Document | Document Title |
---|---|
US10791134B2 |
System and method for cloud-based operating system event and data access monitoring
A cloud-based operating-system-event and data-access monitoring method includes collecting event information from a monitored cloud-based element. One or more structured event payloads based on the event information is then generated. The structured event payloads that produce one or more validated event collections are then validated. The one or more validated event collections are then serialized and filtered to remove redundant structured event payload data. The filtered validated structured event payloads are then de-serialized to produce a time-sequenced, ordered event stream. The time-sequenced, ordered event stream is de-duplicated to remove duplicate structured event payloads. The time-sequenced ordered event stream is then processed to generate processed information security results. |
US10791133B2 |
System and method for detecting and mitigating ransomware threats
This disclosure relates generally to malware detection, and more particularly to system and method for detecting and mitigating ransomware threats. For a User Equipment being monitored, the system performs a behavior analysis of corresponding file system to determine whether any anomalous behavior that would amount to a ransomware threat is associated with flies associated with the file system change, if present, then the system virtualizes the file system on the fly. If information pertaining to the identified anomalous behavior is present in any of the reference databases in the system, then all the I/O calls are terminated or the file system is virtualized for rest of the session. If data pertaining to the identified anomalous behavior is not found in any of the associated databases, then new behavioral features and structural patterns of the identified anomalous behavior and the associated processes are extracted, and the reference databases are updated accordingly. |
US10791130B2 |
Trigger-based harvesting of data associated with malignant content in a networked environment
Exemplary embodiments of the present disclosure relate to systems, methods, and non-transitory computer-readable media for searching content in a networked environment to identify malignant content and ultimately for removing the malignant content from the networked environment. Content hosted by one or more servers in a networked environment can initially be searched based on one or more search terms, and attributes from each result in a first set of results returned in response to searching the content hosted by the one or more servers can be extracted. Each result can be tagged based on the attributes, and at least one supplement search of the content hosted by the one or more servers in the networked environment can be triggered in response to at least one of the results being tagged as malignant content. |
US10791123B2 |
Selectivity in privacy and verification with applications
The present description relates to systems and techniques for allowing a third party verifier to verify aspects of secured data, or successful communication thereof. For example, a message or other data may be associated with a shared manifest that describes aspects of some data but does not reveal or expose the data. As a result, the data may be kept private while selective privacy and verification with respect to the data is achieved by the inclusion of only selected aspects of said data in the shared manifest. |
US10791121B1 |
Performing authentication
Preference data is received. The received preference data is compared to stored preference data associated with a user with which the received preference data is associated. A determination is made whether to authorize an action based at least on the comparison. The preference data is received as a selection. |
US10791119B1 |
Methods for temporal password injection and devices thereof
Methods, non-transitory computer readable media, network traffic management apparatuses, and network traffic management systems that receive a request from a client to log into an application hosted by an application server. A determination is made when the client is authenticated in response to the request. Attribute(s) are extracted from the request, when the determining indicates that the client is authenticated. A first password is generated for the client. A record for the client stored at a global catalog server is identified based on the extracted attributes and the generated first password is injected into the identified record. Credential(s) including at least the generated first password are sent to the application hosted by the application server. This technology advantageously facilitates hosting of applications that support password-based login in networks that do not allow password use even when application servers hosting the applications cannot be steered to particular directory services for authentication. |
US10791107B2 |
Performing a change of primary node in a distributed system
A method of performing a change of a primary node in a blockchain network includes a backup node of the blockchain network determining that an epoch change needs to be performed, determining a respective weight of the backup node associated with each of three phases of a consensus process in a current epoch, determining a weight sum for the backup node based on the respective weights, sending an EPOCH_CHANGE message to the other network nodes to apply for a new primary node in a new epoch, receiving NEW_EPOCH messages from the other network nodes, determining whether a number of valid NEW_EPOCH messages exceeds a second predetermined threshold, and determining the backup node to be the new primary node in the new epoch in response to determining that the number of valid NEW_EPOCH messages exceeds the second predetermined threshold. |
US10791094B2 |
Method and system for bidirectional transparent proxying
A method for bidirectional transparent proxying, includes: configuring, by a first proxy end, iptables rules based on a protocol type of a requesting-end-requested packet, and receiving, by the first proxy end, the requesting-end-requested packet that is guided based on the iptables rules; sending, by the first proxy end, the requesting-end-requested packet and the protocol type of the requesting-end-requested packet to a second proxy end; based on the requesting-end-requested packet and the protocol type of the requesting-end-requested packet, sending, by the second proxy end, the requesting-end-requested packet to an acknowledging end; by configuring ospf service, iptables rules and routing rules, guiding and receiving, by the second proxy end, an acknowledging-end-responded packet, and sending, by the second proxy end, the acknowledging-end-responded packet to the first proxy end; sending, by the first proxy end, the received acknowledging-end-responded packet to the requesting end. |
US10791088B1 |
Methods for disaggregating subscribers via DHCP address translation and devices thereof
Methods, non-transitory computer readable media, network traffic management apparatuses, and network traffic management systems that obtain an assigned Internet Protocol (IP) address from a DHCP server in response to an address request received from a client. One of a plurality of processing cores, on which a traffic management process is executing, is identified. The assigned IP address is modified based on the identified processing core. The modified IP address is sent to the client in response to the received address request. With this technology, connections associated with a same subscriber can advantageously be disaggregated to the same traffic management process. |
US10791083B2 |
Electronic messaging platform that allows users to change the content and attachments of messages after sending
Systems, methods, and computer media for manipulating electronic messages are provided herein. A system for editing electronic messages can include at least one processor, and an application. The application can be configured to, by the at least one processor, send an electronic message from a sender to a recipient, edit the message after it has been sent to the recipient to create an edited message, retain a relative location of the message in the recipient's inbox while the edited message is created, send the edited message from the sender to the recipient, and place the edited message in the relative location of the message in the recipient's inbox. |
US10791082B2 |
Systems and methods for delivery and use of interactive objects
A server and a number of client devices are connected via a network. Interactive objects are initiated in one of the client devices and delivered to any number of other client devices over the network. Real-time interactions between the object sender and the object receiver(s) can then be engaged using event-triggering mechanisms built into the client devices and applied onto the objects, and be coordinated by a coordinating module in the server. The interactive objects may carry instructions for event-triggered loading, activating and execution of functional widgets, such as workflows or collaborations, stored in the same server or elsewhere on the network. Once loaded in a client device, a widget needs not to be reloaded upon further use. Furthermore, the coordinating module may be linked to a machine-learning module in the same server or elsewhere on the network. |
US10791081B2 |
Providing augmented message elements in electronic communication threads
The present disclosure is directed toward systems and methods for providing message element in electronic communication threads. For example, systems and methods described herein identify message elements in electronic communication threads and add interactions between the message elements to the electronic communication thread. |
US10791078B2 |
Assistance during audio and video calls
Implementations relate to providing information items for display during a communication session. In some implementations, a computer-implemented method includes receiving, during a communication session between a first computing device and a second computing device, first media content from the communication session. The method further includes determining a first information item for display in the communication session based at least in part on the first media content. The method further includes sending a first command to at least one of the first computing device and the second computing device to display the first information item. |
US10791077B2 |
Application-independent messaging system
Among other things, embodiments of the present disclosure improve the functionality of electronic messaging software and systems by allowing senders to transmit messages and content using a messaging system, and recipients to access such messages and content, even if the recipients do not have access to the messaging system. |
US10791075B2 |
System for delivering notification messages across different notification media
A system for delivering notification messages across different notification media comprises a processor. A processor is configured to provide an indication of a new platform notification channel to one or more platform notification services. The indication is provided to one of the one or more platform notification services through a communication module specific to the one of the one or more platform notification services. The processor is configured to create a mapping from a new universal notification channel to a set of one or more platform notification channel identifiers. Each platform notification channel identifier of the set of platform notification channel identifiers is received from a platform notification service. The processor is configured to provide the set of one or more platform notification channel identifiers to a content provider of the new universal notification channel. The processor is coupled to the memory and is configured to store instructions. |
US10791073B2 |
Event detection using inquiries
Inquiry data from one or more sources (e.g., client devices) may be analyzed to determine if key terms, date terms, and locality terms are indicative of an event to occur at a locality during one or more dates. Events that are detected may be communicated (e.g., via an electronic message(s)). An owner of a property may receive the electronic message(s) that are communicated for detected events and the owner may act to garner interest in stays at their property. Travelers searching for a property to stay at during the event may receive the electronic message(s) in the form of an offer (e.g., an email, a text message, a Tweet, a newsletter, etc.). The inquiry data may be received in real time and/or may be accessed from a data store. The Inquiry data may be curated to remove non-essential information and/or to include edited key terms, date terms, and locality terms. |
US10791069B2 |
Method, apparatus, and storage medium for processing data with multiple clients having friend association relationship
A data processing method and a server are disclosed. The method includes: receiving, by a server, first service data that is sent by a first client (for example, an instant messaging application based client), and sending the first service data to at least one second client that has a friend association relationship with the first client; detecting one or more second clients responding to the first service data, selecting, according to a preset selection rule, a target second client, and assigning a processing permission to the target second client, so that the target second client generates second service data according to the processing permission and the first service data; and receiving the second service data, using the target second client as a first client, and using the second service data as first service data. The present disclosure can improve utility of an instant messaging application and enhance user stickiness. |
US10791066B2 |
Virtual network
A SDN controller receives a forwarding request message including a header portion of a layer-2 packet. The SDN controller determines whether a source host and a destination host of the layer-2 packet are in the same virtual network according to a virtual network table. |
US10791064B2 |
Method and apparatus for allocating server in wireless communication system
A method and an apparatus for allocating a server to a terminal are provided. The method includes receiving an Internet protocol (IP) packet with a domain name system (DNS) query from a terminal, including terminal location information in the IP packet, transmitting the IP packet to a DNS server, receiving, from the DNS server, a response IP packet location information of a proximity server, the proximity server being located within a certain distance from the terminal, and transmitting the response IP packet to the terminal. |
US10791062B1 |
Independent buffer memory for network element
Technology is described for forwarding packets from a network element to a buffer node. A packet may be received at the network element. The network element may determine that packets stored in the buffer memory exceed a defined threshold for data size. The packet may be forwarded from the network element to the buffer node in a service provider environment for storage of the packet at the buffer node. The network element may receive the packet from the buffer node. |
US10791058B2 |
Hierarchical enforcement of service flow quotas
Systems and methods may provide for determining a local traffic quota for a service associated with an overlay network and determining an allocation of the local traffic quota across a set of data sources associated with the overlay network. Additionally, the allocation may be imposed on one or more packets received from the set of data sources. In one example, imposing the allocation on the one or more packets includes sending the one or more packets to a parent node connected to the overlay router in a hierarchy of the overlay network if delivery of the one or more packets to the parent node complies with the allocation and delaying delivery of the one or more packets to the parent node if the packets do not comply with the allocation. |
US10791054B2 |
Flow control and congestion management for acceleration components configured to accelerate a service
Systems and methods for flow control and congestion management of messages among acceleration components (ACs) configurable to accelerate a service are provided. An example system comprises a software plane including host components configured to execute instructions corresponding to a service and an acceleration plane including ACs configurable to accelerate the service. In a first mode a sending AC is configured to, in response to receiving a first indication from a receiving AC, send subsequent packets corresponding to a first message associated with the service using a larger inter-packet gap than an inter-packet gap used for previous packets corresponding to the first message associated with the service, and in the second mode the sending AC is configured to, in response to receiving a second indication from the receiving AC, delay a transmission of a next packet corresponding to the first message associated with the service. |
US10791052B2 |
Systems, apparatuses and methods for network packet management
Methods and systems are provided for latency-oriented router. An incoming packet is received on a first interface. The type of the incoming packet is determined. Upon the detection that the incoming packet belongs to latency-critical traffic, the incoming packet is duplicated into one or more copies. Subsequently, the duplicated copies are sent to a second interface in a delayed fashion where the duplicated copies are spread over a time period. The duplicated copies are received and processed at the second interface. |
US10791049B2 |
Method for distributing transmission path information and routing bridges
A method for distributing transmission path information, including: distributing, by a first routing bridge which stores a MAC address of a host on a local link, transmission path information of the host on the local link to a remote routing bridge of a non-local link, the transmission path information including the MAC address of the host on the local link and identification information of a second routing bridge, so that the remote routing bridge learns the transmission path information from the first routing bridge. The present application further provides corresponding routing bridges. The present application may enable the remote routing bridge to timely learn the transmission path information of the host under the condition that a data packet sent by the host is not received, so as to send data to the host according to a new transmission path. |
US10791048B2 |
System and method for making and disseminating local policy decisions in a software programmable radio network
An embodiment wireless communication system includes a base station and a software defined network (SDN)-enabled switch/router configured to communicate data packets with the base station. The wireless communication system also includes a computing platform running at least one virtual device and that is configured to communicate with the SDN-enabled switch/router and to provide software to configure operation of the SDN-enabled switch/router. |
US10791046B2 |
Weighted-cost multi-pathing using range lookups
A method of forwarding packets by a physical network switch is provided. The method assigns egress ports that connect the network switch to each particular next hop to a weighted-cost multipathing (WCMP) group associated with the particular next hop. The method assigns weights to each egress port in each WCMP group according to the capacity of each path that connects the egress port to the next hop associated with the WCMP group and normalizes the weights over a range of values. For each packet received at the network switch, the method identifies the WCMP group associated with a next hop destination of the packet. The method calculates a hash value of a set of fields in the packet header and uses the hash value to perform a range lookup in the identified WCMP group to select an egress port for forwarding the packet to the next hop. |
US10791041B2 |
Centralized troubleshooting tool in distributed virtual network
A novel centralized troubleshooting tool that enables user to troubleshoot a distributed virtual network with a single consistent user interface is provided. The distributed virtual network being monitored or debugged by the centralized troubleshooting tool includes different types of logical resources (LRs) that placed or distributed across different physical endpoints (PEs). The centralized troubleshooting tool provides functions that allow the user to invoke commands on different physical endpoints in order to collect information about the logical resources running in those physical endpoints. This allows the user to compare and analyze the information from different PEs for a same LR. |
US10791037B2 |
Reliable transfer of numerous geographically distributed large files to a centralized store
Techniques to manage the transfer of a large number of large files, such as image files, to a centralized location in a reliable fashion, sufficient to enable an object recognition based horticultural feedback loop are disclosed. An image capture device is generally assigned to each plant, where images of each plant are captured frequently and periodically. Image files may be sent directly from an image capture function or via an intermediate server to a cloud based server. On the image capture side, a transfer manager software component determines scheduling image file transfers, fallback routines if a transfer is not imminent, and a notification system reports errors and violations of service level agreements. Alternatively, on the cloud based server side, a transfer manager software component manages file transfers based on available bandwidth, and provides a notification system reporting errors and violations of service level agreements. |
US10791036B2 |
Infrastructure costs and benefits tracking
A method and system for tracking an IT infrastructure is provided. The method includes modeling an IT infrastructure as a collection of hardware components, software components, and networking components. An observer agent is deployed on each of the components. The observer agent performs a measurement process with respect to each of the components and a mapping process is performed with respect to the measurement process. An aggregation module is deployed and an aggregation process is performed with respect to results of the mapping process. In response, a two dimensional moving graph indicating results of the aggregation process is generated and displayed. |
US10791034B2 |
Telecommunications network planning
A method of simulating a scenario in a telecommunications network is provided. The method comprises: generating a network definition expressed in a common data model readable by first and second routing engines; generating a set of demand matrices describing demands on the network; incorporating a scenario definition into one or more of the network definition and the demand matrices; automatically determining a first aspect of a new network state associated with the scenario definition by determining a first optimised set of routes using the first routing engine based on the network definition and at least one of the demand matrices; and automatically determining a second aspect of the new network state by determining a second optimised set of routes using the second routing engine based on the first optimised set of routes and at least one other of the demand matrices. |
US10791032B2 |
Method and apparatus for determining a physical position of a device
Embodiments of the present disclosure provide a method and apparatus for determining a physical position of a device. The method comprises: transmitting a control command to the device, the command instructing the device to change power loading of the device in a predetermined pattern; receiving, from a power distribution unit providing power supply for the device, a network address of the power distribution unit, the network address being transmitted by the power distribution unit in response to detecting the change of the power loading in the predetermined pattern; and determining the physical position of the device based at least on the network address of the power distribution unit. With the technical solution according to the embodiments of the present disclosure, the position of the device can be automatically determined without any manual intervention, which helps to control the operation cost and improve the maintenance efficiency. |
US10791029B2 |
Tier based virtual network function chaining design
Techniques described herein may be used to condense a large quantity of Virtual Network Function (VNF) chains (that each correspond to a network service) into a much smaller quantity of VNF records; and extract any of the large quantity of VNF chains from the smaller quantity of network service records. This may be accomplished by assigning a Number (No.) of Services attribute and a Tier attribute into each VNF record. The No. of Services attribute and Tier attribute may enable the VNF records to reference one another such that the larger quantity of VNF chains may, in effect, be entirely represented by the much smaller quantity of VNF records, thereby conserving storage space, streamlining VNF chain management, and reducing the processing and memory capacity required to search, configure, and deploy virtual network services. |
US10791025B2 |
Migration of an existing computing system to new hardware
Software, firmware, and systems are described herein that migrate functionality of a source physical computing device to a destination physical computing device. A non-production copy of data associated with a source physical computing device is created. A configuration of the source physical computing device is determined. A configuration for a destination physical computing device is determined based at least in part on the configuration of the source physical computing device. The destination physical computing device is provided access to data and metadata associated with the source physical computing device using the non-production copy of data associated with the source physical computing device. |
US10791021B1 |
Storage and retrieval of parameters for infrastructure-as-code computing services
Technologies are disclosed for storage and retrieval of parameters used in the creation and editing of infrastructure-as-code (IAC) templates. An infrastructure-as-code (“IAC”) template related to desired resources available in a service provider network for configuring a stack of the desired resources in the service provider network is provided. The IAC template includes an identification of a key-value pair associated with resource definitions related to the desired resources and are stored in a data store. Based upon the identification of the key-value pair, a look-up function is used to call a stateless event driven compute service function to query the data store for the resource definitions. Once the resource definitions are received from the data store, based upon the IAC template and the resource definitions, the stack of the desired resources is configured. |
US10791019B2 |
Edge or fog gateway assisted out-of-band remote management for managed client devices
Embodiments herein relate to out-of-band connections for remote diagnosis and repair of client devices. In various embodiments, an apparatus for remote management of a client device may include a local area network (LAN) port, a wide area network (WAN) port, and a remote communications manager to provide to a remote management service, an identification of the apparatus as a gateway device for a LAN of the remote managed client computer. In embodiments, the identification may assist the remote management service in invoking the remote managed client computer to establish a remote management session via an out-of-band (OOB) channel with the gateway device. In embodiments, a gateway-assisted failover during a remote management session between a remote management console and a managed client device may be provided. Other embodiments may be described and/or claimed. |
US10791010B1 |
System and method for low probability of detection and low probability of intercept waveform
In embodiments, a communication node of a multi-node communication network includes a controller communicatively coupled to a communication interface, wherein the controller is configured to: acquire a data payload to be transmitted based on a randomized transmission interval; duplicate a bit sequence of the data payload with a selected spreading pattern; perform bit-to-symbol mapping of the bit sequence based on a selected M-ary number to generate a data payload symbol sequence; randomize a location or value of one or more pilot symbols and one or more data carriers of the data payload symbol sequence; transform frequency-domain symbols of the data payload symbol sequence into time-domain symbols to generate a time-domain data payload signal; remove amplitude fluctuation of the data payload signal to generate a phasor data payload signal; and transmit the phasor data payload signal to at least one additional communication node of the multi-node communication network. |
US10791006B1 |
Electronic system with RFI cancelation mechanism and related RFI cancelation method
An electronic system includes a feedforward equalizer, a feedback equalizer, an RFI canceler, and a control circuit. The feedforward equalizer and the feedback equalizer are configured to adjust the channel response of a transmission channel in the electronic system. The RFI canceler is configured to cancel the RFI presence in the electronic system. When the RFI canceler is off, the controller is configured to turn on the RFI canceler according to a signal error value before RFI cancelation, an error term of the electronic system, or an SNR of the electronic system. |
US10791005B2 |
Bridging accessible and non-accessible packet cores
A method in a computer network in which a user equipment (UE) connects to multiple packet cores, wherein each of said multiple packet cores assigns the UE a corresponding network address, the method comprising: (A) a virtual gateway associating a first network address with said UE and providing the UE with a second network address for communicating with and/or through said virtual gateway, said first network address and said second network address being distinct from the network addresses assigned to the UE by the packet cores; and (B) said virtual gateway communicating with said UE via one or more of said multiple packet cores, wherein the virtual gateway and the UE communicate using the first network address and the second network address, and wherein the virtual gateway acts as a gateway for the UE. |
US10791004B2 |
Methods and apparatus for use in network overlay fabrics to facilitate external network connectivity including access to extranet shared services
In one example, a router is configured to process communications according to a tunneling protocol to provide network overlay tunnels to facilitate virtual private networks (VPNs) for hosts, and to process communications associated with an external network with use of a provider virtualization routing and forwarding (VRF) instance. With use of a subscription function, the router receives an initial set of extranet VPN prefixes associated with the network overlays for storage in association with the provider VRF, as well as regularly receive publications of updates to extranet VPN prefixes associated with the network overlays. With use of a route obtaining function, the router, in response to receiving a communication associated with one of the stored extranet VPN prefixes at the provider VRF, sends to a communications management server a message indicating request for a host-to-router mapping and receive from the communications management server a reply including the host-to-router mapping. |
US10791002B2 |
Controller area network (CAN) device and method for operating a CAN device
Embodiments of a method, a device and a computer-readable storage medium are disclosed. In an embodiment, a method for operating a Controller Area Network (CAN) device involves detecting a transition of a CAN transceiver of the CAN device from a dominant state to a recessive state and in response to detecting a transition of the CAN transceiver from the dominant state to the recessive state, controlling an output impedance of the CAN transceiver to be within a predefined range of an impedance value at the dominant state while a differential driver voltage on a CAN bus connected to the CAN transceiver decreases to a predefined voltage. |
US10790997B2 |
Transmission of pulse power and data in a communications network
In one embodiment, a method includes transmitting data on two wire pairs carrying pulse power, wherein the pulse power comprises a plurality of voltage pulses with the voltage pulses on the wire pairs offset between the wire pairs to provide continuous power and identifying transitions between at least one of a pulse-on time and a pulse-off time, and a pulse-off time and a pulse-on time on at least one of the wire pairs. Data transmission on the wire pair is controlled during the identified transitions on the wire pair to prevent interference between the pulse power and the data. |
US10790994B2 |
Nanomaterial physically unclonable function systems and related methods
Implementations of light filters for use in cryptographic operations may include: a substrate having at least a first side and a second side, the first side opposing the second side, the substrate including one of a translucent, a transparent, and a semi-transparent material, and any combination thereof; and one or more layers of microscopic structures coupled to one of the first side, the second side, and both the first side and the second side of the substrate, the microscopic structures each containing one or more structural elements configured to interact with light. The microscopic structures may be configured to collectively form a unique light pattern on a detector optically coupled with the light filter. The unique pattern may be configured to be used to form a challenge-response pair (CRP) and the CRP is configured to be used in cryptographic operations to authenticate an electronic device associated with the light filter. |
US10790993B2 |
Computer systems for generating certified data
The present description concerns a computer system for generating certified data, comprising an electronic device (2) equipped with an apparatus (21) for acquiring visual and/or sound data, a locator (22) and a memory (23), said device (2) being configured to establish a GSM network connection (24), a computer program (3) residing in said memory (23), said program (3) being configured to start the apparatus (21), acquire visual and/or sound data and, during the data acquisition step (31), start the locator (22) and acquire a location of the device (2), a system database (4), a first server (5) and a second server (6), which are managed by a first certification body and a second certification body respectively to certify said acquired visual and/or sound data. |
US10790991B2 |
Deterministic digital signature method without using a hash function
A white-box system and method for producing a digital signature of a message m, including: a white-box implementation of a symmetric cipher configured to produce a deterministic nonce value by encrypting the message m using a secret key; and a digital signature algorithm configured to produce a digital signature of the message m based upon the deterministic nonce, the message m, and a secret signing key. |
US10790990B2 |
Ring signature-based anonymous transaction
This disclosure relates to anonymous transactions based on ring signatures. In one aspect, a method includes receiving a remittance transaction. The remittance transaction is generated by a client device of a remitter by assembling unspent assets in an account corresponding to the remitter and masked assets in an account corresponding to a masked participant. Key images are obtained from a linkable spontaneous anonymous group (LSAG) signature of the remittance transaction. Values of the key-images are based on a private key, a public key, and unspent assets of the remitter. The LSAG signature is verified. The LSAG signature is generated by the client device of the remitter based on the private key and the public key of the remitter, and a second public key of the masked participant. The remittance transaction is executed when a transaction execution condition is met. |
US10790988B1 |
Managing blockchain-based centralized ledger systems
Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for managing blockchain-based centralized ledger systems. One of the methods includes: receiving timestamps and associated signatures from an independent trust time server associated with a trust time authority by a centralized ledger server in a centralized ledger system, storing the timestamps and the associated signatures in a centralized trust timestamp blockchain that stores trust timestamp information of the trust time server for the centralized ledger system that stores data in blockchains each including a plurality of blocks, receiving a timestamp request for a block of a blockchain from a ledger server associated with the blockchain by the centralized ledger server, and transmitting a timestamp and associated signature that is stored in the timestamp blockchain and corresponds to the timestamp request to the ledger server by the centralized ledger server. |
US10790979B1 |
Providing high availability computing service by issuing a certificate
This disclosure relates to providing a high availability computing service in a distributed system. In one aspect, a method includes sending, by a computing unit of multiple computing units that are each executing a respective copy of a computing task, a certificate request to a trusted certificate generator. The request includes authentication information. The authentication information includes a code hash of the computing task. The computing unit receives a certificate report including a public key certificate in a certificate chain generated for the code hash and a private key corresponding to the public key certificate. The public key certificate and the private key form a certificate pair. The certificate chain includes multiple certificates including the public key certificate and a root certificate corresponding to the public key certificate. The computing unit is used as a TLS server. The certificate pair is set as a certificate pair of the TLS server. |
US10790975B2 |
Attestation management
Embodiments disclosed herein are related to computing systems, computer program products, and methods for selecting and providing an attestation in response to a request from an entity. A request is received from an entity for attestation that included in various attestations related to an owner of the attestations. The attestations define information about the owner of the attestations that the entity desires to obtain. The request includes request metadata that identifies a type of the attestation that is being requested. The request metadata is analyzed to determine the attestation that is being requested. Based on the analysis, the attestation is selected. Access to the attestation is provided to the entity making the request. |
US10790973B2 |
Blockchain authorization information generation
A computer-implemented method includes: receiving, by a platform including one or more computing devices, a blockchain authorization information generation request from a client, in which the blockchain authorization information generation request includes a target blockchain identifier and user information; determining, based on the target blockchain identifier, a target blockchain; determining a blockchain parameter of the target blockchain, in which the blockchain parameter indicates one or more requirements for authorization information used to join the target blockchain; generating blockchain authorization information based on the blockchain parameter and the user information, in which the blockchain authorization information conforms to the one or more requirements; and sending the blockchain authorization information to the client. |
US10790968B2 |
Ledger verification method and apparatus, and device
Computer-implemented methods, non-transitory, computer-readable media, and computer-implemented systems for ledger verification are provided. If a user needs to audit or verify a block-chain type ledger, a time service certificate can be used as an anchor to verify a segment of a ledger corresponding to the anchor. Because a timestamp of the segment of the ledger uses the time service certificate as trustworthiness attestation, verification based on the time service certificate can ensure time validity and correctness of the segment of the ledger. |
US10790967B1 |
Server side authentication
A server may perform server side authentication of a user device. The user device may generate a first authentication string by performing a hash function on a username, a password, and a first salt. The first authentication string may be registered with the server for subsequent login attempts. At login, the user device generates the first authentication string and transmits the first authentication string to the server. When the authentication strings match, the user device is authenticated. The user device may also update the first authentication string. The server may provide the first salt and a second salt to the user device. The user device may generate a first authentication string and a second authentication string from the first salt and the second salt, respectively. When the first authentication strings match, the server may update the user device's authentication string by replacing it with the second authentication string. |
US10790965B1 |
Tiered distributed ledger technology (DLT) in a network function virtualization (NFV) core network
A method of combining chains of blocks in a network. The method comprising, creating a plurality of birth blocks of a plurality of chains of blocks by a block foundry application in a network, where each birth block is associated with a chain of blocks that records events of a network entity, creating blocks by a plurality of nodes in the network, wherein the current block and the previous block are linked, terminating the chain of blocks by the network entity, wherein the entity sends a termination request to create an end block, creating the end block, wherein the end block is the final block of the chain of blocks, and in response to the creation of the end block, sending a request by the network entity to create a block of a meta-chain of blocks, and creating the block of the meta-chain of blocks by the plurality of nodes. |
US10790964B2 |
Peer voting on a blockchain
An example method of operation may include one or more of identifying one or more votes in a distributed voting configuration, dividing each of the one or more votes into a plurality of partial votes, such that each of the one or more votes comprises two or more partial votes, randomly distributing the plurality of partial votes to a plurality of peer nodes associated with a blockchain, and receiving a broadcast from each of the peer nodes based on a distributed tally of the plurality of partial votes. |
US10790963B2 |
Blockchain generation apparatus, blockchain generation method, blockchain verification apparatus, blockchain verification method, and program
The blockchain generation apparatus 1 includes: a synchronizer 121 that acquires shared data 111 which includes the blockchain data 112 and transaction datasets 113 not included in the blockchain data 112; a transaction pattern count calculator 124 that calculates the number of transaction patterns for a generating party using the blockchain generation apparatus 1, based on the transaction datasets which are in the blockchain data 112 and are related to an identifier of the generating party; a block generation condition checker 125 that determines whether the generating party is qualified to generate the new blockchain data, based on the number of transaction patterns calculated by the transaction pattern count calculator; and a blockchain generator 126 that tries to generate the new blockchain by referring to the shared data 111 if the block generation condition checker 125 determines that the generating party is qualified. |
US10790956B2 |
System and method for communicating time and frequency tracking signals using configurations for one port CSI-RSs
A network controller may configure one or more channel state information-reference signal (CSI-RS) configurations for transmitting RSs to user equipments (UEs) for tracking. A CSI-RS configuration may specify a set of CSI-RS resources for transmitting RSs in two consecutive slots. The set of CSI-RS resources may include a plurality of one-port CSI-RS resources configured according to the CSI-RS configuration. The CSI-RS configuration may specify a quasi co-location (QCL) configuration including a set of QCL parameters, where a demodulation reference signal (DMRS) has a QCL relationship with the RS with respect to the set of QCL parameters. The network controller may signal the one or more CSI-RS configurations to UEs. |
US10790954B2 |
Implicit acknowledgment (ACK) mapping
Certain aspects of the present disclosure provide techniques for determining and utilizing resources for communicating an acknowledgment message (ACK). In certain aspects, a method generally includes determining a number of bits to utilize for communicating an acknowledgement (ACK) for a data transmission on a physical downlink shared channel (PDSCH). The method further includes determining a resource on a physical uplink control channel (PUCCH) to utilize for communicating the ACK based on the number of bits. The method further includes communicating the ACK on the resource. |
US10790953B2 |
Method for transmitting and receiving signals between base station and terminal in wireless communication system, and device supporting same
Disclosed are a method for transmitting and receiving between a base station (BS) and a terminal in a wireless communication system, and a device supporting the same. Specifically, disclosed are a method for transmitting, by a base station, a plurality of downlink data channels in a subframe according to a time divisional multiplexing (TDM), and operating a terminal in response to the transmission, and a device supporting the same method. |
US10790952B2 |
Method and apparatus for receiving downlink physical broadcasting channel in radio access system that supports narrow band internet of things
The present invention may provide a method and apparatuses for transmitting and receiving a downlink/uplink physical channel when an in-band operation is supported by a radio access system that supports a narrow band Internet of things (NB-IoT). As an embodiment of the present invention, a method for receiving a physical downlink broadcasting channel (M-PBCH) by a terminal in a radio access system that supports a narrow band Internet of things (NB-IoT) system may comprise the steps of: receiving a higher layer signal indicating an in-band deployment mode; receiving a narrow band primary synchronization signal (M-PSS) and a narrow band secondary synchronization signal (M-SSS), configured for the NB-IoT systems; obtaining a cell identifier (N-Cell ID) of the NB-IoT system from the M-SSS; and receiving an M-PBCH using the N-Cell ID in the in-band deployment mode. In this instance, the in-band deployment mode indicates that the NB-IoT system is configured in a band of a legacy LTE system. |
US10790950B2 |
Method for information transmission in a communication network
A method for achieving reliable information transmission in a communications network includes using a signal conditioning unit to receive a primary signal over at least one transmission channel, using the signal conditioning unit to generate a secondary signal from the primary signal and using the signal conditioning unit to transmit the secondary signal to a signal processing unit via two different protocol layers. A communications network includes a signal conditioning unit and a signal processing unit. The signal conditioning unit is configured to receive a primary signal over at least one transmission channel, to generate a secondary signal from the primary signal and to transmit the secondary signal to the signal processing unit via two different protocol layers. |
US10790941B2 |
Method and device for narrowband cellular communication
The present disclosure provides a method and a device for narrowband cellular communication. A User Equipment (UE) first receives a first signaling, then receives a first radio signal in a first subframe group, and then transmits a second radio signal in a second subframe group, wherein the first subframe group comprises one or more subframes, and the second subframe group comprises one or more subframes. The first signaling is used for determining the first subframe group, and the first signaling is used for determining the second subframe group. The first radio signal is used for determining the second radio signal. A transmitter of the first radio signal is a first node, a receiver of the second radio signal includes a second node, and the first node and the second node are non-co-located. The present disclosure improves transmission efficiency, shortens transmission delay, and has good compatibility with existing products. |
US10790940B2 |
Control channel monitoring for retransmissions in a coordinated multipoint network
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit a negative acknowledgement (NACK) corresponding to a failed communication from a first transmission/reception point (TRP) included in a coordinated multipoint network. The UE may monitor a control channel associated with a second TRP included in the coordinated multipoint network based at least in part on transmitting the NACK, wherein the first TRP and the second TRP use different frequency bands. The UE may receive a retransmission of the failed communication based at least in part on monitoring the control channel. Numerous other aspects are provided. |
US10790935B2 |
System and method for efficiently transmitting error-tolerant traffic in low power and lossy networks
The present invention relates to a method for efficiently transmitting error-tolerant traffic in low power and lossy networks (LLNs). The method for transmitting an error-tolerant traffic includes when a packet is received, modifying a medium access control (MAC) layer of a receiving device to perform received signal strength indication (RSSI) sampling at a symbol rate and estimating a symbol error rate of the packet in the MAC layer based on the sampled RSSI value, and when the estimated symbol error rate is lower than a specific value, transmitting the received packet to a higher layer. |
US10790932B2 |
Padding bits for CSI report coding
Described herein are methods and apparatus for jointly encoding components of a a channel state information (CSI) report into a single codeword. Padding bits are added to equalize payload size for different CRI/RI cases and to allow encoding of all parts of CSI into one codeword without payload ambiguity. |
US10790931B2 |
Regenerative payload using end-to-end FEC protection
Disclosed herein is a transceiver for a satellite, where the transceiver includes a receiver, a digital data stream processor and at least one transmitter. The receiver is configured to receive an uplink data stream from a satellite gateway or another satellite where the data stream carries a plurality of data packets. The digital data stream processor is configured to process the uplink data stream, to obtain the plurality of data packets, where at least one of the data packets includes payload data and error correcting data allowing a full error correction of the payload data. The data stream processor is further configured to perform no or only a partial error correction of the payload data of the at least one data packet, to obtain a downlink data stream. The transmitter is configured to transmit the downlink data stream to user terminal or another satellite. |
US10790930B2 |
Techniques for distortion correction at a receiver device
Apparatuses and methods for correcting a distorted signal at a receiver device during wireless local area network (WLAN) communications are disclosed. The apparatuses and methods include receiving, by a receiver device in a WLAN, a distorted signal corresponding to a data packet signal transmitted from a transmitter device, receiving, by the receiver device, one or more transmitter parameters corresponding to the transmission of the data packet signal, the one or more transmitter parameters including information to adjust the distorted signal, and adjusting, by the receiver device, the distorted signal to reconstruct the data packet signal based at least on the one or more transmitter parameters. |
US10790929B2 |
Nested lookup table for symbol detection with initial candidate reduction
A system and method for receiving a quadrature amplitude modulation symbol. In some embodiments, the symbol has a plurality of bits and is associated with a point in a constellation of quadrature amplitude modulation points, each point of the constellation having associated with it a binary word. The method includes receiving a first analog signal carrying a modulation; performing initial estimation, to generate a first initial modulation estimate, for a portion of the first analog signal carrying a modulation; identifying, based on the first initial modulation estimate, a row of an initial candidate lookup table, the row corresponding to a region of the constellation; and reading from the row of the initial candidate lookup table a first plurality of initial candidate points of the constellation. |
US10790928B2 |
Downlink control signaling for uplink transmission in a wireless network
A wireless device receives a downlink control information (DCI). The DCI comprises: number of subframes field indicating a first number of subframes; a modulation and coding scheme field; a transmit power control field; and a listen before talk (LBT) field indicating timing information for performing an LBT procedure. The wireless device performs the LBT procedure for transmission in the first number of subframes based on the timing information. The wireless device determines a transmission power of each subframe in the first number of subframes based on a same closed loop adjustment factor and the transmit power control field. The wireless device transmits, in each subframe of the first number of subframes, employing the modulation and coding scheme field. |
US10790926B2 |
Data processing method, network device, and terminal
The present disclosure discloses a data processing method, a network device, and a terminal. In this method, a transmit end combines basic modulation symbols obtained after basic modulation is performed on all layers of data, to obtain a combined symbol vector X. The transmit end maps the symbol vector X to Q resource elements to obtain a data vector S. A symbol quantity of the symbol vector X is greater than a symbol quantity of the data vector S. The symbol quantity of the data vector S is Q. Q is a positive integer. Therefore, non-orthogonal spreading and superposition transmission of a plurality of terminals can be implemented in both uplink and downlink, thereby effectively improving transmission efficiency. |
US10790921B2 |
Configuration of synchronisation network
Configuring a node (410, A-I, L-O) of a synchronization network, involves determining information about synchronization sources of a plurality of synchronization trails for passing synchronization information from the synchronization source (A, L, O, PRC) to the node to provide a synchronization reference. After determining automatically (210, 250, 330, 335, 340) synchronization transmission characteristics of trails (EP, FG, GH, HM, MN, OF, FI, IH) which use packet-based communication, the trails are compared automatically (240, 370), using their source information and their synchronization transmission characteristics, for selecting winch of these trails to use for providing the synchronization reference for the node (N). Compared to selections made based on source alone, using the synchronization transmission characteristics of the pocket based parts can enable a better choice of trail, and can enable comparison with synchronous type trails, and so enable hybrid synchronization network to be configured and maintained. |
US10790920B2 |
System and method for processing signals using feed forward carrier and timing recovery
Systems, methods, and computer-readable media for processing a digital bit stream representative of a communication signal are provided. The method can include dividing, at one or more processors, the digital bit stream into a plurality of data packets, each having an overlap of data from an adjacent packet. The method can include performing a timing recovery operation and a carrier recovery operation on portions of the plurality of data packets in multiple processing blocks in the processor, in parallel. The method can include combining the first plurality and the second plurality based on timing and phase stitching. |
US10790918B2 |
Detection for digital radio mondiale plus in hybrid broadcasting mode
A radio receiver is disclosed. The radio receiver includes an analog tuner and a baseband processor to provide radio functions. The baseband processor is coupled to the analog tuner. The radio receiver further includes a memory, a controller coupled to the analog tuner, the baseband processor and the memory. The controller is configured to perform an operation, the operation includes causing the analog tuner to analyze a selected FM frequency to determine if the selected FM frequency is associated with a digital radio mondiale (DRM) plus station by first coarsely determine if the selected FM frequency may be associated with a DRM plus station and if coarse determination fails, marking the FM frequency as not being associated with a DRM plus station, wherein if the coarse determination is successful, retrying a selected number of times to continue to determine if the selected FM frequency is associated with a DRM plus station. |
US10790917B2 |
Apparatus for transmitting broadcast signal, apparatus for receiving broadcast signal, method for transmitting broadcast signal and method for receiving broadcast signal
A method for providing a broadcast service by a primary device (PD) includes performing a discovery process with a companion device (CD) application executed in a CD, wherein the discovery process includes receiving a device description request from the CD application, transmitting a first response message, receiving, from the CD application, an application information request destined for a first URL and transmitting a second response message, wherein a header of the first response message includes the first URL, and the second response message includes a second URL used as a Websocket endpoint of the PD; establishing a Websocket connection between a Websocket server and the CD application using the second URL; receiving a request message for media timeline information from the CD through the Websocket connection; and delivering a notification message to the CD through the Websocket connection. |
US10790915B2 |
Over-the-air test fixture using antenna array
Various embodiments are presented of a system and method for testing (e.g., rapidly and cheaply) devices with antennas configured for radio frequency (RF) and/or millimeter wave (mmW) transmission and/or reception. A device to be tested (e.g., the device under test (DUT)) may be mounted to an interface in a measurement fixture (e.g., a socket, anechoic chamber, etc.). Power and data connections of the DUT may be tested over the interface, which may also provide connections for input/output signals, power, and control and may also provide positioning. RF characteristics (e.g., including transmission, reception, and/or beamforming) of the DUT may be tested over-the-air using an array of antennas or probes. |
US10790908B1 |
Optical communication link identifier
An actuator device can include a plate, an actuator, a connector, and a power unit. The plate can retain a section of an optical fiber at the transmitter end of an optical communication link. The section of the optical fiber can be wrapped in at least a partial loop and held or retained by the plate. The connector can be a mechanical connector that couples the plate to the actuator and enables the plate to move about at least one axis to cause a change in a polarization state of the optical signal carried by the optical fiber. The change in the polarization state is identifiable by a polarized photodetector near a receiver end of the optical communication link. The power unit can provide power to at least the actuator. |
US10790906B2 |
Data center network node
A data center network node (28) comprises one or more switch (18,19,22,23) configured to link an optical transceiver (16,17) to an optical connection comprising a multi-core optical fiber (30) having a plurality of cores (31). For each core (31), the one or more switch (18,19,22,23) is configurable between a first configuration in which an optical signal on a said core (31) of the multi-core optical fiber bypasses the optical transceiver and a second configuration in which the optical transceiver is optically linked to the said core (31) of the multi-core optical fiber (30). |
US10790905B2 |
Optical fiber and optical transmission system
The optical fiber according to the present disclosure is an optical fiber having a pure silica core which is a step index core through which an LPm1 mode with an effective area of 250 μm2 or more is propagated by setting a relative refractive index difference to 0.60% or less, considering an effective cutoff condition, and only 2 or more modes or the LPm1 mode are propagated, with the optical fiber as the transmission line. |
US10790900B2 |
Enhanced frequency offset tracking in optical signals
This disclosure describes systems, methods, and devices related to frequency offset tracking in optical signals. A device may identify modulated light received from a light source, wherein the modulated light is received at a frame rate, and wherein the modulated light is associated with pixel clusters. The device may determine light samples based on the pixel clusters, the light samples including a first light sample and a second light sample. The device may determine a vector norm between the first light sample and the second light sample using an oversampling factor. The device may determine that the vector norm is below a threshold. The device may determine a start frame delimiter (SFD) based on the vector norm. The device may demodulate the symbol based on the oversampling factor. |
US10790898B1 |
Base station altitude automatic adjustment for remote wireless network optimization
A system of optimizing communications of a plurality of wireless mobile units over a ground coverage area includes a plurality of airborne wireless base stations each fixed over a designated portion of the ground coverage area. Each base station can be raised or lowered in in accordance with communications needs of the wireless mobile units registered with each base station. Each base station has at least one antenna that provides a coverage cone below the wireless base station and results in the designated coverage area having a ground size dependent upon altitude. A controller is adapted to receive parameters relating to the communications between the wireless mobile units and the wireless base stations and to determine a desired altitude for each of the wireless base stations to optimize the communications. |
US10790893B2 |
Signal transmission method and apparatus
A signal transmission method includes: a first terminal device sends at least one first sequence to a network device, a one-to-one correspondence existing between the at least one first sequence and the number of beams supported by the first terminal device, so that the network device can accurately measure beams and the terminal device can transmit uplink data by selecting proper beams. |
US10790888B2 |
Method for transmitting and receiving channel state information in multi-antenna wireless communication system, and apparatus therefor
Disclosed are a method for transmitting and receiving channel state information in a multi-antenna wireless communication system, and an apparatus therefor. Particularly, a method by which user equipment (UE) reports channel state information in a two-dimensional multi-antenna wireless communication system comprises the steps of: receiving, from a base station, a channel state information reference signal (CSI-RS) through a multi-antenna port; and reporting the channel state information to the base station, wherein a plurality of codewords, which are used for generating a pre-coding matrix selected by the UE in a codebook for reporting the channel state information, are specified by the channel state information and, after power coefficients are applied to each of the plurality of codewords, the pre-coding matrix can be generated based on a linear combination of the plurality of codewords to which the power coefficients are applied. |
US10790887B2 |
Transmission device and transmission method
A transmission device includes: a weighting synthesizer that generates a first precoded signal and a second precoded signal; a first pilot inserter that inserts a pilot signal into the first precoded signal; a phase changer that applies a phase change of i×Δλ to the second precoded signal, where i is a symbol number and an integer that is greater than or equal to 0; an inserter that inserts a pilot signal into the phase-changed second precoded signal; and a phase changer that applies a phase change to the phase-changed and pilot-signal-inserted second precoded signal. Δλ satisfies π/2 radians<Δλ<π radians or π radians<Δλ<3π/2 radians. |
US10790886B2 |
Transmission apparatus and transmission method
A precoding process is performed on a first baseband signal and a second baseband signal to generate a first precoding signal and a second precoding signal. A pilot signal is inserted into the first precoding signal and phase change is performed on the second precoding signal. A pilot signal is inserted into the phase changed second precoding signal, and phase change is further performed on the phase-changed second precoding signal with the pilot signal inserted. |
US10790878B1 |
Systems and methods for real-time communication among a cluster of impedance injection nodes in a power distribution system
Systems and methods for controlling power distribution in a power distribution system are disclosed. The system comprises a first group of impedance injection nodes that includes two or more impedance injection nodes. Each of the impedance injection nodes of the first group is attached to a respective powerline of the power distribution system, and is configured to: respectively receive messages from other impedance injection nodes in the first group sent at different respective time slots, where each of the received messages includes node information of at least one of the other nodes, and broadcast a message to the other nodes in the first group at a time slot that is different from the respective time slots of the other nodes, where the broadcasted message includes node information of the impedance injection node, or node information of the at least one of the other nodes, or both. |
US10790868B1 |
Clip for mobile device
A clip for use with a mobile device is described. The clip mounts between a mobile device and a protective cover, and is used to attach various accessories to mobile device when the mobile and clip are inserted into the protective cover. |
US10790867B2 |
Case for a tablet shaped device, a method for removing a stylus therefrom and a method for making a case for a tablet shaped device
Disclosed herein is a case for a tablet shaped device, a method for removing a stylus therefrom, and a method for making a case for a tablet shaped device. |
US10790865B2 |
Reducing interference in radio broadcast bands
In one example, the present disclosure describes a device, computer-readable medium, and method for reducing interference on the frequency modulation (FM) radio broadcast band from the G.fast protocol standard spectrum. For instance, in one example, a method includes delivering broadband service to a customer over a spectrum that overlaps with a frequency modulation radio broadcast band, and applying a notch filter to a target frequency of the frequency modulation radio broadcast band based on a profile that is customized for the customer, wherein the notch filter prevents the broadband service from using the target frequency during the delivering. |
US10790859B2 |
Error correction circuit and operating method thereof
Disclosed are devices, systems and methods for error correction decoding using an iterative decoding scheme. An error correction circuit includes a node processor to perform a plurality of iterations for updating values of one or more variable nodes and one or more check nodes using initial values assigned to the one or more variable nodes, respectively, a trapping set detector to detect a trapping set in at least one of the plurality of iterations by applying a predetermined trapping set determination policy, and a post processor to reduce at least one of the initial values or invert at least one of values of the variable nodes corresponding to an iteration in which the trapping set is detected, upon detection of the trapping set. |
US10790857B1 |
Systems and methods for using decoders of different complexity in a hybrid decoder architecture
Systems and methods are provided for decoding a codeword having a first codeword length using a decoding system. The systems and methods include receiving a vector corresponding to the codeword at the decoding system, wherein the decoding system comprises a first decoder and a second decoder, the first decoder is available to concurrently process codewords up to the first codeword length, and the second decoder is available to concurrently process codewords up to a second codeword length. The systems and methods further include determining that the received vector is to be decoded using the second decoder, partitioning the received vector of the first codeword length into a plurality of segments having a size no larger than the second codeword length, and decoding the plurality of segments using the second decoder. |
US10790855B2 |
Method and device for error correction coding based on high-rate Generalized Concatenated Codes
Field error correction coding is particularly suitable for applications in non-volatile flash memories. We describe a method for error correction encoding of data to be stored in a memory device, a corresponding method for decoding a codeword matrix resulting from the encoding method, a coding device, and a computer program for performing the methods on the coding device, using a new construction for high-rate generalized concatenated (GC) codes. The codes, which are well suited for error correction in flash memories for high reliability data storage, are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer codes, preferably Reed-Solomon (RS) codes. For the inner codes extended BCH codes are used, where only single parity-check codes are applied in the first level of the GC code. This enables high-rate codes. |
US10790851B2 |
Δ-Σ modulator, Δ-Σ A/D converter, and incremental Δ-Σ A/D converter
A ΔΣ modulator includes: an integrator having an operational amplifier and an integral capacitor; a quantizer outputting a quantization result; a D/A converter connected to a first input terminal of the operational amplifier through a first control switch, and subtracting an electric charge based on the quantization result from an electric charge stored in the integral capacitor to perform feedback of the quantization result to the integrator; a control circuit outputting a digital output value; and a sampling capacitor being connected to the first input terminal through a second control switch. The second control switch switches on and off an electrical connection between the sampling capacitor and the intermediate point between the integral capacitor and first input terminal, and plural feedbacks of the quantization results are performed per one sampling cycle. |
US10790848B2 |
Segmented resistive digital to analog converter
A digital to analog converter (DAC) that receives a binary coded signal and generates an analog output signal includes a binary-to-thermometer decoder and a resistive network. The decoder receives the binary coded signal, and decodes it into thermometer signals. The resistive network has branches that are coupled to an output terminal of the DAC in response to the thermometer signals. Each of the branches includes first and second resistors, and a switch. The first resistor is coupled between a first reference voltage and the switch, and the second resistor is coupled between a second reference voltage and the switch. The switch couples either the first resistor or the second resistor to the output terminal in response to a corresponding thermometer signal. |
US10790847B1 |
Device for high-speed digital-to-analog conversion
Apparatus and associated methods relate to unit circuits that having a number of capacitors and/or buffers controlled by two different control signals, capacitors and/or buffers that receiving, through routing, a same control signal from a control circuit are physically placed adjacent without crossing routings that connects capacitors and/or buffers controlled by a different control signal. In an illustrative example, a first capacitor may be configured to receive a first control signal through an inverting buffer, and a second capacitor may be configured to receive the first control signal through a non-inverting buffer, the inverting buffer and the non-inverting buffer may be provided by an integrated buffer structure. By arranging the physical positions of the capacitors and/or buffers, wire capacitances of the unit circuit may be advantageously reduced. |
US10790844B2 |
Sensor measurement verification in quasi real-time
A method and system to perform the verification of measures done by a sensor in quasi real-time. The sensor verification may be implemented at two different levels—a functionality level and a measurement level. At the functionality level, a consistency check of information from different variables may be processed at sensor level depending on the functionality of the physical system being measured. At the measurement level, diagnostics may be performed of the circuits present in the measurement path by specific circuitry and at suitable instants of time to guarantee a Fault Tolerant Time Interval while minimizing sample loss. This may be achieved, at least in part, by increasing the measuring sample rate. |
US10790840B2 |
Pipelined-interpolating analog-to-digital converter
Analog-to-digital converter (ADC) circuitry to convert an analog signal to a digital signal is disclosed herein. The ADC circuitry can utilize pipelined-interpolation analog-to-digital converters (PIADCs) with adaptation circuitry to correct regenerative amplification cells of the PIADCs. The PIADCs can implement a rotational shuffling scheme for correction of the regenerative amplification cells, where the correction implemented by the regenerative amplification cells allows for offsetting of latches of the regenerative amplification cells. |
US10790836B2 |
Synchronizer for power converters based on a limit cycle oscillator
The present invention presents a real-time synchronization system for power converters interconnected with the electrical network, whose operation is based on a structurally stable limit cycle oscillator and which develops pure sinusoidal trajectories, creating references free of harmonics and disturbances in network. The proposed invention has the advantage that it has a high degree of immunity and robustness within highly contaminated networks, either due to the presence of harmonics or other types of contamination that may exist in the network, with a better performance than the systems previously reported. Another advantage of the present invention is that regardless of the initial conditions that are established, the system always synchronizes with the signal of the network, guaranteeing a smooth transient from any initial condition to the limit cycle, so it does not require prior tuning. In addition, the proposed scheme does not require Phase-Locked Loop (PLL) or trigonometric functions for synchronization, thus reducing computational time and resources. |
US10790835B2 |
System for phase calibration of phase locked loop
A system for phase control of a Phased Locked Loop, PLL, is disclosed. The system includes the PLL. The PLL includes an oscillator configured to generate an output signal; a frequency divider configured to generate a feedback signal by dividing the output signal from the oscillator; a first phase detector arrangement configured to output a first control signal to control the oscillator in response to a detection of a phase deviation between a reference signal and the feedback signal. A second phase detector is configured to receive the feedback signal from the frequency divider and the reference signal, and generate an output signal. A phase calibration circuit is configured to receive the output signal from the second phase detector and generate a second control signal to adjust a phase of the output signal of the oscillator. |
US10790828B1 |
Application specific integrated circuit accelerators
An application specific integrated circuit (ASIC) chip includes: a systolic array of cells; and multiple controllable bus lines configured to convey data among the systolic array of cells, in which the systolic array of cells is arranged in multiple tiles, each tile of the multiple tiles including 1) a corresponding subarray of cells of the systolic array of cells, 2) a corresponding subset of controllable bus lines of the multiple controllable bus lines, and 3) memory coupled to the subarray of cells. |
US10790826B1 |
Level shifter with low power consumption
A level shifter is disclosed. The level shifter comprises a pulse generating circuit, configured to receive an input signal, and generate a plurality of first-level pulses having a pulse width shorter than a pulse width of the input signal, wherein the input signal swings over a first voltage domain; a pulse transforming circuit, coupled to the pulse generating circuit, configured to generate a plurality of second-level pulses corresponding to the plurality of first-level pulses; and a latching circuit, coupled to the pulse transforming circuit, configured to generate an output signal by latching a status of the output signal in response to the plurality of second-level pulses, wherein the output signal swings over a second voltage domain. |
US10790825B2 |
Multiple programmable hardware-based on-chip password
A method, system, and apparatus for setting an on-chip password is provided. In an embodiment, a method for programming an on-chip password includes determining a desired logic state for a field-effect transistor according to the on-chip password. The desired logic state is one of a first logic state and a second logic state. The method also includes subjecting one of a source and a drain of the field-effect transistor to hot-carrier stress according to the desired logic state to produce one of a symmetric state of the field-effect transistor and an asymmetric state of the field-effect transistor. The symmetric state corresponds to one of the first and second logic states. The asymmetric state corresponds to the other one of the first and second logic states. |
US10790823B1 |
Proximity-based power switch appearance
An electronic device may include a proximity sensor, a touch sensor, and one or more light emitting elements. The touch sensor may be configured to detect touch input provided on a surface of the electronic device at a location in front of the touch sensor for purposes of powering on the electronic device. Prior to powering on the electronic device, a location of the touch sensor may remain inconspicuous. When the proximity sensor detects an object, such as a user, which moves within a threshold distance from a surface of the electronic device, the location of the touch sensor can be made conspicuous. After the power switch is made conspicuous, the user is able to see where to provide touch input on the electronic device to power on the electronic device. |
US10790822B2 |
Switching arrangement and method for a capacitive sensor
A capacitive sensor that includes: a sensing electrode having a capacitance to be measured; an alternating voltage source, configured to apply an alternating voltage to the sensing electrode; a capacitive first transfer device; a measurement circuit configured to measure the capacitance of the sensing electrode; and a switching arrangement. The switching arrangement is configured to alternately, in a first switching state, connect the first transfer device to the sensing electrode to enable a charge transfer from the sensing electrode to the first transfer device and, in a second switching state, connect the first transfer device to the measurement circuit to enable a charge transfer from the first transfer device to the measurement circuit. |
US10790820B2 |
Switch circuit and method of switching radio frequency signals
A novel RF switch circuit and method for switching RF signals is described. The RF switch circuit is fabricated in a silicon-on-insulator (SOI) technology. The RF switch includes pairs of switching and shunting transistor groupings used to alternatively couple RF input signals to a common RF node. The switching and shunting transistor grouping pairs are controlled by a switching control voltage (SW) and its inverse (SW_). The switching and shunting transistor groupings comprise one or more MOSFET transistors connected together in a “stacked” or serial configuration. The stacking of transistor grouping devices, and associated gate resistors, increase the breakdown voltage across the series connected switch transistors and operate to improve RF switch compression. A fully integrated RF switch is described including digital control logic and a negative voltage generator integrated together with the RF switch elements. In one embodiment, the fully integrated RF switch includes a built-in oscillator, a charge pump circuit, CMOS logic circuitry, level-shifting and voltage divider circuits, and an RF buffer circuit. Several embodiments of the charge pump, level shifting, voltage divider, and RF buffer circuits are described. The inventive RF switch provides improvements in insertion loss, switch isolation, and switch compression. |
US10790819B1 |
Power switch control
Systems, methods, techniques and apparatuses of power switch control are disclosed. One exemplary embodiment is a power switch comprising a thyristor-based branch including a thyristor device; a FET-based branch coupled in parallel with the thyristor-based branch and including a FET device; and a controller. The controller is structured to turn on the FET device, turn on the thyristor device after turning on the FET device based on a thyristor voltage threshold, and update the thyristor voltage threshold based on a voltage measurement corresponding to the thyristor-based branch measured while the thyristor device is turned on. |
US10790818B1 |
Slew rate control by adaptation of the gate drive voltage of a power transistor
A gate driver circuit includes a first power supply rail providing a first fixed supply voltage; a second power supply rail providing a second fixed supply voltage; a transistor including a gate terminal having a gate voltage; and a gate driver integrated circuit (IC) supplied with the first fixed supply voltage and the second fixed supply voltage, the gate driver IC including an output terminal configured to provide a gate drive voltage at the output terminal in order to drive the transistor between switching states. The gate driver IC includes a first voltage converter configured to modulate an amplitude of the first fixed supply voltage to generate a first modulated supply voltage; and a first switch configured to selectively couple the first fixed supply voltage and the first modulated supply voltage to the output terminal of the gate driver IC in order to regulate the gate drive voltage. |
US10790816B2 |
Solid-state replacement for tube-based modulators
Embodiments described herein include a solid-state switch tube replacement for the radar system such as, for example, the SPY-1 radar system. Some embodiments provide for a technology for the precision switching that enables IGBT power modules to operate robustly in a series configuration and/or a parallel configuration to produce precision switching at high voltage (e.g., 20 kV and above) and high frequencies (e.g., 1 MHz and above). |
US10790815B2 |
Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime. |
US10790814B2 |
Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime. |
US10790812B1 |
Gate driver to decrease EMI with shorter dead-time
An integrated circuit includes a gate driver circuit that controls high side and low side transistors to operate in buck or boost mode. In buck operating mode, after switching off the low side transistor, the gate driver circuit controls the high side transistor in a constant current mode. After the low side transistor is disabled and no longer conducts current, then the gate driver circuit controls the high side transistor to operate in full-enhancement mode. In boost operating mode, after switching off the high side transistor, the gate driver circuit controls the low side transistor in a constant current mode. After the high side transistor is disabled, then the gate driver circuit controls the low side switching transistor to operate in full-enhancement mode. In both buck and boost operation, the gate driver circuit operates without dead time in which both the high side and low side transistors are off. |
US10790811B2 |
Cascaded bootstrapping GaN power switch and driver
A cascaded bootstrapping gate driver configured to provide quick turn-on of a high side power FET and low static current consumption. The cascaded bootstrapping gate driver includes an initial bootstrapping stage with a resistor to decrease static current consumption during transistor turn-off. A secondary bootstrapping stage is driven by the initial bootstrapping stage and includes a GaN FET transistor with a low on resistance in place of the resistor. The source terminal of the GaN FET transistor provides a gate driving voltage to the high side power switch FET. The low on-resistance of the GaN FET transistor provides quick turn-on of the high side power FET. Transistors in the cascaded bootstrapping gate driver are preferably enhancement mode GaN FETs and may be integrated into a single semiconductor die. |
US10790810B2 |
Balancer for multiple field effect transistors arranged in a parallel configuration
In at least one general aspect, an apparatus can include a first field effect transistor (FET) device and a second FET device. The apparatus can include a characterization circuit coupled to the first FET device and the second FET device where the characterization circuit can be configured to characterize a responsiveness of each of the first FET device and the second FET device. The apparatus can include a balancer configured to produce a modified gate drive signal for the first FET device based on the responsiveness of the first FET device. |
US10790803B2 |
Radio-frequency module, multiplexer, and multi-filter
A radio-frequency module includes a multi-filter unit and a switch unit. The multi-filter unit includes filters having different passbands of signals and each including input/output terminals. The switch unit includes a receive/transmit terminal and a GND terminal. The switch unit switches the coupling destination of a second terminal in a second filter between the terminals. In the second filter, the second terminal is a common terminal coupled to a terminal, which is to be at the reference potential, of a first filter. When a first terminal of the first filter is to be coupled to the receive/transmit terminal terminal, the switch unit switches the coupling destination of the second terminal to the ground terminal. |
US10790801B2 |
Loaded resonators for adjusting frequency response of acoustic wave resonators
An acoustic wave filter device is disclosed. The device includes an acoustic wave filter element, and a first resonator and a second resonator coupled to the acoustic wave filter element. The acoustic wave filter element includes interdigited input electrodes and output electrodes located on a top surface of a piezoelectric layer and an counter-electrode on the bottom surface of the piezoelectric layer. Each of the first and the second resonators includes a resonator electrode on the top surface of the piezoelectric layer and a resonator counter-electrode on the bottom surface of the piezoelectric layer. The first resonator has a first notch in resonator impedance at a first frequency. The second resonator includes a first mass loading layer on the second resonator electrode such that the second resonator has a second notch in resonator impedance at a second frequency that is different from the first frequency. |
US10790800B2 |
Resonator and resonance device
In a resonator is provided that suppresses a shift of a resonant frequency. The resonator includes a vibration portion that has a base with front and rear ends and multiple vibration arms with fixed ends connected to the front end of the base and that extend away from the front end. Moreover, the resonator includes a frame that at least partially surrounds the vibration portion and one or more holding arms provided between the vibration portion and the frame with first ends connected to the base and the second ends connected to a region of the frame at the front end side relative to the rear end of the base portion. |
US10790798B2 |
Acoustic resonator and method for manufacturing the same
An acoustic resonator includes a substrate having via holes provided therein and having a membrane structure formed on a first surface of the substrate, and a cap accommodating the membrane structure and bonded to the substrate. The cap includes a support block in contact with the membrane structure. |
US10790797B2 |
Acoustic resonator and method of manufacturing the same
An acoustic resonator includes: a substrate; a resonance part mounted on the substrate and including resonance part electrodes, the resonance part being configured to generate acoustic waves; a cavity disposed between the resonance part and the substrate; a frame part disposed on at least one electrode among the resonance part electrodes, and being configured to reflect the acoustic waves; and a connection electrode configured to connect the at least one electrode to an external electrode, and having a thickness less than a thickness of the at least one electrode. |
US10790796B2 |
Method, system, and apparatus for resonator circuits and modulating resonators
Embodiments of resonator circuits and modulating resonators and are described generally herein. One or more acoustic wave resonators may be coupled in series or parallel to generate tunable filters. One or more acoustic wave resonances may be modulated by one or more capacitors or tunable capacitors. One or more acoustic wave modules may also be switchable in a filter. Other embodiments may be described and claimed. |
US10790791B2 |
Auto zero offset current mitigation at an integrator input
A feedback stage for an integrator circuit is provided. The integrator receives a first input current and a second input current that include respective measurement current components and an offset current component. The integrator integrates the first input current and the second input current and generates a first output voltage and a second output voltage. The feedback stage including a transconductance amplifier detects a difference between the first output voltage and the second output voltage and sinks or sources a first output current and a second output current based on the difference between the first output voltage and the second output voltage. The first output current is additively combined with the first input current and the second output current is additively combined with the second input current to mitigate the offset current component at an input of the integrator. |
US10790787B2 |
FET operational temperature determination by gate structure resistance thermometry
Thermally-sensitive structures and methods for sensing the temperature in a region of a FET during device operation are described. The region may be at or near a region of highest temperature achieved in the FET. Metal resistance thermometry (MRT) can be implemented with gate or source structures to evaluate the temperature of the FET. |
US10790785B2 |
Circuit structure to generate back-gate voltage bias for amplifier circuit, and related method
Embodiments of the present disclosure provide a circuit structure. An error amplifier of the structure includes an input terminal coupled to a voltage source, a reference terminal, and an output terminal coupled to a back-gate terminal of a power amplifier. A voltage at the output terminal of the error amplifier indicates a voltage difference between the input terminal and the reference terminal. A logarithmic current source may be coupled to the reference terminal of the error amplifier, the logarithmic current being configured to generate a reference current logarithmically proportionate to a voltage level of the voltage source. A plurality of serially coupled transistor cells, having a shared substrate and coupled between the reference terminal of the error amplifier and ground, each may include a back-gate terminal coupled to the output terminal of the error amplifier. |
US10790784B2 |
Generation and synchronization of pulse-width modulated (PWM) waveforms for radio-frequency (RF) applications
Described are concepts, systems, circuits and techniques directed toward methods and apparatus for generating one or more pulse width modulated (PWM) waveforms with the ability to dynamically control pulse width and phase with respect to a reference signal. |
US10790783B2 |
Amplifiers for radio-frequency applications
Amplifiers for radio-frequency applications. In some embodiments, a power amplifier die can include a semiconductor substrate and a plurality of narrow band power amplifiers implemented on the semiconductor substrate. Each narrow band power amplifier can be configured to operate with a high voltage in an average power tracking mode and be capable of being coupled to an output filter associated with a respective individual frequency band. Each narrow band power amplifier can be sized smaller than a wide band power amplifier configured to operate with more than one of the frequency bands associated with the plurality of narrow band power amplifiers. |
US10790780B2 |
Heat dissipation for a photovoltaic junction box
An apparatus of a junction box component housed in a junction box and designed to be coupled to a power generator. The junction box component may include one or more bypass mechanisms configured to bypass one or more substrings of the power generator in a case of malfunction or mismatch between the substring and the remainder of the power generators. The one or more bypass mechanisms may generate heat which may be transferred out of the junction box. The junction box component may be designed to conduct the heat towards the base of the junction box and/or the cover of the junction box. A heat dissipation mechanism may be mounted on the base and/or the cover. A bypass mechanism may bypass the entire power generator. |
US10790779B2 |
Systems and methods for determining arc events using wavelet decomposition and support vector machines
In some examples, a system comprises a first component; a second component configured to receive signals from the first component via one or more wires; and a controller. In at least some examples, the controller is coupled to the one or more wires and is trained with a classification model to distinguish between signals indicating arc events and signals not indicating arc events. In at least some example, the controller is further configured to: receive the signals; extract features that are at least partially related to the received signals; classify the extracted features using the classification model; determine an occurrence of the arc event based on the classification; and provide an output signal indicating an arc event. |
US10790774B2 |
Drive system for electric motor
A drive system for an electric motor includes a first inverter that includes first switching elements, a second inverter that includes second switching elements, and a control unit that includes a first inverter control calculation section controlling on-off operation of each of the first switching elements based on a first carrier wave and a first modulation wave, a second inverter control calculation section controlling on-off operation of each of the second switching elements based on a second carrier wave and a second modulation wave, and a control synchronization section synchronizing the first carrier wave with the second carrier wave. When a sum of voltages of the first voltage source and the second voltage source is more than a voltage determination threshold, and torque of a rotating electric machine is smaller than a torque determination threshold, the control synchronization section synchronizes the first carrier wave with the second carrier wave. |
US10790771B2 |
Method for determining a droop response profile of a electrical machine connected to an electrical grid
A method for determining a droop response profile of a rotating electrical machine supplying electricity to an electrical grid having a network frequency varying on either side of a nominal frequency, in which a measured value of the rotation speed of the rotating machine is retrieved, and the droop response parameters dependent on the measured speed value are defined.The droop response profile is a graph centered on the coordinates of an origin point between 99% and 101% of the measured speed and defined by at least two points of coordinates in the case of underspeed and/or by at least two points of coordinates in the case of overspeed, each of the points having for its abscissa a speed value as a percentage of the measured speed, and for the ordinates, a filtered speed value as a percentage of the measured speed modulated by at least one of the droop response parameters. |
US10790770B2 |
Methods for operating electrical power systems
A method for operating an electrical power system includes detecting a bridge current magnitude in a rotor-side converter or line-side converter of a power converter, the power converter electrically coupled between a generator rotor and a transformer. The method further includes comparing the bridge current magnitude in the one of the rotor-side converter or line-side converter to a primary predetermined threshold. The method further includes disabling bridge switching of one of the rotor-side converter or line-side converter when the bridge current magnitude exceeds the primary predetermined threshold. |
US10790763B2 |
HEV e-drives with HV boost ratio and wide DC bus voltage range
A system includes a bus, and a variable voltage converter (VVC) having a switch in series with a capacitor, and an inductor in parallel with the capacitor and switch, and configured such that operation of the switch in boost mode over a duty cycle range from 0 to less than 0.5 results in a corresponding voltage output to the bus from 0 to a maximum of the VVC. |
US10790762B2 |
Relating to power adaptors
A power adaptor is disclosed, which comprises an input for connection to an AC power supply, a resonant circuit coupled to the input that provides an output suitable for driving a load, at least one half-bridge drive circuit for providing a drive signal to the resonant circuit, and a switch controller for the half-bridge drive circuit. The switch controller is adapted to provide one or more of the following, in at least one mode: (i) to provide the high-side switch and the low-side switch with on-times of different durations, (ii) to provide the high-side switch and the low-side switch with on-times that overlap, and (iii) to provide the high-side switch and the low-side switch with on-times that are synchronous. This may be utilised to control the current delivered to the output without any need to change the frequency at which the resonant circuit is driven. |
US10790760B2 |
Flexible rectifier for providing a variety of on-demand voltages
A dual voltage power system for selectively providing direct current (DC) at two different voltages. The system includes a plurality of universal rectifiers each of which may be configured to operate under a plurality of operating modes using a plurality of switches which may be controlled by a power shelf controller. |
US10790754B2 |
Systems and methods for transferring power across an isolation barrier using an active resonator
Systems and methods for transferring power across an isolation barrier using an active self-synchronized resonator are described. A resonator may use the isolation barrier to resonate with active devices arranged on both sides of the barrier, to provide DC to DC power conversion with high efficiency. Furthermore, by using a microfabricated transformer or microfabricated capacitor as an isolator, the entire resonator may be microfabricated and implemented on chip. The resonator is also bidirectional, allowing power transfer in either direction across the isolation barrier. |
US10790750B2 |
Isolated DC-DC converter circuit for power conversion and driving method thereof
The present disclosure provides an isolated DC-DC converter and a driving method thereof. The isolated DC-DC converter includes: a switching unit connected to terminals of a power supply, comprising three pairs of switches connected in parallel, and configured to switch on and off the three pairs of switches; a transformer unit comprising a first through third transformers, each having a primary winding connected to the switching unit and a secondary winding that are wound in a predetermined turns ratio and transforming a voltage applied to the primary winding according to the turns ratio; a post-processing unit connected to the secondary winding of each of the first through third transformers and configured to rectify and filter a voltage induced in the secondary winding to generate and output an output voltage; and a control unit connected to the switching unit and configured to control switching operation of the switching unit by providing the switching unit with carriers and reference voltages. |
US10790747B1 |
Inductor current shunt for mitigation of load dump transients in DC-DC regulators
A voltage regulator circuit comprises a switching circuit configured to adjust a switching duty cycle to regulate an output voltage at an output node of the voltage regulator circuit using an error signal representative of a difference between a target voltage value and the output voltage; an inductor coupled to the switching circuit and configured to provide an inductor current to the output node; and a shunt circuit coupled in parallel to the inductor and configured to divert the inductor current away from the output node when the output voltage exceeds a specified maximum output voltage. |
US10790742B1 |
Multi-level power converter with improved transient load response
A multi-level power converter and method are presented. The converter provides a ground terminal, an input terminal and an output terminal. It also provides an inductor, a first flying capacitor, a second flying capacitor and a network of switches. The network of switches is driven with a sequence of states including a first state and a second state. In the first state one of the input terminal and the ground terminal is coupled to the output terminal via a first path containing the first flying capacitor and which bypasses the inductor, while the remaining terminal among the input terminal and the ground terminal is coupled to the output terminal via a second path containing the second flying capacitor and the inductor. |
US10790739B1 |
Redundant power supply having diverse dual controllers
A power supply system with redundant control includes a power conversion unit configured to provide a regulated output voltage, a first power supply controller configured to control the power conversion unit such that the regulated output voltage is within a selected range, a second power supply controller having power supply controller diversity from the first power supply controller configured to control the power conversion unit such that the regulated output voltage is within a selected range, and a controller selector configured to enable either the first power supply controller or the second power supply controller in response to a control signal from a logic control circuit. The power supply controller diversity can be duty cycle diversity, frequency diversity, power supply requirement diversity, manufacturer diversity, part number diversity, foundry diversity, fabrication batch diversity, and/or manufacturing date diversity. |
US10790728B2 |
Electric machine stator with liquid cooled teeth
A system for cooling the teeth of an electric machine stator. The stator includes a stator core that may be formed of a plurality of laminations. Each lamination has a plurality of back iron apertures, a plurality of tooth tip apertures, and a plurality of elongated apertures. When the laminations are assembled to form the stator core, the back iron apertures align to form back iron inlet channels and back iron outlet channels, and the tooth tip apertures align to form tooth tip cooling channels. The elongated apertures are L-shaped and connect the back iron inlet channels and back iron outlet channels to the tooth tip channels. Cooling fluid may flow, for example, axially through a back iron inlet channel, azimuthally and radially inward through an elongated aperture to a tooth tip, axially along a tooth tip channel, and to a back iron outlet channel through another elongated aperture. |
US10790727B2 |
Cooling apparatus for rotating electrical machine
A cooling apparatus includes: an intra-axle coolant supply unit supplying coolant into a rotation shaft of a rotating electrical machine; a coolant discharge unit pouring coolant onto the rotating electrical machine, wherein the coolant is conducted in a predetermined distribution ratio to the intra-axle coolant supply unit and the coolant discharge unit; a flow rate adjustment device capable of adjusting a supply flow rate of the coolant; and a control device functioning as: a determination device determining overheating of the rotating electrical machine caused by deviating allocation of the coolant to the intra-axle coolant supply unit in an increase direction as compared to the predetermined distribution ratio; and a recovery device controlling the flow rate adjustment device to implement a recovery operation in which the supply flow rate is decreased and then elevated, when the determination device has determined that the overheating of the rotating electrical machine is occurring. |
US10790725B2 |
Assembled hollow rotor shaft having a cooling-medium distribution element
An assembled hollow rotor shaft for a rotor, which rotates about a longitudinal axis, of an electric machine, may include a cylinder jacket that surrounds a shaft cavity, and end flanges disposed on both sides on the cylinder jacket. A shaft journal is disposed on each of the end flanges. An inlet is provided in the shaft journal of one of the end flanges via which a cooling medium can be conducted into the shaft cavity and onto an inner surface of the cylinder jacket. A cooling-medium distribution element within the shaft cavity may be formed symmetrically perpendicularly to the longitudinal axis, may receive the cooling medium, which enters via the inlet, via a receiving region, may guide the cooling medium via a removal region in a direction of the inner surface of the cylinder jacket, and may discharge the cooling medium onto the inner surface via a discharging region. |
US10790711B2 |
Magnetic field generating apparatus having cannon shape and magnetic field generation method thereof
Disclosed are a magnetic field generating apparatus and a method of generating a magnetic field using the same. A magnetic field generating apparatus according to an embodiment of the present disclosure includes a coil part configured to generate a magnetic field transmitted to the target to which wireless power is to be supplied; a first ferrite member configured to extend in the vicinity of the coil part a bar shape and penetrate an inner peripheral surface of the coil part; and a second ferrite member configured to extend in a dome shape in the vicinity of the coil part, surround the coil part, include an opening formed along the magnetic field transmission path. |
US10790709B2 |
Near-field communication and approach detection device
An apparatus for detecting the approach of a mobile device and for near-field communication with the device, includes an NFC antenna under a receiving surface, at least one matching component and an electronic control unit connected by a power supply line and capable of near-field communication with the mobile device. The detection apparatus includes: at least one conductive element; a selector, located on each side of the component and on each side of the conductive element, each having two positions: in a first position the component is connected to the power supply line and the conductive element is not; in a second position the conductive element is connected to the power supply line and the component is not; measuring a variation in an electrical parameter of the conductive element when the two selectors are in the second position to detect the approach of the mobile device toward the receiving surface. |
US10790706B2 |
Wireless power transmission apparatus, conveyance system employing the apparatus and method of controlling the apparatus
A wireless power transmission apparatus includes a high-frequency power generator, a power-transmitting electrode, a plurality of power-receiving electrodes, a switchable matching device, a detection circuit and a controller. The high-frequency power generator generates high-frequency power. The power-transmitting electrode is configured to transmit the high-frequency power generated by the high-frequency power generator. Each of the power-receiving electrodes is capable of wirelessly receiving the high-frequency power from the power-transmitting electrode. The matching device is electrically connected with the power-transmitting electrode and includes one or more matching circuits. The detection circuit detects, based on the output of reflected power from the power-transmitting electrode, whether or not the generation of the high-frequency power by the high-frequency power generator and the transmission of the high-frequency power at the power-transmitting electrode match each other. The controller switches the one or more matching circuits of the matching device depending on the detection result of the detection circuit. |
US10790705B2 |
Power transmission device
A power transmission device transmits power underwater to a power reception device including a power reception coil. The power transmission device includes: a power transmission coil that transmits power to the power reception coil through a magnetic field; a power transmitter that transmits an alternating current power having a predetermined frequency to the power transmission coil; and a first capacitor that is connected to the power transmission coil and forms a resonance circuit resonating with the power transmission coil. The predetermined frequency is a frequency between a first frequency at which a geometric mean value of a Q value of the power transmission coil and a Q value of the power reception coil are the maximum and a second frequency at which the Q value of the power transmission coil and the Q value of the power reception coil are the same. |
US10790703B2 |
Smart wireless power transfer between devices
In an aspect, a wireless power transfer system includes at least one powering device and at least one powered device. Each powering device includes powering circuitry for wireless power transfer to the powered device. Each powered device includes powered circuitry for reception of the wireless power transfer from the powering device. The powering device may include communication circuitry for a close-range wireless communication with the powered device, while the powered device may also include communication circuitry for the close-range wireless communication with the powering device, so as for the powering device and the powered device to discover each other through the communication. The powering device and powered device may conditionally activate and deactivate the powering circuitry and powered circuitry, respectively, based on the discovery using the close-range wireless communication. |
US10790698B2 |
Uninterruptible power supply system and uninterruptible power supply
A plurality of uninterruptible power supplies of an uninterruptible power supply system controls start or stop of shared current supply from power converters to a load based on shared current commands, which indicate command values for determining a value of shared current to be supplied from the power converters of the plurality of uninterruptible power supplies to the load. |
US10790696B2 |
Charging device and method, power adapter and terminal
The present disclosure discloses a charging device, a charging method, a power adapter and a terminal. The charging device includes a charging receiving terminal, a voltage adjusting circuit and a central control module. The charging receiving terminal is configured to receive an alternating current. The voltage adjusting circuit includes a first rectifier, a switch unit, a transformer and a second rectifier. The first rectifier is configured to rectify the alternating current and output a first voltage. The switch unit is configured to modulate the first voltage to output a modulated first voltage. The transformer is configured to output a second voltage according to the modulated first voltage. The second rectifier is configured to rectify the second voltage to output a third voltage. The voltage adjusting circuit applies the third voltage to a battery directly. |
US10790695B2 |
Splicing display screen, method for powering the same, and display device
The disclosure relates to a splicing display screen, a method for powering the same, and a display device, and the splicing display screen includes a plurality of display screens, each of which includes: a power supply, a controller and a wireless charging and discharging circuit, where the power supply is configured to power the present display screen, and to provide electric energy to the power supply in another display screen within a first distance; and the wireless charging and discharging circuit is configured to provide electric energy in another display screen to the power supply in the present display screen, to provide electric energy of the power supply in the present display screen to the power supply in another display screen. |
US10790687B2 |
Power supply control unit, controlling module, controlling device and controlling method of the same
The present invention provides a power supply controlling module, which is suitable for a power supply controlling device. The power supply controlling device comprises a power source and a plurality of connecting ports. The power supply controlling module comprises a plurality of control units and a resistance. Each of the control units respectively connects with each of the connecting ports. The control units comprise a first control unit and at least one second control unit. The resistance electrically connects with the control units. The first control unit comprises a detecting circuit and a first control circuit, which respectively connects with the resistance. Each of the at least one second control unit comprises a second control circuit, which respectively connects with the resistance. |
US10790684B2 |
Energy supply depot and energy supply method
The present disclosure discloses an energy supply station and an energy supply method. The energy supply station includes: one or more parking places for parking unmanned vehicles; an energy supply device configured to supply energy to the unmanned vehicles parked at the parking places; and a communication device configured to receive an unmanned vehicle energy supply request, guide an unmanned vehicle to be supplied with energy, corresponding to the unmanned vehicle energy supply request, to be parked at the parking place according to the received unmanned vehicle energy supply request, and cause the energy supply device to supply energy to the unmanned vehicle to be supplied with energy. |
US10790680B1 |
Fast charging battery pack and methods to charge fast
A fast charging battery system and method for charging battery systems can be applied to most battery types in use for electric vehicles (EVs), electronic devices, and wireless electrical machines. The system could employ industry proven battery charger systems and off-the-shelf electrical components (e.g., contactors, relay switches, semiconductor parts, DC-DC converters, and the like) to keep cost and complexity low. The system provides for two or more charging ports in the electronic device, such as an EV, that may be able to receive and recognize a charging type, such as charging voltage, current and the like, and provide directed charging to multiple battery sub-packs that make up the entire battery. By charging sub-packs in parallel, the charge time can be substantially reduced. |
US10790677B2 |
Battery cell balancing method and system
The present disclosure relates to a method and system for stabilizing a battery through cell balancing of a battery pack, and more particularly, to a method and system for performing battery cell balancing and determining a control situation through a feedback for the cell balancing, thereby improving reliability for the battery cell balancing and enabling a proactive measure for a battery abnormality. |
US10790676B2 |
Fast charging
Fast charging methods, fast charging apparatuses, and machine-readable storage media are provided. The fast charging method includes: in response to detecting a successful handshake with a to-be-charged device, monitoring a voltage request from the to-be-charged device, where the voltage request includes at least a QC3.0 (Quick Charge 3.0) voltage request; when the voltage request is the QC3.0 voltage request, determining a voltage combination of a first data line and a second data line according to respective voltage data of the first data line and the second data line in the QC3.0 voltage request; and when the voltage combination of the first data line and the second data line belongs to a first category valid voltage combination, adjusting a voltage transmitted via an output power line of a charger in a preset fine-tuning charging mode, where a voltage adjustment step size of the fine-tuning charging mode is less than a voltage adjustment step size of a QC3.0 charging mode, and the first category valid voltage combination corresponds to an invalid voltage combination in the QC3.0 charging mode. |
US10790674B2 |
User-configured operational parameters for wireless power transmission control
Systems and methods for configuring delivery systems are disclosed herein. An example method includes (i) receiving a user-configured operational parameter that includes information identifying a plurality of electronic devices authorized to receive power transmission signals from a wireless power transmitter and (ii) detecting an electronic device within wireless power transmission range of the transmitter. In response to detecting the electronic device within the wireless power transmission range of the wireless power transmitter, the method further includes determining whether the electronic device is one of the plurality of electronic devices authorized to receive power transmission signals, and in accordance with a determination that the electronic device is one of the plurality of electronic devices authorized to receive power transmission signals: transmitting, by two or more antennas of the wireless power transmitter, power transmission signals that constructively interfere proximate to a wireless power receiver coupled to the electronic device. |
US10790673B2 |
Power control of inverters of a photovoltaic facility in order to participate in frequency regulation of the electrical distribution network
The disclosure relates to controlling electricity production by a facility of photovoltaic panels in order to establish a power reserve. A method is carried out iteratively and includes: issuing respective setpoints to a number k of inverters among the set of N inverters, so that each produces a maximum power, where k |
US10790670B1 |
Hybrid generator system and method with multi tasked power inverter
A hybrid power system integrates with or supplements an existing diesel-powered generator set including a frequency converter with an input rectifier and an output inverter. A bidirectional DC-DC power converter and a battery are coupled to a DC bus between the rectifier and inverter. A controller receives sensor inputs associated with inverter output power to a load and a charge state of the battery. The controller is configured, upon determining a first charge state of the battery, to disable DC power from the rectifier to the DC bus, and to enable discharge of energy stored on the battery to the inverter via the DC bus. The controller is further configured, upon determining a second charge state of the battery, to reestablish DC power from the rectifier to the DC bus, and to direct energy from the DC bus for energy storage on the battery via the DC-DC power converter. |
US10790669B2 |
Power saving control device and power saving control method
A power saving control device includes: an acquirer that acquires a power saving request; and a controller that determines whether or not power saving control for reducing a power consumption of a load device is to be performed in response to the power saving request, and that, when determining that the power saving control is to be performed, performs the power saving control. When the load device consumes power, the controller determines that the power saving control is not to be performed under a condition that no power flows from a power system into a facility in which the load device is installed, the condition being one of one or more conditions. |
US10790663B2 |
Computer-implemented method for configuring a load shedding controller
Systems, methods, techniques and apparatuses for configuring load shed controllers are disclosed. One exemplary embodiment is a method comprising providing a graphic user interface on a computer display; providing first, second, third, and fourth graphic resources on said graphic user interface; checking whether said load shedding controller meets minimum operating requirements to operate; if said load shedding controller meets said minimum operating requirements, transmitting configuration information including at least first and second configuration values to said load shedding controller; and controlling, with the load shedding controller, the one or more of the electric loads based on the first and second configuration values. The third graphic resources assist a user in providing first configuration values to configure grid operating parameters. The fourth graphic resources assist a user in providing second configuration values to configure load operating parameters. |
US10790661B2 |
Ripple control and optimisation in a power transmission network
There is disclosed a controller (112) for a power electronic network element (110) of a power transmission network (100), wherein the controller (112) is configured to vary a control parameter of the network element (110) which at least partly determines a ripple profile in a transmission line of the network. The controller (112) is configured to vary the control parameter between at least a first value and second value to cause the ripple profile in the transmission line to change; and the controller is configured to vary the control parameter periodically or in response to a signal indicating a threshold temperature at a hotspot location along the transmission line. A method of optimising control parameters for a power transmission network (100) is also disclosed. |
US10790660B2 |
Overvoltage protection arrangement for information and telecommunication technology
The invention relates to an overvoltage protection arrangement for information and telecommunication technology, consisting of a housing with means formed on the housing base for mounting top-hat rails, overvoltage protection elements which can be found in the housing, electric connection means, and at least one circuit board as a wiring support for the overvoltage protection elements. When viewed laterally, the housing is designed approximately in the shape of a T standing on its head and has a beam-shaped main part with a protruding head part, wherein the electric connection means can be accessed and actuated via the upper face of the beam-shaped main part. A first and second circuit board are located on a respective inner face of the lateral walls of the housing in a mutually spaced manner, and the electric connection means in the form of electric connection terminals, connection sockets, and/or plugs for example are arranged in the spacing between the first and second circuit board such that first connection means can be accessed on the horizontal plane of the beam-shaped main part and second connection means can be accessed on the vertical plane of the beam-shaped main part. The flat shape of the circuit board corresponds to the T shape of the housing or approximates the shape of the housing. |
US10790659B1 |
Multi-phase VFD system with frequency compensated ground fault protection
A multi-phase VFD system with frequency compensated ground fault protection includes a variable frequency drive (VFD) power supply, a motor coupled to the VFD power supply by a plurality of power wires and a relay, an annular magnetic core provided with a sensor winding, where the plurality of power wires extend through the annular magnetic core, an analog signal conditioner, an analog-to-digital (A/D) converter, and a digital processor performing a Fast Fourier Transform (FFT) process on the received digital output of the A/D converter to provide frequency information which is used to develop a frequency equalized transfer function for calculating ground fault current. |
US10790657B2 |
Overcurrent protection circuit
In order both to accommodate instantaneous current as well as overcurrent protection in accordance with the load, an overcurrent protection circuit has: a threshold value generation unit that, in accordance with a threshold value control signal, switches between setting an overcurrent detection threshold value to a first set value (∝ Iref) and a second set value (∝ Iset) lower than the first set value; an overcurrent detection unit that compares a sense signal in accordance with the current being monitored and the overcurrent detection value and generates an overcurrent protection signal; a reference value generation unit that generates a reference value (∝ Iset) in accordance with the seconds set value; a comparison unit that compares the sense signal and the reference value, and generates a comparison signal; and a threshold value control unit that monitors the comparison signal, and generates a threshold value control signal. |
US10790653B2 |
Wire harness
Provided is a wire harness that can realize a simplified mold structure and reduce costs. A wire harness includes: a tubular member that is flexible and into which an electrical wire is inserted; and a path regulation member that regulates a routing path of the electrical wire. The path regulation member includes bent portions. The bent portions are formed by bending the path regulation members, and thus the routing path of the electrical wire can be regulated. |
US10790651B2 |
Operation device
An operation device includes a case, a control board accommodated in the case, and a protective cover for protecting the control board. The protective cover includes a terminal plate, a first dent located on a side of the protective cover opposite to a control board side of the protective cover and having a bottom provided with the terminal, a first groove having a +Z direction end open to the outside of the case through an inlet cutout in the case and a −Z direction end toward an edge of the protective cover opposite to the cutout, and a second groove having an end communicating with the first groove and the other end communicating with the first dent. The other end of the second groove is nearer an edge of the protective cover adjacent to the cutout than the end of the second groove. |
US10790648B2 |
Wire gripping and stripping tool and method of using same
Embodiments disclosed herein include devices and methods for gripping and stripping an electrical wire. The tool may include a body, having a first portion with a curved tip, and a second portion. The tool may also include a closing mechanism mounted on the body, and an elongated member having a protruding tip and coupled to the closing mechanism. The elongated member can slidably move towards the second portion, causing the protruding tip to move away from to the curved tip, with respect to movement of the closing mechanism for receiving at least a portion of an electrical wire inserted into the opening, or move towards the first portion, causing the protruding tip to move toward the curved tip, with respect to another movement of the closing mechanism for gripping the received portion of the electrical wire. |
US10790647B2 |
Stripping pliers
The invention relates to stripping pliers (1). During a cutting stroke of the stripping pliers (1), cutting blades (14a, 14b) radially cut into an insulation of a cable (13). In a subsequent break-away stroke, the partially cut sub-region (33) of the insulation of the cable (13) is broken away. Finally, in a stripping stroke the broken away sub-region (33) is pulled along the longitudinal axis (19) of the cable (13) from the electrical wire (39).In order to avoid that in the stripping stroke, wherein the forces between the cable and the cutting blades (14a, 14b) suddenly drop, the hand levers (2, 3) perform an uncontrolled fast closing movement according to the invention at the transition from the break-away stroke to the stripping stroke a spring element and/or damping element (37) becomes effective which preferably comes into contact with a roller (36) of a lever (22). |
US10790642B2 |
Contact device for transmitting electrical energy
The present invention relates to a contact device for transmitting electrical energy from a possibly movable, but preferably spatially fixed, bus bar to a tap-off device which may be movable along the bus bar or may be likewise spatially fixed. For this purpose, the sliding contact elements are configured in the form of sliding clip elements so that the connecting housing of the contact device is clippable onto the bus bar without using tools. |
US10790641B1 |
Clamping mechanism for din rail
A clamping mechanism for a din rail is provided. No external force is continuously applied to a sliding component to maintain the removal state of the clamping mechanism. The clamping mechanism does not require additional tools for recovery of the sliding component. Therefore, the efficiency of providing the clamping mechanism for easy disassembly and assembly on the din rail may be achieved. |
US10790637B2 |
Method for making quantum cascade laser with angled active region
A QCL may include a substrate, an emitting facet, and semiconductor layers adjacent the substrate and defining an active region. The active region may have a longitudinal axis canted at an oblique angle to the emitting facet of the substrate. The QCL may include an optical grating being adjacent the active region and configured to emit one of a CW laser output or a pulsed laser output through the emitting facet of substrate. |
US10790633B2 |
Anti-Stokes-fluorescence-cooled fiber-based gain element
Fiber-based gain elements, such as fiber lasers, fiber amplifiers, and the like, that have higher power and better frequency stability than can be achieved in the prior art are presented. Embodiments include a fiber-based gain element having a first portion in which anti-Stokes fluorescence (ASF) reduces its temperature below that of an ambient environment and a second portion whose temperature is not reduced below that of the ambient environment, which are thermally coupled so heat can flow from the second portion into the first portion, thereby reducing the average temperature of the gain element. In some embodiments, a core configured to provide optical gain is thermally coupled with a first cladding configured to exhibit ASF cooling via an intervening cladding layer that acts to confine a first pump signal to the core. |
US10790630B2 |
Universal series bus connector and manufacturing method thereof
A universal series bus (USB) connector including a base, a first terminal set, and a second terminal set and a method of manufacturing the universal series bus connector are provided. The first terminal set includes a pair of first differential signal terminals and a pair of second differential signal terminals, and terminals of the pair of first differential signal terminals are adjacent to each other and terminals of the pair of second differential signal terminals are adjacent to each other. Two of terminals of the second terminal set are located at two opposite sides of the pair of first differential signal terminals, and another two of the terminals of the second terminal set are located at two opposite sides of the pair of second differential signal terminals. |
US10790628B2 |
Electronically actuated retaining latch for AC-DC adapter removable plug assembly
A power adapter has a solenoid actuated retaining latch controlled by an electronic circuit that detects the presence or absence of AC mains voltage. When the assembled AC-DC adapter and plug assembly are removed from the wall, the latch detects removal and unlocks the plug assembly for easy removal without undue force required by the user. The circuit is designed for minimal power consumption, and the solenoid only consumes power when it is engaging or disengaging the latch. |
US10790623B2 |
Safe charging interface
An interconnection unit includes a first connector configured to be coupled to an electronic device. There is a second connector configured to be coupled to a power station and to provide a path to the electronic device via the first connector. There is a low pass filter coupled between the first connector and the second connector and configured to allow the electronic device to receive power from the power station while maintaining data security of the electronic device. |
US10790622B2 |
Detecting decoupling of a first connector part from a second connector part of an electrical plug connector
A technique is provided for detecting decoupling of a first connector part, connected to a first device, of an electrical plug connector from a second connector part, connected to a second device, of the electrical plug connector. A corresponding method, a corresponding apparatus, a corresponding electrical plug connector as well as the first connector part and the second connector part of the plug connector, a corresponding device and a computer program product are stated. |
US10790617B2 |
Shield connector and shield cable with terminal
A shield connector is mounted on a terminal of a shield cable including a conductor core wire and a shield body surrounding the conductor core wire. The shield connector includes a conductive inner terminal connected to the conductor core wire, a conductive cylindrical outer terminal connected to the shield body, and an inner housing holding the inner terminal in a hollow part of the outer terminal. A projection part is formed on an outer surface of the inner housing to maintain a distance between an outer surface of the inner terminal and an inner surface of the outer terminal at a predetermined inter-terminal distance from a tip side of the shield connector to a base end side thereof. |
US10790616B2 |
Communication connectors utilizing multiple contact points
Disclosed herein are various communications systems allowing for multiple contacts points between plug contacts in a communications plug and plug interface contacts (PICs) in a communications jack. In some disclosed implementations, a communications plug including a first and a second plug contact mated with a communications jack having a first and a second plug PIC may form a plurality of plug/jack interfaces. The plug/jack interfaces may form multiple current paths between the communications plug and the communications jack. When a signal propagates between the communications plug and the communications jack, it may be split in the communications plug between a first current path and a second current path, and recombined in the communications jack after traveling through the plurality of plug/jack interfaces. |
US10790615B2 |
Cable quick connector adapter
A quick connect adapter is provided for locking together a pair of coupled or mated electronic cable connectors via axial movement of an outer sleeve of the quick connect adapter. The outer sleeve can comprise a plurality of protrusions formed inwardly about the outer sleeve. An inner sleeve can have a plurality of slots and a spring seat channel in open communication with the plurality of slots. A radial compression spring can be supported in the spring seat channel, and can be operable between an uncompressed state and a compressed state. Upon connecting a first cable connector body to a second cable connector body, and in response to axial movement of the outer sleeve in a direction towards the radial compression spring, the plurality of protrusions slide through the plurality of slots to engage and compress the radial compression spring, thus locking the connection of the first cable connector body to the second cable connector body. |
US10790614B1 |
Plug connector with movable unlocking structure and plug connector assembly including the same
A plug connector has a movable unlocking structure, and a plug connector assembly includes the plug connector and two slidable locking portions to be engaged with the left and right surfaces of the plug connector respectively. The rear surface of the plug connector has two first locking units, at least one of the plug connector and the slidable locking portions has an inclined contact surface, and when the plug connector is connected to a socket connector and the slidable locking portions are engaged with the plug connector and move toward the top side of the plug connector, the rear surface of the plug connector is pushed outward with the assistance of the inclined contact surface, unlocking the first locking units from the engaging portions on the socket connector respectively. |
US10790613B2 |
Waterproof apparatus for pre-terminated cables
Waterproof apparatus for cables and cable interfaces are provided herein. An exemplary apparatus includes a coupler body that includes a first end configured to releaseably couple with a connector bulkhead and a second end having an opening that is sized to receive a sealing gland, a cavity for receiving the sealing gland, the sealing gland comprising an outer peripheral surface configured to sealingly engage with an inner surface of the cavity, the sealing gland comprising an aperture that is configured to receive a cable. |
US10790608B2 |
Apparatuses for improved cable-to-board connections
Apparatuses, systems, and associated methods of manufacturing are described that provide a retention clip for securing a cable connection to a printed circuit board (PCB). An example retention clip includes a bottom support member, a top support member, and a hinge element attached to the top support member and the bottom support member. The hinge element allows movement of the retention clip between a locked position and an unlocked position. The retention clip further defines an opening configured to receive one or more cable connections therethrough. In the locked position, the top support member is folded about the hinge element so as to engage the bottom support member and secure the cable connection disposed within the opening to the PCB. |
US10790607B2 |
Tamper resistant plug-able socket adapter
The present disclosure is directed to tamper resistant outlets (TRO) and adapters that adapt non-TRO compliant electrical sockets to become TRO compliant sockets. Adapters consistent with the present disclosure may include one or more sets of prongs or plug bars that mate with electrical wall outlets or sockets, such that an adapter can be plugged into a wall socket directly. These adapters may cover a non-compliant socket with a structure that provides TRO compliant receptacles. Other surfaces on the TRO adapter may include one or more sets of covers that cover receptacles included in the TRO adapter when a plug is not installed into a respective set of receptacles. Adapters consistent with the present disclosure may adapt sockets that use either two or three prongs. Adapters consistent with the present disclosure may be attached and retained using screws or other protrusions. |
US10790606B2 |
Plug connector for easy locking and unlocking
A plug connector for easy locking and unlocking is disclosed, including a base, a signal transmission module, a lock head, a cover and a pull strip. The plug connector of the present invention employs a holding-down structure of the pull strip, which can drive an edge block of the lock head to go down and further force the lock head to go down by pulling the pull strip backward. When releasing the pull strip, the lock head can automatically go up. Therefore, in the present invention, the pull strip can control the lock head, thereby completing the locking and unlocking work. The locking and unlocking way of the present invention is safe, effective and convenient. |
US10790604B2 |
Board-mating connector with reduced coupling height
The present invention relates to a board-mating connector with a reduced coupling height, and the board-mating connector includes a signal portion having one side in contact with a signal electrode of a board and to be electrically connected to the signal electrode; a ground portion having one side in contact with a ground electrode of the board to be electrically connected to the ground electrode and having a hollow inside; a housing portion in which a housing insertion hole is formed such that the signal portion and the ground portion are inserted thereinto and in which at least a part of a portion coming into contact with the ground portion is formed of metal; and a dielectric portion which is inserted into the housing insertion hole and is located between the signal portion and the housing portion such that the signal portion is spaced apart from the ground portion and the housing portion. |
US10790602B2 |
Electrical connector for connecting electrical conductors to a printed circuit board
An electrical connector for connecting an electrical conductor to a circuit board includes a housing electrically connected on a connecting side of the electrical connector to an electrical connecting part and including a contact side having one or more contacts, in order to make electrical contact with one or more mating contacts of the circuit board. A locking pin assembly passes through an opening of the circuit board and moves from a release position to a locking position in which its diameter on the side of the opening facing away from the housing is larger than the diameter of the opening of the circuit board. The housing includes at least one activating device and the locking pin assembly includes at least two functional elements which move relative to each other. |
US10790593B2 |
Method and apparatus including an antenna comprising a lens and a body coupled to a feedline having a structure that reduces reflections of electromagnetic waves
Aspects of the subject disclosure may include, for example, antenna structure that includes a dielectric antenna having a dielectric lens and a dielectric body, and a feedline coupled to the dielectric antenna, wherein an endpoint of the feedline is configured to reduce a reflection of an electromagnetic wave transmission, wherein electromagnetic waves generated by the electromagnetic wave transmission are guided along the feedline without requiring an electrical return path, and wherein the electromagnetic waves propagate through the dielectric body to the dielectric lens to generate wireless signals. Other embodiments are disclosed. |
US10790589B2 |
Microwave device
A microwave device includes a board having a first face and a second face, a transmitting antenna portion provided on the first face, a receiving antenna portion provided on the first face, and a high-frequency circuit portion that is provided on the first face and is connected to the transmitting antenna portion and the receiving antenna portion. The microwave device further includes, on the second face of the board, a ground face that is provided shared by the transmitting antenna portion, receiving antenna portion, and high-frequency circuit portion, and a via hole connecting another ground face of the high-frequency circuit portion and the ground face. A ground face shared by the transmitting antenna portion, receiving antenna portion, and high-frequency circuit portion is configured by the ground faces and the via hole. |
US10790582B2 |
Antenna device
An antenna device that has a housing formed with a window surface and transmits and receives an electromagnetic wave through a cover member facing the window surface, the antenna device having a length in a direction of transmitting and receiving the electromagnetic wave that is greater than a height thereof, comprises: a circuit board that is provided inside the housing; a reflection plate that is provided inside the housing and faces a board surface of the circuit board; a transmitting antenna that is provided inside the housing and transmits the electromagnetic wave to a side of the reflection plate; and a receiving antenna that is provided inside the housing and receives the electromagnetic wave. |
US10790580B2 |
Embedded structural antennas
The embodiments described herein provide for composite panels that include elements that form one or more Radio Frequency (RF) antennas. The composite panels may be integrated along with other composite panels to form a composite structure for a vehicle. In some cases, the composite panels function both as elements of an RF antenna and as structural elements of the vehicle. In some cases, the composite panels function both as elements of an RF antenna and as a means for static charge dissipation. When operating as an RF antenna, the composite panels are inherently conformal with an outside surface of a composite structure. |
US10790579B2 |
Adjustable antenna system for unmanned aerial vehicle
An antenna system for an unmanned aerial vehicle (UAV) includes one or more antennas, a reflector, and a control system. The control system is configured to determine a density of antenna towers near the UAV, determine a position for an active antenna of the one or more antennas based on the density, and adjust the active antenna to the determined position. In some embodiments, the antenna system further includes one or more switches, each of the one or more antennas is a different distance from the reflector, and the switches are used to adjust the active antenna to the determined position by selecting a one of the one or more antennas closest to the determined position as the active antenna. In some embodiments, the antenna system further includes an actuator and the active antenna is moved to the determined position using the actuator. |
US10790575B2 |
Mobile terminal
A mobile terminal comprises: a terminal body; and a first antenna device and a second antenna device disposed at one side of the terminal body in an adjacent manner, and formed to operate at different frequency bands, wherein the first antenna device and the second antenna device are provided with conductive members each having a slit at one side thereof, and wherein the conductive members form part of an appearance of the terminal body. |
US10790572B1 |
Devices, systems, and methods associated with RFID tag reader assemblies for use in barcode readers
In an embodiment, the present invention is a barcode and RFID tag reader that includes a head portion housing an imaging assembly, the imaging assembly configured to capture images of an environment appearing with a FOV extending through a window; a base portion housing an RFID tag reader assembly; and an intermediate portion extending between the head portion and the base portion. Preferably, the RFID tag reader assembly includes a chassis having a face directed towards the FOV and an antenna assembly at least partially contoured around the face of the chassis where the antenna assembly includes: a monopole flexible antenna having a first monopole antenna element having a first half and a second half, the first half and the second half being substantially symmetrical about a line of symmetry; and a dipole flexible antenna extending at least partially over at least a portion of the first monopole antenna element. |
US10790570B2 |
Resonator with liquid crystal and compensating element
A resonator for a filter is described. The resonator includes a resonator housing, in which a resonator space is formed, a container with a cavity, in which a liquid crystal is contained, the container being at least partially arranged in the resonator space, and a compensating element, which is arranged in the cavity. The compensating element has a coefficient of thermal expansion that is lower than a coefficient of thermal expansion of the liquid crystal. |
US10790569B2 |
Method and apparatus for mitigating interference in a waveguide communication system
Aspects of the subject disclosure may include, receiving, by a waveguide system, a communication signal that conveys data; transmitting, via a coupler of the waveguide system, electromagnetic waves, where the electromagnetic waves propagate along a transmission medium without requiring an electrical return path, and where the electromagnetic waves convey the data; and mitigating, by the waveguide system, interference to the electromagnetic waves associated with residual electromagnetic waves propagating along the transmission medium. Other embodiments are disclosed. |
US10790566B2 |
Enabling attenuators for quantum microwave circuits in cryogenic temperature range
In an embodiment, a microwave circuit (circuit) includes an attenuator configured to attenuate a plurality of frequencies in a microwave signal. In an embodiment, the attenuator comprises a component of a first material, the first material exhibiting superconductivity in a cryogenic temperature range. In an embodiment, the circuit includes a magnet configured to generate a magnetic field at the attenuator, wherein the magnetic field is at least equal to a critical magnetic field strength of the first material. In an embodiment, the critical magnetic field strength causes the first material to become non-superconductive in the cryogenic temperature range. |
US10790564B2 |
Tubular in-line filters that are suitable for cellular applications and related methods
In-line filters may include a tubular metallic housing defining a single inner cavity that extends along a longitudinal axis and a plurality of resonators that are spaced apart along the longitudinal axis within the single inner cavity, each resonator having a stalk. The stalks of first and second of the resonators that are adjacent each other are rotated to have different angular orientations. |
US10790560B2 |
Air electrode, metal-air battery and air electrode material
An air electrode has a plurality of carbon nanotubes and a plurality of layered double hydroxide particles. The plurality of layered double hydroxide particles is supported on the plurality of carbon nanotubes. |
US10790554B2 |
Battery pack
Disclosed is a battery pack, which allows easy assembling and exchange of electrical equipment and has an uncomplicated structure. The battery pack includes at least one battery module, the battery module including a plurality of secondary batteries, and an electrical equipment plate having a plate shape on which at least two of a battery management system (BMS), a current sensor, a relay and a fuse are mounted, the electrical equipment plate being electrically connected to the at least one battery module. |
US10790551B2 |
Method and electronic device for detecting battery swelling
The present disclosure relates to a method and an electronic device for detecting a battery swelling. The device may include: a housing including a front plate, and a back plate facing away from and spaced from the front plate; a battery including a first surface facing the front plate and a second surface facing the back plate; a first layer including a conductive pattern parallel to the back plate, wherein at least a portion of the conductive pattern is interposed between the second surface of the battery and the back plate and a circuit electrically connected to a first point and a second point of the conductive pattern, and configured to transmit a signal to the first point and receive the signal from the second point; and further configured to: detect a phase difference between the transmitted signal and the received signal, and determine whether the battery is swollen based on the phase difference. The present disclosure may further include various other embodiments. |
US10790548B1 |
Method and system for managing the usage of a plurality of battery units to power an electric vehicle
The invention provides a method and system for managing the usage of a plurality of battery units (102a-102n) to power an electric vehicle using a computer-controlled electric circuit (110). To start with, a computer (104) selects two or more battery units from a plurality of battery units to form a series connection as the initial set of battery units to power the electric vehicle. The computer (104) then identifies one or more battery units from the initial set of battery units to be replaced based on a pre-determined discharge level, a malfunction or a disconnection of the one or more battery units. The computer (104) then identifies one or more replacement battery units and hands over energy flow from the one or more battery units to be replaced to the one or more replacement battery units by controlling a plurality of relay switches (112a-112n) in an iterative/recursive manner. |
US10790547B2 |
Control module
A control module is arranged in alignment with a battery module in a longitudinal direction. The control module includes a busbar, a switch and a current sensor configured to detect electric current flowing through the busbar. The current sensor includes a magneto-electric transducer and a magnetic field suppressor. The magneto-electric transducer is configured to convert a magnetic field, which depends on the electric current flowing through the busbar and passes through the magneto-electric transducer along a plane perpendicular to a height direction, into an electrical signal. The magnetic field suppressor is configured to suppress external magnetic fields from passing through the magneto-electric transducer along the plane perpendicular to the height direction. The switch includes a pair of magnets that are magnetized and opposed to each other in a lateral direction perpendicular to both the longitudinal and height directions. The current sensor is aligned with the magnets in the longitudinal direction. |
US10790545B2 |
Battery with a voltage regulation device
The invention relates to a battery (100) that works by regulating the power source (112) to provide a suitable voltage output so that the user's devices/products using the battery will have a high performance among several other advantages. The battery (100) comprises a positive terminal (102); a negative terminal (112); a power source (114); and a voltage regulation device (110). The voltage regulation device (110) is operatively connected to the positive terminal (102), the negative terminal (112) and the power source (114). The voltage regulation device (110) includes electronic components that are operatively connected to each other in order to regulate an output voltage in a programmed variable level. |
US10790542B2 |
Binder for nonaqueous electrolyte secondary battery electrode, manufacturing method thereof, and use thereof
A binder for a nonaqueous electrolyte secondary battery electrode, containing a crosslinked polymer or salt thereof having a carboxyl group and a use thereof, and a method of manufacturing the polymer or salt. The polymer has a structural unit derived from an ethylenically unsaturated carboxylic acid monomer in an amount of 50 to 99 mass % of total structural units and a structural unit derived from a nonionic ethylenically unsaturated monomer in an amount of 1 to 50 mass % of the total structural units, the monomer is a compound having a substituent with a carbon atom number of 6 or more, and a particle diameter of the crosslinked polymer is 0.1 to 7.0 μm in a volume-based median diameter when the crosslinked polymer is neutralized to a neutralization degree of 80 to 100 mol %, subjected to water swelling in water, and then dispersed in a 1 mass % NaCl aqueous solution. |
US10790541B2 |
Composition for gel polymer electrolyte and lithium secondary battery comprising the gel polymer electrolyte formed therefrom
The present invention relates to a composition for a gel polymer electrolyte, in which liquid injection characteristics at room temperature and in an oxygen atmosphere are improved by including a non-fluoride oxygen scavenger as well as a polymerizable oligomer having a polymerizable substituent, and a lithium secondary battery in which capacity retention with cycles is excellent by including a gel polymer electrolyte which is formed by using the composition. |
US10790537B2 |
Secondary battery and preparation method therefor
A secondary battery and its preparation method, the secondary battery having a negative electrode containing a negative current collector and no negative active material; an electrolyte having an electrolyte salt and an organic solvent; a separator; a positive electrode having a positive active material layer containing a positive active material, wherein the positive active material comprises a material having a layered crystal structure; and a battery case used for packaging. Main active component of the secondary battery is the positive active material having a layered crystal structure, which is environmentally-friendly and low in cost; meanwhile, negative active material is not needed by the second battery system, thereby remarkably reducing the weight and cost of the battery and improving the battery energy density. The reaction mechanism adopted by the secondary battery significantly increases the working voltage of the battery and further improves the energy density of the battery. |
US10790536B2 |
Organosilicon-containing electrolyte compositions having enhanced electrochemical and thermal stability
Described are electrolyte compositions and electrochemical devices containing the electrolyte compositions. The compositions include an organosilicon compound, an imide salt and optionally LiPF6. The electrolytes provide improved high-temperature performance and stability and will operate at temperatures as high as 250° C. |
US10790534B2 |
Methods, devices and systems to isolate solid products in molten fluid electrode apparatus
A thermal battery includes a negative electrode and a positive electrode separated from the negative electrode by an electrolyte where at least the positive electrode is in a fluid state at the operating temperature of the battery. A solid product isolation system decreases the concentration of solid products within the fluid positive electrode at least within the region near the electrolyte. |
US10790519B2 |
Solid oxide fuel cell stack with reduced-leakage unit cells
Solid oxide fuel cell stacks and methods of sealing a planar solid oxide fuel cell. Unit cells within the stack each include a metal frame with a periphery that can both provide a support surface for a membrane electrode assembly, as well as form a fluid-tight seal with a bonded separator plate. The separator plate includes a peripheral lip that bounds a cell-receiving cavity such that a volumetric region is formed within the separator plate to receive at least a portion of the membrane electrode assembly to create a fluid-tight pathway for at least one of the reactants that is being introduced to a corresponding anode layer or cathode layer of the membrane electrode assembly. |
US10790501B2 |
Lead-acid battery
A negative electrode material contains an organic anti-shrink agent which is soluble in water, and the organic anti-shrink agent, when extracted from the negative electrode material with an alkali aqueous solution, has an average particle size of not less than 0.1 μm and not more than 9 μm in sulfuric acid having a specific gravity of 1.25. A lead-acid battery includes a negative electrode plate containing an organic anti-shrink agent having a S element content of 4000 μmol/g or more. The negative electrode contains 0.3 mg/cm3 or more of the S element in the organic anti-shrink agent. |
US10790494B2 |
Battery wiring module including a terminal accommodation portion
A housing is provided with a terminal accommodation portion accommodating a module-side terminal and having an opening through which the module-side terminal is introduced. The terminal accommodation portion includes a bottom portion and a third wall portion serving as an accommodation-side regulating portion that regulates displacement of the module-side terminal. A cover that seals the opening of the terminal accommodation portion includes first and second regulating wall portions serving as a cover-side regulating portion that regulates displacement of the module-side terminal at a different position from that of the bottom portion and the third wall portion. |
US10790491B2 |
Membrane made of a blend of UHMW polyolefins
A membrane is a microporous sheet made of a blend of a first ultra high molecular weight polyolefin and a second ultra high molecular weight polyolefin. Each polyolefin has a molecular weight, both of those molecular weights are greater than 1 million, and one molecular weight is greater than the other. Additionally, the intrinsic viscosity (IV) of the membrane may be greater than or equal to 6.3. |
US10790489B2 |
Lithium ion battery
A multi-core lithium ion battery includes a sealed enclosure and a support member disposed within the sealed enclosure. The sealed enclosure may be fabricated with a clamshell configuration. The sealed enclosure may further include at least two support members housed within individual compartments, separated by shared wall(s). The support member(s) includes a plurality of cavities and a plurality of lithium ion core members which are disposed within the plurality of cavities. The battery may further include a plurality of cavity liners, each of which is positioned between a corresponding one of the lithium ion core members and a surface of a corresponding one of the cavities. The hermetically sealed enclosure may be formed using a clamshell configuration. Structures may be included in proximity to or in contact with the lithium ion core members to control gas/fluid flow therefrom. |
US10790488B2 |
Battery enclosure with protective fin
An exemplary battery assembly according includes, among other things, a tray, and a cover adjacent the tray to provide a flow path therebetween. The battery assembly further includes a tray boss configured to selectively provide a port through the tray to the flow path, a cover boss configured to selectively provide a port through the cover to the flow path, and a protective fin that is spaced from, and extends at least partially about, the tray boss or the cover boss. An exemplary battery coolant port protection method includes, among other things, forming a cover or a tray with both a boss and a protective fin. The method further removing material from the boss to provide a coolant port to a flow path between the cover and the tray. |
US10790485B2 |
Energy storage device and method of manufacturing energy storage device
In an energy storage device (10) including: a container (100) including a plate-like portion; a positive electrode terminal (200) including a terminal body portion (201); a positive electrode current collector (120); a first gasket (220) including at least a portion that is disposed between the terminal body portion (201) and an outer surface of the plate-like portion, the first gasket (220) including a cylindrical portion (223) that is inserted into the hole portion formed in the plate-like portion; a second gasket (230) including at least a portion that is disposed between an inner surface of the plate-like portion and the positive electrode current collector (120); and a fixing portion (210) including a columnar portion (212) and a swaged portion (214) brought into contact with the positive electrode current collector (120), wherein the cylindrical portion (223) includes an extension portion extending toward the swaged portion (214) from a contact surface at which the inner surface of the plate-like portion and the second gasket (230) are in contact, and the extension portion is disposed adjacently to a space formed between the extension portion and the second gasket (230), or an outer diameter of a distal end portion of the extension portion closest to the swaged portion (214) differs from an outer diameter of a proximal end portion of the extension portion opposite to the distal end portion. |
US10790480B2 |
Lithium-ion secondary-battery case and manufacturing method therefor
A lithium-ion secondary-battery case that allows bonding without weld spatter and has high strength against external force acting on the battery case, and a method for manufacturing the lithium-ion secondary-battery case are provided. Specifically, an austenitic stainless steel foil is used for a cup component (2), and a two-phase stainless steel having an austenite transformation start temperature AC1 in a temperature increase process at 650° C. to 950° C. and an austenite and ferrite two-phase temperature range of 880° C. and higher, is used for a cover component (3), and the diffusion bonding is proceeded while accompanied by grain boundary movement upon transformation of the two-phase steel from a ferrite phase into an austenite phase within a heating temperature range of 880° C. to 1080° C. |
US10790479B2 |
Secondary battery and fabricating method thereof
A secondary battery including a pouch having recessed portions inwardly recessed at at least one of opposite sides of the pouch, an electrode assembly including first electrode plates, second electrode plates and separators, the separators being disposed between the first electrode plates and second electrode plates, the electrode assembly being inside the pouch, and a lead tab coupled to the electrode assembly and exposed to the outside of the pouch. The separators protrude from the first electrode plates or the second electrode plates by different protruding lengths at different regions corresponding to the recessed portions of the pouch in a thickness direction of the electrode assembly. |
US10790476B2 |
OLED display substrate and method for preparing the same, and display device
A method for preparing an OLED display substrate of an embodiment of the present disclosure comprises: providing a substrate comprising pixel definition regions each for defining a pixel unit, and forming a first electrode in the pixel unit; forming a pixel definition structure and an auxiliary electrode in the pixel definition region, the pixel definition structure being configured to separate the first electrode from the auxiliary electrode; forming a phase transition structure; forming a light-emitting layer to cover the phase transition structure and the first electrode; exciting the phase transition structure to contract the phase transition structure, thereby causing the light-emitting layer to be broken at a position corresponding to the contraction of the phase transition structure to form an opening; and forming a second electrode, such that the second electrode covers the light-emitting layer and is electrically connected to the auxiliary electrode through the opening. |
US10790475B2 |
Display device including polarization film
A display device includes: a substrate; pixels on the substrate; and a polarization film on the pixels and stretched in a first direction and a second direction opposite to the first direction. The polarization film is cut at an end portion of the polarization film along a third direction, the third direction forming an acute angle with the first direction toward an outside of the polarization film. |
US10790472B2 |
Method of manufacturing a thin film encapsulation layer and organic light emitting diode display device
A method of manufacturing a thin film encapsulation layer includes providing a substrate provided with an organic light emitting diode (OLED) light emitting device; forming a barrier layer on the substrate, wherein the barrier layer surrounds the OLED light emitting device and includes an organic material having hydrophobic properties; forming a first inorganic encapsulation layer on the substrate, wherein the first encapsulation layer covers the OLED light emitting device; and removing the barrier layer. |
US10790470B1 |
Flexible display panel and fabrication method, and flexible display device thereof
A flexible display panel and fabrication method, and a flexible display device are provided. The flexible display panel includes a flexible substrate, and a light-emitting function layer including an inorganic insulating layer. The flexible display panel also includes a display region and a non-display region disposed around the display region. The non-display region includes a blocking region, and the blocking region includes a blocking structure. The blocking structure includes an inclined portion, and the inclined portion has a same thickness at least in a first direction. Further, the flexible display panel includes a thin-film encapsulation layer at least covering the blocking structure in the first direction and including an inclined segment. The inclined segment has a same thickness at least in the first direction, and the first direction is a direction perpendicular to a plane of the flexible substrate. |
US10790469B2 |
Light-emitting device with a sealing film
A substrate (100) includes a resin material. A first stacked film (210) is configured by laminating multiple layers and is formed on a first surface (102) of the substrate (100). A light-emitting unit (140) is formed over the first stacked film (210) and includes an organic layer. A second stacked film (220) is configured by laminating multiple layers and covers the light-emitting unit (140). A third stacked film (310) is configured by laminating multiple layers and is formed on a second surface (104) of the substrate (100). The third stacked film (310) is the same stacked film as the first stacked film (210), and the fourth stacked film (320) is the same stacked film as the second stacked film (220). |
US10790466B2 |
In-line system for mass production of organic optoelectronic device and manufacturing method using the same system
An in-line system for mass production of an organic optoelectronic device is disclosed. The in-line system includes a patterned holder, a first chamber, and a second chamber. The patterned holder is for holding a substrate covered with a first electrode layer and a contact electrode layer, in which the first electrode layer and the contact electrode layer are partially shielded by the patterned holder. The first chamber is for forming an organic layer on portions of the first electrode layer and the contact electrode layer that are not shielded by the patterned holder. The second chamber is aligned with the first chamber and is for forming a second electrode layer on the organic layer. |
US10790460B2 |
Organic light-emitting display device
Disclosed herein is an organic light-emitting display device having a first flexible substrate; a second flexible substrate; a plurality of organic light-emitting pixels on the first flexible substrate and between the first flexible substrate and the second flexible substrate; an encapsulation unit covering the pixels; and an adhesive layer on the encapsulation unit. The Young's modulus of the adhesive layer is equal to or larger than a value so that the first flexible substrate is not deformed by bending stress when it is rolled up. |
US10790457B2 |
Metal-assisted delayed fluorescent emitters containing tridentate ligands
Tridentate platinum, palladium, and gold complexes of Formulas A-I and A-II and tridentate iridium and rhodium compounds of Formulas B-I, B-II, and B-III suitable for delayed fluorescent and phosphorescent or phosphorescent emitters in display and lighting applications. |
US10790456B2 |
Materials for electronic devices
The present application relates to compounds of a formula (I), to the use thereof in organic electroluminescent devices, and to processes for preparing these compounds. |
US10790453B2 |
Compounds and organic electronic device using the same
The present specification relates to an organic electronic device in which a novel compound that may improve a life-span, efficiency, a driving voltage drop, and stability of the organic electronic device is contained in an organic material layer. |
US10790452B2 |
Antiaromatic compounds and organic light-emitting devices comprising the same
An antiaromatic compound and an organic light-emitting device including the same. The antiaromatic compound is represented by Formula 1: |
US10790448B2 |
Flexible electrode for display device
A flexible electrode for a display device may include a conductive structure including a lower conductive pattern disposed on a substrate and an upper conductive pattern disposed on the lower conductive pattern, and an electrode layer disposed on the substrate, the electrode layer being adjacent to the conductive structure. A width of a top surface of the lower conductive pattern may be less than a width of a bottom surface of the upper conductive pattern. |
US10790444B2 |
Method for forming a phase change memory (PCM) cell with a low deviation contact area between a heater and a phase change element
A phase change memory (PCM) cell with a low deviation contact area between a heater and a phase change element is provided. The PCM cell comprises a bottom electrode, a dielectric layer, a heater, a phase change element, and a top electrode. The dielectric layer overlies the bottom electrode. The heater extends upward from the bottom electrode, through the dielectric layer. Further, the heater has a top surface that is substantially planar and that is spaced below a top surface of the dielectric layer. The phase change element overlies the dielectric layer and protrudes into the dielectric layer to contact with the top surface of the heater. Also provided is a method for manufacturing the PCM cell. |
US10790443B2 |
Memory device
A memory device includes a first conductive layer and a second conductive layer. A variable resistance layer is disposed between the first conductive layer and the second conductive layer and includes a first layer containing a semiconductor or a first metal oxide, and a second layer containing a second metal oxide. A phase-change layer is disposed either between the first conductive layer and the variable resistance layer or between the second conductive layer and the variable resistance layer. |
US10790440B2 |
Magnetoresistance effect element
A magnetoresistance effect element has a first ferromagnetic metal layer, a second ferromagnetic metal layer, and a tunnel barrier layer that is sandwiched between the first and second ferromagnetic metal layers, and the tunnel barrier layer has a spinel structure in which cations are disordered, and contains a divalent cation of a non-magnetic element, a trivalent cation of a non-magnetic element, oxygen, and one of nitrogen and fluorine. |
US10790438B2 |
Touch sensitive element, display device comprising the same, and method for manufacturing the same
Provided are a touch sensitive element and a manufacturing method thereof. The manufacturing method for the touch sensitive element according to an embodiment of the present disclosure includes forming an electroactive polymer coating layer by applying an electroactive polymer solution on a substrate; forming an electroactive layer by heating and pressurizing the electroactive polymer coating layer using a hot press roller; and forming an electrode on the electroactive layer. |
US10790436B2 |
Oriented piezoelectric film and method of manufacturing same, and liquid ejection head
Provided is use of an oriented piezoelectric film including of a perovskite-type crystal represented by the following general formula (1): Ba1-xCaxTi1-yZryO3 (0≤x≤0.2, 0≤y≤0.2) (1). The oriented piezoelectric film is formed on an oriented underlayer oriented in a (111) plane and contains first crystals oriented in the (111) plane with respect to a film surface and randomly oriented second crystal grains. The first crystal grains have an average grain diameter of from 300 nm to 600 nm and the second crystal grains have an average grain diameter of from 50 nm to 200 nm. |
US10790425B2 |
Package and method of manufacturing the same, and light emitting device using the package
A package includes a first lead electrode, a second lead electrode, and a resin molded body. The first lead electrode has a first upper surface and a first lower surface defining a depression and opposite to the first upper surface. The second lead electrode has a second upper surface and a second lower surface opposite to the second upper surface. The resin molded body defining a recess with a bottom surface including the first upper surface and the second upper surface, the resin molded body also covering the first lower surface and the second lower surface. The first electrode having a first region closer to the second lead electrode and a second region farther to the second lead electrode than the first region, and having a thickness smaller than a thickness of the first region due to the depression defined in the first lower surface. |
US10790420B2 |
Light bulb with a symmetrical LED filament
An LED light bulb, comprising: a lamp housing, a bulb base, connected with the lamp housing; a stem with a stand extending to the center of the lamp housing, disposed in the lamp housing; a single flexible LED filament, disposed in the lamp housing, and the flexible LED filament comprising: two LED sections, each of the LED sections comprising a least one LED chip; one conductive section comprising a conductor, located between the adjacent two LED sections; two conductive electrodes, disposed corresponding to the two LED sections and electrically connected to the two LED sections, wherein points of the flexible LED filament in an xyz coordinates are defined as X, Y, and Z, an x-y plane of the xyz coordinates is perpendicular to the height direction of the light bulb, a z-axis of xyz coordinates is parallel with the stem, and the main bending points of the LED sections and the conductive electrodes are substantially on the circumference centered on the conductive section in the XY plane. |
US10790418B2 |
Light emitting diode fabrication method
A fabrication method for a light emitting diode (LED), including: 1) mounting a LED chip on a substrate; 2) mounting a screen printing template on the LED chip; 3) coating a silicone gel layer over the surface of the screen printing template; 4) printing the phosphor: printing the phosphor over the chip surface via silk screen printing process and recycling the excess phosphor; and 5) removing the screen printing template and baking the phosphor for curing, and coating the cured phosphor over the chip surface. In the packaging method of the present disclosure, the unused phosphor can be recycled because it is not polluted by the screen printing template material. |
US10790413B2 |
Semiconductor device having a light emitting structure
One embodiment comprises: a substrate; a first conductive semiconductor layer disposed on the substrate; a second conductive semiconductor layer disposed on the first conductive semiconductor layer; and an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer, wherein the first conductive semiconductor layer comprises a first area where a partial area of the first conductive semiconductor layer is exposed, and comprises an inclination part which is disposed between the upper surface of the first area and the upper surface of the second conductive semiconductor layer, wherein the inclination part comprises a first edge making contact with the upper surface of the second conductive semiconductor layer, and a second edge making contact with the upper surface of the first area of the first conductive semiconductor layer, wherein the ratio of a first length to a second length is 1:0.87 to 1:4.26, wherein the first length is a length in a first direction between the first edge and the second edge, and the second length is a length in a second direction between the first edge and the second edge, wherein the first direction and the second direction are directions that are perpendicular to each other. |
US10790409B2 |
Nitride semiconductor light-emitting element
A nitride semiconductor light-emitting element includes at least an n-type nitride semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer. A multilayer body is provided between the n-type nitride semiconductor layer and the light-emitting layer, having at least one stack of first and second semiconductor layers. The second semiconductor layer has a greater band-gap energy than the first semiconductor layer. The first and second semiconductor layers each have a thickness of more than 10 nm and 30 nm or less. In applications in which luminous efficiency at room temperature is a high priority, the first semiconductor layer has a thickness of more than 10 nm and 30 nm or less, the second semiconductor layer has a thickness of more than 10 nm and 40 nm or less, and the light-emitting layer has V-shaped recesses in cross-sectional view. |
US10790408B1 |
Wafer bonding for laser lift-off
A micro-light emitting diode (LED) is manufactured using a lift-off substrate that is removed using a laser-lift-off process. A method for manufacturing the LED may include forming an epitaxial structure of the LED on a growth substrate, and attaching an open side of the epitaxial structure with a gallium-based layer and a lift-off substrate, the gallium-based layer between the epitaxial structure and the lift-off substrate. The growth substrate is separated from the epitaxial structure, and the epitaxial structure may be processed into the LED. Light is applied to the gallium-based layer through the lift-off substrate to debond the second portion of the gallium-based layer and the lift-off substrate. The lift-off substrate is separated from the second portion of the gallium-based layer to expose a light emitting surface of the LED on the second portion of the gallium-based layer. |
US10790404B2 |
Thermoplastic vulcanizate compositions for photovoltaic cell applications
Provided herein are back sheets comprising and/or otherwise made from thermoplastic vulcanizates, PV modules comprising such TPV-based back sheets, and methods for forming the TPV back sheets and PV modules. TPV-based back sheets provide particular advantages over incumbent back sheets, including increased flexibility, greater electrical insulation properties, and more desirable barrier properties. The TPV-based back sheets of some embodiments provide PV modules improved endurance, particularly under the changing and often harsh environmental conditions in which PV modules are often deployed. The TPV-based back sheets of some embodiments also enable efficient construction of unusual PV module geometries, such as non-planar (e.g., curved and/or hinged) geometries. |
US10790400B2 |
Solar cells that include quantum dots
Solar cells that include quantum dots are provided. In particular, a solar panel is provided, the solar panel comprising: a first solar cell comprising: a first set of quantum dots in a first semiconductor, the first semiconductor configured to receive one or more of ambient light and sunlight and emit first wavelengths a first range of about 450 nm to about 480 nm, the first set of quantum dots configured to convert the first wavelengths to a first electric output; and, a second solar cell comprising: a second set of quantum dots in a second semiconductor, the second semiconductor configured to receive one or more of the ambient light and the sunlight and emit second wavelengths a second range of about 600 nm to about 700 nm, the second set of quantum dots configured to convert the second wavelengths to a second electric output. |
US10790398B2 |
Chalcogen back surface field layer
Kesterite photovoltaic devices having a back surface field layer are provided. In one aspect, a method of forming a photovoltaic device includes: forming a complete photovoltaic device having a substrate, an electrically conductive layer on the substrate, an absorber layer on the electrically conductive layer, a buffer layer on the absorber layer, and a transparent front contact on the buffer layer; removing the substrate and the electrically conductive layer from the complete photovoltaic device to expose a backside surface of the absorber layer; forming a passivating layer on the backside surface of the absorber layer; and forming a high work function back contact on the passivating layer. A photovoltaic device having a passivating layer is also provided. |
US10790396B2 |
Semiconductor device and method for manufacturing the same
A semiconductor device of an embodiment includes a first electrode; a second electrode; an oxide semiconductor layer provided between the first electrode and the second electrode and extending in a first direction; a gate electrode surrounding the oxide semiconductor layer; and a first gate insulating layer provided between the gate electrode and the oxide semiconductor layer, the first gate insulating layer surrounding the oxide semiconductor layer, and the first gate insulating layer having a length in the first direction shorter than a length of the oxide semiconductor layer in the first direction. |
US10790392B2 |
Semiconductor structure and fabricating method thereof
In accordance with some embodiments of the present disclosure, a semiconductor structure and a fabricating method thereof are provided. The method for forming a semiconductor structure comprises: forming a base substrate; forming a gate structure on the base substrate; forming openings in the base substrate on both sides of the gate structure; forming a barrier layer on sidewalls of the openings adjacent to the gate structure; and forming a doped layer in the openings, and forming a source region or a drain region in the doped layer. |
US10790390B2 |
Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
A method and apparatus for use in improving linearity sensitivity of MOSFET devices having an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to address degradation in second- and third-order intermodulation harmonic distortion at a desired range of operating voltage in devices employing an accumulated charge sink. |
US10790389B2 |
Source contact formation of MOSFET with gate shield buffer for pitch reduction
A semiconductor structure that includes at least one lateral diffusion field effect transistor is described. The structure includes a source contact and a gate shield that enables the line width of an ohmic region that electrically connects the source/body region to the gate shield to be smaller than the minimum contact feature size. The gate shield defines a bottom recess for forming a narrower bottom portion of the source contact, and a section that flares outward with distance from the ohmic region to extend above and laterally beyond the ohmic region. By providing a wider area for the source contact, the flared portion of the gate shield allows the portion of the gate shield that contacts the ohmic region to be narrower than the minimum contact feature size. As a result, the cell pitch of the lateral diffusion field effect transistor can be reduced. |
US10790382B2 |
Method for forming horizontal nanowires and devices manufactured thereof
A method for forming horizontal nanowires, the method comprising providing a substrate comprising a dielectric layer and a fin structure comprising a portion protruding from the dielectric layer, the protruding portion being partially un-masked and comprising a multi-layer stack consisting of a layer of a first material stacked alternately and repeatedly with a layer of a second material and forming horizontal nanowires done by performing a cycle comprising removing selectively the first material up to the moment that a horizontal nanowire of the second material becomes suspended over a remaining portion of the partially un-masked protruding portion, forming a sacrificial layer on the remaining portion, while leaving the suspended horizontal nanowire uncovered, providing, selectively, a cladding layer on the suspended horizontal nanowire, and thereafter removing the sacrificial layer. The horizontal nanowires become suspended starting from the top and the cladding layer is removed, after the bottom horizontal nanowire becomes suspended. |
US10790379B1 |
Vertical field effect transistor with anchor
A method for fabricating a semiconductor structure is provided. The method includes forming one or more vertical fins on a semiconductor substrate with a hardmask on a top surface of the one or more vertical fins. The method includes forming an opening in the hardmask and the one or more vertical fins and in a portion of the semiconductor substrate to form a plurality of vertical fins. The method includes depositing an anchor layer in the opening. The method includes depositing a liner layer on sidewalls of each of the vertical fins and above a top surface of the semiconductor substrate. The method includes forming an angled recessed region in the exposed portion of each of the vertical fins below the liner layer and in the semiconductor substrate. The method includes forming a bottom source/drain region in the angled recessed region. |
US10790377B2 |
Manufacturing method of polysilicon semiconductor layer,thin film transistor and manufacturing method
A method for manufacturing a polysilicon semiconductor layer, a thin film transistor, and a manufacturing method are provided. The method for manufacturing a polysilicon semiconductor layer includes the following steps. A predetermined gas is dissociated, and a low amount of first ions and a high amount of second ions are screened out. A heavily doped region is doped with the second ions. A lightly doped region is doped with the first ions. Annealing is further performed, so that a polysilicon semiconductor layer is formed from an amorphous silicon layer. |
US10790375B2 |
High electron mobility transistor
A high electron mobility transistor (HEMT) includes a first compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A salicide source feature and a salicide drain feature are in contact with the first III-V compound layer through the second III-V compound layer. A gate electrode is disposed over a portion of the second compound layer between the salicide source feature and the salicide drain feature. |
US10790372B2 |
Direct gate metal cut using selective deposition to protect the gate end line from metal shorts
A method of fabricating a semiconductor device includes forming an intermediate semiconductor device having dummy gate material and an oxide layer. The intermediate semiconductor device includes a substrate, fins, a shallow trench isolation layer, an oxide layer, and an interlayer dielectric. The dummy gate material and the oxide layer are removed. A high k dielectric material is deposited on a top surface of the shallow trench isolation layer. A replacement metal gate stack is deposited. Gate cut lithographing patterning is performed to open portions of the gate. The replacement metal gate stack and the interlayer dielectric are etched. A cap layer is deposited on exposed ends of at least two replacement metal gate. Trenches are filled with the interlayer dielectric and the semiconductor device is formed. Selective deposition of the insulating material on the ends of the replacement metal gates prevents gate end shorts. |
US10790371B2 |
Semiconductor device with surface insulating film
A semiconductor device of the present invention includes a semiconductor layer of a first conductivity type having a cell portion and an outer peripheral portion disposed around the cell portion, and a surface insulating film disposed in a manner extending across the cell portion and the outer peripheral portion, and in the cell portion, formed to be thinner than a part in the outer peripheral portion. |
US10790370B2 |
Wrap around contact
In some embodiments, a semiconductor device is provided. The semiconductor device includes a first semiconductor fin that extends from a substrate. The first semiconductor fin has source and drain regions, which are separated from one another by a channel region in the first semiconductor fin. A gate overlies an upper surface and sidewalls of the channel region. A contact is coupled to the source or drain region of the first semiconductor fin, where the source or drain region includes a layer of epitaxial material with a substantially diamond-shaped cross-section. The contact surrounds the source or drain region on top and bottom surfaces of the substantially diamond-shaped cross-section. A first capping material is arranged along outer sidewalls of the first semiconductor fin under the contact. The first capping material has an uppermost surface that is spaced below a lowermost surface of the contact by a non-zero distance. |
US10790368B2 |
Vertical FET devices including a contact on protruding portions of a substrate
VFET devices are provided. A VFET device includes a substrate including first and second protruding portions. The VFET device includes an isolation region between the first and second protruding portions. The VFET device includes first and second silicide regions on the first and second protruding portions, respectively. Moreover, the VFET device includes a contact on the first and second silicide regions. Related methods of forming a VFET device are also provided. |
US10790363B2 |
IC structure with metal cap on cobalt layer and methods of forming same
The disclosure relates to methods of forming integrated circuit (IC) structures with a metal cap on a cobalt layer for source and drain regions of a transistor. An integrated circuit (IC) structure according to the disclosure may include: a semiconductor fin on a substrate; a gate structure over the substrate, the gate structure having a first portion extending transversely across the semiconductor fin; an insulator cap positioned on the gate structure above the semiconductor fin; a cobalt (Co) layer on the semiconductor fin adjacent to the gate structure, wherein an upper surface of the Co layer is below an upper surface of the gate structure; and a metal cap on the Co layer. |
US10790356B2 |
Semiconductor device including metal-2 dimensional material-semiconductor contact
A semiconductor device includes a semiconductor layer, a metal layer electrically contacting the semiconductor layer, and a two-dimensional material layer between the semiconductor layer and the metal layer and having a two-dimensional crystal structure. |
US10790354B2 |
Self-aligned gate edge and local interconnect
Self-aligned gate edge and local interconnect structures and methods of fabricating self-aligned gate edge and local interconnect structures are described. In an example, a semiconductor structure includes a semiconductor fin disposed above a substrate and having a length in a first direction. A gate structure is disposed over the semiconductor fin, the gate structure having a first end opposite a second end in a second direction, orthogonal to the first direction. A pair of gate edge isolation structures is centered with the semiconductor fin. A first of the pair of gate edge isolation structures is disposed directly adjacent to the first end of the gate structure, and a second of the pair of gate edge isolation structures is disposed directly adjacent to the second end of the gate structure. |
US10790353B2 |
Semiconductor device with superjunction and oxygen inserted Si-layers
A semiconductor device includes a source region and a drain region of a first conductivity type, a body region of a second conductivity type between the source region and the drain region, a gate configured to control current through a channel of the body region, a drift zone of the first conductivity type between the body region and the drain region, a superjunction structure formed by a plurality of regions of the second conductivity type laterally spaced apart from one another by intervening regions of the drift zone, and a diffusion barrier structure disposed along sidewalls of the regions of the second conductivity type of the superjunction structure. The diffusion barrier structure includes alternating layers of Si and oxygen-doped Si and a Si capping layer on the alternating layers of Si and oxygen-doped Si. |
US10790350B2 |
Display apparatus
A display apparatus includes: a substrate having a bending area between a first area and a second area; internal conductive lines on the substrate in the first area; external conductive lines on the substrate in the second area; an organic material layer covering the bending area and covering at least a portion of the internal conductive lines and the external conductive lines; and connection lines on the organic material layer and connecting the internal conductive lines to the external conductive lines, respectively. Organic through-holes are defined through the organic material layer, the connection lines are respectively connected to the internal conductive lines through the organic through-holes, and an upper surface of the organic material layer between the organic through-holes has a convex curved shape. |
US10790343B2 |
Display device
A display device is disclosed, which includes: a first substrate; a first data line disposed on the first substrate; a first electrode disposed on the first substrate; and a first pixel defining layer disposed on the first electrode, wherein the first pixel defining layer exposes a part of the first electrode to define a first light emitting region, wherein, in a normal direction view of the first substrate, the first light emitting region partially overlaps the first data line. |
US10790342B2 |
Display device
A display device includes a display panel that includes a substrate, a pixel disposed on the substrate, and an encapsulation layer that covers the pixel, and a touch sensor disposed on the display panel. The touch sensor includes sensing electrodes disposed on the encapsulation layer, and sensing lines respectively connected to the sensing electrodes. Each of the sensing lines includes a first sensing line pattern that extends onto the substrate, a second sensing line pattern connected to the first sensing line pattern outside of the encapsulation region, the second sensing line pattern including a first connection part and a second connection part, and a third sensing line pattern connected to the second connection part of the second sensing line pattern at a lower side of the encapsulation layer. |
US10790340B2 |
Display device
A display device includes a display panel and an anti-reflection unit directly disposed on the display panel. The display panel includes first to third light emitting elements, each of which includes first and second electrodes, and a light emitting layer, which is disposed between the first electrode and the second electrode. The pixel definition layer includes a first portion, in which a light-emitting opening exposing the first electrode is defined, and a second portion, which is disposed on and overlapped with the first portion. The anti-reflection unit includes first to third color filters overlapped with the first to third light emitting elements, respectively, and a color spacer, which is overlapped with the second portion and is thicker than each of the first to third color filters. |
US10790337B2 |
Organic light emitting diode display including capping layer having optical thickness for improving optics
An OLED display including first, second, and third color pixels each including a first electrode, an organic emission layer, a second electrode, and a capping layer disposed on the disposed on the substrate, in which the first color pixel is configured to emit green light, and the second and third color pixels are each configured to emit a color of light other than green, the organic emission layer of the first color pixel includes a first emission layer and a second emission layer each being configured to emit light, the organic emission layer of the second color pixel or in the third color pixel includes a third emission layer configured to emit light, the second emission layer and the third emission layer include both a host and a dopant, and the first emission layer includes the host, and does not include any dopants therein. |
US10790334B2 |
Vertical cross-point arrays for ultra-high-density memory applications
An ultra-high-density vertical cross-point array comprises a plurality of horizontal line layers having horizontal lines interleaved with a plurality of vertical lines arranged in rows and columns. The vertical lines are interleaved with the horizontal lines such that a row of vertical lines is positioned between each consecutive pair of horizontal lines in each horizontal line layer. Each vertical line comprises a center conductor surrounded by a single or multi-layered memory film. Accordingly, when interleaved with the horizontal lines, two-terminal memory cells are integrally formed between the center conductor of each vertical line and each crossing horizontal line. By configuring the vertical and horizontal lines so that a row of vertical lines is positioned between each consecutive pair of horizontal lines, a unit memory cell footprint of just 2F2 may be realized. |
US10790332B2 |
Techniques for integrating three-dimensional islands for radio frequency (RF) circuits
Techniques to fabricate an RF filter using 3 dimensional island integration are described. A donor wafer assembly may have a substrate with a first and second side. A first side of a resonator layer, which may include a plurality of resonator circuits, may be coupled to the first side of the substrate. A weak adhesive layer may be coupled to the second side of the resonator layer, followed by a low-temperature oxide layer and a carrier wafer. A cavity in the first side of the resonator layer may expose an electrode of the first resonator circuit. An RF assembly may have an RF wafer having a first and a second side, where the first side may have an oxide mesa coupled to an oxide layer. A first resonator circuit may be then coupled to the oxide mesa of the first side of the RF wafer. |
US10790325B2 |
Imaging apparatus and image sensor including the same
An image sensor includes a substrate, thin lenses disposed on a first surface of the substrate and configured to concentrate lights incident on the first surface, and light-sensing cells disposed on a second surface of the substrate, the second surface facing the first surface, and the light-sensing cells being configured to sense lights passing through the thin lenses, and generate electrical signals based on the sensed lights. A first thin lens and second thin lens of the thin lenses are configured to concentrate a first light and a second light, respectively, of the incident lights onto the light-sensing cells, the first light having a different wavelength than the second light. |
US10790324B2 |
Control circuitry for 2D optical metasurfaces
A 2D hologram system with a matrix addressing scheme is provided. The system may include a 2D array of sub-wavelength hologram elements integrated with a refractive index tunable core material on a wafer substrate. The system may also include a matrix addressing scheme coupled to the 2D array of sub-wavelength hologram elements and configured to independently control each of the sub-wavelength hologram elements by applying a voltage. |
US10790323B2 |
Semiconductor device packages and methods of manufacturing the same
A semiconductor device package includes a semiconductor device, an optical conductive pillar, a first encapsulant and a second encapsulant. The semiconductor device includes a pixel. The optical conductive pillar is disposed on the pixel. The first encapsulant has a first thickness and encapsulates the optical conductive pillar. The second encapsulant has a second thickness different from the first thickness. |
US10790322B1 |
Image sensor for infrared sensing and fabrication method thereof
An image sensor include a semiconductor substrate, a first epitaxial layer, a second epitaxial layer, a plurality of photodiodes, and a plurality of pixel isolation structures. The first epitaxial layer is formed on the semiconductor substrate, and the second epitaxial layer is formed on the first epitaxial layer. Each photodiode includes a first diffusion region formed in the first epitaxial layer and a second diffusion region formed in the second epitaxial layer. The second diffusion region is extended through the second epitaxial layer and electrically coupled to the first diffusion region. Each pixel isolation structure include a first isolation structure formed between adjacent first diffusion regions in the first epitaxial layer and a second isolation structure formed between adjacent second diffusion regions in the second epitaxial layer. The second isolation structure is extended through the second epitaxial layer to connect to the first isolation structure. |
US10790319B2 |
TFT substrate, scanning antenna provided with TFT substrate and method for producing TFT substrate
A TFT substrate includes a gate metal layer including a gate electrode of a TFT and a patch electrode, a gate insulating layer formed on the gate metal layer and including a first opening at least reaching the patch electrode, a source metal layer formed on the gate insulating layer, and including a source electrode of the TFT, a drain electrode, and a drain extending section extending from the drain electrode, an interlayer insulating layer formed on the source metal layer, and including a second opening overlapping the first opening when viewed from a normal direction of a dielectric substrate and a third opening at least reaching the drain extending section, and a conductive layer formed on the interlayer insulating layer and including a patch drain connection section. The patch drain connection section is in contact with the patch electrode within the first opening and in contact with the drain extending section within the third opening. |
US10790318B2 |
Display device, method for manufacturing the same, and electronic device
A liquid crystal display device with a high aperture ratio is provided. A liquid crystal display device with low power consumption is provided. A display device includes a transistor and a capacitor. The transistor includes a first insulating layer, a first semiconductor layer in contact with the first insulating layer, a second insulating layer in contact with the first semiconductor layer, and a first conductive layer electrically connected to the first semiconductor layer via an opening portion provided in the second insulating layer. The capacitor includes a second conductive layer in contact with the first insulating layer, the second insulating layer in contact with the second conductive layer, and the first conductive layer in contact with the second insulating layer. The second conductive layer includes a composition similar to that of the first semiconductor layer. The first conductive layer and the second conductive layer are configured to transmit visible light. |
US10790317B2 |
Flexible display device and method of manufacturing the same
A flexible display device is provided. The flexible display device comprises a flexible substrate on which an active layer, a gate insulating layer, a gate metal layer, an interlayer insulating layer, a second metal layer, a planar layer, an emitting layer and an encapsulation layer are sequentially stacked. The gate insulating layer covers the active layer, the interlayer insulating layer covers the gate metal layer and the planar layer covers the interlayer insulating layer and the second metal layer. A plurality of channels is disposed on the interlayer insulating layer, and both two ends of the channels extending toward edge of the interlayer insulating layer to penetrate the interlayer insulating layer. |
US10790314B2 |
Display panel and display device comprising the same
A display panel and a display device comprising the same are provided. The display panel includes a planar substrate and a boundary substrate formed by bending the boundary of the planar substrate; and scan lines arranged on the planar substrate and extended to the boundary substrate. The width of the scan line on the bended position of the planar substrate is larger than the width of the remaining scan line. |
US10790313B2 |
Array substrates, methods for manufacturing the same, and display screens
The present disclosure relates to an array substrate. The array substrate includes a substrate; an outer connection wiring formed on the substrate. The outer connection wiring includes an outer connection section and a wire changing section located on an inner side of the outer connection section. An inorganic film covers the outer connection wiring. The inorganic film is provided with a via hole configured to expose a part of the wire changing section, and a groove configured to expose the outer connection section. And a metal layer is formed on the inorganic film, the metal layer includes a plurality of metal wirings electrically connected to the wire changing section through the via hole. |
US10790308B2 |
Field-effect transistor, display element, image display device, and system
A field-effect transistor including: a gate electrode, which is configured to apply gate voltage; a source electrode and a drain electrode, which are configured to transfer an electrical signal; an active layer, which is formed between the source electrode and the drain electrode; and a gate insulating layer, which is formed between the gate electrode and the active layer, the active layer including at least two kinds of oxide layers including layer A and layer B, and the active layer satisfying at least one of condition (1) and condition (2) below: condition (1): the active layer includes 3 or more oxide layers including 2 or more of the layer A; and condition (2): a band-gap of the layer A is lower than a band-gap of the layer B and an oxygen affinity of the layer A is equal to or higher than an oxygen affinity of the layer B. |
US10790307B2 |
Switch branch structure
Disclosed is a switch branch structure having an input terminal, an output terminal, and a series stack of an N-number of transistors formed in an active device layer within a first plane, wherein a first one of the N-number of transistors is coupled to the input terminal, and an nth one of the N-number of transistors is coupled to the output terminal, where n is a positive integer greater than one. A metal layer element has a planar body with a proximal end that is electrically coupled to the input terminal and distal end that is electrically open, wherein the planar body is within a second plane spaced from and in parallel with the first plane such that the planar body capacitively couples a radio frequency signal at the input terminal to between 10% and 90% of the N-number of transistors when the switch branch structure is in an off-state. |
US10790303B2 |
Integrated assemblies having charge-trapping material arranged in vertically-spaced segments, and methods of forming integrated assemblies
Some embodiments include a memory array having a vertical stack of alternating insulative levels and wordline levels. The wordline levels include conductive wordline material having terminal ends. Charge blocking material is along the terminal ends of the conductive wordline material and has first vertical faces. The insulative levels have terminal ends with second vertical faces. The second vertical faces are laterally offset relative to the first vertical faces. Charge-trapping material is along the first vertical faces, and extends partially along the second vertical faces. The charge-trapping material is configured as segments which are vertically spaced from one another by gaps. Charge-tunneling material extends along the segments of the charge-trapping material. Channel material extends vertically along the stack, and is spaced from the charge-trapping material by the charge-tunneling material. The channel material extends into the gaps. Some embodiments include methods of forming integrated assemblies. |
US10790301B2 |
Methods for forming three-dimensional memory device without conductor residual caused by dishing
Embodiments of three-dimensional (3D) memory devices and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A channel structure extending vertically through a dielectric stack including interleaved sacrificial layers and dielectric layers is formed above a substrate. A dummy channel structure extending vertically through the dielectric stack is formed. An elevating dielectric layer is formed on a dummy dielectric layer. A slit opening extending vertically through the elevating dielectric layer, dummy dielectric layer, and dielectric stack is formed. A memory stack including interleaved conductor layers and the dielectric layers is formed above the substrate by gate replacement. A source contact is formed in the slit opening by depositing a source conductor layer on the elevating dielectric layer and in the slit opening. The source conductor layer on the elevating dielectric layer and at least a part of the elevating dielectric layer are removed. |
US10790295B2 |
Staircase formation in three-dimensional memory device
A method for forming a staircase structure of 3D memory, including: forming an alternating layer stack on a substrate, forming a plurality of staircase regions where each staircase region has a staircase structure having a first number (M) of steps in a first direction; forming a first mask stack to expose a plurality of the staircase regions; removing (M) of the layer stacks in the exposed staircase regions; forming a second mask stack over the alternating layer stack to expose at least an edge of each of the staircase regions in a second direction; and repetitively, sequentially, removing a portion of (2M) of layer stacks and trimming the second mask stack. |
US10790291B2 |
Non-volatile memory device
A non-volatile memory device includes an upper semiconductor layer vertically stacked on a lower semiconductor layer. The upper semiconductor layer includes a first memory group spaced apart from a second memory group in a first horizontal direction by a separation region, and the lower semiconductor layer includes a bypass circuit underlying at least a portion of the separation region and configured to selectively connect a first bit line of the first memory group with a second bit line of the second memory group. |
US10790290B2 |
3D NAND with integral drain-end select gate (SGD)
A 3D NAND storage device includes a plurality of layers containing doped semiconductor material interleaved with a plurality of layers of dielectric material. Each of the pillars forming the 3D NAND storage device includes a plurality of memory cells and a drain-end select gate (SGD). The pillars are separated by a hollow channel in which a plurality of film layers, including at least a lower film layer and an upper film layer have been deposited. The systems and methods described herein remove at least the upper film layer proximate the SGD while maintaining the film layers proximate the memory cells. Such an arrangement beneficially permits tailoring the film layers proximate the SGD prior to depositing the channel film layer in the hollow channel. The systems and methods described herein permit the deposition of a continuous channel film layer proximate both the memory cells and the SGD. |
US10790289B2 |
Method of forming a stop layer filling in a space between spacers
A fabricating method of a stop layer includes providing a substrate. The substrate is divided into a memory region and a peripheral circuit region. Two conductive lines are disposed within the peripheral circuit region. Then, an atomic layer deposition is performed to form a silicon nitride layer to cover the conductive lines. Later, after forming the silicon nitride layer, a silicon carbon nitride layer is formed to cover the silicon nitride layer. The silicon carbon nitride layer serves as a stop layer. |
US10790286B2 |
Apparatuses including 3D memory arrays, methods of forming the apparatuses, and related electronic systems
An apparatus comprises a base structure, a memory structure, and interconnect structures. The base structure comprises odd sense amplifiers and even sense amplifiers. The memory structure comprises 3D memory arrays having decks each comprising digit lines, additional digit lines, memory cells, and word lines. The digit lines comprise odd digit lines and even digit lines, and the additional digit lines comprise additional odd digit lines and additional even digit lines. The memory cells are connected to the digit lines and the additional digit lines, and each comprise two transistors and one capacitor. The word lines are connected to the memory cells, and comprise odd word lines and even word lines. The interconnect structures comprise odd interconnect structures connecting the odd sense amplifiers to the odd digit lines and the additional odd digit lines, and even interconnect structures connecting the even sense amplifiers to the even digit lines and the additional even digit lines. Related electronic systems and methods are also described. |
US10790284B2 |
Spacer for trench epitaxial structures
The disclosure relates to a structure and methods of forming spacers for trench epitaxial structures. The method includes: forming a spacer material between source and drain regions of respective first-type gate structures and second-type gate structures; growing source and drain material about the first-type gate structures, confined within an area defined by the spacer material; and growing source and drain material about the second-type gate structures, confined within an area defined by the spacer material. |
US10790281B2 |
Stacked channel structures for MOSFETs
Disclosed herein are stacked channel structures for metal oxide semiconductor field effect transistors (MOSFETs) and related circuit elements, computing devices, and methods. For example, a stacked channel structure may include: a semiconductor substrate having a substrate lattice constant; a fin extending away from the semiconductor substrate, the fin having an upper region and a lower region; a first transistor in the lower region, wherein the first transistor has a first channel, the first channel has a first lattice constant, and the first lattice constant is different from the substrate lattice constant; and a second transistor in the upper region, wherein the second transistor has a second channel, the second channel has a second lattice constant, and the second lattice constant is different from the substrate lattice constant. |
US10790277B2 |
Semiconductor device
A semiconductor device provided with: a first input/output circuit connected to a first pad; a second input/output circuit disposed in the direction along one side constituted by a chip edge in relation to the first input/output circuit, the second input/output circuit being connected to a second pad; and an ESD protective circuit disposed near the outer-side chip edge of the first and second input/output circuits. The ESD protection circuit is provided with a resistor, a capacitor, an inverter, and an N-channel-type transistor. |
US10790267B2 |
Light emitting element for pixel and LED display module
A light emitting element is disclosed. The light emitting element includes: a mount substrate on which a first electrode pad, a second electrode pad, a third electrode pad, and a fourth electrode pad are disposed; a first vertical LED chip mounted on the mount substrate such that the bottom portion of the first vertical LED chip is connected to the first electrode pad; a second vertical LED chip mounted on the mount substrate such that the bottom portion of the second vertical LED chip is connected to the second electrode pad; a third vertical LED chip mounted on the mount substrate such that the bottom portion of the third vertical LED chip is connected to the third electrode pad; a light-transmitting conductive plate electrically connected to the top portions of the first vertical LED chip, the second vertical LED chip, and the third vertical LED chip; and a conductor connecting the light-transmitting conductive plate to the fourth electrode pad. Individual driving powers are applied to the first vertical LED chip, the second vertical LED chip, and the third vertical LED chip through the first electrode pad, the second electrode pad, and the third electrode pad, respectively, or through the fourth electrode pad. |
US10790266B2 |
Memory device with a plurality of stacked memory core chips
According to one embodiment, a memory device includes: a first chip including a first circuit, first and second terminal; a second chip including a second circuit and a third terminal; and an interface chip including first and second voltage generators. The first chip is between the second chip and the interface chip. The first terminal is connected between the first circuit and the first voltage generator. A third end of the second terminal is connected to the third terminal and a fourth end of the second terminal is connected to the second voltage generator. A fifth end of the third terminal is connected to the second circuit and a sixth end of the third terminal is connected to the second voltage generator via the second terminal. The third end overlaps with the sixth end, without overlapping with the fourth end. |
US10790264B2 |
Semiconductor package
A semiconductor package including a first device layer including first semiconductor devices, a first cover insulating layer, and first through-electrodes passing through at least a portion of the first device layer, a second device layer second semiconductor devices, a second cover insulating layer, and second through-electrodes passing through at least a portion of the second device layer, the second semiconductor devices vertically overlapping the first semiconductor devices, respectively, the second cover insulating layer in contact with the first cover insulating layer a third device layer including an upper semiconductor chip, the upper semiconductor chip vertically overlapping both at least two of first semiconductor devices and at least two of the second semiconductor devices, and device bonded pads passing through the first and second cover insulating layers, the device bonded pads electrically connecting the first and second through-electrodes to the upper semiconductor chip may be provided. |
US10790261B2 |
Bonding through multi-shot laser reflow
A method includes performing a first laser shot on a first portion of a top surface of a first package component. The first package component is over a second package component, and a first solder region between the first package component and the second package component is reflowed by the first laser shot. After the first laser shot, a second laser shot is performed on a second portion of the top surface of the first package component. A second solder region between the first package component and the second package component is reflowed by the second laser shot. |
US10790255B2 |
Fan-out semiconductor package
A fan-out semiconductor package includes a frame comprising a plurality of wiring layers electrically connected to one another, and having a recessed portion having a stopper layer 112aM disposed on a bottom surface of the recessed portion, and a through-hole penetrating through the stopper layer; a semiconductor chip having an active surface on which a connection pad is disposed and an inactive surface opposing the active surface, and disposed in the recessed portion such that the inactive surface opposes the stopper layer; an encapsulant covering at least portions of the frame and the inactive surface of the semiconductor chip, and filling at least a portion of the recessed portion; and an interconnect structure disposed on the frame and the active surface of the semiconductor chip, and comprising a redistribution layer electrically connected to the plurality of wiring layers and the connection pad. |
US10790253B2 |
Conductive pillar shaped for solder confinement
A pillar-type connection includes a first conductive layer that includes a hollow core. A second conductive layer is connected to the first conductive layer defining a conductive pillar that includes a top surface defining a recess aligned with the hollow core. |
US10790246B1 |
Method of transferring different types of micro devices
A method of transferring different types of micro devices is provided. The method includes: assembling a first detachable transfer plate with first type micro devices thereon to an alignment assistive mechanism which is substantially above a receiving substrate, wherein the first type micro devices face the receiving substrate; aligning the first type micro devices on the first detachable transfer plate with positions of first sub-pixels respectively of pixels on the receiving substrate by the alignment assistive mechanism; transferring the first type micro devices to the first sub-pixels on the receiving substrate; replacing the first detachable transfer plate with a second detachable transfer plate with second type micro devices thereon, wherein the second type micro devices face the receiving substrate; and transferring the second type micro devices to second sub-pixels respectively of the pixels on the receiving substrate. |
US10790243B2 |
Protection circuit and integrated circuit
Protection circuit and integrated circuit are provided. A protection circuit includes a discharge passage, configured to perform an electro-static discharge and a controller configured to blow out the electric fuse after the discharge passage fulfills electro-static discharge. The discharge passage includes an electric fuse. |
US10790239B2 |
Semiconductor package and board for mounting the same
A semiconductor package includes a semiconductor chip having an active surface on which connection pads are disposed and an inactive surface opposing the active surface, an encapsulant disposed to cover at least a portion of the semiconductor chip, and a connection member including a redistribution layer. The redistribution layer includes a plurality of first pads, a plurality of second pads surrounding the plurality of first pads, and a plurality of third pads surrounding the plurality of second pads. Each of the plurality of second pads and each of the plurality of third pads have shapes different from a shape of each of the plurality of first pads. Gaps between the plurality of second pads and gaps between the plurality of third pads are staggered with each other. |
US10790238B2 |
Electronic device module and method of manufacturing the same
An electronic device module includes a substrate, at least one first component and at least one second component disposed on one surface of the substrate, a first sealing portion sealing the at least one first component and a second sealing portion sealing the at least one second component, a shielding wall disposed between the at least one first component and the at least one second component to block a flow of electromagnetic waves, and a shielding layer of a conductive material disposed along a surface formed by the first and second sealing portions and the shielding wall. The shielding wall includes a first wall and a second wall spaced apart from each other, and the shielding layer is partially formed on opposing surfaces of the first wall and the second wall. |
US10790237B2 |
Fiducial-filtering automatic wafer centering process and associated system
Each sensor in an array of sensors detects and signals when an edge of a wafer passes by the sensor on a wafer handling component of a robot. A number (N) of detected wafer edge locations is determined. Each detected wafer edge location is a set of coordinates (x, y) in a coordinate system of the wafer handling component. For each unique set of (N−1) of the number (N) of detected wafer edge locations, an estimated wafer offset is determined that substantially minimizes a performance index value. The estimated wafer offset is a vector extending from a center of the coordinate system of the wafer handling component to an estimated center location of the wafer. A final wafer offset is identified as the estimated wafer offset that has a smallest corresponding performance index value. The final wafer offset is used to center the wafer at a target station. |
US10790233B2 |
Package substrates with integral devices
Disclosed herein are package substrates with integrated components, as well as related apparatuses and methods. For example, in some embodiments, an integrated circuit (IC) package, may include: a substrate having opposing first and second faces, an insulating material disposed between the first and second faces, and a thin film transistor (TFT) disposed between the first and second faces, wherein a conductive portion of the TFT is disposed on a layer of the insulating material, and the conductive portion of the TFT is a gate, source, or drain of the TFT; and a die coupled to the first face of the substrate. |
US10790224B2 |
Carrier substrate and method of manufacturing semiconductor package using the same
A carrier substrate comprises a core layer, a first metal layer disposed on the core layer, a release layer disposed on the first metal layer, and a second metal layer disposed on the release layer. At least one layer among the first metal layer, the release layer, and the second metal layer is disposed in a plurality of unit pattern portions having an area smaller than an area of the core layer. In addition, a method of manufacturing a semiconductor package using the carrier substrate is provided. |
US10790223B2 |
Integrated circuit package element and load board thereof
An integrated circuit package element provided includes a chip element and a package module coupled to the chip element. The chip element includes two driving units that are electrically connected to each other. The package module includes a grounding area, two individual power distributed networks and a grounded shielding structure which is completely disposed between the individual power distributed networks, electrically connected to the chip element, and configured to block power noise coupling between the first electric power distribution network and the second electric power distribution network. The grounding area is electrically connected to the individual electric power distribution networks and the grounded shielding structure. |
US10790222B2 |
Bonding of laminates with electrical interconnects
A microelectronic assembly including first and second laminated microelectronic elements is provided. A patterned bonding layer is disposed on a face of each of the first and second laminated microelectronic elements. The patterned bonding layers are mechanically and electrically bonded to form the microelectronic assembly. |
US10790221B2 |
Through-hole electrode substrate
A through-hole electrode substrate includes a substrate including a through-hole extending from a first aperture of a first surface to a second aperture of a second surface, an area of the second aperture being larger than that of the first aperture, the through-hole having a minimum aperture part between the first aperture and the second aperture, wherein an area of the minimum aperture part in a planer view is smallest among a plurality of areas of the through-hole in a planer view, a filler arranged within the through-hole, and at least one gas discharge member contacting the filler exposed to one of the first surface and the second surface. |
US10790220B2 |
Press-fit semiconductor device
A press-fit semiconductor device includes a lead frame having a die pad, leads with inner and outer lead ends, and a press-fit lead. The press-fit lead has a circular section between an outer lead end and an inner lead end, and the circular section has a central hole that is sized and shaped to receive a press-fit connection pin. A die is attached to the die pad and electrically connected to the inner lead ends of the leads and the inner lead end of the press-fit lead. The die, electrical connections and inner lead ends are covered with an encapsulant that forms a housing. The outer lead ends of the leads extend beyond the housing. The housing has a hole extending therethrough that is aligned with the center hole of the press-fit lead, so that a press-fit connection pin can be pushed through the hole to connect the device to a circuit board. |
US10790219B2 |
Semiconductor package and method of manufacturing the same
According to one embodiment, a semiconductor package includes a die pad, a semiconductor chip, a lead frame, and an insulating part. The semiconductor chip is provided on the die pad. The lead frame is separated from the die pad. The lead frame is electrically connected to a terminal of the semiconductor chip. The lead frame includes a first part and a second part disposed between the first part and the die pad. An upper surface of the first part is located below an upper surface of the second part. The insulating part is provided on the die pad, the semiconductor chip, and the second part. The insulating part seals the semiconductor chip. |
US10790217B2 |
Adhesive for semiconductor sensor chip mounting, and semiconductor sensor
Provided is an adhesive for semiconductor sensor chip mounting that can reduce detection of noise and can increase heat resistance and thermal cycle resistance characteristics. An adhesive for semiconductor sensor chip mounting according to the present invention is an adhesive used for mounting a semiconductor sensor chip and contains a silicone resin and a spacer, the 10% compressive elasticity modulus of the spacer being 10 N/mm2 or more and 2000 N/mm2 or less, the compression recovery rate of the spacer being 20% or less, and the average particle diameter of the spacer being 10 μm or more and 200 μm or less. |
US10790212B2 |
Method of manufacturing package structure
A method of manufacturing a package structure includes the following processes. An adhesive layer is formed on a carrier. A die is attached to the carrier through the adhesive layer. A protection layer is formed to at least cover a sidewall and a portion of a top surface of the adhesive layer on an edge of the carrier. An encapsulant is formed over the carrier to laterally encapsulate the die. A redistribution layer (RDL) structure is formed on the die and the encapsulant. A connector is formed to electrically connect to the die through the RDL structure. The carrier is released. |
US10790209B2 |
Wiring circuit substrate, semiconductor device, method of producing the wiring circuit substrate, and method of producing the semiconductor device
A wiring circuit substrate includes a glass base, insulating resin layers, wire groups, a first inorganic adhesive layer, a through electrode, and second conductive layers. The glass base has a through-hole. The insulating resin layers are laminated to the glass base and each have a conductive via formed therein. The wire groups are laminated to the insulating resin layers. The first inorganic adhesive layer is laminated to the inner surface of the through-hole. The through electrode is formed of a first conductive layer laminated to the first inorganic adhesive layer. The second conductive layers are formed on the through electrode and the glass base and electrically connected to the upper and lower ends of the through electrode. The glass base has a surface roughness Ra of 100 nm or less, and the second conductive layers each have an amount of dishing of 5 μm or less above the through electrode. |
US10790208B2 |
High reliability wafer level semiconductor packaging
Implementations of semiconductor packages may include: a semiconductor wafer, a glass lid fixedly coupled to a first side of the semiconductor die by an adhesive, a redistribution layer coupled to a second side of the semiconductor die, and a plurality of ball mounts coupled to the redistribution layer on a side of the redistribution layer coupled to the semiconductor die. The adhesive may be located in a trench around a perimeter of the semiconductor die and located in a corresponding trench around a perimeter of the glass lid. |
US10790207B2 |
Power semiconductor device comprising a power semiconductor component and a housing
The invention relates to a power semiconductor device comprising a pin element which passes through a housing opening, comprising a support device, further comprising an elastic sealing device which is arranged on the support device, comprising a pressure device which is arranged on the sealing device, and comprising an electrically conductive sleeve. A first pressure element of the pressure device presses a first sealing element of the sealing device against a first support element of the support device in the axial direction of the pin element causes deformation of the first sealing element so that the first sealing element presses against the housing opening wall and against the sleeve in a perpendicular direction in relation to the axial direction of the pin element. A second pressure element of the pressure device is designed to press a second sealing element of the sealing device against a second support element of the support device in the axial direction of the pin element and in this way to cause deformation of the second sealing element in such a way that the second sealing element presses against the sleeve and against the pin element in a perpendicular direction in relation to the axial direction of the pin element. |
US10790206B2 |
Testing structure, and fabrication and testing methods thereof
Testing structures, and their fabrication methods and testing methods are provided. An exemplary testing structure includes a base substrate containing a well region; a first doped epitaxial region in the well region and having a doping type same as a doping type of the well region; a dielectric layer on the base substrate and covering the well region and the first doped epitaxial region; a first contact plug passing through the dielectric layer and electrically connected with the first well region; and a second contact plug and a third contact plug. The second contact plug and the third contact plug pass through the dielectric layer and electrically connected with the first doped epitaxial region. The second contact plug is independent from the third contact plug and between the first contact plug and the third contact plug. |
US10790202B2 |
Method for evaluating stability of semiconductor manufacturing process
The present invention provides an overlay mark, including a substrate and plural sets of first pattern block and second pattern block. A first direction and a second direction are defined on the substrate, wherein the first direction and the second direction are perpendicular to each other. In each set, the first pattern block is rotational symmetrical to the second pattern block. Each first pattern block includes a big frame and plural small frame. Each second pattern block includes a big frame and plural small frame. The width of the big frame is greater than three times of the width of the small frame. The present invention further provides a method for evaluating the stability of a semiconductor manufacturing process. |
US10790201B2 |
Silicon carbide semiconductor device and method of manufacturing the same
When a film thickness of a second epitaxial film is measured, an infrared light is irradiated from a surface side of the second epitaxial film onto a base layer on which a first epitaxial film and the second epitaxial film are formed. A reflected light from an interface between the first epitaxial film and the base layer and a reflected light from a surface of the second epitaxial film are measured to obtain a two-layer film thickness, which is a total film thickness of the first epitaxial film and the second epitaxial film. The film thickness of the second epitaxial film is calculated by subtracting a one-layer film thickness, which is a film thickness of the first epitaxial film, from the two-layer film thickness. |
US10790200B2 |
Wafer measurement apparatus, wafer measurement system, and method of manufacturing semiconductor device using the same
A wafer measurement system for measuring a measurable characteristic of a first measurement target formed on a wafer includes: a memory and a processor. The memory is configured to store an image of the wafer, multiple templates each including at least one line, and a measurement program. The processor is accessible to the memory and is configured to execute multiple modules included in the measurement program. The modules include: a template selection module configured to receive the templates and select a measurement template corresponding to a shape of the first measurement target; a template matching module configured to match the measurement template to the first measurement target; and a measurement module configured to measure the measurable characteristic of the first measurement target based on position information of the measurement template. |
US10790199B2 |
Dual channel silicon/silicon germanium complementary metal oxide semiconductor performance with interface engineering
A method of forming fin structures that includes providing at least one silicon germanium containing fin structure, and forming a fin liner on the at least one silicon germanium containing fin structure. The fin liner includes a silicon germanium and oxygen containing layer. The method continues with annealing the at least on silicon germanium containing fin structure having the fin liner present thereon. During the annealing, the silicon germanium oxygen containing layer reacts with the silicon germanium containing fin structure to provide surface formation of a silicon rich layer on the silicon germanium containing fin structure. |
US10790198B2 |
Fin structures
The present disclosure relates to semiconductor structures and, more particularly, to fin structures and methods of manufacture. The structure includes: a plurality of fin structures formed of substrate material; a semiconductor material located between selected fin structures of the plurality of fin structures; and isolation regions within spaces between the plurality of fin structures. |
US10790197B2 |
Semiconductor arrangement and formation thereof
A semiconductor arrangement and method of forming the same are described. A semiconductor arrangement includes a third metal connect in contact with a first metal connect in a first active region and a second metal connect in a second active region, and over a shallow trench isolation region located between the first active region and a second active region. A method of forming the semiconductor arrangement includes forming a first opening over the first metal connect, the STI region, and the second metal connect, and forming the third metal connect in the first opening. Forming the third metal connect over the first metal connect and the second metal connect mitigates RC coupling. |
US10790196B2 |
Threshold voltage tuning for fin-based integrated circuit device
Methods for tuning threshold voltages of fin-like field effect transistor devices are disclosed herein. An exemplary method includes forming a first opening in a first gate structure and a second opening in a second gate structure. The first gate structure is disposed over a first fin structure, and the second gate structure is disposed over a second fin structure. The method further includes filling the first opening and the second opening by forming a gate dielectric layer, forming a threshold voltage tuning layer over the gate dielectric layer, etching back the threshold voltage tuning layer in the second opening, forming a work function layer over the threshold voltage tuning layer, and forming a metal fill layer over the work function layer. The threshold voltage tuning layer includes tantalum and nitrogen. The etching back uses a tungsten-chloride containing precursor. |
US10790195B2 |
Elongated pattern and formation thereof
A method includes following steps. A semiconductor fin is formed on a substrate and extends in a first direction. A source/drain region is formed on the semiconductor fin and a first interlayer dielectric (ILD) layer over the source/drain region. A gate stack is formed across the semiconductor fin and extends in a second direction substantially perpendicular to the first direction. A patterned mask having a first opening is formed over the first ILD layer. A protective layer is formed in the first opening using a deposition process having a faster deposition rate in the first direction than in the second direction. After forming the protective layer, the first opening is elongated in the second direction. A second opening is formed in the first ILD layer and under the elongated first opening. A conductive material is formed in the second opening. |
US10790194B2 |
Inductor structure for integrated circuit
The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a first plurality of conductive interconnect layers arranged within a first inter-level dielectric (ILD) structure disposed on a first surface of a first substrate. A second plurality of conductive interconnect layers are arranged within a second ILD structure disposed on a first surface of a second substrate. The second substrate is separated from the first substrate by the first ILD structure. The first plurality of conductive interconnect layers and the second plurality of conductive interconnect layers define an inductor having one or more turns. |
US10790184B2 |
Isolation with multi-step structure for FinFET device and method of forming the same
A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate including a first well region and a second well region that have different conductivity types and are adjacent to each other. A first fin structure protrudes from the semiconductor substrate and is formed in the first well region. A second fin structure protrudes from the semiconductor substrate and is formed in the second well region and adjacent to the first fin structure. A first multi-step isolation structure that includes a first isolation portion is formed between the first fin structure and the second fin structure. A second isolation portion extends from the bottom surface of the first isolation portion. The second isolation portion has a top width that is narrower than the bottom width of the first isolation portion. |
US10790181B2 |
Wafer chuck featuring reduced friction support surface
Grinding, lapping and polishing basically work by making scratches in the body being ground, lapped or polished. The scratches typically are linear. The scratches gives rise to a directionality component of friction: the friction coefficient is less in the direction along the scratch than in a direction orthogonal, or across, the scratch. In a wafer handling/chucking situation, one wants the wafer to settle on the chuck, which involves the outer regions of the wafer moving radially with respect to the chuck. One can reduce friction in the radial direction by giving the lapping scratches a preferred orientation, namely, radial. This can be achieved by making the final passes of the lapping tool move predominantly in radial directions. |
US10790180B2 |
Electrostatic chuck with variable pixelated magnetic field
Electrostatic chucks with variable pixelated magnetic field are described. For example, an electrostatic chuck (ESC) includes a ceramic plate having a front surface and a back surface, the front surface for supporting a wafer or substrate. A base is coupled to the back surface of the ceramic plate. A plurality of electromagnets is disposed in the base, the plurality of electromagnets configured to provide pixelated magnetic field tuning capability for the ESC. |
US10790177B2 |
Systems, devices, and methods for using a real time environment sensor in a FOUP
The present disclosure provides systems and methods for monitoring an environment of a front opening universal pod (FOUP). The systems and methods may include one or more environmental sensors disposed within the FOUP, configured to measure environmental parameters of the environment of the FOUP and a FOUP configured to hold one or more wafers. The systems and methods may also include a wireless transmitter in communication with the environmental sensor, which may be disposed within the FOUP and configured to transmit the measured environmental parameters from the environmental sensor. |
US10790174B2 |
Wafer transport assembly with integrated buffers
A wafer transport assembly includes a first wafer transport module and a second wafer transport module. A buffer module, arranged between the first wafer transport module and the second wafer transport module, includes a first buffer stack and a second buffer stack. Outer sides of the first wafer transport module are coupled to first and second process modules, respectively, and outer sides of the second wafer transport module are coupled to third and fourth process modules, respectively. The first wafer transport module, the second wafer transport module, and the buffer module define a continuous wafer transport volume providing a controlled environment within the wafer transport assembly. |
US10790173B2 |
Printed components on substrate posts
A device structure comprises a patterned substrate comprising a substrate surface and a substrate post protruding from the substrate surface. The substrate post comprises a substrate post material. A component has a component top side and a component bottom side opposite the component top side. The component bottom side is disposed on the substrate post and extends over at least one edge of the substrate post. The component comprises a component material different from the substrate post material and the component comprises a broken (e.g., fractured) or separated component tether. |
US10790163B2 |
Semiconductor sensor and method for manufacturing the same
In a method for manufacturing a semiconductor sensor, an upper mold has a pair of projections on a wall surface opposing to side surfaces of a semiconductor chip in a first cavity and at positions closest to a second cavity. The projections project so as to reduce the space between the side surfaces of the semiconductor chip and the upper mold, so that a flow of a resin material from a first cavity to a second cavity is delayed. The resin material is filled in the first cavity prior to the second cavity. After a portion of a film corresponding to the first cavity is entirely brought into close contact with the upper mold, the resin material is filled in the second cavity. |
US10790156B2 |
Atomic layer etching using a boron-containing gas and hydrogen fluoride gas
Embodiments of the invention provide a method for atomic layer etching (ALE) of a substrate. According to one embodiment, the method includes providing a substrate, and exposing the substrate to hydrogen fluoride (HF) gas and a boron-containing gas to etch the substrate. According to another embodiment, the method includes providing a substrate containing a metal oxide film, exposing the substrate to HF gas to form a fluorinated surface layer on the metal oxide film, and exposing the substrate to a boron-containing gas to remove the fluorinated surface layer from the metal oxide film. The exposures may be repeated at least once to further etch the metal oxide film. |
US10790151B2 |
Substrate processing apparatus and substrate processing method
Provided is a substrate processing method for processing a substrate. The substrate processing method includes a step of processing the substrate with a phosphoric acid liquid, a step of processing the substrate with a rinsing liquid, and a step of processing the substrate with a chemical liquid containing ammonia. After the substrate is processed with the rinsing liquid, the step of processing the substrate with a chemical liquid removes a portion of thickness of a film in a depth direction of a phosphorus diffusion region from the phosphorus diffusion region formed in the substrate when the substrate is processed with the phosphoric acid liquid. |
US10790150B2 |
Semiconductor device and method for fabricating the same
A method for fabricating a semiconductor device includes: preparing a substrate; forming an isolation layer defining an active region in the substrate; forming a first insulation structure over the substrate, the first insulation structure defining a line-type opening that exposes the isolation layer and the active region; forming a plug pad through a Selective Epitaxial Growth (SEG) process over the exposed active regions; forming a second insulation structure inside the line-type opening, the second insulation structure defining a contact hole landing on the plug pad; and filling the contact hole with a contact plug. |
US10790145B2 |
Methods of forming crystallized materials from amorphous materials
A method includes forming a first amorphous material, forming a second amorphous material over and in contact with the first material, removing a portion of the second material and the first material to form pillars, and exposing the materials to a temperature between a crystallization temperature of the first material and a crystallization temperature of the second material. The first material and the second material each comprise at least one element selected from the group consisting of silicon and germanium. The second material exhibits a crystallization temperature different than a crystallization temperature of the first material. Semiconductor structures, memory devices, and systems are also disclosed. |
US10790142B2 |
Selective capping processes and structures formed thereby
Embodiments disclosed herein relate generally to capping processes and structures formed thereby. In an embodiment, a conductive feature, formed in a dielectric layer, has a metallic surface, and the dielectric layer has a dielectric surface. The dielectric surface is modified to be hydrophobic by performing a surface modification treatment. After modifying the dielectric surface, a capping layer is formed on the metallic surface by performing a selective deposition process. In another embodiment, a surface of a gate structure is exposed through a dielectric layer. A capping layer is formed on the surface of the gate structure by performing a selective deposition process. |
US10790138B2 |
Method and system for selectively forming film
There is provided a method for forming a target film on a substrate comprising: preparing the substrate having a first substrate region and a second substrate region that has at least two types of surfaces formed of materials different from a material of the first substrate region; selectively forming, on the surfaces of the second substrate region, an intermediate film capable of adsorbing a first self-assembled monolayer that inhibits formation of the target film on the second substrate region; selectively adsorbing the first self-assembled monolayer on a surface of the intermediate film; and selectively forming the target film on a surface of the first substrate region. |
US10790136B2 |
Method of manufacturing semiconductor device, substrate processing system and non-transitory computer-readable recording medium
There is provided a technique that includes (a) forming a film containing silicon, carbon and nitrogen having a carbon concentration within a range from 10 at % to 15 at % on a substrate; (b) performing an oxidation process with respect to the substrate where the film is exposed on a surface thereof; and (c) performing a process using hydrogen fluoride with respect to the substrate where the film is exposed on the surface thereof after the oxidation process is performed. |
US10790135B2 |
Method of manufacturing semiconductor device
There is provided a method of manufacturing a semiconductor device by performing a process on a substrate, comprising: forming a sacrificial film made of a polymer having a urea bond on a surface of the substrate by supplying a precursor for polymerization onto the surface of the substrate; subsequently, performing a step of changing a sectional shape of the sacrificial film and a step of adjusting a film thickness of the sacrificial film by heating the sacrificial film; subsequently, performing the process on the surface of the substrate; and subsequently, removing the sacrificial film. |
US10790133B2 |
Precleaning apparatus and substrate processing system
A precleaning apparatus includes a chamber having an internal space in which a substrate is cleaned, a substrate support disposed in the chamber and configured to support the substrate, a plasma generation unit disposed in the chamber and configured to generate plasma gas, a heating unit configured to heat the substrate on the substrate support, a cleaning gas supply unit configured to supply gas for oxide etching to the internal space of the chamber, and a hydrogen gas supply unit configured to supply hydrogen gas to the internal space of the chamber. |
US10790129B2 |
Transmissive photocathode and electron tube
A transmissive photocathode includes a light transmitting substrate that has a first surface on which light is incident and a second surface which emits light incident from a side of the first surface, a photoelectric conversion layer that is provided on the second surface side of the light transmitting substrate and converts the light emitted from the second surface into photoelectrons, a light transmitting conductive layer that is provided between the light transmitting substrate and the photoelectric conversion layer and is composed of a single-layered graphene, and a thermal stress alleviation layer that is provided between the photoelectric conversion layer and the light transmitting conductive layer and has light transmissivity. A thermal expansion coefficient of the thermal stress alleviation layer is smaller than a thermal expansion coefficient of the photoelectric conversion layer and larger than a thermal expansion coefficient of the graphene. |
US10790125B2 |
Damage prediction method and semiconductor processing system
[Object] To predict the damage distribution of a workpiece caused by ions and light from plasma more accurately within a practical computation time. [Solution] Provided is a damage prediction method including: using an operation apparatus to calculate, from fluxes of ions and light generated by plasma, fluxes of ions and light propagated through a pattern of a workpiece including a processing object, on the basis of the pattern; calculating, from the fluxes of ions and light propagated through the pattern, fluxes of ions and light arriving at a surface of the processing object, by ray tracing; and calculating, from the fluxes of ions and light arriving at the surface of the processing object, a damage distribution of the processing object. |
US10790120B2 |
Showerhead having a detachable high resistivity gas distribution plate
Embodiments of showerheads having a detachable gas distribution plate are provided herein. In some embodiments, a showerhead for use in a semiconductor processing chamber may include a base having a first side and a second side opposing the first side; a gas distribution plate disposed proximate the second side of the base, wherein the gas distribution plate is formed from a material having an electrical resistivity between about 60 ohm-cm to 90 ohm-cm; a clamp disposed about a peripheral edge of the gas distribution plate to removably couple the gas distribution plate to the base; and a thermal gasket disposed in a gap between the base and gas distribution plate. |
US10790115B2 |
Multi charged particle beam writing method, and multi charged particle beam writing apparatus
A multi charged particle beam writing method includes assigning, for each unit irradiation region per beam of multi-beams, each divided shot obtained by dividing a shot of a maximum irradiation time and continuously irradiate the same unit irradiation region, to at least one of a plurality of beams that can be switched by collective deflection; calculating, for each unit irradiation region, an irradiation time; determining, for each unit irradiation region, whether to make each divided shot be beam “on” or “off” so that the total irradiation time for a plurality of corresponding divided shots to be beam “on” may become a combination equivalent to the irradiation time calculated; and applying, to the corresponding unit irradiation region, the plurality of corresponding divided shots to be beam “on”, using the plurality of beams while switching a beam between beams by collective deflection. |
US10790112B2 |
Focused ion beam apparatus
The focused ion beam apparatus includes: a vacuum container; an emitter tip disposed in the vacuum container and having a pointed front end; a gas field ion source; a focusing lens; a first deflector; a first aperture; an objective lens focusing the ion beam passing through the first deflector; and a sample stage. A signal generator responding to the ion beam in a point-shaped area is formed between the sample stage and an optical system including at least the focusing lens, the first aperture, the first deflector, and the objective lens, and a scanning field ion microscope image of the emitter tip is produced by matching a signal output from the signal generator and scanning of the ion beam by the first deflector with each other. |
US10790111B2 |
Charged-particle beam device
The objective of the present invention is to provide a charged-particle beam device wherein suppressing the effects of static build-up is compatible with executing high-throughput measurements and examination. In order to achieve this objective, proposed is the charged-particle beam device equipped with an electrostatic chuck (803), comprising an electrometer (11) for measuring the electric potential of the electrostatic chuck, a charge removing device (805) for removing charge from the electrostatic chuck, and a control device (806) for controlling the charge removing device in such a manner that the charge removal by the charge removing device is executed after reaching a certain number of processed samples irradiated by the charged particle beam, or after a predetermined processing time. When the result of the electric potential measurement by the electrometer does not meet a predetermined condition, the control device executes at least one among increasing and decreasing the number processed or the processing time. |
US10790101B2 |
Knob with display function
A knob with a display function includes a chassis with a knob ring and a rotary sensor. A display screen, a control circuit board, a reset device and a functional connection board are sequentially installed onto the chassis. A circuit board bracket is installed between the display screen and the control circuit board. The functional connection board has a confirm button, a connection terminal disposed on the back of the functional connection board. The reset device has a through hole for extending the confirm button to the outside, an end abutting and connecting the control circuit board and the other end abutting and connecting the functional connection board. This invention has the features of simple structure and reasonable design and selects a function by turning the knob ring. With the reset device, the application of the invention has high reliability and provides easy identification. |
US10790099B2 |
Electronic device with switch button module and switch button module thereof
A switch button module is provided. The switch button module is adapted to be disposed in an electronic device. The electronic device includes a housing, a circuit board, and a switch element. The circuit board is disposed in the housing. The switch element is disposed on the circuit board. The switch button module includes a mounting base, a connection rod, and a button unit. The mounting base is affixed to the housing, wherein the mounting base is located between an edge of the circuit board and the housing. The connection rod pivots on the mounting base. The connection rod rotates between a first orientation and a second orientation. |
US10790097B2 |
Lithium composite negative electrode and hybrid capacitor, and manufacturing methods thereof
A lithium composite negative electrode which allows a hybrid capacitor to operate at room temperature by reducing interfacial resistance in the electrode, a hybrid capacitor comprising the composite negative electrode, and manufacturing methods thereof. The lithium composite negative electrode is a laminar electrode including a lithium ion conductive solid electrolyte, an alginate gel electrolyte, and lithium-doped carbon. Further, a hybrid capacitor includes a positive electrode including a carbon material and/or a metal oxide, the lithium composite negative electrode, and a neutral aqueous electrolyte filled between the positive electrode and the lithium composite negative electrode. The lithium composite negative electrode is configured as a laminar electrode including the lithium ion conductive solid electrolyte, the alginate gel electrolyte, and the lithium-doped carbon. |
US10790096B2 |
Formation of lead-free perovskite film
A method of forming a Pb-free perovskite film is provided, the method based on vacuum evaporation and comprising: first depositing a first material comprising Sn halide on a substrate to form a first layer; second depositing a second material comprising organic halide to form a second layer on the first layer to obtain a sequentially-deposited two-layer film on the substrate; and annealing the sequentially-deposited two-layer film on the substrate. During the annealing, the first and second materials inter-diffuse and react to form the Pb-free perovskite film. The second layer is formed to cover the first layer so as to prevent the first layer from air exposure. The solar cell device including the Pb-free perovskite film formed by using the present method exhibits good stability. |
US10790094B2 |
Method of forming a leadless stack comprising multiple components
A method of forming a leadless stack comprising multiple components is provided. The method comprises forming an MLCC comprising a first capacitor external termination and a second capacitor external termination and forming an electronic element is formed comprising a first element external termination and a second element external termination. The MLCC and electronic component are are arranged in a stack with a TLPS bond between the first capacitor external termination and the first element external termination. |
US10790093B2 |
Multilayer ceramic electronic component array
A multilayer ceramic electronic component array includes a plurality of multilayer ceramic electronic components including a ceramic body including a dielectric layer and first and second internal electrodes, and first and second external electrodes, respectively; and an interposer including an insulating body disposed below the plurality of multilayer ceramic electronic components, a first terminal electrode disposed on the insulating body and connected to at least a portion of the respective first external electrodes of the plurality of multilayer ceramic electronic components, and a second terminal electrode disposed on the insulating body and connected to at least a portion of the respective second external electrodes of the plurality of multilayer ceramic electronic components. The first external electrodes of the plurality of multilayer ceramic electronic components are in electrical contact with each other, and the second external electrodes of the plurality of multilayer ceramic electronic components are in electrical contact with each other. |
US10790085B2 |
Ignition device
An ignition coil includes a first winding, a second winding, and a third winding. A first switch is electrically connected to the first winding. A battery is electrically connected to the first winding. A booster is electrically connected to the battery. A second switch is electrically connected to the third winding. A drive device drives the first switch and the second switch. The drive device turns the first switch from on-state to off-state to allow a secondary current to flow through the second winding, turns the second switch from off-state to on-state to supply an output of the booster to the third winding, and superimpose a second current to the second winding. When a third winding current becomes equal to or greater than a predetermined value, the booster controls such that power generated by the third winding current and an output voltage of the booster is restricted to constant power. |
US10790084B2 |
Multi-phase iron-core reactor having function of changing magnitude of inductance
A multi-phase iron-core reactor has an iron core and windings. The iron core includes an outer iron core and an inner iron core. The outer iron core has teeth on which the N-phase windings are wound. The inner iron core faces the teeth through gaps, and has a shape so as to be able to provide at least two gap sizes in a selective manner. |
US10790080B2 |
Embedded magnetic component transformer device
A transformer device includes first, second, and third windings, located in an insulating substrate by conductive vias joined together by conductive traces. Positions of the conductive vias are arranged so as to optimize the isolation properties of the transformer, and to improve the coupling of the transformer by increasing the leakage inductance and reducing the distributed capacitance. The transformer device is compact and is weakly coupled. The weak coupling between the windings reduces the likelihood of the transformer malfunctioning, particularly when used in a self-resonant converter circuit. |
US10790079B2 |
Thin film inductor, power conversion circuit, and chip
A thin film inductor includes a first magnetic thin film and a second magnetic thin film that are adjacent, the first magnetic thin film is nested in the second magnetic thin film, and a relative magnetic permeability of the first magnetic thin film is less than a relative magnetic permeability of the second magnetic thin film, and a difference between the relative magnetic permeability of the first magnetic thin film and the relative magnetic permeability of the second magnetic thin film is greater than or equal to a first threshold, where when a magnetic induction intensity of the second magnetic thin film reaches a saturated magnetic induction intensity of the second magnetic thin film, a magnetic induction intensity of the first magnetic thin film is less than or equal to a saturated magnetic induction intensity of the first magnetic thin film. |
US10790078B2 |
Apparatus and method for magnetic field compression
An apparatus for magnetic field compression includes a plurality of tubes of different dimensions. Each smaller tube extends within a larger tube and each tube includes an electrically conductive material for generating a magnetic field in response to electric current flowing in the conductive material. A longitudinal slot is formed in each tube. The longitudinal slot in each tube is aligned to form an aperture in which the magnetic field is compressed or has a highest magnetic flux in the aperture in response to the electric current flowing in the conductive material of each tube. |
US10790070B2 |
Radiation detectors employing contemporaneous detection and decontamination
Radiation detectors and methods of using the radiation detectors that provide a route for surface decontamination during use are described. The detectors utilize light illumination of an internal surface during use. Light is in the longer UV to near-infrared spectra and desorbs contamination from internal surfaces of radiation detectors. The methods can be carried out while the detectors are in operation, preventing the appearance of the negative effects of radioactive and non-radioactive contamination during a detection regime and following a detection regime. |
US10790069B2 |
Delivering radiation
A radiography camera system includes an exposure container made from radiation shielding material and having a curved channel therein that terminates inside the exposure container, a first conduit portion having a first end coupled to the exposure container, a switch coupled to a second end the first conduit portion, a second conduit portion having a first end coupled to the switch, a guide tube coupled to the switch, a crank coupled to a second end of the second conduit portion, and a cable disposed in the crank and having a connector for a source assembly on an end thereof, the cable actuating the switch to cause the cable to feed through one of: the first conduit portion or the guide tube when the crank unwinds the cable. The exposure container may be made from depleted uranium, tungsten, and/or lead. The curved channel may be J-shaped. |
US10790066B2 |
Rotational apparatus usable with control drum apparatus in nuclear environment
A rotation apparatus is usable with a control drum in a nuclear environment. The control drum is situated on a shaft that is rotatable about a horizontal axis of rotation, and the control drum includes an absorber portion and a reflector portion. The rotation apparatus includes a rotation mechanism that is structured to apply to the shaft in an operational position a force that biases the shaft to rotate toward a shutdown position, with the force being resisted by a motor to retain the shaft in the operational position when the motor is powered. The force is not resisted when the motor is unpowered. The rotation apparatus further includes a rotation management system that controls the rotation of the shaft. |
US10790065B2 |
High density UO2 and high thermal conductivity UO2 composites by spark plasma sintering (SPS)
Embodiments of the invention are directed to a method for production of a nuclear fuel pellet by spark plasma sintering (SPS), wherein a fuel pellet with more than 80% TD or more than 90% TD is formed. The SPS can be performed with the imposition of a controlled uniaxial pressure applied at the maximum temperature of the processing to achieve a very high density, in excess of 95% TD, at temperatures of 850 to 1600° C. The formation of a fuel pellet can be carried out in one hour or less. In an embodiment of the invention, a nuclear fuel pellet comprises UO2 and a highly thermally conductive material, such as SiC or diamond. |
US10790064B2 |
Systems and methods for forming and maintaining a high performance FRC
A high performance field reversed configuration (FRC) system includes a central confinement vessel, two diametrically opposed reversed-field-theta-pinch formation sections coupled to the vessel, and two divertor chambers coupled to the formation sections. A magnetic system includes quasi-dc coils axially positioned along the FRC system components, quasi-dc mirror coils between the confinement chamber and the formation sections, and mirror plugs between the formation sections and the divertors. The formation sections include modular pulsed power formation systems enabling static and dynamic formation and acceleration of the FRCs. The FRC system further includes neutral atom beam injectors, pellet injectors, gettering systems, axial plasma guns and flux surface biasing electrodes. The beam injectors are preferably angled toward the midplane of the chamber. In operation, FRC plasma parameters including plasma thermal energy, total particle numbers, radius and trapped magnetic flux, are sustainable at or about a constant value without decay during neutral beam injection. |
US10790063B2 |
Computer-aided multiple standard-based functional evaluation and medical reporting system
A method of performing an objective functional evaluation of a person's physical capacity comprises of a computer program particularly designed to amass and assess test data in accordance with a selected standard. A wide variety of evaluation protocols are incorporated to lead an operator in a step-by-step process. The method includes special testing tools, many of which have been modified to input data directly into the computer diagnostic program. The interface may be a wired or a wireless connection. The software program may use an algorithm to calculate a coefficient of variation for the multiple trials of a test, using the entered data, to providing a determination of validity of the trials. A second algorithm calculates an average result of the condition-specific protocol of tests, after which the software program correlates those average results to a database of normative standards to compute an impairment rating. |
US10790062B2 |
System for tracking and optimizing health indices
A system and method for tracking and optimizing health indices is provided. In some embodiments the system provides for tracking and/or optimizing health indices of one or more individuals having a particular genetic profile and adaptively managing external factors the individual experiences so as to optimize a change in one or more health indices based on the individual's genetic profile. |
US10790061B2 |
Method and system for microbiome-derived diagnostics and therapeutics for mental health associated conditions
A method for at least one of characterizing, diagnosing, and treating a mental health associated condition in at least a subject, the method comprising: receiving an aggregate set of biological samples from a population of subjects; generating at least one of a microbiome composition dataset and a microbiome functional diversity dataset for the population of subjects; generating a characterization of the mental health associated condition based upon features extracted from at least one of the microbiome composition dataset and the microbiome functional diversity dataset; based upon the characterization, generating a therapy model configured to correct the mental health associated condition; and at an output device associated with the subject, promoting a therapy to the subject based upon the characterization and the therapy model. |
US10790060B2 |
Method and system for microbiome-derived diagnostics and therapeutics for mental health associated conditions
A method for at least one of characterizing, diagnosing, and treating a mental health associated condition in at least a subject, the method comprising: receiving an aggregate set of biological samples from a population of subjects; generating at least one of a microbiome composition dataset and a microbiome functional diversity dataset for the population of subjects; generating a characterization of the mental health associated condition based upon features extracted from at least one of the microbiome composition dataset and the microbiome functional diversity dataset; based upon the characterization, generating a therapy model configured to correct the mental health associated condition; and at an output device associated with the subject, promoting a therapy to the subject based upon the characterization and the therapy model. |
US10790046B2 |
Systems, methods, and apparatus for drawing and editing chemical structures on a user interface via user gestures
Systems, methods, and apparatus are provided that allow a user to draw and edit a chemical structure using one or more gestures performed on an input interface, such as a touch pad or touch screen. For example, the user may assign an atom label to a chemical structure representation by performing a press and tap gesture, change a chemical bond characteristic in the chemical structure representation by performing a tap gesture, and/or lengthen a molecular chain in the chemical structure representation by performing a drag gesture. The user may also rotate the chemical structure representation in the graphical display by performing one or more rotation gestures. |
US10790045B1 |
System and method for screening homopolymers, copolymers or blends for fabrication
Techniques for screening homopolymers, copolymers or blends for fabrication are disclosed. A data repository stores data points. Each data point comprises a structural repeating unit (SRU) and at least one material property value for the SRU. Each SRU is a homopolymer SRU, a copolymer component SRU or a blend component SRU. A machine determines a fingerprint for at least a subset of the SRUs in the data repository. The machine stores, in the data repository, each determined fingerprint in conjunction with a corresponding SRU. The machine generates a quantitative modeling engine to predict material property values, based on SRUs, for homopolymers, copolymers or blends. The quantitative modeling engine is based, at least in part, on the fingerprints. The machine identifies, using the quantitative modeling engine, at least one homopolymer SRU, copolymer SRU set or blend SRU set that has a material property value within a given range. |
US10790042B2 |
Method and system for microbiome-derived diagnostics and therapeutics for endocrine system conditions
A method for at least one of characterizing, diagnosing, and treating an endocrine system condition in at least a subject, the method comprising: receiving an aggregate set of biological samples from a population of subjects; generating at least one of a microbiome composition dataset and a microbiome functional diversity dataset for the population of subjects; generating a characterization of the endocrine system condition based upon features extracted from at least one of the microbiome composition dataset and the microbiome functional diversity dataset; based upon the characterization, generating a therapy model configured to correct the endocrine system condition; and at an output device associated with the subject, promoting a therapy to the subject based upon the characterization and the therapy model. |
US10790040B2 |
Virtual inference of protein activity by regulon enrichment analysis
Methods for determining regulon enrichment in gene expression signatures are disclosed herein. An example method can include obtaining a set of transcriptional targets of a regulon. The method can include obtaining a gene expression signature by comparing a gene expression profile of a test sample to gene expression profiles of a plurality of samples representing control phenotypes. The method can include calculating a regulon enrichment score for each regulon in the gene expression signature. The method can including determining whether a number of control samples in the control phenotypes is above a predetermined threshold to support evaluation of statistical significance using permutation analysis. The method can include, in response to determining that the number of control samples is above the predetermined threshold, calculating a significance value by comparing each regulon enrichment score to a null model. |
US10790038B2 |
Semiconductor apparatus and test system including the semiconductor apparatus
A semiconductor apparatus includes: a pad unit comprising a plurality of data input/output (I/O) pads and a plurality of error detection code pads; an error detection code (EDC) read path configured to generate a plurality of EDCs by performing an error detection operation on a plurality of data, and output the plurality of EDCs through the plurality of error detection code pads; a comparison circuit configured to generate a comparison result signal by comparing the plurality of EDCs; and a data read path configured to output the comparison result signal through any one of the plurality of data I/O pads. |
US10790037B2 |
Circuit for generating bias current for reading OTP cell and control method thereof
Provided is a circuit for generating a bias current, which includes a current generation unit including a plurality of current mirrors that generate a plurality of currents having different levels. The circuit also includes a current generation control unit that controls the generating the plurality of current having different levels in the current generation unit based on an externally input current. The circuit further includes a current supplying unit that supplies a current selected from the plurality of currents having different levels to an external device. |
US10790036B1 |
Adjustment of read and write voltages using a space between threshold voltage distributions
A current demarcation voltage is determined, where the current demarcation voltage is to be applied to a memory cell for reading a state of the memory cell. A plurality of test demarcation voltages is determined based on the current demarcation voltage and a space between a first threshold voltage distribution corresponding to a first state of the memory cell and a second threshold voltage distribution corresponding to a second state of the memory cell. For each test demarcation voltage, an error rate of reading the state of the memory cell based on a respective test demarcation voltage is determined. A test demarcation voltage having the lowest error rate from the plurality of test demarcation voltages is determined. The current demarcation voltage is set to correspond to the test demarcation voltage having the lowest error rate. |
US10790035B2 |
Method of operating storage device
Disclosed is a method of operating a storage device including a NAND flash memory including memory cells grouped into blocks, each block being divided into pages. According to the method, a controller in the storage device loads, onto a memory region, a look-up table containing first read reference voltage sets corresponding to respective retention degradation stages of the NAND flash memory and second read reference voltages sets corresponding to respective pages which vary in terms of the threshold voltages. Subsequently, the controller performs a read operation on the memory cells on a per-block basis by using the first read reference voltage set corresponding to a current retention degradation stage, the second read reference voltage set corresponding to a current page, or both, until all of the memory cells in a current block are correctly read. |
US10790034B2 |
Memory device generating status signal, memory system including the memory device, and method of operating memory device
Provided herein may be a memory device, a memory system having the memory device, and a method of operating the memory device. The memory device may include a memory cell array configured to store data, a peripheral circuit configured to perform a program operation on the memory cell array, and a control logic configured to perform the program operation by controlling the peripheral circuit and to perform a status check operation after the program operation. Here, the control logic may be configured to, based on a determination that the status check operation has passed, perform a number-of-program pulses comparison operation by comparing a number of program pulses used in the program operation to a first preset range. |
US10790033B2 |
Operating method of memory device using channel boosting before read or verify operation
Provided herein are a memory device and an operating method thereof. The memory device may include a plurality of memory blocks and one or more peripheral circuits. Each of the plurality of memory blocks may include a plurality of cell strings. The one or more peripheral circuits may perform one or more operations on the plurality of memory blocks. The operations may include turning off select transistors of the cell strings included in the memory blocks, increasing channel voltages of the cell strings included in the memory blocks, turning on, among select transistors included in the memory blocks, select transistors included in a selected memory block, and performing a read or a verify operation on the selected memory block. |
US10790032B2 |
Managed NAND performance throttling
Apparatus and methods are disclosed, including a memory device or a memory controller configured to determine that a condition has occurred that indicates a performance throttling operation, implement a performance throttling responsive to the determined condition, responsive to implementing the performance throttling, set a performance throttling status indicator in an exception event status attribute, receive a command from a host device across a memory device interface, perform the command, prepare a response to the command, the response including a flag indicating that the performance throttling status indicator is set in the exception event status attribute, and send the response to the host device. Methods of operation are disclosed, as well as machine-readable medium and other embodiments. |
US10790031B1 |
System handling for first read read disturb
A data storage system performs operations including receiving a data read command corresponding to a first memory cell; determining whether the first memory cell is in a first read condition; if the first memory cell is in the first read condition: applying a first voltage level to the first memory cell, the first voltage level being a predetermined voltage level corresponding to a read operation for memory cells in the first read condition; and sensing a first level of current, or lack thereof, through the first memory cell during application of the first voltage level to the first memory cell; and if the first memory cell is not in the first read condition: applying a second voltage level to the first memory cell, the second voltage level being a voltage level corresponding to a read operation for memory cells in a read condition other than the first read condition. |
US10790026B2 |
Non-volatile memory device and system capable of executing operations asynchronously, and operation execution method of the same
A non-volatile memory device includes a non-volatile memory cell array, an input/output pad unit, and a peripheral circuit. The non-volatile memory device executes an operation requested by a controller. The input/output pad component provides a path through which a command and data related to the operation requested by the controller are input to the non-volatile memory device, and through which a result of execution of the requested operation is output to the controller. The peripheral circuit is configured to be loaded with a plurality of commands provided by the controller, to temporarily store program data provided by the controller to be written in the non-volatile memory cell array and data read from the non-volatile memory cell array, to adjust an execution order of the commands asynchronously with the controller based on an internal operation status of the non-volatile memory device, and to execute the commands in the adjusted execution order. |
US10790024B2 |
Semiconductor device and operating method of the semiconductor device
A semiconductor device and method of operating a semiconductor device, the semiconductor device includes memory strings coupled between a common source line and a bit line, and a peripheral circuit coupled to the memory strings through a plurality of word lines and a dummy word line, and configured to set bias of the word lines and the dummy word line before performing a read operation, wherein the peripheral circuit applies a first pass voltage to the word lines concurrently with applying an initial voltage lower than the first pass voltage to the dummy word line, and increases the first pass voltage and the initial voltage to a second pass voltage to set the bias of the word lines and the dummy word line. |
US10790012B2 |
Memory with a reduced array data bus footprint
Memory devices and systems in which array data lines of a local data bus are shared between two or more memory bank groups in a memory array. In one embodiment, a memory device is provided, comprising a memory array, I/O gating circuitry, and a local data bus. The local data bus can include a plurality of array data lines shared between two or more memory bank groups of the memory array. The local data bus can electrically couple and transfer data between the two or more memory bank groups and the I/O gating circuitry. In some embodiments, one or more data latches can be electrically coupled to the local data bus to (i) transfer data off the local data bus to free the plurality of data lines for subsequent data transfers and/or (ii) match varying data propagation timings on the local data with column generations of the memory bank groups. |
US10790006B2 |
Semiconductor memory device and operating method thereof
The semiconductor memory device includes a memory cell array, a peripheral circuit and a control logic. The memory cell array includes a plurality of memory cells. The peripheral circuit performs a program operation for the plurality of memory cells in the memory cell array. The control logic controls the peripheral circuit and the memory cell array such that, during the program operation for the plurality of memory cells, pre-bias voltages are applied to a plurality of word lines coupled to the plurality of memory cells to precharge channel regions of the plurality of memory cells. Furthermore, different pre-bias voltages are applied to the plurality of word lines depending on the relative positions of the word lines. |
US10790003B1 |
Maintaining channel pre-charge in program operation
Techniques are described for maintaining a pre-charge voltage in a NAND string in a program operation. After a pre-charge voltage is applied to the channel of a NAND string, the word line voltages are controlled to avoid a large channel gradient which generates electron-hole pairs, where the electrons can pull down the channel boosting level on the drain side of the selected word line. In one approach, the word line voltages of a group of one or more source side word lines adjacent to the selected word line are increased directly from the level used during pre-charge to a pass voltage. The word line voltages of other source side word lines, and of drain side word lines, can be decreased and then increased to the pass voltage to provide a large voltage swing which couples up the channel. |
US10789994B2 |
Memory architecture having first and second voltages
A memory macro includes: word lines; memory cells arranged in an array, the array including rows and columns, the rows corresponding to the word lines, each memory cell being configured to receive a first reference voltage, and each column having voltage supply nodes corresponding to corresponding ones of the memory cells in the column; and switching circuits corresponding to the columns, each switching circuit being configured to selectively provide a first voltage value of a first voltage source or a second voltage value of a second voltage source to the voltage supply nodes; and wherein the first and second voltage values differ by a predetermined voltage value; each of the first and second voltage values is different than a second reference supply voltage; and the word lines are configured to receive the second voltage value as a voltage value representing a high logical value of the word lines. |
US10789991B2 |
Electronic device with detachable structure and module frame thereof
An electronic device with a detachable structure is provided. The electronic device includes a bracket, a connector, a module frame and a carried unit. The bracket includes a bracket wedging portion, wherein the bracket has a receiving recess, the receiving recess has a first side and a second side, the first side is opposite to the second side, and the bracket wedging portion is located on the first side. The connector is disposed on the second side of the bracket. The module frame is detachably connected to the bracket. The module frame can be easily attached to or detached from the bracket, reducing the time and effort required for assembly. |
US10789988B2 |
Recording medium, playback device, and playback method
At least one video stream that is encoded video information, and a management information file indicating attributes relating to the entire recording medium, are recorded in a recording medium. The management information file includes attribute information indicating whether the dynamic range of luminance of an initial video stream, which is played first out of the at least one video stream when the recording medium is inserted into a playback device, is a first dynamic range, or a second dynamic range that is broader than the first dynamic range. |
US10789985B2 |
Systems and methods for editing videos based on motion
Motion within first video content and second video content may be assessed. A match between the motions assessed within the first video content and the second video content may be determined. The match may including a first set of video frames within the first video content and a second set of video frames within the second video content within which the matching motion is present. A first video portion (including frame(s) of the first set of video frames) of the first video content and a second video portion (include frame(s) of the second set of video frames) of the second video content may be identified based on the match. The first video portion and the second video portion may be concatenated to provide a transition between the first video portion and the second video portion in which continuity of motion may be achieved. |
US10789984B2 |
Methods for serving interactive content to a user
One variation of a method for serving interactive content to a user includes, at a visual element inserted into a document accessed by a computing device: loading a first frame from a digital video; in response to a scroll-down event that moves the visual element upward from a bottom of a window rendered on the computing device toward a top of the window, seeking from the first frame through a subset of frames in the digital video in a first direction at a rate corresponding to a scroll rate of the scroll-down event, the subset of frames spanning a duration of the digital video corresponding to a length of the scroll-down event; and, in response to termination of the scroll-down event with the visual element remaining in view within the window, playing the digital video forward from a last frame in the subset of frames in the digital video. |
US10789981B2 |
Magnetic tape reading apparatus and a magnetic tape reading method
A magnetic tape reading apparatus includes a reading element unit which includes: a plurality of reading elements which are disposed in a state of being adjacent to each other and each of which reads data by a linear scanning method from a specific track region including a reading target track in a track region included in a magnetic tape; and an extraction unit which performs a waveform equalization process according to a deviation amount between positions of the magnetic tape and the reading element unit, with respect to each reading result for each reading element, to extract data derived from the reading target track from the reading result. |
US10789978B2 |
Disk drive suspension tri-stage actuator having pseudo feature integrally constructed on trace gimbal
A dual stage actuated suspension has a first piezoelectric microactuator on the trace gimbal assembly (TGA), and a pseudo feature located laterally opposite the microactuator. The pseudo feature is formed integrally with the TGA from at least one of the base metal layer, the insulative layer, and the conductive layer that make up the TGA. The pseudo feature helps to balance the suspension. The suspension can optionally have a second microactuator located proximal of the first microactuator in order to perform coarser positioning than the first microactuator, such that the suspension is a tri-stage actuated suspension. |
US10789977B1 |
Spin orbital torque via spin hall effect based energy assisted magnetic recording
A magnetic recording head includes a trailing shield, a main pole, and a spin Hall layer. The spin Hall layer is disposed between the trailing shield and the main pole. A first spin torque layer is disposed between the spin Hall layer and the trailing shield. A second spin torque layer is disposed between the spin Hall layer and the main pole. |
US10789974B2 |
Tonearm unit and playback device
A tonearm unit includes: an arm member having a tip to which a cartridge is attached; and a raising and lowering mechanism which raises and lowers the arm member with respect to a phonograph record along an axis. The raising and lowering mechanism includes: a cam base supporting the arm member; a ring cam provided to be rotatable about the axis with respect to the cam base; a first guide portion on the cam base, extending at an angle along a rotation direction of the ring cam; and a second guide portion on the ring cam, extending at an angle along the rotation direction so as to face the first guide portion. When the ring cam rotates with respect to the cam base, the cam base is raised and lowered with respect to the ring cam as a result of the second guide portion sliding along the first guide portion. |
US10789970B2 |
Receiving device and receiving method
A receiving device includes: a receiver which receives a broadcast signal including an audio signal and obtains a baseband signal of a received signal; a demodulator which obtains the audio signal by demodulating the baseband signal; a middle frequency range detector which detects a signal level of a middle frequency component in a frequency range of the baseband signal; a high frequency range detector which detects a signal level of a high frequency component in the frequency range of the baseband signal; and a processing circuit which sets an effect amount of high-cut processing based on a level difference between the signal level of the middle frequency component and the signal level of the high frequency component. The receiving device further includes a high-cut filtering device which performs the high-cut processing on the audio signal in accordance with a set value of the effect amount. |
US10789967B2 |
Noise detection and noise reduction
A noise detection method and a noise detection system are provided. The noise detection method includes: obtaining an audio signal; comparing the audio signal with a wave of a noise model to obtain a correlation value; and identifying whether the audio signal is a candidate noise signal based on the correlation value. The method can detect plugging noises effectively. |
US10789966B2 |
Method for evaluating a quality of voice onset of a speaker
In a method for evaluating the voice onset of a speaker, especially suited for treatment of a stuttering disorder, the analysis includes: a. determine a time of voice onset of the speaker; b. obtain a fundamental frequency at the time of voice onset; c. in a predetermined time interval, obtain the curve with respect to time of energy at the fundamental frequency; d. obtain the curve with respect to time of energy at at least one harmonic multiple of the fundamental frequency; and e. determine the temporal progression of the ratio of the energies obtained in steps c and d. A gentle voice onset is presumed if the energy ratio is initially dominated by the energy of the fundamental frequency, and only in the further course of the predetermined time interval in a time span of Δt the energy ratio shifts in favor of the energy/energies of the harmonic multiple(a) of the fundamental frequency. |
US10789961B2 |
Apparatus and method for predicting/recognizing occurrence of personal concerned context
Disclosed is technology for providing a proper UI/UX through various devices or services when occurrence of registered concerned context is predicted or recognized in order to predict or recognize the circumstances that require attention or emotion control with regard to a change in his/her biological information With this, a user designates his/her own biological information range or emotional state with regard to circumstances which catch his/her attention, and registers concerned context by selectively designating attributes of circumstantial elements. Further, a user registers feedback desired to be given and an external device/service desired to interface with when the occurrence of the concerned context is predicted or recognized. According to the attributes of the circumstances designated in the registered concerned context, points in time for collecting and managing UX data are automatically determined, thereby processing and managing the UX data as useful information. |
US10789957B1 |
Home assistant wireless communication service subscriber self-service
A method of providing electronic home assistant service. The method comprises processing a first audio received from a microphone of an electronic home assistant by a voice recognition application executing on the electronic home assistant into a first parsed digital signal, providing the parsed digital signal by the voice recognition application to a plurality of applications executing on the electronic home assistant, receiving an exclusive access to parsed digital signals request by the voice recognition application from a wireless communication service account self-service client application executing on the electronic home assistant, processing a second audio received from the microphone of the electronic home assistant by the voice recognition application to form a second parsed digital signal, and providing the second parsed digital signal exclusively to the wireless communication service account self-service client application. |
US10789954B2 |
Transcription presentation
According to one or more aspects of the present disclosure, operations related to providing transcriptions may include obtaining a first transcription of first audio obtained by a first device during a communication session conducted between the first device and a second device. The operations may further include providing the first transcription for presentation of the first transcription by a display device during the communication session. In addition, the operations may include providing, in response to a transcription quality indication, a second transcription of second audio obtained by the second device during the communication session for presentation of the second transcription by the display device during the communication session. |
US10789949B2 |
Audio device with wakeup word detection
An audio device with at least one microphone adapted to receive sound from a sound field and create an output, and a processing system that is responsive to the output of the microphone. The processing system is configured to use a signal processing algorithm to detect a wakeup word, and modify the signal processing algorithm that is used to detect the wakeup word if the sound field changes. |
US10789946B2 |
System and method for speech recognition with decoupling awakening phrase
Systems and methods are provided for speech recognition. An example method may be implementable by a server. The method may comprise adding a key phrase into a dictionary comprising a plurality of dictionary phrases, and for each one or more of the dictionary phrases, obtaining a first probability that the dictionary phrase is after the key phrase in a phrase sequence. The key phrase and the dictionary phrase may each comprise one or more words. The first probability may be independent of the key phrase. |
US10789942B2 |
Word embedding system
A computer-implemented method, computer program product, and computer processing system are provided for word embedding. The method includes receiving, by a processor device, a word embedding matrix. The method further includes generating, by a processor device, an average pooling vector and a max pooling vector, based on the word embedding matrix. The method also includes generating, by the processor device, a prediction by applying a Multi-Layer Perceptron (MLP) to the average pooling vector and the max pooling vector. |
US10789935B2 |
Mechanical touch noise control
In one example, a headset obtains a first audio signal including a user audio signal from a first microphone on the headset and a second audio signal including the user audio signal from a second microphone on the headset. The headset derives a first candidate signal from the first audio signal and a second candidate signal from the second audio signal. Based on the first audio signal and the second audio signal, the headset determines that a mechanical touch noise is present in one of the first audio signal and the second audio signal. In response to determining that the mechanical touch noise is present in one of the first audio signal and the second audio signal, the headset selects an output audio signal from a plurality of candidate signals including the first candidate signal and the second candidate signal. Headset provides the output audio signal to a receiver device. |
US10789934B2 |
Active noise reduction device and active noise reduction method
An active noise reduction device includes a standard signal generator, an adaptive filter unit, a control sound output unit, and an error signal detector. The adaptive filter unit includes a control signal generator, a filter coefficient update unit, and a step size setting unit. The control signal generator multiplies a standard signal by a filter coefficient to generate a control signal. Based on a reference signal and an error signal, the filter coefficient update unit updates the filter coefficient so as to minimize the error signal. The step size determiner sets a step size parameter indicating an update amount of the filter coefficient. The filter coefficient update unit sets a step size adjustment coefficient for adjusting the step size parameter based on an audio information feature amount and a change of the control signal. |
US10789933B1 |
Frequency domain coefficient-based dynamic adaptation control of adaptive filter
An adaptive filter calculates frequency domain coefficients and in the frequency domain dynamically adjusts a leakage/step size parameter that controls adaptation of the adaptive filter based on the calculated frequency domain coefficients (e.g., based on a peak magnitude of the coefficients among frequency bins or on the magnitude of the coefficient of the corresponding frequency bin). The adaptive filter calculates the coefficients based on frequency domain input and error signals, dynamically adjusts a frequency domain coefficient magnitude limit parameter based on the calculated frequency domain coefficients (e.g., approximately proportionally to a peak magnitude of the coefficients among frequency bins) and uses the dynamically adjusted frequency domain coefficient magnitude limit parameter to limit a magnitude of the calculated frequency domain coefficients. The limit may be engaged above a frequency bin based on the peak magnitude frequency bin. An ANC system may employ the filter. |
US10789930B2 |
Structure body, sound absorbing material, sound insulating wall material, and manufacturing method of structure body
This invention is concerning a structure body containing inorganic particles having an average particle diameter of 6 mm to 50 mm, and 6 parts by mass to 40 parts by mass of a resin with respect to 100 parts by mass of the inorganic particles. |
US10789929B2 |
Soundproof structure and soundproof system
A soundproof structure has two or more soundproof units. Each of the soundproof units has an outer shell having a cylindrical shape, has a hollow inner space inside the outer shell, and has a first opening portion opened to outside on a surface that is one end portion of the outer shell in an axis direction of the cylindrical shape. The two soundproof units adjacent to each other are disposed in the axis direction such that the first opening portions face each other. The first opening portions facing each other are spaced apart from each other in the axis direction. An average distance in the axis direction between the first opening portions facing each other is less than 20 mm. Accordingly, there are provided a soundproof structure and a soundproof system which can insulate sounds on the low frequency side with a simple configuration, are small and lightweight, and can easily change the frequency characteristics. |
US10789926B2 |
Supporting apparatus for kick pad
A supporting apparatus (40) for a kick pad (1) includes a supporting frame (41˜44) that supports a kick pad (1) including a piezoelectric element that converts a vibration generated by beating with a beater into an electric signal and outputs the electric signal, and a fixation frame (51, 52) that fixes the supporting apparatus (40) to an inner surface of a shell of a bass drum while a striking surface (2a) of the kick pad (1) is arranged in a position beaten by the beater. |
US10789924B2 |
Synchronized display and performance mapping of dance performances submitted from remote locations
Systems and methods are provided for assembling and displaying a visual ensemble of musical performances that were created and uploaded from one or more locations that are remote from a host of the network, a director or other administrator reviewing submissions for selection and assembly, or perhaps merely remote from one or more other submissions received over a computer network. The assembled performances include a plurality of submissions, the submissions including performances created and uploaded at one or more locations remote from the location of the director for the assembly and display over the computer network. Systems and methods are also included for mapping one performance against another performance qualitatively, quantitatively, in real-time, or some combination thereof, enabling a musician, or a reviewer of performances, in the assessment of one performance relative to another performance. |
US10789922B2 |
Electronic musical instrument, electronic musical instrument control method, and storage medium
An electronic musical instrument in one aspect of the disclosure includes; a plurality of operation elements to be performed by a user for respectively specifying different pitches; a memory that stores musical piece data that includes data of a vocal part, the vocal part including at least a first note with a first pitch and an associated first lyric part that are to be played at a first timing; and at least one processor, wherein if the user does not operate any of the plurality of operation elements in accordance with the first timing, the at least one processor digitally synthesizes a default first singing voice that includes the first lyric part and that has the first pitch in accordance with data of the first note stored in the memory, and causes the digitally synthesized default first singing voice to be audibly output at the first timing. |
US10789921B2 |
Audio extraction apparatus, machine learning apparatus and audio reproduction apparatus
A processor in an audio extraction apparatus performs a preprocessing operation to determine, for a stereo audio source including first channel audio data including an accompaniment sound and a vocal sound for a first channel and second channel audio data including an accompaniment sound and a vocal sound for a second channel, a difference between the first channel audio data and the second channel audio data to generate center cut audio data, and an audio extraction operation to input the first channel audio data, the second channel audio data and the center cut audio data to a trained machine learning model to extract any one of the accompaniment sound and the vocal sound. |
US10789918B2 |
Drum pedal
A pedal assembly for a drum or other foot-actuated device may comprise a curved pedal and an adjustable pedal return spring tensioner mechanism. An actuatable region disposed at a top surface of the pedal preferably comprises a first concavity disposed more or less centrally in a pedal length direction between a first convexity and a second convexity. The tensioner mechanism preferably comprises a vertical lead screw parallel to the pedal return spring and coupled by way of a nut to a lower end of the pedal return spring. The lead screw may be slidingly coupled to a vertical post. By causing the lead screw to be adjustable from above and have an efficiency low enough to prevent backdriving, a drummer or other such operator can conveniently adjust tension without the need for disassembly and without the need to loosen a locknut or other such locking means. |
US10789916B1 |
Snare drum
A snare drum includes a tension adjusting device fixed to a strainer. The tension adjusting device includes a moving member that moves in a direction intersecting inner sound wires of the snare wire. A user can adjust tension of the snare wire by operating the tension adjusting device to cause the moving member to displace the inner sound wires. |
US10789913B2 |
Arbitrary block rendering and display frame reconstruction
Techniques of this disclosure may include ways to control the amount of graphics data a graphics processing unit (GPU) renders. The GPU may render graphics data for image content that changed from frame-to-frame rather than graphics data for image content that changed and did not change. To display the image content, processing circuitry may map locations of where the graphics data is stored to lines in the image content allowing for the GPU to store the graphics data in arbitrary locations of an application buffer. |
US10789912B2 |
Methods and apparatus to control rendering of different content for different view angles of a display
Methods and apparatus to control rendering of different content for different view angles of a display screen are disclosed. An example apparatus includes a position analyzer to: determine a first location of a first person relative to a display screen, and determine a second location of a second person relative to the display screen. The example apparatus includes a position comparer to determine a difference in position between the first person and the second person based on the first and second locations. The example apparatus includes a content determiner to identify first content to display to the first person and second content to display to the second person when the difference satisfies a threshold, and identify third content to display to both the first person and the second person when the difference does not satisfy the threshold. |
US10789899B2 |
Display device
According to an aspect, a display device includes an image display panel including: sub-pixel rows, in each of which sub-pixels for displaying different colors are periodically arrayed in a first direction, are regularly arranged in a second direction different from the first direction; signal lines in parallel to sub-pixel columns in which the sub-pixels are successively arranged in the second direction; and scan lines that sequentially select each sub-pixel row. Each of m (integer ≥2) selector signals selects n (integer ≥1) pairs of the signal lines each supplied with two signals each having a mutually reverse polarity, within a period during which each sub-pixel row is selected by a corresponding scan line, and a sum of potential changes of the n pairs of the signal lines selected by each selector signal is substantially zero when each sub-pixel row is sequentially selected by the corresponding scan line. |
US10789897B2 |
Method for regulating color shift in white balance procedure of four-color display device
Disclosed is a method for regulating color shift in white balance procedure of a four-color display device. The method includes steps of: obtaining brightness of a white color displayed by a combination according to stimulus values Y of a red sub pixel unit, a green sub pixel unit, a blue pixel unit, and a fourth sub pixel unit; and balancing a white color and one shifting color/two shifting colors/three shifting colors using a weighting factor in case of a two-color balance, a three-color balance, or a four-color balance. |
US10789896B2 |
Method and device for adjusting a backlight
A method for adjusting a backlight and a device for adjusting a backlight are provided. A parameter may be set as one of detectable physical quantities of the backlight. The physical quantity, for example, may be a current through a light emitting device, brightness of the light emitting device, or the like. An average value of the parameter is obtained according to values of the parameter which are detected in real time. When the average value is beyond a preset parameter range, a value of the voltage which is input to the light emitting device is adjusted, so that the current through the light emitting device is adjusted, and brightness of the backlight is adjusted. Thereby, brightness of the backlight can be adjusted in different ways, so that brightness of the backlight can be stable in different environments. |
US10789895B2 |
Differential difference amplifier circuit having variable transconductance
The differential difference amplifier circuit includes a differential input stage circuit, a loading stage circuit coupled to the differential input stage circuit, and an output stage circuit coupled to the loading stage circuit. The output stage circuit is configured to generate an output signal. The differential input stage circuit includes a first differential pair having a first transconductance and a second differential pair having a second transconductance. The first differential pair is biased by a first current source and receives a first input signal and the output signal. The second differential pair is biased by a second current source and receives a second input signal and the output signal. At least one of the first transconductance and the second transconductance is adjusted according to the image data. |
US10789894B2 |
Drive method for display panel
A drive method for a display panel is provided. A first multiplex signal, a second multiplex signal, a third multiplex signal, a fourth multiplex signal, a fifth multiplex signal, and a sixth multiplex signal sequentially generate the high level pulse in the predetermined order in each of the first row periods of the (2i−1)th multiplex period. In addition, the first multiplex signal, the second multiplex signal, the third multiplex signal, the fourth multiplex signal, the fifth multiplex signal, and the sixth multiplex signal sequentially generate the high level pulse in a reverse order to the predetermined order in each of the second row periods of the (2i)th multiplex period. As a result, mura within the display picture of the display panel is eliminated to improve the display quality. |
US10789891B2 |
Pixel circuit, driving method thereof, display substrate and display apparatus
The present disclosure provides a pixel circuit. The pixel circuit may compensate the threshold voltage of the driving unit, such that the driving current provided by the driving unit to the light emitting device is only relevant to the difference between the voltage acting on the signal input terminal acting of the driving unit and the voltage of the data signal, which thereby eliminates the influence caused by the variation of the threshold voltage of the driving unit and improves the uniformity of an displayed image. In addition, the present disclosure also relates to a driving method of the pixel circuit, as well as a display substrate and a display apparatus both including the pixel circuit. |
US10789887B2 |
Image display apparatus
The present invention relates to an image display apparatus. The image display apparatus includes a display; a processor configured to control to supply a power to the display; and a power supply configured to convert an input AC power and output converted first DC power and second DC power to the processor and the display, wherein the power supply comprises a discharging unit configured to discharge the first DC power when a supply of the AC power to the power supply is stopped, wherein the processor is configured to supply the second DC power to the display according to a level of a voltage outputted from the discharging unit, when the supply of the AC power to the power supply is stopped and then supplied again. Accordingly, when the AC power is supplied to the power supply of the image display apparatus, the display can be quickly turned on. |
US10789882B2 |
Optical compensation apparatus applied to panel and operating method thereof
An optical compensation apparatus applied to panels is disclosed. A panel of the panels includes sub-pixels. The optical compensation apparatus includes an optical measurement module, a data processing module and an optical compensation module. The optical measurement module measures optical measurement values corresponding to the sub-pixels. The data processing module determines first optical compensation values needed for the sub-pixels according to the optical measurement values, determines an overall compensation operation reference of the panel accordingly, determines a demura algorithm suitable for the panel according to at least one threshold compensation value and the overall compensation operation reference and obtains second optical compensation values accordingly. Then, the optical compensation module outputs the second optical compensation values to perform optical compensation on a display data provided to the panel. |
US10789877B2 |
Adjustable underrun outputs
Devices and methods for underrun compensation are provided. By way of example, a technique for underrun compensation includes determining a particular one of a plurality of pixel configurations for a display. When an underrun condition is detected during processing of first image data via an image processing pipeline, at least a portion of requested image data for downstream processing has not yet been provided by an upstream processing component. Accordingly, upon detecting an underrun condition, underrun pixel data for the at least portion of the requested image data is generated, based upon the particular one of the plurality of pixel configurations. |
US10789876B2 |
Display system and method of driving the same
A display system includes a display apparatus and a pivot performing part. The display apparatus includes a display panel configured to display an image and including a gate line and a data line, a gate driving part configured to output a gate signal to the gate line, and a data driving part configured to output a data signal to the data line. The pivot performing part is configured to receive, from the display apparatus, a pivot request data for performing a pivot function which rotates the image, and is to perform the pivot function on image data of the image in response to the pivot request data. A manufacturing cost of a display apparatus may be decreased, and a delay time of an image display may be decreased. |
US10789874B2 |
Display device
A display device having a display panel including a plurality of pixels connected to scan lines extending in a first direction and data lines extending in a second direction different from the first direction and a panel moving unit for reciprocating the display panel in a third direction with respect to the first direction and the second direction. Each of the plurality of pixels my include a plurality of sub-pixels arranged in a sub-sampled structure. |
US10789872B2 |
Display apparatus with enhanced aperture ratio
Provided is a display apparatus including a display panel, a timing controller, a gate driver, and a data driver. The display panel includes a plurality of pixels and a plurality of sub-pixels. Two pixels among the pixels include five sub-pixels and temporally share a third sub-pixel among the five sub-pixels. The timing controller includes a filter that is set based on a region having the same area as four sub-pixels. The timing controller generates RGBW data having red, green, blue, and white data based on input data, and applies the filter to the RGBW data to generate output data corresponding to each of the sub-pixels. |
US10789862B2 |
Tile holder
A tile holder that can be attached to or integrated with a storage device. The tile holder may hold, for example, alphabet tiles. The tile holder may be used in settings where labelling is required. The tile holder may be constructed from a rigid material, such as wood, metal or a semi-flexible or flexible material, such as rubber or plastic. The tile holder may be a face plate that optionally couples to a space block. |
US10789858B2 |
Method for creating a computer model of a joint for treatment planning
The present invention provides a method for creating a computer model of a patient specific joint for treatment planning. The method includes identifying a ligament of a joint of a patient under a load at a predefined position of the joint. The method further includes constructing, with the use of a computer, a computer model of the joint of the patient having: a first bone model, a second bone model, and a ligament model connecting the first and second bone models corresponding to the identified ligament, wherein the ligament model is constructed as at least one fiber based on a predefined slack length. |
US10789856B2 |
Context-aware adaptive data processing application
A context-aware adaptive data processing application is described. One or more computing servers establish connections with multiple user terminals to provide an application to the user terminals. The provided application is executable at the user terminals via web browser or a dedication application installed at a user terminal, for example. The provided application is context-aware to dynamically adapt to a user's changing circumstances. |
US10789848B2 |
Multi-level hybrid vehicle-to-anything communications for cooperative perception
The disclosure includes embodiments for providing cooperative perception among two or more connected vehicles. In some embodiments, a method includes receiving, by a vehicle-to-anything (V2X) radio of an ego vehicle, a basic cooperative perception message (CPM) broadcast by a remote vehicle. The basic CPM includes basic CPM data describing objects that a remote vehicle has perceived. The method includes determining that the remote vehicle has misperceived a select object and that the remote vehicle is on a collision course with the select object. The method includes unicasting to the remote vehicle, by the V2X radio of the ego vehicle using a different V2X protocol than was used for receiving the basic CPM, a supplemental CPM including supplemental CPM data describing the select object that the remote vehicle has misperceived so that the remote vehicle is alerted to a presence of the select object. |
US10789847B2 |
Parking assist device, parking assist method, and parking assist system
A parking assist device includes: a comparator configured to compare parking priorities of a first vehicle and a second vehicle, the first vehicle being a vehicle to be newly parked in a parking section, the second vehicle being an automatically travelable vehicle already parked in a first parking space; a first instruction unit configured to output, to the second vehicle, a signal instructing to exit the first parking space by automatic travel, when the parking priority regarding use of the first parking space of the first vehicle is higher than that of the second vehicle; and a second instruction unit configured to output, to the first vehicle, a signal in instructing to park in the first parking space, when the parking priority regarding the use of the first paring space of the first vehicle is higher than that of the second vehicle. |
US10789841B2 |
System for communication between mobile bodies, mobile body transmission control device, and mobile body receiving control device
A system for communication between mobile bodies includes: a mobile body transmission device that is used for a first mobile body and transmits first mobile information; and a mobile body reception device that is used for a second mobile body and receives the first mobile information. The mobile body transmission device includes: an indirect transmitter that transmits information via a base station; a direct transmitter that transmits information according to direct transmission; and a transmission controller that controls the indirect transmitter and the direct transmitter to transmit an identical first mobile information. The mobile body reception device includes: an indirect receiver that receives the first mobile information transmitted by the indirect transmitter via the base station; and a direct receiver that directly receives the first mobile information transmitted by the direct transmitter. |
US10789836B2 |
Driving assistance method and driving assistance system with improved response quality for driver attention delegation
The invention relates to a system and method for assisting a driver in driving a vehicle. First information on an environment of the vehicle is obtained and an instruction from the vehicle driver is received. An evaluation task defining an aspect of a current traffic situation encountered by the vehicle and to be evaluated is defined from the received instruction. An evaluation of the obtained information according to the evaluation task is performed, and an evaluation result is generated. Other aspects of the traffic situation and their relation to the aspect defined in the task are then evaluated additionally. Finally an information on the basis of the evaluation result and the other determined aspects is generated and output. |
US10789833B2 |
Power adjustable furniture management systems and methods
Techniques and architectures are disclosed for power-adjustable furniture management systems and methods. The system includes a first power-adjustable furniture and a second power-adjustable furniture connected to an electrical source. The first power-adjustable furniture is communicatively coupled to a computing device. The computing device includes a processor, and a power management mode executable by the processor. The power management mode is configured to adjust the first power-adjustable furniture. The power management mode is further configured to prevent the first power-adjustable furniture from being adjusted while the second power-adjustable furniture is operated. The computing device is communicatively coupled to a server computer via the network. |
US10789830B2 |
Method and apparatus for gathering visual data using an augmented-reality application
A method and apparatus for gathering visual data using an augmented-reality application is provided herein. During operation a location for a public-safety area of interest is determined. The location is provided to an augmented-reality server where an augmented-reality application (e.g., an augmented-reality game) is modified to place a virtual image in a position that is based on the public-safety area of interest. Images are then obtained from devices that point their cameras towards the public-safety area of interest. |
US10789826B2 |
Real-time safety detection and alerting
Real-time detection and alerting for swimming pool safety includes obtaining signals from sensor devices installed in a swimming pool area having a swimming pool, ascertaining, based on the obtained signals, that an individual has entered the swimming pool and identifying, based on the obtained signals, characteristics of the individual who has entered the swimming pool, determining whether to raise an alert about the individual having entered the swimming pool, the determining being based at least in part on location of one or more other individuals relative to the swimming pool area and on checking pre-configured parameters for alerting, and performing processing based on the determining whether to raise an alert. |
US10789825B2 |
Rescue time tracker
A rescue time tracking system for recording emergency medical services (EMS) event times associated with EMS treatment of a patient includes a time tracker, a patient charting device, a user interface comprising one or more input controls, a communication interface, and at least one processor, memory, and associated circuitry, and the system is configured to receive patient data gathered during the EMS treatment of the patient via the patient charting device, activate the time tracker via the one or more input controls of the user interface, capture event time information from the activated time tracker, format the event time information and the patient data into a report for the EMS treatment of the patient, and send the report for the EMS treatment of the patient via the communication interface to a remote computing device. |
US10789823B2 |
Method and apparatus for identifying removed components
Theft increases the average product cost to consumers. A mentoring system is presented that can help to reduce or prevent the inventory from lost or theft. Theft is a serious concern in the consumer market place. Industry loses billions per year on theft of merchandise. According to a Reuters report, last year, thefts by employees of U.S. retail merchandise accounted for $15.9 billion, or 44 percent of theft losses at stores, more than shoplifting and vendor fraud combined. Thus, the total thief by the customers and store employees during the year 2008 amounted to $36 billion. Several embodiments of ways to control or reduce the thefts in the market place are presented. |
US10789820B1 |
Appearance based access verification
A computer implemented method, including receiving, by a monitoring system that is configured to monitor a property and from a first camera that is trained on a vicinity of an entry point of the property, first image data, determining that a visitor is located at the vicinity of the entry point of the property, generating, by the monitoring system, an appearance model of the visitor, receiving, by the monitoring system and from a second camera that is trained on an area of the property other than the vicinity of the entry point of the property, second image data, comparing, by the monitoring system, the second image data to the appearance model of the visitor, determining a confidence score that reflects a likelihood that the visitor is located at the area of the property other than the vicinity of the entry point, and performing a monitoring system action. |
US10789817B2 |
Slot game with additional skill element
A method, apparatus, and computer readable storage to implement a slot machine (or other game) which allows the player to activate the game (spin the reels) without having to place a wager (entry). Only after the reels have stopped spinning can the player decide to place the wager (entry) or the player can choose to walk away from the game. If the player places the wager (entry) then the player is presented with a skill game which converted a result from the slot reels into an actual award amount which is then awarded to the player. |
US10789815B2 |
Skillful regulated casino games and gaming machines configured to enable the player to select from among equally probable outcomes to win
A computer-implemented method of operating a regulated gaming machine may comprise providing a game configured to interact with a player and to generate a skill-influenced random outcome comprising a generated random pattern, skewed by received skillful player interactions, within an arrangement of a predetermined plurality of elements, each random pattern being associated with an equally random probability of being generated. The player may be provided with an opportunity to select the winning pattern. To do so, an opportunity may be provided, and the player may select, a desired pattern of the predetermined plurality of elements as the pattern on which the player wishes to place a wager. The skill-influenced random outcome may then be generated and displayed, the skill-influenced random outcome comprising the skewed random pattern, skewed by the received player interactions, within the arrangement of the predetermined plurality of elements. The selection by the player of the desired pattern may then be compared with the skewed random pattern of the skill-influenced random outcome. The player may be rewarded when the selection by the player of the desired pattern matches the skewed random pattern of the skill-influenced random outcome and the established player credits may be correspondingly credited. |
US10789808B1 |
Process for allowing a consumer to play and redeem virtual instant tickets using a NFC chip or tag that stores inventory control numbers, and an ancillary device that facilitates communication between the NFC chip or tag and a remote gaming server which provides game outcomes to the ancillary device for display thereon
Near Field Communication (NFC) chips or tags are securely activated where at least one validation or redemption number is assigned to the chip or tag at the time of activation. Subsequent to activation, the NFC chip or tag enables secure data access via an Ancillary Device. Validation or redemption of the NFC chip or tag is also provided for. |
US10789804B2 |
Methods of simulating gameplay
The present disclosure describes systems and methods for simulating gameplay of a live event and placing wagers or non-wager submissions concerning an outcome of a simulation. The systems incorporate statistical data, event information, and user modifications to create the simulation. |
US10789797B2 |
Peripheral controller in an access control system
A peripheral controller for an access control system according to one embodiment includes a reader interface, a Power over Ethernet circuit, a processor, and a memory. The reader interface is configured to be communicatively coupled to at least one credential reader. The Power over Ethernet (PoE) circuit is configured to receive power over an Ethernet cable for powering the peripheral controller. The memory includes a plurality of instructions stored thereon that, in response to execution by the processor, causes the peripheral controller to analyze credential data received via the reader interface make an access control decision based on the analyzed credential data. |
US10789794B2 |
Electronic access control and location tracking system
A system and method for determining the presence of an individual at a particular spot within a location preferably based on the strength of signals received from beacons assigned to the particular spot by a software application (“App”) running on an electronic device of the individual. In one embodiment, certain presence calculations are performed by the App. In another embodiment, the App forwards information regarding the received beacon signals to an electronic identification and location tracking system and the presence calculations are performed by the system. |
US10789793B2 |
Universal locking device and firearm locking device
A locking device includes a locking mechanism configured to lock and unlock different types of objects upon a corresponding command from a separate remote device such as a smartphone controlled by a user and running an application program. A motion sensor senses any physical motion of the locking device, and an alarm provides a visual and/or audible alarm upon sensed motion or tampering of the locking device. A location tracker (GPS) continuously senses a location of the locking device. A communication module is in two-way (cellular) signal communication with the remote device, which transmits signals to the communication module indicative of a user command to lock and unlock the locking mechanism. The communication module transmits signals to the remote device indicative of a status of various parameters of the locking device. A processor is configured for signal processing of the various signals within the locking device. |
US10789786B2 |
Picture-based vehicle loss assessment
Methods, systems, and computer-readable storage media for generation of a vehicle repair plan. Implementations include actions of receiving vehicle damage data including an image of a damaged vehicle. The vehicle damage data is processed to determine a component region. The component region is processed to determine a damaged area and a damage type of a portion of the damaged vehicle. A maintenance plan is generated for the damaged vehicle based on the damaged area and the damage type. The maintenance plan is initiated for the damaged vehicle. |
US10789784B2 |
Image display method, electronic device, and non-transitory computer readable recording medium for quickly providing simulated two-dimensional head portrait as reference after plastic operation
An image display method executes on an electronic device. The image display method establishes an original three-dimensional head portrait model with a plurality of first feature points according to frontal face information of a face, wherein the first feature points form a plurality of first grids on the original three-dimensional head portrait model, and the first feature points define a plurality of feature models on the original three-dimensional head portrait model; establishes a texture mapping figure according to a left face image, a right face image, and the first grids; obtains a replacement model according to a feature replacement instruction; replaces a selected feature model of the feature models with the replacement model to generate a simulated three-dimensional head portrait model; generates a simulated two-dimensional head portrait image according to the simulated three-dimensional head portrait model and the texture mapping figure; and displays the simulated two-dimensional head portrait image. |
US10789781B2 |
Interactive frame-synchronized augmented video
Systems and methods for providing an interactive augmented experience using prerecorded video include: creating a scene model based on an image of a physical environment; generating a fantasy object; integrating a position of the fantasy object onto the scene model; determining a state of the fantasy object; selecting, using a type of meta data, one or more frames of a pre-recorded video of the physical environment associated with a desired physical camera, such that each of the frames is associated with a frame number and acquired with a physical camera; synchronizing a virtual camera with the desired physical camera; and projecting, using a first video player or a second video player, the one or more frames onto the scene model to position the scene model relative to the fantasy object, such that the projecting alternates between the first video player and the second video player. |
US10789776B2 |
Structural modeling using depth sensors
Techniques are presented for constructing a digital representation of a physical environment. In some embodiments, a method includes obtaining image data indicative of the physical environment; receiving gesture input data from a user corresponding to at least one location in the physical environment, based on the obtained image data; detecting at least one discontinuity in the physical environment near the at least one location corresponding to the received gesture input data; and generating a digital surface corresponding to a surface in the physical environment, based on the received gesture input data and the at least one discontinuity. |
US10789773B2 |
Mesh registration system and method for diagnosing tread wear
An automated tread analysis system and methods for using are described. The automated tread analysis system may include a sensing system having a plurality of cameras providing a plurality of sequential two-dimensional images. The automated tread analysis system may also include an analyzing system configured to provide at least one surface model of a first object via photogrammetry using the plurality of sequential two-dimensional images. The automated tread system may execute processing software reading data corresponding to the at least one surface model of the first object. The surface model may correspond to a current condition of the first object. The processing software executed by the user system may analyze the at least one surface model of the first object and provide at least one indicative wear metric based on the analysis of the surface model of the first object. |
US10789772B2 |
Pre-operative simulation of trans-catheter valve implantation
In a first aspect, the present invention relates to a method for patient-specific virtual percutaneous implantation, comprising estimating a patient-specific anatomical model of a patient-specific aorta based on cardiovascular 2D or 3D medical image data and virtually deploying an implant model representing an implant into said patient-specific anatomical model. In a second aspect, the present invention provides a method for patient-specific virtual percutaneous implantation. In a third aspect, the present invention provides an implant for virtual percutaneous implantation. In a fourth aspect, the present invention provides a system for virtual percutaneous implantation. |
US10789770B1 |
Displaying rich text on 3D models
A computer-implemented method for displaying rich text on a 3D model includes obtaining, by one or more processing devices, a target rich text; invoking a rendering tool corresponding to a file format of the target rich text; rendering the target rich text using the rendering tool, to obtain a rendering result; invoking a graphical programming interface; and texture mapping the rendering result to an area of the 3D model using the graphical programming interface. |
US10789769B2 |
Systems and methods for image style transfer utilizing image mask pre-processing
A computing device obtains target multimedia and obtains a style digital image depicting a style pattern to be incorporated into the target multimedia. The computing device extracts an image mask from the style digital image, the image mask depicting the style pattern. The computing device generates a modified image mask from the image mask and blends the modified image mask with the target multimedia to generate a modified target digital multimedia. The computing device generates, by an artificial intelligence processor, a final target digital multimedia based on the modified target digital multimedia and the style digital image. |
US10789767B2 |
Reducing computational complexity in three-dimensional modeling based on two-dimensional images
A method for three-dimensional (3D) modeling using two-dimensional (2D) image data includes obtaining a first image of an object oriented in a first direction and a second image of the object oriented in a second direction, determining a plurality of feature points of the object in the first image, and determining a plurality of matching feature points of the object in the second image that correspond to the plurality of feature points of the object in the first image. The method further includes calculating similarity values between the plurality of feature points and the corresponding plurality of matching feature points, calculating depth values of the plurality of feature points, calculating weighted depth values based on the similarity values and depth values, and performing 3D modeling of the object based on the weighted depth values. |
US10789766B2 |
Three-dimensional visual effect simulation method and apparatus, storage medium, and display device
A method and an apparatus for three-dimensional (3D) visual effect simulation are provided. A viewpoint movement distance is detected in a display plane. Subsequently, a first movement distance of a first graphic element in the display plane and a second movement distance of a second graphic element in the display plane are determined respectively according to the viewpoint movement distance. The first movement distance is not equal to the second movement distance. Further, a first location of the first graphic element is changed in the display plane according to the first movement distance, and a second location of the second graphic element is changed in the display plane according to the second movement distance. |
US10789760B2 |
Focus guidance within a three-dimensional interface
Methods, systems, and computer-readable media providing focal feedback and control in a three-dimensional display. Focal anchors are provided at different depths and used to determine at what depth the user is currently focusing. The focal anchors are also used to receive input from the user. By looking at a focal anchor, the use can cause the portion of content associated with the focal anchor to be displayed more prominently relative to content displayed at different depths. In one embodiment, predictive feedback is provided at a depth associated with one of the focal anchors. |
US10789759B2 |
Method for fast generation of path traced reflections on a semi-reflective surface
The present disclosure describes a method of generating fast path traced physically correct reflections in a semi-reflective surface. Secondary rays are generated by GPU graphics pipeline, lowering the computational complexity. |
US10789755B2 |
Artificial intelligence in interactive storytelling
This disclosure describes techniques that include generating, based on a description of a scene, a movie or animation that represents at least one possible version of a story corresponding to the description of the scene. This disclosure also describes techniques for training a machine learning model to generate predefined data structures from textual information, visual information, and/or other information about a story, an event, a scene, or a sequence of events or scenes within a story. This disclosure also describes techniques for using GANs to generate, from input, an animation of motion (e.g., an animation or a video clip). This disclosure also describes techniques for implementing an explainable artificial intelligence system that may provide end users with information (e.g., through a user interface) that enables an understanding of at least some of the decisions made by the AI system. |
US10789754B2 |
Generating target-character-animation sequences based on style-aware puppets patterned after source-character-animation sequences
This disclosure relates to methods, non-transitory computer readable media, and systems that use style-aware puppets patterned after a source-character-animation sequence to generate a target-character-animation sequence. In particular, the disclosed systems can generate style-aware puppets based on an animation character drawn or otherwise created (e.g., by an artist) for the source-character-animation sequence. The style-aware puppets can include, for instance, a character-deformational model, a skeletal-difference map, and a visual-texture representation of an animation character from a source-character-animation sequence. By using style-aware puppets, the disclosed systems can both preserve and transfer a detailed visual appearance and stylized motion of an animation character from a source-character-animation sequence to a target-character-animation sequence. |
US10789753B2 |
Avatar facial expression representation in multidimensional space
Examples of the disclosed systems and methods may provide for improved and more realistic rendering of virtual characters and a more realistic interaction between a user and virtual characters. For example, the systems and methods describe techniques for mathematically generating a map used for animating facial expressions in a multidimensional animation blendspace. As another example, the systems and methods describe a transition system for dynamically transitioning facial expressions across a face of the virtual character. As another example, realistic physical movements can be added to a virtual character's facial expressions to provide interactivity with other virtual characters. |
US10789751B2 |
Method and apparatus for implementing animation in client application and animation script framework
A method for implementing animation in a client application, includes receiving an animation code written in a script language from a server, the animation code including a logic script and an animation description script; parsing the logic script in the animation code, and obtaining a view identifier, an animation identifier, and a pre-obtained correspondence relationship between the view identifier and the animation identifier included therein; determining a view component to be driven and corresponding to the view identifier in a client application based on a correspondence relationship between view identifiers and view components, and reading an animation description to be implemented and corresponding to the animation identifier in the animation description script according to the animation identifier corresponding to the view identifier; and determining that loading of the animation description to be implemented in the view component to be driven according to a condition provided by the logic script. |
US10789750B2 |
Modeling method and apparatus using fluid animation graph
A modeling method searches for a sequence matched to a user input using a fluid animation graph generated based on similarities among frames included in sequences included in the fluid animation graph and models a movement corresponding to the user input based on a result of the searching. Provided also is a corresponding apparatus and a method for preprocessing for such modeling. |
US10789746B2 |
Systems and methods for creating custom lash design
A method and system implemented on a mobile device for improving lash application. An image of an eye is received, An eye profile and a point of emphasis are identified for the eye using the image. A lash framework is generated based on the eye profile and the point of emphasis. A custom lash design is created using the lash framework. The custom lash design is used for physical application of a set of lashes to the eye. |
US10789744B2 |
Method and apparatus for augmented reality display on vehicle windscreen
A method for providing a machine operator with an augmented reality view of an environment includes determining a location and orientation of a vehicle. An eye position and gaze of an operator of the vehicle are also determined. Job information to be displayed to the operator of the vehicle is determined based on the location of the vehicle and the orientation of the vehicle. The job information is displayed to the operator based on the eye position and gaze of the operator of the vehicle. In one embodiment, environmental features that can be seen through the windscreen are determined. The job information displayed to the operator is modified based on the environmental features. |
US10789738B2 |
Method and apparatus to reduce artifacts in a computed-tomography (CT) image by iterative reconstruction (IR) using a cost function with a de-emphasis operator
An apparatus and method are provided for computed tomography (CT) imaging to reduce artifacts due to objects outside the field of view (FOV) of a reconstructed image. The artifacts are suppressed by using an iterative reconstruction method to minimize a cost function that includes a de-emphasis operator. The de-emphasis operator operates in the data domain, and minimizes the contributions of data inconsistencies arising from attenuation due to objects outside the FOV. This can be achieved by penalizing images that manifest indicia of artifacts due to outside objects especially those outside objects have high-attenuation densities and minimizing components of the data inconsistency likely attributable to the outside object. |
US10789737B2 |
Tomographic image acquisition using asymmetrical pixel binning
A computer implemented method for reconstructing a 3-D volume image using a radiographic imaging system having one or more x-ray sources and a digital detector. A plurality of radiographic images of a subject at various angles are captured in the digital detector. Image data in two or more pixels of the detector that are adjacent to each other in a row direction or a column direction are combined, while pixels adjacent in the other direction are not combined. |
US10789733B2 |
Point cloud compression with multi-layer projection
A system comprises an encoder configured to compress attribute information and/or spatial for a point cloud and/or a decoder configured to decompress compressed attribute and/or spatial information for the point cloud. To compress the attribute and/or spatial information, the encoder is configured to convert a point cloud into an image based representation. Also, the decoder is configured to generate a decompressed point cloud based on an image based representation of a point cloud. The encoder is configured project the point cloud on to patch planes to compress the point cloud, and supports multiple layered patch planes. For example, some point clouds may have a depth, and points at different depths may be assigned to different layered patch planes. |
US10789728B2 |
Machine learning framework for visual tracking
A method of analyzing autonomous vehicle data comprising recording a video of a vehicle environment utilizing one or more vehicle cameras, identifying corner points of objects in the video, identifying a forward-tracked location of one or more corner points in each frame from an earlier frame to a later frame of the recorded video played in forward, identifying a reverse-tracked location of one or more corner points in each frame from the later frame to the earlier frame of the recorded video played in reverse, comparing the forward-tracked location of the earlier frame and reverse-tracked location of the later frame, and adjusting a descriptor defining characteristics of one or more pixels of the corner point in response the comparison indicating an error rate exceeding a threshold. |
US10789723B1 |
Image object extraction and in-painting hidden surfaces for modified viewpoint rendering
In one embodiment, a method includes generating depth map for a reference image and generating a three-dimensional (3D) model for a plurality of objects in the reference image based on the depth map. The method additionally includes determining, out of the objects in the 3D model, a background object having a boundary adjacent to a foreground object. The method also includes determining that at least a portion of a surface of the background object is hidden by the foreground object and extending, in the 3D model, the surface of the background object to include the portion hidden by the foreground object. The method further includes in-paint pixels of the extended surface of the background object with pixels that approximate the portion of the surface of the background object hidden by the foreground object. |
US10789721B2 |
Image processing apparatus, alignment method and storage medium
An image processing apparatus includes first alignment means configured to perform an alignment in a horizontal direction on a plurality of two-dimensional tomographic images based on measurement light controlled to scan an identical position of an eye according to a first method, and second alignment means configured to perform an alignment in a depth direction on the plurality of two-dimensional tomographic images according to a second method that is different from the first method. |
US10789719B2 |
Method and apparatus for detection of false alarm obstacle
The embodiment of the present application provides a method and apparatus for detection of false alarm obstacle, and relates to the field of identification and detection technology, in order to improve accuracy for the obstacle detection. The method includes: obtaining a first view at a moment t and a second view at a moment t−1, collected by a camera; determining location information of the same obstacle to be detected in the first view and the second view; determining motion information of the camera from moment t−1 to the moment t; judging whether the location information of the same obstacle to be detected in two views being matched with the motion information of the camera; and if not, judging the obstacle to be detected as a false alarm obstacle. The embodiment of the present application is applied to obstacle detection. |
US10789716B2 |
Image processing apparatus and method of controlling the same and recording medium
An apparatus captures an image of a measuring instrument that is captured by an imaging apparatus, sets an area in the image as an edge detection processing target in response to a user operation, and executes edge detection processing on the set area in the image. Further, the image processing apparatus sets a value for correcting a position of a detected edge portion. The image processing apparatus corrects the position of the detected edge portion based on the set value and calculates a value indicated by a pointer of the measuring instrument according to the corrected position of the edge portion. |
US10789711B2 |
Imaging of dispersion and velocity of contrast agents
Some embodiments are directed to a method of estimating a velocity of a contrast agent. The method includes receiving a plurality of video frames that were produced using a dynamic contrast enhanced imaging process, each video frame including a plurality of pixels/voxels. Information from the video frames is used to estimate velocity vectors indicating the velocity and direction of the agent with the vascular networks. The estimated velocity can be used to diagnose cancer, such as prostate cancer. Instead of velocity vectors, agent trajectories can be determined also used for the same purpose. |
US10789709B2 |
System and method for image segmentation
Methods and systems for image processing are provided. Image data may be obtained. The image data may include a plurality of voxels corresponding to a first plurality of ribs of an object. A first plurality of seed points may be identified for the first plurality of ribs. The first plurality of identified seed points may be labelled to obtain labelled seed points. A connected domain of a target rib of the first plurality of ribs may be determined based on at least one rib segmentation algorithm. A labelled target rib may be obtained by labelling, based on a hit-or-miss operation, the connected domain of the target rib, wherein the hit-or-miss operation may be performed using the labelled seed points to hit the connected domain of the target rib. |
US10789703B2 |
Semi-supervised anomaly detection in scanning electron microscope images
Autoencoder-based, semi-supervised approaches are used for anomaly detection. Defects on semiconductor wafers can be discovered using these approaches. The model can include a variational autoencoder, such as a one that includes ladder networks. Defect-free or clean images can be used to train the model that is later used to discover defects or other anomalies. |
US10789698B2 |
Analysis apparatus, analysis method, and storage medium
The analysis apparatus (2000) includes a co-appearance event extraction unit (2020) and a frequent event detection unit (2040). The co-appearance event extraction unit (2020) extracts co-appearance events of two or more persons from each of a plurality of sub video frame sequences. The sub video frame sequence is included in a video frame sequence. The analysis apparatus (2000) may obtain the plurality of sub video frame sequences from one or more of the video frame sequences. The one or more of the video frame sequences may be generated by one or more of surveillance cameras. Each of the sub video frame sequences has a predetermined time length. The frequent event detection unit (2040) detects co-appearance events of the same persons occurring at a frequency higher than or equal to a pre-determined frequency threshold. |
US10789697B2 |
Devices, systems, and methods for spatial-neighborhood consistency in feature detection in image data
Devices, systems, and methods obtain respective corresponding feature-detection scores for a plurality of areas in an image; calculate respective corresponding sorting scores for at least some areas of the plurality of areas; for the at least some areas of the plurality of areas, arrange the corresponding feature-detection scores in order of the corresponding sorting scores, thereby generating an order of sorted feature-detection scores; and assign respective detection scores to the at least some areas based on the order of sorted feature-detection scores and on three or more of the following: the respective corresponding feature-detection scores of the areas, a spectral threshold, a spatial threshold, and a neighborhood kernel. |
US10789696B2 |
Patch selection for neural network based no-reference image quality assessment
The present disclosure relates to a method for image patch selection for training a neural network for image quality assessment. The method includes receiving an input image and extracting one or more image patches from the input image. The moment of the extracted image patches is measured. There is a decision to accept or decline the extracted image patches according to the measured moment. Additional image patches are extracted until a minimum number, Nmin, of extracted image patches are accepted. Alternatively, selection criteria are adjusted until the minimum number of extracted image patches are accepted. The selected image patches are input into a neural network with a corresponding image quality value of the input image, and the neural network is trained with the image patches and image quality value. Also provided is a method for image quality assessment using a neural network trained as set forth above. |
US10789695B2 |
Systems, devices, and methods for providing feedback on and improving the accuracy of super-resolution imaging
Systems, methods, and computer-readable media for feedback on and improving the accuracy of super-resolution imaging. In some embodiments, a low resolution image of a specimen can be obtained using a low resolution objective of a microscopy inspection system. A super-resolution image of at least a portion of the specimen can be generated from the low resolution image of the specimen using a super-resolution image simulation. Subsequently, an accuracy assessment of the super-resolution image can be identified based on one or more degrees of equivalence between the super-resolution image and one or more actually scanned high resolution images of at least a portion of one or more related specimens identified using a simulated image classifier. Based on the accuracy assessment of the super-resolution image, it can be determined whether to further process the super-resolution image. The super-resolution image can be further processed if it is determined to further process the super-resolution image. |
US10789692B2 |
Method and system for generating an output image from a plurality of corresponding input image channels
A method and system for generating an output image from a plurality, N, of corresponding input image channels is described. A Jacobian matrix of the plurality of corresponding input image channels is determined. The principal characteristic vector of the outer product of the Jacobian matrix is calculated. The sign associated with the principal characteristic vector is set whereby an input image channel pixel projected by the principal characteristic vector results in a positive scalar value. The output image as a per-pixel projection of the input channels in the direction of the principal characteristic vector is generated. |
US10789690B2 |
Masking non-public content
Systems and techniques for masking non-public content in screen images are provided. An example system includes a screen capture tool, a region-based object detection system, a classifier, and an image masking engine. The screen capture tool may be configured to generate a screen image representing a screen being displayed by the system. The region-based object detection system may be configured to identify multiple regions within the screen image as potential non-public content regions. The classifier may be configured to selectively classify the identified regions as non-public content regions. The image masking engine may be configured to generate a masked image by masking the regions classified as non-public content regions in the screen image. |
US10789689B2 |
Method and apparatus for correction of an image
Disclosed is an apparatus comprising a processing device and a method for color correction of an image in a processing device, the method comprising: obtaining an image; determining a Laplacian matrix of the image; obtaining a first region of the image, the first region being indicative of a part of the image to be color corrected; obtaining a second region of the image; obtaining a first recoloring image based on the second region; determining a first corrected region of a first corrected image based on the Laplacian matrix and the first recoloring image; and obtaining and outputting a corrected image based on the first corrected region of the first corrected image. |
US10789687B2 |
Image processing method and image processor performing the same
In an image processing method that converts image data into output data by performing tone mapping, an edge of an image represented by the image data is determined, a first tone mapping operation is performed on first image data included in the image data, where the first image data represent a first portion of the image not including the edge, whether a gray level of second image data is within a predetermined gray range is determined, where the second image data represent a second portion of the image including the edge, a second tone mapping operation is performed on the second image data when the gray level of the second image data is within the gray range, and the first tone mapping operation is performed on the second image data when the gray level of the second image data is not within the gray range. |
US10789685B2 |
Privacy image generation
A privacy image generation system may use a light field camera that includes an array of cameras or an RGBZ camera(s)) is used to capture images and display images according to a selected privacy mode. The privacy mode may include a blur background mode that can be automatically selected based on the meeting type, participants, location, and device type. A region of interest and/or an object(s) of interest (e.g. one or more persons in a foreground) is determined and the privacy image generation system is configured to clearly show the region/object of interest and obscure or replace the background by combining multiple images. The displayed image includes the region/object(s) of interest clearly shown (e.g. in focus) and any objects in a background of the combined image shown having a limited depth of field (e.g. blurry/not in focus) and/or blurred due to the combination of the multiple images. |
US10789683B2 |
Method for automatic optimization of quantitative map generation in functional medical imaging
The current application relates to an optimization procedure where the noise reduction strength is incrementally increased and applied in the noise reduction scheme. A non-linear quantitative map is then computed followed by the quantitative bias estimation. The optimization conditions are then checked and the noise reduction “strength” is increased if the bias difference is higher than a predefined threshold. |
US10789679B2 |
Image processing method, image processor, image capturing device, and image capturing method for generating omnifocal image
A plurality of captured images is first acquired by capturing images of an object while changing a focal position along an optical axis. Then, variations in magnification among the captured images are acquired. On the basis of the variations in magnification, corresponding pixels in the captured images are specified, and definition is compared among the corresponding pixels. Then, an image reference value indicating the number of a captured image that is to be referenced as the luminance value of each coordinates in an omnifocal image is determined on the basis of the result of comparison of the definition. The omnifocal image is thereafter generated by referencing the luminance value in the captured image indicated by the image reference value for each coordinates. In this way, the omnifocal image that reflects the position and size of the object accurately can be generated. |
US10789676B2 |
Image processing device, image processing method, and program
[Object] To make it possible to generate a panoramic image that offers a stronger sense of presence and immersion to a user without imposing too heavy a load on a user.[Solution] Alignment determination processing (2) of determining whether or not other captured image data than captured panoramic image data is capable of aligning with the captured panoramic image data in a manner that a captured object remains consistent between the captured panoramic image data and the other captured image data, and image link processing (3) of linking, to the captured panoramic image data, the other captured image data determined to be capable of aligning with the captured panoramic image data are performed. In order to integrate a captured image such as a moving image and a high resolution image other than a captured panoramic image and to generate a captured panoramic image that offers a strengthened sense of presence and immersion, a user only has to shoot a panoramic image and another captured image at substantially the same image capturing spot. Thus, it is possible to generate a panoramic image that offers a stronger sense of presence and immersion to a user without imposing too heavy a load on a user. |
US10789675B2 |
Apparatus and method for correcting image regions following upsampling or frame interpolation
Apparatus and method for correcting image regions following upsampling or frame interpolation. For example, one embodiment of an apparatus comprises a machine-learning engine to evaluate at least a first image in a sequence of images generated by a real-time interactive application, the machine learning engine to responsively use previously learned data to generate an upsampled or interpolated image comprising a plurality of pixel patches. In one embodiment, each pixel patch is associated with a confidence value reflecting how accurately the pixel patch was generated by the machine learning engine. A selective ray tracing engine identifies a first pixel patch to be corrected based a first confidence value corresponding to the first pixel patch being lower than a threshold and performs ray tracing operations on a first portion of the first image to generate a corrected first pixel patch. |
US10789671B2 |
Apparatus, system, and method of controlling display, and recording medium
An apparatus, system, and method for controlling display, each of which: obtains a first image and a second image, the second image being superimposed on the first image; controls a display to display an image of a predetermined area of the first image, such that the predetermined area of the first image matches a display area of the display; and in response to an instruction to start displaying the first image superimposed with the second image, controls the display to display the image of the predetermined area of the first image, such that the second image being superimposed on the first image is displayed within the predetermined area of the first image. |
US10789668B2 |
Intelligent provisioning of virtual graphic processing unit resources
A system and method for placing virtual computing instances in a distributed computer system utilizes virtual graphic processing unit (vGPU) requirements of the virtual computing instances to place the virtual computing instances on a plurality of hosts of the distributed computer system. Each virtual computing instance with vGPU requirements is placed on one of the plurality of hosts in the distributed computer system based on the vGPU requirements of that virtual computing instance. Each virtual computing instance without vGPU requirements is placed on one of the plurality of hosts in the distributed computer system without any vGPU consideration. |
US10789667B2 |
Method and apparatus for digital watermarking of three dimensional object
In one embodiment, a method for 3D digital watermarking for a triangular mesh using one or more key parameters is disclosed including forming a Hamiltonian path of a desired length around a selected vertex in a selected direction of a spiral; marking the selected vertex a dead end if there is a deadlock and continuing the spiral; and applying a watermark by introducing points in a path order on edges of the spiral, wherein information is encoded at a partition of adjacent triangles at one or more of the points. |
US10789666B2 |
Watermark security
Apparatuses, methods, systems, and program products are disclosed for watermark security. An apparatus includes a content module configured to identify data to be presented in a graphical interface. An apparatus includes a watermark module configured to generate a digital watermark to be presented in a graphical interface based on identified data. A digital watermark verifies an authenticity of data to be presented in a graphical interface. An apparatus includes a presentation module configured to embed a digital watermark into a graphical interface prior to data being presented in the graphical interface such that the digital watermark is graphically indistinguishable to a user in the graphical interface. |
US10789662B1 |
Facilitating computerized interactions with EMRS
A method for using a health information exchange system which stores patient record data regarding a multiplicity of patients, to serve a first plurality of EMRs each interacting with an EMR community including a set of at least one EMR, the method comprising: for each individual EMR within the first plurality of EMRs, performing a computerized context interception process using a processor to intercept context from the individual EMR and to identify there within an event whereby a health provider using the individual EMR calls up an individual patient's record from said individual EMR; and responsive to identification of the event, using a computerized output device for providing patient record data, pertaining to the individual patient, to the health provider. |
US10789659B2 |
Provision of real-estate market information
A computer-implemented method to provide information characterizing real-estate market conditions within a geographic sub-region included within a larger geographic region is described herein. An indication of the geographic sub-region is received from a user. A memory device on which is stored information characterizing a set of parcels of real property that have been listed for sale is accessed. A parcel of real property located in the sub-region and for which a purchase offer has been made is identified from the stored information. If a purchase transaction for the parcel of real property has not closed, a range of a plurality of values characterizing the purchase offer is provided in at least one graphical user interface. If a purchase transaction for the parcel of real property has closed, a specific value of the plurality of values characterizing the purchase offer is provided in at least one graphical user interface. |
US10789654B1 |
Web browsing systems for acquiring tax data during electronic tax return preparation
A system for acquiring tax data during electronic tax return preparation includes a client computer configured to render a first webpage and receive interface data from a tax data source computer. The system also includes a browser server computer configured to receive the interface data from the client computer, process the interface data to generate rendering instructions, and transmit the rendering instructions to the client computer. The client computer and the browser server computer are configured such that, when the client computer executes the rendering instructions, the client computer renders a secondary webpage. The secondary webpage is controllable independent of the primary webpage. |
US10789651B2 |
System and method for evaluating text to support multiple applications
A system for evaluating text data to support multiple applications is disclosed. In some embodiments, text input data is received from multiple sources. The text input data may then be aggregated and mapped to create composite text input data. A semantic event in the composite text input data may be automatically detected, such as by being triggered by a semantic rule and associated semantic tag. A text mining result database may be updated by adding an entry to the database identifying the detected semantic event and the triggering semantic rule. An indication associated with the text mining result database may then be transmitted to a plurality of applications. |
US10789647B2 |
Order grid highlighting
Systems, methods and user interfaces are provided for order matrix management and highlighting. Market data may be arranged in a matrix where the market data may be highlighted and/or otherwise presented to provide further information to a user. In some cases a computer system may include a computer-readable medium containing computer-executable instructions that, when executed by one or more processors, cause a computing device to receive market data for a financial instrument. The computer system may further process instructions to identify pending orders that may result in a cross trade, such as with trades entered by a trader or between members of a same business organization. The computer system may further process instructions that cause the computer system to generate a user interface that highlights which of the pending orders that may result in a cross trade. |
US10789645B2 |
Graphical order entry user interface for trading system
On a display terminal of an electronic trading system, a graph is displayed having a first axis and a second axis, wherein the graph includes a curve corresponding to a range of values of a financial instrument. A user is allowed to select a portion of the graph. In response to the user selection of the portion of the graph, a trading dialog box is displayed on the display of the workstation, the dialog box being automatically populated with values for trading, the values based on the values of the selected portion of the graph. |
US10789644B2 |
Data auditing method and device
A query request is forwarded to a plurality of service provider servers by a proxy server that determines a serial number based on the query request. An encrypted query result corresponding to the query request is received from each service provider server, and a copy of the encrypted query result is stored as a result to be audited in a blockchain that associated with each service provider server. An audit request is sent to at least one service provider server. The result to be audited is obtained from the blockchain corresponding to the service provider server. As a standard result, an encrypted query result is received from the service provider server. As an audit, the standard result received from the service provider server is compared with the result to be audited that obtained from the blockchain that associated with the service provider server. |
US10789638B2 |
Method and system for providing personalized on-location information exchange
A method includes: deploying a frontend system (FIES); registering a current deployment location of the FIES; detecting a close-proximity interaction between a user and the FIES that specifies a first category; generating a product recommendation that includes a first product of the first category; detecting a respective prior purchase record of the user for a second product in a second category associated with the first category; if the prior purchase record indicates a purchase or delivery location outside of a geographic region of the registered current deployment location, automatically augmenting the product recommendation to include a third product from the second category selected based on characteristics of the second product; and otherwise, automatically refining the first product recommendation to further define characteristics of the first product based on the characteristics of the second product; and providing the product recommendation to the first user after the automatic augmenting or refining. |
US10789635B2 |
Method and system for implementing a food-sharing application platform
A system, platform, and method including a user interface adapted to receive a user input and communicatively connected with a communications module, a foodstuff database stored in memory including a set of available foodstuff transactions, and a controller module adapted to receive the user input receive at the user interface by way of the communications module, and configured to query the foodstuff database based on the user input, identify at least a subset of available foodstuff transactions based on the query, and send the identified subset of available foodstuff transactions to the user interface by way of the communications module. |
US10789629B2 |
Content purchasing
In one implementation, a computer-implemented method includes receiving, at a computing device and from a computer server system, digital content that is for sale and that is received without having yet been purchased by a user of the computing device; storing the digital content locally on the computing device in a manner that prohibits user access to the digital content; after storing the digital content: receiving user input that indicates the user is purchasing at least a portion of the stored digital content; and in response to the received user input, storing information that indicates the user purchased the portion of the digital content and providing the user with access to the purchased portion of the digital content; and in response to detecting that the computing device is communicatively connected to the computer server system over a network, providing the stored information to the computer server system. |
US10789627B1 |
System and method for pricing of virtual containers determined stochastically upon activation
An approach to facilitating pricing of virtual containers is provided. Item prices associated with obtaining item instances of virtual items in a game space may be determined. Probabilities that container instances of virtual containers will provide individual ones of the item instances of the virtual items upon activation by users in the game space may be determined. Container prices to be associated with obtaining the container instances of the virtual containers may be determined based on the determined item prices and/or the determined probabilities. A store interface may present offers to the users to purchase the container instances of the virtual containers at the determined container prices. |
US10789624B2 |
Systems and methods for providing media content over an electronic network
A facility for processing a search query is described. The facility identifies one or more items that satisfy the query, at least one of which is a media sequence. For each identified media sequence, the facility identifies an advertising message based upon the contents of the query. In response to the query, the facility returns a search result that indicates the identified items. When one of the identified media sequences is selected in the search result, the selected media sequence is provided in conjunction with the advertising message identified for it. |
US10789623B1 |
Ad collision reduction
An ad collision machine can be configured to evaluate collision queries for possible ad collisions and is associated with an ad datacenter configured to evaluate and respond to bid requests on behalf of a plurality of advertisers. The ad collision machine can comprise a plurality of nodes and a data cache containing a plurality of user ID-campaign ID keys representing recently submitted bids in response to bid requests. Once a selected node receives a collision query, a user ID-campaign ID key is retrieved from the collision query. If the first key is not found in the data cache, it is written to the data cache by the node and the ad collision machine returns that user ID-campaign ID pair as available to be bid on. |
US10789621B2 |
Method and apparatus for guiding service flow
In an implementation, guiding a service flow is described. Historical behavior data of one or more users who use a target service is obtained for the target service. The historical behavior data is analyzed to obtain one or more user features. One or more target users are selected from one or more users who do not use the target service based on the one or more user features. Each target user has at least one of the one or more user features. Service flow guiding information is sent to each target user. The service flow guiding information guides each target user to use the target service. |
US10789620B2 |
User segment identification based on similarity in content consumption
The present disclosure is directed toward systems and methods for identifying user segments. In particular, the systems and methods described herein evaluate user session logs to gather media content consumption history information associated with a plurality of users. Additionally, the systems and methods described herein analyze items of media content to identify keywords, genres, and other attributes, and further represent the items of media content as vectors. The systems and methods follow an algorithm to group items of media content into clusters and, based on the clusters of media content, further group users of media content into user clusters (e.g., user segments). |
US10789616B2 |
Systems and methods for presenting supplemental information related to an advertisement consumed on a different device within a threshold time period of an end of a corresponding advertisement slot
Systems and methods are described for presenting supplemental information to a user that is related to an advertisement consumed by the user that the user found interesting. It may be determined that a user is interested in receiving supplemental information based on the user starting to use a device within a threshold time period from consuming the advertisement on a different device. The threshold time period may be determined based on the length of the advertisement slot including the advertisement (e.g., the threshold time period may be 30 seconds if the length of the advertisement slot is 30 seconds). In response to determining that the user started using the first device within the threshold period of time from the end of the advertisement, supplemental information associated with the advertisement may be presented to the user. |