Document | Document Title |
---|---|
US10811805B2 |
Connector box and method of its assembly
Provided is a connector box having high durability. The connector box includes a receptacle connector portion having a connector insertion opening into which a plug connector is inserted from the front side, a circuit board unit having the receptacle connector portion at a front end of a circuit board, a casing configured to accommodate the circuit board unit with the connector insertion opening being opened to the outside. The casing includes a lower casing for covering a lower face of the circuit board unit and an upper casing for covering an upper face of the circuit board unit and engaged with the lower casing. In association with sliding of the upper casing to one side in the front/rear direction, the upper casing is engaged with the lower casing. |
US10811804B1 |
Electric terminal connector assembly with a terminal lock
A connector assembly includes a connector housing that defines a terminal cavity that extends along a cavity axis. A terminal lock is adapted to retain an electric terminal in the terminal cavity in an installed position. The terminal lock includes a lock arm that extends from the connector housing and a lock tab that extends from the lock arm into the terminal cavity. The connector assembly also includes a terminal position assurance that is attached to the connector housing for relative movement between a pre-lock position and a lock position. When the terminal position assurance is in the lock position, it limits movement of the terminal lock away from the cavity axis and it limits movement of the terminal lock toward the cavity axis. |
US10811803B2 |
Connection terminal
A connection terminal comprises a receptacle portion, a wire crimping portion, and a connection portion. The receptacle portion includes a latching elastic sheet disposed at a rear end of the receptacle portion. The wire crimping portion includes a conductor crimping portion adapted to be crimped onto a conductor of the wire. The connection portion is connected between the rear end of the receptacle portion and the wire crimping portion and includes a first connection portion and a second connection portion. The conductor crimping portion and the latching elastic sheet are disposed between the first connection portion and the second connection portion and opposite to each other in the longitudinal direction. The first connection portion has a first bent portion and the second connection portion has a second bent portion. The first bent portion and the second bent portion each protrude in a height direction. |
US10811791B2 |
Grounding cross connectors including clamping pads for coupling at least two conductors
Various implementations of grounding cross connectors are disclosed. The grounding cross connectors may be used to clamp together two or more, often perpendicular, conductors. In some implementations, a grounding cross connector includes an upper clamping pad and a lower clamping pad held together by a pair of threaded fasteners. A pair of perpendicular conductors may be placed in between the clamping pads and secured together by torquing nuts on the threaded fasteners. The upper clamping pad may include a hook through which one of the threaded fasteners may pass, thereby allowing the upper clamping to rotate relative to the lower clamping pad. |
US10811789B2 |
Connection structure of cable and terminal
A connection structure of a cable and a terminal, the connection structure includes a cable including a core wire exposed from an insulating sheath, and a terminal including a base plate and at least a pair of elastic connection pieces formed to be capable of being cut-raised in the base plate, the at least a pair of elastic connection pieces each having a cable insertion hole formed therein. At least the core wire of the cable is pressed against and electrically connected to the base plate by elastic restoring force of each of the at least a pair of elastic connection pieces in a state in which at least the core wire of the cable is inserted in the cable insertion hole formed in each of the at least a pair of elastic connection pieces. |
US10811788B2 |
Electric wire with terminal
An electric wire with a terminal includes: an electric wire including a conductor portion having conductivity and an insulator portion which covers the outside of the conductor portion and has a cut away or tapered portion at its leading face; a terminal connection portion electrically connected to a counterpart terminal; a conductor crimp portion crimped to the conductor portion; and a sheath crimp portion separated from the conductor crimp portion and crimped to the insulator portion. The sheath crimp portion includes a second base portion on which the insulator portion is mounted and a second barrel piece portion crimped with the insulator portion wrapped. In the insulator portion, the distance from an end on the conductor crimp portion side to the conductor crimp portion is relatively short, and the distance from an end on the conductor crimp portion side to the conductor crimp portion is relatively long. |
US10811786B2 |
High-frequency module
A high-frequency module includes a first switch circuit including a first common terminal, a second common terminal, and selection terminals, and selectively connecting the first common terminal and the second common terminal to selection terminals different from each other among the plurality of selection terminals, and a matching circuit to be connected to the second common terminal without being connected to an antenna. |
US10811783B2 |
Antenna device and antenna system
An antenna device includes an antenna unit and reflecting units. The antenna unit is arranged on a substrate. The reflecting units are arranged separately from each other on the substrate and surrounding the antenna unit. The reflecting units are configured to adjust a radiation pattern of the antenna unit, and each of the reflecting units includes a first portion and a second portion. The first portion has an upper side and a lower side, and the lower side of the first portion is coupled to the substrate. The second portion has a lower side connected to the upper side of the first portion. A width of the lower side of the first portion is smaller than a width of the lower side of the second portion. |
US10811776B2 |
Broadband multiple layer dielectric resonator antenna and method of making the same
A dielectric resonator antenna (DRA) includes: a plurality of volumes of dielectric materials comprising N volumes, N being an integer equal to or greater than 3, disposed to form successive and sequential layered volumes V(i), i being an integer from 1 to N, wherein volume V(1) forms an innermost volume, wherein a successive volume V(i+1) forms a layered shell disposed over and at least partially embedding volume V(i), wherein volume V(N) at least partially embeds all volumes V(1) to V(N−1); and, wherein the DRA when excited via an electrical signal is configured to produce a far field 3D radiation pattern that occupies a topological space corresponding to a two-element homotopy group defined by a family of closed loop paths that are contractible at a single point, and by a family of closed loop paths that are not contractible at a single point. |
US10811775B2 |
Loop antenna
The present disclosure provides a loop antenna, including a substrate, and a grounding portion, a radiating portion, a matching portion, and a feeding portion that are located on the substrate. The grounding portion includes a first grounding segment and a second grounding segment. The second grounding segment is perpendicular to the first grounding segment, and a first end of the second grounding segment is connected to a first end of the first grounding segment. The radiating portion includes a first radiating segment and a second radiating segment. The first radiating segment is connected to a second end of the first grounding segment and extending from the first grounding segment towards a direction away from the first grounding segment. The second radiating segment is connected to the first radiating segment and extending from the first radiating segment towards a direction facing the second grounding segment. The matching portion is located at an end of the second radiating segment close to the second grounding segment. The feeding portion is located between the end of the second radiating segment close to the second grounding segment, and is located between the matching portion and the second grounding segment to receive and transmit a feeding signal. |
US10811773B2 |
Broadband kandoian loop antenna
A wideband Kandoian loop antenna is provided. The impedance bandwidth of the antenna can be enhanced relative to antennas known in the art by capacitively coupling to radiating sections on the antenna, thereby ensuring efficient operation of the antenna over a wide frequency band. The antenna can include a highly symmetric arrangement that can yield a circular current distribution that resembles that of a small loop antenna driven by a constant current source. The circular current distribution can beget excellent radiation patterns, for example, when the antenna is integrated in a ceiling-mounted access point, and the circular current can radiate a strongly horizontally polarized electric field that decouples the antenna from nearby vertically polarized antenna elements, thereby allowing the antenna to be collocated with vertically polarized elements with little degradation to overall system level performance. |
US10811769B2 |
Liquid-crystal antenna apparatus and method for tracking wireless apparatus using the same
A liquid-crystal antenna apparatus is provided. The liquid-crystal antenna apparatus includes: a liquid-crystal antenna unit and a control unit. The liquid-crystal antenna unit is configured to receive a wireless signal. The liquid-crystal antenna unit includes a plurality of microwave elements, and each of the microwave elements includes a first electrode, a second electrode opposite to the first electrode, and a liquid-crystal cell disposed between the first electrode and the second electrode. The control unit is electrically connected to the liquid-crystal antenna unit, and is configured to control the liquid-crystal antenna unit to form a first beam having a first direction. The control unit determines a source orientation of the wireless signal according to the wireless signal received by the liquid-crystal antenna unit, and controls the first direction of the first beam to direct toward the source orientation. |
US10811768B2 |
Antenna system and method for aerial vehicles
A method for utilising an array of independently controllable dielectric lenses for radio signal to allow a single antenna to be focussed on one location with a highly directive beam or on more than one location thus enable radio links to be formed with multiple locations. Within the array, each lens will consist of a shaped piece of dielectric material that can be independently, or in groups, pointed in such a direction as to change the direction of the radio signals passing through the lens. The lens will have a shape equivalent to a converging lens which may be a convex shape. Other forms of converging lens may be implemented save space and material. The antenna will have a low gain, wide area of reception and may be implemented as a planar metal antenna or as a group of planar antennas in an array. This invention provides a lightweight system for providing high gain antenna performance without the need for a complex antenna array system or the need for multiple transceiver electronics. |
US10811767B2 |
System and dielectric antenna with convex dielectric radome
Aspects of the subject disclosure may include, for example, a dielectric antenna and a convex dielectric radome having an operating face that radiates or receives microwave signals. The operating face is shaped to reduce an accumulation of water on the operating face. |
US10811766B2 |
Integrated, externally-mounted ADS-B device
An integrated, externally-mounted Automated Dependent Surveillance-Broadcast (ADS-B) device comprising in one embodiment a 1030 MHz transmitter, a 1030 MHz antenna, a 1090 MHz receiver, a 1090 MHz antenna, a GNSS receiver, at least one GNSS antenna, a 978 MHz transmitter, and a 978 MHz antenna, wherein these components are integrated into a single enclosure, and wherein the GNSS antenna is placed at least partially into a projection extending out from the main enclosure body, such that the GNSS antenna has improved visibility to GNSS signals originating from altitudes above the current altitude of aircraft when the ADS-B device is mounted on the bottom of an aircraft. |
US10811764B2 |
Wireless wearable electronic device communicatively coupled to a remote device
Disclosed is a wireless wearable electronic device having an antenna that communicatively couples the wearable electronic device to another wearable electronic device and to a remote, portable device. The antenna is generally shaped like a loop or ring, has a bow with respect to the plane of the loop or ring and operates in conjunction with the ground planes of the printed circuit boards in proximity to the antenna to form a principal omni-directional lobe about the ear of the user and a secondary lobe downwardly directed from the head of the user to communicate with the remote device. |
US10811750B2 |
Circulator system
An apparatus is disclosed having a circulator having a transmit port, a receive port, and a tuner port with tuner circuitry coupled between the tuner port and an antenna port. At least one analog control branch is coupled between the receive port and at least one control input of the tuner circuitry to generate at least one control signal from a transmit leakage signal leaking into the receive port. The tuner circuitry is configured to respond to the at least one control signal by automatically electronically tuning such that a cancellation signal of substantially equal amplitude and opposite phase of that of the transmit leakage signal is reflected through the tuner port and into the receive port, thereby reducing the transmit leakage signal to a level corresponding to an isolation of at least −30 dB between the transmit port and the receive port. |
US10811749B2 |
Mini isolator
An isolator includes a body including an input connector and an output connector. The isolator also includes an outer shield positioned at least partially around a portion of the body. The isolator also includes a coupling member electrically coupled to the outer shield and positioned at least partially within the outer shield. The isolator also includes a coaxial circuit positioned at least partially around a first portion of the coupling member. The isolator also includes a toroid positioned at least partially around a second portion of the coupling member. The toroid is configured to filter radio frequency (RF) signals. The first portion and the second portion are axially-adjacent to one another. The isolator also includes a conditioning circuit in communication with the input connector and the output connector. The conditioning circuit is configured to condition the RF signals communicated between the input connector and the output connector. |
US10811747B2 |
Phase-controlled antenna array
A phase-controlled antenna array comprises at least four phase-controlled elements which are connected via a feed network. Each antenna element comprises a waveguide emitter with a signal output coupling or input coupling and a phase actuator which is rotatably attached in the waveguide emitter and contains a mounting and two polarizers, wherein each of the two polarizers can convert a circularly polarized signal into a linearly polarized signal. The antenna elements additionally comprise a connection element and a drive unit which is attached to a support and which is connected to the phase actuator via the connection element such that the drive unit can rotate the phrase actuator about an axis of the waveguide emitter. The antenna array additionally comprises a computing unit which is connected to the drive unit(s) of the phase-controlled antenna elements via control lines and which adjusts the rotation of each phase actuator. |
US10811746B2 |
Waveguide tube connection device and clamp for waveguide tube connection
A waveguide connecting apparatus including two waveguide connecting clamps each including a pair of clamp pieces positioned to oppose each other and sandwich outer peripheral portions of flanges positioned to oppose each other. A fastener pressing the pair of clamp pieces against the outer peripheral portions of the flanges. Each clamp piece includes two abutting members having first faces abutting against faces on the opposite side of faces that oppose each other of the flanges positioned to oppose each other. Second faces abutting against side faces of the waveguides, and third faces serving as tapered faces of the flanges, on the opposite side of the faces opposing each other. A pressing member with a substantially V-shaped cross section, having two inclined faces engaging with the respective third faces of the abutting members, and holding the two abutting members such that the two abutting members are respectively movable in the directions of inclination of the inclined faces with which the two abutting members respectively engage. The two waveguide connecting clamps are positioned such that directions in which the pairs of clamp pieces oppose each other intersect each other. |
US10811744B2 |
Battery cell, battery module and production method
A battery cell (2) with a film cover (4) for electrochemically active material, wherein the film cover (4) is present substantially in a prismatic shape, and therefore the film cover (4) can be assigned two mutually opposite main surfaces (6a, b), and with current collectors (10a, b) which electrically contact the electrochemically active material and serve for the interconnection of the battery cell (2). At least one current collector (10a, b) has a flat element (12a, b) which substantially covers a main surface (6a, b) of the film cover (4) and has a connection region for connection to a cooling device, or is provided with cooling ducts. |
US10811741B2 |
Battery pack for uniform cooling of modules and cooling method of battery pack
A battery pack includes: battery modules; a cooling pipe connected to the battery modules; and one or more cooling units connected to the cooling pipe and configured to absorb heat from cooling liquid flowing inside the cooling pipe, wherein the battery modules and the one or more cooling units are disposed to alternate with respect to each other. |
US10811738B2 |
Battery module, battery pack comprising battery module, and vehicle comprising battery pack
A battery modules includes a battery cell assembly including at least one battery cell, and at least one cooling fin configured to contact the at least one battery cell and to be exposed on opposite side parts of the battery cell assembly and a side part perpendicular to the opposite side parts, a first end plate including at least one first insulating member mounted contacting the at least one cooling fin exposed on the opposite side parts of the battery cell assembly, and configured to support the opposite side parts of the battery cell assembly, a second end plate coupled to the first end plate, and configured to support the side part of the battery cell assembly, a cooling plate between the second end plate and the battery cell assembly, and at least one second insulating member arranged between the cooling plate and the at least one cooling fin. |
US10811736B2 |
Process for recycling graphene from an electrode material
A process for recycling an electrode material comprising graphene and an electrochemically active material is described. The process comprises a step of adding, in any order, water and a non-miscible solvent to the electrode material, thereby forming a biphasic system comprising an organic phase and an aqueous phase; and a step of separating and filtering the organic phase to recover graphene. The process optionally comprises additional steps of washing, drying, and/or thermally treating. Also described are electrodes including the recycled graphene, as well as the electrochemical cells and their uses. |
US10811734B2 |
Power battery and cell state acquisition apparatus thereof
A cell state acquisition apparatus and a power battery using the cell state acquisition apparatus. A cell state acquisition apparatus having an acquisition board assembly, a first interface fixed at the bottom surface of a cell, a second interface fixed at the top end of another cell and a connecting seat connecting the first interface and the second interface; the acquisition board assembly including a PCB board, a signal processing module and a communication module mounted on the PCB board and a fixed block which is matched to be inserted in the first interface; and a signal acquisition module which is used for acquiring a cell state signal corresponding to the second interface is mounted on the fixed block. The signal acquisition module is integrated with the signal processing module and the communication module via the acquisition board assembly, and the connecting seat, the first interface and the second interface are provided to mount the acquisition board assembly between the cells which are connected in series, so that the use of a connection conductive line is reduced and shortened, and a layout space is saved, thus facilitating the heat dissipation of a cell. |
US10811733B2 |
Modular tray for secondary battery cell
A secondary battery cell module-type activation tray for transferring and charging a plurality of battery cells in a manufacturing process of a secondary battery, including a plurality of module trays that are embedded from one side opened to accommodate a plurality of battery cells in a plurality of rows to another side opposite thereto, the battery cells being disposed in a respective module tray, and each of the module trays has a structure that can be coupled or separated as extended in one direction or multiple directions in a plan view. |
US10811721B2 |
Accumulator device
The electricity storage device includes an electrode assembly, a case, and a holding tape. The electrode assembly further includes a bottom surface, which is supported by an inner bottom surface of the case, two end faces in a lamination direction, which are joined to the bottom face, two side surfaces, which are joined to the bottom surface and intersect with the end surfaces, and two corner sections, which are formed from the bottom surface and the side surfaces. Each corner section includes a chamfered section, and a border section between the chamfered section and the bottom surface. The holding tape covers the border section from the bottom surface in a direction parallel to the bottom surface and orthogonal to the stacking direction, further inward of the electrode assembly than the side surface. |
US10811720B2 |
Battery cell tray
A battery cell tray includes a bottom plate, a top plate opposite the bottom plate, at least one partition plate between the bottom plate and the top plate, a pressing plate between the partition plate and the bottom plate, and a transmission device between the pressing plate and the bottom plate and on the bottom plate. The transmission device includes moving members, a spiral rod, and supporting arms. The moving members respectively have a first threaded hole and a second threaded hole. The spiral rod has a first screw thread and a second screw thread that are arranged in reverse rotation directions and respectively engaged with the first threaded hole and the second threaded hole. Two top ends of the supporting arms are pivoted to the pressing plate, and two bottom ends of the supporting arms are respectively pivoted to the moving members. |
US10811717B2 |
Electrolyte formation for a solid oxide fuel cell device
A method of fabricating a SSZ/SDC bi-layer electrolyte solid oxide fuel cell, comprising the steps of: fabricating an NiO-YSZ anode substrate from a mixed NiO and yttria-stabilized zirconia by tape casting; sequentially depositing a NiO-SSZ buffer layer, a thin SSZ electrolyte layer and a SDC electrolyte on the NiO-YSZ anode substrate by a particle suspension coating or spraying process, wherein the layers are co-fired at high temperature to densify the electrolyte layers to at least about 96% of their theoretical densities; and painting/spraying a SSC-SDC slurry on the SDC electrolyte to form a porous SSC-SDC cathode. A SSZ/SDC bi-layer electrolyte cell device and a method of using such device are also discussed. |
US10811716B2 |
Ion-conducting membrane
An ion-conducting membrane includes: (i) a first ion-conducting layer including one or more first ion-conducting polymers; and (ii) a barrier layer including graphene-based platelets. |
US10811715B2 |
Fuel-cell unit cell and manufacturing method therefor
A fuel-cell unit cell comprises an MEGA plate with a resin frame, and two separators. There is formed a gas manifold hole in an outer edge portion of the resin frame. There is provided a gas-flow-path forming portion with a recessed-and-protruded shape on the first surface of the resin frame for forming gas flow paths between the gas manifold hole and the first surface of the MEGA. There is also formed a fusion-bonding portion for surrounding a periphery of the gas manifold hole to cut off gas circulation between the gas manifold hole and the second surface of the MEGA and for bonding the resin frame and the second separator with each other, on the second surface of the resin frame so as to pass across a backside of the gas-flow-path forming portion. The fusion-bonding portion is formed from a first resin, and the gas-flow-path forming portion is formed from a second resin higher in melting point than the first resin. |
US10811713B2 |
Method of manufacturing an integrated water vapor transfer device and fuel cell
The present disclosure provides a method for manufacturing an integrated MEA, the method includes the following steps: (1) providing a substrate having an AA region and a WVT region; (2) coating a hydrophobic microporous layer across the substrate; (3) coating a catalyst layer onto the hydrophobic microporous layer in the AA region; (4) coating a first fuel cell membrane ionomer layer onto the catalyst layer in the AA region and onto the hydrophobic microporous layer in the WVT region; (5) optionally applying a membrane support layer to the first fuel cell membrane ionomer layer in the AA region and the WVT region; (6) optionally applying a coating of second fuel cell membrane ionomer layer thereby forming a coated substrate; and (7) assembling the coated substrate to a companion coated substrate. |
US10811701B2 |
Fuel cell stack
A fuel cell stack is provided to improve the flow of cooling water and reactant gas. The fuel cell stack includes a cooling water diffusion portion provided on each of the anode separator and the cathode separator. A first cooling water flow path area is provided between a land formed on the cooling water diffusion portion of the anode separator and a channel formed on the cooling water diffusion portion of the cathode separator. A second cooling water flow path area is provided between a channel formed on the cooling water diffusion portion of the anode separator and a land formed on the cooling water diffusion portion of the cathode separator. In addition, the first cooling water flow path area and the second cooling water flow path area are parallel with each other within at least a part of the cooling water diffusion portions. |
US10811698B2 |
Producing method for fuel cell separator
There are included a preparing step of preparing a separator base member having a core member of which surfaces are coated with a coating material having a higher radioparency than that of the core member; a press-forming step of press-forming the separator base member in a predetermined shape; and an examining step of examining the separator base member after the press-forming step using an X-ray having an output at which the X-ray passes through the coating material. |
US10811694B2 |
Film structure for a battery for dispensing on a round body
A film structure for a battery for dispensing on a round body includes a carrier film having a first section and a subsequent second section and a first electrode layer for forming an anode or a cathode, and a second electrode layer for forming an anode, if the first electrode layer is formed as a cathode, or a cathode, if the first electrode layer is formed as an anode. The first and second electrode layers are arranged on a top side of the first section and the second section of the carrier film. While the underside of the second section of the carrier film is coated with an adhesive layer, the underside of the first section of the carrier film is free of adhesive. As a result, the first section of the carrier film can be folded over onto the second section of the carrier film during labeling and the battery can be thereby activated. |
US10811692B2 |
Method of making anode component by atmospheric plasma deposition, anode component, and lithium-ion cell and battery containing the component
An anode component for a lithium-ion cell is formed using an atmospheric plasma deposition. The anode component has an anode material layer comprising high lithium-intercalating capacity silicon particles as active anode material in pores of a bonded layer of metal particles. The atmospheric plasma deposition process deposits metal particles and smaller silicon-containing particles concurrently or sequentially on an anode current collector substrate or polymeric separator substrate for the lithium-ion cell. The anode material layer may optionally be lithiated in the atmospheric plasma deposition process. The plasma deposition process is used to form a porous electrode layer on the substrate consisting essentially of a porous metal matrix containing smaller particles of the electrode material particles supported and carried in the pores of the matrix. When the anode component is assembled into a cell, remaining pore capacity is filled with a lithium-ion containing liquid electrolyte solution. |
US10811689B2 |
Easily handleable electrolytic copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same
An easily handleable electrolytic copper foil securing a highly durable secondary battery, an electrode including same, a secondary battery including same, and a method of manufacturing same. The electrolytic copper foil including first and second surfaces includes a copper layer including a matte surface facing the first surface and a shiny surface facing the second surface, a first protective layer formed on the matte surface of the copper layer, and a second protective layer formed on the shiny surface of the copper layer. A coefficient of thermal expansion of the electrolyte copper foil measured using thermomechanical analyzer while heating the electrolytic copper foil from 30 to 190° C. at 5° C./min ranges from 16 to 22 μm/(m·° C.), tensile strength of the electrolytic copper foil measured after heat treatment at 190° C., ranges from 21 to 36 kgf/mm2, and weight deviation of the electrolytic copper foil is 5% or less. |
US10811686B2 |
Slurry for positive electrode of lithium-ion secondary battery, positive electrode for lithium-ion secondary battery obtained using slurry for positive electrode of lithium-ion secondary battery and production method therefor, and lithium-ion secondary battery provided with positive electrode for lithium-ion secondary battery and production method therefor
A slurry for a positive electrode of a lithium-ion secondary battery. Also disclosed is a positive electrode for a lithium-ion secondary battery obtained using the slurry for a positive electrode of a lithium-ion secondary battery, and a production method for the electrode; and a lithium-ion secondary battery provided with the positive electrode for a lithium-ion secondary battery, and a production method for the battery. The slurry for a positive electrode of a lithium-ion secondary battery includes a positive electrode active material (A), a conductive auxiliary agent (B), a resin binder (C), a thickening dispersant (D), and water (E), wherein the thickening dispersant (D) includes a polyalkylene oxide having a phenyl group in a side chain thereof. |
US10811677B2 |
Active material and fluoride ion battery
An active material has a favorable capacity property. The active material is to be used for a fluoride ion battery, the active material including a crystal phase having a perovskite structure, and represented by ABO3 or a fluoride of the ABO3, in which the A and the B are different metal elements; the A includes at least one kind of a metal element belonging to Group 2 and Group 3 in the periodic table; and the B includes at least one kind of a transition metal element belonging to Period 4 to Period 6 in the periodic table. |
US10811673B2 |
Battery
A battery includes a positive electrode containing a positive electrode active material, a negative electrode, and a solid electrolyte. The positive electrode active material contains a compound which has a crystal structure belonging to the space group FM3-M and which is represented by the following formula: LixMeyOαFβ (1) where Me is one or more selected from the group consisting of Mn, Co, Ni, Fe, Al, B, Ce, Si, Zr, Nb, Pr, Ti, W, Ge, Mo, Sn, Bi, Cu, Mg, Ca, Ba, Sr, Y, Zn, Ga, Er, La, Sm, Yb, V and Cr and the conditions 1.7≤x≤2.2, 0.8≤y≤1.3, 1≤α≤2.5, and 0.5≤β≤2 are satisfied. |
US10811672B2 |
Battery
A battery includes a positive electrode including a positive electrode active material, a negative electrode, and an electrolytic solution including an additive. The positive electrode active material includes a compound having a crystal structure belonging to a space group FM3-M and represented by Compositional Formula (1): LixMeyOαFβ, where, Me is one or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, B, Ce, Si, Zr, Nb, Pr, Ti, W, Ge, Mo, Sn, Bi, Cu, Mg, Ca, Ba, Sr, Y, Zn, Ga, Er, La, Sm, Yb, V, and Cr; and subscripts x, y, α, and β satisfy the following requirements: 1.7≤x≤2.2, 0.8≤y≤1.3, 1≤α≤2.5, and 0.5≤β≤2. The additive is at least one selected from dinitrile compounds and diisocyanate compounds. |
US10811671B2 |
Positive-electrode active material and battery
A positive-electrode active material contains a compound that has a crystal structure belonging to a space group FM3-M and that is represented by the composition formula (1): LixAyMezOαFβ (1) wherein A denotes Na or K, Me denotes one or two or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, B, Ce, Si, Zr, Nb, Pr, Ti, W, Ge, Mo, Sn, Bi, Cu, Mg, Ca, Ba, Sr, Y, Zn, Ga, Er, La, Sm, Yb, V, and Cr, and the following conditions are satisfied. 1.7≤x+y≤2.2 0≤y≤0.2 0.8≤z≤1.3 1≤α≤2.5 0.5≤β≤2 |
US10811670B2 |
Preparing method of electrode for lithium secondary battery, electrode for lithium secondary battery prepared thereby and lithium secondary battery comprising the same
A method for manufacturing an electrode for a lithium secondary battery having reinforced safety is provided. In some embodiments, the method includes spraying a first mixture on a surface of an active material layer to form an insulating layer, wherein the insulating layer is a porous film and consists of a polymer or consists of the polymer and a first binder material, spraying a second mixture on the insulating layer to form a safety reinforcing layer, wherein the safety reinforcing layer consists of the second binder material and the inorganic oxide, and spraying a third mixture comprising microfilaments and a third binder material on the safety reinforcing layer to form an impregnation property improving layer, wherein a weight ratio of the microfilaments to the third binder material ranges from 10:90 to 30:70, and wherein the microfilaments have diameters of 0.1 to 10 μm and lengths of 50 to 500 μm. |
US10811668B2 |
Secondary battery
A secondary battery includes an electrode body including a positive electrode plate and a negative electrode plate; a battery case containing the electrode body; a terminal attached to the battery case; a conductive member having an opening adjacent to the electrode body; a deformation plate that seals the opening, and a current collector. The positive electrode plate and a positive electrode terminal are electrically connected to each other via a first positive electrode current collector, the deformation plate, and the conductive member. The first positive electrode current collector has a through-hole. The deformation plate is disposed to face the through-hole. A portion of the first positive electrode current collector distant from the through-hole is welded to the deformation plate to form a weld. |
US10811662B2 |
Contact plate including at least one higher-fuse bonding connector for arc protection
An embodiment is directed to a contact plate configured to establish electrical bonds between battery cells in a battery module, including at least one primary conductive layer, and a set of bonding connectors that are configured to provide direct electrical bonds between the contact plate and terminals of a group of battery cells, the set of bonding connectors being configured to connect the group of battery cells in parallel with each other, wherein at least one bonding connector in the set of bonding connectors is configured with a higher fuse rating than each other bonding connector in the set of bonding connectors so as to contain arcs among the set of bonding connectors to the at least one bonding connector. |
US10811657B2 |
Separator for non-aqueous secondary battery and non-aqueous secondary battery
There is provided a separator for a non-aqueous secondary battery, containing a porous substrate, and an adhesive porous layer that is provided on one side or both sides of the porous substrate, in which the adhesive porous layer contains a polyvinylidene fluoride type resin A including a vinylidene fluoride monomer unit and a hexafluoropropylene monomer unit, and a polyvinylidene fluoride type resin B including a vinylidene fluoride monomer unit and a hexafluoropropylene monomer unit, a proportion of the hexafluoropropylene monomer unit in the polyvinylidene fluoride type resin A is more than 1.5 mol % and 5 mol % or less with respect to a total amount of the vinylidene fluoride monomer unit and the hexafluoropropylene monomer unit of the polyvinylidene fluoride type resin A, a proportion of the hexafluoropropylene monomer unit in the polyvinylidene fluoride type resin B is more than 5 mol % and 15 mol % or less with respect to a total amount of the vinylidene fluoride monomer unit and the hexafluoropropylene monomer unit of the polyvinylidene fluoride type resin B, and a weighted average of a weight-average molecular weight of the polyvinylidene fluoride type resin A and a weight-average molecular weight of the polyvinylidene fluoride type resin B is from 600,000 to 2,000,000. |
US10811656B2 |
Composite membrane, preparation method thereof, and lithium-air battery including the composite membrane
A composite membrane including ion conductive inorganic particles; and a polymer layer, wherein the ion conductive inorganic particles penetrate the polymer layer. Also, a preparation method thereof, and a lithium-air battery including the composite membrane. |
US10811649B2 |
Traction battery of a motor vehicle
Traction battery of a motor vehicle includes a battery frame which is assembled from supports. A plurality of battery modules are accommodated in the battery frame and are each composed of a plurality of battery cells which are accommodated in a module housing of the respective battery module. The respective module housing is assembled from side walls and a base wall. The base wall of the respective module housing is designed as a cooling panel for cooling the battery cells. A cover panel is connected to is the battery frame. An underride guard panel is connected to the battery frame. |
US10811647B2 |
Electric wheel
The disclosure is related to an electric wheel, adapted to a wheel shaft. The electric wheel includes a wheel body, a battery holder, and at least one battery module. The wheel body has a wheel hub configured to be rotatably disposed on the wheel shaft. The battery holder includes a base and at least one first electrical connector connected to each other. The base is configured to be connected to the wheel shaft and disposed side by side to the wheel hub. The base has an outer surface facing away from the wheel shaft. The at least one battery module includes at least one battery storage and at least one second electrical connector. The at least one battery storage has an inner surface in contact with the outer surface of the base. The at least one second electrical connector is detachably mounted on the at least one first electrical connector. |
US10811642B2 |
Manufacturing method of display device and manufacturing apparatus of display device
Provided is a manufacturing method of a display device in which, after a layered body including a resin layer, a TFT layer, and a light emitting element layer is formed on a substrate configured to form a plurality of display devices, the resin layer is irradiated with laser from a back face of the substrate and the substrate is peeled from the layered body using a laser peeling device. The manufacturing method of a display device includes acquiring optical information of the substrate that is peeled off, detecting each acquisition result of the plurality of display devices from each assigned position of the plurality of display devices relative to the substrate, and performing predetermined processing on the display device in a case that the acquisition result of the display device exceeds a threshold value. |
US10811641B2 |
Display device and manufacturing method thereof
A display device includes: a substrate on which is disposed: an organic light emitting element which generates and emits light with which an image is displayed; a thin film transistor connected to the organic light emitting element and with which the organic light emitting element is controlled to emit the light; an interlayer insulating layer disposed between the thin film transistor and the organic light emitting element, the interlayer insulating layer including an organic material; and a capping layer disposed between the interlayer insulating layer and the organic light emitting element, the capping layer including an inorganic material. The interlayer insulating layer disposed between the thin film transistor and the organic light emitting element does not have photosensitivity and does not include sulfur. |
US10811640B2 |
Display apparatus and method of manufacturing the same
A method of manufacturing a display apparatus includes separating a mother substrate that includes a plurality of connected unit display apparatuses into a plurality of separated unit display apparatuses. Each separated unit display apparatus includes a display panel and at least one supporting unit attached below the display panel. The display panel includes a display substrate that has a pad area on which are disposed a plurality of pads and a thin film encapsulation layer on the display substrate. The method further includes consecutively cutting the display panel and the at least one supporting unit of each separated unit display apparatus along cutting lines in the pad area, where a first cut surface of the pad area of the display substrate and a second cut surface of the at least one supporting unit are respectively cut at different angles. |
US10811637B2 |
Display device and method of manufacturing the same
A display device includes a base substrate, an organic layer on the base substrate and including a pattern region having an uneven pattern formed thereon, and a non-pattern region having a substantially flat surface, a light-emitting element on the organic layer, and a color conversion pattern on the light-emitting element and overlapping the pattern region and the non-pattern region. |
US10811636B2 |
Light emitting device manufacturing method and apparatus thereof
A light emitting device includes a first type carrier transportation layer and an organic light emitting unit over the first type carrier transportation layer. The light emitting device further includes a second type carrier transportation layer over the organic light emitting unit, wherein the second type is opposite to the first type. At least one of the first type carrier transportation layer and the second type carrier transportation layer includes a metal element. |
US10811634B2 |
Light emitting display panel and electronic device including the same
By controlling the optical thickness of the upper stacked structure disposed on the display panel, it is possible to periodically control the tristimulus value of Xr and the tristimulus value of Yg emitted from the electronic device. The optical thickness is determined by the thickness and refractive index of the upper stacked structure. This control may reduce the tristimulus value of Xr periodically or increase the tristimulus value of Yg periodically. The tristimulus value of Xr may be periodically decreased and the tristimulus value of Yg may be periodically increased at the same time. |
US10811633B2 |
Method of increasing the flexibility of an AMOLDED display, a flexible display, and a product
A flexible AMOLED display is disclosed including an OLED stack having an anode layer, a cathode layer and an organic light emitting layer between the anode layer and the cathode layer. A backplane includes a substrate, a plurality of bus lines, and a thin film transistor array. A permeation barrier layer is positioned between the OLED stack and the backplane, and a plurality of vias connect the OLED anode layer to the backplane thin film transistor array. In one embodiment, a neutral plane of the AMOLED display crosses the permeation barrier. In one embodiment, the thickness of at least a portion of the bus lines is greater than the thickness of the cathode layer. A method of increasing the flexibility of an AMOLED display is disclosed. A method of assembling a flexible AMOLED display under a processing temperature of less than 200 degrees Celsius is also disclosed. |
US10811632B2 |
OLED panel bottom protection film, and organic light-emitting display device comprising same
A bottom protection film for an OLED panel is provided. More particularly, a bottom protection film for an OLED panel, which has excellent alignment process workability and excellent adhesion to an OLED panel, and is capable of preventing static electricity through an antistatic treatment and preventing an electrical short circuit at the same time, and an organic light-emitting display device including the bottom protection film are provided. |
US10811630B2 |
Display device
A display device includes a first display substrate including a display area and a non-display area, a second display substrate facing the first display substrate and including an end portion corresponding to the non-display area and extending along a first direction; a connection circuit board connected to the first display substrate at the non-display area thereof and disposed adjacent to the end portion of the second display substrate; and a first spacer and a second spacer each on the end portion of the second display substrate, and spaced apart from each other along the first direction to define a space therebetween. Along a second direction which crosses the first direction, a central portion of the connection circuit board connected to the first display substrate faces the space between the first spacer and the second spacer on the second display substrate. |
US10811628B2 |
Press forming method for composite material
Provided is a press forming method for a composite material. A press forming method for a composite material including an upper metal member, a resin member, and a lower metal member, and including: producing the lower metal member having first and second coating films respectively bonded to upper and lower surfaces thereof; producing the composite material including the upper metal member, a first hot melt member, the resin member, a second hot melt member, and the lower metal member; cutting an area spaced inward a predetermined distance from a lengthwise edge of the composite material by using a T-cutter, such that only the lower metal member remains; removing the upper metal member, the first hot melt member, the resin member, and the second hot melt member that are located outside the cut area; and folding the lower metal member by an angle of 180 degrees by using a hemming die. |
US10811621B2 |
Organometallic compound, organic light-emitting device including the organometallic compound, and a diagnostic composition including the organometallic compound
An organometallic compound represented by Formula 1: wherein, in Formula 1, groups and variables are the same as described in the specification. |
US10811615B2 |
Compound and organic light emitting element comprising same
The present application relates to a compound and an organic light emitting device comprising the same. |
US10811610B2 |
Composition and light emitting device obtained by using the composition
A composition which is useful for producing a light emitting device having excellent luminance life is provided. The composition contains a primary fluorinated alcohol represented by the formula (1), a secondary fluorinated alcohol represented by the formula (1′) and an electron injectable compound or an electron transportable compound, wherein the content of the secondary fluorinated alcohol is 0.01% by mass to 0.75% by mass with respect to the total content of the primary fluorinated alcohol and the secondary fluorinated alcohol: CnH2n−m+1FmOH (1) Cn′H2n′−m′+1Fm′OH (1′) In the formula (1), n represents an integer of 1 to 10, and m is an integer satisfying 1≤m≤2n+1. In the formula (1′), n′ represents an integer of 3 to 10, and m′ is an integer satisfying 1≤m′≤2n′+1. |
US10811607B2 |
Phase change memory and method of fabricating the same
A phase change memory and a method of fabricating the same are provided. The phase change memory includes a lower electrode, an annular heater, an annular phase change layer, and an upper electrode. The annular heater is disposed over the lower electrode. The annular phase change layer is disposed over the annular heater, and the annular phase change layer and the annular heater are misaligned in a normal direction of the lower electrode. The upper electrode is disposed over the annular phase change layer. The present disclosure simplifies the manufacturing process of the phase change memory, reduces the manufacturing cost, and improves the manufacturing yield. In addition, a contact surface between the heater and the phase change layer of the phase change memory of the present disclosure is very small, so that the phase change memory has an extremely low reset current. |
US10811605B2 |
Segmented slot contacts for improving performance in phase-change material (PCM) radio frequency (RF) switches
A radio frequency (RF) switch includes a phase-change material (PCM) and a heating element underlying an active segment of the PCM, the PCM and heating element being situated over a substrate. A contact dielectric is over the PCM. PCM contacts have upper portions and uniform plate slot lower portions. The uniform plate slot lower portions have a total plate resistance RPLATE, and a total plate slot interface resistance RPLATE-INT. The upper portions have a total capacitance CUPPER to the uniform plate slot lower portions, and the PCM has a total capacitance CPCM to the substrate. The uniform plate slot lower portions significantly reduce a product of (RPLATE+RPLATE-INT) and (CUPPER+CPCM). As an alternative to the uniform plate slot lower portions, PCM contacts have segmented lower portions. The segmented lower portions significantly reduce CUPPER. |
US10811604B2 |
Nonvolatile memory apparatus including resistive-change material layer
A nonvolatile memory apparatus includes a first electrode, a second electrode separated from the first electrode, a resistive-change material layer provided between the first electrode and the second electrode and configured to store information due to a resistance change caused by an electrical signal applied through the first electrode and the second electrode, and a diffusion prevention layer provided between the first electrode and the resistive-change material layer and/or between the second electrode and the resistive-change material layer and including a two-dimensional (2D) material having a monolayer thickness of about 0.35 nm or less. |
US10811602B2 |
Tungsten oxide RRAM with barrier free structure
Memory devices based on tungsten oxide memory elements are described, along with methods for manufacturing such devices. A memory device includes a plug extending upwardly from a top surface of a substrate through a dielectric layer; a bottom electrode having tungsten on an outside surface, the bottom electrode extending upwardly from a top surface of the plug; an insulating material in contact with the tungsten on the outside surface of, and surrounding, the bottom electrode; a memory element on an upper surface of the bottom electrode, the memory element comprising a tungsten oxide compound and programmable to at least two resistance states; and a top electrode overlying and contacting the memory element. The plug has a first lateral dimension, and the bottom electrode has a lateral dimension parallel with the first lateral dimension of the plug that is less than the first lateral dimension. |
US10811601B2 |
Semiconductor devices using insulator-metal phase change materials and method for fabrication
An exemplary semiconductor incorporates phase change material MoxW1-xTe2 that may be the semiconducting channel or may be part of a control terminal/gate of the semiconductor. The phase change material selectably being in one of metal and insulator phases depending on whether a voltage field greater than a predetermined phase change field is present at the phase change material. The properties of the semiconductor are varied depending on the phase of the phase change material. |
US10811598B2 |
Current sensor packages
A sensor package includes a semiconductor die including at least one current sensor. The semiconductor die includes a first pass through hole extending from one side of the semiconductor die to an opposite side of the semiconductor die. The semiconductor package further includes a second pass through hole extending from one side of the sensor package to an opposite side of the sensor package. The second pass through hole is aligned with the first pass through hole and is configured to receive a current-carrying conductor. The at least one current sensor senses current flow in the current-carrying conductor received in the second pass through hole. An end of the current-carrying conductor is coupled to a terminal on a circuit board in the sensor package. |
US10811595B2 |
Techniques for forming logic including integrated spin-transfer torque magnetoresistive random-access memory
Techniques are disclosed for forming a logic device including integrated spin-transfer torque magnetoresistive random-access memory (STT-MRAM). In accordance with some embodiments, one or more magnetic tunnel junction (MTJ) devices may be formed within a given back-end-of-line (BEOL) interconnect layer of a host logic device. A given MTJ device may be formed, in accordance with some embodiments, over an electrically conductive layer configured to serve as a pedestal layer for the MTJ's constituent magnetic and insulator layers. In accordance with some embodiments, one or more conformal spacer layers may be formed over sidewalls of a given MTJ device and attendant pedestal layer, providing protection from oxidation and corrosion. A given MTJ device may be electrically coupled with an underlying interconnect or other electrically conductive feature, for example, by another intervening electrically conductive layer configured to serve as a thin via, in accordance with some embodiments. |
US10811594B2 |
Process for hard mask development for MRAM pillar formation using photolithography
A method for fabricating an array of pillars. The method includes fabricating an MTJ (magnetic tunnel junction) film deposition metal stack on a CMOS wafer. The method selects between subsequent electron beam patterning for the wafer and photolithography patterning for the wafer. For electron beam patterning, an electron beam lithography hard mask is deposited onto the metal stack, and an electron beam is used to pattern a first array of pillars into the electron beam lithography hard mask to produce a first resulting pillar array. For photolithography patterning, a photolithography hard mask is deposited onto the metal stack, and photolithography is used to pattern a second array of pillars into the photolithography hard mask to produce a second resulting pillar array. The first resulting pillar array is substantially the same as the second resulting pillar array. |
US10811592B2 |
Piezoelectric element, vibrator, vibration wave motor, optical device, and electronic device
A piezoelectric element, in which a piezoelectric material layer has a plurality of crystal particles and a plurality of void portions and, in at least one of two or more of the piezoelectric material layers, when the average thickness in the lamination direction of the piezoelectric material layer is defined as TP, the average circle-equivalent diameter of the plurality of crystal particles is defined as DG, the maximum length in the lamination direction of the plurality of void portions not contacting the electrode layers is defined as LV, and the average thickness of the electrode layers contacting the at least one piezoelectric material layer is defined as TE, 0.07TP≤DG≤0.33TP and TE≤LV≤0.3TP are established and the lead content is less than 1000 ppm. |
US10811590B1 |
Containers with sensing and/or communication features
A plastic container with a sensing or communication feature includes a sensor. In an embodiment, the sensor may include a piezo electric disc. The sensor may be connected to a surface of the plastic container or may be at least partially embedded within a wall of the plastic container. |
US10811587B2 |
Josephson transmission line for superconducting devices
Josephson transmission lines (JTLs) for superconducting devices and related methods are provided. In one example, a device comprising a JTL for propagating quantum pulses in a first direction in response to an application of a clock signal having a plurality of phases is provided. The JTL may include a first inductive element coupled between a first terminal and a second terminal, a first Josephson junction (JJ) coupled between the second terminal and a ground terminal, a second inductive element coupled between the second terminal and a third terminal, and a second JJ coupled between the third terminal and the ground terminal. The second inductive element is configured to form an inductive loop, and the inductive loop may be configured to operate in a mode such that a quantum pulse cannot travel in a second direction opposite from the first direction regardless of a phase of the clock signal. |
US10811586B2 |
Apparatus and method for generating electrical energy
An apparatus for generating electrical energy comprises an oscillating heat pipe for transferring heat between a heat source and a heat sink, and a pyroelectric generator for generating electricity from thermal fluctuations generated by the oscillating heat pipe as the oscillating heat pipe transfers heat between the heat source and the heat sink. |
US10811585B2 |
Thermoelectric device
A thermoelectric device (1) comprising a frame (2), a membrane (3) made of thermoelectric material, and an element (4) for absorbing or releasing energy. The element (4) is supported to the frame (2) solely by the membrane (3). |
US10811583B2 |
Light emitting device package and ultraviolet lamp having the same
Provided is a light emitting device package. The light emitting device package comprises a body, a heat diffusing member, a light emitting diode (LED), and a buffer layer. A cavity with an opened topside is formed in the body. The heat dissipation member is disposed between a bottom surface of the cavity and a lower surface of the body. The LED is disposed on one of an electrode disposed on the bottom surface of the cavity. The buffer layer is disposed between the heat dissipation member and a pad and has a thickness thinner than a thickness of the heat dissipation member. |
US10811582B2 |
Arrangement
An arrangement is disclosed. In an embodiment the arrangement includes at least one semiconductor component and a heat sink, wherein the semiconductor component is arranged on the heat sink, wherein the heat sink is configured to dissipate heat from the semiconductor component, wherein the heat sink comprises a thermally conductive material, and wherein the material comprises at least aluminum and silicon. |
US10811577B2 |
Semiconductor light emitting element and method for manufacturing the same
The semiconductor light emitting element is a semiconductor light emitting element comprising a semiconductor layer including a light emitting layer, wherein a surface of the semiconductor light emitting element includes a light extraction surface. At least one of the light extraction surface and an interface between two layers having different refractive indexes in the semiconductor light emitting element is provided with a periodic recessed and projecting structure having a period that exceeds 0.5 times as great as a wavelength of light emitted from the light emitting layer, and a minute recessed and projecting structure located on a surface of the periodic recessed and projecting structure and having an average diameter that is not more than 0.5 times as great as the wavelength of the light. |
US10811572B2 |
Light emitting device
A light emitting diode package includes: a housing; a light emitting diode chip arranged in the housing; a wavelength conversion unit arranged on the light emitting diode chip; a first fluorescent substance distributed inside the wavelength conversion unit and emitting light having a peak wavelength in the cyan wavelength band; and a second fluorescent substance distributed inside the wavelength conversion unit and emitting light having a peak wavelength in the red wavelength band, wherein the peak wavelength of light emitted from the light emitting diode chip is located within a range of 415 nm to 430 nm. |
US10811569B2 |
Inorganic light-emitting diode display panel, manufacturing method thereof and display device
An inorganic light-emitting diode display panel and manufacturing method thereof and a display device are provided. The inorganic light-emitting diode display panel includes: a base substrate; a microcavity structure and an inorganic light-emitting diode which are disposed on the base substrate. The microcavity structure includes a reflective layer, a semi-reflective layer and a dielectric layer located between the reflective layer and the semi-reflective layer; the inorganic light-emitting diode includes a light-emitting layer, and the light-emitting layer is located in the dielectric layer; and a distance between the reflective layer and the semi-reflective layer is in a same order of magnitude as a wavelength of light emitted by the inorganic light-emitting diode. |
US10811566B2 |
Light emitting device, method for producing light emitting device, and light emitting module
A light emitting module according to an embodiment comprises: a first support member having a first opening part and a second opening part; a second support member disposed in the first opening part in the first support member; a third support member disposed in the second opening part in the first support member; a first lead electrode disposed above the second support member; a second lead electrode disposed on the first support member and/or above the second support member; a light emitting chip disposed above the second support member and electrically connected to the first and second lead electrodes; a control component disposed above the third support member; and a conductive layer disposed underneath the first, second and third support members, wherein the first support member comprises a resin material, the second support material comprises a ceramic material and the third support member comprises a metal material. |
US10811564B2 |
Light-emitting device
A light-emitting device is provided. The light-emitting device comprises The light-emitting device comprises a light-emitting stack comprising a first semiconductor layer, a second semiconductor layer and an active layer between the first semiconductor layer and the second semiconductor layer; and a third semiconductor layer on the light-emitting stack and comprising a first sub-layer, a second sub-layer and a roughened surface, wherein the first sub-layer has the same composition as that of the second sub-layer, and the second sub-layer is farther from the light-emitting stack than the first sub-layer; wherein the first sub-layer and the second sub-layer each comprises a Group III element and a Group V element, and an atomic ratio of the Group III element to the Group V element of the first sub-layer is less than an atomic ratio of the Group III element to the Group V element of the second sub-layer. |
US10811560B2 |
Method for manufacturing light-emitting device
A method for manufacturing a light-emitting device includes: providing a light-transmissive member comprising: a base portion, and a projecting portion on a first surface side of the base portion; providing a light-emitting element that has a main emitting surface and an electrode formation surface opposite to the main emitting surface; disposing the light-emitting element on the projecting portion of the light-transmissive member such that the main emitting surface of the light-emitting element faces an upper surface of the projecting portion of the light-transmissive member; and forming a light-reflective member that covers at least one of (i) lateral surfaces of the light-emitting element, and/or (ii) lateral surfaces of the projecting portion of the light-transmissive member. |
US10811556B2 |
Multi layered thermal sensor
A method for manufacturing a thermal sensor, the method may include forming, using ion etching, one or more first holes that pass through (a) an initial layer, (a) a first oxide layer, (c) a first semiconductor substrate; filling the one or more first holes with oxide to form supporting elements; fabricating one or more thermal semiconductor sensing elements; forming one or more second holes in the one or more upper layers and the first oxide layer; applying an isotropic etching process to remove the first semiconductor substrate and expose the supporting elements to provide a suspended first oxide layer. |
US10811555B2 |
Particle detector capable of separating in-time signals from out-of-time signals
Silicon Particle Detector, comprising an absorption region (10) capable of generating electrical charges in response to a particle passing therethrough, a first and a second electrode (20, 30) arranged on opposite sides of the absorption region (10), wherein the first electrode (20) is segmented into a plurality of pads (20a), and a plurality of multiplication layers (40) able to avalanche-multiply the electric charges generated in the absorption region (10), each of the multiplication layers (40) being arranged beneath a respective pad (20a) and interposed between it and the absorption region (10), each multiplication layer (40) is surrounded by a respective protection ring (50) formed by the material of the pad (20a). The protection ring (50) is laterally interposed between the multiplication layer (40) and the absorption region (10). |
US10811553B2 |
Group-IV solar cell structure using group-IV or III-V heterostructures
Device structures, apparatuses, and methods are disclosed for photovoltaic cells that may be a single-junction or multijunction solar cells, with at least a first layer comprising a group-IV semiconductor in which part of the cell comprises a second layer comprising a III-V semiconductor or group-IV semiconductor having a different composition than the group-IV semiconductor of the first layer, such that a heterostructure is formed between the first and second layers. |
US10811549B2 |
Quantum-dot-based avalanche photodiodes on silicon
A quantum-dot based avalanche photodiode (QD-APD) may include a silicon substrate and a waveguide on which a quantum dot (QD) stack of layers is formed having a QD light absorption layer, a charge multiplication layer (CML), and spacer layers. The QD stack may be formed within a p-n junction. The waveguide may include a mode converter to facilitate optical coupling and light transfer from the waveguide to the QD light absorption layer. The QD absorption layer and the CML layer may be combined or separate layers. The CML may generate electrical current from the absorbed light with more than 100% quantum efficiency when the p-n junction is reverse-biased. |
US10811548B2 |
Integrated circuit having optical structure
An integrated circuit having an optical structure is provided. The integrated circuit includes a semiconductor substrate and a plurality of light guiding pattern layers. The light guiding pattern layers are located above the semiconductor substrate, and each of the light guiding pattern layers has a plurality of openings and a plurality of side wall portions corresponding to the openings. Each of the side wall portions surrounds the corresponding opening. A projection of one of the openings of one of the light guiding pattern layers on the semiconductor substrate at least partially overlaps a projection of one of the openings of the adjacent light guiding pattern layer on the semiconductor substrate, so as to form at least one light via hole and allow external light to be transferred to the semiconductor substrate through the light guiding pattern layers. |
US10811547B2 |
Ohmic contact of thin film solar cell
A chalcogen-resistant material including at least one of a conductive elongated nanostructure layer and a high work function material layer is deposited on a transition metal layer on a substrate. A semiconductor chalcogenide material layer is deposited over the chalcogen-resistant material. The conductive elongated nanostructures, if present, can reduce contact resistance by providing direct electrically conductive paths from the transition metal layer through the chalcogen-resistant material and to the semiconductor chalcogenide material. The high work function material layer, if present, can reduce contact resistance by blocking chalcogenization of the transition metal in the transition metal layer. Reduction of the contact resistance can enhance efficiency of a solar cell including the chalcogenide semiconductor material. |
US10811545B2 |
Sensing module and image capturing apparatus
A sensing module including a sensing array, a first shielding layer, a second shielding layer, and a reflective layer is provided. The sensing array includes a plurality of light passing regions and a light receiving surface facing away from an object, and the sensing array is located between the first shielding layer having a plurality of first openings and the second shielding layer having a plurality of second openings. The second shielding layer is located between the sensing array and the reflective layer. The light beams reflected by the object sequentially pass through the first openings, the light passing regions, the second openings, and are then transmitted to the reflective layer. The light beams are reflected by the reflective layer and then pass through the second openings again to be transmitted to the light receiving surface of the sensing array. An image capturing apparatus is also provided. |
US10811541B2 |
Semiconductor device having germanium containing active pattern and method for fabricating the same
A semiconductor device includes a gate electrode extending in a first direction on a substrate, a first active pattern extending in a second direction intersecting the first direction on the substrate to penetrate the gate electrode, the first active pattern including germanium, an epitaxial pattern on a side wall of the gate electrode, a first semiconductor oxide layer between the first active pattern and the gate electrode, and including a first semiconductor material, and a second semiconductor oxide layer between the gate electrode and the epitaxial pattern, and including a second semiconductor material. A concentration of germanium of the first semiconductor material may be less than a concentration of germanium of the first active pattern, and the concentration of germanium of the first semiconductor material may be different from a concentration of germanium of the second semiconductor material. |
US10811540B2 |
Semiconductor device and electronic device
To provide a highly reliable semiconductor device that is suitable for miniaturization and higher density. A semiconductor device includes a first electrode including a protruding portion, a first insulator over the protruding portion, a second insulator covering the first electrode and the first insulator, and a second electrode over the second insulator. The second electrode includes a first region which overlaps with the first electrode with the first insulator and the second insulator provided therebetween and a second region which overlaps with the first electrode with the second insulator provided therebetween. The peripheral portion of the second electrode is provided in the first region. |
US10811537B2 |
Semiconductor device having fins
A device includes a semiconductor substrate, an isolation structure, and an epitaxial fin portion. The semiconductor substrate has an implanted region. The implanted region has a bottom fin portion thereon, in which a depth of the implanted region is smaller than a thickness of the semiconductor substrate. The isolation structure surrounds the bottom fin portion. The epitaxial fin portion is disposed over a top surface of the bottom fin portion, in which the implanted region of the semiconductor substrate includes oxygen and has an oxygen concentration lower than about 1·E+19 atoms/cm3. |
US10811533B2 |
Medium high voltage MOSFET device
A semiconductor device includes a medium voltage MOSFET having a vertical drain drift region between RESURF trenches containing field plates which are electrically coupled to a source electrode of the MOSFET. A split gate with a central opening is disposed above the drain drift region between the RESURF trenches. A two-level LDD region is disposed below the central opening in the split gate. A contact metal stack makes contact with a source region at lateral sides of the triple contact structure, and with a body contact region and the field plates in the RESURF trenches at a bottom surface of the triple contact structure. A perimeter RESURF trench surrounds the MOSFET. A field plate in the perimeter RESURF trench is electrically coupled to the source electrode of the MOSFET. An integrated snubber may be formed in trenches formed concurrently with the RESURF trenches. |
US10811532B2 |
High voltage device and manufacturing method thereof
A high voltage device includes: a semiconductor layer, an isolation structure, a drift oxide region, a well, a body region, a body contact, a buffer region, a gate, and a source and a drain. The body contact includes a main body contact and at least one sub-body contact. The main body contact is adjacent to the source, wherein the main body contact and the source are rectangles that extend along a width direction, and the source is located between the main body contact and the gate. The sub-body contact extends from the main body contact toward the gate and contacts an inverse current channel. The buffer region encompasses all the periphery of the body region below a top surface of the semiconductor layer, wherein an impurity concentration of the buffer region is lower than an impurity concentration of the body region. |
US10811528B2 |
Two step fin etch and reveal for VTFETs and high breakdown LDVTFETs
High breakdown voltage devices are provided. In one aspect, a method of forming a device having a VTFET and a LDVTFET includes: forming a LDD in an LDVTFET region; patterning fin(s) in a VTFET region to a depth D1; patterning fin(s) in the LDVTFET region, through the LDD, to a depth D2>D1; forming bottom source/drains at a base of the VTFET/LDVTFET fins; burying the VTFET/LDVTFET fins in a gap fill dielectric; recessing the gap fill dielectric to full expose the VTFET fin(s) and partially expose the LDVTFET fin(s); forming bottom spacers directly on the bottom source/drains in the VTFET region and directly on the gap fill dielectric in the LDVTFET region; forming gates alongside the VTFET/LDVTFET fins; forming top spacers above the gates; and forming top source/drains above the top spacers. A one-step fin etch and devices having VTFET and long channel VTFETs are also provided. |
US10811525B2 |
Bidirectional switch
A bidirectional switch includes a semiconductor element and a substrate potential stabilizer which stabilizes a substrate potential of a semiconductor element. The substrate potential stabilizer includes a first switch element and a second switch element. Both the first switch element and the second switch element are on when the semiconductor element is on. |
US10811524B2 |
Semiconductor circuit and control circuit
A semiconductor circuit of an embodiment includes semiconductor device and a control circuit. The semiconductor device includes a semiconductor layer that has a first region of a first-conductivity type, a second region of a second-conductivity type, a third region of the first-conductivity type, fourth region of the second-conductivity type, first and second trench, first and second gate electrode, a first gate insulating film in contact with the fourth region, and a second gate insulating film spaced away from the fourth region. The semiconductor device includes a first gate electrode pad connected to the first gate electrode, and a second gate electrode pad connected to the second gate electrode. Prior to changing a first gate voltage from a turn-ON voltage to a turn-OFF voltage, a second gate voltage changed from a first voltage to a second voltage. The second voltage is a negative voltage when the first-conductivity type is p-type. |
US10811523B2 |
Vertical MOSFET having insulated trenches and base region contact
A semiconductor device having a first surface formed at a first height and a second surface formed at a second height on a semiconductor substrate includes: a base region formed in the semiconductor substrate; a trench formed from the first surface and the second surface into the semiconductor substrate; a gate insulating film covering an inner side of the trench; a gate electrode embedded to a third height; an insulating film formed on the gate electrode; a first region which has the first surface and in which a base contact region is formed; and a second region which has the second surface and in which a source region is formed, the first region and the second region being alternately arranged in the trench extension direction to prevent a reduction in channel formation density. |
US10811521B2 |
Semiconductor device and method for manufacturing semiconductor device
In a top-gate transistor in which an oxide semiconductor film, a gate insulating film, a gate electrode layer, and a silicon nitride film are stacked in this order and the oxide semiconductor film includes a channel formation region, nitrogen is added to regions of part of the oxide semiconductor film and the regions become low-resistance regions by forming a silicon nitride film over and in contact with the oxide semiconductor film. A source and drain electrode layers are in contact with the low-resistance regions. A region of the oxide semiconductor film, which does not contact the silicon nitride film (that is, a region overlapping with the gate insulating film and the gate electrode layer) becomes the channel formation region. |
US10811517B2 |
Gate spacer structure of finFET device
A method includes forming a fin extending above an isolation region. A sacrificial gate stack having a first sidewall and a second sidewall opposite the first sidewall is formed over the fin. A first spacer is formed on the first sidewall of the sacrificial gate stack. A second spacer is formed on the second sidewall of the sacrificial gate stack. A patterned mask having an opening therein is formed over the sacrificial gate stack, the first spacer and the second spacer. The patterned mask extends along a top surface and a sidewall of the first spacer. The second spacer is exposed through the opening in the patterned mask. The fin is patterned using the patterned mask, the sacrificial gate stack, the first spacer and the second spacer as a combined mask to form a recess in the fin. A source/drain region is epitaxially grown in the recess. |
US10811514B2 |
Electronic device including an enhancement-mode HEMT and a method of using the same
An electronic device can include an enhancement-mode high electron mobility transistor (HEMT) that includes a source electrode; a drain electrode; and a gate. In an embodiment, the gate can correspond to spaced-apart gate electrodes and a space disposed between the spaced-apart gate electrodes, wherein the first space has a width configured such that, a continuous depletion region forms across all of the width of the first space. In another embodiment, the gate can be a gate electrode having a nonuniform thickness along a line in a gate width direction. In another aspect, a method of using the electronic device can include, during a transient period when the HEMT is in an off-state, flowing current from the drain electrode to the source electrode when Vds>−Vth+Vgs. |
US10811512B2 |
Semiconductor device fabrication method and semiconductor device
A method of fabricating a semiconductor device includes forming a first semiconductor region at a front surface of a substrate, the first semiconductor region including an active element that regulates current flowing in a thickness direction of the substrate; grinding a rear surface of the substrate; after the grinding, performing a first etching that etches the rear surface of the substrate with a chemical solution including phosphorus; after the first etching, performing a second etching that etches the rear surface with an etching method with a lower etching rate than the first etching; and after the second etching, forming a second semiconductor region through which the current is to flow, by implanting impurities from the rear surface of the substrate. |
US10811510B2 |
Thin film transistor, manufacturing method thereof, array substrate, display panel, and display device
A thin film transistor, a manufacturing method thereof, an array substrate, a display panel, and a display device are disclosed. The present disclosure is directed to the field of display technologies. The thin film transistor comprises a drain electrode and a source electrode. At least one of the drain electrode and the source electrode are an yttrium-doped first metal film, and a surface of the first metal film is yttrium-copper complex oxide formed by annealing. |
US10811506B2 |
Self-aligned metal gate etch back process and device
A method includes receiving a device having a substrate and a first dielectric layer surrounding a gate trench. The method further includes depositing a gate dielectric layer and a gate work function (WF) layer in the gate trench and forming a hard mask (HM) layer in a space in the gate trench and surrounded by the gate WF layer. The method further includes recessing the gate WF layer such that a top surface of the gate WF layer in the gate trench is below a top surface of the first dielectric layer. After the recessing of the gate WF layer, the method further includes removing the HM layer in the gate trench and depositing a metal layer in the gate trench. The metal layer is in physical contact with a sidewall surface of the gate WF layer that is deposited before the HM layer is formed. |
US10811505B2 |
Gate electrode having upper and lower capping patterns
Disclosed are semiconductor devices and methods of manufacturing the same. The semiconductor device comprises a gate electrode on a substrate, an upper capping pattern on the gate electrode, and a lower capping pattern between the gate electrode and the upper capping pattern. The lower capping pattern comprises a first portion between the gate electrode and the upper capping pattern, and a plurality of second portions extending from the first portion onto corresponding side surfaces of the upper capping pattern. The upper capping pattern covers a topmost surface of each of the second portions. |
US10811503B2 |
Electrostatic catalysis
An electrode having an embedded charge contains a substrate, a first electronic charge trap defined at the interface of a first insulating layer and a second insulating layer; and a first conductive layer disposed on the first electronic charge trap; wherein the first conductive layer contains a conductive material configured to permit an external electric field to penetrate the electrode from the first electronic charge trap; and wherein the first insulating layer is not the same as the second insulating layer. |
US10811502B1 |
Method of manufacture of super-junction power semiconductor device
A method for manufacturing a super-junction MOSFET entails forming a recessed shield electrode in a trench in a semiconductor layer of a substrate, the trench being lined with a first oxide layer. When the electrically conductive material forming the shield electrode is removed to recess the shield electrode, the first oxide layer on sidewalls of the trench is exposed. Removal of the first oxide layer from the sidewalls and from shield sidewalls of the electrode produces openings at a top part of the shield sidewalls. A second oxide layer is formed over the shield electrode and fills the openings. Part of the second oxide layer is removed to expose a top surface of the shield electrode. A gate dielectric is formed over the top surface of the shield electrode and conductive material is deposited over the gate dielectric in the trench to form a gate electrode of the MOSFET. |
US10811501B2 |
InN tunnel junction contacts for P-channel GaN
Methods and apparatus for semiconductor manufacture are disclosed. An example apparatus includes a Gallium Nitride (GaN) substrate; a p-type GaN region positioned on the GaN substrate; a p-type Indium Nitride (InN) region positioned on the GaN substrate and sharing an interface with the p-type GaN region; and a n-type Indium Gallium Nitride (InGaN) region positioned on the GaN substrate and sharing an interface with the p-type InN region. |
US10811500B2 |
Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
It is assumed that a defect satisfying relations of Formula 1 and Formula 2 is a first defect, where an off angle is θ. It is assumed that a defect having an elongated shape when viewed in a direction perpendicular to the second main surface, and satisfying relations of Formula 3 and Formula 4 is a second defect. A value obtained by dividing the number of the second defect by the sum of the number of the first defect and the number of the second defect is greater than 0.5. |
US10811497B2 |
Tiled lateral BJT
A lateral transistor tile is formed with first and second collector regions that longitudinally span first and second sides of the transistor tile; and a base region and an emitter region that are between the first and second collector regions and are both centered on a longitudinal midline of the transistor tile. A base-collector current, a collector-emitter current, and a base-emitter current flow horizontally; and the direction of the base-emitter current is perpendicular to the direction of the base-collector current and the collector-emitter current. Lateral BJT transistors having a variety of layouts are formed from a plurality of the tiles and share common components thereof. |
US10811496B2 |
Transistor devices having source/drain structure configured with high germanium content portion
Techniques are disclosed for forming column IV transistor devices having source/drain regions with high concentrations of germanium, and exhibiting reduced parasitic resistance relative to conventional devices. In some example embodiments, the source/drain regions each includes a thin p-type silicon or germanium or SiGe deposition with the remainder of the source/drain material deposition being p-type germanium or a germanium alloy (e.g., germanium:tin or other suitable strain inducer, and having a germanium content of at least 80 atomic % and 20 atomic % or less other components). In some cases, evidence of strain relaxation may be observed in the germanium rich cap layer, including misfit dislocations and/or threading dislocations and/or twins. Numerous transistor configurations can be used, including both planar and non-planar transistor structures (e.g., FinFETs and nanowire transistors), as well as strained and unstrained channel structures. |
US10811492B2 |
Method and device for patterning thick layers
A method of fabricating an integrated circuit includes applying photoresist to a MESA dielectric layer of a semiconductor structure, to generate a photoresist layer. The method also includes exposing the photoresist layer with a grayscale mask, to generate an exposed photoresist layer. The photoresist exposed layer includes a thick photoresist pattern in a first region, a thin photoresist pattern in a second region where a height of the thin photoresist pattern is less than half a height of the thick photoresist pattern, and a gap region between the thick photoresist pattern and the thin photoresist pattern. |
US10811491B2 |
Display substrate and method of manufacturing the same, and display panel
A display substrate and a method of manufacturing the same, and a display panel are provided. The display substrate includes: a base substrate, and a first electrode, a first auxiliary electrode, a boss, a pixel definition layer, an organic functional layer and a second electrode provided on the base substrate. The first auxiliary electrode includes a first conductive connection part contacting a side surface of the boss; the pixel definition layer is provided with a pixel accommodating hole and a slot; the organic functional layer is electrically connected with the first electrode through the pixel accommodating hole; and the second electrode is electrically connected with the first conductive connection part through the slot, so that the second electrode is connected with the first auxiliary electrode in parallel. |
US10811487B2 |
Organic light emitting diode display and manufacturing method thereof
An organic light emitting diode display comprises a substrate including a display area in which a pixel is disposed and a peripheral area surrounding the display area, a driving semiconductor layer disposed in the display area on the substrate, a driving gate electrode disposed in the display area on the driving semiconductor layer, a common voltage line disposed in the peripheral area on the substrate and disposed on a same layer as the driving gate electrode, a gate electrode anti-oxidation layer disposed on the driving gate electrode, a common voltage line anti-oxidation layer disposed on the common voltage line, an interlayer insulating layer disposed on the driving semiconductor layer, the driving gate electrode, the common voltage line, the gate electrode anti-oxidation layer, and the common voltage line anti-oxidation layer. |
US10811485B2 |
Organic light emitting display panel and organic light emitting display apparatus using the same
An organic light emitting display panel can include a substrate; pixels disposed on the substrate; a driving transistor including: a driving active layer, a driving gate electrode overlapping with the driving active layer, a driving first conductor extended from one end of the driving active layer, a driving second conductor extended from the other end of the driving active layer, and a driving first gate insulating film overlapping with the driving active layer; a switching transistor including: a switching active layer, a switching gate electrode overlapping with the switching active layer, a switching first conductor extended from one end of the switching active layer, a switching second conductor extended from the other end of the switching active layer, and a switching first gate insulating film overlapping with the switching active layer; an organic light emitting diode; and a second gate insulating film disposed between the driving and switching gate electrodes of the driving and switching transistors, and the driving first conductor, the driving second conductor, the driving first gate insulating film, the switching first conductor, the switching second conductor and the switching first gate insulating film. |
US10811482B2 |
Display device including a display module with connecting pins
A display device includes a first circuit substrate and an overlapping second circuit. At least one connection pin is disposed in an opening in a base substrate which is disposed between the first circuit substrate and the second circuit substrate and the at least one connection pin is configured to connect the first circuit substrate to the second circuit substrate through the opening in the base substrate. |
US10811481B2 |
OLED panel and brightness compensation method thereof, display device
The present disclosure provides an OLED panel comprising: a first substrate; an OLED device on the first substrate; an optical detecting device configured to detect a luminance of the OLED device; and a processor configured to generate a control signal according to brightness information of the OLED device detected by the optical detecting device so as to adjust brightness of the OLED device. |
US10811475B2 |
Array substrate, manufacturing method thereof and display device
An array substrate and a manufacturing method thereof, and a display device are provided. The array substrate includes a substrate, and a plurality of pixel units arranged in an array on the substrate, each of the pixel units is provided with a plurality of thin film transistors, each of the pixel units includes a plurality of light emitting units, the plurality of light emitting units are sequentially arranged along a direction perpendicular to a plane where the substrate is located, and disposed at a side of the thin film transistors away from the substrate, each of the light emitting units is connected with one of the thin film transistors, and different ones of the light emitting units are connected to different ones of the thin film transistors. |
US10811473B2 |
Organic light emitting device, display apparatus, method of controlling color temperature of light emitted from organic light emitting device, and method of fabricating organic light emitting device
The present application discloses an organic light emitting device. The organic light emitting device includes a first electrode; an organic layer an the first electrode, the organic layer having an organic light emitting layer; a second electrode on a side of the organic layer distal to the first electrode; an electrochromic layer between the first electrode and the organic layer; and a third electrode between the electrochromic layer and the organic layer. |
US10811469B2 |
Organic light emitting diode display device
An organic light emitting diode display device includes: an overcoating layer on a substrate having an emitting area and a non-emitting area and including a plurality of convex portions and a plurality of concave portions; a first electrode on the overcoating layer; a light emitting layer on the first electrode and including a first emitting material layer; and a second electrode on the light emitting layer, wherein the light emitting layer includes first, second and third emitting material layers sequentially under the second electrode, and wherein the first emitting material layer emits a first light of a first wavelength, the second emitting material layer emits the first light of the first wavelength, and the third emitting material layer emits a second light of a second wavelength different from the first wavelength. |
US10811468B2 |
Display device
A display device includes a display panel having a display area and a color filter layer including a black matrix and a color filter. Peripheral areas and a center area are in the display area. Light emitting areas and a non-light emitting area are in the display area. A center black matrix is in the non-light emitting area of the center area, and a peripheral black matrix is in the non-light emitting area of the peripheral area. Center color filters are in the light emitting areas of the center area, and peripheral color filters are in the light emitting areas of the peripheral area. First and second adjacent light emitting areas are in the peripheral area. First and second peripheral color filters are respectively in the first and second light emitting areas, and overlap each other in the non-light emitting area between the first and second light emitting areas. |
US10811463B2 |
Light emitting display device
A light emitting display device includes a substrate that includes a first pixel, a second pixel, a third pixel, and an infrared ray emission portion, the first pixel, the second pixel, and the third pixel representing different colors, a first electrode on the substrate, a second electrode that overlaps the first electrode, an emission layer between the first electrode and the second electrode, and an auxiliary layer between the first electrode and the emission layer. The emission layer may include a first emission layer in the first pixel and an infrared ray emission layer in the infrared ray emission portion, the auxiliary layer may include a first auxiliary layer in the first pixel, and the infrared ray emission layer and the first auxiliary layer may include the same material. |
US10811461B2 |
Access transmission gate
Substrates, assemblies, and techniques for a transmission gate that includes an n-type back end transistor and a p-type back end transistor in parallel with the n-type back end transistor. The transmission gate can be on a non-silicon substrate and include a second gate, a p-type semiconducting layer over the second gate, an n-type semiconducting layer over the p-type semiconducting layer, a bit line over the n-type semiconducting layer, a first gate over the n-type semiconducting layer, and a source line over the n-type semiconducting layer. The transmission gate may be coupled to a memory element. |
US10811460B2 |
Micrometer scale light emitting diode displays on patterned templates and substrates
A uLED and method for regrowth with thinner deposition on sidewall are disclosed. The uLED and method include a growth substrate including flat first and second regions, where the growth substrate is thicker in the first region as compared to the second region, and a third region of sloped sidewalls connecting the first and second regions, the topography forming a regular geometric pattern, a plurality of semiconductor epitaxial layers covering the first, second, and third regions including at least a p-n junction layer including a light emitting active region of direct bandgap semiconductor, sandwiched between n-type and p-type layers, each of the plurality of semiconductor epitaxial layers being thicker on the first and second regions as compared to the corresponding semiconductor epitaxial layers on the third region, and a plurality of electrical contacts forming an anode and cathode on part of the first and second regions, respectively. |
US10811459B2 |
Backside incidence type solid-state image pickup device
A back-illuminated solid-state imaging device includes a semiconductor substrate, a shift register, and a light-shielding film. The semiconductor substrate includes a light incident surface on the back side and a light receiving portion generating a charge in accordance with light incidence. The shift register is disposed on the side of a light-detective surface opposite to the light incident surface of the semiconductor substrate. The light-shielding film is disposed on the side of the light-detective surface of the semiconductor substrate. The light-shielding film includes an uneven surface opposing the light-detective surface. |
US10811458B2 |
Method of processing wafer
A method of processing a wafer having devices disposed in respective regions demarcated on a front face thereof by a grid of a plurality of projected dicing lines on the front face, the method includes a mask layer forming step of covering the front face of the wafer except for the regions where grooves are to be formed along the projected dicing lines with a resin material mixed with an ultraviolet ray absorber, and forming a mask layer on the front face of the wafer, a plasma etching step of performing plasma etching on the wafer from the mask layer side using a fluorine-based stable gas as an etching gas, and forming grooves in the wafer along the projected dicing lines, and a mask layer removing step of removing the mask layer after the plasma etching step is performed. |
US10811451B2 |
Solid-state imaging device having light shielding member to reduce transmitted light
In a solid-state imaging device, a photoelectric conversion unit, a transfer transistor, and at least a part of electric charge holding unit, among pixel constituent elements, are disposed on a first semiconductor substrate. An amplifying transistor, a signal processing circuit other than a reset transistor, and a plurality of common output lines, to which signals are read out from a plurality of pixels, are disposed on a second semiconductor substrate. |
US10811450B2 |
Image sensors
Image sensors are provided. The image sensors may include a plurality of unit pixels and a color filter array on the plurality of unit pixels. The color filter array may include a color filter unit including four color filters that are arranged in a two-by-two array, and the color filter unit may include two yellow color filters, a cyan color filter, and one of a red color filter or a green color filter. |
US10811447B2 |
Solid-state imaging device, driving method, and electronic equipment
The present disclosure relates to a solid-state imaging device, a driving method, and electronic equipment that permit imaging of a wide dynamic range image with higher quality.The solid-state imaging device includes a pixel region and a circuit region. A plurality of pixels that perform photoelectric conversion are arranged in the pixel region. At least a logarithmic conversion circuit is arranged in the circuit region. The logarithmic conversion circuit reads out a pixel signal from the pixel through a logarithmic readout scheme in which the pixel signal changes approximately logarithmically in proportion to the amount of light received by the pixel. Also, the logarithmic conversion circuit can switch between a logarithmic readout scheme and a linear readout scheme when the pixel signal is read out from the pixel. The present technology is applicable, for example, to a CMOS image sensor. |
US10811428B2 |
Semiconductor device and manufacturing method of the semiconductor device
A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes a well structure, a first channel pillar and a second channel pillar extending from an inside of the well structure in an upward direction, a semiconductor pattern coupled between the first channel pillar and the second channel pillar and having a gap disposed in a central region of the semiconductor pattern, and a source junction formed in the semiconductor pattern. |
US10811425B2 |
NOR flash memory and manufacturing method thereof
An NOR flash memory comprising a memory cell of a 3D structure and a manufacturing method thereof are provided. The flash memory 100 includes a plurality of columnar portions 120, a plurality of charge accumulating portions 130 and a plurality of control gates 140. The columnar portions 120 extend from a surface of a silicon substrate 110 in a vertical direction and include an active region. The charge accumulating portions 130 are formed by way of surrounding a side portion of each columnar portion 120. The control gates 140 are formed by way of surrounding a side portion of each charge accumulating portion 130. One end portion of the columnar portion 120 is electrically connected to a bit line 150 via a contact hole, and another end portion of the columnar portion 120 is electrically connected to a conductive region formed on a surface of the silicon substrate 110. |
US10811424B2 |
Integrated computing structures formed on silicon
The present disclosure includes methods of forming, and semiconductor structures for, integrated computing structures formed on silicon. An example method includes forming, on a silicon semiconductor material, an integrated computing structure by forming a number of complementary metal-oxide-semiconductor (CMOS) devices including a plurality of materials, forming a non-volatile memory (NVM) device including a plurality of materials, and forming the plurality of materials of the CMOS devices and the plurality of materials of the NVM device from a plurality of same materials shared at a corresponding plurality of positions within the structure. A particular function is provided by each of the plurality of same materials at the corresponding plurality of positions. |
US10811423B2 |
Method of fabricating semiconductor structure
The present disclosure provides a method of fabricating a semiconductor structure, and the method includes following steps. A gate structure is formed on a substrate, and a liner layer is formed to cover the gate structure and the substrate. A spacer layer is formed on the liner layer, and an etching gas is continuously provided to remove a portion of the spacer layer while maintaining the substrate at a second pressure, which the etching gas has a first pressure. The second pressure is greater than the first pressure. |
US10811421B2 |
Vertical memory devices and methods of manufacturing the same
Vertical memory devices, and methods of manufacturing the same, include providing a substrate including a cell array region and a peripheral circuit region, forming a mold structure in the cell array region, forming an opening for a common source line passing through the mold structure and extending in a first direction perpendicular to a top surface of the substrate, forming a first contact plug having an inner sidewall delimiting a recessed region in the opening for the common source line, and forming a common source bit line contact electrically connected to the inner sidewall of the first contact plug. |
US10811419B1 |
Storage node shaping
Methods, apparatuses, and systems related to shaping a storage node material are described. An example method includes forming a pillar with a pattern of materials. The method further includes depositing a storage node material on a side of the pillar. The method further includes etching sacrificial materials within the pillar. The method further includes etching the storage node material in a direction from the pillar into the storage node. |
US10811417B2 |
Semiconductor device
An object is to provide a semiconductor device with a novel structure. The semiconductor device includes a first wiring; a second wiring; a third wiring; a fourth wiring; a first transistor having a first gate electrode, a first source electrode, and a first drain electrode; and a second transistor having a second gate electrode, a second source electrode, and a second drain electrode. The first transistor is provided in a substrate including a semiconductor material. The second transistor includes an oxide semiconductor layer. |
US10811412B2 |
Method of fabricating semiconductor device
A FinFET including a gate stack, a semiconductor fin embedded in the gate stack, a source and a drain disposed is provided. The semiconductor fin extends along a widthwise direction of the gate stack and has a first concave and a second concave exposed at sidewalls of the gate stack respectively. The source and drain are disposed at two opposite sides of the gate stack. The source includes a first portion in contact with and embedded in the first concave. The drain includes a second portion in contact with and embedded in the second concave. The first portion and the second portion are covered by the gate stack. |
US10811410B2 |
Simultaneously fabricating a high voltage transistor and a FinFET
Forming a semiconductor layer on a semiconductor substrate, a top surface of the semiconductor layer above a fin in a second region is higher than a top surface of the semiconductor layer in a first region, etching the semiconductor layer and a mask in the first region to expose a top surface of the semiconductor substrate to form a first stack, and etching the semiconductor layer and the mask in the second region to expose a top surface of the fin to form a second stack, epitaxially growing a semiconductor material on a top surface of the fin not covered by the second stack, recessing the first and second stack to expose a top surface of the semiconductor layer, a portion of the mask remains above the semiconductor layer in the first stack, top surfaces of each of the first and second stacks each are substantially flush with one another. |
US10811409B2 |
Method of manufacturing FinFET with reduced parasitic capacitance and FinFET structure formed thereby
Methods of manufacturing FinFETs including providing a precursor FinFET structure having a substrate with fins thereon, S/D junctions on fin tops, an STI layer on the substrate and between fins, a conformal first dielectric layer on the STI layer and S/D junctions, and a second dielectric layer on the first dielectric layer; forming a conformal third dielectric layer on the second dielectric layer and surfaces of the first dielectric layer located above the second dielectric layer; forming a fourth dielectric layer on the third dielectric layer such that third dielectric layer located between adjacent fins is exposed and such that third dielectric layer located above the adjacent fins is exposed; removing the exposed third dielectric layer and the first dielectric layer located thereunder, thereby exposing the S/D junctions; and forming a metal contact on the exposed S/D junctions and the exposed portion of the third dielectric layer between adjacent fins. |
US10811407B2 |
Monolithic integration of enhancement mode and depletion mode field effect transistors
A monolithic integration of enhancement mode (E-mode) and depletion mode (D-mode) field effect transistors (FETs) comprises a compound semiconductor substrate overlaid by an epitaxial structure overlaid by source and drain electrodes. The epitaxial structure includes from bottom to top sequentially a buffer layer, a channel layer, a Schottky barrier layer, a first etch stop layer, and a first cap layer. The respective first gate metal layers of the D-mode and E-mode FET are in contact with the first etch stop layer. The D-mode and E-mode gate-sinking regions are beneath the respective first gate metal layers of the D-mode and E-mode gate electrode at least within the first etch stop layer. The first gate metal layer material of the D-mode is the same as that of the E-mode, where the first gate metal layer thickness of the E-mode is greater than that of the D-mode. |
US10811405B2 |
Semiconductor device
A semiconductor device includes a semiconductor substrate, a memory cell formed on the semiconductor substrate, a word line connected to the memory cell, and an auxiliary line connected to the word line. |
US10811404B2 |
Package structure and method of manufacturing the same
Provided are a package structure and a method of manufacturing the same. The package structure includes a die, a passive device, and a package. The die has a front side and a backside opposite to each other. The package is disposed on the backside of the die. The passive device is disposed between the backside of the die and the package. |
US10811402B2 |
Memory device and microelectronic package having the same
The invention provides a memory device and microelectronic package having the same. The microelectronic package comprises at least one memory device which is adapted to be stacked vertically with one another, and a processing device stacked vertically and adjacently with the at least one memory device and electrically connected to the conductive interconnects. Each of the memory devices comprises a substrate and a plurality of memory units. The substrate presents a front surface and a back surface. The memory units are formed on the front surface, each of which comprises a plurality of memory cells and a plurality of conductive interconnects electrically connected to the memory cells. In each of the memory units, the conductive interconnects contribute to a plurality of signal channels each of which is dedicated to transmit signals from the processing device to one of the memory units and vice versa. |
US10811401B1 |
Maintaining alignment between a LED device and a backplane during bonding
Embodiments described herein relate to maintaining alignment between materials having different coefficients of thermal expansion during a bonding process of a light emitting diode (LED) device. The LED device includes a LED array and a backplane. The LED array and the blackplane each include a plurality of electrodes. During a bonding process where the electrodes of the LED array and electrodes of a backplane are bonded together, an alignment material having a coefficient of thermal expansion different than a coefficient of thermal expansion of the material of the LED array is deposited between LEDs of the LED array. |
US10811398B2 |
Semiconductor structure and method for manufacturing the same
A semiconductor structure is disclosed. The semiconductor structure includes: a semiconductor substrate including a front surface and a back surface; a backside metallization layer formed over the semiconductor substrate, the backside metallization layer being closer to the back surface than to the front surface of the semiconductor substrate, at least a portion of the backside metallization layer forming an inductor structure; and an electrically non-conductive material formed in the semiconductor substrate, the electrically non-conductive material at least partially overlapping the inductor structure from a top view, and the electrically non-conductive material including a top surface, a bottom surface, and sidewalls, the top surface being adjacent to the back surface of the semiconductor substrate. A method for manufacturing a semiconductor structure is also disclosed. |
US10811397B2 |
Chip-on-board design with color mixing
Some embodiments of the disclosure provide for a lighting system including a substrate. The lighting system includes several blue light emitting diodes (LEDs) supported by the substrate. The lighting system includes at least one red LED supported by the substrate. The lighting system includes a light conversion material covering the blue LEDs and the at least one red LED. |
US10811396B2 |
Display device
A display device includes a substrate, a light-emitting member, and an anti-reflective glass layer. The light-emitting member is on the substrate. The anti-reflective glass layer is over the light-emitting member, and the anti-reflective glass layer has a transmittance of 40-95%. The anti-reflective glass layer includes a glass layer and a light-absorbing layer. The glass layer has a rough top surface and a haze of 70-80%. The light-absorbing layer is on the rough top surface of glass layer. |
US10811394B2 |
Devices employing thermal and mechanical enhanced layers and methods of forming same
A method includes attaching a first-level device die to a dummy die, encapsulating the first-level device die in a first encapsulating material, forming through-vias over and electrically coupled to the first-level device die, attaching a second-level device die over the first-level device die, and encapsulating the through-vias and the second-level device die in a second encapsulating material. Redistribution lines are formed over and electrically coupled to the through-vias and the second-level device die. The dummy die, the first-level device die, the first encapsulating material, the second-level device die, and the second encapsulating material form parts of a composite wafer. |
US10811390B2 |
Die stack structure and method of fabricating the same and package
Provided is a die stack structure including a first die and a second die. The first die and the second die are bonded together through a hybrid bonding structure. A bonding insulating layer of the hybrid bonding structure extends to contact with one interconnect structure of the first die or the second die. |
US10811387B2 |
Methods of operating microelectronic devices including a controller
Semiconductor device packages include a stack of semiconductor memory devices positioned over an interposer substrate, a controller element, and a redistribution substrate positioned laterally adjacent to the controller element. At least a portion of the controller element is positioned directly between the stack and the interposer substrate. The controller element is operatively connected to the semiconductor memory devices of the stack through the redistribution substrate and the interposer substrate. Methods of manufacturing a semiconductor device package include positioning a redistribution substrate laterally adjacent to a controller element and attaching the redistribution substrate and the controller element to an interposer substrate. A stack of semiconductor memory devices is positioned over the controller element and the redistribution substrate. The controller element is operatively connected to the semiconductor memory devices of the stack through the redistribution substrate and the interposer substrate. |
US10811385B2 |
Wafer-level system-in-package structure and electronic apparatus thereof
A wafer-level system-in-package structure and an electronic apparatus are provided. The wafer-level system-in-package structure includes a substrate having a plurality of first chips formed therein. A first chip is formed by being grown on the substrate through a semiconductor process. The wafer-level system-in-package structure also includes an encapsulation layer having a plurality of second chips embedded therein. The encapsulation layer covers the substrate and the first chips. At least one of the plurality of second chips is electrically connected to at least one of the plurality of first chips through a conductive bump, and electrically-connected first and second chips have an overlapping portion. |
US10811384B2 |
Semiconductor package and method of manufacturing the same
A semiconductor package includes a redistribution structure, at least one semiconductor device, a heat dissipation component, and an encapsulating material. The at least one semiconductor device is disposed on and electrically connected to the redistribution structure. The heat dissipation component is disposed on the redistribution structure and includes a concave portion for receiving the at least one semiconductor device and an extending portion connected to the concave portion and contacting the redistribution structure, wherein the concave portion contacts the at least one semiconductor device. The encapsulating material is disposed over the redistribution structure, wherein the encapsulating material fills the concave portion and encapsulates the at least one semiconductor device. |
US10811381B2 |
Wafer to wafer bonding method and wafer to wafer bonding system
A wafer to wafer bonding method includes performing a plasma process on a bonding surface of a first wafer, pressurizing the first wafer after performing the plasma process on the bonding surface of the first wafer, and bonding the first wafer to a second wafer. The plasma process has different plasma densities along a circumferential direction about a center of the first wafer. A middle portion of the first wafer protrudes after pressurizing the first wafer. The first wafer is bonded to the second wafer by gradually joining the first wafer to the second wafer from the middle portion of the first wafer to a peripheral region of the first wafer. |
US10811379B2 |
Semiconductor package
A semiconductor package includes a semiconductor chip including a body, a connection pad, a passivation film, a first connection bump disposed, and a first coating layer; an encapsulant covering at least a portion of the semiconductor chip; and a connection structure including an insulating layer, a redistribution layer, and a connection via. The first connection bump includes a low melting point metal, the redistribution layer and the connection via include a conductive material, and the low melting point metal has a melting point lower than a melting point of the conductive material. |
US10811378B2 |
Electronic package and manufacturing method thereof
An electronic package is provided. An electronic component and a plurality of conductive pillars electrically connected with the electronic component are embedded in an encapsulating layer. Each of the conductive pillars has a circumferential surface and two end surfaces wider than the circumferential surface in width. The encapsulating layer encapsulates and protects the electronic component effectively, so as to improve the reliability of the electronic package. A method for fabricating the electronic package is also provided. |
US10811376B2 |
Cu column, Cu core column, solder joint, and through-silicon via
Provided are a Cu column, a Cu core column, a solder joint, and a through-silicon via, which have the low Vickers hardness and the small arithmetic mean roughness. For the Cu column 1 according to the present invention, its purity is equal to or higher than 99.9% and equal to or lower than 99.995%, its arithmetic mean roughness is equal to or less than 0.3 μm, and its Vickers hardness is equal to or higher than 20 HV and equal to or less than 60 HV. Since the Cu column 1 is not melted at a melting temperature in the soldering and a definite stand-off height (a space between the substrates) can be maintained, it is preferably applied to the three dimensional mounting or the pitch narrowing mounting. |
US10811374B2 |
Interconnect structure and method of forming same
A device includes a first side interconnect structure over a first side of a substrate, wherein active circuits are in the substrate and adjacent to the first side of the substrate, a dielectric layer over a second side of the substrate, a pad embedded in the dielectric layer, the pad comprising an upper portion and a bottom portion formed of two different materials and a passivation layer over the dielectric layer. |
US10811363B2 |
Marks for locating patterns in semiconductor fabrication
Embodiments of semiconductor fabrication methods are disclosed. In an example, a method for forming a mark for locating patterns in semiconductor fabrication is disclosed. A wafer is divided into a plurality of shots. Each of the plurality of shots includes a semiconductor chip die. Four quarters of a locking corner mark are subsequently patterned, respectively, at four corners of four adjacent shots of the plurality of shots. Each quarter of the locking corner mark is symmetric to adjacent quarters of the locking corner mark and is separated from the adjacent quarters of the locking corner mark by a nominally same distance. The locking corner mark is set as an origin for locating patterns in at least one of the four adjacent shots in semiconductor fabrication. |
US10811360B2 |
Semiconductor device, method for manufacturing semiconductor device and alignment mark
According to one embodiment, a semiconductor device includes a semiconductor layer, an insulating film, a first interconnect, a conductor, and a frame-shaped portion. The insulating film is provided on the semiconductor layer. The first interconnect is provided on the insulating film. The conductor extends through the insulating film and electrically connects the semiconductor layer and the first interconnect. The frame-shaped portion extends through the insulating film and is provided in a second region different from a first region, the conductor being provided in the first region. The frame-shaped portion protrudes from a surface of the insulating film on which the first interconnect is provided. |
US10811358B2 |
Hybrid interposer and semiconductor package including the same
A semiconductor package includes an organic frame having first and second surfaces opposing each other, having a cavity, and having a wiring structure connecting the first and second surfaces, a connection structure disposed on the first surface of the organic frame and having a first redistribution layer connected to the wiring structure, at least one inorganic interposer having first and second surfaces, and having an interconnection wiring connecting the first and second surfaces of the at least one inorganic interposer to each other, an encapsulant encapsulating at least a portion of the at least one inorganic interposer, an insulating layer disposed on the second surface of the organic frame and the second surface of the at least one inorganic interposer, a second redistribution layer having portions provided as a plurality of pads, and at least one semiconductor chip having connection electrodes respectively connected to the plurality of pads. |
US10811357B2 |
Standard cell and an integrated circuit including the same
An integrated circuit including: a power rail including first and second conductive lines spaced apart from each other in a vertical direction, wherein the first and second conductive lines extend in parallel to each other in a first horizontal direction, and are electrically connected to each other, to supply power to a first standard cell, wherein the first and second conductive lines are disposed at a boundary of the first standard cell; and a third conductive line between the first and second conductive lines and extending in a second horizontal direction orthogonal to the first horizontal direction, to transfer an input signal or an output signal of the first standard cell. |
US10811355B2 |
Methods of forming semiconductor devices
A semiconductor device including conductive lines is disclosed. First conductive lines each comprise a first portion, a second portion, and an enlarged portion, the enlarged portion connecting the first portion and the second portion of the first conductive line. The semiconductor device includes second conductive lines, at least some of the second conductive lines disposed between a pair of the first conductive lines, each second conductive line including a larger cross-sectional area at an end portion of the second conductive line than at other portions thereof. The semiconductor device includes a pad on each of the first conductive lines and the second conductive lines, wherein the pad on each of the second conductive lines is on the end portion thereof and the pad on each of the first conductive lines is on the enlarged portion thereof. |
US10811353B2 |
Sub-ground rule e-Fuse structure
A mandrel structure includes a first mandrel, a second mandrel and a third mandrel in a parallel arrangement. The second mandrel is located between the first and third mandrels and has a cut larger than a minimum ground rule feature. A sidewall layer is formed over the mandrel structure. The sidewall layer has two long parallel gaps for two contact lines and a third gap for a fuse element. The third gap is orthogonal to and connects the two long parallel gaps. The sidewall pattern is used to form a trench structure comprising two parallel contact line trenches having a width at least as great as a ground rule of the patterning process for the contact lines and an orthogonal fuse element trench having a width less than the ground rule for the fuse element. A conductive material forms the contact lines and a fuse element. |
US10811351B2 |
Preformed interlayer connections for integrated circuit devices
A first metallization layer is deposited on a first insulating layer on a substrate. The first metallization layer comprises a set of first conductive lines. A second metallization layer is deposited over the first metallization layer. The second metallization layer comprises a set of second conductive lines that cross the set of first conductive lines to form intersection regions. At least one of the intersection regions comprises a first portion of one of the first conductive lines and a second portion of one of the second conductive lines that crosses the first portion. A plurality of preformed connections are disposed between the first metallization layer and the second metallization layer at the plurality of intersection region. At least one of the preformed connections comprises a second insulating layer aligned to the second portion and the first portion. |
US10811347B2 |
Semiconductor device package and method of manufacturing the same
A semiconductor device package is provided, which includes a semiconductor device, a redistribution layer, an under bump metallurgy (UBM) structure, a passivation layer and a protection layer. The semiconductor device has an active surface. The redistribution layer is disposed on the active surface of the semiconductor device and electrically connected to the semiconductor device. The UBM structure is disposed on the redistribution layer. The passivation layer is disposed on the redistribution layer and surrounding the UBM structure and having a first surface. The protection layer is disposed on the redistribution layer and having a first surface. The first surface of the passivation layer is substantially coplanar with the first surface of the protection layer. |
US10811346B2 |
Lead frame
A lead frame includes a lead frame substrate made of a copper-based material, plating layers composed of nickel, palladium and gold layers laminated in this order on top faces and bottom faces of the lead frame substrate, and a roughened silver plating layer having acicular projections, provided as an outermost plating layer and covering faces of the lead frame substrate that form concavities or a through hole between the top faces and the bottom faces of the lead frame substrate. The roughened silver plating layer has a crystal structure in which the crystal direction <101> occupies a largest proportion among the crystal directions <001>, <111> and <101>. The lead frame can be manufactured with improved productivity owing to reduction in cost and operation time, and achieves remarkably high adhesion to sealing resin while keeping the total thickness of plating layers including the silver plating layer to be thin. |
US10811343B2 |
Method of making a wire support leadframe for a semiconductor device
A leadframe includes a plurality of interconnected support members. A pair of die pads is connected to the support members and configured to receive a pair of dies electrically connected by at least one wire. A support bracket extends between the die pads and includes a surface for maintaining the at least one wire at a predetermined distance from the die pads during overmolding of the leadframe. |
US10811342B2 |
Semiconductor package and method of manufacturing a semiconductor package
A semiconductor package includes a semiconductor die having a semiconductor device, and first and second contact pads arranged on opposite surfaces of the die. The semiconductor die is embedded in a dielectric layer. The semiconductor package also includes one or more first package contact pads and one or more second package contact pads arranged on a first major surface of the semiconductor package. The first contact pad of the die is coupled to the one or more first package contact pads, and the second contact pad of the die is coupled to the one or more second package contact pads. In operation, the semiconductor device causes a current path between the first contact pad and the second contact pad. The package contact pads are arranged on the first major surface of the semiconductor package to provide multiple non-parallel current paths. |
US10811340B2 |
Integrated assemblies comprising redundant wiring routes, and integrated circuit decks having openings extending therethrough
Some embodiments include an integrated assembly having a conductive line supported by a deck and extending along a longitudinal direction. The conductive line is configured to carry an electrical signal. A connection region is along the conductive line. The conductive line splits amongst multiple components as it passes through the connection region. The components are spread-apart from one another along a lateral direction which is orthogonal to the longitudinal direction. An opening extends vertically through the deck and through the connection region. The opening breaks one of the components of the conductive line to leave another of the components to carry the electrical signal across the connection region. |
US10811334B2 |
Integrated circuit nanoparticle thermal routing structure in interconnect region
An integrated circuit has a substrate and an interconnect region disposed on the substrate. The interconnect region has a plurality of interconnect levels. The integrated circuit includes a thermal routing structure in the interconnect region. The thermal routing structure extends over a portion, but not all, of the integrated circuit in the interconnect region. The thermal routing structure includes a cohered nanoparticle film in which adjacent nanoparticles cohere to each other. The thermal routing structure has a thermal conductivity higher than dielectric material touching the thermal routing structure. The cohered nanoparticle film is formed by a method which includes an additive process. |
US10811332B2 |
Thermal-dissipating substrate structure
A substrate structure is provided, including a substrate, an integrated circuit chip, a circuit structure, and a thermal-dissipating structure. The integrated circuit chip is disposed in the substrate. The circuit structure is electrically connected to the integrated circuit chip. The thermal-dissipating structure is disposed in the substrate and adjacent to the integrated circuit chip, and the thermal-dissipating structure is electrically isolated from the circuit structure. |
US10811329B2 |
Ceramic substrate and method for producing a ceramic substrate
The present invention relates to a ceramic substrate (100) comprising: a front side (100-1), which comprises: i) a power semiconductor (102-1, . . . , 102-n); and ii) a first metallic layer (104) comprising at least one first metallic plane contact (104-1, . . . , 104-n), which is configured to connect the power semiconductor (102-1, . . . , 102-n) to a first terminal (105-1, . . . , 105-n) on an edge (100-3) of the ceramic substrate (100); a back side (100-2), which comprises: i) a capacitor (103) which is attached to a ii) second metallic layer (108) comprising at least one second metallic plane contact (108-1, . . . , 108-n), which is configured to connect the capacitor (103) to a second terminal (107-1, . . . , 107-n) on the edge (100-3) of the ceramic substrate (100); and a metallic frame (110), which is configured to connect the first metallic layer (104) to the second metallic layer (108). |
US10811326B1 |
Acoustic detection of laser failure mode in semiconductor environment
A method of detecting undesired surface effects while lasing a semiconductor during a laser marking, (dicing, fuse cutting or otherwise) process. A detection device is placed near the site of semiconductor lasing to detect erroneous laser markings resulting in the undesired surface effects. Upon identifying such a condition, lasing may be interrupted in-process. |
US10811325B2 |
Self-healing semiconductor wafer processing
Implementations of the present disclosure generally relate to methods for processing substrates, and more particularly, to methods for predicting, quantifying and correcting process drift. In one implementation, the method includes performing a design of experiments (DOE) in a process chamber to obtain sensor readings and film properties at multiple locations on a substrate for every adjustable process control change associated with the process chamber, building a regression model for each location on the substrate using the sensor readings and film properties obtained from the DOE, tracking changes in sensor readings during production, identifying drifting in sensor readings that can lead to a change in film properties using the regression model, and adjusting one or more process controls to correct the drifting in sensor readings to minimize the change in film properties. |
US10811324B2 |
Fabrication of thin-film encapsulation layer for light emitting device
An ink jet process is used to deposit a material layer to a desired thickness. Layout data is converted to per-cell grayscale values, each representing ink volume to be locally delivered. The grayscale values are used to generate a halftone pattern to deliver variable ink volume (and thickness) to the substrate. The halftoning provides for a relatively continuous layer (e.g., without unintended gaps or holes) while providing for variable volume and, thus, contributes to variable ink/material buildup to achieve desired thickness. The ink is jetted as liquid or aerosol that suspends material used to form the material layer, for example, an organic material used to form an encapsulation layer for a flat panel device. The deposited layer is then cured or otherwise finished to complete the process. |
US10811322B1 |
Different gate widths for upper and lower transistors in a stacked vertical transport field-effect transistor structure
A method of forming a semiconductor structure includes forming vertical fins comprising a first semiconductor layer, an isolation layer and a second semiconductor layer, the first and second semiconductor layers providing vertical transport channels for lower and upper vertical transport field-effect transistors (VTFETs) of a stacked VTFET structure. The method also includes forming a first gate stack for the lower VTFET surrounding a first portion of the first semiconductor layer of the vertical fins. The method further includes forming a second gate stack for the upper VTFET surrounding a second portion of the second semiconductor layer of the vertical fins. The first and second portions have different sizes such that the upper and lower VTFETs of the stacked VTFET structure have different effective gate widths. |
US10811311B2 |
Element isolation layer structure and method of manufacturing the same
An element isolation structure includes a substrate defining a trench including an upper trench and a lower trench in communication with each other, the substrate including an inclined sidewall that forms the upper and lower trench; a first thin film liner on the substrate and conforming to the substrate, the first thin film liner having a substantially uniform thickness trench; a second thin film liner pattern selectively on a lower portion of the first thin film liner within a volume defined by the lower trench, the second thin film liner pattern having a substantially uniform thickness; a lower isolation layer formed on the second thin film liner pattern and substantially filling the volume defined by the lower trench; and an upper isolation layer formed on an upper portion of the first thin film liner and the lower isolation layer and substantially filling a volume defined by the upper trench. |
US10811300B2 |
Wafer table with dynamic support pins
A method for semiconductor fabrication includes mounting a wafer onto a first wafer table. The first wafer table includes a first set of pins that support the wafer, the first set of pins having a first pitch between adjacent pins. The method further includes forming a first set of overlay marks on the wafer; and transferring the wafer onto a second wafer table. The second wafer table includes a second set of pins having a second pitch between adjacent pins. The second set of pins are individually and vertically movable, and the second pitch is smaller than the first pitch. The method further includes moving a portion of the second set of pins such that a remaining portion of the second set of pins supports the wafer and the remaining portion has the first pitch between adjacent pins. |
US10811299B2 |
Wafer chuck assembly
The present disclosure generally relates to chuck technology for supporting semiconductor wafers during processing. In one example, a wafer chuck assembly comprises a chuck hub and a centering hub disposed within the chuck hub. An engagement device is operable between an engaged position and a disengaged position respectively to engage the chuck hub with the centering hub to prevent relative movement therebetween in at least a first direction, or to allow relative movement therebetween. A chuck motor is provided for selectively rotating the chuck hub and/or the centering hub during a wafer processing operation and a wafer centering operation based on an engaged or disengaged position of the engagement device. A plurality of chuck arms is mounted to the chuck hub, each chuck arm extending radially between a proximal end adjacent the chuck hub, and a distal end remote therefrom. Each of a plurality of centering cams is mounted at or towards a distal end of a chuck arm, and movable to engage or release a wafer edge in response to rotational movement of the centering hub relative to the chuck hub. |
US10811298B2 |
Patterned carrier wafers and methods of making and using the same
An apparatus is provided, comprising: a wafer having a first planar surface and a second surface opposite the first surface. The second surface includes a plurality of recesses. Each recess includes a plurality of sidewalls and a lower surface and is configured to receive a semiconductor device. The plurality of sidewalls of each recess is configured to align the semiconductor device and constrain the semiconductor device from moving in a direction parallel to the second surface. |
US10811297B2 |
Wafer expander
An apparatus for expanding chips of a wafer, wherein the apparatus comprises an expansion mechanism configured for expanding a tape on which the chips of the wafer are arranged, and an inflation mechanism configured for inflating at least a part of an edge portion of the tape so that part of the edge portion approaches a frame. |
US10811296B2 |
Substrate support with dual embedded electrodes
Embodiments described herein generally relate to plasma assisted or plasma enhanced processing chambers. More specifically, embodiments herein relate to electrostatic chucking (ESC) substrate supports configured to provide pulsed DC voltage to a substrate, and methods of biasing the substrate using the pulsed DC voltage, during plasma assisted or plasma enhanced semiconductor manufacturing processes. |
US10811295B2 |
Positioning method
A positioning method includes an imaging step, a straight line storage step, a straight line registration step, and a positioning step. The imaging step captures an image of a region including a target or street on a workpiece. The straight line storage step detects and stores the coordinate positions of all predetermined straight lines in the region. The straight line registration step allows an operator to select a specific straight line in the target or on the street from all the straight lines and register the selected straight line. The positioning step positions a processing unit on the street in accordance with coordinate data concerning the straight line selected and registered in the straight line registration step. |
US10811292B2 |
Transport packaging and method for expanded wafers
Apparatus to store singulated wafers for transport, including multiple wafer assemblies stacked in the interior of a container housing, the individual wafer assemblies including an expanded laser diced wafer singulated into dies, a first frame spaced outward from the wafer on a carrier structure, a second frame spaced outward from the wafer and inward from the first frame on the carrier structure, and a foam structure that supports the second frame and the carrier structure. |
US10811291B2 |
Wafer container and method for holding wafer
Provided is a wafer container including a frame and at least a pair of the stents. The frame has opposite sidewalls. The at least a pair of the stents is respectively disposed on the sidewalls of the frame, wherein the at least a pair of the stents is configured to provide at least three supporting points to support at least one wafer. A method for holding at least one wafer is also provided. |
US10811290B2 |
Systems and methods for inspection stations
In an embodiment, a workstation includes: a processing chamber configured to process a workpiece; a load port configured to interface with an environment external to the workstation; a robotic arm configured to transfer the workpiece between the load port and the processing chamber; and a defect sensor configured to detect a defect along a surface of the workpiece when transferred between the load port and the processing chamber. |
US10811283B2 |
Substrate cleaning method, substrate cleaning system, and memory medium
A method for cleaning a substrate includes supplying to a substrate a film-forming processing liquid which includes a volatile component and forms a film on the substrate, vaporizing the volatile component in the film-forming processing liquid such that the film-forming processing liquid solidifies or cures on the substrate and forms a processing film on the substrate, supplying to the substrate having the processing film a strip-processing liquid which strips the processing film from the substrate, and supplying to the processing film formed on the substrate a dissolving-processing liquid which dissolves the processing film after the supplying of the strip-processing liquid. |
US10811281B2 |
Manufacturing method of semiconductor device and semiconductor device
A manufacturing method of a semiconductor device, includes: (a) preparing a lead frame having: a first tie bar extending in a first direction in plan view so as to couple a plurality of first leads to one another; a second tie bar extending in the first direction in plan view so as to couple a plurality of second leads to one another; a coupling portion coupled to the first tie bar and the second tie bar; a first chip mounting portion arranged between the first tie bar and the second tie bar in plan view; and a second chip mounting portion arranged between the first chip mounting portion and the second tie bar in plan view; and (b) after the (a), mounting a first semiconductor chip on the first chip mounting portion and mounting a second semiconductor chip on the second chip mounting portion. |
US10811276B2 |
Buffer layer to prevent etching by photoresist developer
A method includes: providing a device having a first layer and a second layer in contact with a surface of the first layer, in which the second layer includes a first superconductor material; forming a buffer material on the second layer to form an etch buffer layer, in which an etch rate selectivity of the buffer material relative to the second layer upon exposure to a photoresist developer is such that the underlying second layer is not etched during exposure of the buffer layer to the photoresist developer; depositing and removing a selected portion of a resist layer to uncover a first portion of the etch buffer layer, wherein removing the selected portion of the resist layer comprises applying the photoresist developer to the selected portion of the resist layer. |
US10811274B2 |
Etching method and plasma processing apparatus
A method of etching selectively etches a first region of a substrate with respect to a second region of the substrate formed of a different material from the first region. A deposition film is formed of a chemical species included in plasma generated from a first gas. A gaseous precursor is supplied to the substrate having the deposition film formed thereon to form an adsorption film on the substrate from the precursor. Ions from plasma generated from a second gas are supplied to the substrate having the deposition film and the adsorption film formed thereon so as to cause a reaction between the material of the first region and a chemical species included in the deposition film, so that the first region is etched. The adsorption film reduces the etching rate of the second region during the etching of the first region. |
US10811272B2 |
Method of forming stacked structure of memory
A method of forming a dielectric layer includes the following steps. A substrate including a first area and a second area is provided. A plurality of patterns on the substrate of the first area and a blanket stacked structure on the substrate of the second area are formed. An organic dielectric layer covers the patterns, the blanket stacked structure and the substrate. The blanket stacked structure is patterned by serving the organic dielectric layer as a hard mask layer, thereby forming a plurality of stacked structures. The organic dielectric layer is removed. A dielectric layer blanketly covers the patterns, the stacked structures, and the substrate. |
US10811271B2 |
Substrate processing device, manufacturing method for semiconductor device, and reaction tube
A substrate processing apparatus includes: a substrate holding member configured to hold a plurality of substrates; a reaction tube configured to accommodate the substrate holding member and process the substrates; a processing gas supply system configured to supply a processing gas into the reaction tube; and an exhaust system configured to exhaust an internal atmosphere of the reaction tube. The reaction tube includes: a cylindrical portion; a gas supply area formed outside one side wall of the cylindrical portion and connected to the processing gas supply system; and a gas exhaust area formed outside the other side wall of the cylindrical portion opposed to the gas supply area and connected to the exhaust system. Each of the gas supply area and the gas exhaust area has an inner wall which partitions the interior of each of the gas supply area and the gas exhaust area into a plurality of spaces. |
US10811270B2 |
Ultra narrow trench patterning using plasma etching
A method includes forming a polymer layer on a patterned photo resist. The polymer layer extends into an opening in the patterned photo resist. The polymer layer is etched to expose the patterned photo resist. The polymer layer and a top Bottom Anti-Reflective Coating (BARC) are etched to pattern the top BARC, in which the patterned photo resist is used as an etching mask. The top BARC is used as an etching mask to etching an underlying layer. |
US10811269B2 |
Method to achieve a sidewall etch
Sidewall etching of substrate features may be achieved by employing an etch stop layer formed over the features. The etch stop layer is thinner on sidewalls of the features as compared to the bottom of the features. The lateral etching of the features is achieved by use of an over etch which breaks through the etch stop layer on the sidewalls of the features but does not break through the etch stop layer formed at the bottom of the features. The use of the etch stop layer allows for lateral etching while preventing unwanted vertical etching. The lateral etching may be desirable for use in a number of structures, including but not limited to 3D structures. The lateral etching may also be used to provide vertical sidewalls by reducing the sidewall taper angle. |
US10811260B2 |
Semiconductor device having buried gate structure and method for fabricating the same
A method for fabricating a semiconductor device includes: forming a gate trench in a semiconductor substrate; forming a gate dielectric layer over a bottom surface and sidewalls of the gate trench; forming a first work function layer over the gate dielectric layer; doping a work function adjustment element to form a second work function layer which overlaps with the sidewalls of the gate trench; forming a gate conductive layer that partially fills the gate trench; and forming doped regions inside the semiconductor substrate on both sides of the gate trench. |
US10811258B1 |
Method for improving the quality of a high-voltage metal oxide semiconductor
The present invention provides a method for improving the quality of a high-voltage metal oxide semiconductor (HV MOS), the method includes: firstly, a substrate is provided, next, a hard mask layer is formed on the substrate, an oxygen plasma treatment is then performed to the hard mask layer, so as to form an oxide layer on the hard mask layer. Afterwards, a patterned photoresist layer is formed on the oxide layer, and a first cleaning process is performed to a top surface of the oxide layer after the patterned photoresist layer is formed, wherein the first cleaning process comprises rinsing the oxide layer with carbonated water. Next, a first etching process is performed to remove parts of the hard mask layer, and the patterned photoresist layer is then removed. Afterwards, a second etching process is performed, to remove the oxide layer. |
US10811256B2 |
Method for etching a carbon-containing feature
Methods for etching a carbon-containing feature are provided. The methods may include: providing a substrate having a carbon-containing feature formed thereon in a reaction space; supplying helium gas and an oxidizing to the reaction space; generating a plasma within the reaction space from a gas mixture comprising helium gas and the oxidizing gas; and anisotropically etching the carbon-containing feature utilizing the plasma to cause lateral etching of the carbon-containing feature. |
US10811254B2 |
Method for fabricating metal chalcogenide thin films
Provided is a method for fabricating high-uniformity and high-quality metal chalcogenide thin films. The method for fabricating metal chalcogenide thin films may include forming a metal precursor thin film including a metal thin film and a chalcogen thin film disposed on the upper surface or lower surface of the metal thin film; and performing a chalcogenization process for providing a chalcogen source on the metal precursor thin film to form a first metal chalcogenide thin film. |
US10811252B2 |
Pattern-forming method
A pattern-forming method includes forming a first film above a material to be processed, processing the first film into a pattern to be formed in the material to be processed, providing a second film on the first film and the material to be processed, supplying a precursor containing at least one of a metal material or a semiconductor material to the second film, removing the first film, and processing the material to be processed using the second film impregnated with at least one of the metal material and the semiconductor material, as a mask. |
US10811247B2 |
Method of cleaning and drying semiconductor substrate
A cleaning and drying method of a semiconductor substrate capable of suppressing collapse or breakdown of a pattern which occur at the time of drying a cleaning solution after cleaning the substrate and decomposition of a resin at a bottom of the pattern, and capable of removing the cleaning solution with good efficiency without using a specific device. |
US10811243B2 |
Ion supply system and method to control an ion supply system
Disclosed herein is an ion supply system, having an ion source emitting ions into a fore vacuum chamber, an ion transport device having stacked electrodes arranged in the fore vacuum chamber, a control system supplying an oscillatory voltage to the electrodes of the ion transport device and a vacuum chamber, arranged downstream from the ion transport device. A vacuum gauge is arranged in the vacuum chamber. The pressure signal of the vacuum gauge is supplied to the control system supplying the oscillatory voltage to electrodes of the ion transport device. The control system adjusts the amplitude of the oscillatory voltage in accordance with the pressure signal. |
US10811235B2 |
Method to filter macro particles in a cathodic arc physical vapor deposition (PVD), in vacuum
A method to filter macro particles in a cathodic arc physical vapor deposition (PVD) in vacuum is described, said method comprising the step of evaporating a material from a solid source by means of application of the arc on the source, forming a plasma comprising electrons, micro particles (vapor) and ions of evaporated material, together with macro particles larger in size than the micro particles and ions. The arc is moved on the source at a speed (superficial speed) at which the electrons, the micro particles and the ions of material evaporated at a second point deviate, from a path towards a substrate to be coated facing the source, the macro particles formed at a first point previously passed over by the arc, so as to self-clean the plasma of the macro particles and allow condensation of only the cleaned plasma on the substrate. |
US10811226B2 |
Symmetrical plural-coil plasma source with side RF feeds and RF distribution plates
A plasma reactor has an overhead inductively coupled plasma source with two coil antennas and symmetric and radial RF feeds and cylindrical RF shielding around the symmetric and radial RF feeds. The radial RF feeds are symmetrically fed to the plasma source. |
US10811223B2 |
Method of analyzing surface modification of a specimen in a charged-particle microscope
Producing and storing a first image, of a first, initial surface of the specimen; In a primary modification step, modifying said first surface, thereby yielding a second, modified surface; Producing and storing a second image, of said second surface; Using a mathematical Image Similarity Metric to perform pixel-wise comparison of said second and first images, so as to generate a primary figure of merit for said primary modification step. |
US10811221B1 |
Secondary electron detection efficiency
Systems and devices for improving the efficiency of secondary electron detection in charged particle beam systems include a charged particle detector, a first elongate member coupled with the charged particle detector, and a second elongate member coupled with the charged particle detector. The first elongate member and the second elongate member each extend away from the charged particle detector. The system also includes at least one drawing member that is coupled with the first elongate member. Additionally, at least one electrical connection point is arranged to supply at least one bias voltage to the first elongate member, the second elongate member, and the drawing member. The drawing member is configured to generate an electromagnetic field that applies a drawing force that draws charged particles away from the charged particle source, and/or reduces the amount of charged particles from the charged particle source that strike the charged particle tool. |
US10811219B2 |
Method for evaluating a region of an object
A method for evaluating a region of an object, the method may include repeating, for each sub-region out of a first sub-region of the region till a penultimate sub-region of the region, the steps of: (a) acquiring, by a charged particle imager, a charged particle image of the sub-region; and (b) milling, by a charged particle miller, the sub-region to expose another sub-region of region; acquiring, by the charged particle imager, a charged particle image of a last sub-region of the region; and generating three-dimensional information about a content of the region based on charge particle images of the first sub-region till last sub-region of the region. |
US10811216B2 |
Method for automatically aligning a scanning transmission electron microscope for precession electron diffraction data mapping
A method for automatically aligning a scanning tunneling electron microscope (STEM) for acquiring precession electron diffraction (PED) mapping data includes the generation of an incident electron beam aligned with a STEM optic axis and focused on a sample region. A non-inclined signal is acquired of the spatial distribution from the sample region, by scanning the aligned incident beam across multiple discrete locations and acquiring a signal associated with each location. The method can further include the inclination of the incident electron beam to a fixed inclination angle relative to the optic axis and then acquiring an inclined signal spatial distribution from the sample region by scanning the inclined incident beam across the multiple discrete locations while applying a cyclic azimuthal scanning protocol to the inclined beam and acquiring a signal associated with each location. An azimuthal spatial alignment correction is determined by comparing the non-inclined and inclined signal spatial distributions. |
US10811215B2 |
Charged particle beam system
A charged particle beam system includes a charged particle source that generates a first charged particle beam and a multi beam generator that generates a plurality of charged particle beamlets from an incoming first charged particle beam. Each individual beamlet is spatially separated from other beamlets. The charged particle beam system also includes an objective lens that focuses incoming charged particle beamlets in a first plane so that a first region in which a first individual beamlet impinges in the first plane is spatially separated from a second region in which a second individual beamlet impinges in the first plane. The charged particle beam system also includes a projection system and a detector system including a plurality of individual detectors. The projection system images interaction products leaving the first region within the first plane due to impinging charged particles onto a first detector and images interaction products leaving the second region in the first plane onto a second detector. |
US10811214B2 |
Low emission cladding and ion implanter
An ion implanter. The ion implanter may include a beamline, the beamline defining an inner wall, surrounding a cavity, the cavity arranged to conduct an ion beam. The ion implanter may also include a low emission insert, disposed on the inner wall, and further comprising a 12C layer, the 12C layer having an outer surface, facing the cavity. |
US10811210B2 |
Multilayer printed circuit board via hole registration and accuracy
A method of making printed circuit board vias using a double drilling and plating method is disclosed. A first hole is drilled in a core, the first hole having a first diameter. The first hole is filled and/or plated with an electrically conductive material. A circuit pattern may be formed on one or two conductive layers of the core. A multilayer structure may then be formed including a plurality of cores that also include pre-drilled and plated via holes, wherein at least some of the pre-drilled and plated via holes are aligned with the first hole. A second hole is then drilled within the first hole and the aligned pre-drilled and plated holes, the second hole having a second diameter where the second diameter is smaller than the first diameter. A conductive material is then plated to an inner surface of the second hole. |
US10811209B2 |
Switching mechanism of circuit breaker
A switching mechanism of a circuit breaker includes a case, a handle rotatably coupled to a side plate fixed to the case, a U-pin coupled to a lower portion of the handle, a lever coupled to the U-pin, and a crossbar disposed in a mounting portion protruding from the case to be perpendicularly movable, the crossbar being moved by receiving contact pressure of the lever, wherein the lever is provided with a contact pressure portion formed in a curved surface on a lower surface thereof, to press the crossbar perpendicularly downward upon closing a circuit. |
US10811208B2 |
Performance improvement unit for pulsed-ultraviolet devices
Embodiments of the present disclosure disclose a method for improving a performance of a pulsed-ultraviolet (PUV) device. The method includes monitoring an input current across a circuit breaker in communication with a UV lamp, where the input current is delivered by a power signal and is interrupted by the circuit breaker upon exceeding a predefined cut-off current; generating a pulse signal having a set of frequencies based on the power signal for driving the UV lamp, where the pulse signal is associated with a predetermined cut-off frequency that increases the input current beyond the cut-off current; determining a predefined threshold current less than the cut-off current; and configuring the pulse signal with multiple distinct pulse frequencies per second for a predefined configuration period based on the input current exceeding the threshold current. The distinct pulse frequencies per second include at least one pulse frequency greater than the cut-off frequency. |
US10811200B2 |
Apparatus and methods for latching, and systems including the same
The latching apparatus of the present disclosure includes an actuator configured to change from a first position to a second position; a core connector coupled to the actuator at a first end, and having a cam disposed thereon; and a follower located between the actuator and the cam; wherein the actuator pushes the follower when changing from the first position to the second position, such that the follower engages with the cam on the core connector and causes the cam to rotate an angle to enter a latching state, wherein during the latching state, the core connector configured to hold the actuator secured at the second position. Switch systems and Methods for switching a latching apparatus are also disclosed. |
US10811198B2 |
Switch
A switch includes a base, a fixed contact member having fixed contact, and a movable contact member having a movable contact. The movable contact member moves in a first direction to bring the movable contact into contact with the fixed contact, and moves in a second direction opposite to the first direction to separate the movable contact from the fixed contact. The switch further includes a cover, an elastic body that energizes the movable contact member in the second direction, and an operation body configured to move the movable contact member sequentially to a first position, a second position, and a third position. |
US10811192B2 |
Reliable capacitor structures
Multilayer ceramic capacitor structures may include structural arrangements, materials, and/or substrate modifications that can improve the reliability of the capacitor for long-term usage when faced with environmental stress. Embodiments may implement reduced entryways in the termination patterns of the capacitor to decrease damage potential due to exposure of moisture. Embodiments may implement structures that decrease interfaces with different physical characteristics, which may lead to a reduction in the formation of micro-fractures during regular usage. Methods of manufacture for the features that improve reliability are also detailed. |
US10811190B2 |
Multilayer ceramic capacitor, printed circuit board and package
A multilayer ceramic capacitor includes an element body in which a dielectric layer and an internal electrode layer are laminated; a first external electrode that is provided at one end of the element body and is connected to a part of the internal electrode layer; and a second external electrode that is provided at an other end of the element body and is connected to that part of the internal electrode layer which is not connected to the first external electrode, in which the first external electrode and the second external electrode each have a linear groove. |
US10811185B2 |
Saturation prevention of current transformer
The subject disclosure provides for utilizing pulse width modulation (PWM) signaling to influence a closed loop of a shunt boost controller and reduce an imbalance of a load. The imbalance reduction helps reduce remanence of a current transformer (CT) and thereby prevent saturation of the CT. A shunt boost controller provides the control signal to control flow of current to the load. A feedback network provides a feedback signal to the shunt boost controller based on a direct current (DC) voltage and causes a power switch circuit to turn on when a magnitude of the feedback signal exceeds a threshold magnitude. The PWM generator supplies a PWM signal to cause the control signal to be provided more symmetrical to the power switch circuit and causes the power switch circuit to turn on more frequently with the control signal to reduce the imbalance of the load. |
US10811183B2 |
Coil component
The coil component includes a magnetic body containing a metallic material and a resin material, a coil conductor embedded in the magnetic body, and a pair of outer electrodes electrically connected to ends of the coil conductor. The coil conductor includes an exposed portion at each end portion of the coil conductor, and a covered portion covered with an insulating substance disposed between the exposed portions. The covered portion is disposed inside a face of the magnetic body on which the outer electrodes are disposed. |
US10811181B2 |
Embedded magnetic component device
In a method of manufacturing a plurality of embedded magnetic component devices, a row of cavities for respective magnetic cores is formed in an insulating substrate. Neighboring cavities are connected to each other by channels formed in the substrate. Adhesive is applied to a cavity floor throughout the row of cavities, and magnetic cores are inserted into the cavities. The cavities and magnetic cores are covered with a first insulating layer. Through holes are formed through the first insulating layer and the insulating substrate, and plated up to form conductive vias. Metallic traces are added to the exterior surfaces of the first insulating layer and the insulating substrate to form upper and lower winding layers. The metallic traces and conductive vias form the windings for an embedded magnetic component, such as transformer or inductor. |
US10811179B2 |
Coil component
A coil component includes a coil having inner and outer circumferential surfaces, a pair of end surfaces, and a core surrounding at least a part of a periphery of the core. A cross section is where the coil component is cut by a plane, when each of coil sections is divided into eight regions by four straight lines extending along the inner circumferential surface, the outer circumferential surface and the end surfaces. In the cross section, first core members positioned at four corner regions, second core members positioned at an inner side of the inner circumferential surface and an outer side of the outer circumferential surface, and third core members, positioned at outer sides of the end surfaces form the core. At least one of the second and third core members has a magnetic permeability lower than that of the first core member in a zero magnetic field. |
US10811175B2 |
Alloy material, bonded magnet, and modification method of rare-earth permanent magnetic powder
An alloy material, a bonded magnet, and a modification method of a rare-earth permanent magnetic powder are provided by the present application. A melting point of the alloy material is lower than 600° C. and a composition of the alloy material by an atomic part is RE100-x-yMxNy, wherein RE is one or more of non-heavy rare-earth Nd, Pr, Sm, La and Ce, M is one or more of Cu, Al, Zn and Mg, N is one or more of Ga, In and Sn, x=10-35 and y=1-15. |
US10811174B2 |
Chip resistor and method for manufacturing same
One aspect of the present disclosure provides a chip resistor. In the chip resistor, a top electrode is disposed on a front surface of a substrate. A resistor is disposed on the front surface and electrically connected to the top electrode. A protective layer covers the resistor. A protective electrode is electrically connected to the top electrode. A side electrode is electrically connected to the top electrode. The side electrode has a side portion disposed on the side surface, and a top portion and a bottom portion respectively overlapping the front surface and the back surface in plan view. An intermediate electrode covers the protective electrode and the side electrode. An outer electrode covers the intermediate electrode. The protective electrode is in contact with both the top electrode and the protective layer and covers a portion of the top electrode and a portion of the protective layer. |
US10811170B2 |
Liquid cooled charging cable system
A liquid cooled charging cable system may be provided. The liquid cooled charging cable system may comprise a source, a load, a liquid cooled charging cable, and a cooling device. The liquid cooled charging cable may connect the source to the load, and may supply electric energy from the source to the load. The liquid cooled charging cable may comprise a supply conductor and a return conductor. The cooling device may pump a coolant around the supply conductor and the return conductor where the supply conductor and the return conductor may be immersed in the coolant. |
US10811169B2 |
Systems and methods for tamper proof cables
Systems and methods for tamper proof cables are described herein. In certain implementations, a system includes one or more pieces of equipment and one or more tamper proof cables connecting the equipment within a network. A tamper proof cable includes a core that provides a transmission medium through the cable; an insulator enveloping the core; a first conductive braid encircling the insulator; a dielectric enveloping the first conductive braid; and a second conductive braid encircling the dielectric, the first and second conductive braids, and the dielectric forming a capacitor. The system includes one or more detectors, each detector coupled to the tamper proof cables, each detector and an associated capacitor forming a tuned circuit, the detectors providing a signal when an associated portion of the tamper proof cables is tampered with; a monitor coupled to the detectors that notifies an infrastructure management system when the signal is received. |
US10811167B2 |
High-voltage cable
A high-voltage cable for electrostatically charging a coating agent in an electrostatic coating plant is provided. The cable includes a centrally arranged cable core and an electrically insulating jacket which sheaths the cable core. The cable core has a moderate electrical resistance according to the principles of the present disclosure. The cable core includes fibers that form a non-woven fabric, and at least one strip of the non-woven fabric of the cable core is twisted. |
US10811166B2 |
Production and use of flexible conductive films and inorganic layers in electronic devices
Embodiments of the present disclosure pertain to methods of making conductive films by associating an inorganic composition with an insulating substrate, and forming a porous inorganic layer from the inorganic composition on the insulating substrate. The inorganic layer may include a nanoporous metal layer, such as nickel fluoride. The methods of the present disclosure may also include a step of incorporating the conductive films into an electronic device. The methods of the present disclosure may also include a step of associating the conductive films with a solid electrolyte prior to its incorporation into an electronic device. The methods of the present disclosure may also include a step of separating the inorganic layer from the conductive film to form a freestanding inorganic layer. Further embodiments of the present disclosure pertain to the conductive films and freestanding inorganic layers. |
US10811162B2 |
Method for healing defect of conductive layer, method for forming metal-carbon compound layer, 2D nano materials, transparent electrode and method for manufacturing the same
Provided are method for healing defect of conductive layer, method for forming metal-carbon compound layer, 2D nano materials, and transparent electrode and method for manufacturing the same. According to an embodiment of present invention, the method for healing defect of conductive layer comprises: forming a conductive layer on a first metal substrate; contacting the first metal substrate with a salt solution containing a second metal in an ionic form, and forming a second metal particle at least in a portion of a conductive area, the second metal having greater reduction potential than a first metal. |
US10811159B2 |
Fueling method for small, steady-state, aneutronic FRC fusion reactors
A system and method for fueling a fusion reactor. The system includes a reactor chamber containing a stable plasma including a fusion fuel; a heating system configured to heat the plasma and increase an ion energy of the plasma to a level sufficient for producing net power from fusion reactions in the stable plasma; a plurality of magnets coaxial to the reactor chamber, the plurality of magnets producing a magnetic field sufficient to confine the stable plasma and promote rapid loss of fusion products into a scrape off layer; and a neutral beam injection system configured to inject additional quantities of the fusion fuel to sustain the power output of the fusion reaction. |
US10811157B2 |
Nuclear radiation particle power converter
Various embodiments of a nuclear radiation particle power converter and method of forming such power converter are disclosed. In one or more embodiments, the power converter can include first and second electrodes, a three-dimensional current collector disposed between the first and second electrodes and electrically coupled to the first electrode, and a charge carrier separator disposed on at least a portion of a surface of the three-dimensional current collector. The power converter can also include a hole conductor layer disposed on at least a portion of the charge carrier separator and electrically coupled to the second electrode, and nuclear radiation-emitting material disposed such that at least one nuclear radiation particle emitted by the nuclear radiation-emitting material is incident upon the charge carrier separator. |
US10811154B2 |
Container for radioactive waste
A method of forming a sealed canister and a method of storing radioactive materials is provided. The method of forming includes placing a top plate on a top opening of a side wall, a bottom of the side wall being sealed to a base plate. The top plate includes a top surface with a top edge having a bevel and with a channel set in from the top edge. Finally, a weld is formed between the beveled top edge and the top opening of the side wall to seal the top plate to the side wall. |
US10811151B2 |
Apparatus and method for identifying cracks in a structure using a multi-stage classifier
A method of inspecting a structure for cracks is disclosed. The method includes the steps of moving an inspection vehicle along a pre-determined path through an area to be inspected, the inspection vehicle having a camera apparatus configured to scan the area to be inspected; using the camera apparatus to scan the area to be inspected at a pre-determined distance per second, thereby capturing scan data for analysis; and analyzing the scan data to classify cracks in the structure. |
US10811148B2 |
Self-diagnosis and accident-handling unmanned nuclear reactor
The application provides a self-diagnosis and accident-handling unmanned nuclear reactor, which: can passively cool down excessively generated heat without an operation of an operator when a malfunction of the nuclear reactor has occurred, wherein a cooling operation for safety measures can be carried out in a completely passive manner without a separate control command by a change in environmental conditions such as the structure and pressure of the nuclear reactor; and has a simpler structure compared to that of a conventional nuclear reactor safety system. It also provides a self-diagnosis and accident-handling unmanned nuclear reactor, which performs heat exchange by using a two-phase heat transfer mechanism, wherein heat exchange performance is maximized by introducing a spray-type heat exchanger having an optimized structure in which channels are three-dimensionally arranged, and can also easily and passively control heat exchange without a separate control means by using saturated steam pressure. |
US10811145B2 |
Plasma diagnosis system using multiple-path Thomson scattering
Provided is a plasma diagnosis system using multiple-path Thomson scattering, including: a laser which supplies laser pulse; an optical system which is configuring to focus alternately a vertical polarization of the laser pulse and a horizontal polarization of the laser pulse on first and second focal points in a plasma; a collection optic which collects lights scattered from the first and second focal points in plasma; a polychromator which filters the lights collected by the collection optics according to spectral characteristics; and a computer which measures spectral characteristics by using the filtered lights. Thomson scattered light which is contaminated with noise due to stray lights is produced in the first collected scattering while the noise due to stray lights is produced in the second collected scattering. |
US10811144B2 |
System and method for plasma generation and compression
Examples of a system for generating and compressing magnetized plasma are disclosed. The system comprises a plasma generator with a first closed end and an outlet, and a flux conserving chamber that is in tight fluid communication with the outlet of the plasma generator such that the generated plasma is injected into an inner cavity of the flux conserving chamber. An elongated central axial shaft is also provided such that the central shaft extends through the outlet of the plasma generator into the flux conserver. The end of the central shaft in connected to the flux conserver. A power source that comprises a formation power circuit and a shaft power circuit is provided to provide a formation power pulse to the plasma generator to generate magnetized plasma, and a shaft power pulse to the central axial shaft to generate a toroidal magnetic field into the plasma generator and the flux conserving chamber. The duration of the shaft power pulse is longer than the duration of the formation power pulse to maintain plasma q-profile at a pre-determined range. During plasma compression the shaft power pulse is increased to match the raise of the plasma poloidal field due to the compression and thus maintain the q-profile of the plasma. |
US10811142B2 |
System and method to regularize cancer treatment data for systematic recording
Implementations provide a method to consolidate data records of regimens for treating oncology conditions. The method includes: accessing data records each encoding multi-tier data characteristics of a regimen for treating a particular oncology condition; receiving a first data record encoding a first regimen specific to a first healthcare provider institution; parsing the first data record according to a hierarchy of the encoded multi-tier data characteristics; distributing a respective weight to each of the encoded data characteristics to account for the potentially missing data characteristic; comparing data characteristics of the first data record with data characteristics from the data records by applying the respective weight to each data characteristic at a particular tier of the hierarchy such that a respective compound score is generated for each data record; and based on the compound scores for all data records, determining a prevailing data record of regimen as matching the first data record. |
US10811131B2 |
Systems and methods for intelligent patient interface device
A system for use with one or more sources of patient-affiliated data corresponding with a group of patients. The system may contain a plurality of patient interface devices for interfacing with the group of patients. Each patient interface device may store a database that includes information related to each patient of the group of patients. Each patient interface device may be operable to generate a patient-specific guidance data set that may be used by the patient interface device to interface with a patient of the group of patients. The plurality of patient interface devices may be communicatively coupled to patient-affiliated data and a therapy database via a patient interface device gateway. The patient-specific guidance data sets may be automatically updated. |
US10811130B2 |
Pulse oximeter integration for evaluating and updating a drug administration schedule using effectiveness rating
Method of scheduling drug administration using a pulse-oximetry integrated intravenous fluid system comprising retrieving from at least one network server database via an intravenous pump unit patient-related and drug-related data and information. The retrieved data are displayed on the intravenous pump unit interface and then a patient's pulse oximetry data is acquired. Using the pulse oximetry data, patient history, patient condition, diagnosis, and information relating to the one or more drugs, a medical personnel determines a schedule of drug administration. During the set duration of a drug administration schedule, one or more observed effects of the one or more drugs administered to the patient via the intravenous pump unit interface is inputted into the IV pump unit, and the patient record stored in the at least one network database is updated. |
US10811125B2 |
Cognitive framework to identify medical case safety reports in free form text
A method, a computing system and a computer program product are provided. A computing system identifies elements within a collection of medical documents. The elements include patients, adverse events and medical drugs. The medical documents are analyzed by the computer system to determine associations between the identified medical drugs and corresponding identified adverse events. The identified elements and the determined associations may be encoded as features by the computing system. The computing system identifies portions of the medical documents as containing the identified elements and the determined associations. The computing system generates a classification model based at least on the encoded features associated with the identified portions for identifying medical case safety reports within medical documents. The classification model is applied to a new document to determine a classification of the new document with respect to a medical case safety report. |
US10811124B2 |
Device-driven non-intermediated blockchain system over a social integrity network
A blockchain configured device-driven disintermediated distributed system for facilitating multi-faceted communication over a network. The system includes entities connected with a communications network. Each of the entities and associated devices and sensors and networks serve as a source of data records. The system includes a blockchain configured data bank accessible by each of the plurality of entities based on rules and preferences of the entities upon authorization by the blockchain configured data bank. The blockchain configured data bank includes a processing component for executing stored instructions to process the data records of the entities over the communications network. The system includes a blockchain configured component communicatively coupled to the blockchain configured data bank and adapted to be accessible by each of the plurality of entities. The system includes a validation device including a facial expression-based validation device and a geo-tagging-based validation device. |
US10811121B2 |
Configuring multiple catalytic beds
The present disclosure relates generally to methods and systems for achieving enhanced catalytic performance via the strategic arrangement of multiple catalyst beds in series, where each catalyst bed comprises a compositionally-distinct catalyst, and each catalyst facilitates the conversion of the same structural moieties on the reactant to form the same product. Arranging multiple catalyst beds according to the methods and systems disclosed herein allows a predictable enhancement of conversion of the reactant to product without the need for time-consuming experimentation to test all possible catalysts configurations. |
US10811120B2 |
Method for performing page availability management of memory device, associated memory device and electronic device, and page availability management system
A method for performing page availability management of a memory device, the associated memory device and electronic device, and page availability management system are provided. The method may include: obtaining a set of page Error Correction Code (ECC) error tables of a non-volatile (NV) memory; based on a predetermined rule, finding respective local risky pages of at least one portion of blocks within a plurality of blocks according to the set of page ECC error tables, respectively, to generate local risky page counts respectively corresponding to page indexes; finding one or more global risky pages corresponding to one or more page indexes of the multiple page indexes according to the local risky page counts; and writing a global risky page table into the memory device, for controlling the memory device to skip using the one or more global risky pages of each of the plurality of blocks. |
US10811113B2 |
Electrically programmable fuse circuit, programming method for electrically programmable fuse, and state detection method for electrically programmable fuse
An electrically programmable fuse circuit, a programming method for electrically programmable fuse, and a state detection method for electrically programmable fuse are provided. The electrically programmable fuse circuit includes a plurality of fuse cells connected in series, wherein in each of the plurality of fuse cells, one terminal of the fuse cell is connected with a first programming terminal corresponding to the fuse cell, and the other terminal of the fuse cell is connected with a second programming terminal corresponding to the fuse cell via a transistor. Reliability of electrically programmable fuses may be improved. |
US10811110B1 |
Method of reducing injection type of program disturb during program pre-charge in memory device
Techniques are described for reducing an injection type of program disturb in a memory device during the pre-charge phase of a program loop. In one approach, a pre-charge voltage on the selected word line and drain side word lines is adjusted based on a risk of the injection type of program disturb. Risk factors such as temperature, WLn position, Vpgm and the selected sub-block, can be used to set the pre-charge voltage to be lower when the risk is higher. In another approach, the pre-charge voltage on the source side word lines is adjusted to reduce a channel gradient and/or the amount of time in which the injection type of program disturb occurs. |
US10811102B2 |
Flash memory storage apparatus and reading method thereof
A flash memory storage apparatus and a reading method thereof are provided. The flash memory storage apparatus includes a memory cell array and a memory control circuit. The memory cell array includes at least one memory cell string coupled between a bit line and a source line. The memory control circuit is coupled to the memory cell array and configured to control a read operation of the memory cell array during the reading period. The reading period includes a pre-charge period and a discharge period. The source line performs a pre-charge operation on the bit line via a signal transmission path during the pre-charge period. The bit line performs a discharge operation on the source line via the same signal transmission path during the discharge period. The signal transmission path includes the memory cell string. |
US10811101B2 |
Apparatuses and methods for transistor protection by charge sharing
Apparatuses and methods for protecting transistors through charge sharing are disclosed herein. An example apparatus includes a transistor comprising a gate node and a bulk node, a charge sharing circuit coupled between the gate and bulk nodes, and logic. The charge sharing circuit is configure to equalize charge differences between the gate and bulk nodes, and the logic is configured to enable the charge sharing circuit based at least in part on a combination of first and second signals, which indicate the presence of a condition. |
US10811100B2 |
Semiconductor memory device
A semiconductor memory device includes a memory block, a plurality of bit lines, a plurality of select gate lines, a plurality of word lines, and a controller. The memory block includes a plurality of memory strings, each memory string including a selection transistor and a plurality of memory cells. The plurality of bit lines are arranged in the first direction and connected to the respective memory strings. The plurality of select gate lines are arranged in the second direction and connected to gates of the respective selection transistors of the memory strings. The plurality of word lines are arranged in the third direction and connected to gates of the respective memory cells of the memory strings. The controller is configured to perform an erase operation in a unit of the memory block, and perform a sequence of erase verify operations. |
US10811098B2 |
Programming of memory devices in response to programming voltages indicative of programming efficiency
Methods of operating a memory device include programming a page of a memory block of the memory device using a particular starting programming voltage, determining a programming voltage indicative of a programming efficiency of the page of the memory block during programming of the page of the memory block, storing a representation of the programming voltage indicative of the programming efficiency of the page of the memory block, setting a starting programming voltage for a different page of the memory block in response to the stored representation of the programming voltage indicative of the programming efficiency of the page of the memory block, and programming the different page of the memory block using its starting programming voltage. |
US10811095B2 |
Semiconductor storage device
A semiconductor storage device includes first lines second lines, and memory cells. The detection circuit detects data stored in the memory cells. A first transistor is electrically connected to the second lines between the memory cells and the detection circuit. A controller brings the first transistor to an intermediate state between an on-state and an off-state and thereafter brings the first transistor to the on-state to transmit a voltage of the second line to the detection circuit, in a data read operation, while a read voltage is applied to a first memory cell among the memory cells, the first memory cell being connected to a selected first line selectively driven from among the first lines and connected to a selected second line selectively driven from among the second lines, and the first transistor connected to the selected second line. |
US10811094B2 |
Memory devices and operation methods thereof
A memory device may include a memory cell array including a plurality of memory cells and a compensation resistor electrically connected to the memory cell array. The compensation resistor may generate a cell current compensating for a voltage drop generated in a parasitic resistor of a signal line connected to at least one memory cell of the plurality of memory cells. The compensation circuit may control a magnitude of resistance of a compensation resistor upon receiving an address corresponding to the memory cell. The compensation circuit may increase a magnitude of the cell current based on adjusting the magnitude of resistance of the compensation resistor to be substantially equal to a resistance value of the parasitic resistor. |
US10811090B2 |
Memory cell state in a valley between adjacent data states
A memory cell can have a state in a valley between adjacent data states. A determination can be made whether a state of a memory cell is in a valley between adjacent distributions of states associated with respective data states. A signal indicative of a data state of the memory cell and whether the state of the memory cell is in the valley can be transmitted. |
US10811088B2 |
Access assist with wordline adjustment with tracking cell
Methods and apparatuses to adjust wordline voltage level are presented. An apparatus includes multiple memory cells arranged in multiple rows. A wordline is configured to couple to one row of the multiple rows for a read or write operation. A wordline driving circuit is configured to provide a voltage level to the wordline to facilitate the read or write operation. A tracking circuit is configured to emulate a characteristic of one of the multiple memory cells. A pull-down circuit is configured to lower the voltage level of the wordline by an amount, based on the tracking circuit, to access the one row of the multiple rows in the read or write operation. A method includes emulating a characteristic of one of multiple of memory cells and lowering a voltage level of the wordline by an amount to access one row of the multiple rows in the read or write operation. |
US10811083B2 |
Integrated assemblies comprising supplemental sense-amplifier-circuitry for refresh
Some embodiments include an integrated assembly having a first memory array which includes a first column of first memory cells. A first digit line extends along the first column and is utilized to address the first memory cells of the first column. A second memory array is proximate to the first memory array and includes a second column of second memory cells. A second digit line extends along the second column and is utilized to address the second memory cells of the second column. A primary-sense-amplifier comparatively couples the first digit line with the second digit line. A first secondary-sense-amplifier is along the first digit line, and a second secondary-sense-amplifier is along the second digit line. |
US10811081B2 |
Apparatuses for decreasing write pull-up time and methods of use
Embodiments of the disclosure are drawn to apparatuses and methods for charging memory data lines when a high charge level is to be written to a memory. The apparatus may include a write amplifier that includes one or more additional pull-up drivers for charging the memory data lines. Control logic may control when additional pull-up drivers are activated. Control logic may control when main data lines are coupled to shared data lines. Methods for charging memory data lines may include providing control signals that indicate which main data lines are coupled to shared data lines and when a write command is received. Methods may include providing a signal that is indicative of the data to be written. The control signals and signal indicative of the data to be written may be used to activate one or more pull-up drivers to charge one or more data lines. |
US10811080B2 |
Memory component with pattern register circuitry to provide data patterns for calibration
A memory component includes a memory core comprising dynamic random access memory (DRAM) storage cells and a first circuit to receive external commands. The external commands include a read command that specifies transmitting data accessed from the memory core. The memory component also includes a second circuit to transmit data onto an external bus in response to a read command and pattern register circuitry operable during calibration to provide at least a first data pattern and a second data pattern. During the calibration, a selected one of the first data pattern and the second data pattern is transmitted by the second circuit onto the external bus in response to a read command received during the calibration. Further, at least one of the first and second data patterns is written to the pattern register circuitry in response to a write command received during the calibration. |
US10811079B2 |
Semiconductor memory apparatus and method of driving the same
A semiconductor memory apparatus includes a memory cell unit and an internal voltage stabilization apparatus. The memory cell unit includes a row decoder, a column decoder, and a memory cell array. The internal voltage stabilization apparatus includes an operation termination determination unit configured to determine whether an operation of the semiconductor memory apparatus is terminated on the basis of an external input voltage and output an operation termination command, a termination voltage generation unit configured to generate a termination voltage having a preset voltage value on the basis of a determination result of operation termination by the operation termination determination unit, and a switch unit. The switch unit includes a plurality of switches that are turned in response to the operation termination command, and supplies the termination voltage, input from the termination voltage generation unit, to a plurality of internal nodes of the memory cell array. |
US10811074B2 |
Storage device and method for operating storage device
A storage device may include a monitoring module which monitors a characteristic degradation rate of a plurality of blocks included in a cell array of a nonvolatile memory; a group management module which designates the plurality of blocks as one or more groups, on the basis of a monitoring result of the monitoring module; a refresh period management module which determines refresh periods for each of the one or more groups; and a processor which performs refresh on the one or more groups in accordance with the determined refresh periods. |
US10811070B2 |
Memory system and control method to perform patrol read operation
A memory system including an MRAM; a memory controller; a temperature sensor; and a magnetic sensor. In the MRAM, write/erase count information, patrol read execution time information, and patrol read information defining a patrol read execution time interval for combinations of a temperature, an intensity of a magnetic field, and a write/erase count are stored. The memory controller acquires the temperature from the temperature sensor, acquires the intensity of the magnetic field from the magnetic sensor, acquires from the patrol read information the patrol read execution time interval corresponding to the combination of the temperature, the intensity of the magnetic field, and the write/erase count, and determines whether or not a patrol read shall be executed by comparing the elapsed time from the previous patrol read execution time with the acquired patrol read execution time interval. |
US10811068B2 |
Varying energy barriers of magnetic tunnel junctions (MTJs) in different magneto-resistive random access memory (MRAM) arrays in a semiconductor die to facilitate use of MRAM for different memory applications
Varying energy barriers of magnetic tunnel junctions (MTJs) in different magneto-resistive random access memory (MRAM) arrays in a semiconductor die to facilitate use of MRAM for different memory applications is disclosed. In one aspect, energy barriers of MTJs in different MRAM arrays are varied. The energy barrier of an MTJ affects its write performance as the amount of switching current required to switch the magnetic orientation of a free layer of the MTJ is a function of its energy barrier. Thus, by varying the energy barriers of the MTJs in different MRAM arrays in a semiconductor die, different MRAM arrays may be used for different types of memory provided in the semiconductor die while still achieving distinct performance specifications. The energy barrier of an MTJ can be varied by varying the materials, heights, widths, and/or other characteristics of MTJ stacks. |
US10811064B2 |
Apparatuses and methods for setting a duty cycle adjuster for improving clock duty cycle
Apparatuses and methods for setting a duty cycler adjuster for improving clock duty cycle are disclosed. The duty cycle adjuster may be adjusted by different amounts, at least one smaller than another. Determining when to use the smaller adjustment may be based on duty cycle results. A duty cycle monitor may have an offset. A duty cycle code for the duty cycle adjuster may be set to an intermediate value of a duty cycle monitor offset. The duty cycle monitor offset may be determined by identifying duty cycle codes for an upper and for a lower boundary of the duty cycle monitor offset. |
US10811051B1 |
Verbal command video editing
An embodiment of the invention may include a method, computer program product and computer system for video editing. The method, computer program product and computer system may include computing device which may receive video data from an imaging device, the video data may include visual and audio data. The computing device may convert the audio data to text and parse the text into textual segments. The computing device may annotate the textual segments with time stamps and analyze the annotated textual segments to identify pre-determined edit commands. The computing device may generate an edit script based on the identified pre-determined edit commands in the textual segments. |
US10811050B2 |
Highlighting media through weighting of people or contexts
Techniques and apparatuses for highlighting media through weighting of people or contexts are described. This document describes techniques that allow a user to quickly and easily highlight media, such as through generating a highlight reel. The techniques also enable selection of context and person weightings by which to tailor highlight reels. |
US10811049B2 |
Reader bias based locking technique enabling high read concurrency for read-mostly workloads
A data object has a lock and a condition indicator associated with it. Based at least partly on detecting a first setting of the condition indicator, a reader stores an indication that the reader has obtained read access to the data object in an element of a readers structure and reads the data object without acquiring the lock. A writer detects the first setting and replaces it with a second setting, indicating that the lock is to be acquired by readers before reading the data object. Prior to performing a write on the data object, the writer verifies that one or more elements of the readers structure have been cleared. |
US10811043B2 |
Mode splitter between TE and TM polarization for heat-assisted magnetic recording device
An apparatus includes a first waveguide core extending along a light-propagation direction and configured to receive light from a light source at a combined transverse electric (TE) mode and a transverse magnetic (TM) mode. A second waveguide core is spaced apart from the first waveguide core and is configured to couple light at a TM mode to the second waveguide core. A near-field transducer (NFT) is disposed at a media-facing surface of a write head, the NFT receiving the light from the first waveguide core or the second waveguide core and heating a magnetic recording medium in response thereto. |
US10811041B2 |
Magnetic disk drive including actuator assembly, flexible print circuit board and control circuit board
According to one embodiment, a magnetic disk device includes a housing that includes a bottom wall, a magnetic disk contained in the housing, a first head and a second head configured to write data to the magnetic disk, and read data from the magnetic disk, a first actuator assembly including the first head, a second actuator assembly including the second head, a first flexible print circuit board including a first connector, a second flexible print circuit board including a second connector, and a control circuit board that is provided outside the housing, and includes a third connector electrically connected to the first connector and the second connector. |
US10811038B1 |
Heat-assisted magnetic recording head having near-field transducer with nanorod and diffusion barrier plate
A heat-assisted magnetic recording head includes a write pole tip that extends to a media-facing surface and a heat sink that is thermally coupled to a side of the write pole tip. A surface plasmonic plate is in contact with a side of the heat sink that faces away from the write pole and is recessed from, the media-facing surface. A nanorod extends from a surface of the surface plasmonic plate and towards the media-facing surface. |
US10811034B1 |
Heat sink structure for microwave-assisted magnetic recording (MAMR) head
A microwave-assisted magnetic recording writer is disclosed wherein a heat sink is formed in a write gap (WG) and adjacent to a spin torque oscillator (STO) formed between a main pole (MP) trailing side and a trailing shield (hot seed layer). The WG comprises an electrically insulating layer with thickness of 5-80 Angstroms on the MP trailing side and STO sides. The heat sink layer may be separate coplanar layers on each STO side, or a single layer wrapping around the STO. A Ru or Cu heat sink has sufficient thermal conductivity to reduce STO temperature rise by 11% and 20%, respectively. Accordingly, the STO has longer lifetime at the same bias current density, or higher buffer head voltage is possible while maintaining STO device reliability. Each heat sink has a front side at an air bearing surface, and a stripe height (SH)≥to the STO SH. |
US10811028B2 |
Method of managing adaptive feedback cancellation in hearing devices and hearing devices configured to carry out such method
This invention relates to a method of managing adaptive feedback cancellation in a hearing device comprising at least a microphone (1); a receiver (2); and a signal processing circuitry, configured to receive from said microphone (1) an input signal (Xtd, Xfd, Xc) and to provide said receiver (2) with an output signal (Yfd, Ufd, Utd). An external acoustic feedback path (300) defined by feedback sound (fb) traveling from the receiver (2) to the microphone (1) is represented by an external feedback path transfer function (3). The signal processing unit comprises at least a gain unit (4); a feedback canceller unit (5) comprising an adaptive filter element (6) configured to adaptively accommodate changes in said external acoustic feedback path transfer function (3); and a frequency shift unit (7) configured to stabilize an adaptation of the feedback canceler unit (5). The method according to the present invention comprises the steps of: estimating the external acoustic feedback path transfer function (3) by modeling/deriving a first estimated feedback path transfer function (8) to reflect the external acoustic feedback path transfer function (3), by said feedback canceler unit (5); compensating the input signal of the hearing device (Xfd), based on the first estimated feedback path transfer function (8), thereby generating a compensated input signal (Xc); providing at least part of the signal processing unit with the compensated input signal (Xc). The method further comprises the steps of: generating a probe signal (W), by an adaptation control block (9, 10); injecting the probe signal (W) into the output signal (Yfd) of the hearing device and letting the probe signal (W) be fed back to the microphone (1) through the external acoustic feedback path (300); modeling/deriving at least a reference estimated feedback path transfer function (11), based on a relation between the input signal (Xfd) and the probe signal (w); comparing said at least a reference estimated feedback path transfer function (11) with said first estimated feedback path transfer function (8), by a comparison unit (12) of said adaptation control block (9); and controlling the adaptive filter element (6) and the frequency shift unit (7) based on a comparison between such at least a reference estimated feedback path transfer function (11) and the first estimated feedback path transfer function (8). |
US10811027B2 |
Echo estimation and management with adaptation of sparse prediction filter set
Methods for echo estimation or echo management (echo suppression or cancellation) on an input audio signal, with at least one of adaptation of a sparse prediction filter set, modification (for example, truncation) of adapted prediction filter impulse responses, generation of a composite impulse response from adapted prediction filter impulse responses, or use of echo estimation and/or echo management resources in a manner determined at least in part by classification of the input audio signal as being (or not being) echo free. Other aspects are systems configured to perform any embodiment of any of the methods. |
US10811025B1 |
Moderating system response using stress content of voice command
A computer implemented method for automatically moderating a system response to a user's voice command. A voice command from a user is received. The voice command is associated with a system command, the system command including command requirements. A determination is the made as to whether the user is experiencing stress based on a stress level detected in the received voice command, and the command requirements dynamically adjusted when the user is determined to be experiencing stress. |
US10811019B2 |
Signal encoding method and device and signal decoding method and device
A spectrum encoding method includes selecting an important spectral component in band units for a normalized spectrum and encoding information of the selected important spectral component for a band, based on a number, a position, a magnitude and a sign thereof. A spectrum decoding method includes obtaining from a bitstream, information about an important spectral component for a band of an encoded spectrum and decoding the obtained information of the important spectral component, based on a number, a position, a magnitude and a sign of the important spectral component. |
US10811013B1 |
Intent-specific automatic speech recognition result generation
Features are disclosed for generating intent-specific results in an automatic speech recognition system. The results can be generated by utilizing a decoding graph containing tags that identify portions of the graph corresponding to a given intent. The tags can also identify high-information content slots and low-information carrier phrases for a given intent. The automatic speech recognition system may utilize these tags to provide a semantic representation based on a plurality of different tokens for the content slot portions and low information for the carrier portions. A user can be presented with a user interface containing top intent results with corresponding intent-specific top content slot values. |
US10811011B2 |
Correcting for impulse noise in speech recognition systems
System and method for correcting for impulse noise in speech recognition systems. One example system includes a microphone, a speaker, and an electronic processor. The electronic processor is configured to receive an audio signal representing an utterance. The electronic processor is configured to detect, within the utterance, the impulse noise, and, in response, generate an annotated utterance including a timing of the impulse noise. The electronic processor is configured to segment the annotated utterance into silence, voice content, and other content, and, when a length of the other content is greater than or equal to an average word length for the annotated utterance, determine, based on the voice content, an intent portion and an entity portion. The electronic processor is configured to generate a voice prompt based on the timing of the impulse noise and the intent portion and/or the entity portion, and to play the voice prompt. |
US10811004B2 |
Auto-generation of parsing grammars from a concept ontology
An ontology stores information about a domain of an automatic speech recognition (ASR) application program. The ontology is augmented with information that enables subsequent automatic generation of a speech understanding grammar for use by the ASR application program. The information includes hints about how a human might talk about objects in the domain, such as preludes (phrases that introduce an identification of the object) and postludes (phrases that follow an identification of the object). |
US10810999B2 |
Voice-controlled secure remote actuation system
A secure remote actuation system is described herein that operates based on voice commands provided by a user and/or owner of the system. The system may include: a remote input receptor having a user interface for receiving one or more user inputs from a user, the user interface having a voice input processor, and the user inputs including vocalization; and a cloud-based network storing one or acceptable inputs and including a network device for obtaining said one or more user inputs from the remote input receptor. The network device may obtain said one or more user inputs from the remote input receptor while the user is using the user interface. The cloud-based network may compare said one or more user inputs to said one or more acceptable inputs. The voice input processor may include a microphone, a speaker, or both, and may perform various types of voice recognition. |
US10810994B2 |
Conversational optimization of cognitive models
Systems and methods to generate a cognitive model are described. A particular example of a system includes a memory including program code having an application programming interface and a user interface, and a processor configured to access the memory and to execute the program code to generate a cognitive model, to run analysis on the cognitive model to determine a factor that is impacting a performance of the cognitive model, to determine an action based on the factor, to report at least one of the factor and the action to a user, and to use the action to generate a second cognitive model. |
US10810993B2 |
Sample-efficient adaptive text-to-speech
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating an adaptive audio-generation model. One of the methods includes generating an adaptive audio-generation model including learning a plurality of embedding vectors and parameter values of a neural network using training data comprising first text and audio data representing a plurality of different individual speakers speaking portions of the first text, wherein the plurality of embedding vectors represent respective voice characteristics of the plurality of different individual speakers. The adaptive audio-generation model is adapted for a new individual speaker using adaptation data comprising second text and audio data representing the new individual speaker speaking portions of the second text, the new individual speaker being different from each of the plurality of individual speakers, wherein adapting the audio-generation model includes learning a new embedding vector for the new individual speaker. |
US10810992B2 |
Reverberation gain normalization
Systems and methods for providing accurate and independent control of reverberation properties are disclosed. In some embodiments, a system may include a reverberation processing system, a direct processing system, and a combiner. The reverberation processing system can include a reverb initial power (RIP) control system and a reverberator. The RIP control system can include a reverb initial gain (RIG) and a RIP corrector. The RIG can be configured to apply a RIG value to the input signal, and the RIP corrector can be configured to apply a RIP correction factor to the signal from the RIG. The reverberator can be configured to apply reverberation effects to the signal from the RIP control system. In some embodiments, one or more values and/or correction factors can be calculated and applied such that the signal output from a component in the reverberation processing system is normalized to a predetermined value (e.g., unity (1.0)). |
US10810983B2 |
Electronic acoustic apparatus and method for operating the same
An electronic acoustic apparatus includes a control operator, a storage medium, and a processor. The control operator is operable by a user. The storage medium stores a program. The processor is configured to adjust a predetermined control parameter of an audio signal in response to an operation of the control operator. The processor is also configured to determine that the control operator has been operated in a particular operation style different from a normal operation style that adjusts the predetermined control parameter. In response to the operation of the control operator in the particular operation style, the processor is also configured to issue an instruction to execute a predetermined function different from an adjustment of the predetermined control parameter. |
US10810981B2 |
Electronic musical instrument, electronic musical instrument control method, and storage medium
An electronic musical instrument includes: a memory that stores a trained acoustic model obtained by performing machine learning on training musical score data and training singing voice data of a singer; and at least one processor, wherein the at least one processor: in accordance with a user operation on an operation element in a plurality of operation elements, inputs prescribed lyric data and pitch data corresponding to the user operation of the operation element to the trained acoustic model, and digitally synthesizes and outputs inferred singing voice data that infers a singing voice of the singer on the basis of at least a portion of acoustic feature data output by the trained acoustic model, and on the basis of instrument sound waveform data that are synthesized in accordance with the pitch data corresponding to the user operation of the operation element. |
US10810980B1 |
Support structure for resonating and/or vibration-sensitive devices
A support structure for resonating and/or vibration-sensitive devices provides a portable, stationary, attachable, floating-framed or framed, suspended receptacle and surface wherein, upon or about which a stand, foot or other support means of a resonating and/or vibration-sensitive instrument or piece of equipment is placed or engaged and, in many use-cases, retained. The support structure allows independent, omnidirectional resilient micro-movement—essentially flexibly decoupling while yet securing the decouplement of the instrument or equipment, its stand, feet or other support means from/to its supporting surface or structure—thereby enabling fullest expression, performance and stability of the instrument or equipment. |
US10810975B2 |
Capo for use with a stringed musical instrument, and method of using same
A capo for a musical instrument includes a yoke having two opposed branches. A clamping bar, connected to one yoke branch, includes an engaging boss which fits into a machined notch of a second yoke branch, to releasably lock the clamping bar therein. The clamping bar pivots around a retaining shaft, and is also slidably movable by a length of a slot formed therein. A saddle member has a central stem, a seat attached to the stem, and an adjustment member for tightening the saddle member on the yoke. A resilient, tubular biasing member surrounds a main body of the clamping bar. Pressing a free end of the clamping bar compresses the biasing member, and slides the engaging portion of the clamping bar out of the machined notch of the yoke, to allow pivotal movement of the clamping bar and removal of the capo from the musical instrument. |
US10810974B2 |
Foldable stringed instrument
A foldable stringed instrument having a neck and/or body that may assume a reduced profile by folding an upper neck portion away from the playing position through the use of a translating bridge assembly and a translating truss assembly, wherein the foldable stringed instrument is capable of housing or otherwise being coupled to any of a variety of electronics or electrical components (e.g. a smart phone or tablet computer) having one or more applications (apps) for driving the operation, functionality and/or effects associated with the foldable stringed instrument. |
US10810972B2 |
Image processor that outputs on-screen-display information
An image processing apparatus includes a first image processing circuit and a second image processing circuit connected to the first image processing circuit via a first signal line and a second signal line. The first image processing circuit outputs OSD image data representing an OSD image in the form of n sets of divided OSD image data that are generated by dividing the OSD image data by n to the second image processing circuit via the first signal line and outputs position information of the divided OSD image data to the second image processing circuit via the second signal line. The second image processing circuit outputs, based on first input image data, the n sets of divided OSD image data, and the position information, combined image data representing a combined image formed of the first input image on which the OSD image is superimposed. |
US10810970B1 |
Display device
A luminance difference in an image displayed on an area of interest is easily recognized in a manner free from the effect of luminance of an area surrounding the area of interest. An HDR display (100) includes an image processing unit (14). If the number of digits of a difference between a luminance center value of a luminance distribution in the area of interest in a display unit (20) and a luminance center value of a luminance distribution in an entire display region is 2 digits or more, the image processing unit (14) performs a luminance conversion on the luminance value of each pixel in an entire screen in a manner such that the luminance center value of the luminance distribution in the entire display region approaches the luminance center value of the luminance distribution in the area of interest. |
US10810969B2 |
Texture display device, texture display method, and texture display program
A texture display device includes a display unit in which each pixel includes a condensing type element having light distribution at a first spread angle and a diffusing type element having light distribution at a second spread angle larger than the first spread angle, a pixel signal generation unit that generates a pixel signal based on image data and texture data of an object to be displayed on the display unit, and a control unit that controls light emission intensity of the condensing type element and the diffusing type element based on the pixel signal. |
US10810967B2 |
Eliminating redundant fibers in a federated large display system
A federated display system includes multiple head down displays (HDD) driven by two or more display processing computers (DPC). Each DPC includes two or more display nodes independently managing display processing, graphics generation, and I/O functionality (either within a single processing unit or a multiprocessor environment). Each display node is linked to a mezzanine control plane (MCP) independent of the display nodes, which MCP includes dedicated optical channels to each member HDD of the system and a switching fabric to control the routing of graphical signals from the graphics generators of each node to the optical channel connected to the desired target HDD. The switching fabric includes a master selector for designating any node of a DPC as a master node capable of controlling the switching fabric via its processing control or graphics generation functions. |
US10810961B2 |
Semiconductor device
It is an object to provide a semiconductor device which can supply a signal with sufficient amplitude to a scan line while power consumption is kept small. Further, it is an object to provide a semiconductor device which can suppress distortion of a signal supplied to the scan line and shorten a rising time and a falling time while power consumption is kept small. A semiconductor device which includes a plurality of pixels each including a display element and at least one first transistor and a scan line driver circuit supplying a signal for selecting the plurality of pixels to a scan line. A light-transmitting conductive layer is used for a pixel electrode layer of the display element, a gate electrode layer of the first transistor, source and drain electrode layers of the first transistor, and the scan line. The scan line driver circuit includes a second transistor and a capacitor for holding a voltage between a gate electrode layer of the second transistor and a source electrode layer of the second transistor. The source electrode of the second transistor is connected to the scan line. |
US10810959B2 |
Display device
A display device includes a display panel having a display surface, display drivers arranged on and along a peripheral portion of the display panel, a wiring substrate located on a side of the display panel opposite from the display surface and having a long shape extending in an arrangement direction of the display drivers, first flexible wiring substrates electrically connecting the display drivers to the wiring substrate, a second flexible wiring substrate extending from the wiring substrate toward an outer periphery of the display panel, and a control board connected to an extended end portion of the second flexible wiring substrate and configured to control the display drivers and disposed not to overlap the display panel in a thickness direction of the display panel and having a dimension in the thickness direction of the display panel larger than that of the wiring substrate. |
US10810957B2 |
Display device and display device driving method thereof
A display device driving method, applicable to a display device including a pixel circuit coupled with a first node point, a source driving circuit for providing a data signal, and a reading circuit, including following operations: coupling the first node point with the source driving circuit or the reading circuit; supplying a first control signal to the pixel circuit, wherein the first control signal is for enabling the pixel circuit to receive the data signal from the first node point; supplying a second control signal to an optical sensing circuit, wherein the second control signal is for enabling the optical sensing circuit to output a sensing signal to the reading circuit through the first node point; utilizing the reading circuit to amplify the sensing signal and output the amplified sensing signal, wherein duration of the second impulse overlaps with duration of the first impulse. |
US10810956B2 |
Display device
According to one embodiment, a display device, includes a first pixel line including a first sub-pixel and a second sub-pixel, a second pixel line including a third sub-pixel and a fourth sub-pixel, and a display driver supplying video signals which cause signal polarities of signal lines adjacent to each other to be opposite to each other, without varying the polarities in one frame period, the video signals having the same polarities as each other being written to the respective sub-pixels of the first pixel line, the video signals having the polarities which are the same as each other and opposite to the polarities of the video signals written to the first pixel line, being written to the respective sub-pixels of the second pixel line. |
US10810954B2 |
Driving method and driving device for driving a display apparatus, and display apparatus
Disclosed are a driving method and a driving device for driving a display apparatus, as well as a display apparatus. The driving method includes: obtaining a first voltage driving signal and a second voltage driving signal of a sub-pixel of each of a plurality of pixels in an image; dividing each of all the sub pixels into two parts that are adjacent to each other with a stagger interval; and further dividing each of the parts into second luminescence signal values with the first luminescence signal values, where the second luminescence signal values and first luminescence signal values are adjacent to each other with a stagger interval, so as to control a display of the corresponding pixel. |
US10810949B2 |
Signal processing method and display device
A signal processing method includes: driving multiple backlight zones to emit respectively; detecting multiple first luminance values corresponding to the backlight zones when each of the backlight zones emits; calculating a diffusion matrix according to the first luminance values; obtaining multiple first correction signals corresponding to the backlight zones according to the diffusion matrix and multiple target luminance values corresponding to the backlight zones; and controlling the backlight zones to display according to the first correction signals respectively. |
US10810948B2 |
Display apparatus and control method thereof
A display apparatus and a method of controlling the display apparatus are provided. The display apparatus includes a display comprising a liquid crystal layer, and a backlight unit that outputs light toward the liquid crystal layer; an illuminance sensor provided at one side of the display and that measures illuminance; and a processor that configured to determine output brightness of the display based on a difference between illuminance measured by the illuminance sensor when the backlight unit is turned on and illuminance measured by the illuminance sensor when the backlight unit is turned off, and control intensity of light output from the backlight unit to be adjusted corresponding to the difference. |
US10810943B2 |
Display driver, display system, and operation method of the display driver
A display driver includes: a compensator configured to divide an input image into a plurality of blocks having a plurality of columns and a plurality of rows, generate a first current map in which a current magnitude corresponding to each of the plurality of blocks has been calculated, generate a second current map based on a cumulative summation of the current magnitude of the block located on each column of the first current map in a column direction, and generate output data by compensating pixel values of the input image based on a third current map in which the current magnitude of the block located on each row of the second current map has been adjusted with respect to a position in a row direction; and a data driver configured to generate an output image based on the output data and provide the output image to a display panel. |
US10810942B2 |
Organic light emitting display device configured to vary power supply voltage based on display brightness and ambient temperature
An organic light emitting display device includes a display panel, a display panel driver, and a power supply. The display panel includes pixels. Each of the pixels includes an organic light emitting diode configured to emit light in an emission period based on a first power supply voltage and a second power supply voltage. The display panel driver is configured to apply a scan signal, an emission control signal, and a data signal to the pixels. The power supply is configured to: generate the first power supply voltage, the second power supply voltage, and a third power supply voltage applied to the pixels in a non-emission period; and adjust a voltage level of the second power supply voltage and a voltage level of the third power supply voltage based on an ambient temperature and a brightness of the display panel. |
US10810934B2 |
Display device and method of driving the same
A display device includes a display panel including pixels each including a light emitting element and a bypass transistor connected to the light emitting element to receive an initialization voltage, a first offset voltage determining unit determining a first offset voltage using a brightness period of image data and a temperature of the display panel, a black image detecting unit detecting black data among the image data to determine a dense area of the pixels to which the black data are applied, and determining whether to proceed with a subsequent operation, an image analyzing unit analyzing the image data depending on the determination of whether to proceed with the subsequent operation, and outputting an analyzed result, and a second offset voltage determining unit determining a second offset voltage using the analyzed result. The initialization voltage is determined using the first offset voltage and the second offset voltage. |
US10810930B2 |
Electroluminescence display device and method for driving the same
There is provided an electroluminescence display device and driving method thereof. The electroluminescence display device can include an electroluminescence element in each of a plurality of pixels, a pixel driving circuit for driving the electroluminescence element, a gate driver and a data driver for generating signals for driving the pixel driving circuit to be switchable between a first refresh rate and a second refresh rate, and an emission signal generator for generating an emission signal having a first duty ratio supplied to the pixel driving circuit when the pixel driving circuit is driven at the first refresh rate and generating the emission signal having a second duty ratio supplied to the pixel driving circuit when the pixel driving circuit is driven at the second refresh rate. Accordingly, uniform brightness can be displayed regardless of the driving refresh rate for reducing the recognizable image distortion phenomenon. |
US10810929B2 |
Method for driving light emitting element and light emitting device
A method for driving a light emitting device is provided. The light emitting device includes an anode, a cathode, a light emitting layer disposed between the anode and the cathode, and a hole transporting layer disposed between the anode and the light emitting layer. The hole transporting layer includes a cross-linked body of a crosslinkable material. According to the method, the light emitting device is driven by pulse voltage in which a first voltage not lower than the light emission start voltage of the light emitting device and a second voltage lower than the light emission start voltage of the light emitting device are alternately switched. A light emitting apparatus equipped with the light emitting device and a driving apparatus which drives the light emitting device by pulse voltage is also provided. |
US10810928B2 |
Data line driving circuit, display driving circuit, and method driving display
A method of driving a display by communicating with a controller through a first channel and a second channel includes; generating recovery data from a signal received through the first channel during a frame data period, detecting a vertical blank period between frame data periods, checking a training trigger event history during the vertical blank period, and during the vertical blank period, transmitting a training request direct to the first channel through the second channel when there is a training trigger event history. |
US10810927B2 |
Electronic device and method for controlling display in electronic device
A method for controlling display by an electronic device is provided. The method includes, when a predetermined number or more same frame data are consecutively generated, storing the same frame data in a storage of a display driving module by an application processor, stopping transmitting frame data to the display driving module, and scanning the frame data stored in the storage and outputting to a display panel by the display driving module. |
US10810921B2 |
GOA circuit, method for driving the same and display panel
The present disclosure provides a GOA circuit, a method for driving the GOA circuit, and a display panel. The GOA circuit includes a plurality of GOA sub-circuits. Each GOA sub-circuit includes a plurality of cascaded shift register units. Each of the GOA sub-circuits is connected to an independent start signal terminal, and the start signals of different GOA sub-circuits are separated by a time interval for acquisition of touch signals. |
US10810918B2 |
Video display device capable of compensating for display defects
A video display device capable of compensating for display defects, comprising: liquid crystal panel for displaying an image through a pixel matrix; a data driver for outputting data to data lines of the liquid crystal display panel; a gate driver for driving the gate lines of the liquid crystal display panel; a timing controller for receiving compensated data, uncompensated data and synchronizing signals to output a gate control signal to the gate driver and to output both resultant data and a data control signal to the data driver; and a memory for storing information on point defect information on the liquid crystal display panel, and at least one of horizontal and vertical line defects of the liquid crystal display panel of the liquid crystal display panel; and a data compensation circuit for receiving display data and synchronizing signals, and outputting compensated data to the timing controller based on the information in the memory and uncompensated data to the timing controller, wherein the data compensation circuit includes a vertical line compensator for compensating a vertical line defect of the liquid crystal display panel, a horizontal line compensator for compensating a horizontal line defect of the liquid crystal display panel, and a multiplexer for selecting an output from one of the vertical line compensator and the horizontal line compensator in accordance with whether a defect is a vertical line defect or a horizontal line defect. |
US10810916B2 |
Image processing apparatus and image processing method
An image processing apparatus is an image processing apparatus including an acquisition unit and a control unit. The acquisition unit acquires image signal information that is used in displaying an image based on a transmitted image signal, from the image signal. The control unit controls, based on operation information relating to a user's operation for changing a display mode of the image and the image signal information acquired by the acquisition unit, a display delay in displaying the image. |
US10810909B2 |
Labeled molded container having light contrast at three-dimensional end portion
Disclosed is a labeled molded container having a container main body and a label, wherein a label surface is provided with a flat portion, a concave-convex pattern, and an edge portion between the convex portion or concave portion and the flat portion, and wherein when observing the labeled molded container from a surface-side thereof by illuminating light from a backside of the container, the edge portion is seen brighter than the flat portion and the concave-convex pattern. |
US10810907B2 |
Medical training and performance assessment instruments, methods, and systems
Medical training and performance assessment instruments, methods, and systems are disclosed. Training and/or assessment systems may include an augmented medical instrument for use by a student to examine a patient. A system in accordance with one aspect of the invention includes a first augmented medical instrument configured to sense a first physical parameter during examination of a subject and produce a first examination data and a second augmented medical instrument configured to sense a second physical parameter during examination of the subject and produce a second examination data. The system is configured to generate at least one simulated physical parameter based on the first examination data and present the at least one simulated physical parameter to the student on the second augmented medical instrument. |
US10810906B2 |
Providing dermatology-specific training to primary care providers
Disclosed are various embodiments for providing dermatology-specific training to primary care providers. Primary care providers may register on the system and request access to various dermatology training materials. The primary care provider may be provided with the requested dermatology training materials when the primary care provider has a valid account. Payment may be required before a primary care provider can access the dermatology training materials. |
US10810905B2 |
Smart cube puzzle and user device application
An automated method of solving a cube puzzle using a user device, including: establishing, between the user device and the cube puzzle, a wireless communication link, where the user device includes at least one user interface (UI) element and the cube puzzle includes a controller and associated memory; receiving, at the user device, a current state of the cube puzzle, the cube puzzle including multiple faces, each face having multiple sub-elements, where the current state of the cube puzzle specifies a location of each sub-element; identifying, at the user device, based on the current state, a solution for the cube puzzle; and providing, via the UI element(s), an instruction from the solution including an indication of a sub-element of the sub-elements of a particular face of the cube puzzle and an indication of a direction of rotation of the particular sub-element. |
US10810894B2 |
Deep stall aircraft landing
An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation. |
US10810890B2 |
Dynamic drone navigation
Techniques are described for enabling a drone device to use a dynamic multi-dimensional spatial representation of an indoor property environment to improve autonomous navigation. In some implementations, an instruction to perform an action at a particular location of a property is received by a drone device. A spatial representation of the property that identifies a dynamic object is obtained by the drone device. The status of the dynamic object impacts an ability of the drone device to navigate near the dynamic object. Sensor data collected by one or more sensors of a monitoring system of the property and that indicates a present status of the dynamic object is obtained by the drone device. A path to the particular location is determined by the drone device. The path to the particular location is finally navigated by the drone device. |
US10810886B2 |
Systems and methods for generating avionic displays including forecast boom tolerance threshold exceedance symbology
Avionic display systems and methods are provided for generating avionic displays including symbology decreasing the likelihood of boom tolerance threshold exceedance (an overpressure events) due to potential constructive interference between pressure waves occurring during supersonic flight. In various embodiments, the avionic display system includes a display device on which an avionic display is generated. A controller architecture is operably coupled to the display device and configured to determine when there exists a possibility for an overpressure event to occur in a future timeframe due to constructive interference between colliding pressure waves, which are forecast to occur during the impending supersonic flight of one or more A/C. When determining that there exists a possibility for an overpressure event to occur in the future timeframe due to constructive interference between pressure waves, the controller architecture further generates symbology or other graphics on the avionic display indicative of the potential occurrence of the overpressure event. |
US10810885B2 |
Method and apparatus for transmitting data of unmanned aerial vehicle control system
Disclosed is a method and apparatus for transmitting data of an unmanned aerial vehicle control system. According to an embodiment of the present disclosure, provided is a method of transmitting data of an unmanned aerial vehicle control system, the method including: connecting an unmanned aerial vehicle to a ground radio station via a mission data link and a non-mission data link; checking a maximum transmit power of the non-mission data link; checking a margin value of the non-mission data link considering a state of the unmanned aerial vehicle; checking a required transmit power of the non-mission data link by applying the margin value of the non-mission data link; and determining a transmit power of the non-mission data link by comparing the maximum transmit power with the required transmit power. |
US10810883B1 |
Travel time estimation
A transport system can receive vehicle data from each self-driving vehicle (SDV) in a fleet of SDVs operating throughout a given region. The transport system may further detect, in the vehicle data, a set of properties of one or more other vehicles external to the SDV. Based on the set of properties of the one or more vehicles, the transport system can construct traffic model(s) for the given region. Utilizing the traffic model(s), the transport system can provide estimated time of arrival (ETA) data, corresponding to SDVs in the fleet, to users of a transportation arrangement service in the given region. |
US10810864B1 |
Manual call point with an e-paper display
A manual call point with an e-paper display is described herein. One device includes an e-paper display configured to display an image that represents a status of the manual call point, a memory, and a processor configured to execute executable instructions stored in the memory to determine a change in the status of the manual call point, and change the image displayed by the e-paper display in response to the determination that there is a change in the status of the manual call point. |
US10810858B2 |
Infrared imaging systems and methods for gas leak detection
A system for detecting a gas leak can include: at least one infrared imaging sensor; and an imaging analysis computer operably coupled with the at least one infrared imaging sensor. The imaging analysis computer can be configured to control any infrared imaging sensor and acquire infrared images therefrom at any rate and in any duration. The imaging analysis computer can be configured to analyze the infrared images in order to detect a gas leak. The imaging analysis computer can be configured to detect a gas where gas should not be (or is not present in a baseline) in order to determine that there is a gas leak in the vicinity. The gas can be a hydrocarbon gas or carbon monoxide, or other. |
US10810856B2 |
Dangerous situation detection method and apparatus using time series analysis of user behaviors
The present invention relates to dangerous situation detection method and apparatus using a time series analysis of user behaviors. The dangerous situation detection method and apparatus using a time series analysis of user behaviors according to the present invention includes recognizing user behaviors in a time series manner using sensor sensing data, setting stability interval periods and reflecting stability factors on the user behaviors recognized in the time series manner for each of the stability interval periods to set a stability level, and determining a danger level on the basis of the recognized user behaviors and the set stability level. |
US10810847B2 |
Method and camera system combining views from plurality of cameras
A method and a camera system for stitching video data from two image sensors arranged to each capture video data of overlapping camera views comprises detecting motion in an area in the camera views corresponding to the overlapping camera views,determining an activity distance, being the distance from a position at the location of the two image sensors to an activity position including the detected motion, positioning in a three-dimensional coordinate system a predefined projection surface at a position having a distance between the position at the location of the image sensors and a position of the projection of the activity onto the projection surface that corresponds to the determined activity distance, projecting the video data from each of the image sensors onto the predefined projection surface that have been positioned at the activity distance, and outputting a two-dimensional video corresponding to the projection onto the projection surface. |
US10810845B2 |
Security system for detecting hazardous events and occupants in a building
A gunshot detection/security system for detecting dangerous events in a school or other building includes one or several pods placed throughout the building premises. Each pod includes a camera, a thermal camera, and an acoustic sensor for detecting video, images, heat signatures, and sound within a detection area for the respective pod. The sensor data is then analyzed to identify a dangerous event in the building, and provide alerts regarding the dangerous event via the pods or client computing devices of students/occupants in the building, administrators, parents, and emergency responders. A server computing device generates digital maps of the interior and exterior of the building having location information regarding the occupants of the building and a danger zone indicating the epicenter for the dangerous event. |
US10810842B2 |
Electronic gaming machine and method for providing a Flip-It wagering game
An electronic gaming machine, a system, and a method provide a wagering game to a player. Four community cards are dealt to a community area of a table. The player enters a wager associated with an expected characteristic of a fifth community card to be dealt during the game. The fifth community card is dealt and a determination is made whether the player wins the wager based on the actual characteristic of the fifth community card matching the expected characteristic associated with the player's wager. An award to be received by the player is determined based on the player winning the wager. |
US10810836B2 |
System and method for remotely controlling an electronic gaming device from a mobile device
A system and method for controlling an electronic gaming machine (“EGM”) from a mobile device during a remote access play session. The EGM is switched between a local access mode in which the inputs on the EGM are active and a remote access mode in which the inputs on the EGM are de-activated and a player interfaces the EGM using a mobile device such as a smartphone or a tablet computer. During remote access play sessions, all critical game play operations continue to be performed exclusively on the EGM and not on the mobile device. Critical game play operations include random number generation and determination of game outcome. Game content, including video, screenshot images and audio of the game is transmitted to the mobile device for display to the player. Player input and selections are made on the mobile device. |
US10810834B2 |
System and method for utilizing mobile device to provide bonus awards
The present disclosure relates to utilizing a mobile device executing a mobile device application and in communication with an electronic gaming machine to notify a player of one or more awards won in association with a non-resident or non-legacy gaming establishment management system. |
US10810833B2 |
Electronic gaming machine having a deformable device
A gaming system including a housing and one or more deformable devices supported by the housing, wherein the deformable devices are configured to selectively take multiple different shapes. |
US10810832B2 |
Gaming machine cabinet access structure and method
A gaming machine includes a gaming machine cabinet defining an upper cabinet volume and a cabinet front opening to the upper cabinet volume. A gaming machine panel is mounted on the gaming machine cabinet in a panel operating position in which the gaming machine panel registers with and covers at least a base area of the cabinet front opening. The gaming machine further includes a translation structure connected between the gaming machine panel and the gaming machine cabinet. The translation structure is operable enable the gaming machine panel to be moved from the panel operating position upwardly to a cabinet open position. In this cabinet open position the gaming machine panel remains supported by the gaming machine cabinet and is removed from a base area of the cabinet front opening. |
US10810831B2 |
Electronic gaming machine and method for determining concatenated prize values
An electronic gaming machine includes a display device, and a processor configured to execute instructions stored in a memory. When executed, the instructions cause the processor to select a first plurality of symbols for a first level of play of a feature game, where each of the first plurality of symbols are selected from a plurality of feature symbols including at least one number symbol and at least one designated symbol. The instructions also cause the processor to control the display device to display the first plurality of symbols in a first row of symbol positions, and in response to determining that the first plurality of symbols include at least two number symbols, concatenate the at least two number symbols to determine a first prize value equal to the concatenated value of the at least two number symbols. |
US10810828B2 |
Interactive electronic reel gaming machine with a special region
An interactive electronic reel gaming machine that includes a special region is disclosed. A game controller is configured to provide a reel with a particular arrangement of display positions, where each display position includes a separately controlled individual reel. Following receipt of a user input, one or more of the individual reels are spun and stopped, displaying symbols (e.g., corresponding to playing cards, pictures, credit values, etc.) in one or more of the display positions. The game controller is configured to apply a multiplier to symbols displayed in the special region. Pay awards are made when clusters of two or more like symbols are located in adjacent display positions. The pay award is increased if one or more symbols of the cluster is located in a display position corresponding to the special region. The symbol display positions are configured in a geometric shape. |
US10810827B2 |
Gaming system having shifting accumulation of bonus wilds
Wager-based video slot reel games are disclosed where prizes can be awarded based upon by-chance insertion of bonus wild symbols. In particular, a series of free spin games are provided. In each spin of the series of free spin games, a number of bonus wild symbols can be awarded by chance. The by-chance awarded wild symbols can be randomly distributed in a game outcome array. If and after the wild symbols are awarded, the number of next by-chance insertable wild symbols is increased and that increase is signaled to the player to thereby heighten the expectations of the player of winning even more bonus wild symbols by-chance in a next of the series of free spin games. |
US10810826B2 |
Method and system for display assembly hinging
A system for supporting a plurality of display monitors includes a support stanchion having a first anchor end, a second coupling end, and a stanchion body extending therebetween. The system also includes at least one counter-balanced hinging mechanism coupled to the second coupling end of the support stanchion and at least one monitor frame. The counter-balanced hinging mechanism includes at least one arm linkage assembly configured to permit the at least one monitor frame to pivot with respect to the support stanchion, and at least one bias member coupled to the at least one arm linkage assembly. The at least one bias member is configured to apply a variable amount of force to maintain the at least one monitor frame stationary in any of a plurality of intermediate positions between an approximately vertical operational position and an approximately horizontal maintenance position. |
US10810822B2 |
Article dispensing machine and method for auditing inventory while article dispensing machine remains operable
An article dispensing machine capable of performing an inventory audit of a portion of the inventory and automatically pausing the inventory audit in response to a customer transaction request and method for performing the same are shown. After completing the customer request, the article dispensing machine resumes the inventory auditing process. The article dispensing machine thereby remains available for customer use during the inventory auditing process. |
US10810820B2 |
Payment system using biometric data having security secured, and biometric data registration system
Provided is a biometric data registration system, which displays screen data for causing a user to select whether a destination of registration of the user's biometric data is a card for payment or a registration destination server device, accepts from the user a selection of the destination of registration, and acquires the user's biometric data. If the selection indicates the card for payment, the biometric data registration system stores the biometric data in a first storage unit which is for managing data which is stored in a storage medium of the card for payment, whereas if the selection indicates the registration destination server device, the biometric data registration system stores the biometric data in a second storage unit which corresponds to the registration destination server device. |
US10810816B1 |
Information-based, biometric, asynchronous access control system
An information-based access control system for facilities. The control system includes a mobile app and securely connected central server, which is cloud-based. The app collects and transmits multiple biometric and other authentication factors and the facility enabling the server to verify identity and check to ensure the person is authorized to obtain access. If so, the server issues a limited-duration access token, which can be displayed to the facility guards and transmitted to signal lights and electronic gates to obtain access quickly, conveniently, inexpensively, and securely. Because the user can obtain the access token prior to arriving at the gate (asynchronously), throughput increases and traffic won't back up. |
US10810812B2 |
Apparatus and method for securing items with optical lock and key
Systems, apparatuses, and methods are provided herein for securing merchandise. In one embodiment an apparatus for securing merchandise comprises a locking mechanism limiting access to one or more items, one or more optical sensors configured to detect a plurality of wavelengths and an intensity associated with each wavelength from at least one light beam emitted by an optical key, and a control device comprising a control circuit and a memory device. The control device being configured to store a lock code comprising a plurality of wavelength values and a plurality of intensity values each associated with a wavelength value on the memory device and determine whether to release the locking mechanism based on whether intensities of each of the plurality of wavelengths detected by the one or more optical sensors match the lock code. |
US10810811B2 |
Electronic device and method for managing electronic key thereof
An electronic device and a method for managing an electronic key thereof are provided. The electronic device includes a wireless communication circuit, a hardware-based security element comprising circuitry configured to provide a timestamp, a processor operatively coupled with the communication circuit and the security element, and a memory operatively coupled with the processor. The memory stores instructions that when executed by the processor, control the electronic device to: launch an application related with an electronic key of a door lock, receive an input for using the electronic key to open the door lock through the application, determine the validity of credential information related with the input, based at least in part on the timestamp, and open the door lock based on the validity of the credential information. |
US10810805B2 |
Method for cleaning engine deposits
A method for cleaning a combustion engine using a cleaning apparatus, wherein a cable is coupled to an on-board diagnostic port on the vehicle, and a service hose with a misting nozzle adapter is coupled to a first port on a vehicle. A controller monitors data from the on-board diagnostic port on a vehicle, where the data preferably includes the engine rpm, the catalytic convertor temperature, the engine coolant temperature, the MAF, and the MAP. The controller monitors information from the cleaning apparatus, and the information is processed to adjust the dispensing of the cleaning solution. The adjustment of the cleaning solution can vary the rate, volume, pressure, pulse interval, flow pattern, and duration of the solution in the engine. |
US10810803B2 |
Image processing device, image processing method, and program
There is provided an image processing device including: a data storage unit storing feature data indicating a feature of appearance of one or more physical objects; an environment map building unit for building an environment map based on an input image obtained by imaging a real space and the feature data, the environment map representing a position of a physical object present in the real space; a control unit for acquiring procedure data for a set of procedures of operation to be performed in the real space, the procedure data defining a correspondence between a direction for each procedure and position information designating a position at which the direction is to be displayed; and a superimposing unit for generating an output image by superimposing the direction for each procedure at a position in the input image determined based on the environment map and the position information, using the procedure data. |
US10810797B2 |
Augmenting AR/VR displays with image projections
Systems and methods for generating and animating virtual representations to a wearer of a HMD device are disclosed. A virtual representation associated with a real-world object is retrieved based on received input data. The retrieved virtual representation is rendered for display to the wearer. Sensor data tracking one or more of the real-world object and the wearer is also received. The rendered virtual representation can be further animated based on the sensor data. |
US10810794B2 |
Method and apparatus for 3D clothing draping simulation
The present disclosure relates to a method of applying a sublayer in which a layer is applied on the basis of a sewing line as a unit and an apparatus thereof in making 3D clothing by computer simulation. A partial region within a pattern is designated by selecting a sewing line through a user interface, and a sublayer in which a layer is set on the basis of the sewing line is set. |
US10810790B1 |
Identification and correction of temporal ages in separate signal paths of a graphical model
A device may determine temporal ages of a first signal and a second signal provided in a graphical model generated in a technical computing environment, where the first signal is different than the second signal. The device may determine whether the temporal age of the first signal is equivalent to the temporal age of the second signal at a particular block of the graphical model. The device may either display an indication that the first signal is synchronized with the second signal when the temporal age of the first signal is equivalent to the temporal age of the second signal, or may display another indication that the first signal is not synchronized with the second signal when the temporal age of the first signal is not equivalent to the temporal age of the second signal. |
US10810789B2 |
Image display apparatus, mobile device, and methods of operating the same
A mobile device is provided. The mobile device may include a communication interface; a display; a memory configured to store one or more instructions; and at least one processor configured to execute the one or more instructions stored in the memory to: control the communication interface to communicate with an image display apparatus; control a viewpoint of a 360-degree image based on an input; and control the communication interface to transmit, to the image display apparatus, at least one among an image corresponding to the viewpoint of the 360-degree image, and viewpoint control information corresponding to the viewpoint of the 360-degree image. |
US10810785B2 |
Method for forward progress tree traversal mechanisms in hardware
In a ray tracer, to prevent any long-running query from hanging the graphics processing unit, a traversal coprocessor provides a preemption mechanism that will allow rays to stop processing or time out early. The example non-limiting implementations described herein provide such a preemption mechanism, including a forward progress guarantee, and additional programmable timeout options that can be time or cycle based. Those programmable options provide a means for quality of service timing guarantees for applications such as virtual reality (VR) that have strict timing requirements. |
US10810783B2 |
Dynamic real-time texture alignment for 3D models
Described herein are methods and systems for dynamic real-time texture alignment for three-dimensional (3D) models. A computing device receives input images of objects in a scene, and generates a 3D model for at least one of the objects, comprising a plurality of mesh triangles. The computing device projects each mesh triangle of the 3D model to one of the input images. The computing device measures a texture discontinuity between adjacent mesh triangles of the projected image by comparing color differences in a shared edge of the adjacent mesh triangles. The computing device translates a texture associated with the adjacent mesh triangles in different directions to create texture candidates. The computing device applies the texture candidates to the corresponding mesh triangles until a seamless texture join is formed on the shared edge. The computing device generates a textured 3D model using the 3D model, the projected image, and the texture candidates. |
US10810782B1 |
Semantic texture mapping system
A semantic texture map system to generate a semantic texture map based on a 3D model that comprises a plurality of vertices that include coordinate that indicate positions of the plurality of vertices, a UV map, and a semantic segmentation image that comprises a set of semantic labels. |
US10810779B2 |
Methods and systems for identifying target images for a media effect
Exemplary embodiments relate to the application of media effects such as facial mask overlays, to visual data (such as a video or photo). Publicly-available images may be found and mapped to a mask. In the mapping process, a user may type in the name of a celebrity or public figure, and a system may perform a public image search. In some embodiments, candidate images may be filtered in order to remove images unsuitable for use in masks. Typically, only a single forward-facing image is required for mapping. However, multiple images may be used to provide different angles and allow the user to turn their head while the mask is applied. Mask generation may involve: extracting facial features from the image; mapping the facial features to the user's video; blending/recoloring of either or both of the image or the person's face; and applying the mask in real-time/on the fly. |
US10810778B2 |
Method and system for generating a 360-degree presentation of an object
Methods and systems for generating an interactive rotatable 360-degree presentation of an object are disclosed. The methods and systems obtain data describing the object, where the data includes information about a number of images of the object, as well as additional information about the object. The images are automatically obtained and rearranged into at least one sequence of images substantially evenly distributed around 360 degrees. It is determined whether to add hotspot(s) to image(s), and if hotspot(s) are to be added, the hotspot(s) are automatically added to the image(s). The ordered images of the sequence(s) are then merged into an interactive rotatable 360-degree presentation of the object. |
US10810777B1 |
Feature erasure
A GPU receives an image comprising an array of pixels. The image depicts features in a field of an object on a background. The features and the background contrasting with the object field, and at least a portion of the object is at the center of the image. In parallel for each particular pixel of a first plurality of the pixels, the GPU sets the color value of the particular pixel to the lightest color value of a second plurality of the pixels substantially along a line outward from the particular pixel toward an edge of the image. The line can be defined by the particular pixel and the image center. |
US10810773B2 |
Headset display control based upon a user's pupil state
Systems and methods for display control based on pupil size in virtual, augmented, and mixed reality (xR) applications. In some embodiments, a method may include: identifying, via a camera mounted to a body a headset facing an eye of a user wearing the headset, a pupil state of the user; communicating an indication of the pupil state to an Information Handling System (IHS) coupled to the headset, wherein the IHS is configured to select a setting based upon the pupil state and transmit an indication of the setting to the headset; and applying the setting, via a controller of the headset, to at least one of: (a) a display mounted on the body of the headset, or (b) an image shown to the user via the display. |
US10810772B2 |
Techniques for displaying stack graphs
A method and system for drawing a stack graph that includes a timeline and one or more stack lines based on a set of event data. A stack line may be associated with an event target and may include one or more event overlays that represent event objects. In one implementation, event overlays may include a visual characteristic that identifies an event source associated with the event object of the event overlay. |
US10810771B2 |
Systems and methods for rendering a visualization using event data
Embodiments of the disclosure are systems and methods for providing third party visualizations. In one embodiment, a method is provided that includes receiving, via an API, computer-executable instructions configured to render a visualization using events and a variable field; rendering the visualization using the events; causing displaying of a graphical user interface (GUI) comprising a visualization panel and a variable element; receiving, via the variable element of the GUI, an indication of a first change in the value of the variable field to a first value; re-rendering the visualization using the events and the first value; and causing display of the GUI with an updated visualization panel and the variable element. |
US10810767B2 |
Machine-learned network for Fourier transform in reconstruction for medical imaging
For low-complexity to learned reconstruction and/or learned Fourier transform-based operators for reconstruction, a neural network is used for the transform operators. The network architecture is modeled on the Cooley-Tukey fast Fourier transform (FFT) approach. By splitting input data before recursive calls in the network architecture, the network may be trained to perform the transform with similar complexity as FFT. The learned operators may be used in a trained network for reconstruction, such as with a learned iterative framework and image regularizer. |
US10810766B2 |
Image processing apparatus, image processing method, and image processing program
In a console according to an embodiment, a control unit functions as a generation unit that generates a tomographic image from a plurality of projection images, which have been captured by a radiation detector at each of a plurality of imaging positions with different irradiation angles, with radiation sequentially emitted from each of the plurality of imaging positions, using a reconstruction process. In addition, the control unit functions as a derivation unit that derives the degree of enhancement as a parameter value used in a frequency enhancement process which is an example of image processing for a tomographic image, on the basis of the image analysis result of a projection image corresponding to an irradiation angle of 0 degrees. Furthermore, the control unit functions as a correction unit that corrects the parameter value according to image processing used in the reconstruction process and an image processing unit that performs the image processing on a tomographic image on the tomographic image using the corrected parameter value. |
US10810764B2 |
Interleaved multisample render targets for lossless compression
One embodiment provides for a general-purpose graphics processor comprising a hardware graphics rendering pipeline configured to perform multisample anti-aliasing, the hardware graphics rendering pipeline including pixel processing logic to determine color data for multiple sample locations of each pixel in a set of pixels and to contiguously pack the color data for the multiple sample locations of each pixel for storage to a multisample render target. |
US10810761B2 |
Position and orientation estimation apparatus, position and orientation estimation method, and program
A three-dimensional detailed position/orientation estimation apparatus includes a first position/orientation estimation unit and a second position/orientation estimation unit that are configured to estimate three-dimensional position and orientation. The first position/orientation estimation unit optimizes six parameters (translations x, y, and z, and rotations φ, γ, and θ) using 3D data, and the second position/orientation estimation unit optimizes only three parameters (translations x and y, and rotation θ) that can be estimated with high accuracy using a 2D image, based on the result of the three-dimensional position/orientation estimation performed by the first position/orientation estimation unit using the 3D data. |
US10810759B2 |
Creating a three-dimensional model from a sequence of images
A computer-implemented method according to one embodiment includes identifying a plurality of two-dimensional (2D) images illustrating a subject performing a rotation, selecting a representative image of the subject, cropping the plurality of 2D images, utilizing the representative image of the subject, to create a cropped plurality of 2D images, aligning each of the cropped plurality of 2D images, thereby creating an aligned plurality of 2D images, selecting a subset of the aligned plurality of 2D images that illustrate a predetermined amount of rotation of the subject, and creating a three-dimensional (3D) point cloud of the subject, utilizing the subset of the aligned plurality of 2D images. |
US10810757B2 |
Vehicle exterior environment recognition apparatus
A vehicle exterior environment recognition apparatus includes a road surface identifying unit, a three-dimensional object identifying unit, a road surface determining unit, and a three-dimensional object composition unit. The road surface identifying unit identifies a road surface in an image. The three-dimensional object identifying unit identifies three-dimensional objects each having a height extending vertically upward from the identified road surface. When the identified three-dimensional objects are separated and are located at respective positions distant from an own vehicle by a same relative distance, the road surface determining unit performs a determination of whether a three-dimensional-object-intervening region between the identified three-dimensional objects has a correspondence to the road surface. When the three-dimensional-object-intervening region is determined to have no correspondence to the road surface, the three-dimensional object composition unit regards the identified three-dimensional objects separated from each other as candidate parts of a unified three-dimensional object. |
US10810753B2 |
Single-frequency time-of-flight depth computation using stereoscopic disambiguation
Disclosed is a technique for 3D reconstruction through a combination of time-of-flight (ToF) and stereoscopy. Use of a single modulation frequency in ToF computation provides a set of ambiguous distances. To determine a single accurate distance out of this candidate set, a stereoscopic comparison of an image pair provides a disambiguating distance. The stereoscopic comparison uses a stored virtual image of at least part of the emitted light, and the detected image of light reflected from an object. The stereoscopic distance is used to determine which of the multiple accurate distances is correct based on proximity. The closest of the multiple distances to the disambiguating distance is taken as the actual distance. |
US10810747B2 |
Dead reckoning positional prediction for augmented reality and virtual reality applications
Techniques for predicting a virtual camera view in an augmented reality (AR) or virtual reality (VR) application. A first change in position of a user device over a first time period is determined based on analyzing a plurality of frames of image data related to an AR or VR application. A dead reckoning calculation is used to predict a second change in position of the user device over a second time period, based on the first change in position and data received from an Inertial Measurement Unit (IMU) associated with the user device. A plurality of frames of image data are generated for display in the AR or VR application, based on the predicted second change in position of the user device. |
US10810740B2 |
System and method for automated characterization of solid tumors using medical imaging
A system and method for automated characterization of solid tumors using medical imaging. The system comprises an interface that is configured to acquire data from medical imaging devices, one or more processors, and an outputting device that reports the characterization of said solid tumor. The method of automated characterization, which is implemented by the system, acquires a sequence of images from the medical imager using a Dynamic Contrast Enhanced (DCE) imaging protocol, performs image registration, detects the contour of the solid tumor, and dividing the contours to segments. For each segment, the method calculating a displacement of the contrast material, fitting the displacement to a flow model and extracting an estimation of the interstitial fluid velocity. The estimated interstitial fluid velocity of the segments provide characterization of the solid tumor and includes an assessment of the tumor interstitial fluid pressure, the tumor drug delivery efficiency, and the tumor prognostic or metastasis risk. |
US10810738B1 |
Marker-less alignment of digital 3D face and jaw models
The invention aligns a digital face model from a 3D face scanner with a 3D teeth model from an intraoral scan produced by an intraoral scanner without using external markers. The alignment proceeds in two steps. In the first step, the teeth part of a subject whose teeth are clenched, referred to as a clenched-teeth face scan, is aligned with the teeth model from an intraoral jaw scan to obtain a first transformation matrix. In the second step, a face model of a subject with a normal facial expression is aligned with the clenched-teeth face model of the same subject using an ICP algorithm. |
US10810737B2 |
Automated nipple detection in mammography
A method comprising receiving a digital mammogram of a human breast; automatically extracting a contour boundary of said breast in said digital mammogram; automatically calculating a convex hull for said contour boundary; automatically comparing said contour boundary to said convex hull, to detect a plurality of gap segments, wherein each of said plurality of gap segments has an associated inflection point; and automatically determining a nipple location along said contour boundary as between a pair of said inflection points. |
US10810735B2 |
Method and apparatus for analyzing medical image
The present disclosure discloses a method and apparatus for analyzing medical image. A specific embodiment of the method includes: acquiring medical image data; generating multi-scale decision sample data based on the medical image data; inputting the multi-scale decision sample data into a deep neural network model to obtain an auxiliary diagnosis data of the medical image, the deep neural network model being trained according to a consistency principle between multi-scale training sample data and an output result of the deep neural network model. In the embodiment, a multi-scale training sample is used to accelerate the training process of the deep neural network model, thus the auxiliary diagnosis decision process can be accelerated, while the accuracy of the trained deep neural network model of the embodiment is improved according to a consistency principle of data between different scales and output results, thereby improving the accuracy of auxiliary diagnosis decision. |
US10810734B2 |
Computer aided rebar measurement and inspection system
Embodiments of the present invention generally relate to computer aided rebar measurement and inspection systems. In some embodiments, the system may include a data acquisition system configured to obtain fine-level rebar measurements, images or videos of rebar structures, a 3D point cloud model generation system configured to generate a 3D point cloud model representation of the rebar structure from information acquired by the data acquisition system, a rebar detection system configured to detect rebar within the 3D point cloud model generated or the rebar images or videos of the rebar structures, a rebar measurement system to measure features of the rebar and rebar structures detected by the rebar detection system, and a discrepancy detection system configured to compare the measured features of the rebar structures detected by the rebar detection system with a 3D Building Information Model (BIM) of the rebar structures, and determine any discrepancies between them. |
US10810731B2 |
Information coding in dendritic structures and tags
Disclosed are methods and systems that include obtaining at least one image of a dendritic structure, analyzing the at least one image to identify one or more features associated with the dendritic structure, and determining a numerical value associated with the dendritic structure based on the one or more features. |
US10810723B2 |
System and method for single image object density estimation
A method for object density monitoring includes receiving, by a processing server, an input image captured by an image sensor. The method further includes providing an annotated dataset with a target object to be identified in the input image, and providing, by the processing server as output, an object density map generated from the input image. The processing server provides the object density map by using a deep neural network having one or more pairs of a compression layer and a decompression layer connected by gated shortcuts. |
US10810721B2 |
Digital image defect identification and correction
Digital image defect identification and correction techniques are described. In one example, a digital medium environment is configured to identify and correct a digital image defect through identification of a defect in a digital image using machine learning. The identification includes generating a plurality of defect type scores using a plurality of defect type identification models, as part of machine learning, for a plurality of different defect types and determining the digital image includes the defect based on the generated plurality of defect type scores. A correction is generated for the identified defect and the digital image is output as included the generated correction. |
US10810718B2 |
Method and device for three-dimensional reconstruction
The present invention provides a method and device for three-dimensional reconstruction, applied to the field of image processing. The method comprises: obtaining a first depth map, which is photographed by a first photographic device, and obtaining a second depth map, which is photographed by a second photographic device; merging the first depth map with a first three-dimensional model according to a position of the first photographic device to obtain a second three-dimensional model; and merging the second depth map with the second three-dimensional model according to a position of the second photographic device to obtain a third three-dimensional model. By adoption of the method, during the reconstruction of three-dimensional images, the reconstruction effect of the three-dimensional images of the top and the bottom of the target object can be improved, and the precision of the reconstructed three-dimensional images is improved. |
US10810717B2 |
Image processing apparatus, image processing method, and image processing system
A first image and a second image having a smaller pixel size than the first image are acquired. Based on a pixel size of the first image, a size of a calculation area to be set on the second image is calculated. A plurality of calculation areas including a corresponding position on the second image corresponding to a position of interest on the first image, and having the calculated area size are set on the second image. In each of the plurality of calculation areas, a representative value based on density values of pixels included in the calculation area is calculated, and based on a density value of a pixel at the position of interest and a plurality of representative values, a difference value between the first and second images at the position of interest is determined. |
US10810715B2 |
System and method for picking validation
A system and a method for validating items gathered (i.e., picked) as part of a logistics process are disclosed. The picking system uses one or more sensors to sense the physical attributes of an item (e.g., weight, color, size/shape, etc.). The sensed-physical attributes are compared to expected-physical attributes stored for the item. Based on the comparison, a user may receive feedback confirming or rejecting the picked item. In some embodiments, the picking system uses the collected physical data to improve, or add to, the expected-physical attributes. The picking system may also be integrated with a powered-industrial vehicle and/or a warehouse management system to improve usability and effectiveness. |
US10810714B2 |
Image restoration processing utilizing settings for image correction
An image processing method includes acquiring a captured image that has been generated by imaging through an imaging optical system inclined relative to an imaging plane, acquiring inclination information of the imaging optical system, acquiring aberration information of the imaging optical system, and performing image restoration processing on the captured image based on the aberration information. The image restoration processing includes a setting of a correction amount of the captured image according to the inclination information. |
US10810713B2 |
Image processing device and image processing method
To provide an image processing device and an image processing method capable of controlling contrast of a diagnosed part without greatly changing the characteristic of the entire image, and improving the diagnosis efficiency, an image processing device 100 sets a search pixel range and a search region to search for a representative pixel value as reference upon emphasis on the contrast of a diagnostic image as image data of a diagnosis object, calculates the representative pixel value for emphasis processing based on the set search pixel value range and the search region, and generates an emphasized image where the contrast of the entire diagnostic image is emphasized with the representative pixel value as reference. Further, the image processing device 100 calculates an emphasis region as a region where the contrast is emphasized from differential information between the diagnostic image and the emphasized image, and generates a partially emphasized image as an image where the contrast of the emphasis region is emphasized. |
US10810712B2 |
Apparatus for monitoring surroundings of vehicle and method of calibrating the same
In an apparatus for monitoring surroundings of a vehicle based on a plurality of images captured by a plurality of imagers through a windshield of the vehicle, an image acquirer is configured to acquire the plurality of images captured by the plurality of imagers, and a distortion corrector is configured to correct the plurality of images based on an optical distortion distribution of the windshield. |
US10810706B2 |
Machine learning based image processing techniques
A machine learning based image processing architecture and associated applications are disclosed herein. In some embodiments, a machine learning framework is trained to learn low level image attributes such as object/scene types, geometries, placements, materials and textures, camera characteristics, lighting characteristics, contrast, noise statistics, etc. Thereafter, the machine learning framework may be employed to detect such attributes in other images and process the images at the attribute level. |
US10810700B2 |
Method of adjusting texture coordinates based on control regions in a panoramic image
A method of adjusting texture coordinates based on control regions in a panoramic image is disclosed. The method comprises determining warping coefficients of a plurality of control regions in a panoramic image; retrieving two selected warping coefficients out of the warping coefficients for each of a plurality of camera images with respect to each vertex from a first vertex list according to two coefficient indices for each camera image in its data structure; calculating an interpolated warping coefficient for each camera image with respect to each vertex according to the two selected warping coefficients and a coefficient blending weight for each camera image in its data structure; and, calculating modified texture coordinates in each camera image for each vertex according to the interpolated warping coefficient and original texture coordinates for each camera image in its data structure to form a second vertex list. |
US10810689B2 |
Methods of creating customized beverage products
A method of creating customized beverage products includes providing a multiple stream filing system suited for producing an array of beverage products. The method also includes receiving an order for a customized beverage product from the array of beverage products. The order indicates at least one characteristic of the customized beverage product. The at least one characteristic comprises one or more of the following: a beverage formulation, a beverage additive, a package size, a package shape, or label content. The method further includes instructing the multiple stream filling system to produce the customized beverage product. The multiple stream filing system produces the customized beverage product without performing an operation to reduce contamination of the customized beverage product with ingredients from a previously produced beverage product. |
US10810688B1 |
Determination of refined oilfield water disposal locations based on legal notifications
Provided herein are systems and methods for determining a refined oilfield location area from a notified oilfield location. The methods and systems access notifications of intent to obtain a notified oilfield location record that includes at least a notified place name, a notified distance from a place associated with the notified place name and a notified approximate direction from the place associated with the notified place name. The methods and systems further determine a candidate location area based on the notified distance and the notified approximate direction. The methods and system further obtain auxiliary information associated with information identified within the notification of intent. The methods and systems further determine a second candidate location area based on the auxiliary information and determine the refined location area based on an intersection of the first candidate location area and the second candidate location area. |
US10810686B2 |
Identification of rule violations in a network community
Techniques for identifying rule violations in a network community are described herein. The disclosed techniques include receiving a report event from a first client computing device, wherein the report event is associated with content and a possible violation and the content comprises one or more comments relative to a plurality of video frames; identifying the content based on the possible violation; sending the content to a plurality of review users, wherein the content is presented and viewable via an interface by each review user; determining whether a voting instruction has been received from each review user during a predetermined period of time; recording a voting instruction from a first review user in a list of voting instructions in response to a determination that the voting instruction has been received during the predetermined period of time; and identifying the possible violation as a violation based on the list of voting instructions. |
US10810678B2 |
System and method for automated risk management appraisal
The invention is a system and method of appraising and managing risk relating to technology needs using a risk management processing engine. The risk management processing engine serves as a central server for an administrator to manage a plurality of policy holders and third party service technicians. The invention gathers policy holder data, determining the risk associated with the data, creating a risk management policy for technology service events and technology service situations in order to mitigate or eliminate the risk, and resolving serviceable events when risk is actualized. |
US10810675B2 |
Providing transit alternatives based on monitored vehicle characteristics
Performance parameters of a vehicle can be measured by an on-board performance parameter measuring device. The performance parameters can be measured while the vehicle is being used. The measured performance parameters of the vehicle can be transmitted to a computing device. The computing device can be configured to generate a user cost that reflects a cost for insuring the vehicle based on the measured performance parameters of the vehicle. A graphical user interface can be generated by the computing device for presentation to a user via a display device, that graphical user interface can include the user cost. An alternative transportation route for the journey and an alternative transportation cost for the journey can be determined and presented to the user through the graphical user interface. |
US10810673B1 |
Systems and methods for automatically reallocating investment funds
A system may include a processor that receives investor data associated with a user, such that the investor data includes investments held by the user. The processor may then determine a reallocation plan of the investments based on the investor data, send a request to a computing device associated with the user that prompts a response for approval or denial to enable the processor to reallocate the investments according to the reallocation plan, and track the investments over a period of time as if reallocated per the reallocation plan when the response includes the denial. The processor may then generate a first set of visualizations that correspond to a current balance of the one or more investments over the period of time as if reallocated per the reallocation plan and send the first set of visualizations to the computing device, such that the computing device displays the first set of visualizations. |
US10810671B2 |
Interest rate swap compression
A computer system may access data corresponding to a portfolio that comprises interest rate swaps and may calculate parameters for a compressed swap. The computer system may determine, based at least in part on the parameters for the compressed swap, a performance bond requirement attributable to the interest rate swaps. The computer system may compare the performance bond requirement to account data associated with a holder of the portfolio and may perform one or more additional actions based on the comparing. |
US10810668B2 |
Automated trading system in an electronic trading exchange
An electronic exchange system network includes a trader site having an automated trading system capable of submitting orders and/or quotes to an exchange site. The automated trading system determines whether an order or quote should be submitted based on, for example, the current market price of an option and theoretical buy and sell prices. The theoretical buy and sell prices are derived from, among other things, the current market price of the security underlying the option. The theoretical buy and sell prices are calculated when underlying factors that contribute to the theoretical prices change. Computation times of the theoretical prices may be reduced by using precalculated values and/or using interpolation and extrapolation. Other techniques may be used in addition or in the alternative to speed automatic decision-making. In addition, a system of checks may be conducted to ensure accurate and safe automated trading. The automated trading system may be capable of automatically submitting orders in connection with the underlying security in order to hedge part of the delta risk associated with the automated option trades. |
US10810664B2 |
Item processing exception configurable pipeline
A system for resolving item-processing exceptions typically includes a processor, a memory, and an exception resolution module stored in the memory. The exception resolution module is typically configured for: receiving an item-processing exception; determining a source of the item-processing exception; based on the source of the item-processing exception, identifying a defined exception resolution process; based on the defined exception resolution process, creating and configuring a pipeline context for resolving the item-processing exception, the pipeline context including the defined exception resolution process; storing the pipeline context in a pipeline database; adding the pipeline context to a pipeline queue; selecting, via a pipeline manager service, the pipeline context from the pipeline queue; and executing, via a worker thread, the pipeline context by executing the defined exception resolution process. |
US10810663B1 |
Heuristic document verification and real time deposit engine
A heuristic engine includes capabilities to collect an unstructured data set, including document image data and correlate the image data with known valid data to detect document fraud. Notifications of fraud detection may include particular signature images, or characteristics of a document image. By feeding back indications of document fraud with correlations to past instances of fraud into the heuristic algorithm, the algorithm may learn and improve in fraud detection accuracy. |
US10810660B1 |
Financial management system and method with retirement planning
A computer-implemented data processing system includes a data storage system, and a processor and program logic stored in memory and executable by the processor. The program logic includes logic configured to manage accounts respectively associated with a plurality of users, process transactions for the accounts and store account data related to the accounts in the data storage device, access the account data stored in the storage device and determine projected retirement spending amounts for a user based on account data associated with the user, determine a projected required savings amount based on the projected retirement spending amounts, and establish a connection with one of the users and provide the user with a user interface, the user interface including retirement planning data, the retirement planning data including an indication of the user's progress in accumulating the projected required savings amount. |
US10810659B2 |
System and method of auction management
A system and process allowing for online participation in multiple simultaneous live auctions comprising an auction management system providing an advantageous user display enabling concurrent auction participation. |
US10810657B2 |
System and method adapted to facilitate sale of digital images while preventing theft thereof
The present invention facilitates secure display and sale of copyright protected images, by showing alternate reciprocal images, with complementary obstructed/degraded and clearly visible areas. System components include server machines and/or computer terminals with a screen or other display mechanism. The system may be connected through a communications network or it may be self-contained on a stand-alone, specialized computer system. System components further include non-transitory computer-readable media containing a database of images. The system creates and displays alternate reciprocal images showing blockades covering faces, patterns or objects of interest in a first image and showing the same faces, patterns or objects shown as clearly visible with all surroundings having degraded resolution or blur. Users are provided an opportunity to purchase the image and a clean copy of the image is delivered to the user upon completion of a purchase transaction. |
US10810654B1 |
System and method of mapping product attributes between different schemas
A system is described for mapping product attributes between schemas of e-commerce websites. Using a pre-defined reverse mapping, a mapping server populates a master attribute table from product attributes and taxonomy categorizations defined in a source schema. Using a pre-defined assignment mapping, the mapping server maps the master attributes in the master attribute table to product attributes and taxonomy categorizations in the target schema. |
US10810652B2 |
Bundling of remotely-ordered grocery items
The present disclosure provides various methods and embodiments for bundling remotely ordered grocery items. When a customer places a bundle request, the system determines whether a customer-defined number of the bundle items will be available at the customer-selected fulfillment time. If the system determines the customer-defined items will not be available at the fulfillment time, the bundle order is rejected and the user is alerted. Various other methods to assure complete fulfillment of customer orders are provided herein. |
US10810651B2 |
Information processing apparatus for automatic ordering of consumable items
An information processing apparatus includes a communication interface, a storage, and a controller. The controller is configured to: acquire consumable item information including remaining amount information about a remaining amount of a consumable item; output screen information about an input screen to which condition information about an order condition for ordering a new consumable item for replacement is inputted; receive the condition information inputted to the input screen displayed on the basis of the screen information; determine whether or not the order condition represented by the received condition information is met in response to acquisition of the consumable item information; and output order information including information about an order of the new consumable item to a server in response to determination that the order condition represented by the received condition information is met. |
US10810649B2 |
User task completion via open market of actions and/or providers
Among other things, one or more techniques and/or systems are provided for facilitating the completion of a user task. That is, user intent (e.g., intentions of a user to perform a user task) may be identified. The user intent may comprise an entity (e.g., a movie entity) and/or an action (e.g., an order movie tickets action) that the user wants to perform on the entity. A provider list may be created based upon one or more providers capable of performing the action on the entity (e.g., a movie application may be capable of performing the order movie tickets action on the movie entity). Providers may be dynamically selected for inclusion within the provider list at run-time. For example, an open market of providers may be maintained (e.g., providers may be added, removed, and/or updated over time), such that providers may be selected from the open market to complete user tasks. |
US10810646B2 |
Automated product offering
Automating a product offering presented in a consumer kiosk application for creating and order consumer photo-related products. An automated product offering system determines in real-time or near real-time the availability of products to be offered to the consumer and adjusts the display on the kiosk GUI to guide the user to select products that are currently available. The product availability may be specific to a location and a retailer hosting the consumer kiosk application. The kiosk GUI display is adjusted in accordance with product advertising and promotional campaigns to guide the user to generate orders for products that offer the best value to the consumer while helping retailers and kiosk operators succeed with advertising campaigns. |
US10810644B2 |
Mitigation method, system and non-transitory computer-readable device
A system for mitigating returns is disclosed. In particular, the system may analyze an order made by a user for an item. The system may apply one or more filters to the order to determine if the ordered item is compatible with the user's profile, devices, accounts, preferences, or a combination thereof. Based on the application of the filters, the system may determine if a conflict exists between the ordered item and the user's profile, devices, accounts, preferences. If a conflict is determined to exist, the system may notify the user and adjust the order to generate a new order for a different item that is compatible for the user so as to mitigate a return. An order may then be transmitted to a virtual assistant for approval, which may reject the order or approve the order for completion. |
US10810642B1 |
Method, manufacture, and apparatus for facilitating on-demand home and auto services
Various methods are provided for programmatically providing a platform for requesting on-demand services on a consumer device. One example method may comprise receiving a job request, the job request comprising job request parameters, the job request parameters comprising at least a type of service, a location, and a time frame, identifying one or more merchants able to provide the service in accordance with the job request parameters by determining a subset of the plurality of merchants able to provide the service, at the location, within the time frame, causing transmission of a job offer to at least a first merchant of the subset of one or more merchants identified as able to provide the service in accordance with the job request parameters, receiving at least one response, the at least one response from the first merchant from the one or more merchants, and assigning the job to the first merchant. |
US10810638B2 |
Network based platform structure for collecting user activity data and capitalizing user activities
In an aspect of the disclosure, a method, a computer-readable medium, and a network based platform. A platform entity of the network based platform receives, from a first group entity managing a group of vehicles, data of projected payments that are to be generated based on transportation activities of the group of vehicles. The platform entity determines an amount of convertible preferred shares of a business entity to be issued to the group of vehicles based on the projected payments. Further, another platform entity of the network based platform receives, from a first group entity managing a group of housing units, data of projected payments that are to be generated based on household activities of the group of housing units. The platform entity determines an amount of convertible preferred shares of a business entity to be issued to the group of housing units based on the projected payments. |
US10810633B2 |
Generating a shoppable video
Embodiments of the present invention provide systems and methods for automatically generating a shoppable video. A video is parsed into one or more scenes. Products and their corresponding product information are automatically associated with the one or more scenes. The shoppable video is then generated using the associated products and corresponding product information such that the products are visible in the shoppable video based on a scene in which the products are found. |
US10810625B1 |
System for providing a promotion at a point-of-sale terminal based upon an audible advertisement and related methods
A system may include wireless broadcast receivers and a wireless broadcast station configured to broadcast a wireless signal causing each of the wireless broadcast receivers to generate an audible advertisement having a promotion associated therewith. The promotion may be for promotion subscribers. The system may also include a digital promotions network (DPN) device and a mobile wireless communications device carried by a given subscriber and that may include a microphone, wireless transceiver, and a processor cooperating with the microphone and the wireless transceiver to wirelessly send at least a portion of the audible advertisement to the DPN device based upon receiving the audible advertisement from a proximate one of the wireless broadcast receivers. The DPN device may be configured to provide, after receiving at least the portion of the audible advertisement, the given subscriber with the promotion associated with the audible advertisement at a point-of-sale (POS) terminal. |
US10810619B1 |
Method for internet marketing
A method for providing Internet-based advertising for advertisers, and search functions for potential customers, introducing innovative search, display and advertiser access capabilities. These new innovations include a capability whereby a visitor may, by repeatedly zooming further in on a given geographic location, see more and more points of interest, corresponding to the chosen search criteria, but, not previously visible at smaller scales, and which may be displayed and queried for additional information. This system also provides to the advertiser, a means for changing any Dynamic Billboard in real time without intermediary action by any other party. It further provides an automated means to tabulate and report visitor activity. |
US10810614B2 |
Spinal cord stimulator system
A wireless charger system for inductively charging a rechargeable battery of an implantable pulse generator (IPG) implanted in a human body is provided. A charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. An end-of-charge (EOC) circuit continuously monitors the reflected impedance from a reflected impedance sensor and determines the end of charge when a predetermined pattern of the reflected impedance corresponding to an EOC signal from the IPG is received. Advantageously, receiving the EOC signal through the charging coil eliminates the need to provide a separate communication circuit in the IPG that communicates with the charger. |
US10810613B1 |
Ad search engine
An ad search engine comprises a click tag parser, a rich media parser, an ad copy database, a request/query processing module, a user interface module and a content preservation module. The ad search engine advantageously receives and stores information about ad placement, context and advertising statistical and metadata in the ad copy database. In response to a query, the request/query processing module searches the ad copy database for advertisements matching the input query. The user interface module receives the results and presents them in a novel user interface composed of an array of tiles where each tiles represents a placement of the advertisement. The present invention also includes a several novel methods including a method for displaying ad search results, a method for generating an ad search result user interface, a method for populating an ad database, a method for ad preservation and a method for generating derived insights. |
US10810611B2 |
System and method for developing individual and team washroom compliance practices
A system and associated method for encouraging individual employees of a business, or members of a team, to practice proper washroom activities is provided. The employees or team members are enrolled a washroom rewards program, and certain washroom facilities are designated as available to the individuals for use in the rewards program. The washroom facilities are configured with an identification (ID) system that automatically identifies enrolled employees or team members that enter the facility. Point values are assigned in the washroom rewards program for defined washroom activities performed by the individuals in the designated washroom facilities, and upon performance of such activities, the individual is identified via the ID system and a personal account assigned to the individual is automatically credited with the point value. The points are redeemable by the individuals for an award value. |
US10810608B2 |
API pricing based on relative value of API for its consumers
A method, system and computer program product for determining API pricing. Consumption parameters are identified using a supervised learning model. The API consumption parameters refer to any parameters that can be used to describe an API (functionality or otherwise) and can be used to compare other comparable APIs in similar domains provided by other providers. Furthermore, reference pricing is determined using machine learning using the identified API consumption parameters. Additionally, the API price is determined dynamically using the identified API consumption parameters and the determined reference pricing. An API pricing score is then derived for the API price using the supervised learning model. The API price is selected as the suggested price for the API in response to the API pricing score exceeding a threshold value. In this manner, an API price is established that reflects the true value of the API assessed by the API consumer. |
US10810606B2 |
Method, apparatus, and computer program product for providing a search feedback system
Provided herein are systems, methods and computer readable media for receiving consumer search data, aggregating by consumer and location, and utilizing the aggregated consumer search data in demand forecasting and relevance determination. An example method may include receiving consumer search data, the consumer search data indicative of search performed by a consumer, the consumer search data comprising one or more search terms and at least one of a consumer location or consumer identification information, storing the consumer search data for a predetermined time interval, and providing at least one of consumer aggregated search data to a relevance module for determining which of a plurality of promotions to present to a consumer at a second time or providing location aggregated search data to a demand forecasting module for utilization in forecasting promotion demand in a particular location. |
US10810603B2 |
Systems and methods for determining customer traffic data
A method and device for analyzing customer traffic data at a merchant location are provided. The method may include transmitting pings within a coverage area of a wireless network provided by the merchant computer, receiving ping responses from one or more customer devices corresponding to one or more customers located within the coverage area of the wireless network provided by the merchant computer, extracting a unique device identifier from each received ping response over a period of time, each of the unique device identifiers identifying a different customer device that transmitted the ping response, estimating an amount of customer traffic at the merchant location, over the period of time, based on the unique device identifiers extracted during the period of time, and outputting an indication of the estimated amount of customer activity at the merchant location over the period of time. |
US10810600B2 |
Using multi-factor context for resolving customer service issues
In a general aspect, a system can include a user interface with at least one input field for receiving input associated with an information technology (IT) customer service issue and a response area for displaying results in response to the input. The system can further include a context generation engine that receives the input associated with the IT customer service issue from the user interface and determines, based on the input, a multi-factor context. The system can also include a relevance-based search engine configured to search, based on the multi-factor context, a plurality of resources; assign, based on the multi-factor context, a respective relevancy score to each of the plurality of resources; and provide, to the user interface for display in the results area, a ranked list of a subset of the plurality of resources that is ordered based on the respective relevancy scores of the subset of the resources. |
US10810597B2 |
Systems and methods for removing point of sale processing from PCI scope
The methods and systems described herein provide for processing payments via a mobile device at a retail location while relying solely on non-PCI Scope information at the retail location. A payment processing transaction may be initiated at a point of sale at a retail location, and a unique identifier provided by a mobile device may be used as payment information to facilitate the processing of a payment transaction. Authorizations of payment processing transactions are made by a remotely located server based, at least in part, on the unique identifier provided by the mobile device. |
US10810596B2 |
Systems and methods for managing access to segments of payment networks
Systems and methods are provided for managing access to segments of payment networks, where the segments are related to transaction data of the payment networks and/or functions associated with the payment networks. In response to a request for access to segments of a payment network, the payment network schedules workflows for each of the segments to satisfy access conditions associated with the segments. For each workflow, an operation is initiated from a sequence of operations to begin satisfying the access conditions. When an operation fails, the workflow is halted. And, after a predetermined event, and prior to initiation of a next operation in the sequence, the failed operation is re-initiated thereby restarting the workflow at the failed operation instead of restarting the entire workflow. The user is then permitted access to the segments when each operation in the sequence is completed. |
US10810592B1 |
Friction-less purchasing technology
Disclosed are a system and a method for purchasing items from a merchant system using friction-less payment processing technology. A customer initiates a purchase transaction from a user interface of the merchant system by selecting a payment button in lieu of payment information or login credentials or signing-into accounts. An auto-payment component parses a navigable link connected to the payment button to locate a mobile payment portal either installed on the mobile device as a mobile payment application or authenticated as a web application in a web-browser. The auto-pay component generates a payment request and sends the request to a payment service system via the mobile payment portal. The payment service system uses information in the payment request to identify financial accounts associated with the customer and the merchant. The payment service system then initiates a transfer of a payment amount from the customer to the merchant. |
US10810590B2 |
Payment facilitation method and system
There is provided a client device, method and system for facilitating a payment from a customer to a merchant. Payment is carried out upon use of voice data for authentication of a user and subsequent transmission of a payment authorization message. |
US10810589B2 |
Validation of damaged banknotes
Systems and methods for validation of a media object may include receiving the media object and detecting, using a sensor, a damaged portion of the media object. The media object may be validated against a standard. During the validation of the media object, the damaged portion of the media object may be given less weight. |
US10810581B2 |
Secure offline transaction system using digital tokens and a secure ledger database
A payer transaction device enables secure offline transactions using a secure element providing a secure payer account database, a secure ledger database, and a wallet application. While the payer transaction device is not connected to the Internet, the wallet application receives a payee identifier and a transaction amount and verifies that the transaction amount is less than an available payer account balance in the secure payer account database. In response, the wallet application creates a digital token that allocates the transaction amount from the payer account balance to the payee identifier, and records the digital token in a payer secure ledger in the secure ledger database, which reduces the available payer account balance by the transaction amount. The wallet application then transfers the digital token to a payee transaction device over a peer-to-peer wireless connection and, subsequently, the digital token is synchronized with a ledger tracking system through the Internet. |
US10810580B2 |
Virtual payment account
A computer-implemented method for an electronic funds transfer, the method including obtaining, using a processor system of a device, a virtual payment account associated with a merchant. The virtual payment account also being associated with a consumer account wherein an electronic payment medium issuer is a third party providing commercial funding on behalf of a consumer. Marketing information relating to the merchant associated with the virtual payment account is obtained. An electronic funds transfer is conducted utilizing an electronic payment medium signature associated with the electronic payment medium provided by the virtual payment account interfacing with an electronic terminal associated with the merchant. The virtual payment account and consumer account with information relating to the electronic funds transfer are updated. |
US10810576B2 |
Mobile payments integrated with a booking system
Mobile payments integrated with a booking system. In one embodiment, for example, a method in a service provider computer system is performed. The service provider computer system is communicatively coupled to a computing device of a user and a merchant point-of-sale computer by one or more data networks. The method comprises: receiving a request from the computing device of the user to pay a ticket open at the merchant point-of-sale computer; obtaining a current total ticket amount for the ticket from the merchant point-of-sale computer; determining an estimated total ticket amount based at least in part on the current total ticket amount; authorizing but not capturing payment of the estimated total ticket amount with a payment network gateway computer; after the ticket is closed at the merchant point-of-sale computer, obtaining a final total ticket amount for the ticket from the merchant point-of-sale computer; and capturing payment of the final total ticket amount with the payment network gateway computer. |
US10810575B2 |
Method and/or system for extending payment system architectures and/or legacy order processing systems to mobile commerce applications via text messaging
A text message order processing system includes: means for receiving text messages from consumers purchasing products from one or more merchants, each of the text messages being addressed to an address selected by the consumer and including an identification of the product being purchased and an identification of a device from which the text message was sent; means for parsing each text messages to extract the identification of the product and the identification of the device from the text massage; means for selecting based upon each received text message a payment instrument to be used to pay for the purchase; means for establishing payment information related to the selected payment instrument and delivery information indicating where the purchased product is to be delivered; means for generating for each received text message an order including the established payment information, delivery information and identification of the product being purchased; and, means for submitting the generated order to an order management system of the merchant. |
US10810571B2 |
Location-based device and authentication system
Systems and methods for device and payment management include detecting, through a first network, that a user device that is associated with a user is located at a trusted location. A first anticipated activity that is associated with the user is determined. The first anticipated activity identifies a first activity location that is different from the trusted location. A first device management configuration that is associated with the first anticipated activity. A first user device action to be performed on the on the user device at the trusted location is determined using the device management configuration. A first notification that causes the first user device action to be performed on the user device while the user device remains at the trusted location is sent to the user device through the first network. |
US10810568B1 |
Methods for auditing shopping, related devices, and articles of manufacture
A non-transitory computer-readable medium whose contents, when executed by a computing system, can cause the computing system to perform operations for an audited shopping system that include receiving scanned product information identifying a current product and an associated weight of the current product. An indication can be determined to place the current product in a selected bag among a plurality of bags. The associated weight of the current product can be added to a previous calculated weight of products in the selected bag to provide a current calculated weight of products in the selected bag and then all previous operations can be repeated until receiving an indication that shopping is done to provide a plurality of products that are distributed among the plurality of bags, wherein each bag has a respective calculated weight of all products in the bag and indicating a selected one of the plurality of bags as an audited bag for weighing. |
US10810566B2 |
System for controlling a service station related to a vehicle
A system for controlling a service station related to a vehicle includes a user interface element (10) with an app installed in a user apparatus (20), an identification element (30), a control element (40) connected to the service station; and a back-end element (50). The identification element (30) is configured to retrieve identifying information and to send it to the back-end element (50), the back-end element (50) is configured to enable via the control element (40) the use of the service station based on the identifying information, and the user interface element (10) after receiving an authentication of an access right from the back-end element (50) is configured to enable the user to start a service of the service station. |
US10810564B2 |
Tire selection decision support system and method
A decision support system initially determines in response to the creation of a customer ticket a customer's driving style in accordance with user responses and input regarding driving habits and preferences, and calculates a driving style algorithm. The system compares the driving style algorithm to car tire profiles and determines which tires are best suited to the customer's driving style algorithm. Upon said determination, the selected car tires are presented to the customer for final selection in a comprehensive service platform environment for creating, forwarding, performing, and completing customer tickets amongst front end devices comprising a computer kiosk and a customer's mobile device, and a back end device comprising an employee's mobile device. Tickets created via a front end device are forwarded for performance to the back end device, wherein upon completion of service the ticket is finalized and forwarded back to a front end device for review and payment. |
US10810553B2 |
Live meeting information in a calendar view
A calendar view is rendered on a user interface (UI). A scheduled meeting is rendered in a time slot of the calendar view, initially without an interactive control to join the scheduled meeting. In response to determining that a start time for the scheduled meeting is within a threshold time, the rendered scheduled meeting is updated to include an interactive control to join the scheduled meeting. The interactive control has a selectable region that is configured to indicate that the scheduled meeting is to be joined. In response to input data indicative of a selection of the interactive control, a collaboration application joins the scheduled meeting. |
US10810551B2 |
Project management support system, project management support method, and non-transitory computer readable medium storing a project management support program
In a project management support system, a ratio calculation unit calculates, as an “FL rate of project management”, a ratio of the number of measures recorded in a risk measure to-do list to a sum of the number of problems recorded in a problem management table and the number of measures recorded in the risk measure to-do list. An achievement level calculation unit calculates a level of goal achievement for the “FL rate of project management” from a calculation result by the ratio calculation unit and a target value of the “FL rate of project management”. A display control unit sets a display mode of the calculation result by the ratio calculation unit in accordance with the level of goal achievement calculated by the achievement level calculation unit and performs control to display the calculation result on a display in the display mode being set. |
US10810547B2 |
Injection molding management system
An injection molding management system includes: a molding information storage unit configured to store molding information on the usage of each type of molding material used in forming product molding, for each kind of molding; a remaining product quantity calculator configured to calculate the remaining product quantity of each kind of molding; a total usage calculator configured to calculate the total usage of each type of molding material used in the injection molding machines, based on the molding information of each kind of molding and the remaining product quantity of molding; a stock quantity storage unit configured to store the stock quantity of molding material; and an order quantity calculator configured to calculate the order quantity of each type of molding material, based on the total usage and the stock quantity of the molding material. |
US10810546B2 |
Settling obligations via netting transactions
A system is provided for netting obligations between entities of a cycle of obligations. Each obligation specifying an quantity of an item that a from-entity of the cycle is obligated to provide to a to-entity of the cycle. For each entity, the system determines whether the sum of its inventory of the item and the quantity of the obligation on which it is a to-entity is sufficient to satisfy the obligation on which it is a from-entity. When sufficient, the system identifies one or more netting transactions to settle the obligations of the cycle. The system then directs the execution of the netting transactions and settlement transactions to effect and record the settling of the obligations. |
US10810543B2 |
Populating catalog data with item properties based on segmentation and classification models
A method for populating an inventory catalog includes receiving an image showing an item in the inventory catalog and comprising a plurality of pixels. A machine learned segmentation neural network is retrieved to determine location of pixels in an image that are associated with an image label and the property. The method determines a subset of pixels associated with the item label in the received image and identifies locations of the subset of pixels of the received image, and extracts the subset of pixels from the received image. The method retrieves a machine learned classifier to determine whether an image shows the item label. The method determines, using the machine learned classifier, that the extracted subset of pixels shows the item label. The method updates the inventory catalog for the item to indicate that the item has the property associated with the item label. |
US10810539B1 |
Re-establishing tracking of a user within a materials handling facility
Described is a multiple-camera system and process for re-identifying a user located in a materials handling facility based on user patterns and/or descriptors representative of the user. In one implementation, a user pattern and/or a plurality of descriptors representative of a user are maintained as a position of a user is tracked through a materials handling facility. If the tracking of the user is lost, the last known position is stored with the user pattern and/or descriptors. If a new object is detected and confirmed to be a user, a user pattern and/or descriptors of the new object are compared with the stored user pattern and/or descriptors to determine if the new object is the user. |
US10810534B2 |
Systems and methods for sortation of products using a conveyor assembly
In some embodiments, apparatuses and methods are provided herein useful to the sortation of products using a conveyor assembly. In some embodiments, there is provided a system for receiving and sorting products shipped to a shopping facility including: a delivery location at a shopping facility configured to receive a shipment of products; a conveyor assembly comprising: a product identification module configured to read identification data from an identification label disposed on a product; a plurality of sortation modules configured to move the product to one of a predetermined plurality of sortation destination areas; a control circuit operatively coupled to the product identification module and to each of the sortation modules, the control circuit configured to: receive the identification data from the product identification module; determine the sortation destination area for the product based at least on one of shopping facility data and shipping data regarding the product as sortation criteria; and cooperate with the plurality of sortation modules to move the product to the determined sortation destination area. |
US10810533B2 |
System for navigating drivers to passengers and dynamically updating driver performance scores
In one embodiment a plurality of transportation requests received from a plurality of subscribers to the transportation service are accessed, wherein a group of a plurality of drivers of the transportation receive one or more of the plurality of transportation requests. At least one performance score over a time period is generated for each driver of the group of drivers of the transportation service based at least in part on the transportation requests. A distribution of a compensation pool associated with the time period among the drivers of the group is determined according to the at least one performance score. |
US10810532B2 |
Systems and methods for access control based on machine-learning
Example implementations are directed to a method of receiving information associated with an activity, analyze the information to identify a first pattern and a second pattern, generate a customized transition model for returning to the first pattern. In response to a detected trigger indicating a transition to the first pattern, the method assesses context factors to apply the customized transition to dynamically manage access to digital resources during the transition to the first pattern. In response to a determination that a transition to the first pattern satisfies a threshold, the method restores access to the digital resources. |
US10810529B2 |
Directing an inspector through an inspection
Systems and methods for creating and editing an inspection plan and directing an inspector through an inspection are provided. An exemplary system, according to one implementation, comprises a mobile computing device and a server computer. The mobile computing device is configured to communicate audible prompts to an inspector and receive audible replies from the inspector. The server computer is configured to store an inspection plan comprising a sequence of inspection steps, translate each of the inspection steps of the inspection plan into audible prompts, transmit the audible prompts to the mobile computing device, receive the audible replies from the mobile computing device, and translate the audible replies into a set of inspection results. |
US10810528B1 |
Identifying and utilizing the availability of enterprise resources
Various embodiments are directed to techniques for organizing fulfillment of enterprise products, such as by using a request manager informed by enterprise resources and resource utilization to recommend a facility to fulfill a product request. Some embodiments are directed to identifying a product request and determining the equipment and skills necessary to fulfill the product request. Based on this information and location data, embodiments may determine a set of facilities as candidates to fulfill the request. A machine learning model may be used to analyze current resource utilization of the facilities and predict facility availability and estimated completion times for the request fulfillment. A candidate facility may be recommended for fulfillment of a request based on facility availability and estimated completion times. In some embodiments, historical resource utilization may be used to inform further staffing and equipment service decisions. |
US10810522B2 |
Custom-branded analytic applications in a multi-tenant environment
A consolidated business intelligence platform provides customized business analytics for a plurality of customer databases, each associated with a corresponding plurality of customers. Responsive to a request from a user for a customized business intelligence interface, the system determines a customer of the plurality of customers with which the user is affiliated; accesses a set of customization parameters for the determined customer, the customization parameters including a set of data analytics parameters and a set of data display parameters; and identifies, from the plurality of customer databases, a customer database associated with the determined customer. The system analyzes a dataset from the identified customer database using the set of data analytics parameters, and then formats the analyzed dataset for display based on the set of data display parameters, thereby generating the customized business intelligence interface for transmission to the user. |
US10810521B2 |
Information system for industrial vehicles including cyclical recurring vehicle information message
An information system for an industrial vehicle comprises an electronic component on the industrial vehicle that is programmably configured to obtain data by communicating across a vehicle network bus of the industrial vehicle with at least one other component of the industrial vehicle. The information system also comprises memory that stores industrial vehicle information according to a mapping specified by a data object model. Moreover, a processor on the industrial vehicle is programmed to repeatedly perform a cyclically recurring operation that extracts at least a portion of the industrial vehicle information stored in the memory device as broadcast information, generates at least one broadcast message representing the extracted broadcast information, and transmits the generated at least one broadcast message on the vehicle network bus. Accordingly, the entire contents of the broadcast information are repeatedly transmitted across the vehicle network bus in a cyclically recurring manner. |
US10810514B2 |
Methods and systems for making effective use of system resources
Methods and systems for making effective use of system resources. A plurality of requests for access to a resource are received. Each request has an associated group of features. The group of features for each request is analyzed to collect observations about the plurality of requests. A function to predict an outcome of a subsequent request is generated based on the observations. Resources are allocated to service the subsequent request based on the function. |
US10810512B1 |
Validating a machine learning model prior to deployment
Machine learning models used in medical diagnosis should be validated before being deployed in order to reduce the number of misdiagnoses. Validation processes presented here assess a performance of the machine learning model pre-deployment. In one or more examples, prior to the deployment of the machine learning model, the validation process assesses (1) whether a model achieves high enough performance to be deployed, and (2) that the process by which the performance metrics were computed was both sanitary and comprehensive. This pre-deployment validation helps prevent low-performing models from being deployed. |
US10810510B2 |
Conversation and context aware fraud and abuse prevention agent
One embodiment provides a method comprising intercepting a voice communication, collecting multi-sensory inputs associated with the voice communication, and determining an overall risk assessment metric for the voice communication based on the multi-sensory inputs and learned signatures. The multi-sensory inputs are indicative of content of the voice communication and one or more contextual factors associated with a target of the voice communication. The overall risk assessment metric indicates a likelihood the voice communication is a scam. |
US10810509B2 |
Artificial intelligence apparatus autonomously expanding knowledge by inputting language
An artificial intelligence apparatus includes an input processor configured to convert input information to patterns, an analyzer configured to analyze the input information, a recorder configured to record the information, a controller configured to perform at least one of a development of a process according to a type of a sentences and an intention, a search for information and a logic development to solve a problem, an execution of a process and activating a program, a generalization of information and a procedure, an update to a better knowledge and a logic, a search and an arrangement of information about an interesting field and an item, recording and updating of information, connective relations and relationship, and a transition control between information to a goal and an output processor configured to convert the patterns to information or control signals. |
US10810507B2 |
Multi-mode qubit readout and qubit state assignment
Systems, computer-implemented methods, and computer program products to facilitate external port measurement of qubit port responses are provided. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise an analysis component that can analyze responses of a multi-mode readout device coupled to a qubit. The computer executable components can further comprise an assignment component that can assign a readout state of the qubit based on the responses. In some embodiments, the multi-mode readout device can be electrically coupled to at least one of the qubit or an environment of the qubit based on a defined electrical coupling value. |
US10810504B1 |
Route scoring for assessing or predicting driving performance
In a computer-implemented method of assessing driving performance using route scoring, driving data indicative of operation of a vehicle while the vehicle was driven on a driving route may be received. Road infrastructure data indicative of one or more features of the driving route may also be received. A route score for the driving route may be calculated using the road infrastructure data, and a driving performance score for a driver of the vehicle may be calculated using the driving data and the route score for the driving route. Data may be sent to a client device via a network to cause the client device to display the driving performance score and/or a ranking based on the driving performance score, and/or the driving performance score may be used to determine a risk rating for the driver of the vehicle. |
US10810499B2 |
Method and apparatus for recommending social media information
The present invention provides an information recommendation method and apparatus in a social media. An off-line procedure includes: determining a point of interest of a target user; selecting information related to the point of interest as an annotated corpus; and training an interest classification model of the target user by using the annotated corpus as a training sample. An on-line procedure includes: inputting to-be-recommended information to the interest classification model of the target user, so as to determine whether the to-be-recommended information tallies with an interest of the target user; and if the to-be-recommended information tallies with the interest of the target user, recommending the to-be-recommended information to the target user. According to the present invention, an effect of information recommendation in a social media can be improved. |
US10810498B2 |
System and method for automating proactive communication
A system and method for automating proactive communication. The information for the desired contacts may be accepted from a user. A selection of contact communication frequency preferences may be received from a user. An automatic communication to one of the desired contacts may be initiated. The user may be allowed to cancel the automatic communication, in response to receiving a notification that the communication is about to begin. A response indicative of the communication status may be received. Rules and preferences may be optimized based upon the received response. |
US10810497B2 |
Supporting generation of a response to an inquiry
A first element is extracted from a pair including a past inquiry and a past response, wherein the first element indicates that the past response shows an understanding of the past inquiry. A model is generated used to estimate a second element in a new inquiry based on the first element, wherein the second element indicates that a new response to the new inquiry shows an understanding of the new inquiry. |
US10810495B2 |
Methods for data encoding in DNA and genetically modified organism authentication
A method is disclosed comprising encoding a message into blocks, determining a collection of DNA symbols for each of the blocks from the encoded message, performing a second encoding of the determined collection of DNA symbols from the encoded message, detecting a presence of errors in the second encoding and establishing an authentication of each block and further using zero-knowledge protocol to securely authenticate the message without disclosing the actual message. |
US10810493B1 |
Training and/or utilizing recurrent neural network model to determine subsequent source(s) for electronic resource interaction
Systems, methods, and computer readable media related to training and/or utilizing a neural network model to determine, based on a sequence of sources that each have an electronic interaction with a given electronic resource, one or more subsequent source(s) for interaction with the given electronic resource. For example, source representations of those sources can be sequentially applied (in an order that conforms to the sequence) as input to a trained recurrent neural network model, and output generated over the trained recurrent neural network model based on the applied input. The generated output can indicate, for each of a plurality of additional sources, a probability that the additional source will subsequently (e.g., next) interact with the given electronic resource. Such probabilities indicated by the output can be utilized in performance of further electronic action(s) related to the given electronic resource. |
US10810492B2 |
Memory side acceleration for deep learning parameter updates
Examples disclosed herein relate to using a memory side accelerator to calculate updated deep learning parameters. A globally addressable memory includes deep learning parameters. The deep learning parameters are partitioned, where each partition is associated with a memory side accelerator. A memory side accelerator is to receive calculated gradient updates associated with its partition and calculate an update to the deep learning parameters associated with the partition. |
US10810490B2 |
Clustering method based on iterations of neural networks
The present invention relates to a clustering method based on iterations of neural networks, which comprises the following steps: step 1, initializing parameters of an extreme learning machine; step 2, randomly choosing samples of which number is equal to the number of clusters, each sample representing one cluster, forming an initial exemplar set and training the extreme learning machine; step 3, using current extreme learning machine to cluster samples, which generates a clustering result; step 4, choosing multiple samples from each cluster as exemplars for the cluster according to a rule; step 5, retraining the extreme learning machine by using the exemplars for each cluster obtained from step 4; and step 6, going back to step 3 to do iteration, otherwise obtaining and outputting clustering result until clustering result is steady or a maximal limit of the number of iterations is reached. The present invention resolves problems that how to realize clustering of high dimensional and nonlinear data space and that the prior art consumes a larger memory or need longer running time. |
US10810488B2 |
Neuromorphic core and chip traffic control
Systems and methods may include neuromorphic traffic control, such as between cores on a chip or between cores on different chips. The neuromorphic traffic control may include a plurality of routers organized in a mesh to transfer messages; and a plurality of neuron cores connected to the plurality of routers, the neuron cores in the plurality of neuron cores to advance in discrete time-steps, send spike messages to other neuron cores in the plurality of neuron cores during a time-step, and send barrier messages. |
US10810483B2 |
Superpixel methods for convolutional neural networks
Methods, systems, and apparatus for efficiently performing a computation of a convolutional neural network layer. One of the methods includes transforming a X by Y by Z input tensor into a X′ by Y′ by Z′ input tensor; obtaining one or more modified weight matrices, wherein the modified weight matrices operate on the X′ by Y′ by Z′ input tensor to generate a U′ by V′ by W′ output tensor, and the U′ by V′ by W′ output tensor comprises a transformed U by V by W output tensor; and processing the X′ by Y′ by Z′ input tensor using the modified weight matrices to generate the U′ by V′ by W′ output tensor, wherein the U′ by V′ by W′ output tensor comprises the U by V by W output tensor. |
US10810482B2 |
System and method for residual long short term memories (LSTM) network
An apparatus and a method. The apparatus includes a plurality of long short term memory (LSTM) networks, wherein each of the plurality of LSTM networks is at a different network layer, wherein each of the plurality of LSTM networks is configured to determine a residual function, wherein each of the plurality of LSTM networks includes an output gate to control what is provided to a subsequent LSTM network, and wherein each of the plurality of LSTM networks includes at least one highway connection to compensate for the residual function of a previous LSTM network. |
US10810481B2 |
Method and system to count movements of persons from vibrations in a floor
A system and method for counting persons using passages to an area by analyzing vibrations in the floor or the air above the floor with sensors and a machine learning system. The machine learning system uses a model, usually implemented as a neural network on a processor. The network is trained in levels and implemented in layers. Different levels classify and analyze vibrations by timing and frequency, by movements of persons, and by identity of persons The same person is identified by patterns in the vibrations and the vibrations are correlated to determine and count when a person uses a combination of passages. Location information for the person is used to identify persons in places and doing activities of interest. The model may be trained on one processor and downloaded to another processor for evaluation. Additional sensors and levels of training may be implemented on the latter processor. |
US10810476B2 |
Electronic circuit for interconnecting a smartcard chip
The invention relates to an electronic circuit for interconnecting a smartcard chip with a peripheral device, comprising: —a dedicated communication interface adapted to communicate with a smartcard chip; —a configurable communication interface adapted to communicate with a peripheral device; —a configuration module adapted to receive on said dedicated communication interface a request for configuring the configurable communication interface, adapted to configure the communication protocol of the configurable communication interface with the peripheral device based on the received request; —a bridging module adapted for converting data exchanged between the peripheral device and the smartcard chip through the dedicated communication interface and the configurable communication interface. |
US10810474B2 |
Radio frequency identification of nano/micro-electro-mechanical measurements
A sensor configured to detect and record measured conditions, such as temperature, pressure, volume, displacement, acceleration, and/or other measureable conditions. The sensor may incorporate radio frequency identification (RFID) components. The sensor may also incorporate micro-electro-mechanical devices and/or systems (MEMS) and/or nano-electro-mechanical devices and/or systems (NEMS) that are configured to change in response to certain conditions encountered by the MEMS/NEMS and provide indications of the same. The sensor may include a detector configured to detect the changes in the MEMS/NEMS. The detected changes may be stored by the MEMS and/or the NEMS and/or the RFID components, allowing information about the changes to be retrieved through a RFID reading and/or scanning process. The sensor may be used to monitor and/or track conditions associated with certain objects and/or environments, among other uses. |
US10810472B2 |
Techniques for sentiment analysis of data using a convolutional neural network and a co-occurrence network
Techniques are provided for performing sentiment analysis on words in a first data set. An example embodiment includes generating a word embedding model including a first plurality of features. A value indicating sentiment for the words in the first data set can be determined using a convolutional neural network (CNN). A second plurality of features are generated based on bigrams identified in the data set. The bigrams can be generated using a co-occurrence graph. The model is updated to include the second plurality of features, and sentiment analysis can be performed on a second data set using the updated model. |
US10810471B1 |
Intelligent coalescing of media streams
Techniques for intelligent coalescing of media streams are described. A coalesce engine receives multiple media streams, such as audio or video streams, that are misaligned. The coalesce engine can analyze the media streams by comparing representations of elements of the media streams to detect the misalignment. The coalesce engine may determine an offset amount representing the misalignment, and if the offset amount meets or exceeds a threshold the coalesce engine can work to eliminate the misalignment by introducing one or more artificial delays before sending elements of ones of the media streams that are “ahead” of others of the streams. The coalese engine can additionally or alternatively send feedback to sources of the media streams, causing the source(s) to attempt to mitigate the misalignment. |
US10810470B2 |
Centroid for improving machine learning classification and info retrieval
Centroids are used for improving machine learning classification and information retrieval. A plurality of files are classified as malicious or not malicious based on a function dividing a coordinate space into at least a first portion and a second portion such that the first portion includes a first subset of the plurality of files classified as malicious. One or more first centroids are defined in the first portion that classify files from the first subset as not malicious. A file is determined to be malicious based on whether the file is located within the one or more first centroids. |
US10810466B2 |
Method for location inference from map images
A computer implemented method of associating a non-electronic map with an electronic map is provided. The method comprises, for an obtained online data collection, generating a database of style-invariant and location-variant map representations by application of a convolutional neural network. Additionally, for a captured image associated with the non-electronic map, the captured image not having geo-location metadata, the method comprises applying a nearest neighbor heuristic to compare the captured image to the map representations and generate a match between the captured image and the map representations, and performing a display action associated with the match. |
US10810465B2 |
Systems and methods for robust industrial optical character recognition
An auto-encoder is configured to verify character detection and/or classification results generated by an automated optical character recognition system. The auto-encoder may be trained to reconstruct visual representations of the detected character, and a determination of whether the character detection result comprises a true positive or false positive may be based on a reconstruction error between the image data in which the character was detected and a reconstructed image generated by the auto-encoder. |
US10810463B2 |
Updating attribute data structures to indicate joint relationships among attributes and predictive outputs for training automated modeling systems
Attribute data structures can be updated to indicate joint relationships among attributes and predictive outputs in training data that can be used for training automated modeling system. A data structure that stores training data for training an automated modeling algorithm can be accessed. The training data can include first data for a first attribute and second data for a second attribute. The data structure can be modified to include a derived attribute that indicates a joint relationship among the first attribute, the second attribute, and a predictive output variable. The automated modeling algorithm can be trained with the first attribute, the second attribute, and the derived attribute. |
US10810461B2 |
Learned model generating method, learned model generating device, and learned model use device
Learned model providing system has a configuration including consent acquisition device that acquires use consent that an acquired image of visitor is to be used for generating a learned model from visitor, a plurality of cameras that image visitor, learned model generating device that generates the learned model by machine learning based on a captured image imaged by camera, server device that saves the learned model generated by learned model generating device, user side device that receives the learned model from server device, camera, and member database. |
US10810451B2 |
ATM with biometric security
Provided, in an aspect, is a method for improving security in an automated teller machine (ATM) network, which includes prompting a user, via the ATM, to provide a biometric sample; receiving the sample from a biometric device of the ATM; determining that the sample is not blacklisted; and allowing the user to complete a transaction. Because the method includes storing anonymized event details, which include the biometric sample separate from user-identifying information, the method both improves privacy for law-abiding users and deters malicious use by others. |
US10810449B2 |
Electronic device and method of operating same
Disclosed are an electronic device and a method of operating the same. The electronic device may include a touch screen; a communication interface comprising communication circuitry; and a processor functionally connected to the communication circuitry of the communication interface, wherein the processor may be configured to receive execution information usable for authenticating at least one resource of a second external device from a first external device through the communication circuitry of the communication interface, to display a user interface configured to acquire biometric information of a user through the touch screen in response to receiving the execution information, to generate virtual biometric information based on the acquired biometric information, and to transmit the virtual biometric information to the second external device through the communication circuitry of the communication interface wherein the virtual biometric information is usable for authenticating the at least one resource. |
US10810447B2 |
Gatoreye system for smart transportation
Various examples are provided for smart transportation and sensing systems. In one example, an apparatus for smart transportation sensing includes a reflector integrated in a contoured roadway unit configured to protect the reflector from damage by vehicles traveling along a transportation surface; and a radio frequency identification (RFID) tag integrated in the contoured roadway unit. In another example, a system for smart transportation includes a vehicle including a radio frequency identification (RFID) reader configured to interrogate RFID tags integrated in reflector units disposed along a transportation surface; and a processing system in communication with the RFID reader, the processing system configured to process data obtained from at least one of the RFID tags to determine vehicle location along the transportation surface. |
US10810443B2 |
Vehicle video system
Images are obtained using cameras mounted on a vehicle, and at least a portion of the obtained images are displayed on a screen. Motion of the vehicle can be controlled such that it moves toward a physical destination selected from images obtained using cameras mounted on a vehicle. |
US10810441B2 |
Systems and methods for identifying hierarchical structures of members of a crowd
A method and system for identifying hierarchical structures of members of a crowd (126). One method (400) includes determining a movement of at least one of a plurality of members of the crowd (126) based on image data from a camera (120). The method (400) includes determining a first probability that a first member of the plurality of members is leading other members based on the movement. The method (400) includes determining a second probability that the first member is leading the other members based on a relationship between the first member and the other members determined based on social media information. The method (400) includes determining a combined probability that the first member is leading the other members based on the first probability and the second probability. The method (400) includes transmitting a message indicating a leadership association between the first member and the other members. |
US10810438B2 |
Setting apparatus, output method, and non-transitory computer-readable storage medium
A setting apparatus that configures a setting for detecting that an object existing at different positions in images corresponding to different times has passed through a detection line or a detection area composites, on an image, an indication indicating a trajectory of an object in an image, and outputs the image on which the indication is composited, as a setting window for setting the detection line or the detection area. |
US10810435B2 |
Segmenting objects in video sequences
In implementations of segmenting objects in video sequences, user annotations designate an object in any image frame of a video sequence, without requiring user annotations for all image frames. An interaction network generates a mask for an object in an image frame annotated by a user, and is coupled both internally and externally to a propagation network that propagates the mask to other image frames of the video sequence. Feature maps are aggregated for each round of user annotations and couple the interaction network and the propagation network internally. The interaction network and the propagation network are trained jointly using synthetic annotations in a multi-round training scenario, in which weights of the interaction network and the propagation network are adjusted after multiple synthetic annotations are processed, resulting in a trained object segmentation system that can reliably generate realistic object masks. |
US10810434B2 |
Movement and transparency of comments relative to video frames
Techniques for presenting comments relative to video frames are described herein. The disclosed techniques include obtaining a video comprising a plurality of frames; detecting an edge of at least one object in a frame among the plurality of frames; identifying an area inside the edge of the at least one object as a first area and filling the first area with a color so as to distinguish the first area from others; determining a location of the first area relative to the frame; and determining a movement direction of at least one comment to be presented relative to the frame or a change of a transparency value of the at least one comment to be presented relative to the frame based at least on the location of the first area. |
US10810432B2 |
Methods and systems for differentiating one or more objects in a video
Methods and systems for differentiating an object in a video. One system includes an electronic computing device including an electronic processor configured to determine context information associated with a video. The electronic processor is further configured to determine an object included in the video to be differentiated from other objects included in the video. The electronic processor is further configured to determine a level of differentiation for the object based on the context information. The electronic processor is further configured to alter the video to create an altered video that shows the object differentiated from the other objects in accordance with the level of differentiation. The electronic processor is further configured to provide the altered video to a display. |
US10810416B2 |
Method and system for facilitating dynamic materialization for real-world interaction with virtual reality
One embodiment provides a method for facilitating real-world interaction with virtual reality. During operation, the system receives, by a computing device from a virtual reality device associated with a user, instructions to configure physical components, wherein for a first physical component at a first location, the instructions indicate a type and an orientation, and wherein for a second physical component located at a second location, the instructions indicate a type, a length of extension, and an angle. The system executes, by a pose-adjusting unit, the instructions, which involves: physically moving the first physical component to the indicated orientation at the first location; physically extending the second physical component from the second location by the indicated length; and physically rotating the extended second physical component by the indicated angle. The system renders, on the virtual reality device, the configured physical components. |
US10810413B2 |
Wakeup method, apparatus and device based on lip reading, and computer readable medium
A wakeup method based on lip reading is provided, the wakeup method including: acquiring a motion graph of a user's lips; determining whether the acquired motion graph matches a preset motion graph; and waking up a voice interaction function in response to the acquired motion graph matching the preset motion graph. |
US10810409B2 |
Identifying facial expressions in acquired digital images
A face is detected and identified within an acquired digital image. One or more features of the face is/are extracted from the digital image, including two independent eyes or subsets of features of each of the two eyes, or lips or partial lips or one or more other mouth features and one or both eyes, or both. A model including multiple shape parameters is applied to the two independent eyes or subsets of features of each of the two eyes, and/or to the lips or partial lips or one or more other mouth features and one or both eyes. One or more similarities between the one or more features of the face and a library of reference feature sets is/are determined. A probable facial expression is identified based on the determining of the one or more similarities. |
US10810408B2 |
Reduced false positive identification for spectroscopic classification
A device may receive information identifying results of a set of spectroscopic measurements of a training set of known samples and a validation set of known samples. The device may generate a classification model based on the information identifying the results of the set of spectroscopic measurements, wherein the classification model includes at least one class relating to a material of interest for a spectroscopic determination, and wherein the classification model includes a no-match class relating to at least one of at least one material that is not of interest or a baseline spectroscopic measurement. The device may receive information identifying a particular result of a particular spectroscopic measurement of an unknown sample. The device may determine whether the unknown sample is included in the no-match class using the classification model. The device may provide output indicating whether the unknown sample is included in the no-match class. |
US10810407B2 |
Region detecting method and region detecting device related to cell aggregation
A specific region such as a continuous epithelial structure is automatically detected in a cell aggregate. A region detecting method includes an input step (S01) of inputting an image obtained by imaging a cell aggregate, an outline detecting step (S02) of detecting an outline of the cell aggregate together with an order along the outline from the input image, a region detecting step (S03) of detecting a specific region included in the cell aggregate based on the detected outline and order, and an output step (S04) of outputting information indicating the detected region. |
US10810406B2 |
Method for recognising a false papillary print by structured lighting
A method for determining if a papillary print is comprised of living human tissue or not, using a papillary print sensor comprising in superposition, a contact surface, an array optical sensor, and a plurality of illuminating devices parallel between them. The method comprises illumination of the papillary print by the illuminating devices forming together, on the contact surface, a light pattern which is uniform along an axis that extends from one side to the other of a detecting surface of the array optical sensor, and acquisition of an image by the array optical sensor, with these steps being implemented at least once; in each image, selection of the pixels corresponding to the valleys or ridges of the print; and using the pixels selected, extraction of an optical characteristic defining the response to illumination, of the material comprising the papillary print. |
US10810405B2 |
Biometric liveness detection through biocompatible capacitive sensor
A method may include measuring, photoplethysmography (PPG) data and capacitance data of an object. The method may also include, with the PPG data and the capacitance data, detecting, by a microprocessor, positive peaks of the data by comparing successive measurements. The method may further include finding, by the microprocessor, a maximum peak value of the detected positive peaks, and generating, by the microprocessor, a threshold value based on detected positive peaks. If the maximum peak value is greater than the threshold value, analyze, by the microprocessor, a fingerprint of the object. The method may also include determining, by the microprocessor, based on the PPG data, the capacitance data and the fingerprint of the object, at least one of if the object is authorized or unauthorized, and if the object is a human being or not a human being. |
US10810402B2 |
Method for fabricating fingerprint identification apparatus
A fingerprint identification apparatus, a method for fabricating a cover and a terminal device are provided. A plurality of optical channels are arranged in the body of the cover, such that the light reflected by an object to be identified is as much as possible linearly transmitted to the photosensitive region in the image identification chip and the intensity of the light received by the image identification chip is maximized. This is favorable to form a clear image, and thus the precision of fingerprint identification of the fingerprint identification apparatus is improved. In addition, in the fingerprint identification apparatus, under the condition of satisfying the signal penetration rate, the cover may be as thick as possible, to further enhance the strength and reliability of the cover. |
US10810401B2 |
Fingerprint sensing device and fingerprint sensing method
A fingerprint sensing device includes a fingerprint sensor and a processor. The fingerprint sensor is configured to acquire a plurality of fingerprint reference frames. The processor is coupled to the fingerprint sensor. The processor is configured to superimpose the plurality of fingerprint reference frames. The processor analyzes the plurality of fingerprint reference frames to determine multiple first regions and multiple second regions of the plurality of fingerprint reference frames. The processor calculates multiple reference pixel values of the plurality of fingerprint reference frames according to multiple weight value functions to generate a superimposed fingerprint frame. The weight value functions corresponding to the first regions of the plurality of fingerprint reference frames are linearly changed. |
US10810399B2 |
Optical fingerprint sensing module
An optical fingerprint sensing module for sensing a fingerprint pattern of a finger is provided, wherein the finger is placed on a display panel module, and light is generated by the display panel module and reflected by the finger. The optical fingerprint sensing module includes a circuit board, an image sensor on the circuit board, a frame on the circuit board, a lens embedded in the frame, and an IR filter disposed above the image sensor. The image sensor is located in the frame, and the frame includes anti-infrared material. The lens corresponds to a sensing area of the display panel module. Light emitted from the display panel module is reflected by the finger located in the sensing area and then sequentially propagates through the lens and the IR filter to reach the image sensor. |
US10810388B2 |
Intelligent tracking system and methods and systems therefor
An intelligent tracking system generally includes one or more tracking devices, some of which may be passive tracking devices. Each passive tracking device includes one or more transceivers and is energized by an energizing signal. Some of these passive tracking devices may operate in a first communication mode or a second communication mode based on the energizing signal. Some tracking devices may include encryption modules or authentication modules. Some of these devices may incorporate a bulk acoustic wave oscillator. |
US10810386B2 |
Obfuscation of information obtained by a card reader
An example method may include transmitting a noise signal through a reader connection of a magnetic reader element. The control component and the magnetic reader element may be associated with a card reader device of a transaction device, and the magnetic reader element may be configured to read a magnetic strip of a transaction card. The method may include receiving, from the magnetic reader element, a reader connection signal from the reader connection. The reader connection signal may include the noise signal. The method may include extracting, from the reader connection signal, a card information signal associated with the transaction card from the magnetic strip. The card information signal may be extracted based on the noise signal. The method may include performing an action associated with the card information signal. |
US10810385B2 |
Method, apparatus, system for realizing a virtual SIM card, and mobile terminal
Disclosed are a method, apparatus and system for implementing a virtual SIM card, and a mobile terminal. The mobile terminal comprises a main board and a virtual SIM card chip electrically connected to the main board by means of surface-mount integration. By means of electrically connecting the virtual SIM card chip to the main board by means of surface-mount integration, the mobile terminal can realize the function of the SIM card without using a card socket or a card holder. |
US10810382B2 |
Automated conversion of vocabulary and narrative tone
There is provided a content translation system includes a computing platform having a hardware processor and a system memory storing a language conversion software code including a vocabulary conversion convolutional neural network (CNN). The hardware processor is configured to execute the language conversion software code to obtain a content including a language-based content expressed in a first vocabulary. The hardware processor also executes the language conversion software code to convert a wording of the language-based content from the first vocabulary to a second vocabulary using the vocabulary conversion CNN, where the first vocabulary and the second vocabulary are in the same language. The hardware processor further executes the language conversion software code to output a translated content corresponding to the content for rendering on a display, the translated content including the language-based content expressed in the second vocabulary. |
US10810380B2 |
Transliteration using machine translation pipeline
Embodiments are disclosed for transliteration based on a machine translation model training pipeline. A method according to some embodiments includes steps of: training a probabilistic model for transliteration from a first script system to a second script system using a machine translation model training pipeline; segmenting, using the probabilistic model, an input string in the first script system into phonemes that correspond to characters in the second script system; converting the phonemes in the first script system into the characters in the second script system, the characters forming a word or a word prefix in the second script system; and outputting the word or the word prefix in the second script system. |
US10810379B2 |
Statistics-based machine translation method, apparatus and electronic device
A statistics-based machine translation method is disclosed. The method generates probabilities of translation from a sentence to be translated to candidate translated texts based on features of the candidate translated texts that affect the probabilities of translation and a pre-generated translation probability prediction model. The features that affect probabilities of translation include at least degrees of semantic similarity between the sentence to be translated and the candidate translated texts. A preset number of candidate translated texts with highly ranked probabilities of translation are selected to serve as translated texts of the sentence to be translated. The method is able to go deep into a semantic level of a natural language when a machine translation model is constructed to avoid a semantic deviation of a translated text from an original text, thereby achieving the effect of improving the quality of translation. |
US10810378B2 |
Method and system for decoding user intent from natural language queries
A method for decoding a natural language user query involves obtaining the user query submitted by a user, segmenting the user query into words, generating a character embedding for each of the words, and generating a word embedding for each of the words. The method further involves obtaining a clickstream from tracked clicks of the user, generating a clickstream embedding from the clickstream, and for each of the words, generating a unified feature representation based on the character embedding and the word embedding for each of the words, and the clickstream embedding. The method also involves decoding the unified feature representations to obtain a decoded user query, and processing the user query using the decoded user query. |
US10810376B2 |
Markov logic networks based alias links identification and canonical mention selection in text
Text analysis, specifically, narratives, wherein identification of distinct and independent participants (entities of interest) in a narrative is an important task for many NLP applications. This task becomes challenging because these participants are often referred to using multiple aliases. Identifying aliases of participants in a narrative is crucial for NLP applications. Existing conventional methods are supervised for alias identification which requires a large amount of manually annotated (labeled) data and are also prone to errors. Embodiments of the present disclosure provide systems and methods that implement Markov Logic Network (MLN) to encode linguistic knowledge into rules for identification of aliases for aliases mention identification using proper nouns, pronouns or noun phrases with common noun headword. |
US10810371B2 |
Adaptive, interactive, and cognitive reasoner of an autonomous robotic system
An artificial intelligence problem is solved using an artificial intelligence memory graph data structure and a lexical database to identify supporting knowledge. A natural language input is received and classified into components. A starting node of an artificial intelligence memory graph data structure, which comprises one or more data nodes, is selected to begin a search for one or more supporting knowledge data nodes associated with the classified components. Starting at the starting node, the artificial intelligence memory graph data structure is searched using a lexical database to identify the one or more supporting knowledge data nodes. An artificial intelligence problem is identified and solved using the one or more identified supporting knowledge data nodes of the artificial intelligence memory graph data structure. |
US10810369B2 |
Assisted data input
A piece of text is saved for security verification on a computing device. One or more pieces of related text corresponding to the piece of saved text are generated, where each text element of the one or more pieces of related text is generated based on its proximity to the corresponding text element of the piece of saved text on one or more keyboards on the computing device. A piece of input text is received for information verification. A piece of input text is compared with the piece of saved text and the one or more pieces of related text. A determination is made that the piece of input text matches one of the one or more pieces of related text and input guidance for re-entering a piece of text for security authentication is provided. |
US10810366B1 |
Coordinating in-frame content with page content in applications
Implementations of the present disclosure are directed to coordinating content between a page and a frame embedded in the page, and include providing a set of events to be registered in a service layer of a third-party system, the set of events including one or more events that can be triggered through the frame, and for which respective update messages are sent from the third-party system to a service layer of an enterprise system, receiving a first update message from the third-party system, the first update message providing data representative of a first event occurring within the frame, requesting first content from one or more data sources, the first content corresponding to the first event, and updating the page to display the first content therein, the first content corresponding to content displayed in the frame. |
US10810365B2 |
Workflow system and method for creating, distributing and publishing content
A system for the management of content creation includes a content management component configured to store portions of an electronic content work and to implement version control of the electronic content work; a defect tracking component configured to store a defect record related to a stored portion of the electronic content work; a publication pipeline component configured to format the electronic content work for publication; and an integration component configured to present a graphical user interface which allows for editing the stored portions of the electronic content work, editing the defect record, and instructing the publication pipeline component to format the electronic content work for publication. |
US10810364B2 |
Data flow view for a spreadsheet
The system includes an input interface and a processor. The input interface is to receive a spreadsheet and an indication of a spreadsheet cell of interest. The processor is to determine a first set of spreadsheet cells that the spreadsheet cell of interest depends on, determine a second set of spreadsheet cells that depend on the spreadsheet cell of interest, provide a spreadsheet cell data flow view for the spreadsheet cell of interest based at least in part on the first set of spreadsheet cells and the second set of spreadsheet cells, and in the event an indication of a new spreadsheet cell of interest is received, provide a spreadsheet cell data flow view for the new spreadsheet cell of interest. |
US10810363B2 |
Image annotations in collaborative content items
A collaborative content management system enables users to selectively create threads and comments linked to specific portions of an image. An image comment may be indicated by a tag displayed at the location based on the specific portion of the image and having an identifier of the thread. Tags for image comments may be clustered together. When an image having image comments is replaced by a replacement image, the tags from the image may be transferred from the image to the replacement image and displayed at the same relative positions in the replacement image as positioned in the original image. |
US10810355B1 |
Allowing operating system access to non-standard fonts in a network document
When a browsing computer navigates to a network document, such as a web page, the corresponding server also downloads computer readable formatting information necessary for the operating system of the browsing computer to render correctly any characters within the network document even if the fonts associated with those characters do not exist on the browsing computer prior to encountering the network document. An exposure module is also downloaded to the browsing computer. The exposure module is loaded onto the browsing computer, which in turn either permanently installs or temporarily exposes the operating system of the browsing computer to the computer readable font formatting information associated with the network document. As a result, the operating system of the browsing computer is able to display or otherwise process the network document correctly and consistently regardless of the computer readable fonts installed on the browsing computer. |
US10810352B2 |
Integrated document editor
A computing device includes a memory and a touch screen including a display for displaying a representation of data stored in the memory and a surface for detecting an indication of a location in the memory. In response to detecting the indication, the computing device is configured to automatically define a region on the surface, and automatically identify the location based on: a portion of at least one text character or graphic object as represented on the display proximate or at a user selected position being within the region, and the location being capable of being one of one or more locations in the memory at which to apply an indicated command to the at least one text character or graphic object. The region is defined to encompass allowed variation between the selected position and the portion to compensate for human error. |
US10810351B2 |
Integrated document editor
A computing device includes a memory, a display for displaying a representation of data stored in the memory, and a surface for detecting user input. In response to detecting an indication of a command, the computing device is configured to identify the command, and automatically identify one or more variables, associated with at least one function, representing a plurality of at least one location in the memory, based on at least one portion of the command. The at least one function is configured to automatically determine one of the plurality of at least one location at which to apply the command to at least one text character or graphic object, based on the one or more variables. |
US10810350B2 |
System and method for aggregating legal orders
Systems and methods for generating and aggregating electronic versions of legal documents are provided. The generated documents may be made available to receiving parties for additional input or processing. In some embodiments, documents are made available in compliance with statutory or regulatory requirements regarding the proper service of the documents. The electronic documents may be converted to a standardized format or may be formatted for distribution to the document recipients according to the needs of each recipient. The system and method may collect and aggregate the electronic documents so as to provide them to the document recipients in a batch format to allow for more efficient distribution and processing. |
US10810349B1 |
Predicting expansion directions for expandable content item environments
This specification describes methods, systems, and apparatus, including computer programs encoded on a computer-readable storage device, for determining expansion directions of content item environments that are used to display expandable content items. |
US10810348B1 |
Constructing colorable wiring layouts with wide wires and sandwich rules
In an approach to integrated circuit track coloring, system ground rules, minimum wire width, minimum spacing, and a set of one or more colors, are received. A track layout is created. A first color is assigned to each power track. A second color is assigned to each wide track. One or more legal colors are determined for each minimum width track. A legal color is assigned to each minimum width track. |
US10810343B2 |
Mapping software constructs to synchronous digital circuits that do not deadlock
A language disclosed herein includes a loop construct that maps to a circuit implementation. The circuit implementation may be used to design or program a synchronous digital circuit. The circuit implementation includes a hardware pipeline that implements a body of a loop and a condition associated with the loop. The circuit implementation also includes the hardware first-in-first-out (FIFO) queues that marshal threads (i.e. collections of local variables) into, around, and out of the hardware pipeline. A pipeline policy circuit limits a number of threads allowed within the hardware pipeline to a capacity of the hardware FIFO queues. |
US10810342B2 |
Parameter extraction from digitized image of a schematic or block diagram for electrical designs
Capturing and processing a digital image of a pictorial (e.g., hand-drawn) representation of a schematic or block diagram as a digital image to aid in creation and maintenance of electrical designs is disclosed. Processing of the digital image includes processing to determine design parameters to create an informational format useful as input to other design software. Design parameters may include schematic layout and attributes such as maximum output voltage, minimum input voltage, ambient temperature, etc. The method and system also include storage of information accessible to refine designs and perform simulations of designs as part of an overall electrical design process. Associated devices and methods are disclosed as well. |
US10810340B2 |
Semiconductor chip designing method, non-transitory storage medium storing semiconductor chip designing program, semiconductor device production method, and arithmetic device
At the boundary where the number of effective chips changes, at least three grid points of a chip grid intersect with the periphery of a wafer effective region, and a triangle connecting these three grid points together includes therein the wafer center. To design a semiconductor chip, this feature is used to determine, by an analytic process, candidate solutions including different numbers of effective chips. These candidate solutions are used to derive an advantageous solution. |
US10810339B1 |
Determination of dimensional changes of features across mask pattern simulation fields
A method of determining dimensional changes of features in a mask involves calculating a spacing to be used between adjacent unit cells, correcting a unit cell surrounded by replicas of the same unit cell at the calculated spacing for optical proximity effects, arraying the proximity corrected unit cell at the calculated spacing, and dividing the array of unit cells into templates. Each template frames a portion of the array of unit cells, and locations of the unit cells in each framed template are shifted relative to locations of the unit cells in other framed templates. Critical dimensions for features in the unit cell are determined within each template, and the critical dimensions determined across the template are used to obtain shift variances of each feature. A dimensional change is determined for a feature based on the shift variance for that feature. |
US10810334B2 |
Application store test environment
The example embodiments are directed to a system and method for simulating an application performance using a test environment associated with an application marketplace where the application can be purchased. In one example, the method may include operating a virtual test environment which includes virtual hardware for testing software, receiving, from the application marketplace, information about an application and operating characteristics of a target installation environment for the application, executing the application via the virtual hardware of the virtual test environment based on the operating characteristics of the target installation environment to generate simulated test results of the application in the target installation environment, and outputting information of the simulated application test results for the target installation environment for display on a display device. Accordingly, a user can simulate an application performance before purchasing and deploying the application in a larger scale. |
US10810332B2 |
Method, apparatus, and computer program product for simulating client and application interface integration
A method is provided for simulating communication between a client system and application entity via an application interface, thereby enabling integration testing with a simulation apparatus. Data is transmitted from the simulation apparatus to the application entity via the application interface, and the simulation apparatus records outputs along with contexts and respective latencies. The client system transmits requests to the simulation apparatus which returns simulated responses based on the stored outputs having similar contexts, and with artificial latencies replicating the previously recorded latencies. Other events generated in the application entity may also be recorded and simulated accordingly. Reporting and analytical data may be provided to identify potential performance issues and other errors prior to direct integration of the client system and application interface. |
US10810330B2 |
Integrated modeling and simulation of formation and well performance
A method of performing aspects of an energy industry operation includes receiving input data at a processing system, the input data describing an assembly for performing the energy industry operation and properties of the formation, the assembly including a downhole component, the processing system configured to estimate production properties based on mathematical models including at least a model of the downhole component and one or more models for simulating fluid flow in the formation. The method also includes, based on the input data, generating a workflow that includes steps for estimating production properties using the models, receiving a selection from a user specifying a type of analysis to be performed and/or a level of complexity of analysis to be performed, customizing the workflow based on the user selection, estimating the production properties based on the models, where estimating is performed according to a procedure specified by the workflow. |