the combustion chamber. A main fuel nozzle injects a second fuel spray toward the exit end of the combustion chamber. At ignition conditions, a majority of the fuel flow is injected through the pilot fuel nozzles, and at high power conditions a majority of the fuel flow is injected through the main fuel nozzles. At high power conditions, a fuel rich mixture is supplied to the combustion chamber, and a row of quench jets are configured to supply air to the combustion chamber, providing rich-quench-lean combustion. |
US10816205B2 |
Thermally isolated combustor pre-diffuser
A pre-diffuser fairing for a gas turbine engine is disclosed. In various embodiments, the pre-diffuser fairing includes a first side wall, a first radially inward portion and a first radially outward portion and a second side wall, a second radially inward portion and a second radially outward portion. The first side wall and the second side wall are spaced apart to form a cavity configured to receive a strut. |
US10816203B2 |
Thimble assemblies for introducing a cross-flow into a secondary combustion zone
A thimble assembly, which directs fluid flow through a combustor liner, includes a thimble boss and a thimble. The thimble boss is mounted an outer surface of the liner and surrounds a liner opening, thus defining a thimble boss passage. The thimble is disposed through the passage and the liner opening. The thimble wall extends from an inlet portion to an outlet of the thimble. The inlet portion has a greater diameter than the outlet and defines an inlet plane and a parallel intermediate plane. A terminal plane, parallel to the intermediate plane, includes an array of points most distant from a corresponding array of points defining the intermediate plane. The thimble wall has a non-uniform length, such that the outlet of the thimble is oriented at an oblique angle relative to the terminal plane. The thimble wall may have an arcuate shape defined as one-fourth of an ellipse. |
US10816194B2 |
Radiant burner
A radiant burner for treating an effluent gas stream from a manufacturing processing tool includes: a porous sleeve at least partially defining a treatment chamber and through which treatment materials pass for introduction into the treatment chamber; and an electrical energy device coupled with the porous sleeve and operable to provide electrical energy to heat the porous sleeve which heats the treatment materials as they pass through the porous sleeve into the treatment chamber. In this way, electrical energy, rather than combustion, is used to raise the temperature within the treatment chamber in order to treat the effluent gas stream. |
US10816191B2 |
Steam heating apparatus and method for use in steam mop
A steam heating apparatus, including a housing, a heater, a water inlet, and a steam outlet. The heater includes a base and a heating body vertically extending down from the base. The heating body includes a water inlet channel, a steam outlet channel, and heating pipes. The water inlet channel and the steam outlet channel are located between a pair of vertical heating pipes among the heating pipes. One end of the water inlet channel is communicated with the water inlet provided at one end of the heater, and the other end of the water inlet channel is opened to allow steam to flow out. The steam heating apparatus can fully utilize the heat of the heater, and the steam conversion efficiency and quality are higher. Meanwhile, the problem of blocking is prevented, and the performance of the heating apparatus is improved. |
US10816188B2 |
Cabinet light for the illumination of a cabinet interior
The invention relates to a control cabinet light for illuminating a control cabinet interior, wherein the control cabinet light comprises a light base member which holds an illuminating means of the control cabinet light and a transparent illuminating means cover mounted at the light base member, said cover transparently surrounding the illuminating means, characterized in that the illuminating means cover has two transparent separated parallel sides between which the illuminating means is disposed when the illuminating means cover is placed on the light base member, wherein the illuminating means comprises a flat illuminating means plate on which a plurality of individual illuminating means, in particular LEDs or OLEDs, are distributed, and wherein the illuminating means plate extends parallel or at an angle of more than 0°, in particular less than an angle of about 45°, relative to the parallel sides of the illuminating means cover. |
US10816182B1 |
LED illumination apparatus module and LED illumination apparatus applying the same
An LED illumination apparatus module includes a light-emitting component and a mounting base. The light-emitting component includes a load board, a wire, a circuit board, and one or more light-emitting diodes. The light-emitting diode is disposed on the load board, and the wire electrically connects the light-emitting diode and the circuit board. The mounting base includes an LED assembly portion and a frame. The LED assembly portion includes a mounting surface and the load board is fixed on the mounting surface. An end of the frame is connected to the mounting surface of the LED assembly portion. The frame includes a body portion and a circuit board fixing structure. The circuit board fixing structure is disposed on the body portion, and the circuit board is fixed to the circuit board fixing structure. The light-emitting components are mounted on the base in a modularized manner. |
US10816177B1 |
Lighting system and method of using same with exercise and rehabilitation equipment
A treadmill includes a frame. The frame includes a first side member, a second side member, and a cross-member coupled to and extending between the first side member and the second side member. The treadmill also includes a belt coupled to the frame and configured to rotate about the cross-member. The treadmill also includes a light source coupled to the first side member, the second side member, and the cross-member and a controller configured to control the light source. |
US10816174B2 |
Low voltage security lighting systems including intrusion sensors for use with perimeter fences
A security light system for a fence includes a security light having a light module with an LED, a hat overlying the LED for reflecting light, a junction box having an interior compartment containing an LED driver for controlling operation of the LED, the junction box including a front end having a front opening and a rear end opposite the front end, and a front cover plate covering the front opening. The security light includes an extension tube having an upper end secured to the light module and a lower end secured to the junction box, a clamp assembly for securing the junction box to a fence post, and an offset bracket positioned between a rear end of the junction box and the fence post for spacing the junction box from the fence post which, in turn, spaces the hat from the fence post. |
US10816172B2 |
Lighting system for suspended ceiling
A lighting system has a lighting fixture with a housing and a pair of mounting brackets fixed to opposed sides of the housing and mounted to a hanger bar. Each mounting bracket is adapted to mount to a hanger bar without tools and the hanger bars are adapted to mount to the grid of rails without tools. The hanger bar can have first and second hanger bar members which are adapted to relatively move along a longitudinal axis (Y axis) of the hanger bar to extend and retract a length of the hanger bar. The mounting bracket is adapted to toollessly mount to the hanger bar at a predetermined vertical position (Z axis) and lateral position (X axis) relative to the hanger bar. |
US10816158B2 |
Light guide assembly for daytime running lamps
A light guide assembly for a vehicle headlamp is provided. The light guide assembly generally includes a light guide, a retainer defining an elongated channel for the light guide, and a carrier within the retainer and partially surrounding the light guide. The carrier is a standalone component in some embodiments, while in other embodiments the carrier is a layer or a coating on the retainer. The carrier is substantially black and is visible on either side of the light guide to mask a break in the carrier, the break providing an opening for the light guide to enter the headlamp housing. The light guide assembly thereby achieves a consistently-dark border on either side of the light guide along its entire length, even in the location of the housing opening. |
US10816157B2 |
Vehicular illumination device
Provided is a vehicular illumination device including a light emitting portion mounted on a headlight, and capable of outputting light from the light emitting portion forwardly of a vehicle with enhanced design and enhanced visibility. An illumination device is provided on a front portion of a vehicle, and includes a headlight, a light guide, and an outer glass. The outer glass is configured such that a perimeter portion and a front surface portion are integrally formed. The perimeter portion includes an incident portion on a middle portion in a length direction of the light guide, the incident portion allowing incidence of light output from the light guide. The light guide is disposed in proximate to the incident portion. Light incident from the light guide to the perimeter portion is guided forwardly, while repeating reflection on inner and outer circumferential surfaces of the perimeter portion, and output forwardly from an output portion formed on the front side. |
US10816156B2 |
Light guiding element, light guiding device, and lighting module
Provided are a light guiding element (100), a light guiding device (500), and a lighting module (800). The light guiding element (100) includes a light incident portion (1) and a light exit portion (2), where the light incident portion (1) includes a plurality of light guiding columns (11), each of which includes a first end surface (A) connected to the light exit portion (2), a second end surface (B) facing away from the light exit portion, and a side surface formed between the first end surface (A) and the second end surface (B), where the first end surface (A) has an area larger than that of the second end surface (B). Also provided are a light guiding device (500) including the light guiding element (100), and a lighting module (800) including the light guiding device (500). The light guiding element (100) enables, for a generated light type pattern, the shape to be complete, the color to be even, and the phenomena of vignette effect and dark lines to be reduced. |
US10816148B2 |
Recessed lighting systems
A recessed lighting system includes a casting, a light source module and one or more optic elements disposed in the casting, and a driver to power the light source module. In one example, the system also includes a junction box or a 4-10 inch recessed lighting fixture enclosure in which the casting is disposed. The system may also include a trim to cover an exposed edge of a hole in a ceiling or a wall into which the recessed lighting system is installed. The system also may include one or more connecting mechanisms to couple the trim to one or both of the junction box/enclosure and the casting. In one example, the casting includes a front end face and the one or more connecting mechanisms couple the trim to the front end face of the casting. The connecting mechanism(s) may include a twist-and-lock friction connection. |
US10816146B2 |
LED lighting tube device and method
An LED lighting tube including a heat-dissipating tubular envelope having an LED assembly directly affixed to an inner surface of the heat-dissipating tubular envelope. A method of making an LED lighting tube by providing a heat-dissipating tubular envelope, and affixing an LED assembly directly to an inner surface of the heat-dissipating tubular envelope with an adhesive layer. A method of providing heat-dissipation without a heat sink in an LED lighting tube by providing a heat-dissipating tubular envelope, affixing an LED assembly directly to an inner surface of the heat-dissipating tubular envelope with an adhesive layer, and dissipating heat through the heat-dissipating tubular envelope. |
US10816143B2 |
Ultraviolet light-emitting device and lighting system
An embodiment relates to an ultraviolet light-emitting diode, a method for manufacturing a light-emitting diode, a light-emitting diode package, and a lighting system. The light-emitting diode according to an embodiment includes: a second electrode layer (120); a second conductive type AlGaN-based semiconductor layer (119) on the second electrode layer (120); an active layer (117) on the second conductive type AlGaN-based semiconductor layer (119); a current spreading layer (115) including a first conductive type AlxGa1-xN layer (0 |
US10816139B2 |
Method and device for filling a tank with pressurized gas
Method for filling a tank with pressurized gas to a target pressure from at least one pressurized gas source via a transfer pipe provided with at least one valve, the tank having a predetermined inner length and predetermined inner diameter, the end of the transfer pipe forming an injector with a predetermined injection diameter; said method comprises a step for transferring pressurized gas from the source to the tank at a predetermined flow rate, the method comprising a step of controlling the transfer of gas from the source to the tank to reduce the heat produced in the tank, the step of controlling the transfer of gas comprising at least one of: sizing of the injection diameter, and sizing of the flow rate of the transferred gas; the control step being carried out according to the ratio L/D between the length and the diameter of the tank. |
US10816133B1 |
Telescoping structural support device
A universal telescoping structural support device with a right side configuration, comprising a right female telescoping sleeve with a substantially rectangular shape that is open on one side; a right male telescoping sleeve with a substantially rectangular shape that is open on one side; wherein the male sleeve is configured to telescope in movement within and along a length of the female sleeve and wherein the female sleeve is configured to telescope in movement around and along a length of the male sleeve. |
US10816132B2 |
Counterbalancing mechanism and stabilizer design and method for counterbalancing and stabilizing a load
The present invention relates to a resilient member aided counterbalancing and stabilizing device and method for resilient member aided counterbalancing and stabilizing loads in the direction of gravity. The device preferably includes a quick release mechanism in each design and a counterbalance assembly which in preferred embodiments is used to aid in the precise positioning of a stabilizer which in turn supports a load (e.g., a medical device). The quick release assembly in each stabilizer design preferably includes a central housing containing at least one ball joint(s) which is preferably connected to the counterbalancing linkage that supports the load. To unlock the mechanism, the user preferably squeezes a trigger mechanism which directly loosens the locks responsible for holding the load in place. |
US10816130B2 |
Composite article
A composite article includes a low surface energy polymer layer, a poly(meth)acrylate layer, an epoxide layer, and a hydrolytically resistant layer. The poly(meth)acrylate layer is disposed on and in direct contact with the low surface energy polymer layer and includes the reaction product of at least one acrylate that is polymerized in the presence of an organoborane initiator, such that the poly(meth)acrylate includes boron. The epoxide layer is disposed on and in direct contact with the poly(meth)acrylate layer. The hydrolytically resistant layer is disposed on and in direct contact with the epoxide and is the reaction product of an isocyanate component and an isocyanate-reactive component reacted in the presence of a curing agent. The isocyanate-reactive component includes a polydiene polyol and the curing agent crosslinks the carbon-carbon double bonds of the polydiene polyol. |
US10816126B2 |
Modular split sleeve
A fitting for encasing an extended length of pipe comprising a plurality of segments jointed end-to-end to axially extend over the length of pipe, each of the segments being formed by a pair of mating semi-cylindrical sections, the pairs of mating sections having arcuate ends forming longitudinally extending opposed faces mating at a diametral plane, the longitudinal opposed faces being sealed together, the adjacent axial ends of the segments being circumferentially sealed together, ends of the fitting having internal seals arranged to contact and seal onto the exterior of the pipe whereby the space between said internal seals within said fitting is closed. |
US10816124B2 |
Sanitizing pouch for electronics
The present invention is an elastic (mechanically stretchable), sanitizing pouch configured to receive and hold an Electronic Device of a predetermined configuration. The elasticity of the fabric used maximizes surface contact with the Electronic Device and the closeness of the fabric of the invention with the outside surfaces of the Electronic Device. A liftable and removable cover flap on the front of the invention is used to hold and access the inside of the invention. The back of the invention includes at least one pocket. The invention further includes a pull tab to help lift an Electronic Device out of the invention. While inside the invention, the silver ions are released in the fabric and inhibit the colonization of bacteria, viruses and fungus on the Electronic Device. |
US10816123B2 |
Station for heating fluids flowing through a network of submarine pipelines
The invention provides a heater station (2) for heating fluids flowing in an undersea pipe network, the station comprising at least one heater duct (6) made of conductive material designed to be connected to an undersea pipe (4) for transporting fluids, and at least one solenoid (8) wound around a portion of the heater duct and electrically powered to heat the heater duct portion by electromagnetic induction. |
US10816122B2 |
Fluidic coupling
This fluidic coupling (R) comprises a male element (A) comprising a male body (2), a valve (20) and a spring (24) pushing the valve (20) back toward its closed position, and a female element (B) having a sealing gasket (35), a piston (38), a slide valve (34) mounted around the piston (38) between a closed position, in which the sealing gasket (35) cooperates with the slide valve (34) and the slide valve (34) cooperates sealably with the piston (38), and a retracted open position. In a coupling phase, the male body (2) pushes the slide valve (34) back toward its open position and the piston (38) pushes the valve (20) back toward its open position. The piston (38) is mounted with the possibility of movement between a rear position and a forward position. The female element (B) comprises a lever (42) for converting the movement of the slide valve (34) into movement of the piston (38). During the coupling, from the closed position of the slide valve (34) to an offset position of the slide valve (34), in which the male body (2) cooperates with the sealing gasket (35) of the female body (26), the lever (42) is disengaged from the slide valve (34) and/or the piston (38), and the piston (38) is in the rear position. From the offset position of the slide valve (34) to the open position of the slide valve (34), the lever (42) is engaged with the slide valve (34) and with the piston (38), and moves the piston (38) toward its forward position. In the coupled configuration, the piston (38) is in its forward position and extends partially in the male body (2), a fluid passage being formed around the piston (38). |
US10816121B2 |
Quick connect coupling with verifier
A quick connect coupling having a female part with a throughbore for receiving a tube having an annular extending bead. A latch is supported in the female part in communication with the throughbore. A verifier is provided in stacked arrangement with the latch. Insertion of the tube results in extending sides of the latch expanding outwardly and likewise expanding the extending sides of the verifier. Upon passage of the bead past the latch, the latch seating in the engaged position, with the verifier held open by alignment with the annular bead. The verifier subsequently being displaced to a fully engaged position to indicate that the fluid coupling is fluidly and fully connected. |
US10816116B2 |
Tube with compression fitting and flared fitting used with connection body and method of making same
A high-pressure tube compression fitting/flared fitting for use in combination with a thick-walled tube and a connection body wherein a sleeve is in engagement with a thick-walled tube. The sleeve is generally cylindrically shaped with the exterior thereof coated and then etched. The sleeve includes a first and second sharp inner circumferential biting edges which interengage and bite into and through the exterior of the end portion of the thick-walled tube and into the wall portion of the end portion of the thick-walled tube without narrowing the passageway through the thick-walled tube. The process for making the fitting includes placing an end portion of the thick-walled tube into engagement with a tube engaging surface of a tapered generally cylindrical wall of a guide rod. |
US10816114B2 |
Connecting device having a movable seal for chamfered tube
A coupling device for a fluid transport tube (100) having an end provided with an internal chamfer (101), the device comprising a body (1) including a cylindrical wall (2) defining a channel (3) having an end segment provided with means for securing the tube end thereto in leaktight manner, these means including an elastically deformable annular sealing element (6) comprising a support ring (61) having an axially projecting first face from which there extends a tubular portion (62) having a free end (63) arranged to bear against the internal chamfer (101) of the tube end (100) in order to be forcibly engaged in the tube end while the tube is being inserted into the end segment. |
US10816099B2 |
Spool valve
A valve includes a bore within a valve body having a central axis. A plurality of galleries in the bore define flow paths for hydraulic fluid. A spool is positioned in the bore, and the spool is moveable along the central axis between a first position in which hydraulic fluid from a central pump gallery is prevented from flowing to first and second working galleries and from flowing to one or more tank galleries; a second position in which hydraulic fluid from the central pump gallery is in fluid communication with both the first and second working galleries simultaneously; and a third position in which the first and second working galleries are in fluid communication with the one or more tank galleries simultaneously. |
US10816098B2 |
Valve structure with elastic anti-leakage member
A valve structure with an elastic anti-leakage member includes a spool, a seat, and a switch. The spool body has at least one inner notch formed on the side of the spool body, and the inner notch has at least one elastic anti-leakage member installed in the inner notch. The spool is contained inside the seat, and the elastic anti-leakage member is located in the inner chamber of the inner notch and has a surface elastically abutting the internal cavity wall of the inner chamber. |
US10816096B2 |
Linear control valve
To achieve a compactly designed, simple and robust control valve for a hydrodynamic torque generator which is linear over a wide adjustment range, the control channel (12) of the control valve is formed in such a way that a substantially linear relationship between valve position (α) and flow ({dot over (V)}) is achieved by rotating the valve body (6) between a first valve position (α1), which differs from the closed position, and a second valve position (α2) with a larger flow ({dot over (V)}) than in the first position (α1). |
US10816095B2 |
Decoking control valve using dynamic rod seal
The decoking control valve includes a piston, a cylinder, and a hydraulic rod seal at the outlet ports. The piston can move translational inside the cylinder along a fixed direction. The cylinder houses the hydraulic rod seal in a groove of the cylinder that places the hydraulic rod seal next to the piston. The hydraulic rod seal has a seal ring in contact with the piston, and the seal rings are activated. As the piston translates within the cylinder, the seal ring will activate at one outlet port and allow fluid to flow out of another outlet port. |
US10816093B2 |
Parking lock mechanism
A parking lock mechanism comprises: a parking gear disposed on a power transmission member mechanically coupled to a drive wheel; and a parking pawl provided with a lock claw configured to mesh with the parking gear and switching between a lock state in which the lock claw is meshed with the parking gear and an unlock state in which meshing between the lock claw and the parking gear is released. In the mechanism, the lock claw includes a first end surface and a second end surface opposite to each other in a face width direction, the lock claw includes a tooth tip surface provided with a retreated portion at a corner on the second end surface side, and a position of a center of gravity of the parking pawl is on the second end surface side relative to a center plane in the face width direction of the lock claw. |
US10816092B2 |
Hydraulic control device including first and second hydraulic sensors
A comparison determination unit of a hydraulic control device determines whether a characteristic abnormality occurs in at least one hydraulic sensor of an output pressure sensor and a lateral pressure sensor by comparing an output pressure detected by the output pressure sensor and a lateral pressure detected by the lateral pressure sensor. An individual determination unit determines whether the characteristic abnormality occurs in the hydraulic sensor as a determination target by individually determining whether the output pressure and the lateral pressure are out of a predetermined range. A characteristic abnormality detection unit determines the hydraulic sensor in which the characteristic abnormality occurs by using each determination result in the comparison determination unit and the individual determination unit. |
US10816091B2 |
Method for operating a parking lock device by means of a hydraulic system
A method for operating a parking lock device with a hydraulic system, the method including applying the pressure between the parking lock valve and the pressure chamber at the parking lock valve against the actuating force. Moreover, when there is a demand to disengage the parking lock device, the method includes applying the pilot pressure at the parking lock valve against the actuating force when the pressure between the parking lock valve and the pressure chamber of the parking lock valve is less than a threshold value at which the parking lock valve is transferred into a further operating condition range. Additionally, when there is a demand to disengage the parking lock device, the method includes adjusting the pilot pressure applied at the positioning valve to a pressure level at which the positioning valve is transferred into or held in its defined operating condition range. |
US10816089B2 |
Gear unit for motor vehicle
A gear unit for a motor vehicle including a rotatable worm gear shaft rotating about a rotation axis and cooperating with a worm gear wheel in an engagement region spaced from the rotation axis. A pivotable rotary bearing mounts the worm gear shaft on a housing on one side of the engagement region and a loose rotary bearing, pretensioned in the direction of the spacing axis, mounts the other side in the housing. A support device supports the pivotable rotary bearing on the housing in the direction of the rotation axis. To optimize engagement between a worm gear shaft and a worm gear wheel, the pivotable rotary bearing pivots relative to the housing about a pivot axis perpendicular to the rotation axis and to the spacing axis. A support point of the support device is offset relative to the rotation axis along the spacing axis towards the engagement region. |
US10816088B2 |
Planet carrier for a speed-reducing unit with an epicyclic gear train
A planet carrier for a speed-reducing unit with a planetary gear set is provided. The planet carrier generally includes a torque transmission part having a longitudinal axis and an annular cage extending about the axis and connected to one longitudinal end of the part. The cage may include two sides extending radially relative to the axis and connected by bridges, and seats extending axially between the flanks and configured to support planetary gears rotatably mounted about the seats. The curved members may include at least two corresponding bars each inclined relative to a longitudinal plane passing both through the axis and substantially through the corresponding bar. |
US10816086B2 |
Power gearbox gear arrangement
An apparatus and a method of retaining a bearing assembly having a bore to a shaft received within the bore, the method comprising physically limiting the axial movement of the bearing assembly on the shaft by a retainer mounted to an end of the shaft and having a portion extending radially beyond the shaft and into an axial path of the bearing assembly. |
US10816085B2 |
Aircraft lubrication system
A system is provided in one example embodiment and may include a first reservoir for a lubricant; a second reservoir for the lubricant, wherein the first reservoir and the second reservoir are interconnected; a first pumping element to pump the lubricant from the first reservoir at a first flow rate; a second pumping element to pump the lubricant at a second flow rate, wherein the first flow rate and the second flow rate are different; and a gearbox coupled to the first pumping element and the second pumping element. The first reservoir may have a larger volume than the second reservoir and the first flow rate may be higher than the second flow rate. |
US10816084B2 |
Vehicle power transmission device
A vehicle power transmission device includes: a differential mechanism and provided with a through-hole in an outer circumferential surface, a pair of pinion gears respectively fitted to both ends of a pinion shaft, and a pair of side gears rotatably supported by the differential case and meshed with the pinion gears; and a baffle plate that includes an oil passage component functioning as an oil passage for supplying a lubricating oil for lubricating the pinion gears and the side gears and that is fixedly disposed to cover an outer circumference of the differential case. The oil passage component is provided with an opening portion allowing the lubricating oil in the oil passage to flow out downward, and the opening portion is disposed above the pinion shaft and between a pair of inner-circumferential-side end surfaces of the pair of the pinion gears when the pinion shaft is horizontal. |
US10816083B2 |
Lubrication system of power assembly of electric scooter
A lubrication system of a power assembly of an electric scooter includes a case duct and a bearing seat duct formed in a case of the power assembly, and a driven gear shaft duct formed in a driven gear shaft of a driven gear. Lubricant flows to the case duct, the driven gear shaft duct, a driven gear bearing seat in the case, the bearing seat duct, a driving bearing seat in the case in sequence. The lubrication system has a short flowing distance of the lubricant to enhance the effects of lubrication and reducing temperature. |
US10816079B2 |
Actuator with stacked gears and bend shaft
A gear train is contained within the housing of an actuator, is coupled to a movable component outside the housing, and includes a first gear and a second gear. A bend shaft is fixed to an internal surface of the housing and supports the first and second gears. The bend shaft includes a lower portion, a crosspiece, and an upper portion. The lower portion has a first end coupled to the housing and a second end offset from the first end, and extends from the first end to the second end along a first direction. The crosspiece is oriented orthogonal to the first direction and extends from the second end of the lower portion. The upper portion has a third end coupled to the crosspiece and a fourth end offset from the third end, and extends from the third end to the fourth end along the first direction. |
US10816078B2 |
Systems and methods for a gas turbine engine with combined multi-directional gearbox deflection limiters and dampers
A planet gear train for an engine casing includes a sun gear rotatable by a shaft, a ring gear, a plurality of planet gears rotatably mounted in a planet carrier and meshing with the sun gear and the ring gear, and a damping system. The damping system includes a soft mount disposed about the shaft and coupling the planet carrier the engine casing. The soft mount includes a flexible inner sleeve and a flexible outer sleeve. The flexible inner sleeve and the flexible outer sleeve are fixedly coupled together at respective central portions thereof near the shaft. The damping system further includes a plurality of damping couplers disposed about an outer flange of the planet carrier. The plurality of damping couplers is configured to flexibly couple the flexible inner sleeve to the flexible outer sleeve. |
US10816077B2 |
Drive clutch
A drive clutch having a compressible torque transfer mechanism configured to transfer torque from an engine or motor to a moveable sheave and configured to reduce wear on components of the drive clutch by eliminating sliding contact between surfaces to transfer torque and change the gear ratio. The torque transfer mechanism increases efficiency and reduces wear and may comprise a torque bellows, which is configured to transfer torque from the engine to the moveable sheave upon radial compression of the torque bellows. Sliding blocks and corresponding slide tracks are concentrically positioned between the moveable sheave and the shift plate and centrifugal force provides a force for linear movement for the sliding blocks, which results in movement of the moveable sheave and the cover, which can act to compress the torque bellows. This configuration reduces costs because precise machining is not needed and reduces premature wear and tear on the drive clutch. |
US10816075B2 |
Gear tooth crowning arrangement
A parallel axis gear configuration constructed in accordance to one example of the present disclosure can include a first gear having a first gear tooth that includes a lead crowning across a face width thereof. The lead crowning can include (i) a first lead crown defined from a centerline to a transition point and (ii) a second lead crown defined from the transition point to a first end point. The lead crowning can include a drop-off magnitude that is greater at the second lead crown than the first lead crown. |
US10816073B2 |
Strain wave gearing
In a strain wave gearing, a flexible externally toothed gear flexed by a wave generator meshes with a flexible internally toothed gear while in an overlapping meshing state. A floating ring, which supports the internally toothed gear from the outer circumferential side, maintains the overlapping state of the meshing and supports the internally toothed gear in a floating state that allows displacement following a state of radial flexion in the tooth trace direction of the internal teeth of the internally toothed gear. Differences between the meshing states of both gears can be alleviated at each position in the tooth trace direction. Degradation in the transmission characteristics and the strength characteristics of the strain wave gearing caused by manufacturing dimensional accuracy of each component and assembly accuracy can be suppressed. |
US10816070B2 |
Geared rotary power distribution unit with mechanical differential gearing for multiple actuator systems
Methods and systems for nacelle door electromechanical actuation may include a power distribution unit comprising a motor and differential gears; and a plurality of electromechanical actuators, each coupled to an output of a corresponding one of the differential gears. Each of the electromechanical actuators may include a configurable brake and a mechanical output, where the power distribution unit may provide mechanical torque to one of the electromechanical actuators via the motor and the differential gears based on configuration of the configurable brakes in each of the electromechanical actuators. At least one of the configurable brakes may be an electrically configurable brake. At least one of the configurable brakes may be a mechanically configurable brake. The differential gears may include two or more differential gears for receiving an input torque and supplying an output torque to one of a plurality of outputs of the differential gears. |
US10816064B2 |
Hydraulic tensioning device for a chain drive
A hydraulic tensioning device, comprising a tensioning piston receptacle, a tension piston that includes a piston compartment and is movably guided in the tensioning piston receptacle, a high-pressure chamber that can be connected to an inlet connection using an inlet passage secured by a non-return valve, a low-pressure chamber between the inlet connection and the inlet passage, and a balance piston located in the low-pressure chamber. |
US10816061B2 |
Dual-clutch transmission
The invention proposes a dual-clutch transmission with two clutches (K1, K2), the input sides of which are connected with an input shaft (w_an) and the output sides of which are respectively connected with one of two coaxially disposed transmission input shafts (w_K1, w_K2). Further provided are at least two countershafts (w_v1, w_v2) on which idlers (i2, i3, i4, i5, iR) are rotatably mounted. The dual-clutch transmission comprises fixed gears (F1, F2, F3), which are disposed on the two transmission input shafts (w_K1, w_K2) in a rotationally fixed manner and in engagement with the idlers, and output gears (iab1, iab2) respectively provided on the two countershafts (w_v1, w_v2), each of which is coupled to a gearing of an output shaft (w_ab), wherein the output shaft (w_ab) is not coaxially disposed to the input shaft (w_an). A plurality of shift elements (S1, S2, S3) is provided as well, so that at least six power-shiftable forward gears (1, 2, 3, 4, 5, 6) and at least one reverse gear (R1, R2) are shiftable. Only three double-acting shift elements (S1, S2, S3) are provided according to the invention, wherein two idlers (i2, i3, i4, i5, iR) of the countershafts (w_v1, w_v2) are allocated to each double-acting shift element (S1, S2, S3), wherein, in a first operating direction (S1a), one of the shift elements (S1) connects an idler (i3) with the associated countershaft (w_v1) and, in a second operating direction (S1b), connects the two associated idlers (i3, i4) with one another, and wherein two shift elements (S2, S3) respectively connect the associated idlers (i2, i5; i4, iR) with the associated countershafts (w_v1, w_v2) in a rotationally fixed manner. |
US10816050B2 |
Brake lining for disc brakes of rail vehicles
A brake lining for a disc brake includes a distribution of lining elements which are arranged on a lining support or on group supports in groups, and the group supports are secured to the lining support. The lining elements have first lining elements and second lining elements, and the group supports have a first group support and a second group support. The first lining elements are arranged on the first group support or on the lining support in a non-tiltable and/or inflexible manner, and the second lining elements are arranged on the second group support or on the lining in a tiltable and/or flexible manner. |
US10816044B2 |
Electromagnetic selectable wedge clutch
A wedge clutch selectively locks an outer race to an inner race to transfer torque therebetween. The inner race includes a first plurality of tapered surfaces, tapered in a first direction about an axis. The inner race includes a second plurality of tapered surfaces, tapered in an opposite second direction about the axis. At least two wedge plates are provided, each having a plurality of segments with a tapered inner surface disposed on a respective one of the first or second plurality of tapered surfaces of the inner race. The tapered inner surfaces of the wedge plates are tapered in opposite directions. An electromagnetic actuator is provided for each of the wedge plates. Electrically energizing one of the actuators constricts that respective wedge plate, unwedging the wedge plate from between the inner race and outer race and to no longer inhibit relative rotation therebetween. |
US10816043B2 |
Method of forming wet friction material by burning off fibers
A method of making a wet friction material includes providing an outer layer on a base layer to form the wet friction material. The base layer includes a first proportion of fiber material and a first proportion of filler material. The outer layer includes a second proportion of fiber material and a second proportion of filler material. The second fiber proportion is less than the first fiber proportion and the second filler proportion is greater than the first filler proportion. The method further includes forming a modified outer layer by burning off the fiber material of the outer layer. |
US10816041B2 |
Belt pulley decoupler
A belt pulley decoupler is provided for transmitting drive torque from belts of an auxiliary unit belt drive to the shaft of one of the auxiliary units, including: a belt pulley, a hub secured to the shaft, and a series circuit arranged in the drive torque flow between the belt pulley and the hub and including a decoupler spring and a wrap-around band that extends in the direction of the rotational axis of the belt pulley decoupler and is arranged radially between the belt pulley and the decoupler spring. Both ends of the wrap-around band open out radially when the drive torque is transmitted, the first end of the wrap-around band is braced against the inner surface of a first sleeve rotationally fixed in the belt pulley, and the second end of the wrap-around band is braced against the inner surface of a second sleeve rotationally mounted in the first sleeve. |
US10816040B2 |
System and method for coupling a machine assembly to a base
A coupling system for a machine assembly and a base is provided. The machine assembly includes a frame and a gib key extending outwardly from the frame. The coupling system includes at least one u-bracket configured to couple to the gib key such that said at least one u-bracket cooperates with the gib key to define a tenon pin opening. The at least one u-bracket is sized and shaped to be received in a clearance fit in a key channel defined in the base. The coupling system also includes a tenon pin sized and shaped to be received in the tenon pin opening such that the tenon pin couples the base to the gib key, and such that forces exerted on the received tenon pin parallel to a first direction are substantially in tension between the machine assembly and the base. |
US10816033B2 |
Bearing structure
A bearing structure includes a plurality of wave-shaped grooves and an inner surface. The wave-shaped grooves are formed on the inner surface for receiving a lubricating fluid. Each of the wave-shaped grooves extends along a longitudinal axis of the bearing structure. Each of the wave-shaped grooves includes a first peak section, a second peak section, two first connecting sections, two second connecting sections and a trough section. The two first connecting sections are connected to opposite sides of the first peak section, and the two second connecting sections are connected to opposite sides of the second peak section. The trough section is disposed between the first peak section and the second peak section, and the trough section is connected to one of the first connecting sections and one of the second connecting sections. The first and second peak sections and the trough section have a circular arc structure. |
US10816032B2 |
Socket joint device, fastening device, and indirect visual system for vehicles
A socket joint device includes a first and a second joint component (2, 6). The first joint component (2) has a spherical surface element (10) with a convex or concave exterior (11). The exterior (11) of the spherical surface element (10) is part of a spherical surface. An engagement mechanism (14) engages over the spherical surface element (10), so that the engagement mechanism (14) and the spherical surface element (10) contact one another via a first contact surface (22). A spherical cap-shaped receptacle (24) in the first or second joint component (2, 6) and an associated convex spherical cap (26) in the respective other joint component result in a second contact surface (28) that has a smaller radius of curvature R2 than the radius of curvature R1 of the spherical surface element (10). |
US10816031B2 |
Swivel hanger
A swivel hanger system includes an anchor member with an anchor head disposed at an end of the anchor member and an elongated body, where at least a portion of the elongated body is configured to be inserted into a support member when the system is connected with the support member. The system also includes a swivel member with an open end extending to a hollow interior of the swivel member, where the open end is configured to rotatably couple with the anchor head such that the anchor head is located within the hollow interior and the elongated body extends through the swivel member open end. The system further includes a stop structure to limit an insertion distance at which the anchor member is inserted into the support member. |
US10816028B2 |
Method of forming high security fastener with internal shroud buckled retainer
An improved fastener comprising a fastener body orientated about a central axis and having a tool-engaging portion, a threaded fastening portion and a shroud-receiving portion having an inwardly facing annular groove orientated transverse to the central axis; a shroud concentrically mounted on the shroud-receiving portion to rotate relative to the fastener body under an applied external torque and having an axially-buckled radially-extending annular protrusion extending outwardly transverse to the central axis and disposed in the inwardly facing annular groove of the shroud-receiving portion of the body; the axially-buckled radially-extending annular protrusion of the shroud and the annular groove of the shroud-receiving portion of the body forming a shroud-retaining element restraining the shroud from movement in at least a first axial direction along the central axis. |
US10816024B2 |
Lightweight fastener design
An improved fastening device includes a shank portion with a first end and a second end disposed from the first end. The fastening device includes a head portion disposed adjacent the second end of the shank portion The head portion of the fastening device includes a lower perimeter adjacent the second end of the shank portion, an upper perimeter disposed away from the lower perimeter and a body portion extending between the lower perimeter and the upper perimeter. The head portion is configured to engage a standard hex-shaped socket. The lower perimeter of the head portion has a generally hex shape and the upper perimeter has a different shape than the lower perimeter. |
US10816018B2 |
Hydraulic driving device of industrial vehicle
A hydraulic driving device of an industrial vehicle includes: a tank which stores hydraulic oil; a hydraulic pump which includes a suction port sucking the hydraulic oil and a discharge port discharging the hydraulic oil; a hydraulic cylinder which is driven by the hydraulic oil discharged from the discharge port of the hydraulic pump; a direction switching valve which is disposed among the hydraulic pump, the tank, and the hydraulic cylinder and switches a hydraulic oil flow direction in response to an operation state of operation means for driving the hydraulic cylinder; in which the direction switching valve includes a main spool which moves in response to the operation state of the operation means and a flow regulator which is disposed inside the main spool to control a flow rate of the hydraulic oil flowing from the hydraulic cylinder to the tank. |
US10816017B2 |
Downhole tractor comprising an improved hydraulic system
A downhole tractor having a hydraulic system for driving a plurality of hydraulic cylinders and a plurality of hydraulic motors. The system comprises: a hydraulic power pack; a first hydraulic supply line for supplying hydraulic fluid to the plurality of hydraulic cylinders; a second hydraulic supply line for supplying hydraulic fluid to plurality of hydraulic motors; a valve section comprising a respective part of first hydraulic supply line and a further respective part of second hydraulic supply line, valve section further comprising an inlet for receiving hydraulic fluid, and a set of valves, and a hydraulic bypass supply line coupled to hydraulic power pack for supplying hydraulic fluid directly to the inlet of valve section bypassing at least part of first hydraulic supply line and second hydraulic supply line. The first and the second hydraulic supply line each comprise two parts connected via respective part in the valve section. Each respective part is connected to a respective sub-set of plurality of hydraulic components. The valve section configured for individually controlling flow of hydraulic fluid into each respective part of hydraulic supply lines. |
US10816016B2 |
Thrust expansion device
A through-hole of a hydraulic chamber is provided on an input side of a thrust expansion device in accordance with rod diameters of various actuators on the input side, and an input rod of an air cylinder or the like is inserted therein. Thus, a thrust expansion mechanism operates. An input-side actuator attaching portion of the thrust expansion device is configured such that parts can be changed according to a fixing method of various actuators and a rod shape. It is possible to freely change a thrust expansion ratio by changing a cross sectional area of the input rod. A stroke of an output-side rod can be changed by changing an input stroke of the input-side actuator. According to the thrust expansion device, various inexpensive commercially available actuators can be easily attached and replaced by being separated and independent from the input-side actuator. |
US10816010B2 |
Ceiling fan
A ceiling fan includes an axle, a hub, a plurality of blades, a plurality of connecting members, and a plurality of protective sleeves. The hub is rotatably coupled with the axle. The plurality of blades is coupled with the hub. Each of the plurality of blades has a first end and a second end. The first end is coupled with the hub. Each of the plurality of blades has a channel intercommunicating the first end with the second end. The plurality of connecting members is respectively received in the channels of the plurality of blades. Each of the plurality of connecting members has an end coupled with the hub, as well as another end coupled with the second end of the each of the plurality of blades. The plurality of protective sleeves respectively envelopes the plurality of connecting members. |
US10816008B1 |
Dual stage grinder pump
A dual stage grinder pump (10) includes a housing (12) with a liquid inlet (20) and an outlet (26). An impeller (36) includes first impeller vanes (52) on a first axial side, and second impeller vanes (60) on a second axial side. A grinder (40) operates to reduce the size of suspended solids in the liquid that enters the pump inlet. Liquid passes from the inlet to a first fluid passage (30) and is acted upon by first vanes of the impeller in a first stage, and then passes through a second fluid passage (72). Liquid is acted upon by the second vanes of the impeller in a second stage and is passed through a third fluid passage (88) to the outlet. |
US10815998B2 |
Scroll compressor having a capacity variable device
A scroll compressor with a first valve having a first surface to open/close between a first path and a second path; a back pressure chamber assembly or non-orbiting scroll having a third path through which a first pressure refrigerant flows, a fourth path through which refrigerant of a second pressure lower than the first pressure flows, and one end in communication with the third and fourth paths and the other end having a fifth path in communication with a second surface of the first valve; and a second valve provided where the third, fourth, and fifth paths meet and moveable between first and second positions, wherein at the first position the third and fifth paths communicate to supply the first pressure refrigerant toward the second surface, and at the second position the fourth and fifth paths communicate to supply the second pressure refrigerant toward the second surface. |
US10815997B2 |
Method for regulating the rotational speed of a compressor as a function of the available gas flow of a source and regulation thereby applied
A method for controlling the speed of a compressor with a controller as a function of the available gas flow. The method includes the steps of setting a desired value for the inlet pressure; determining the inlet pressure; and determining the speed. The method further includes controlling the speed of the compressor by reducing or increasing it depending on whether the inlet pressure is less than or greater than a set desired value until the inlet pressure is equal to the set desired value where the characteristic data of the compressor relating to the efficiency and/or the Specific Energy Requirement (SER) as a function of the speed and the inlet pressure is provided and the desired value of the inlet pressure is adjusted on the basis of the aforementioned characteristic data so that the efficiency of the compressor is a maximum or the SER is a minimum. |
US10815995B2 |
Cluster assembly and electric compressor comprising same
The present invention relates to a cluster assembly and an electric compressor comprising the same and, more particularly, to a cluster assembly which has an improved insulation structure and is convenient to install, and an electric compressor comprising the same. More specifically, the cluster assembly comprises: three terminals; a detachable cluster including first to third coil fixing portions each having a coil insertion hole into which a coil end is insertedly formed therein, and first to third terminal receiving portions having a space formed therein so as to be spaced apart from the first to third coil fixing portions by a predetermined distance in the longitudinal direction of the coil and receive the terminals; and a cluster body which is coupled to one side surface of an electric motor in an axial direction and is formed hollow in the center thereof along the outer circumferential surface of a stator and which includes a cluster insertion portion formed corresponding to the shape of the detachable cluster so that the detachable cluster can be inserted in a horizontal direction. |
US10815989B2 |
Quick pull valve and seat assembly
A valve seat assembly comprises a valve. The assembly further comprises a removable upper seat associated with the valve. The assembly further comprises a lower seat configured to be inserted into a fluid end of a pump and releasably couplable to the upper seat. The upper seat is decouplable from the lower seat while the lower seat remains inserted in the fluid end of the pump. The valve is configured to contact the upper seat to prevent a flow of fluid through the fluid end of the pump. |
US10815987B2 |
Pump protection method and system
Protecting a hydrocarbon pump from excessive flow rates in a hydrocarbon fluid system comprising an electrical motor for driving the pump. For each of a plurality of gas volume fraction values of the hydrocarbon fluid, establishing a maximum torque limit for the pump by mapping the maximum allowable torque of the pump as a function of the differential pressure, thereby creating a plurality of maximum torque curves, each representing the maximum torque limit for a unique gas volume fraction value. Establishing a master maximum torque curve which represents the maximum torque limit for all gas volume fraction values. Monitoring the torque of the pump and the differential pressure across the pump. Based on the monitored differential pressure and using the master maximum torque curve, establishing a maximum allowable torque for the pump. Taking action if the monitored torque exceeds the established maximum allowable torque. |
US10815985B2 |
Modular subsurface lift engine
A modular subsurface lift engine lifts hydrocarbons directly or indirectly from a cased wellbore. The modular subsurface lift engine has a surface drive system with a fluid pump that pumps a lift fluid into an isolated annulus of the cased well bore surrounding subsurface lift engine. A lift capacity of the subsurface lift engine is increased by increasing the number of lift engine modules. |
US10815982B2 |
Cryopump system and method of operating cryopump system
A cryopump system includes at least one cryopump including a refrigerator including a low temperature cooling stage and a high temperature cooling stage, a low temperature cryopanel cooled by the low temperature cooling stage, and a high temperature cryopanel cooled by the high temperature cooling stage. A compressor unit includes a compressor main body that compresses a working gas supplied to the refrigerator, an operating frequency of the compressor main body being variable. The compressor unit is operated such that a pressure ratio between high pressure and low pressure of the compressor main body is in a range between 1.6 and 2.5. |
US10815980B2 |
Variable displacement swash plate type compressor
A variable displacement swash plate type compressor includes a first and a second valve body, and a suction and a bleed window. An open degree of the suction window is minimized by the first valve body and an open degree of the bleed window is maximized by the second valve body when a suction pressure is lower than a predetermined suction pressure and a crank chamber pressure is higher than a control pressure. The open degree of the suction window is increased and the open degree of the bleed window is maximized when the suction pressure is higher than the predetermined suction pressure and the crank chamber pressure is higher than the control pressure. The open degree of the suction window and the open degree of the bleed window are decreased when the crank chamber pressure is lower than the control pressure. |
US10815976B2 |
Actuator device
An actuator device comprises an actuator wire, a net-shaped heating element which covers a side surface of the actuator wire and comprises heating wires, and a controller for supplying electric power to the net-shaped heating element to heat the net-shaped heating element. The actuator wire is contracted by application of heat and restored by release of the heat. The side surface of the actuator wire is formed of a polymer. One end of the net-shaped heating element is connected to an end of the actuator wire. Another end of the net-shaped heating element is connected to another end of the actuator wire. Each of the heating wires comprises an insulative first elastic yarn and a metal wire. The metal wire are helically wound onto the first elastic yarn. When the net-shaped heating element is not heated, the net-shaped heating element is in contact with the side surface of the actuator wire. When the net-shaped heating element is heated, the net-shaped heating element moves outward from the side surface of the actuator wire due to contraction of the actuator wire. |
US10815975B1 |
Heavy water ocean thermal energy conversion method and system
An OTEC system and method utilize rigid containers, each of which defines a sealed volume partially filled with heavy water. A vessel houses the rigid containers and is disposed in ocean water. The vessel transports the rigid containers between a surface of the ocean water and a depth D of the ocean water at which the heavy water freezes to become frozen heavy water. An OTEC plant located at the surface of the ocean water melts the frozen heavy water in a condensing process. |
US10815974B2 |
Method of repairing or reinforcing wind turbine blade, or attaching accessory part to wind turbine blade
A method of repairing or reinforcing, or attaching an accessory part to a wind turbine blade includes: determining a criterion to be satisfied by a repair member including a reinforcing fiber and a UV curable resin, the criterion being an adhesion strength of the repair member relative to a base member of the wind turbine blade; determining a work condition including: dimensions of the repair member, the number of the layers of the reinforcing fiber in the repair member, and/or a fiber extension direction of the reinforcing fiber, based on a damage condition of a repair target portion of the wind turbine blade; placing the reinforcing fiber and UV curable resin on the repair target portion based on the determined work condition; and obtaining the repair member by curing the UV curable resin so that the adhesion strength of the repair member relative to the base member satisfies the criterion. |
US10815971B2 |
System for monitoring a wind turbine blade
The present disclosure relates to a system for determining at least one blade state parameter of a wind turbine blade, wherein the system is configured to: obtain blade data relating to the wind turbine blade from a sensor system associated with the wind turbine blade; compare at least one reference model of at least a portion of the wind turbine blade with the blade data; identify a reference model in dependence on the comparison; and determine at least one blade state parameter in dependence on the identified reference model. The blade data may take the form of an image, for example a 3-dimensional measurement such as a point cloud representing at least a portion of the blade. |
US10815969B2 |
Methods and apparatus for refurbishing wind turbine foundations
A method for refurbishing a wind turbine includes positioning a new tower support mount on an existing foundation of the wind turbine, the existing foundation including an existing foundation pad and an existing tower support mount at least partially embedded in the existing foundation pad. The method further includes inserting a plurality of anchors through the new tower support mount. |
US10815964B2 |
System and method for manufacturing wind turbine rotor blades for simplified installation and removal
The present disclosure is directed to systems and methods for manufacturing a wind turbine rotor blade that can be easily lifted and lowered to and from a rotor installed atop a tower. The method includes providing a plurality of root inserts for a blade root of the blade and securing at least one cylindrical member to one of the root inserts such that the cylindrical member is substantially perpendicular with the root insert. The method also includes arranging the root inserts in a blade mold of the blade and forming a blade shell with the plurality of root inserts laminated therein. The method may further include securing at least one attachment component within each of the cylindrical members so as to provide an attachment location for a pulley cable used to lift and lower the rotor blade to and from the rotor installed atop the tower. |
US10815962B1 |
Liquid-filled hydroelectric generation device
A hydroelectric generation device has a main channel, at least one branch channel, at least one storage unit, and at least one generator set. The at least one storage unit is mounted in the at least one branch channel, and each storage unit has a container. The at least one generator set is mounted respectively in the at least one storage unit, and each generator set has a generating tube, at least one connection pipe, and a generating unit. The generating tube is mounted in the container. The at least one connection pipe is connected with the generating tube and is bent into an inverted L shape. The generating unit has at least one blade wheel assembly mounted rotatably in the generating tube. |
US10815961B2 |
Ocean wave power generator with artificially intelligent controller
The ocean wave power generator with an artificially intelligent controller is a wave power generator based on a two-body mass-spring-damper system, including a first mass, a second mass, and a linear generator coupled to the second mass. A linear actuator is coupled to the second mass, and first and second motion sensors are positioned for detecting position and speed of the first and second masses. The maximum power output of the linear generator is determined based on the position and the speed of the first mass, and an ideal position and an ideal speed of the second mass, corresponding to the maximum power output of the linear generator and the position and the speed of the first mass, are determined. The position and the speed of the second mass are adjusted using a linear actuator to match the ideal position and the ideal speed of the second mass. |
US10815960B2 |
Wave energy converter
A wave energy converter includes a floating portion and an anchor portion, wherein the anchor portion includes a transport support structure configured to carry the floating portion. |
US10815956B2 |
Ignition performance increasing method of automobile and automobile comprising the same
An ignition performance increasing method of an automobile may include inputting a crank position sensor signal to detect a rotational position of a crankshaft of an engine, generating an engine angle tick, acquiring an engine synchronization by determining a position of the crankshaft and a position of a cam, setting a sync task at a specified position, and performing fuel injection and ignition. |
US10815952B2 |
Vehicle control device
A vehicle control device configured to be capable of executing idle stop control to automatically stop an engine when a predetermined automatic stop condition is satisfied and restart the engine when a predetermined restart condition is satisfied during the automatic stop of the engine, the vehicle control device includes: a start request detector, a shift position detector, and a delay time setting module. A start request detector detects a driver operation indicating a request for starting the engine by a driver. A shift position detector detects a shift position of a shift changer. A delay time setting module sets, on a basis of presence or absence of the driver operation and the shift position, a delay time from when the engine is restarted until when an automatic stop of the engine is permitted. |
US10815950B2 |
Construction machine starting assist system
An exemplary embodiment of the present disclosure relates to a construction machine starting assist system including: an engine of a construction machine; an input unit which receives a key-on signal and a key-off signal of the engine; a hydraulic pump which is operated by the engine; an actuator which is operated by hydraulic oil discharged from the hydraulic pump; a regeneration valve which is switched so that a part or an entirety of the hydraulic oil returned from the actuator; an accumulator which is charged with the hydraulic oil supplied from the regeneration valve; a charging valve which is controlled so that the hydraulic oil is discharged from the accumulator when the key-on signal is inputted into the input unit; and a hydraulic motor connected to the engine and configured to assist in starting the engine. |
US10815949B2 |
Fuel injection device
Provided is a structure capable of reducing dribbling of fuel generated when a valve body is closed. In order to achieve the above object, a fuel injection device includes: a valve body; and a seat member having a seat portion on which the valve body is seated and having a fuel injection hole formed on a downstream side of the seat portion. The seat member is formed such that a gap between the seat member and the opposing valve body in the whole region on the downstream side of the fuel injection hole is smaller than a diameter of the fuel injection hole. |
US10815948B2 |
Arrangement of a fuel injection valve on a fuel distributor of an internal combustion engine
The invention relates to an arrangement for connecting at least one fuel injection valve with a fuel distributor of a fuel injection system of an internal combustion engine, which fuel distributor is detachably fastened to a cylinder head, wherein the at least one fuel injection valve is detachably fastened by means of a fixing element to a mounting element of the fuel distributor. It is provided that a non-cylinder-facing surface of the mounting element of the fuel distributor and a cylinder-facing surface of the fixing element, in the assembled state of the cylinder head and fuel distributor and also the fuel injection valve, are configured as contact surfaces, by means of which, through attachment of the fixing element to the fuel injection valve, it is possible to bring about an axial fixing and a radial orientation of the fuel injection valve in the cylinder head and in the mounting element of the fuel distribution rail. |
US10815937B2 |
Evaporative emissions system diagnostic for GTDI engines using an electronic booster
Methods and systems are provided for diagnosing a vehicle fuel system and evaporative emissions system, and for diagnosing components in the evaporative emissions system. In one example, a method comprises activating an electric compressor while an engine that propels a vehicle is not in operation, to evacuate the fuel system and evaporative emissions system, sealing the fuel system and evaporative emissions system responsive to a threshold vacuum being reached during the evacuating, and indicating a presence or absence of non-gross undesired evaporative emissions based on a pressure rise in the sealed fuel system and evaporative emissions system. In this way, sources of undesired evaporative emissions may be readily detected, such that release of undesired evaporative emissions to the environment may be reduced. |
US10815935B2 |
Throttleable propulsion launch escape systems and devices
The present invention relates to throttleable propulsion launch escape systems and devices. In one embodiment, the system includes a tower and at least one throttleable motor secured to the tower. The throttleable motor is able to throttle to a reduced power setting during flight. In another embodiment, the system includes at least one throttleable motor and a space vehicle unit that includes a containing structure. In a further embodiment, the throttleable motor may be secured about a boost escape system of a space vehicle unit. In an additional embodiment, the present invention is a three-dimensional nozzle. |
US10815933B2 |
Variable area fan nozzle actuation system
A variable area fan nozzle actuation (“VAFN”) system is disclosed. The VAFN system may include an electrohydrostatic actuator (“EHA”) arranged to translate a VAFN panel relative to a translating sleeve. An electrical coupling may extend between a translating sleeve associated with the VAFN system and the fixed structure. The electrical coupling may be movable so that as the translating sleeve and fixed structure move relative to each other, power may be provided to the EHA by a wiring harness extending across the space between the translating sleeve and the fixed structure and connecting the EHA to an EHA power source. |
US10815932B2 |
Convergent-divergent nozzle mechanism
A convergent flap roller assembly is provided that includes a first hanger flange, a second hanger flange, a roller, and a pivot axle. Each hanger flange has a panel, a roller shaft, and at least one track tab. Each roller shaft extends outwardly from the respective panel, and includes a roller shaft bore. The roller has a center bore and an exterior contact surface. The roller shafts are received within the roller center bore and are in contact with each other, and the pivot axle extends through the roller shaft bores. |
US10815929B2 |
Systems and methods for waste heat recovery for internal combustion engines
A waste heat recovery system comprises an exhaust system, a thermal oil circuit, and a Rankine cycle circuit. The exhaust system is configured to provide exhaust gases. The thermal oil circuit comprises a first heat exchanger and a second heat exchanger. The first heat exchanger is positioned along the exhaust system. The first heat exchanger receives heat from exhaust gases and separately receives thermal oil such that heat from exhaust gases is transferred to thermal oil within the first heat exchanger. The second heat exchanger receives thermal oil from the first heat exchanger and provides thermal oil to the first heat exchanger. The Rankine cycle circuit circulates working fluid through the second heat exchanger separate from thermal oil such that heat from thermal oil is transferred to working fluid within the second heat exchanger. An expander utilizes heat within working fluid to produce mechanical energy. |
US10815925B2 |
Vehicle and control method for vehicle
A vehicle includes two accelerator position sensors and an electronic control unit. The two accelerator position sensors are configured to detect accelerator operation amounts. The electronic control unit is configured to perform drive control based on the accelerator operation amounts from the two accelerator position sensors. The electronic control unit is configured to, when failure occurs in one accelerator position sensor out of the two accelerator position sensors, perform the drive control based on the accelerator operation amount from the other accelerator position sensor out of the two accelerator position sensors, the accelerator operation amount being restricted by an accelerator operation amount upper limit that has a tendency of becoming larger as the vehicle speed is larger. |
US10815923B1 |
Oxygen concentration-based exhaust gas recirculation flow rate compensation control method and engine system
An oxygen concentration-based exhaust gas recirculation (EGR) flow rate compensation control method may include a model compensation mode, which confirms engine information acquired from an engine system, calculates an intake oxygen concentration by a model intake oxygen mass ratio through a combination of an intake oxygen mass ratio model value and a model exhaust lambda value and an indirect intake oxygen mass ratio through a combination of the intake oxygen mass ratio model value and an exhaust-side measurement lambda value, respectively, and compensates the model intake oxygen mass ratio as a model intake oxygen mass ratio compensation value applying a compensation error relative to the indirect intake oxygen mass ratio by using the model intake oxygen mass ratio as a model intake oxygen mass ratio current value, by a controller. |
US10815921B2 |
Systems and methods for adaptive acceleration based speed control
A method of controlling speed of an internal combustion engine is disclosed. The method includes receiving a load parameter input. The method also includes determining a requested speed demand and detecting a change in load based on the load parameter input. The method also includes determining a modified speed demand based on the detected change in load, and modifying the requested speed demand to the modified speed demand. |
US10815914B2 |
Internal combustion engine control device and internal combustion engine control method
The control device includes a microcomputer which controls operation of the internal combustion engine, a power regulator which outputs a direct current regulated voltage regulated from electric power of the AC generator, a 5V regulator which receives an output from the power regulator and supplies it to the microcomputer; a first capacitor with a small capacity connected to an output of the power regulator, plural second capacitors connected in parallel with the first capacitor; and plural opening and closing means connected in series to the plural second capacitors, respectively. The opening and closing means are controlled to be opened and closed by the microcomputer so that the second capacitors are charged when the output of the power regulator has reached an ON voltage below the regulated voltage. |
US10815910B2 |
Control device for compression ignition engine
A control system for a compression ignition engine is provided, which includes a sensor and a cylinder count control module which changes between all-cylinder and reduced-cylinder operations when the compression ignition combustion is performed at a given lean air-fuel ratio. The cylinder count control module executes a preparation control to change from the all-cylinder operation to the reduced-cylinder operation when the change is demanded. In the preparation control, the cylinder count control module outputs a signal to a throttle valve to execute an air amount increase processing, outputs a signal to a fuel injection valve to execute a fuel amount increase processing, and outputs a signal to an ignition plug to execute a retard processing. The cylinder count control module ends the fuel amount increase processing and the retard processing when it is determined that an air-fuel ratio is in a given air-fuel ratio state, and starts the reduced-cylinder operation. |
US10815905B2 |
Fuel control method for gas turbine, control device for executing said method, and gas turbine installation provided with said control device
A control device includes a fuel equivalent value calculation unit for determining the flow rate of fuel supplied to a gas turbine in accordance with a target value deviation between an actual rotation speed and a target rotation speed, an upper limit deviation calculation unit for obtaining an upper limit deviation which is a deviation between a set upper limit output and an actual output, a lower limit deviation calculation unit for obtaining a lower limit deviation which is a deviation between a set lower limit output and the actual output, and a parameter-changing unit for changing any one parameter among the target rotation speed, the actual rotation speed, and the target value deviation so that the target value deviation decreases when the actual rotation speed decreases and the upper limit deviation is small, and so that the target value deviation increases when the actual rotation speed increases and the lower limit deviation is small. |
US10815901B1 |
Aircraft engine
A gas turbine engine for an aircraft has an engine core having a turbine, compressor, and core shaft connecting the turbine and compressor; a fan upstream the engine core, the fan having fan blades; and a gearbox. The gearbox receives an input from a core shaft and outputs drive to a fan to drive the fan at a lower rotational speed than the core shaft. The gearbox is an epicyclic gearbox and has a sun gear, planet gears, ring gear, and planet carrier on which the planet gears are mounted. The gearbox has a gear mesh stiffness between the planet gears and the ring gear and a gear mesh stiffness between the planet gears and the sun gear. The gear mesh stiffness between the planet gears and the ring gear divided by that between the planet gears and the sun gear is in the range from 0.90 to 1.28. |
US10815900B2 |
Geared gas turbine engine
A gas turbine engine comprises a gearbox including a first epicyclic gearbox and a second epicyclic gearbox. The first epicyclic gearbox comprises a first sun gear meshing with the first planet gears and the first planet gears meshing with a first annulus gear. The second epicyclic gearbox comprises a second sun gear meshing with the second planet gears and the second planet gears meshing with a second annulus gear. An input shaft is arranged to drive the first sun gear and a first planet gear carrier is arranged to drive a propulsor. The first and second annulus gears are fixed to a static structure. A first clutch is arranged between the first planet gear carrier and the second planet gear carrier and a second clutch is arranged between the second sun gear and the input shaft. The gearbox is more efficient at cruise conditions. |
US10815895B2 |
Gas turbine engine with differing effective perceived noise levels at differing reference points and methods for operating gas turbine engine
A gas turbine engine generates noise during use, and one particularly important flight condition for noise generation is take-off. A gas turbine engine has high efficiency together with low noise, in particular from the turbine that drives the fan. The contribution of the turbine noise emanating from the rear of the engine to the Effective Perceived Noise Level (EPNL) is in the range of from 7 EPNdB and 30 EPNdB lower at a take-off lateral reference point than at an approach reference point. |
US10815890B2 |
Jet engine cold air cooling system
Methods and devices for cooling systems (700) are provided that are in fluid communication with bleed air from a jet engine compressor. The cooling system can include: a first precooler (210) receiving bleed air from the jet engine compressor; a heat exchanger (730) downstream from the first precooler (210); a cooling system compressor (220) downstream from the first precooler (210), wherein the heat exchanger (730) and the cooling system compressor (220) are in separate flow paths from the first precooler (210); a cooling system precooler (230) downstream from the cooling system compressor (220); a VGT cooling system turbine (240) downstream from the cooling system precooler (230); and a discharge conduit (245) downstream from the cooling system turbine (240) and the heat exchanger (730). A bypass line (290) for bypassing the turbine can also be included. |
US10815889B2 |
Failure mitigation and failure detection of intercooled cooling air systems
A gas turbine engine includes a first tap connected to a compressor section to deliver air at a first pressure. A heat exchanger is downstream of the first tap. A cooling air valve selectively blocks flow of cooling air across the heat exchanger. A cooling compressor is downstream of the heat exchanger and pressurizes the air from the first tap to a greater second pressure. A shut off valve selectively stops flow of the air between the heat exchanger and the cooling compressor. A controller controls the cooling air valve, the shut off valve, and the cooling compressor such that the flow of the air is stopped between the heat exchanger and the cooling compressor only after the controller has stopped the cooling compressor. A monitoring system communicates with the controller and includes a pressure sensor and a temperature sensor downstream of the cooling compressor. |
US10815888B2 |
Geared turbofan bearing arrangement
A geared turbofan gas turbine engine includes a fan section and a core section. The core section includes a compressor section, a combustor section and a turbine section. The fan section includes a gearbox and a fan. A low spool includes a low turbine within the turbine section and a forward connection to a gearbox for driving the fan. The low spool is supported for rotation about the axis at a forward most position by a forward roller bearing and at an aft position by a thrust bearing. |
US10815886B2 |
High tip speed gas turbine engine
A gas turbine engine includes a compressor section and a turbine section. The turbine section includes a drive turbine and is located downstream of the compressor section. The gas turbine engine also includes a fan mechanically coupled to and rotatable with the drive turbine such that the fan is rotatable by the drive turbine at the same rotational speed as the drive turbine, the fan defining a fan pressure ratio and including a plurality of fan blades, each fan blade defining a fan tip speed. During operation of the gas turbine engine at a rated speed, the fan pressure ratio of the fan is less than 1.5 and the fan tip speed of each of the fan blades is greater than 1,250 feet per second. |
US10815885B2 |
Anti-ice systems for engine airfoils
An anti-ice system for a gas turbine engine may comprise a power generating device and a first thermally conductive applique comprising a first heating circuit. The power generating device may comprise a first component configured to rotate about an axis and generate a current. A first conductive layer may electrically couple the first heating circuit and the first component of the power generating device. |
US10815882B2 |
Integrated power generation and compression train, and method
Disclosed herein is an integrated power generation and load driving system, comprising in combination a multi-shaft gas turbine engine comprising a high-pressure turbine mechanically coupled to an air compressor; and a low-pressure turbine, fluidly coupled to but mechanically separated from the high-pressure turbine and mechanically coupled to an output power shaft wherein the output power shaft is connected to a shaft line an electric generator, mechanically coupled to the shaft line and driven into rotation by the gas turbine engine a rotating load, mechanically coupled to the shaft line and driven into rotation by the gas turbine engine a load control arrangement, configured for controlling at least one operating parameter of the rotating load to adapt the operating condition of the rotating load to process requirements from a process, whereof the rotating load forms part, while the low-pressure turbine and the electric generator rotate at a substantially constant speed. |
US10815878B2 |
Homogeneous charge compression ignition linear generator
A homogeneous charge compression ignition free-piston linear generator is disclosed. The linear generator includes a housing having cylinders at opposite ends. A double-ended piston assembly is to move linearly in the housing to convert kinetic energy of the piston assembly into electrical energy, and to enable conversion of electrical energy into kinetic energy of the piston assembly. Sensors measure one or more states of the cylinders and/or piston assembly, and a controller controls the linear generator based on the sensor data. |
US10815876B2 |
Method for operating an internal combustion engine and the internal combustion engine
A method for operating an internal combustion engine is provided, wherein the internal combustion engine has at least one combustion engine and a fresh gas line and wherein a compressor, to which a trim adjuster is assigned, is integrated into the fresh gas line, said trim adjuster by which an edge section of the inlet cross section of a compressor wheel can be covered to a variable extent. In this case, the edge section of the inlet cross section is covered relatively little in a release position of the trim adjuster and covered relatively greatly in a covering position of the trim adjuster. It is provided that the trim adjuster is adjusted between the release position and the covering position, when substantially the same compressor pressure ratio and substantially the same fresh gas mass flow and substantially the same compressor efficiency are achieved in both operating positions. |
US10815869B2 |
Vehicular coolant flow system and method for controlling same
A vehicular coolant flow system includes: a main cooling circuit configured to circulate a coolant through a power electronic device mounted on a vehicle so as to cool the power electronic device; a heat-radiating device provided in the main cooling circuit so as to cool the coolant; a bypass circuit that branches off at a point between the power electronic device of the main cooling circuit and the heat-radiating device, bypasses the heat-radiating device, and merges with the main cooling circuit; a heating device connected to the bypass circuit and heated by the coolant that has cooled the power electronic device; a first adjustment valve positioned at a point at which the bypass circuit branches off from the main cooling circuit or merges with the main cooling circuit; and a controller that controls the first adjustment valve so as to adjust a flow rate of the coolant supplied to the bypass circuit. |
US10815865B2 |
Coolant pump and cooling system for vehicle
A coolant pump for a vehicle includes an impeller mounted at one side of a shaft and configured to pump a coolant, a pulley mounted at the other side of the shaft and configured to receive torque, a pump housing including an inlet into which the coolant inflows and an outlet of which the coolant flows out, a slider disposed to be movable in a longitudinal direction of the shaft so as to selectively block or open the outlet and a driver configured to move the slider, where a passage which supplies the coolant to at least one heat exchange element is formed on the pump housing. |
US10815860B2 |
Method for monitoring a nitrogen oxide storage catalyst
A method for monitoring a nitrogen oxide storage catalyst in an exhaust system of an internal combustion engine, in which a reduction of nitrogen oxides is carried out by means of a reducing agent is disclosed. During a regeneration of the nitrogen oxide storage catalyst, the following steps are carried out: A measurement is carried out, from which a slip rate of the reducing agent not absorbed in the nitrogen oxide storage catalyst is ascertained. In addition, at least one expected value for the slip rate of the reducing agent is ascertained from at least one model. Subsequently, a computation of a monitoring variable is carried out by means of the slip rate of the reducing agent ascertained from the measurement and the at least one expected value for the slip rate of the reducing agent. Finally, a diagnosis of the storage capacity of the nitrogen oxide storage catalyst is carried out on the basis of the monitoring variable. |
US10815857B2 |
Mixing device
A mixing device for an exhaust system of an internal combustion engine includes a mixing section (14) with a mixing section inlet area (20) to be positioned downstream in relation to a reactant introduction device (12). A mixing section outlet area (22) is positioned upstream in relation to a catalytic converter device (16). The mixing section (14) includes an inner wall (26) surrounding an inner volume (28), through which exhaust gas (A) or/and reactant (R) can flow, and an outer wall (24) surrounding the inner wall (26). An outer volume (30) surrounds the inner volume (28) in a ring-shape, formed between the inner wall and the outer wall (24). An electrically energizable heating device (34) is provided at the inner wall (26), or/and a heat transfer rib formation (54) is provided at the inner wall (26). |
US10815856B2 |
Catalytic converters having non-linear flow channels
Disclosed is a honeycomb catalyst substrate core having geometrically non-linear flow channels. In an embodiment, the honeycomb catalyst substrate core includes helical flow channels. In another embodiment, the honeycomb catalyst substrate core includes sinusoidal flow channels. In yet another embodiment, the honeycomb catalyst substrate core includes helical plus sinusoidal flow channels. The honeycomb catalyst substrate core comprises a plurality of parallel non-linear flow channels formed along a longitudinal axis of symmetry of the catalyst substrate core, each non-linear flow channel configured such that eddies occurs during engine exhaust gas flow. Also disclosed is a method for manufacturing a ceramic honeycomb having non-linear flow channels, comprising the steps extrusion soft ceramic material through a die whilst the die moves through six degrees of freedom along its axis of symmetry. Disclosure includes a method for manufacturing a ceramic honeycomb having non-linear flow channels using three-dimensional printing. |
US10815850B2 |
Method for catalyst purge control based on engine temperature and vehicle using the same
A method for catalyst purge control may include the steps of: performing, by a catalyst purge electronic control unit (ECU), catalyst purge control based on engine temperature; calculating an estimated engine temperature the catalyst purge ECU when fuel-cut is completed, and controlling, by the catalyst purge ECU, an amount of purge fuel injected by an injector based on the estimated engine temperature for the catalyst purge control. |
US10815847B2 |
Exhaust gas muffler and method for the manufacture thereof
An exhaust gas muffler, for an exhaust system of an internal combustion engine, includes a muffler housing (12) with a circumferential wall (14) elongated in a housing axis (L) direction and with an end wall (20, 22) at each axial end area (16, 18). Two exhaust gas pipe holding openings (44, 46) are provided in the circumferential wall (14) with an exhaust gas pipe (40) fixed to the circumferential wall (14) in an area of each exhaust gas pipe holding opening (44, 46) and open towards a housing interior (24). The exhaust gas pipe (40) is preferably closed at one end area (54) by a closing element (58). The exhaust gas pipe (40) has at least one exhaust gas passage opening (66) in a length area (64) extending between the two exhaust gas pipe holding openings (44, 46). |
US10815842B2 |
Camshaft phaser arrangement for a concentric camshaft assembly
A camshaft phaser arrangement configured for a concentric camshaft assembly having inner and outer camshafts is provided. The camshaft phaser arrangement includes a first camshaft phaser that is configured to be non-rotatably connected to both the inner and outer camshafts, and a second camshaft phaser that is configured to be non-rotatably connected to one of the inner or outer camshafts. |
US10815836B2 |
Method for mounting at least one sealing ring on a camshaft in a bearing line of an internal combustion engine, and camshaft having at least one sealing ring mounted in such a way
A method for mounting a camshaft in a bearing line of a cylinder head cover of an internal combustion engine may involve mounting a sealing ring in a groove extending radially circumferentially on an outer diameter of the camshaft. The sealing ring may be at least partly formed of an elastically deformable polymer such as polytetrafluoroethylene (PTFE). The method may further involve sliding a calibrating tool having a rotationally symmetrical opening onto the camshaft or sliding the camshaft into the calibrating tool. A smallest inside diameter of the rotationally symmetrical opening may be greater than an outside diameter of the camshaft in a region of the groove but less than an outside diameter of the sealing ring. Consequently, the sealing ring is pressed into the groove and is frictionally and interlockingly held in the groove. |
US10815832B2 |
Load transfer in turbine exhaust case
A turbine exhaust case is provided for a gas turbine engine. This turbine exhaust case includes a first gas turbine engine exhaust case, a second gas turbine engine exhaust case, a strut and a fastener. The second gas turbine engine exhaust case includes a flange and a bracket. The strut is coupled to the first case and the second case. The fastener fastens the flange and the strut. The second gas turbine engine exhaust case is co-axial with the first gas turbine engine exhaust case. The strut contacts the bracket when the engine is powered-on. |
US10815827B2 |
Variable thickness core for gas turbine engine component
A gas turbine engine component has a body extending between two circumferential sides, and between a leading edge and a trailing edge. A refractory metal core within the body forms at least one cooling circuit to utilize fluid to cool the body. When the refractory metal core is removed from the body, the at least one cooling circuit includes an inlet, an outlet, and a passage that varies in cross-sectional area between the inlet and outlet. A method of manufacturing a gas turbine engine, a method of manufacturing a core, and a refractory metal core are also disclosed. |
US10815820B2 |
Integral shear locking bumper for gas turbine engine
A synchronizing assembly including: a synchronizing ring having a countersunk orifice; and a bumper assembly comprising: a bumper at least partially enclosing a cavity, the bumper comprising an outward side, an inward side opposite the outward side, a first side extending between the outward side and the inward side, a first opening on the outward side extending into the bumper to define a first portion of the cavity; and a second opening on the first side extending into the bumper to define a second portion of the cavity; and a bolt comprising a bolt head and a bolt shank, wherein the bolt shank extends through the first opening and the bolt head is secured within the second portion of the cavity, wherein the bumper further comprises a raised boss extending away from the outward surface, the raised boss configured to mate with the countersunk orifice of the synchronizing ring. |
US10815818B2 |
Variable-pitch vane assembly
A variable-pitch vane assembly for a gas turbine engine includes a sync ring, a vane having a vane arm, and a pin installed through the sync ring and through the vane arm. The pin includes an anti-rotation notch located along a pin shaft. An anti-rotation spacer is engaged with the pin at the anti-rotation notch to prevent rotation of the pin. A turbine section of a gas turbine engine includes a turbine rotor and a turbine stator. The turbine stator includes one or more variable-pitch vane assemblies including a sync ring, a vane having a vane arm, and a pin installed through the sync ring and through the vane arm. The pin includes an anti-rotation notch located along a pin shaft. An anti-rotation spacer is engaged with the pin at the anti-rotation notch to prevent rotation of the pin. |
US10815817B2 |
Heat flux measurement system
A turbine section according to an example of the present disclosure includes, among other things, a component including a coating on a substrate, and at least one sensor positioned a distance from the component, the at least one sensor configured to detect radiation emitted from at least one localized region of the coating at a first wavelength and configured to detect radiation emitted from the substrate corresponding to the at least one localized region at a second, different wavelength. The first wavelength and the second wavelength are utilized to determine a heat flux relating to the at least one localized region. A method of measuring a gas turbine engine component is also disclosed. |
US10815812B2 |
Geometry optimized blade outer air seal for thermal loads
A blade outer air seal (BOAS) is provided. The BOAS comprising: a seal body having a forward side, an aft side opposite the forward side, a radially inward side, and a radially outward side opposite the radially inward side; and a relief gap within the seal body to allow a portion of the radially inward side to expand into the relief gap when the seal body is heated. |
US10815811B2 |
Rotatable component for turbomachines, including a non-axisymmetric overhanging portion
A rotatable component for a turbomachine and a method for regulating a circumferential ingress of a fluid at a trailing edge of the rotatable component are disclosed. The rotatable component includes an airfoil and a mechanical component. The airfoil includes a pressure side and a suction side. The mechanical component is coupled to the airfoil and includes a forward overhanging portion, and an aft overhanging portion. The forward overhanging portion is disposed at a leading edge of the airfoil and extends longitudinally beyond the leading edge. The aft overhanging portion is disposed at a trailing edge of the airfoil and extends longitudinally beyond the trailing edge, where both the forward and aft overhanging portions further extend circumferentially along the pressure side and the suction side of the airfoil. The aft overhanging portion includes a non-axisymmetric profile for regulating the circumferential ingress of the fluid from the pressure to suction sides. |
US10815810B2 |
BOAS assemblies with axial support pins
A blade outer air seal assembly may comprise a blade outer air seal segment and a blade outer air seal support coupled to the blade outer air seal segment. The blade outer air seal segment may comprise a forward rail and an aft rail. The forward rail may be castellated. The blade outer air seal support may comprise an aft flange and a first forward flange. A pin may be disposed through the aft rail, the aft flange, the first forward flange, and the forward rail. |
US10815807B2 |
Shroud and seal for gas turbine engine
A turbine of a gas turbine engine that includes a stationary shroud ring having inner shroud segments circumferentially stacked about a hot gas path. The inner shroud segments may include a first inner shroud segment that includes: a cooling configuration having cooling channels configured to receive and direct a coolant through an interior of the first inner shroud segment, where each of the cooling channels extends lengthwise between a first end and a second end that includes an outlet formed through an exterior surface of the first inner shroud segment; a circumferential edge; a slot formed in the circumferential edge; and a sealing member positioned within the slot. The outlet of at least one of the cooling channels may be positioned within the slot. |
US10815804B2 |
Turbine engine containment assembly and method for manufacturing the same
A containment assembly for use in a turbine engine includes a fan case formed from a composite material. The fan case includes a forward end, an aft end, and an opening defined through the fan case between the forward and aft ends. The containment assembly further includes a structural attachment member formed from a metallic material and coupled to the fan case. The structural attachment member is positioned within the opening in the fan case and is configured to receive at least one fastener to couple a component to the structural attachment member. |
US10815802B2 |
Variable vane assemblies configured for non-axisymmetric actuation
A variable vane assembly may comprise a first vane and a second vane. The first vane may comprise a first strut portion and a first flap portion. The first flap portion may be configured to pivot relative to the first strut portion. The second vane may comprise a second strut portion and a second flap portion. The second flap portion may be configured to pivot relative to the second strut portion. The first flap may be configured to pivot independently of the second flap. |
US10815798B2 |
Turbine engine blade with leading edge strip
A blade for the fan section of a turbine engine comprising a composite core defining a pressure side and a suction side extending axially between a core leading edge and a core trailing edge defining a chord-wise direction and extending radially between a core root and a core tip defining a span-wise direction and a leading edge strip made of materials with different elasticity and mounted to the core leading edge. |
US10815797B2 |
Airfoil systems and methods of assembly
An airfoil assembly includes an airfoil body extending from a root to a tip defining a longitudinal axis therebetween. The airfoil body includes a leading edge between the root and the tip. A sheath is direct deposited on the airfoil body. The sheath includes at least one metallic material layer conforming to a surface of the airfoil body. In accordance with another aspect, a method for assembling an airfoil assembly includes directly depositing a plurality of material layers on an airfoil body to form a sheath. In accordance with some embodiments, the method includes partially curing the airfoil body. |
US10815796B2 |
Coating process for gas turbine engine component with cooling holes
A method of coating a component having a multiple of cooling holes including removing at least a portion of a prior coating from a component; mapping a location of each of the multiple of cooling holes to generate a map of cooling holes; applying a coat to the component; adjusting the map of cooling holes to account for said coat to generate a adjusted map of cooling holes; and re-drilling the multiple of cooling holes in response to the adjusted map of cooling holes. |
US10815791B2 |
Turbine blade cooling system with upper turning vane bank
A turbine blade having a base and an airfoil, the base including cooling air inlets and an internal cooling air passageway, and the airfoil including an internal multi-bend heat exchange path beginning at the base and ending at a cooling air outlet at the trailing edge of the airfoil. The airfoil also includes a “skin” that encompasses a tip wall, an inner spar, and a tip flag cooling system. |
US10815790B2 |
Tip leakage flow directionality control
An airfoil according to an example includes, among other things, a suction sidewall and a pressure sidewall. A tip wall extends from a leading edge to a trailing edge and joins respective outer ends of the suction and pressure sidewalls. A tip rib extends along a pressure side of the tip wall. A tip leakage control channel is provided at the tip wall and has a floor that extends between a first control channel vane sidewall and a second control channel vane sidewall established by a corresponding tip leakage control vane. Each of the tip leakage control vanes is contiguous with and extending from a suction side surface of the tip rib. The tip leakage channel extends toward the trailing edge while extending toward the suction sidewall. One or more of an internal cavity, a channel cooling aperture, and a sidewall microcircuit may be provided. |
US10815787B1 |
Gas turbine engine airfoil frequency design
A turbomachine airfoil element includes an airfoil that has pressure and suction sides spaced apart from one another in a thickness direction and joined to one another at leading and trailing edges. The airfoil extends in a radial direction a span that is in a range of 0.46-0.59 inch (11.8-14.9 mm). A chord length extends in a chordwise direction from the leading edge to the trailing edge at 50% span and is in a range of 0.73-0.86 inch (18.6-21.9 mm). The airfoil element includes at least two of a first mode with a frequency of 5133±15% Hz, a second mode with a frequency of 8542±15% Hz, a third mode with a frequency of 15487±15% Hz, a fourth mode with a frequency of 18774±15% Hz, a fifth mode with a frequency of 24295±15% Hz and a sixth mode with a frequency of 27084±15% Hz. |
US10815784B2 |
Turbine engine turbine rotor with ventilation by counterbore
The invention relates to a turbine rotor, of a low-pressure turbine of a turbine engine for example, including a first disk, an annular seal ring including a radial flange on which is formed a scalloping defined by a plurality of scallops offering a locally increased surface, circularly distributed, said radial flange being attached to the rotor between the first disk and the second disk and a flow circuit including at least one lunule, suitable to place into fluid communication a radially inner cavity and a radially outer cavity, the lunule being formed on the radial flange of the seal ring said lunule being provided on at least one scallop. |
US10815782B2 |
Methods for repairing airfoil trailing edges to include ejection slots therein
Methods for repairing a trailing edge of an airfoil are provided. The method can include removing a portion of the trailing edge of the airfoil to form an intermediate component, and then applying using additive manufacturing a replacement portion on the intermediate component to form a repaired airfoil. The replacement portion defines at least one trailing edge ejection slot. |
US10815781B2 |
Active temporary roof support apparatus
An active temporary roof support apparatus for attachment to a mining machine includes at least one set of support members, each set including at least a first support member and a second support member for supporting the roof of an underground tunnel. A drive assembly is arranged to drive the set of support members, such that the first and second support members are sequentially moved for engaging the roof so that the roof is supported by at least one support member during an excavation operation of the mining machine. A mining machine and a corresponding method is also provided. |
US10815780B2 |
Resin anchored rock bolt with a piercing end
Disclosed is a resin bolt which includes an elongate shaft which extends between a leading end and a trailing end and a positioning head which is integral to the shaft at the leading end and which extends in the elongate axis of the shaft from a perimeter rim to a crown, with the head formed with a plurality of projections, with each projection extending laterally, beyond the radial dimension of the shaft and each projection having a leading surface which slopes, at least partially, from the crown to the perimeter rim, and a trailing surface from the perimeter rim to the shaft. |
US10815776B2 |
Systems and methods for performing hydraulic fracturing in vertically heterogenous regions
A hydraulic fracturing system includes a perforating tool configured to perforate a casing of a well and a computing system communicatively coupled to the perforating tool. The computing system is configured to determine a plurality of geomechanical properties associated with a plurality of depths of the well and associated with a subterranean region adjacent to the well based on seismic data representative of the subterranean region; determine stress regime of each of the plurality of depths based on the plurality of geomechanical properties; classify at least one continuous interval of the plurality of depths as a critical net pay (CNP) region based on the stress regime of each depth of the at least one continuous interval; and send a command to the perforating tool to perforate the casing of the well at a depth associated with the CNP region within the at least one continuous interval. |
US10815774B2 |
Coiled tubing telemetry system and method for production logging and profiling
Systems and methods for conducting production logging for a wellbore are described which incorporate production logging sensors into a bottom hole assembly which is run in on coiled tubing. The production logging system may include a tool for also conducting a secondary operation, such as milling, fishing, perforation or clean out. |
US10815766B2 |
Vertical drilling and fracturing methodology
A method for drilling and fracturing a subterranean formation includes drilling a substantially horizontal pilot well from a previously drilled vertical pilot well. A plurality of substantially vertical sidetracks is drilled from the horizontal pilot well. Fracturing fluid is pumped into the plurality of vertical sidetracks to hydraulically fracture the subterranean formation. |
US10815764B1 |
Methods and systems for operating a fleet of pumps
A system and method for operating a fleet of pumps for a turbine driven fracturing pump system used in hydraulic fracturing is disclosed. In an embodiment, a method of operating a fleet of pumps associated with a hydraulic fracturing system includes receiving a demand Hydraulic Horse Power (HHP) signal. The demand HHP signal may include the Horse Power (HP) required for the hydraulic fracturing system to operate and may include consideration for frictional and other losses. The method further includes operating all available pump units at a percentage of rating below Maximum Continuous Power (MCP) level, based at least in part on the demand HHP signal. Furthermore, the method may include receiving a signal for loss of power from one or more pump units. The method further includes operating one or more units at MCP level and operating one or more units at Maximum Intermittent Power (MIP) level to meet the demand HHP signal. |
US10815762B2 |
Providing communication between wellbores through directional hydraulic fracturing
Collection of hydrocarbons in a collection region that is non-contiguous to a production well is described. A path between the production well and a collection well is determined, which is not necessarily the shortest distance path. A fluid communication channel is then provided within a geological formation between the production well and collection well, along the determined path. Fluid communication is provided between the production well and the collection well without intersecting the collection well with the production well, and without otherwise drilling a hole to connect the production well and collection well. |
US10815761B2 |
Process for producing hydrocarbons from a subterranean hydrocarbon-bearing reservoir
A process for producing hydrocarbons from a subterranean hydrocarbon-bearing reservoir includes injecting a gas, at a pressure below a minimum miscibility pressure, into the reservoir through an injection well extending into the reservoir to form a gas zone in the reservoir. The gas injection pressure is suitable to provide a differential pressure between a bottom-hole production well pressure at a horizontal multi-lateral production well extending into the reservoir, and the gas injection pressure to facilitate sweeping the hydrocarbons toward the production well prior to gas breakthrough at the production well. The method also includes producing a portion of the hydrocarbons to surface through the production well, monitoring the production well for the gas breakthrough, and after the gas breakthrough is detected producing a further portion of the hydrocarbons by a gas gravity drainage process in which hydrocarbons are drained toward the production well, and controlling continued production of the hydrocarbons through the production well. |
US10815760B2 |
Method of filtering a wellbore fluid
A method of filtering a wellbore fluid can include receiving a wellbore fluid in a chamber. The chamber can be defined by an inner surface of a casing string that is positioned downhole in a wellbore. The method can further include filtering debris particles from the wellbore fluid by a filter assembly positioned within an inner region of the casing string. The filter assembly may include a plurality of slots and the filter assembly may be rotated by the wellbore fluid passing through the plurality of slots in the filter assembly. |
US10815759B2 |
Performing steam injection operations in heavy oil formations
Systems and methods for performing steam injection operations in heavy oil formations using a fully-coupled thermo-hydro-mechanical model for improved steam penetration during the steam injection operations. |
US10815756B2 |
Axial-to-rotary movement configuration, method and system
An axial-to-rotary movement configuration including a sleeve having a sleeve angulated castellation and a lug receptacle, a lug disposed in the lug receptacle, and a mandrel disposed in part within the sleeve, the mandrel having a mandrel angulated castellation nestable with the sleeve angulated castellation and further including an extension cam surface and a ramp, the ramp having a limit surface and configured to allow rotational motion of the sleeve relative to the mandrel in one direction only. |
US10815754B2 |
Splitflow valve and method of use
A splitflow valve comprises a tubular body, a valve element and a lock. The tubular body defines a through hole and has at least one lateral bypass port. The valve element defines a flow restriction and is moveable along the through hole along a first direction between a first position and a second position, wherein the bypass port is closed by the valve element in the first position. In the second position the bypass port is open. The lock maintains the valve element in the second position wherein a flow of fluid entering the through hole of the tubular body is split into a first flow portion passing the flow restriction and a second flow portion exiting the at least one bypass port. Further, the lock is deactivatable to allow the valve element to return to the first position. |
US10815742B2 |
Separator and method of separation with a pressure differential device
A system including a vibratory separator includes at least one screen and a pressure differential system. The pressure differential system includes a pressure differential generating device, a tray coupled to the pressure differential generating device, and an adjustable mounting mechanism configured to couple the tray within the vibratory separator and adjust a distance between the tray and the at least one screen of the vibratory separator. |
US10815739B2 |
System and methods using fiber optics in coiled tubing
Apparatus having a fiber optic tether disposed in coiled tubing for communicating information between downhole tools and sensors and surface equipment and methods of operating such equipment. Wellbore operations performed using the fiber optic enabled coiled tubing apparatus includes transmitting control signals from the surface equipment to the downhole equipment over the fiber optic tether, transmitting information gathered from at least one downhole sensor to the surface equipment over the fiber optic tether, or collecting information by measuring an optical property observed on the fiber optic tether. The downhole tools or sensors connected to the fiber optic tether may either include devices that manipulate or respond to optical signal directly or tools or sensors that operate according to conventional principles. |
US10815737B1 |
Tool joint clamp
A tool joint clamp which includes a clamp assembly and a stop ring. The clamp assembly has at least two die carriers, with each die carrier having a translating and pivoting link between the die carriers such that the die carriers may move toward and away from a centerline of the clamp assembly. The stop ring includes a ring body having a central aperture forming an internal sidewall, with at least a portion of the internal sidewall having splines. A cam surface and cam follower are positioned between the clamp assembly and the stop ring, with the cam surface and cam follower configured to urge the die carriers toward the clamp assembly's centerline when relative torque is applied between the clamp assembly and the stop ring. |
US10815736B2 |
Underwater SCR lifting frame
An underwater steel catenary pipeline riser (SCR) lifting frame comprises a lift frame foundation and an SCR lifting frame comprising a lift frame interface adapted to be connected to the lift frame foundation; a foundation interface; a lift guide configured to accept the lift frame foundation; and a lift slidably disposed about the lift guide, the lift comprising an SCR pull head interface configured to be connected to an SCR pull head. The underwater steel catenary pipeline riser (SCR) lifting frame and systems using it allow for flex joint repair/replacement subsea which do not require large winches, deck re-enforcements, steering winches, and heavy crane lifts required by facility mounted winches above water and also reduces required heavy lifting and overall complexity of flex joint replacement. |
US10815735B1 |
Swivel stand apparatus and associated equipment
A swivel stand apparatus includes a swivel tower and a swivel mounting frame to which the swivel tower preferably removably attaches using locking members. Non-wheeled friction reducing sliders preferably form an interface between the swivel mounting frame and the frame. The flanged beams are part of a basket which can receive and connect to either a jack base or a flange base. The basket can have legs of different lengths to allow connection of the basket to the bases in only one orientation to prevent incorrect connection of the basket to the base. The basket preferably includes specially configured pipe racks for holding vertically positioned pipe or pipe joints. The jack base preferably includes multiple legs to connect to legs of the basket, and two legs to contact and support the basket without necessarily being mechanically interlocked thereto. |
US10815734B2 |
Earth-boring tools including polymer matrix composite hardfacing material and related methods
Hardfacing materials include a polymer matrix material and particles of hard material embedded within and dispersed throughout the polymer matrix material. Earth-boring tools include a tool body and a hardfacing material on at least a portion of a surface of the body, wherein the hardfacing material includes a polymer matrix material and particles of hard material embedded within and dispersed throughout the polymer matrix material. Methods of applying hardfacing material to an earth-boring tool comprise mixing hard particles with a polymer precursor material to form a paste, applying the paste to a surface of an earth-boring tool, and curing the polymer precursor material to form a hardfacing material on the surface of the earth-boring tool. |
US10815731B2 |
Method and apparatus for emplacing columns
A sonic drilling apparatus with adapter for emplacing columns includes a sonic drilling apparatus generating vibrational waves and having a fitting. An adapter is coupled to the fitting for removably attaching a column to the sonic drill apparatus. A centering assembly is positioned below the adaptor for receipt of a column therethrough. |
US10815726B2 |
Blind assembly and method of attaching a shade material to a winding core of a blind
Blind assembly comprising a shade material, a winding core and/or a bottom rail, and compensation means. The shade material is attached to the winding core and/or the bottom rail by attaching the compensation means to the shade material in a first condition in which the compensation means extend along a first line with a first shape. The compensation means can be attached to the winding core and/or the bottom rail in a second condition in which the first line has a second shape, different from the first shape. As a result, the shade material is loaded with compensation forces that can counteract any sagging forces exerted on the shade material by the sagging winding core and/or bottom rail. |
US10815724B2 |
Double-layer Roman shade folding structure
A double-layer Roman shade folding structure includes a bracket. The bracket is provided with an outer curtain fabric, a roller tube, and an inner curtain fabric. The outer curtain fabric is provided with a plurality of strip-shaped limiting members that are arranged horizontally and spaced apart at equal intervals. An opening is defined between the limiting members and the outer curtain fabric for the inner curtain fabric to pass therethrough. When the bottom end of the inner curtain fabric drives the bottom end of the outer curtain fabric to be moved up, the plurality of limiting members are pushed and moved up in sequence so that the outer curtain fabric is folded and overlapped continuously. |
US10815723B1 |
Safety barrier gate with alarm
The safety barrier gate with alarm comprises a gate, an approach sensor, a pressure sensor, and an alarm. The gate may be adapted to block a passage to restrict the movement of a child. As non-limiting examples, the passage may be a doorway or a hallway. The alarm may warn when the approach sensor detects that the child has entered a protection zone that is located on a front side of the gate or when the pressure sensor detects that the child is in the process of climbing the gate. The alarm may selectively provide an audible indication upon detection by the approach sensor or by the pressure sensor. The audible indication may alert an adult to an attempt by the child to leave an area of confinement. |
US10815722B2 |
Window shutter system
A window shutter system includes a frame assembly and a shutter. The frame assembly is configured to be coupled to a wall. The frame assembly includes a first rail and a second rail. The first rail includes a first mating feature. The second rail is parallel to the first rail. The shutter is configured to be selectively coupled to, and selectively repositionable along, the first rail and the second rail. The shutter includes a second mating feature, a first side, and a second side. The second mating feature is configured to selectively interface with the first mating feature to maintain a position of the shutter relative to the first rail. The first side is configured to be selectively exposed. The second side is configured to be selectively exposed. The second side is different from the first side. |
US10815721B2 |
Entryway sealing spacer
A gasket for an entryway is described that includes a compliant sealing portion having an uncompressed gasket thickness and a less compliant compression control portion having opposing exposed surfaces. A perimeter of the less compliant compression control portion is surrounded by the compliant sealing portion. A thickness of the less compliant compression control portion is less than the uncompressed gasket thickness. |
US10815720B2 |
Passive filter for laser protection
There is disclosed a filter for a vehicle window comprising a layer of filter material, the layer of filter material being for substantially preventing the transmission of radiation at a first predetermined visible wavelength band, the first predetermined visible wavelength band covering the wavelength of a predetermined laser threat, whilst substantially allowing visible wavelengths outside of the band to be transmitted, such that the filter can offer a visible light transmission of at least 70%, and a radiation detector, such that radiation at the first predetermined wavelength band can be detected. |
US10815718B2 |
Overhead bi-fold door
An overhead bi-fold door mounted on a freestanding header has a door lift device with polymer cylindroids and capstans operated with an electric motor driven power transmission to selectively move the bi-fold door from an upright closed position to a folded open position and allow the bi-fold door to move from the folded open position to the upright closed position. Anchors mounted on the bi-fold door adjust the working length of the cylindroids between the capstans and anchors. The capstans have laterally spaced disks engageable with the cylindroids during the helical winding and unwinding of the cylindroid on the capstans as the bi-fold door moves at an increasing rate of speed from the upright closed to folded open positions and a decreasing rate of speed from the folded open to upright closed positions. |
US10815716B2 |
Touch sensor apparatus for use with vehicles
Touch sensor apparatus for use with vehicles are disclosed. A disclosed touch sensor assembly for a vehicle gate includes a sensor configured to operatively couple to the vehicle gate. The touch sensor assembly also includes a cover having a tubular body that extends over the sensor and ribs interposed between the tubular body and the sensor. At least one of the ribs is configured to transfer a load from the tubular body to the sensor to change a state of the sensor. |
US10815714B2 |
Opening/closing member driving device
An opening/closing member driving device includes a motor that opens and closes an opening/closing member and a controller configured to perform an abnormality determination process and a masking process. The abnormality determination process determines occurrence of a foreign object being entrapped or caught by comparing driving information corresponding to a driving status of the motor to a predetermined threshold value. The masking process invalidates the abnormality determination process over a predetermined masking period when the motor is activated. The controller includes a correction unit. The correction unit corrects at least one of the masking period or the threshold value when the motor is activated in a direction opposite to that of a preceding operation in a state in which the opening/closing member is in a high-load range. |
US10815713B1 |
Clamping bar arm for concealed door closer
A clamping bar arm for a concealed door closer preferably includes a mounting base, an adjustment arm, a clamp block, a pair of clamp fasteners and a pair of adjustment fasteners. The mounting base includes a mounting plate and an adjustment extension. The pair of adjustment fasteners are threaded through the adjustment extension. A pivot pin is inserted into a top of the adjustment extension. The adjustment arm includes a clamp arm and a stop projection, which extends downward from one end of the adjustment arm. A closer spindle notch is formed in an opposing end of the clamp arm to receive a closer spindle of a concealed closer. The clamp block is secured to an opposing end of the adjustment arm with a pair of clamp fasteners. An adjustment pivot hole is formed through the clamp arm to receive the pivot pin. |
US10815705B2 |
Vehicle door handle
A vehicle door includes a door structure having an interior space and a ramp disposed within the interior space. The vehicle door further includes a latch and a handle that is pivotably connected to the door structure. The handle includes a pair of inwardly and forwardly extending hooks. The vehicle door also includes a cable or other linkage connected to the latch. The cable has a fitting that is pushed along the ramp by the hooks upon pivoting of the handle to thereby shift the cable and unlatch the latch. |
US10815704B2 |
Vehicle door outside handle device, vehicle door, and vehicle
A vehicle door outside handle device includes a through hole opening toward a vehicle rear side in a protrusion portion from a door side wall. An optical lens and an imaging element disposed in the through hole toward the vehicle rear side captures a vehicle rear side image including a vehicle side wall image. |
US10815701B2 |
Safety device for a vehicle door handle
The present disclosure relates to a safety device for a vehicle door handle. The device includes an activation element configured to activate a latch by rotating from a rest position to an activation position and includes at least one activation protuberance. The device also includes a blocking element having first and second blocking protuberances and being configured to rotate between a disengaged position in which the blocking element allows the activation element to rotate, and first and second blocking positions in which the first or second blocking protuberance interact with the activation protuberance so as to block the activation element in a first or second intermediate positions disposed between the rest and activation positions of the activation element in case of a crash. The present disclosure further relates to the corresponding vehicle door handle and vehicle. |
US10815700B2 |
Release actuator for latch
A vehicle latch having: a frame; a pawl rotatably mounted to the frame for movement between an engaged position and a disengaged position; a claw rotatably mounted to the frame for movement between a latched position and an open position, wherein pawl is configured to impede rotational movement of the claw from the latched position to the open position when the pawl is in the engaged position; a release lever rotatably mounted to the frame; and a worm wheel having a plurality of cam lobes, wherein each of the cam lobes are located in separate and distinct planes with respect to each other, wherein the release lever operably couples the pawl to the worm wheel such that rotational movement of the worm wheel rotates the pawl. |
US10815697B1 |
Latch apparatus
A latch (202) includes a catch jaw (210) which is operative to releasably engage a post. A release pawl (212) is operative to hold the catch jaw in a latched jaw position, and upon movement of the release pawl, enables the catch jaw to move to an unlatched jaw position. In an unlocked condition of the latch, movement of a handle (206) is operative to enable the latch to change from the latched to unlatched condition. The latch includes a keylock (240) and an electrical actuator (308). Each of the keylock and the electrical actuator are operative to independently change the condition of the latch between locked and unlocked conditions. |
US10815696B2 |
Robot, robot system, and robot control apparatus
A robot includes a movable unit, a drive part that drives the movable unit, and a power supply part having an insulated power supply that supplies power to the drive part, wherein the drive part is provided in the movable unit. |
US10815695B2 |
Power controller for a door lock and method of conserving power
A power control system for use with an electric lock mechanism having an actuator comprises a power supply to output an output voltage to the actuator. A credential device signals the power supply to output the voltage upon receiving an authorized code. A microcontroller controls the power supply, the credential device, and the actuator and may operate in an Access Mode or a Dog Mode. When in Access Mode, the actuator is unpowered and the credential device is powered until an authorized code is received and the power supply powers the actuator. The Dog Mode has an awake mode where the actuator is powered and the credential device is unpowered after the actuator remains in the powered state for a length of time. A sleep mode has the actuator unpowered and the credential device powered until an authorized code is received and the power supply powers the actuator. |
US10815687B2 |
Wind turbine assembly system and associated method
The present invention relates to a wind turbine assembly system which proposes an alternative to conventional cranes, having a main lifting structure configured to withstand the load of at least one tower section or at least one wind turbine component, and at least one secondary lifting structure configured to perform the lifting of the main lifting structure with respect to the wind turbine tower, in addition relating to a wind turbine assembly method according to the previous system, as well as the wind turbine assembled with the previous method. |
US10815686B2 |
Inflatable spa
An inflatable spa is disclosed having improved strength. A water cavity of the inflatable spa may receive massaging air bubbles and/or jetted water. |
US10815683B2 |
Vertical formwork with tie rod and tie rod anchor
An anchor for a vertical formwork having two formwork panels facing one another. The anchor is suitable for being fixed to one of the formwork panels. The anchor includes a housing for receiving a part of a tie rod fixing the two formwork panels and sealing means configured for sealing the anchor with respect to the formwork panel in which it is fixed and with respect to the tie rod housed in the housing of the anchor. |
US10815682B2 |
Vertical formwork anchor with fixing key to fix to a vertical formwork panel
According to one embodiment an anchor for a vertical formwork is provided that includes a fixed part suitable for being fixed to a formwork panel and fixing means for fixing the fixed part to the formwork panel. The fixing means includes a fixing key suitable for being housed in a hole of the formwork panel, the fixing key comprising an off-centered stop with respect to the axis of rotation of the fixing key, such that in a first angular position the off-centered stop of the fixing key can be introduced in the hole of the formwork panel and in a second angular position the off-centered stop is retained by the formwork panel, and therefore the anchor is fixed to the formwork panel. |
US10815681B2 |
Modular roof mounted staging bracket and rail members
An apparatus for supporting workers and materials above-grade on both the cave and gable ends of a structure is disclosed. The apparatus can be combined with one or more additional staging apparatuses to create a staging system for the support of persons or materials while work is being done on a structure, e.g., roofing, siding, etc. The modular design of the apparatus simplifies installation, such that it can be readily attached to a roof or other support member of a structure by a single person, and facilitates the adjustable vertical positioning of people or materials along the walls of the structure. The staging system can also include a rail member for safety support and alternative scaffolding arrangements. |
US10815680B2 |
Apparatus having a handle on which a user stands, and method
An apparatus includes a platform having a first end and a second end and a handle. The apparatus includes a first leg assembly rotatably attached to the platform in proximity to the first end. The apparatus includes a second leg assembly attentively attached to the platform in proximity to the second end. When the first and second leg assemblies are essentially perpendicular to the platform, the apparatus is in a use state and the user is able to stand on the platform and be supported by the first and second leg assemblies. When the apparatus is in the use state, the user is able to pick up the apparatus by the handle with only one of the hands without tipping the apparatus. A method for a user with hands to stand on an apparatus. |
US10815679B2 |
System for four collaborative robots and humans in a narrowing work envelope
A method and apparatus for supporting collaborative robots and humans in a narrowing work envelope. A base platform is provided, and a work platform is positioned above the base platform for supporting one or more humans, wherein the work platform is narrower than the base platform, and the work platform is positioned relative to the base platform to provide areas for positioning one or more robots on one or more sides of the work platform. The robots are supported on the base platform independently of the work platform, so that movement of the work platform does not affect the robots' positions. |
US10815676B2 |
Floor panel
A floor may include a substrate having a top side and a bottom side. A top layer may be provided on the substrate. The top layer may consist of a printed thermoplastic film and a thermoplastic transparent or translucent layer provided on the printed thermoplastic film. The top layer may be directly adhered to the substrate by heat welding the printed thermoplastic film and the top side of the substrate, in the absence of a glue layer. The substrate may be a synthetic material board including a filler. The substrate at least at two opposite edges may include coupling means provided in the synthetic material board. The thermoplastic transparent or translucent layer may be provided with a structure. |
US10815674B2 |
Floor panel
Floor panel, with a horizontally and vertically active locking system allowing that two of such floor panels can be connected to each other at said sides by providing one of these floor panels, by means of a downward movement, in the other floor panel; wherein the vertically active locking system comprises a locking element in the form of an insert; wherein this locking element comprises at least a pivotable lock-up body; characterized in that the pivotable lock-up body comprises a support portion which is rotatable against a support surface pertaining to the floor panel concerned, and more particularly in a seat. |
US10815669B2 |
Multifunction structural furring system
Structural furring systems having enhanced drainage functionality are described. Furring strips can include a substantially planar face, substantially planar webs extending from edges of the face, and substantially planar legs extending from opposite edges of the legs. The face and/or legs include a row or array of protrusions configured to accommodate drainage and ventilation between the furring strip and an attached exterior cladding and/or building substrate. Furring strips can be manufactured by rolling a sheet metal such as steel. Additional embodiments include a furring tape configured to be affixed to a substantially flat face of a commercially available furring strip to provide similar drainage features. |
US10815665B2 |
Concrete anchor with retainer
An anchor assembly for use with a tensioning strand includes an anchor body including a bore therethrough, the bore configured to receive the strand therethrough, an inner surface of the bore including a frustoconical wedge-receiving cavity, at least one frustoconical wedge including a strand-engaging inner surface and an anchor body engaging outer surface, the wedge being at least partially received in the wedge-receiving cavity, an encapsulating layer at least partially surrounding the anchor body, and a wedge retention disk mechanically coupled to the anchor body and positioned so as to prevent the wedge from fully exiting the wedge-receiving cavity. The wedge retention disk may be spaced apart from the anchor body such that the wedge can move axially with respect to the anchor body between a seated position in which the wedge engages the wedge-receiving cavity and an unseated position in which the wedge engages the wedge retention disk. |
US10815663B1 |
Stay-in-place insulated concrete forming system
A method of tensioning concrete is disclosed. |
US10815661B2 |
Canopy interface for a ceiling mount
A canopy for use with a ceiling connector mountable at a designated ceiling location to define a mounting end region thereon, includes a body securable to the mounting end region by a rotationally operable connector, wherein the body is configured to form a mounting interface with the mounting end region to block perceptible relative rotation therebetween about a rotation axis defined by the connector by forces associated therewith, wherein the mounting interface is defined by at least one first engagement surface on the canopy configured to be in contact with at least corresponding second engagement surface on the mounting end region. |
US10815660B2 |
Structural panel assembly for mounting building walls and method for mounting building walls using same
A structural panel having a structural inner core with a male member and a female member. The female member is configured to receive the male member of a vertically adjacent panel therein and has a locking slot. The structural panel also includes a locking member operatively engageable to the male member and configurable between an unlocked configuration where it does not substantially project outside of lateral wall surfaces of the male member and a locked configuration where it projects outside of at least one of the lateral wall surfaces of the male member and is engaged in the locking slot of the vertically adjacent panel. A panel assembly, a method for building a building wall using multiple structural panels, a corner securement assembly for at least two horizontally adjacent structural panels and a method for securing two horizontally adjacent panels in a corner configuration are also provided. |
US10815659B1 |
Prefabricated form for fireproofing structural steel and method of use
A prefabricated formed edge guide for fireproofing a structural steel member and method of use is disclosed, which includes a formed edge, a set of mesh surfaces attached to the formed edge, and a thickness formed by the formed edge and the set of mesh surfaces. A fireproofed structure is disclosed that includes a member including a set of surfaces, a set of the preformed edge guides attached to the set of surfaces, and a fireproofing thickness formed by the formed edge and the set of mesh surfaces. A fireproofing material is adhered to the member using the set of preformed edge guides and the fireproofing thickness to create the fireproofed structure. The fireproofing material may be applied in one single layer or in successive layers. |
US10815658B2 |
Concrete expansion joint insert including a sealant on one edge
An illustrative example embodiment of a concrete joint insert includes a body having two ends, two longitudinal edges between the ends and two side surfaces between the longitudinal edges. A sealant is secured to one of the longitudinal edges so that the insert and the sealant can be simultaneously installed at the location of a concrete joint. |
US10815657B2 |
Metal roofing system
A retrofit roofing system with a roof furring having a substantially flat top and L-shaped side with openings that correspond to the raised portions of the existing metal roof panels, at least two fasteners that penetrate the L-shaped side through the existing metal roof panels and into the at least one roof perlins, a layer of adhesive on the substantially flat top portion of the roof furring; and at least one new metal roof panel on top of the layer of adhesive. There is also a new roofing system at least two roof perlins having a bottom portion attached to a roof deck by fasteners and a top portion, a layer of adhesive attached to the top portion of the at least two roof perlins and a metal roofing panel on top of the layer of adhesive attached to the top portion of the at least two roof perlins. |
US10815656B2 |
Connecting element and methods for connecting partial ring segments
A connecting element for inserting into a wind power installation tower segment. A wind power installation tower section and a wind power installation tower. A wind power installation and methods for connecting partial ring segments. The connecting element comprises a first side wall with a first opening which can be penetrated by a fastening element, and a second side wall lying opposite the first side wall with a second opening which can be penetrated by a fastening element, an upper transverse wall with two upper openings which can each be penetrated by a mounting fastening element, and a lower transverse wall lying opposite the upper transverse wall with two lower openings which can each be penetrated by a mounting fastening element; wherein the upper and lower transverse wall are arranged substantially orthogonally to the first and second side wall and connect said side walls. |
US10815655B2 |
Connection device for fastening two elements, in particular for building construction
A connection device in particular for building construction, has an upright, a beam and a pair of first plates, which are flat and vertical, are fixed with respect to the upright, project horizontally from the upright and are parallel to each other; the device also has a pair of second plates, which are fastened to one end of the beam, are placed on the outer side faces of such end are flat and vertical, coplanar respectively to the first plates and rest on the first plates solely at an inclined plane, which causes a forcing of the end of the beam horizontally against the upright in response to a forcing of the second plates downwards along such inclined plane. |
US10815652B2 |
Strainer with improved flow
A wastewater strainer is provided that includes a strainer body that has at least one opening that enhances fluid flow through the strainer body and the wastewater plumbing to which it is interconnected. The strainer body includes a flange for engagement to the inner portion of a bathtub and a hub that is spaced from a lower edge of the strainer body. |
US10815644B2 |
Tire size calibration and control system
A mobile machine includes a plurality of ground-engaging elements that each include a tire, and a plurality of motors, one motor coupled to each of the plurality of ground-engaging elements configured to drive movement of the plurality of ground-engaging elements. The mobile machine also includes a speed sensor coupled to each motor configured to generate speed signals indicative of an operating speed of each motor. The mobile machine includes a tire calibration system configured to receive the speed signals from each speed sensor and to identify a tire size differential across the plurality of ground-engaging elements based on the speed signals. The mobile machine includes a control system configured to generate a separate control signal for each of the plurality of motors based on the tire size differential. |
US10815641B2 |
Front loader and working machine
A link operating mechanism is provided spanning a bucket and a stand. The link operating mechanism causes, using a swing force of the bucket, a bending/stretching link to bend so that propping and supporting of the bending/stretching link are released. |
US10815639B2 |
Bucket cleanout
Disclosed are excavators or other power machines having a lift arm structure with a bucket coupled to an arm to pick up material during a digging or scooping operation, and a bucket cleanout devices to aid in removal of material from the bucket. The bucket cleanout devices include components which are rotatably coupled to a support structure, such as the arm, an implement carrier and/or the bucket and configured to aid in removal of material during a material dumping movement of the bucket. |
US10815637B2 |
Arm assembly
An arm assembly for a working vehicle, the arm assembly including a material handling implement and an arm including a single plate. |
US10815636B2 |
Tool changer for a construction machine
A tool changer for a construction machine includes at least one tool retaining portion for holding a tool being mountable to the tool mount, the tool changer being configured to be movably attached to the construction machine. The tool changer also includes and a moving mechanism for moving the tool retaining portion in alignment with the articulated boom of the construction machine to allow for picking of the tool by the tool mount. The construction machine includes an articulated boom with a tool mount. |
US10815631B1 |
Method for cemented material dam construction based on whole-process quality control
A method for cemented material dam construction based on whole-process quality control includes: determining a water-binder ratio of a sand and gravel material through a simulation test; laying rockfill on the first cemented sand and gravel layer before the final setting time of the first cemented sand and gravel layer; adjusting the maximum particle size of the rockfill and the distance between the particles in the rockfill according to the design requirements; spraying a cement slurry on the rockfill to wrap all the particles in the rockfill and laying a second cemented sand and gravel layer before the initial setting time of the cement slurry; performing rolling compaction on the construction layer until the decline in the thickness of the construction layer and the apparent density of the rolled surface meet the design requirements; and completing the cemented material dam construction. |
US10815630B2 |
Plow assembly and methods of using same
A plow assembly for forming a trench within soil of a selected land area. The plow assembly has a blade element, a displacement element, and an attachment element that permits attachment of the plow assembly to a vehicle, such as a tractor. A first end of the displacement element is secured to a distal end of the blade element, and a second end of the displacement element is spaced from a rear edge of the blade element and connected to a pipe. As the plow assembly is advanced within soil, the cutting edge of the blade element cuts through the soil and the displacement element displaces the soil to form the trench and pulls the pipe into the trench as the trench is formed. |
US10815625B2 |
Mat made of waterproof plastic material for the sub-base of synthetic turfs or pavings
A mat made of waterproof plastic material for the sub-base of synthetic turfs or pavings and the like includes one or more coupling elements for mutual interconnection with other mats so as to compose a single turf for the complete covering of a predetermined bed surface. The mat is divided into at least two longitudinal portions which are mutually connected by an expansion joint component adapted to compensate for the thermal expansions and contractions by deforming. |
US10815623B2 |
Apparatus and method for repairing worn rail shoulders
In a railroad system a track includes ties positioned at predetermined intervals and supporting a pair of rails. Shoulders are disposed in pairs adjacent to the sides of each rail and are partially imbedded in the ties to limit the lateral movement of the rails and define the track gauge. Over time, friction between the insulators and the shoulders may cause excessive wear and a gap therebetween. This wear is compensated by a shim attached to the shoulders. |
US10815619B2 |
Press belt, an arrangement in a long nip and a method of manufacturing a press belt
The invention relates to a press belt for a shoe press. A press belt (5) is an endless loop made of elastomeric material and its outer surface (11) is provided with several grooves (13) to remove water. On the outer surface (11) of the press belt, there is at least one section where the depths (GD) of adjacent drain grooves, from the outer surface, change constantly. The invention also relates to an arrangement in a long nip and to a method of manufacturing a press belt. |
US10815616B2 |
Oxidative method
The present invention relates to a method of generating chlorine dioxide from chlorite salts in the presence of a manganese ion-containing complex, a method of treating a substrate with a chlorine-containing oxidant in the presence of a manganese ion-containing complex and related aqueous media, kits and compositions. |
US10815611B2 |
Method for drying laundry in a laundry treating appliance
A method of drying laundry in a laundry treating appliance having a treating chamber in which the laundry is received for drying comprises moving the treating chamber to redistribute the laundry, supplying air to the treating chamber to define a supply air flow, exhausting the supplied air from the treating chamber to define an exhaust air flow, heating the air supplied to the treating chamber by actuating a heater at full output to define a first heating phase and then cycling the heater ON/OFF to define a second heating phase. |
US10815606B2 |
Washing machine appliance with smart dispense
A washing machine appliance with smart dispensing capability is provided. The washing machine appliance has features that dispense a predetermined volume of wash additive (e.g., a detergent, fabric softener, and/or bleach) based at least in part on the viscosity of the wash additive. Methods for operating the washing machine appliance are also provided. |
US10815603B2 |
Appliance having a touch film on a compound curved surface
An appliance having a door with an interior surface having a compound curvature, a section thereof configured to enable viewing a user interface on the interior surface through the door. The user interface includes a touch film adhered to the interior surface by application of a roller to activate a pressure sensitive adhesive between the touch film and the interior surface. |
US10815602B2 |
Laundry treating apparatus
A laundry treating apparatus includes a body having a laundry introduction opening of a circular shape; a door configured to open or close the laundry introduction opening and having a display and a circular shape eccentric from the laundry introduction opening; a controller electrically connected to the display and provided at the body; and a hinge mounted to the body, configured to rotatably connect the door to the body, and formed to accommodate therein at least part of an electric wire to electrically connect the controller to the display. |
US10815600B2 |
Laundry treating apparatus
Provided is a laundry treating apparatus in which a position of a circulation pump is optimized. The laundry treating apparatus includes a tub holding washing water, a drum rotatably disposed within the tub and holding laundry, a nozzle jetting the washing water to an interior of the drum, and a pump unit having a pump body, a drain pump coupled to the pump body and outwardly draining washing water introduced from the interior of the tub to the pump body, and a circulation pump coupled to the pump body and supplying washing water introduced from the interior of the tub to the pump body to the nozzle, wherein the circulation pump is disposed above the pump body. |
US10815599B2 |
Laundry treating appliance with tuned suspension system
An apparatus and method for reducing displacement of a washing machine having a drum rotatable about an axis of rotation is disclosed. The washing machine comprises a chassis and a motor for rotation a drum. The drum is suspended from the chassis by a suspension. The suspension can comprise springs having six natural frequencies that can resonate at a rotational speed of the drum driven by the motor. The suspension system can be tuned such that resonant frequencies can be varied based upon rotational speed of the drum. |
US10815596B2 |
Method for operating a laundry treatment appliance and laundry treatment appliance
A method for operating a laundry treatment appliance having a casing within which a drum rotated by a motor is arranged, an opening provided in the casing for loading the laundry into the drum and a door adapted to open or to close the opening. The method includes performing a treatment cycle that includes: a) determining the amount of laundry load in the drum; and b) if the determined amount of laundry is outside a laundry load threshold range, issuing a warning to the user and waiting for a prescribed waiting time before starting the cycle, whereby during the waiting time the laundry treatment appliance switches to an operating mode in which the user to is allowed to change the amount of laundry load in the drum. |
US10815594B2 |
Sewing device and sewing method
The invention provides a sewing device which can precisely and evenly carry out a great variety of sewing works further with a good productivity. The sewing device has a sewing machine (2), and a dual-arm robot (7) having a first arm (5) and a second arm (6) which can operate an object to be sewn (4) supplied to a sewing motion portion (3) of the sewing machine. The duel-arm robot is provided with a camera which can image the sewing motion portion. Further, the sewing device is provided with an image processing portion which processes an image information acquired by the camera, and a command transmitting portion which transmits commands to an arm control portion controlling the first arm and the second arm on the basis of a processing result of the image processing portion. |
US10815589B2 |
Cotton mixes homogenization without categorizing bales in inventory
Describes a method for cotton mixes homogenization without categorizing bales in inventory, i.e., with no separation of bales into classes, whose main objective is to eliminate the large variability of cotton fiber quality for the spinning process resulted from data input concerning the quality of the mixes and inventories. With this method no categorization in inventory is required and more than 20 quality parameters can be controlled with no impact on the physical inventory management. The method is intended to solve problems in the production of cotton fibers relative to the variability among mixes, variability among the loads of the mixes and variability in the laydown of the bales resulting in cotton fiber with higher quality, as well this method presents an optimized logistics in the warehouse. |
US10815588B2 |
Fibers fabricated to incorporate metals for high temperature applications
A fiber comprises a bulk material comprising one or more materials selected from the group consisting of carbon, silicon, boron, silicon carbide, and boron nitride; and a metal whose affinity for oxygen is greater than the affinity for oxygen of any of the one or more materials. The metal may be selected from the group consisting of beryllium, titanium, hafnium and zirconium. At least a first portion of the metal may be present in un-oxidized form at the entrance to and/or within grain boundaries within the fiber.A method of improving at least one of the strength, creep resistance, and toughness of a fiber comprises adding to a fiber, initially comprising a bulk material having a first affinity for oxygen, a metal that has a second affinity for oxygen higher than the first affinity. The metal may be selected from the group consisting of beryllium, titanium, hafnium and zirconium. |
US10815587B2 |
Sheet of microfiber assembly
The present invention aims to provide a sheet of microfiber assembly having a high filtering performance suitable as an oil-mist filter. A sheet of microfiber assembly 2 comprises microfibers 1 each having a fiber diameter of 3,000 nm or less and is formed of a mixture of water-insoluble but alcohol-soluble acetalized polyvinyl alcohol resin and water-insoluble but alcohol-soluble fluorine resin. |
US10815586B2 |
Gallium-arsenide-based compound semiconductor crystal and wafer group
A GaAs-based compound semiconductor crystal includes a straight body portion having a cylindrical shape, wherein the straight body portion has a diameter of more than or equal to 110 mm and has a length of more than or equal to 100 mm and less than or equal to 400 mm, and the straight body portion has a first end surface and a second end surface having a higher specific resistance than a specific resistance of the first end surface, and a ratio R20/R10 of a specific resistance R20 at the second end surface side to a specific resistance R10 at the first end surface side is more than or equal to 1 and less than or equal to 2. |
US10815585B2 |
Susceptor with substrate clamped by underpressure, and reactor for epitaxial deposition
The susceptor for an epitaxial deposition reactor comprises a disc-shaped portion (11, 12) which is adapted to be placed horizontally and which at the top has at least one cylindrical pocket (200) where a substrate (100) to be subjected to an epitaxial deposition process is placed; the pocket (200) has a bottom; one or more conduits (13) fluidically connected to an intake system (300) open on the bottom of the pocket (200); when a substrate (100) is placed on the bottom of the pocket (200) and the intake system (300) is active, the substrate (100) remains adhering to the bottom of the pocket (200). In particular: the upper body 12) superiorly has the pocket (200), the conduits (13) vertically cross only the upper body (12), the conduits (13) are fluidically connected to a plenum (14) located between the lower body (11) and the upper body (12) below the pocket (200), the plenum (14) is fluidically connected to the intake system (300); whereby when a substrate (100) is placed on the bottom of the pocket (200) and the intake system (300) is active, the lower body (11) and the upper body (12) remain united. |
US10815584B2 |
Ordered growth of large crystal graphene by laser-based localized heating for high throughput production
A method of making an ordered graphene structure includes exposing a substrate to a laser beam to locally melt a portion of the substrate, exposing the substrate to a laser beam in the presence of a carbon source, to form a nucleation site for a graphene crystal, and either a) moving either the substrate or the laser beam relative to the other, or b) decreasing the laser beam power, in order to increase the size of the graphene crystal, thereby forming an ordered graphene structure. The ordered structure can be a plurality of columns, hexagons, or quadrilaterals. Each ordered structure can have a single crystal of graphene. A polymer coating can be formed on the ordered graphene structure to form a coated graphene structure. |
US10815582B2 |
Damascene template for directed assembly and transfer of nanoelements
Damascene templates have two-dimensionally patterned raised metal features disposed on an underlying conductive layer extending across a substrate. The templates are topographically flat overall, and the patterned conductive features establish micron-scale and nanometer-scale patterns for the assembly of nanoelements into nanoscale circuits and sensors. The templates are made using microfabrication techniques together with chemical mechanical polishing. These templates are compatible with various directed assembly techniques, including electrophoresis, and offer essentially 100% efficient assembly and transfer of nanoelements in a continuous operation cycle. The templates can be repeatedly used for transfer of patterned nanoelements thousands of times with minimal or no damage, and the transfer process involves no intermediate processes between cycles. The assembly and transfer processes employed are carried out at room temperature and pressure and are thus amenable to low cost, high-rate device production. |
US10815581B2 |
Systems and methods for tin antimony plating
Systems and methods for tin antimony plating are provided. One plating method includes doping a tin (Sn) plating solution with antimony (Sb). One method also includes electroplating a component using the antimony-doped tin plating. The antimony-doped tin plating formed by one method includes between about 1% and about 3% antimony. |
US10815580B2 |
3D reduced graphene oxide foams embedded with nanocatalysts, synthesizing methods and applications of same
A method of synthesizing three-dimensional (3D) reduced graphene oxide (RGO) foams embedded with water splitting nanocatalysts includes providing a first solution containing nickel (II) nitrate, a second solution containing iron (III) nitrate, and a graphene oxide (GO) aqueous suspension; mixing the GO aqueous suspension with the first solution and the second solution to form a GO-Ni—Fe mixture; adjusting a pH value of the GO-Ni—Fe mixture to be about 3.5; and performing hydrothermal reaction in the GO-Ni—Fe mixture to form RGO-Ni—Fe foams, wherein nanocatalysts containing Ni-Fi oxide particles are embedded in porous structures of the 3D RGO foams. |
US10815579B2 |
Catalyst for water splitting and method for preparing same
The present invention relates to a catalyst for water splitting consisted of an oxide or a hydroxide that comprises silicon and one or more transition metals selected from a group consisting of Mn, Fe, Co, Ni, and Cu, and is amorphous, and a method of preparing the same. |
US10815573B2 |
Passivation mixture and systems and methods for selectively passivating substrate materials including germanium or type III-IV materials using the passivation mixture
A liquid passivation mixture for passivating an outer layer of a substrate comprises a first material selected from group consisting of sulfur or selenium and a base selected from a group consisting of quaternary ammonium compound, sodium hydroxide (NaOH), potassium hydroxide (KOH), and amine. |
US10815570B2 |
Linearized energetic radio-frequency plasma ion source
A plasma ion source includes a plasma chamber body having at least one inlet for introducing a feed gas to an interior of the plasma chamber body. The plasma chamber body is electrically isolated from a vacuum chamber attached to the plasma chamber body. An inductive antenna in an interior of the plasma chamber body is configured to supply a source of electromagnetic energy as a function of an RF voltage supplied thereto. The plasma ion source includes an extraction grid disposed at an end of the plasma chamber body. A voltage difference between the extraction grid and plasma chamber body accelerates charged species in a plasma discharge to generate an output quasi-neutral plasma ion beam. A bias voltage applied to the plasma chamber body includes a portion of the RF voltage supplied to the antenna combined with a pulsed DC voltage. |
US10815569B2 |
Shower head of combinatorial spatial atomic layer deposition apparatus
A shower head of a combinatorial spatial atomic layer deposition (CS-ALD) apparatus may be provided. The shower head of the CS-ALD apparatus may include a plurality of shower blocks. Each of shower blocks may include a plurality of unit modules. Each of the shower blocks and each of the unit modules may be controlled independently from each other. Each of the plurality of unit modules may include a source gas injection nozzle, a purge gas injection nozzle, a reactant gas injection nozzle, and exhaust areas between the injection nozzles. The plurality of shower blocks may be separated from each other. Gas injection areas of the injection nozzles may be separated from the exhaust area. |
US10815568B2 |
Gas distribution device and processing apparatus
A gas distribution device includes a plurality of supply lines, a branch unit and a variation suppression unit. The supply lines are respectively connected to a plurality of processing chambers. The branch unit is configured to distribute a gas supplied from a gas supply source to the supply lines. The variation suppression unit is provided between the branch unit and the gas supply source and configured to supply the gas from the gas supply source to the branch unit and suppress variation in flow rates of the gas distributed by the branch unit between the supply lines. |