Document | Document Title |
---|---|
US10771766B2 |
Method and apparatus for active stereo vision
Various examples with respect to method and apparatus for active stereo vision are described. An apparatus may include an electromagnetic (EM) wave emitter, a first sensor and a second sensor. During operation, the EM wave emitter emits EM waves toward a scene, the first sensor captures a first image of the scene in an infrared (IR) spectrum, and the second sensor captures a second image of the scene in a light spectrum. The first image and second image, when processed, may enable active stereo vision. |
US10771765B2 |
Information processing apparatus, information processing system, information processing method, and storage medium for embedding time stamped information in an image
An information processing apparatus includes an acquisition unit configured to acquire image data, a generation unit configured to generate information about time as generated additional data, and a replacement unit configured to replace data at a plurality of pixel positions of the acquired image data with the generated additional data. |
US10771764B2 |
Method for transmitting 360-degree video, method for receiving 360-degree video, apparatus for transmitting 360-degree video, and apparatus for receiving 360-degree video
A 360-degree video data processing method performed by a 360-degree video reception apparatus, according to the present invention, comprises the steps of: receiving 360-degree video data; deriving metadata and information on an encoded picture for a specific viewing position in specific viewing space based on the 360-degree video data; decoding the encoded picture based on the information on the encoded picture; and rendering the decoded picture based on the metadata, wherein the metadata includes viewing space information, and wherein the viewing space information includes information indicating a shape type of the specific viewing space. |
US10771762B2 |
Image processing apparatus, image pickup apparatus, image processing method, and non-transitory computer-readable storage medium that correct a parallax image based on a correction value calculated using a captured image
An image processing apparatus includes an acquisition unit that acquires a parallax image generated based on a signal from one of a plurality of photoelectric converters that receive light beams passing through partial pupil regions of an imaging optical system different from each other, and a captured image generated by combining a plurality of signals from the plurality of photoelectric converters. A determination unit determines whether the parallax image contains a defect, and an image processing unit corrects, if the determination unit determines that the parallax image contains the defect, one or more pixel values of the parallax image that include the defect, using the captured image to calculate a correction value for each of the one or more pixels in the parallax image, and replaces the one or more pixels in the parallax image with the corresponding correction value. |
US10771760B2 |
Information processing device, control method of information processing device, and storage medium
An information processing device decides a viewpoint position and generates a virtual viewpoint image based on the decided viewpoint position by using a plurality of images shot by a plurality of imaging apparatuses. The information processing device includes a determining unit configured to determine a scene related to the virtual viewpoint image to be generated, and a deciding unit configured to decide the viewpoint position related to the virtual viewpoint image in the scene determined by the determining unit, based on the scene determined by the determining unit. |
US10771759B2 |
Method and apparatus for transmitting data in network system
A method for transmitting media data is provided. The method includes transmitting, to a display device, guide information on a scope of a content for displaying the content based on the scope, and transmitting, to the display device, at least one asset of the content corresponding to the scope. The guide information comprises guide type information which indicates a type for describing the scope. |
US10771758B2 |
Immersive viewing using a planar array of cameras
Techniques related to generating a virtual view from multi-view images for presentation to a viewer are discussed. Such techniques include determining, based on a viewer position relative to a display region, first and second crop positions of planar image and cropping the planar image to a cropped planar image to fill the display region using the first and second crop positions such that the first and second crop positions define an asymmetric frustum between the cropped planar image and a virtual window corresponding to the display region. |
US10771757B2 |
Method and appartus for stereoscopic focus control of stereo camera
A stereoscopic control method includes: establishing a specific mapping relation between a specific disparity value and a specific set of a first focal setting value of a first sensor of a stereo camera and a second focal setting value of a second sensor of the stereo camera; and controlling stereoscopic focus of the stereo camera according to the specific mapping relation. Besides, a stereoscopic control apparatus includes a mapping unit and a focus control unit. The mapping unit is arranged for establishing at least a specific mapping relation between a specific disparity value and a specific set of a first focal setting value of a first sensor of a stereo camera and a second focal setting value of a second sensor of the stereo camera. The focus control unit is arranged for controlling stereoscopic focus of the stereo camera according to the specific mapping relation. |
US10771756B2 |
Signal transmission device and signal transmission method
The present disclosure relates to a signal transmission device, a signal transmission method, and a program that are capable of reducing the influence of a quantization error. A quantization error notification unit notifies the stage after a bit precision constraint region of a quantization error generated in a quantization processing unit that performs a quantization process on a signal to be transmitted via the bit precision constraint region that is a region where a bit precision constraint occurs. A quantization error reception unit receives the quantization error, and supplies the quantization error to an inverse quantization processing unit that performs an inverse quantization process on the signal transmitted via the bit precision constraint region. The present technology can be applied to an image signal transmission device that transmits image signals, for example. |
US10771752B2 |
Display system, control device, control method for display system, and computer program
A control device coupled to a projector that applies distortion correction to input image data to generate corrected image data and projects a corrected image includes a generating section configured to apply, based on correction data indicating content of the distortion correction, the distortion correction to reference image data indicating a reference image including a plurality of lattice points to generate preview image data indicating a preview image, a display section configured to display the preview image, an accepting section configured to accept enlarging operation, selecting operation for selecting a lattice point set as a correction target among a plurality of lattice points included in the preview image to be enlarged, and changing operation for changing a position to the lattice point to be selected, and a transmitting section configured to transmit a changing command for changing the distortion correction generated according to the changing operation to the projector. |
US10771749B2 |
Electronic apparatus, display system, and control method of electronic apparatus
A terminal apparatus includes a wireless communication unit that communicates with a projector; an operation detection unit that detects an operation; and an operation data processing unit that causes the wireless communication unit to transmit operation data designating a display position of a pointer to the projector, when the projector displays the pointer according to an operation of a pointing device based on the operation detected by the operation detection unit. |
US10771748B2 |
System and method for interactive aerial imaging
A computer-implemented method and system is disclosed for capturing and distributing aerial images and/or videos. Images and/or videos are captured from aircraft and transmitted to a ground station. Users are able to view captured images on a real-time or near real-time basis through a user platform on mobile devices and web browsers. The location of the user may also be determined and used to interpolate the user's location with the captured images. |
US10771746B2 |
System and method for synchronizing camera footage from a plurality of cameras in canvassing a scene
A method and system for synchronizing camera footage from a plurality of cameras includes providing a database of cameras, accessible via a user device, which stores a correction associated with each camera to a date/time in metadata associated with footage recorded by the camera, to facilitate synchronization of footage recorded by each camera to an actual date/time. The stored correction is applied to camera(s) to determine an adjusted date/time in the metadata corresponding to footage recorded at a particular date and time; and the footage for the camera(s) is synchronized to the particular date and time, based on the adjusted date/time determined from the correction. Cameras for synchronization are identified based on location stored in the database. A list of identified cameras may be exported with a case or UserID, and locations, adjusted metadata for synchronization, and bases for the correction calculation. The list is optionally generated via mapping functions. |
US10771745B2 |
Image processing apparatus, image processing method, and storage medium having program stored therein
A image processing apparatus according to an aspect of the present invention includes: determination unit 131 that determines a first region based on an occurrence position where a phenomenon is estimated to occur in an image; and setting unit 132 that sets a first condition in which the first region is encoded, and a second condition in which a second region included in the image and being a region other than the first region is encoded in such a way that the first region enhances image quality as compared with the second region. |
US10771744B2 |
Photography control method, photography control system, and photography control server
A photography control method includes temporarily saving one or more sets of photography data, taken by a photographing camera, in a temporary photography data storage unit, acquiring identification information identifying a subject, extracting, from the one or more sets of photography data temporary saved in the temporary photography data storage unit, at least one set of photography data corresponding to the identification information acquired in the acquiring of identification information; and saving the extracted at least one set of photography data in a photography data storage unit in a manner associated with the identification information of the subject. |
US10771742B1 |
Devices with enhanced audio
A system for enhancing audio including a plurality of sensors, an output device, and a processor in communication with the plurality of sensors and the output device. The processor is configured to process data captured by the plurality of sensors, and based on that, modify an output of the output device. The processor also is configured to determine whether there are a plurality of users associated with a video conferencing session, determine which user of the plurality of users is speaking, and enhance the audio or video output of the speaking user on the output device. |
US10771741B1 |
Adding an individual to a video conference
A method, computer system, and computer program product for adding individual to a video conference. The method may include capturing a first video stream of a user from a first camera of a device and providing the first video to a device of at least one video conference participant other than the user. The method may include capturing and analyzing second video stream from second camera to detect whether an individual appears in the second video stream. In response to detecting an individual in the second video stream, the method may include determining an identity for the individual and prompting the user to confirm adding the individual to the video conference. In response to receiving the confirmation from the user to add the individual to the video conference, the method may include adding the second video stream to the video conference, thereby adding the individual to the video conference. |
US10771740B1 |
Adding an individual to a video conference
A method, computer system, and computer program product for adding individual to a video conference. The method may include capturing a first video stream of a user from a first camera of a device and providing the first video to a device of at least one video conference participant other than the user. The method may include capturing and analyzing second video stream from second camera to detect whether an individual appears in the second video stream. In response to detecting an individual in the second video stream, the method may include determining an identity for the individual and prompting the user to confirm adding the individual to the video conference. In response to receiving the confirmation from the user to add the individual to the video conference, the method may include adding the second video stream to the video conference, thereby adding the individual to the video conference. |
US10771739B2 |
Information processing device and information processing method
To perform matching between a user who provides a first person view and a user who views the first person view.An icon indicating a current position of each Body is displayed on a map of a range that is currently specified. A Ghost can select a Body to whom the Ghost desires to perform JackIn by specifying an icon in a desired position by UI operation such as a touch or click. Further, when a keyword for limiting behavior or the like is input to a search field, only Bodies extracted on the basis of the behavior are displayed. Then, when selection is settled, a JackIn request is transmitted from the Ghost to the selected Body. |
US10771738B2 |
Methods and systems for multi-pane video communications
Systems and methods are disclosed for establishing a video connection between a mobile device and a support terminal while enabling the support terminal to concurrently push display elements to the mobile device through a separate connection. In particular, in one or more embodiments, the disclosed systems and methods establish a first connection between the support terminal and the mobile device and conduct a video chat between the devices transmitted through the first connection. The disclosed systems and methods enable the support terminal to push a display element to the mobile device through a second connection. In response to receiving the display element, the disclosed systems and methods divide the display screen of the mobile device into at least a first pane and a second pane, providing the video chat for display on the first pane and the display element for display on the second pane. |
US10771735B2 |
Data cable, electronic system and method for transmitting MIPI signal
A data cable, electronic system and method for transmitting MIPI signals are provided. The electronic system includes a first electronic device configured to generate at least one pair of MIPI (Mobile Industry Processor Interface) differential signals, and a data cable and a second electronic device connected to the first electronic device via the data cable. The data cable is configured to receive the at least one pair of MIPI differential signals from the first electronic device, and perform impedance matching and shielded grounding processing on the at least one pair of MIPI differential signals, and transmit the processed at least one pair of MIPI differential signals to the second electronic device. |
US10771733B2 |
Method and apparatus for processing video playing
Embodiments of the application disclose a method and apparatus for processing video playing, and relate to the technology field of video. The method includes: obtaining an adjustment instruction for a first video being played; determining whether the first video is being recorded; if the first video is being recorded, acquiring and storing a bit stream of the first video based on a current bit stream type of the first video. With the embodiment of the application, the complete recording of a video is ensured. |
US10771731B2 |
Display device
A display device includes a display panel, a light source, an optical member, a rear chassis and a frame member. The light source is disposed on a rear side relative to the display panel. The optical member is disposed on the rear side relative to the display panel. The rear chassis houses the light source, the rear chassis including an outer peripheral portion with a flat component that extends outward relative to a center of the display device and a bent part that extends rearward from an outer edge of the flat component. The frame member is fastened to the bent part of the rear chassis with a fastening member. |
US10771727B2 |
Monitoring system with heads-up display
A monitoring system having a heads-up display may include a receiver, a transmitter, and a monitor device. The monitoring system may be designed to display video information in a peripheral field and may be designed to display real-time information while minimizing latency. The monitoring system may provide for the monitoring or recording of patient vital information by a healthcare professional performing medical tasks. |
US10771724B2 |
Image capturing apparatus
An image capturing apparatus is provided with a pixel array that has a plurality of image forming pixels and a plurality of focus detection pixels, a readout unit that reads out a pixel signal from the pixel array, an A/D conversion unit that has a first mode for A/D converting the pixel signal read out by the readout unit with a first resolution and a second mode for A/D converting the pixel signal read out by the readout unit with a second resolution that is higher than the first resolution, and a control unit that switches between the first mode and the second mode in accordance with the pixel signal read out from the pixel array. |
US10771723B2 |
Systems and methods for voltage settling
An image sensor pixel may include a photodiode, a floating diffusion, and a transfer gate. Column readout circuitry coupled to the image sensor pixel via a column line. Voltage settling circuitry may be coupled to the column line. Voltage settling circuitry may include a pre-charging circuit, a reset voltage slew boosting circuit, and an image signal voltage slew boosting circuit. The pre-charging circuit may pull down the column line voltage to a grounding voltage. The reset voltage slew boosting circuit may pull up the column line voltage to a reference voltage near a reset level voltage. The image signal voltage slew boosting circuit may pull down the column line voltage to an additional reference voltage near an image signal voltage. With the use of the voltage settling circuitry, a faster pre-charge and clamping of the column line can be achieved. |
US10771720B2 |
Solid-state imaging device having a photoelectric converter with multiple semiconductor regions, imaging system and movable object
A solid-state imaging device includes a plurality of pixels, each of the plurality of pixels including a photoelectric converter. The photoelectric converter includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type provided under the first semiconductor region, and a third semiconductor region of the first conductivity type provided under the second semiconductor region. The second semiconductor region has a first end portion and a second end portion opposing to the first end portion. The third semiconductor region has a first region and a second region overlapping with the second semiconductor region in a plan view, and the first region and the second region are spaced apart from each other from a part of the first end portion to a part of the second end portion. |
US10771719B2 |
Imaging element
The present technology relates to an imaging element that can reduce noise. The imaging element includes: a photoelectric conversion element; a first amplification element that amplifies a signal from the photoelectric conversion element; a second amplification element that amplifies an output from the first amplification element; an offset element provided between the first amplification element and the second amplification element; a first reset element that resets the first amplification element; and a second reset element that resets the second amplification element. The offset element is a capacitor. A charge is accumulated in the offset element via a feedback loop of an output from the second amplification element, and an offset bias is generated. The present technology can be applied to an imaging element. |
US10771718B2 |
Imaging device and imaging system
An imaging device includes pixels including a photoelectric conversion unit, a holding unit holding charge transferred from the photoelectric conversion unit, and an amplifier unit outputting signal based on the charge. The pixels output a first signal based on charge generated in a first exposure period and a second signal based on charge generated in a second exposure period of different length. In the first exposure period, the photoelectric conversion unit accumulates the generated charge, and charge held by the holding unit is transferred to the amplifier unit. The second exposure period includes a period of accumulating the generated charge only in the photoelectric conversion unit and a period of holding the generated charge in the photoelectric conversion unit and the holding unit. In the period of accumulating the generated charge only in the photoelectric conversion unit, the charge held by the holding unit is transferred to the amplifier unit. |
US10771717B2 |
Use of IR pre-flash for RGB camera's automatic algorithms
The image capture system of the present disclosure comprises an illuminator comprising at least one infrared light LED or laser and one visible light LED, an image sensor that is sensitive to infrared light and visible light, a memory configured to store instructions, and a processor configured to execute instructions to cause the image capture system to emit infrared light, receive image data comprising at least one infrared image, and determine depth maps, visible focus settings, or infrared exposure settings based on the infrared image data. |
US10771716B2 |
Control device, monitoring system, and monitoring camera control method
A monitoring system includes a plurality of cameras and a control device. The control device includes device storage, an output device, and an input device. The device storage stores therein an image captured by each camera of the plurality of cameras. The output device displays an image exhibiting a positional relationship of the plurality of cameras. The input device sets tracking information for tracking a specific tracking target in the captured images to one camera among the plurality of cameras. When an imaginary movement line is input on the image exhibiting the positional relationship of the cameras, the input device sets the tracking information to one or more cameras corresponding to the imaginary movement line among the plurality of cameras other than the one camera. |
US10771714B2 |
Image sensor modules including primary high-resolution imagers and secondary imagers
Image sensor modules include primary high-resolution imagers and secondary imagers. For example, an image sensor module may include a semiconductor chip including photosensitive regions defining, respectively, a primary camera and a secondary camera. The image sensor module may include an optical assembly that does not substantially obstruct the field-of-view of the secondary camera. Some modules include multiple secondary cameras that have a field-of-view at least as large as the field-of-view of the primary camera. Various features are described to facilitate acquisition of signals that can be used to calculate depth information. |
US10771713B2 |
Imaging control device, imaging control method, and program
An imaging control device including: a control unit configured to perform control such that an exposure timing is synchronized with a timing of a peak of a detected flickering component on a basis of a period of the flickering component and the timing of the peak of the flickering component. |
US10771709B2 |
Evaluation device, evaluation method, and camera system
It is made such that a user can easily and appropriately evaluate luminance of an HDR video signal.A luminance evaluation value is obtained by processing the HDR video signal. The luminance evaluation value is displayed on a display unit. For example, the HDR video signal is a linear HDR video signal and/or the HDR video signal obtained by performing gradation compression on the linear HDR video signal with a log curve characteristic. For example, the luminance evaluation value includes an average picture level, a high light share ratio, a high light average picture level, a product value of the high light share ratio and the high light average picture level and the like. |
US10771706B2 |
Method and electronic device for focus control
An electronic device includes a camera, a memory storing first unit information and second unit information to be used to move a lens driving part, and a processor. The first unit information is configured such that the camera causes a first focus sharpness variation and the second unit information is configured such that the camera causes a second focus sharpness variation. The processor is configured to receive a signal for adjusting a focus associated with an external object by using the camera, to verify a state of the electronic device associated with the reception of the signal, to select corresponding unit information among the first unit information and the second unit information, based at least partly on the state, and to move the lens driving part depending on the corresponding unit information to adjust the focus associated with the external object. |
US10771703B2 |
Image photography apparatus
An information processing apparatus that includes a camera unit including an imaging sensor that captures an image; a display that displays an image; and a processor that: clips an image region having a size corresponding to a photography zoom power from an image captured by the camera unit; adjusts a clipping position at a time of clipping the image region from the image; and controls the display to display the clipped image region on the display. |
US10771699B2 |
Systems and methods for rolling shutter correction
An image processing method includes obtaining an image frame through an imaging device over a period of time. The image frame includes a plurality of groups of pixels that are exposed to light at different time points within the period of time. The method further includes obtaining attitude information of the imaging device during the period of time, deriving positional state of an individual group of pixels in the plurality of groups of pixels based on the attitude information of the imaging device, and processing the image frame using the positional state. |
US10771698B2 |
Image stabilization using machine learning
Techniques and systems are provided for machine-learning based image stabilization. In some examples, a system obtains a sequence of frames captured by an image capture device during a period of time, and collects motion sensor measurements calculated by a motion sensor associated with the image capture device based on movement of the image capture device during the period of time. The system generates, using a deep learning network and the motion sensor measurements, parameters for counteracting motions in one or more frames in the sequence of frames, the motions resulting from the movement of the image capture device during the period of time. The system then adjusts the one or more frames in the sequence of frames according to the parameters to generate one or more adjusted frames having a reduction in at least some of the motions in the one or more frames. |
US10771695B2 |
Electronic apparatus, method for controlling the same, and recording medium, for controlling power consumption
An electronic apparatus includes an approach detection unit detecting approach of an object to an approach section, an operation detection unit detecting an operation on an operation unit, and a controller performing display in a display unit in a finder viewable through a finder section when the approach is detected in a case where a predetermined. state in which the operation unit is not operated is continued for less than first and second period of times, entering a first state in which the approach is detected but display in the display unit is not performed, when a nonoperation state of the operation unit is continued for the first period of time, and entering a second state in which power consumption is smaller than that in the first state, when the predetermined state in which the nonoperation state of the operation unit is continued for the second period of time. |
US10771694B1 |
Conference terminal and conference system
Provided are a conference terminal and a conference system are proposed for providing integral conference image in video conference scenes. The conference terminal includes: a plurality of image acquisition devices, each of the image acquisition devices being configured to acquire a partial conference image; and an image processing device configured to receive a plurality of partial conference images from the plurality of image acquisition devices, convert the plurality of partial conference images into one integral conference image, and output the integral conference image. |
US10771692B2 |
Imaging systems and methods
At least one combined image may be created from a plurality of images captured by a plurality of cameras. A sensor unit may receive the plurality of images from the plurality of cameras. At least one processor in communication with the sensor unit may correlate each received image with calibration data for the camera from which the image was received. The calibration data may comprise camera position data and characteristic data. The processor may combine at least two of the received images from at least two of the cameras into the at least one combined image by orienting the at least two images relative to one another based on the calibration data for the at least two cameras from which the images were received and merging the at least two aligned images into the at least one combined image. |
US10771687B2 |
Image capturing apparatus, image processing apparatus, image processing method, and storage medium
An image capturing apparatus including an image capturing unit, a first recording unit configured to record, in a temporary storage, a plurality of images obtained by continuous shooting performed by the image capturing unit, a second recording unit configured to record, in a recording medium, the images recorded in the temporary storage, and a control unit configured to perform control to, in a case where a first operation and a second operation by a user are accepted when an image is being recorded in the recording medium, discard the images recorded in the temporary storage and stop a process of recording the image in the recording medium. |
US10771686B2 |
Method and terminal for acquire panoramic image
A method includes: after a panorama shooting instruction triggered by a user is acquired, shooting a first image, and acquiring a shooting parameter of the first image; determining move guiding information according to a preset move guiding policy, and displaying the move guiding information on a terminal, so as to instruct the user to move the terminal according to the move guiding information; shooting a preset quantity of images according to the shooting parameter of the first image after it is detected that the terminal moves, where the preset quantity of images are background images on both the left and right sides of a background corresponding to the first image; and performing, by using the first image as a center and by using a preset splicing scheme, seamless splicing on the first image and the preset quantity of images, to obtain a panoramic image. |
US10771679B2 |
Image capturing control apparatus, method of controlling the same and computer readable storage medium
An image capturing control apparatus controls, in accordance with an end of an operation by a user on an image captured by an image capture apparatus, a parameter value according to the operation to be set in the image capture apparatus, and causes a display unit to display a display image which indicates the parameter value according to the operation and is different from the captured image. At a first time point in the middle of the operation by the user and before the parameter value according to the operation is set in the image capture apparatus, the display unit is caused to display the display image corresponding to the parameter value according to the operation at the first time point. |
US10771677B2 |
Observation device and focus adjustment method
An observation device, comprising an image sensor that forms an image of a specimen, and a processor having a focus control section and an analyzer, wherein the focus control section, in a case where image data for analysis of the specimen by the analyzer is obtained when a plurality of maximum values have been generated for change in contrast evaluation value corresponding to change in the focus position, controls focus position any focus position that corresponds to the plurality of maximum values, and the image sensor outputs image data that has been imaged. |
US10771675B2 |
Imaging control apparatus and imaging control method
The present disclosure includes an imaging control apparatus, an imaging control method, and an imaging apparatus. The imaging control apparatus includes a focal point detection control circuitry configured to receive first information from a range-finding area of a dedicated phase difference detection sensor and second information from a range-finding area of an image plane phase difference detection sensor, and detect a focal point based on at least one of the first information or the second information. |
US10771673B2 |
Focusing position detecting device and focusing position detecting method
The focusing position detecting device includes contrast evaluation value calculating unit configured to calculate contrast evaluation values from a plurality of image data items obtained by imaging a subject a multiple number of times at a set exposure time while moving a focus lens in an optical axis direction within a search range, focusing position calculating unit configured to calculate a focusing position from focus positions at the time of imaging the subject a multiple number of times and the contrast evaluation values calculated by the contrast evaluation value calculating unit, detection unit configured to detect atmospheric fluctuation, and exposure time setting unit configured to set an exposure time in a case where the detection unit detects the atmospheric fluctuation so as to be longer than an exposure time in a case where the detection unit does not detect the atmospheric fluctuation. |
US10771672B2 |
Detachable-head-type camera and work machine
The present invention provides a detachable-head-type camera which, when a camera head unit is exchanged, can perform correction processing with a unique value corresponding to a camera head unit after the exchange, and provides a work machine including the detachable-head-type camera. Camera head unit of detachable-head-type camera is detachably connected to image data generation section via dedicated cable. In non-volatile memory of camera head unit, unique value corresponding to the characteristics unique to at least one of imaging element or lens is stored. Unique value is used for correction processing of image data performed by at least one of image data generation section or image processing unit. |
US10771665B1 |
Determination of illuminator obstruction by known optical properties
A vehicle includes an image sensor having a field of view, an illuminator aimed at the field of view; and a computer including a processor and a memory storing instructions executable by the processor. The computer is programmed to illuminate an object external to the vehicle; determine that the object has a known optical property; determine the optical property of the object from a database; calculate luminance of the illuminator based at least on the optical property of the object; and adjust at least one of the illuminator, the image sensor, and the computer based at least on the luminance of the illuminator. |
US10771658B2 |
Apparatus and method to determine a color within a range of colors producible by an output device
A method includes receiving information specifying a color gamut. The color gamut corresponds to a range of colors producible by an output device. The method further includes receiving a first indication of a first color associated with a first point in a geometrical representation of the color gamut in a three-dimensional (3D) color space. The method further includes generating, based on the first color, a second indication of a second color that is included in the color gamut. The second color is associated with a second point in the 3D color space. The second point is identified based on a particular value of data associated with a plurality of distances between the first point and a subset of points of the geometrical representation. The subset of points includes more than one and fewer than all points of the geometrical representation. |
US10771650B2 |
Information processing device to execute predetermined image process associated with a calculated predetermined moving direction when displayed object is swiped
A information processing device may store a first and second image process associated with a first and second moving direction. The information processing device may display an object image on a display. The information processing device may detect a first instruction position when an indicator makes contact with the object image. The information processing device may detect a second instruction position when the indicator moves to the second instruction position, while maintaining a state of being in contact with the display. The information processing device may calculate a predetermined direction towards which the second instruction position is located. The information processing device may execute a first image process on the object image when the calculated predetermined direction corresponds to the first moving direction. The information processing device may execute a second image process on the object image when the calculated predetermined direction corresponds to the second moving direction. |
US10771645B2 |
Printing control apparatus method for controlling printing control apparatus and storage medium
A printing control apparatus includes a conveying unit that conveys a document to a reading unit, a detection unit that detects a size of the document before it begins to be conveyed, a detection unit that detects the size of the document after the document begins to be conveyed, and a control unit that performs a copy job using the reading unit and printing unit based on the size of the document detected before it is conveyed in a case where the printing unit starts to print the image data before the reading unit finishes generating image data for one page and performs a copy job based on the size of the document detected after it begins to be conveyed in a case where the printing unit starts to print the image data after the reading unit finishes generating image data for at least one page. |
US10771644B2 |
Image reading device and indication tool
An image reading device includes an image reading section, a document table, a document pressing member, and a document size indication section. The image reading section reads an image of a document. The document table is located above the image reading section. The document is loaded on the document table. The document pressing member is provided over the document table in an openable and closable manner to press the document. The document size indication section is located on the document table and indicates a plurality of document sizes. The document size indication section is constituted by a semitransparent resin plate and includes a letter presenting portion. A part of the semitransparent resin plate of the document size indication section corresponding to the letter presenting portion has a smaller thickness than a part of the document size indication section other than the part thereof corresponding to the letter presenting portion. |
US10771641B2 |
Information processing device and non-transitory computer readable medium
An information processing device includes a creating unit, a state informing unit, and a setting unit. The creating unit creates an application for implementing a specific object by using at least one basic processing function. The state informing unit provides information concerning a processing state of the at least one basic processing function and a processing state of the application. The setting unit receives information for determining a display mode of a setting screen for setting settings information or a checking screen for checking the processing state of the application, and sets a determined display mode. The display mode is used for executing the application. |
US10771638B2 |
Decorating system for edible products
A device, method, and computer-readable medium for printing an image on an edible media. The method including receiving from an external device associated with a consumer the image, determining whether the image is of suitable quality to be printed on the edible media, transmitting a message to the external device, in response to a determination that the image is not of suitable quality to be printed on the edible media, and performing an image processing technique on the image to enhance the image for printing on the edible media, in response to a determination that the image is of suitable quality to be printed on the edible media. The method further including transmitting a request to a printer to print the enhanced image on the edible media, and transmitting a request to the printer to print a shipping label to ship the printed edible media to the consumer. |
US10771635B2 |
Apparatus for configuring a user device for communication with a communication server and method thereof
An apparatus enables communication between a user device and a communication server. The apparatus receives a device identifier of the user device and determines after searching a device-to-token database that the device identifier is not associated with any device communication token. The apparatus activates a predetermined application on the user device, and thereafter receives a device communication token of the predetermined application. A mapping of the device communication token with the device identifier is stored in the device-to-token database after which a communication account is created for the user device on a communication server. A login credential for the communication account is sent to the user device in a message addressed to the predetermined application and transmitted via a message server. The predetermined application on the user device receives the message, and thereafter automatically logs in to the communication server according to the login credential in the message. |
US10771632B2 |
System and method for providing carrier-independent VoIP communication
Systems and methods for seamlessly providing carrier-independent VoIP calls initiated using an existing carrier-issued telephone number are provided. In exemplary embodiments, the existing carrier-issued telephone number to be called is received. Subsequently, a status regarding if the existing carrier-issued telephone number is a registered telephone number stored in a carrier-independent database is determined. If the existing carrier-issued telephone number comprises a registered telephone number in the carrier-independent database, a call is established via peer-to-peer connection using an address associated with the registered telephone number. However, if the existing carrier-issued telephone number is not a registered telephone number in the carrier-independent database, the call is placed via a standard route. |
US10771631B2 |
State-based endpoint conference interaction
Systems and methods are described for modifying one of far-end signal playback and capture of local audio on an audio device. Frames of both a far-end audio stream and a near-end audio stream may be analyzed using a measure of voice activity, the analyzing producing voice data associated with each frame. Based on the voice data, a conference state may be determined, and one of playback of the far-end audio stream and capture of local audio on an audio device may be modified based on the determined conference state. By associating the likely intent with a predefined state, the device may further cull or remove unwanted or unlikely content from the device input and output. This may have a substantial advantage in allowing for full duplex operation in the case of more meaningful and continuing voice activity, particularly in the case where there are many connected endpoints. |
US10771630B1 |
Systems and methods for intercepting communications
Tangible, non-transitory, machine-readable media include instructions that cause a processor to receive a first indication that a user is attempting to communicate with a provider, and intercept communication between the user and the provider based on the first indication being received. The instructions also cause the processor to send user information to a provider application server based on the first indication being received, and display a visual interface that establishes communication with the relevant provider department or performs a transaction based on the first indication being received. The instructions further cause the processor to receive a second indication associated with performing the action associated with the provider via the visual interface; and performing the action based on the second indication being received. |
US10771629B2 |
System and method for transforming a voicemail into a communication session
A system and method for transforming a voicemail message into a chat session between a first party and a second party. The method comprises receiving, at a remote server, a voice message from the first party which is destined for the second party. The server transcribes the voice message, which involves transforming the voice message into a text. The server then initiates the chat session between the first party and the second party, by sending the text and audio as a multi-media instant message (IM) to the first party and to the second party. The IM appears as an outgoing message on a first computing device associated with the first party, and as an incoming message on a second computing device associated with the second party. |
US10771628B1 |
Systems and methods for forecasting inbound telecommunications associated with an electronic transactions subscription platform
Disclosed are systems and methods for forecasting inbound telecommunications, and more particularly, for analyzing real-time and historical call center data, and applying a forecasting model to said data in order to predict inbound call volume. Additionally, tools are disclosed for manipulating call center data and generating visual representations of metrics pertaining to forecasting call center data via a dashboard. |
US10771627B2 |
Personalized support routing based on paralinguistic information
Embodiments presented herein provide techniques for inferring the current emotional state of a user based on paralinguistic features derived from audio input from that user. If the emotional state meets triggering conditions, the system provides the user with a prompt which allows the user to connect with a support agent. If the user accepts, the system selects a support agent for the user based on the predicted emotional state and on attributes of the support agent found in an agent profile. The system can also determine a priority level for the user based on the score and based on a profile of the user and determine where to place the user in a queue for the support agent. |
US10771622B2 |
Incoming communication enhancements
An enhancement content asset is presented along with an incoming communication alert on a terminating recipient device. An initiation of a communication to a recipient that is sent by a caller at a caller user device is received at the core network of the wireless carrier network. A terminating recipient device for the communication is identified based on a recipient identifier of the recipient included in the initiation of the communication. A reference that enables the terminating recipient device to obtain an enhancement content asset from the wireless carrier network or a third-party content provider is generated, such that a message that includes the reference is sent to the terminating recipient device to trigger presentation of the enhancement content asset along with an incoming communication alert for the communication on a user interface of the terminating recipient device. |
US10771620B1 |
Virtualization of smartphone functions in a virtual reality application
A mobile virtualization application allows a VR application user to access mobile telephone basic functions in a third-party VR application. This virtualization application may be a virtualization plugin or an independent application which virtualizes mobile functions and creates VR models. The virtualization plugin bridges between the VR application and the mobile telephone operating system allowing the user to use directly mobile telephone basic functions in the VR application. VR application users can read directly their incoming text messages, e-mail messages, application notifications, etc., in the form of VR model, and, they can use a VR application input device to control their mobile telephone basic functions in order to send messages, control a camera, etc. |
US10771611B2 |
System and method for providing personalized audio-video invitations
A system and method for managing phone calls enables the call initiator to create a personalized audio or video invitation that the call recipient may review prior to accepting the call, which is immediately connected upon acceptance. Prior to initiating the call, the call initiator's communication device records a personalized audio or video invitation from the call initiator. A peer-to-peer connection is established between the call initiator's communication device and the call recipient's communication device. The call initiator may upload the personalized audio or video invitation to a server for the call recipient to download or stream from the server, or the call recipient may download or stream the personalized audio or video invitation from the call initiator's device via the peer-to-peer connection. Upon receipt of a notification from the call recipient that the call is accepted, a live voice connection between the call initiator and call recipient is established. |
US10771609B2 |
Messaging to emergency services via a mobile device in a wireless communication network
A method of requesting emergency services via an emergency services request application executing on a mobile device operating in a wireless communication network. The method includes determining, by the application, a location of the mobile device. Based at least in part on the location, the wireless communication network determines a Public Safety Answering Point (PSAP)/emergency service responder to contact. The application then attempts to initiate a chat session with the PSAP to request emergency services. The application next receives a response to initiating the chat session from the PSAP. The response may be some type of acknowledgement from the PSAP of a successful initiation of the chat session or may be a bounce-back message indicating an unsuccessful initiation of the chat session. |
US10771607B2 |
System and method for wireless communication of glucose data
Systems, devices, and methods are disclosed for wireless communication of analyte data. One such method includes, during a first interval, establishing a first connection between an analyte sensor system and a display device. During the first connection, the method includes exchanging information related to authentication between the analyte sensor system and the display device. The method includes making a determination regarding whether authentication was performed during the first interval. During a second interval, the method may include establishing a second connection between the analyte sensor system and the display device for transmission of an encrypted analyte value, and bypassing the exchanging of information related to authentication performed during the first connection. The method also includes, during the second interval, the analyte sensor system transmitting the encrypted analyte value to the display device, if the determination indicates that the authentication was performed during the first interval. |
US10771605B2 |
Managing contact groups from subset of user contacts
Systems, methods, and computer-readable mediums for managing a subset of user contacts on a telecommunications device are provided. In one embodiment, a software application executed by a processor of a telecommunications device determines at least two contact groups from a subset of contacts accessible by a telecommunications device. The software application executed by the processor of the telecommunications device also generates a contact display including a representation of at least a portion of the first or second contact groups and a divider display object. The divider display object partitions the first contact group from the second contact group and is positioned adjacent to at least one contact from the first or second contact groups presented in the contact display. |
US10771604B1 |
911 call assistance for assisted device user
A system and method for use with an assisted user's communication device that includes a display. The method includes providing a user communication device including a processor that is programmed to perform the step of, upon disconnection of an emergency call to a hearing user in which a captioning service has provided text transcription of voice messages from the hearing user, maintaining a link to the captioning service for a predetermined period of time. The processor also is programmed to perform the step of recognizing the call as an emergency call upon placement of the call, and the captioning service is automatically initiated upon the processor performing that recognition. |
US10771601B2 |
Distributing requests for data among servers based on indicators of intent to access the data
Requests for data can be distributed among servers based on indicators of intent to access the data. For example, a kernel of a client device can receive a message from a software application. The message can indicate that the software application intends to access data at a future point in time. The kernel can transmit an electronic communication associated with the message to multiple servers. The kernel can receive a response to the electronic communication from a server of the multiple servers. Based on the response and prior to receiving a future request for the data from the software application, the kernel can select the server from among the multiple servers as a destination for the future request for the data. |
US10771597B2 |
Synchronized connection closing
A method for a network element in a network, through which network element a communications device can communicate with the network via one or more connections, the method comprising: detecting traffic for the one or more connections from the communications device; in response to no traffic being detected on a connection for a first time period, closing each connection for which no traffic has been detected for a second time period, among the one or more connections. Corresponding network element is also provided. |
US10771594B2 |
Communication apparatus, control method for the communication apparatus, and storage medium
A communication apparatus determines whether a file selected by a file selection unit is of a format analyzable by the communication apparatus. If it is determined that the file selected by the file selection unit is not of the format analyzable by the communication apparatus, the communication apparatus restricts selection of a predetermined protocol included in a plurality of protocols. The communication apparatus further determines whether the protocol selected by a protocol selection unit is a predetermined protocol. If it is determined that the protocol selected by the protocol selection unit is the predetermined protocol, the communication apparatus restricts selection of a file of a format not analyzable by the communication apparatus. |
US10771592B2 |
Interoperability of discovery and connection protocols between client devices and first screen devices
A second screen application operating on a client device presents a deduplicated listing of devices in a user interface, each listed device associated with one or more coupling protocols. A selection of a listed device is received via the user interface with which to participate in a video display session. Application status information is obtained from a control server for a first screen application of the selected device, the application status information indicating whether the first screen application is in an existing video display session with a second client device. A coupling methodology is determined based on the indicated application status and coupling protocols available to the client device and the one or more coupling protocols of the first screen application; and the client device couples to the first screen application via the determined coupling methodology. |
US10771590B2 |
Systems and methods for intelligent routing and content placement in information centric networks
A content caching system enables an NDN network to place content closer to each end user(s) and to provide an explicit path for the target end user(s) to that content for better performance just in advance of users' anticipated request(s). The apparatus includes NDN routers and SDN controller employing a content commander, at least a content placement agent and at least one content analysis agent. |
US10771588B2 |
Service providing device and program that are capable or providing a relatively large number of services
A service providing device includes a hardware processor that: accepts a providing request of one service; determines whether or not the one service can be provided by using any of a plurality of applications installed in an own device; and controls service processing, wherein in a case where it is determined that the one service can be provided, the hardware processor uses an application corresponding to the one service to start the service processing, and in a case where it is determined that the one service cannot be provided, the hardware processor transmits the providing request of the one service to an external server, so as to cause the external server to start the service processing, and downloads a specific application from the external server or another external device to install the specific application in the own device, takes over the service processing, and then executes the service processing. |
US10771584B2 |
Provisioning using pre-fetched data in serverless computing environments
A method for data provisioning a serverless computing cluster. A plurality of user defined functions (UDFs) are received for execution on worker nodes of the serverless computing cluster. For a first UDF, one or more data locations of UDF data needed to execute the first UDF are determined. At a master node of the serverless computing cluster, a plurality of worker node tickets are received, each ticket indicating a resource availability of a corresponding worker node. The one or more data locations and the plurality of worker node tickets are analyzed to determine eligible worker nodes capable of executing the first UDF. The master node transmits a pre-fetch command to one or more of the eligible worker nodes, causing the eligible worker nodes to become a provisioned worker node for the first UDF by storing a pre-fetched first UDF data before the first UDF is assigned for execution. |
US10771583B2 |
Managing mobile device user subscription and service preferences to predictively pre-fetch content
A content delivery network (CDN) is enhanced to enable mobile network operators (MNOs) to provide their mobile device users with a content prediction and pre-fetching service. Preferably, the CDN enables the service by providing infrastructure support comprising a client application, and a distributed predictive pre-fetching function. The client application executes in the user's mobile device and enables the device user to subscribe to content (e.g., video) from different websites, and to input viewing preferences for such content (e.g.: “Sports: MLB: Boston Red Sox”). This user subscription and preference information is sent to the predictive pre-fetching support function that is preferably implemented within or across CDN server clusters. A preferred implementation uses a centralized back-end infrastructure, together with front-end servers positioned in association with the edge server regions located nearby the mobile core network. The predictive pre-fetch service operates on the user's behalf in accordance with the user preference information. |
US10771580B1 |
Using machine learning to improve input/output performance of an application
In some examples, a computing device may determine that a selected application is executing and gather, over a predetermined time interval, data associated with operations being performed to the input/output stack by the selected application. After gathering the data, a classifier may analyze the data and determine a particular workload type from a predefined set of workload types associated with the selected application. The computing device may select a particular profile from a plurality of predefined profiles based at least in part on the particular workload type, and modify, based on the particular profile, a plurality of parameters to create a plurality of modified parameters. The modified parameters may reduce an execution time of performing the operations to the input/output stack. |
US10771579B2 |
Redirection of data flows from an end device
A method, a device, and a non-transitory storage medium are described in which a connection service is provided based on a software development kit architecture for an end device that operates with an Android operating system. The connection service includes a library that, when called, sets-up a Hypertext Transfer Protocol connection between the end device and a proxy device using a function pointer and a portable operating system interface connect function. The connection service also generates and transmits a Hypertext Transfer Protocol CONNECT message, which includes a Proxy-Authorization header, to the proxy device, which triggers three-way handshaking between the proxy device and a target device, subsequent to an establishment of the connection with the proxy device. |
US10771578B2 |
Webpage loading method and apparatus
Webpage loading methods and devices include, in addition to sending an address of a first webpage to a server, a client further sends a name of a first-webpage resource stored in the client, such that the server can determine, according to the address of the first webpage and the name of the first-webpage resource stored in the client, a first push resource to be sent to the client, where the first push resource is all the resources required for loading the first webpage apart from the first-webpage resource stored in the client, which avoids pushing, by the server to the client, a resource that has been locally stored in the client, and therefore saves a bandwidth resource of a communications network. |
US10771576B1 |
Providing electronic content based on sensor data
Techniques are described for using sensor data derived from a monitoring system to drive personalized content. Sensor data captured by a monitoring system may be used to determine attributes of users of the monitoring system and/or attributes of a property monitored by the monitoring system. The determined attributes may be used to select content to present to users of the monitoring system. Content presentation may be made through the monitoring system and may be triggered based on events detected by the monitoring system. |
US10771573B2 |
Automatic modifications to a user image based on cognitive analysis of social media activity
A computer-implemented method comprising: determining, by a computing device, characteristics of a social media message; selecting, by the computing device, a particular image, of a plurality of images, based on the characteristics of the social media message and characteristics of the particular image; and outputting, by the computing device, information identifying the selected image to incorporate the selected image in a user's social media profile. |
US10771571B2 |
Method and system for pinpointing the location of an electronic device
A method and system for determining the location of an electronic device, can involve detecting a change in a unique identifier associated with an electronic device connected to a subnetwork, registering a notification on the electronic device, in response to detecting the change in the unique identifier, and receiving data regarding the electronic device including a physical location of the electronic device, after the notification has been registered on the electronic device and in response to a query generated after a subsequent boot up of the electronic device. The subnetwork can include a portion of a network that shares a common address component, and the unique identifier can include a MAC (Media Access Control) address that uniquely identifies the electronic device on the network. |
US10771570B2 |
Scalable message passing architecture a cloud environment
Methods, systems, and computer-readable media for creating and managing a multi-tiered service messaging architecture within a cloud service provider or computing environment. In one or more embodiments, the multi-tiered service messaging architecture may comprise a primary topic configured to receive and manage particular service messages. Services of the cloud are allocated a service topic to receive the service messages managed by the primary topic and may itself subscribe to the primary topic to receive the service messages. Through the subscription to the service topic, the service may receive the service messages provided by the primary topic. Still other sub-topics may subscribe to the service topics for additional subscriptions by services to receive the service messages provided by the primary topic. |
US10771569B1 |
Network communication control method of multiple edge clouds and edge computing system
A network communication control method of multiple edge clouds comprises providing a terminal device with a target service by a first edge computing platform, determining that there is a service abnormal situation in the first edge computing platform by a central control platform, re-allocating the target service to a second edge computing platform and generating offload information and a target service location according to the service abnormal situation, the target service and operational information of the second edge computing platform by the central control platform, transmitting the offload information to the second edge computing platform by the central control platform, and transmitting the target service location to the terminal device by the first edge computing platform or the second edge computing platform so as to allow the terminal device to have a communication connection with the second edge computing platform according to the target service location. |
US10771563B2 |
Remote operation system for surveying instruments
Provided is a remote operation system for surveying instruments, capable of making surveying instruments execute a necessary operation even when communication with a management server fails. The remote operation system for surveying instruments includes at least one master surveying instrument, a management server, and a remote terminal, configured to communicate with each other via a first communication network, and at least one slave surveying instrument configured to communicate with the master surveying instrument via a second communication network, wherein the management server transmits a first operation command to make the slave surveying instrument execute a first predetermined operation to the master surveying instrument, the master surveying instrument transmits the operation command to the slave surveying instrument, and the master surveying instrument transmits a second operation command to make the slave surveying instrument execute a second predetermined operation to the slave surveying instrument when communication with the management server fails. |
US10771560B2 |
Band scan for narrowband communications
A user equipment (UE) performs wireless communication by starting a scan of an absolute radio frequency channel number (ARFCN) configured for performing a narrowband communication. The UE determines, based on a spectral characteristic of a phase of a signal in the ARFCN, whether a cellular communication is deployed in the ARFCN. The UE may then terminate the scan of the ARFCN in response to the spectral characteristic of the phase of the signal in the ARFCN indicating that the cellular communication is deployed in the ARFCN. Alternatively, the UE may proceed with a synchronization signal search on the ARFCN in response to the spectral characteristic of the phase of the signal in the ARFCN indicating that the cellular communication is not deployed in the ARFCN. |
US10771559B2 |
Presence-based network authentication
Systems and methods are provided to authenticating an electronic device with a wireless network using a presence-based authentication process. As part of the presence-based authentication process, an authentication entity may receive a registration message from an electronic device. The authentication entity may respond to the registration message by transmitting an authentication challenge associated with providing access to the wireless network and/or network feature thereof. If the electronic device provides a successful response to the authentication challenge, then the authentication entity may authenticate the electronic device to utilize the wireless network and/or network feature thereof. |
US10771557B2 |
Vehicle, server, telematics system including the same, and vehicle remote control method
A vehicle may include a telematics terminal configured to be turned off when a power level of a battery reaches a predetermined reference value; and a low-power communication module configuring a node of an Ad-hoc network, and configured to receive a remote control signal for the vehicle through the Ad-hoc network, wherein when the low-power communication module receives the remote control single for the vehicle through the Ad-hoc network in the state in which the telematics terminal is turned off, the telematics terminal is turned on. |
US10771555B2 |
Relay device and computer-readable medium
A relay device is provided that is provided on a first network hierarchy level and relays communications via a network hierarchy level higher than the first level, between a plurality of nodes subordinate to the relay device and a sales broker website, and includes: an application storage unit storing a sales broker application; and an application execution unit executing the sales broker application to cause the relay device to function as: an order data reception unit receiving order data including a plurality of contents; a first order data transmission unit transmitting the order data to the sales broker website; and a second order data transmission unit transmitting, when an order receiver node receiving an order for the product is any of the plurality of nodes, at least a part of the plurality of contents to the order receiver node without involving a level higher than the first level. |
US10771554B2 |
Cloud scaling with non-blocking non-spinning cross-domain event synchronization and data communication
Disclosed embodiments relate to cloud scaling with non-blocking, non-spinning cross-domain event synchronization and data communication. In an example, a processor includes a memory to store multiple virtual hardware thread (VHTR) descriptors, each including an architectural state, a monitored address range, a priority, and an execution state, fetch circuitry to fetch instructions associated with a plurality of the multiple VNFs, decode circuitry to decode the fetched instructions, scheduling circuitry to allocate and pin a VHTR to each of the plurality of VNFs, schedule execution of a VHTR on each of a plurality of cores, set the execution state of the scheduled VHTR; and in response to a monitor instruction received from a given VHTR, pause the given VHTR and switch in another VHTR to use the core previously used by the given VHTR, and, upon detecting a store to the monitored address range, trigger execution of the given VHTR. |
US10771553B2 |
Access to disparate cloud services
Methods and information handling systems for managing at least one of storage of data to or access to data from a plurality of cloud storage drives coupled to user devices over a network. An information handling system includes a processing device and a memory that stores one or more program modules executable by the processing device to receive a request to store data from a user device, the request may lack information pertaining to where to store the data, to determine which of the cloud drives of the plurality of cloud drives will store the data in and to save the data to the cloud drive based on the determination. |
US10771551B2 |
Dynamic topology switch for data replication
The present disclosure involves systems, software, and computer implemented methods for performing dynamic topology switch in a failover operation. In one example, a failover of a first node is determined. The first node includes a first data server and a first replication server. At least one user application connects to the first data server prior to the failover of the first node. In response to the determined failover, the at least one user application is connected to a second data server of a second node. The second node includes the second data server and a second replication server. Prior to the failover of the first node, a data replication topology of the second node is a remote topology. During the failover, if the first replication server on the first node is down, the data replication topology of the second node is switched from the remote topology to a local topology. |
US10771548B2 |
Data sync engine, method and software
A data sync engine, a related method and software achieve keeping the data set of a core computer system and a mobile device in sync so that a user may perform operations using several different devices connectable to the core computer system. |
US10771543B2 |
Service processor for configuring servers joining peer to peer network
A first server includes a processor and a memory accessible to the processor. The memory bears instructions executable by the processor to determine that a server is present that has not had settings other than at most default settings applied to a basic input output system (BIOS) executable by the server to boot the server. The instructions are also executable by the processor to, based at least in part on a determination that the server is the same model of server as the apparatus, has the same BIOS version as the apparatus, and/or has the same baseboard management controller (BMC) version as the apparatus, facilitate over a peer to peer server network at least some settings in the apparatus to be provisioned to the server to establish the at least some settings in the server. |
US10771542B2 |
Network mapping in content delivery network
A computer-implemented method in a content delivery network (CDN) having multiple delivery servers. The CDN delivers content on behalf of at least one content provider. Distinct delivery servers are logically grouped into delivery server groups. One or more CDN name servers are associated with some of the delivery server groups. Network map data are determined using network data determined by the CDN name servers associated with at least some of the deliver server groups. The network data with respect to a CDN name server relative to a resolver is based on an estimated popularity of that CDN name server for that resolver. Responsive to a client request, including a hostname associated with a content provider, at least one CDN name server determines, using network map data, at least one delivery server to process the client request. |
US10771539B2 |
Systems and methods for cross-cluster service provision
Computer-implemented methods and systems are provided for cross-cluster service provision. Consistent with disclosed embodiments, a system for cross-cluster service provision includes a first computing cluster and a second computing cluster. The first cluster includes service-providing nodes, and a first controller that collects status information concerning the service-providing nodes, the status information indicating at least one service-providing node endpoint. The second computing cluster includes service-consuming nodes, a service that receives requests for the service from the service-consuming nodes and distributes the requests among a set of specified endpoints, and a second controller that performs health checks on the specified endpoints, retrieves the status information from the first controller, and updates the set of specified endpoints based on the status information. |
US10771536B2 |
Coordinated processing of data by networked computing resources
Systems, methods, and computer-readable media for coordinating processing of data by multiple networked computing resources include monitoring data associated with a plurality of networked computing resources, and coordinating the routing of data processing segments to the networked computing resources. |
US10771535B2 |
Method, apparatus, and system for executing distributed transaction resources
The method includes: receiving, by a first managed object device, a first transaction resource creation request that is sent by an application server and includes an identifier of a first to-be-operated resource, a first execution time, and a first to-be-executed operation; receiving, by a second managed object device, a second transaction resource creation request that is sent by the application server and includes an identifier of a second to-be-operated resource, a second execution time, and a second to-be-executed operation; successfully creating, by the first managed object device, a first transaction resource according to the first transaction resource creation request, and successfully creating, by the second managed device, a second transaction resource according to the second transaction resource creation request. |
US10771530B2 |
Transport path-aware quality of service for mobile communications
Embodiments provide quality of service for media content delivery over capacity-constrained communications links to user devices by exploiting usage models and path awareness. For example, one or more uncongested beams can be identified as preceding one or more congested beams (e.g., by computing a congestion map) along a predicted transport path of a user device moving through a multi-beam satellite communications system. A prediction can be made aps to one or more future requests that are likely to be made by the user device for pre-positionable types of media content, and that are likely to be serviced by one of the subsequent congested beams. When such a request for pre-positionable media content is predicted, embodiments can schedule transmission of at least a portion of the media content over one or more of the preceding uncongested beams for storage local to the user device, thereby pre-positioning the content at the client prior to reaching the congested beam. |
US10771528B2 |
Common distribution of audio and power signals
Techniques for implementing an audio distribution system using only standard network cabling for both power transmission and audio signal transmission. The system comprising of one or more Audio-streaming Source Units and one or more self-contained Network-powered Speaker Units where a plurality of audio streams can exist simultaneously and any audio stream can be directed between any Audio-streaming Source Unit and any Network-powered Speaker Unit. |
US10771519B2 |
Proxy streams in a video streaming network
A method and system method for code testing in a video streaming network. A first broadcast stream including a first program containing video content is received by an ingest server of a live cluster of servers, wherein the live cluster of servers is deployed for providing streaming media programs to multiple user devices. The first broadcast stream is provided to one or more user devices. A copy of the first broadcast stream is provided to a device under test configured to test new code installed at the device under test via a processing of the first broadcast stream by the new code installed at the device under test. The device under test is a generic computer. Error performance of the device under test is monitored with respect to the installed new code's processing of the first broadcast stream. |
US10771513B2 |
Multi-user content presentation system
One or more embodiments of the disclosure provide systems and methods for providing content presentations to users of a content presentation system. A content presentation generally includes a plurality of content items provided by one or more users of the content presentation system. In one or more embodiments, the content presentation system may enable a user to modify multiple content attributes using a simple gesture. In another embodiment, the content presentation system can provide dynamic and interactive notifications to the user corresponding to content items and/or other co-users. |
US10771509B2 |
Terminal interoperation using called-terminal functional characteristics
Example techniques described herein can permit interoperation between network terminals that have different performance characteristics, or that are connected via access networks having different performance characteristics. A calling terminal (or a core network device) can retrieve an indication of functional characteristics associated with a called terminal. The indication can be included in presence information associated with the called terminal. The calling terminal can determine a altered functional specification based at least in part on the functional characteristics and a functional specification of a session. The functional characteristics can satisfy the altered functional specification. The calling terminal can initiate a altered session with the called terminal via the network based at least in part on the altered functional specification. A terminal can detect network service provided by an access network and transmit presence information to a presence-information server. The presence information can indicate a type of the access network. |
US10771506B1 |
Deployment of a security policy based on network topology and device capability
A device may include one or more processors to receive network topology information of a network and device capability information of devices in the network; detect a threat to the network; determine threat information associated with the threat; select a security policy and an enforcement device of the network to enforce the security policy based on the network topology information, the device capability information, and the threat information; and perform an action associated with the threat based on the security policy and the enforcement device. |
US10771505B2 |
Infrastructure level LAN security
Techniques are disclosed for securing traffic flowing across multi-tenant virtualized infrastructures using group key-based encryption. In one embodiment, an encryption module of a virtual machine (VM) host intercepts layer 2 (L2) frames sent via a virtual NIC (vNIC). The encryption module determines whether the vNIC is connected to a “secure wire,” and invokes an API exposed by a key management module to encrypt the frames using a group key associated with the secure wire, if any. Encryption may be performed for all frames from the vNIC, or according to a policy. In one embodiment, the encryption module may be located at a layer farthest from the vNIC, and encryption may be transparent to both the VM and a virtual switch. Unauthorized network entities which lack the group key cannot decipher the data of encrypted frames, even if they gain access to such frames. |
US10771504B2 |
Systems and methods for identifying data breaches
The disclosed computer-implemented method for detecting unauthorized data shares may include (1) providing a user of an anonymized inbox with an email alias to use for a particular online entity, (2) identifying one or more emails sent to the email alias from one or more different entities that are different from the particular online entity, (3) determining, based on the one or more emails having been sent by the different entities, that the particular online entity has shared the user's email alias with other entities, and (4) creating a privacy score for the particular online entity based at least in part on the determination that the particular online entity has shared the user's email alias with other entities. Various other methods, systems, and computer-readable media are also disclosed. |
US10771502B2 |
Reflexive benign service attack on IoT device(s)
A method is provided for preventing an IoT device within a trusted system from being harnessed in a malicious DDOS attack. The method may include bombarding the IoT device. The bombardment may originate from within the system, and may inundate the IoT device with harmless packets in a manner mimicking a traditional DOS attack. The inundating may utilize the resources of the IoT device to respond to the bombardment, and may thereby render the IoT device unavailable for fraudulent uses. |
US10771501B2 |
DDoS attack defense method, system, and related device
A method, blocking device, and a non-transitory computer-readable storage medium are provided. For example, the method is performed by processing circuitry of the blocking device. In the method, alarm data that includes attacking information of attacking packets among packets that enter a service network that provides services to servers is received. The alarm data is generated based on parsing the packets to identify the attacking packets and to determine the attacking information of the attacking packets. A blocking policy for blocking the attacking packets is determined based on the alarm data and blocking rules for determining whether the servers are attacked. A blocking action is initiated to block the attacking packets based on the blocking policy. |
US10771500B2 |
System and method of determining DDOS attacks
Disclosed are systems and methods for detecting distributed denial-of-service (DDoS) attack. An exemplary method includes receiving one or more requests from a first user for a service executing on a server, and generating a first vector associated with the first user comprised of a plurality of characteristics indicative of the first user accessing the service; calculating a comparison between the first vector and a reference vector, wherein the reference vector comprises an averaged distribution of characteristics for a plurality of users accessing the service, and determining that the service is under a denial-of-service attack based on the comparison between the first vector and the reference vector. |
US10771499B2 |
Automatic handling of device group oversubscription using stateless upstream network devices
A DDoS attack mitigation system includes a plurality of stateless network devices connected to a network. The system also includes one or more DPI devices connected to the plurality of stateless devices. The system further includes a controller connected to the plurality of stateless devices and connected to the DPI devices. The controller includes logic integrated with and/or executable by a processor. The controller is configured to receive a signal from a first DPI device and analyze the received signal. The controller is further configured to update a network traffic policy to redirect at least some of network traffic destined for the first DPI device to one or more DPI devices different from the first DPI device based on the analyzed signal and to send a signal indicative of the updated network policy to at least some of the plurality of stateless devices. |
US10771497B1 |
Using IP address data to detect malicious activities
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for detecting malicious activities. One of the methods includes obtaining a collection of user event logs or receiving user events through real-time feeds; using data from the user event logs/feeds to determine IP address properties for individual IP addresses and IP address ranges; and for each incoming event, updating the IP address properties for the corresponding IP address and IP prefix properties. |
US10771495B2 |
Cyber-attack detection and neutralization
The example embodiments are directed to a system and method for neutralizing abnormal signals in a cyber-physical system. In one example, the method includes receiving input signals comprising time series data associated with an asset and transforming the input signals into feature values in a feature space, detecting one or more abnormal feature values in the feature space based on a predetermined normalcy boundary associated with the asset, and determining an estimated true value for each abnormal feature value, and performing an inverse transform of each estimated true value to generate neutralized signals comprising time series data and outputting the neutralized signals. |
US10771494B2 |
Runtime protection of web services
Protecting a runtime Web service application. A web service application is instrumented to log its operation and allow recreation of its execution trace. Trace point vulnerabilities are identified using one or more data payloads. Candidate trace point operations associated with the trace point vulnerabilities are identified. Supplementary candidate operations are computed based on the existing trace point operations and the one or more data payloads. The Web service application is further instrumented with the one or more supplementary candidate operations. |
US10771492B2 |
Enterprise graph method of threat detection
Systems and methods for analyzing security alerts within an enterprise are provided. An enterprise graph is generated based on information such as operational intelligence regarding the enterprise. The enterprise graph identifies relationships between entities of the enterprise and a plurality of security alerts are produced by a plurality of security components of the enterprise. One or more significant relationships are identified between two or more of the plurality of security alerts based on a strength of a relationship identified in the enterprise graph. A significant relationship is utilized to identify a potential security incident between two or more of the security alerts. |
US10771488B2 |
Spatio-temporal anomaly detection in computer networks using graph convolutional recurrent neural networks (GCRNNs)
In one embodiment, a device receives sensor data from a plurality of nodes in a computer network. The device uses the sensor data and a graph that represents a topology of the nodes in the network as input to a graph convolutional neural network. The device provides an output of the graph convolutional neural network as input to a convolutional long short-term memory recurrent neural network. The device detects an anomaly in the computer network by comparing a reconstruction error associated with an output of the convolutional long short-term memory recurrent neural network to a defined threshold. The device initiates a mitigation action in the computer network for the detected anomaly. |
US10771487B2 |
Method for protecting IoT devices from intrusions by performing statistical analysis
Various embodiments provide an approach to detect intrusion of connected IoT devices. In operation, features associated with behavioral attributes as well as volumetric attributes of network data patterns of different IoT devices is analyzed by means of statistical analysis to determine deviation from normal operation data traffic patterns to detect anomalous operations and possible intrusions. Data from multiple networks and devices is combined in the cloud to provide for improved base models for statistical analysis. |
US10771486B2 |
Systems and methods for detecting network security threat event patterns
Techniques and mechanisms are disclosed for a data intake and query system to generate “meta-notable” events by applying a meta-notable event rule to a collection of notable event data. A meta-notable event rule specifies one or more patterns of notable event instances defined by a set of notable event states and a set of transition rules (also referred to as association rules) indicating conditions for transitioning from one notable event state to another. The set of notable event states includes at least one start state and at least one end state. A meta-notable event is generated when a set of analyzed notable events satisfies a set of transition rules linking a start state to an end state (including transitions through any intermediary states between the start state and the end state). |
US10771482B1 |
Systems and methods for detecting geolocation-aware malware
The disclosed computer-implemented method for detecting geolocation-aware malware may include (1) receiving, by a computing device, trajectory information for network traffic carrying geolocation-aware malware, (2) identifying, from the trajectory information, a target geolocation characteristic required to activate the geolocation-aware malware, (3) establishing, on an image of a user machine, an execution environment having the target geolocation characteristic, (4) running, on the image of the user machine, the geolocation-aware malware, and (5) analyzing functioning of the geolocation-aware malware to identify malicious activity by the geolocation-aware malware. Various other methods, systems, and computer-readable media are also disclosed. |
US10771481B2 |
Method, mobile switching centre, MSC, and a computer program product for detecting interconnect bypass
A method for detecting interconnect bypass by a subscription identity in a telecommunication network, said telecommunication network comprising at least a mobile switching center, MSC, serving a plurality of subscription identities, said method comprising the steps of setting a bypass threshold value which indicates a number of originating calls from a subscription identity per pre-defined period of time, monitoring the number of originating calls from at least one of said plurality of subscription identities per said pre-defined period of time, and detecting when said monitored number of originating calls for one of said plurality of subscription identities exceeds said bypass threshold value, and issuing an alert message thereby indicating an interconnect bypass by said one of said plurality of subscription identities. |
US10771478B2 |
Security monitoring at operating system kernel level
Methods and apparatus for real-time security monitoring on a computing device are presented. A system may define privileges to access hardware interfaces for each process of a plurality of processes executing on a computing device. The privileges may be defined in a privileged operating system level that controls root access to an operating system. In response to a determination that a process is attempting to access a hardware interface, the system may determine whether the process is privileged to access the hardware interface by checking the privileges. In response to determining that the process is not privileged to access the hardware interface, the intrusion detection agent may terminate the process. |
US10771475B2 |
Techniques for exchanging control and configuration information in a network visibility system
Techniques for exchanging control and configuration information in a network visibility system are provided. In one embodiment, a control plane component of the network visibility system can receive one or more first messages from a data plane component of the network visibility system, where the one or more first messages define one or more forwarding resources available on the data plane component. The control plane component can further retrieve configuration information stored on the control plane component that comprises one or more network prefixes to be monitored by the network visibility system, and can determine one or more mappings between the network prefixes and the forwarding resources. Upon determining the one or more mappings, the control plane component can generate one or more packet forwarding rules based on the mappings. Finally, the control plane component can transmit one or more second messages to the data plane component that include the packet forwarding rules for programming on the data plane component. |
US10771472B2 |
System and method for access control using network verification
A system for controlling access includes a computing device, configured to: determine a first identifier associated with a first access point being used by the computing device to access a network; determine first access control data associated with the first identifier and a first application executing on the computing device; and control access to data over the network by the first application based on the first access control data. |
US10771466B2 |
Third-party authorization of access tokens
A method for third-party authorization is presented. A client request is received by a resource server in a computer system from a client, wherein the client request includes an access token. An introspection request for the access token based on the client request. The introspection gateway uses a third-party authorization server from a plurality of third-party authorization servers to handle the introspection request. A resource server response is received from the introspection gateway, wherein the resource server response identifies a set of scopes for the access token. A determination is made as to whether the access token has sufficient scope from the resource server response. In response to the access token having the sufficient scope, the client is granted access to the resource server. |
US10771463B2 |
Third-party authorization of access tokens
A computer system comprising a resource server running on the computer system. The resource server receives a client request from a client in which the client request includes an access token. The resource server sends an introspection request to an introspection gateway, wherein the introspection request is for introspection of the access token based on the client request, and wherein the introspection gateway uses a third-party authorization server from a plurality of third-party authorization servers to handle the introspection request. The resource server receives a response from the introspection gateway, wherein the response identifies a set of scopes for the access token. The resource server determines whether the access token has sufficient scope from a resource server response. The client is granted access to the resource server in response to the access token having the sufficient scope. |
US10771462B2 |
User terminal using cloud service, integrated security management server for user terminal, and integrated security management method for user terminal
A user terminal using cloud service, an integrated security management server for the user terminal, and an integrated security management method for the user terminal. The integrated security management method includes receiving, by an integrated security management server, authentication information from at least one user terminal that use a cloud service, authenticating, by the integrated security management server, the user terminal using the authentication information, transmitting, by the integrated security management server, task information to the user terminal so as to control the user terminal, receiving, by the integrated security management server, at least one of a result of processing the task information and state information from the user terminal that verifies the task information, and managing, by the integrated security management server, a state of the user terminal based on at least one of the result of processing and the state information. |
US10771454B2 |
Information processing system and information processing method
An information processing system comprises a terminal device; an end server; and an intermediate server connected to the terminal device and the end server via a network. The intermediate server includes a communication device that communicates with the terminal device and the end server; a memory device that stores an ID correspondence table that registers a combination of first login information and second login information, the first login information being for logging in to the intermediate server, the second login information being for logging in to the end server; and a controller, when the controller executes an information processing program, the controller operating as an ID issue receiving unit, an end server accessing unit, an ID issuing unit, and an end server access receiving unit. |
US10771451B2 |
Mobile authentication and registration for digital certificates
A system and method for integrating hierarchical authentication systems and non-hierarchical authentication systems. The system and method is provided in one configuration as a mobile app that functions to allow a mobile device to access highly sensitive data while simultaneously ensuring a highly secured environment utilizing both hierarchical authentication systems and non-hierarchical authentication systems to provide a highly reliable authentication process. |
US10771450B2 |
Method and system for securely provisioning a remote device
A method at a computing device for provisioning a network-connected device within a security platform, the method including receiving a first connection request, the first connection request being from an electronic apparatus and including a network-connected device identifier; authenticating the first connection request, thereby creating a first connection; receiving a second connection request, the second connection request being from the network-connected device and including the network-connected device identifier and a shared platform credential; receiving a request from the network-connected device to add the network-connected device to the security platform; and adding the network-connected device to the security platform based on a concurrent first connection and the request from the network-connected device to add the network-connected device to the security platform. |
US10771449B2 |
Method and system for trustworthiness using digital certificates
A method for generating digital certificates for anonymous users in blockchain transactions includes: storing a blockchain comprised of a plurality of blocks, each block including a block header and transaction values, where each transaction value includes data related to a blockchain transaction including a sending address, recipient address, and transaction amount; receiving a certificate request from a computing device, the request including a user public key of a cryptographic key pair; identifying a subset of transaction values in the blockchain where the sending address or recipient address was generated using the user public key; determining a confidence level based on the data included in each transaction value included in the subset; generating a digital certificate based on the determined confidence level; and transmitting the generated digital certificate to the computing device. |
US10771448B2 |
Secure feature and key management in integrated circuits
A mechanism for providing secure feature and key management in integrated circuits is described. An example integrated circuit includes a secure memory to store a secret key, and a security manager core, coupled to the secure memory, to receive a digitally signed command, verify a signature associated with the command using the secret key, and configure operation of the integrated circuit using the command. |
US10771446B2 |
Wireless communication apparatus, authentication apparatus, wireless communication method and authentication method
According to one embodiment, when a control unit is notified of information in at least one second signal received by one of first and second wireless communication units after the control unit provides the second wireless communication unit with a command to transmit a first signal containing first address information and before a waiting time elapses and when the at least one second signal contains second address information assigned to an authentication apparatus having received the first signal, then the control unit provides the first wireless communication unit with a command to transmit a third signal for a connection request with the second address information set in a destination address. |
US10771443B2 |
Method and apparatus for providing enhanced streaming content delivery with multi-archive support using secure download manager and content-indifferent decoding
A system, apparatuses and methods are provided to download and process data and other content streamed over a wide area network using one or more dynamically fetched, material specific, data handlers (e.g., download assistants). A download assistant fetches a data stream from a remote location and processes the streamed data iteratively using buffers and multi-threaded processes through the decoder (e.g., codec), allowing source material-specific processing of the data as it is streamed from one or more download sources as well as content-indifferent and platform-indifferent decoding. To minimize versioning issues, payload construction for secure delivery is simplified to packing and encrypting a directory tree containing any number of files or other digital media into an archive and, when needed, dividing a payload into multiple files or archives with a descriptor that lists the archives. |
US10771442B2 |
System and method for authenticating and enabling an electronic device in an electronic system
A system and method for authenticating and enabling an electronic device in an electronic system are disclosed. A particular embodiment includes: an electronic system comprising: a protected device; a requesting device node, executing on a computing system, the requesting device node including: a device query data packet generator to generate a device query packet including data representing one or more identifiers of the protected device and a particular paired system; and an authentication key retriever to obtain an authentication key based on the device query data packet from an authentication provisioning node using an external data communication; and an obfuscation state machine of the particular paired system configured with a pre-defined quantity of state elements, a pre-defined quantity of the state elements being functional state elements, the obfuscation state machine being programmed with the authentication key to cause the obfuscation state machine to transition the protected device from an initial obfuscation state to a functional state. |
US10771441B2 |
Method of securing authentication in electronic communication
A method of securing authentication in electronic communication between at least one user authentication mechanism and at least one server authentication mechanism, wherein primary authentication is performed in the first step, and during the primary authentication a secondary authentication secret is created and shared between the user authentication and the server authentication mechanisms and is valid only for the given authentication transaction, and the secondary authentication secret is subsequently used as an input for a cryptographic transformation performed by the user authentication mechanism separately on each authentication vector element while creating the first authentication vector product, wherein authentication vector (AV) is an ordered set of authentication vector elements (AVE)(i)), wherein the first authentication vector product is transferred from the user authentication mechanism to the server authentication mechanism and is evaluated by the server authentication mechanism using the secondary authentication secret. |
US10771440B2 |
Detecting disclosed content sources using dynamic steganography
Systems for forensic steganography. A server is interfaced with storage facilities that store an object accessible by two or more users, each of which users are associated with respective profiles comprising one or more user-specific attributes. A method detects a user request to view the object. User-specific attributes are encoded into a steganographic message, which is formatted for saving into one or more locations in the object, thus generating a protected object. The protected object is delivered to the requesting user. Encoding, application and formatting techniques are configured to make the steganographic message undetectable by human viewing of the protected object. A web crawler or other policing technique can detect misappropriation in the form of unauthorized dissemination by detecting the presence of the encoded steganographic message embedded in the protected object. Decoding the steganographic message reveals the user-specific attributes so as to identify the user who disseminated the protected object. |
US10771439B2 |
Shielded networks for virtual machines
Embodiments relate to a host encrypting network communications of virtual machines (VMs) in ways that minimize exposure of the network communications in cleartext form. The host captures and registers a measure of a secure state of the host. The measure is registered with a guardian service communicable via a network. The guardian service also securely stores keys of the VMs. Each VM's key is associated with authorization information indicating which machines are authorized to obtain the corresponding VM's key. The host obtains access to a VM's key based on a confirmation that its state matches the registered measured state and based on the authorization information of the VM indicating that the host is authorized to access the key. The VM's key is then used to transparently encrypt/decrypt network communications of the VM as they pass through a virtualization layer on the host that executes the VMs. |
US10771438B2 |
Context-based protocol stack privacy
A method for use in a wireless transmit/receive unit (WTRU), the method comprising: selecting a privacy profile, wherein the privacy profile includes privacy and security settings for each layer of a protocol stack of the WTRU, wherein the privacy and security settings include at least one of using anonymous dynamic host configuration protocol (DHCP) signaling parameters, the anonymous DHCP signaling parameters include a hostname, using a random medium access control (MAC) address, or using a random Internet protocol (IP) address; and instructing each layer of the protocol stack of the WTRU with the privacy and security settings based on the selected privacy profile. |
US10771436B2 |
Dynamic whitelist management
In one example embodiment, a proxy for a network obtains a traffic flow. The proxy determines whether a security policy in a whitelist for the traffic flow is active. If it is determined that the security policy for the traffic flow is active, the proxy selectively decrypts the traffic flow to produce one or more traffic flow attributes and, based on the one or more traffic flow attributes, determines whether the traffic flow is potentially malicious. |
US10771433B2 |
Automatic management of firewall rules and policies in accordance with relevancy to network traffic of a wireless network
Firewall rules and policies are automatically managed in accordance with relevancy to network traffic on a wireless network. A specific firewall rule is applied to the network packet being examined based on the identified application based on a ranking of a relevancy score. Responsive to the specific firewall rule application, the relevancy score associated with the specific firewall rule are increased, and relevancy scores for other firewall rules of the predetermined firewall rule category that are not applied to the network packet decreased. Firewall rules of the category, for order of application, are ranked based on the relevancy scores. Firewall rules having relevancy scores below a predetermined relevancy threshold are disabled and the administrator is notified. |
US10771429B1 |
Mechanisms for solving an IP fragmentation overlapping issue in L2VPN using multiple IP addresses in GRE headers
In an embodiment, a computer-implemented method for using multiple IP addresses in GRE IP headers to prevent IPID fragmentation overlapping in L2VPN networks is disclosed. In an embodiment, the method comprises: receiving, by an edge service gateway, a packet that requires fragmentating; determining whether the gateway is configured to prevent IPID fragmentation overlapping; and in response to determining that the gateway is configured to prevent IPID fragmentation overlapping, creating a plurality of packet fragments of the packet. A packet fragment comprises a GRE IP header, additional headers, and a portion of the packet. The GRE IP header stores an IPID generated for the packet in an IPID field, a source private IP address in a source IP address field, and a destination private IP address in a destination IP address field. The source private IP address, the destination private IP address and the IPID collectively form a packet identifier of the packet. |
US10771425B2 |
Electronic message lifecycle management
Provided herein is an electronic message management platform that enables management and execution of electronic message campaigns while appropriately managing challenges presented by spam filters, black lists, and domain blocking technologies, and that includes elements for managing an electronic message campaign based on dynamic conditions, quality measures, engagement factors, and other measures, factors and conditions. |
US10771422B2 |
Displaying interactive notifications on touch sensitive devices
The disclosed embodiments include a method for providing interactive notification elements. A device receives a first message and displays a first notification element in a first area of a user interface. The first notification element includes information about the received first message. While displaying the first notification element, the device receives a second message. In response, the device determines whether the second message is associated with the first message. When the second message is associated with the first message, the device displays a second notification element in the first area. The second notification element includes information about the received second message. |
US10771421B2 |
Systems and methods for fair information exchange using publish-subscribe with blockchain
Methods, apparatus, systems and articles of manufacture are disclosed to facilitate information exchange using publish-subscribe with blockchain. An example apparatus includes a broker including a processor and a distributed ledger module. The example distributed ledger module stores a message to be relayed by the broker from a publisher to a subscriber. The example processor is to at least compute, triggered by receipt of the message by the broker, a proof-of-work (PoW) function. The example processor is to at least verify the computation of the PoW function. The example processor is to at least transmit, upon verifying the computation of the PoW function, the message to the subscriber. The example processor is to at least process feedback received by the broker to update the PoW function. |
US10771416B2 |
Control of messages in publish/subscribe system
Control of messages in a publish/subscribe system is described. A publishing system creates a message for publishing to multiple subscribers via a broker system. The message and associated metadata are provided. The metadata defines control of the message and relates to control of publishing of the message, by the broker system, and/or control of use of the message, by a subscribing system. The message is published with the metadata. A broker system receives the message and analyses the metadata with respect to a subscriber. Based on the analysis, restrictions are applied to delivery of the message to the subscriber. A subscribing system receives the message and analyses the metadata with respect to the subscriber. Based on this second analysis, restrictions are applied to use of the message by the subscriber. |
US10771407B2 |
Multi-level bot architecture for data access
A method for using multi-level bots is discussed. The method includes accessing, via an integration bot, a chat text, provided by a chat application instance, that indicates a user query. The method includes accessing a user state associated with a user of the chat application instance, the user state indicating previous chat texts associated with the chat application instance and corresponding knowledge queries. The method includes generating, based on the user state and analysis of the chat text, a knowledge query for data access using one or more domain bots. The method includes determining, based on the knowledge query, a domain bot and associated communication protocol. The method includes communicating the knowledge query using the communication protocol to the domain bot to obtain a reply. The method includes communicating a response text to the chat application instance, the response text generated based on the reply and the user state. |
US10771400B2 |
Relay device
A relay device in a communication network includes: a configuration determination unit determining whether a configuration frame is received; a comparison unit; first and second configuration units; and a configuration transfer unit. The comparison unit determines whether the propagation number at reception time is equal to the total number of target devices in a configuration frame. When the propagation number is not equal to the total number, the first configuration unit sets a port in the transfer destination information to the mirror output port. When the propagation number is not equal to the total number, the configuration transfer unit outputs the updated configuration frame from the mirror input port. When the propagation number is equal to the total number, the second configuration unit sets a port in the transfer destination information to the mirror output port. |
US10771397B2 |
Upstream bandwidth allocation method, apparatus, and system
An upstream bandwidth allocation method, apparatus, and system. The method includes obtaining, by a cable modem termination system (CMTS), a service flow attribute of each online cable modem (CM) of one or more online CMs, where the service flow attribute comprises at least one delay-sensitive service and a delay-insensitive service, allocating, by the CMTS, an upstream bandwidth to each online CM according to a received service request, and obtaining a remaining bandwidth that is a remaining part in a preset total bandwidth other than the upstream bandwidth that is allocated to each online CM according to the service request, allocating, by the CMTS, at least a part of the remaining bandwidth to a CM whose service flow attribute is a delay-sensitive service, and informing, by the CMTS, each online CM of the one or more online CMs of an upstream bandwidth allocation result. |
US10771396B2 |
Communications network failure detection and remediation
Systems and methods for communications network failure detection and remediation. Exemplary methods include: receiving first communications using a network from a first client, the first communications including an identifier for a user of the first client and a security credential of the user; authenticating the first user using the identifier and the security credential; creating, responsive to the authenticating, a registration for the first client in a registration database, the registration including an address for the first client, the registration being used to route second communications from a second client to the first client; establishing, responsive to the authenticating, a connection to the first client; detecting the connection has failed; and removing, responsive to the detecting, the registration from the registration database. |
US10771395B2 |
Method of releasing resource reservation in network
The present disclosure provides methods for releasing a reserved resource in a network. An operation method performed in a first communication node of a vehicle network includes generating a first frame including identification information of a stream transmitted through a reserved resource and a first indicator instructing to release the reserved resource; and transmitting the first frame to a second communication node. |
US10771392B1 |
Increasing efficiency to rate limiting
A computer-implemented system and method include a rate-limiting server. The server receives a request from a client and uses an early stage process to search for a rate-limiting token bucket (TB) using metadata associated with the request. Responsive to finding the TB using the first metadata, a response operation is performed. Responsive to not finding the TB using the first metadata, a late stage process is used to search for the rate-limiting TB using server-side session data associated with the request. Responsive to not finding the TB using the session data, the TB is created and associated with at least two search indexes comprising the first metadata associated with the request and the session data. Finally, the response operation is performed that comprises transmitting a determined response to the client. |
US10771391B2 |
Policy enforcement based on host value classification
Examples disclosed herein relate to enforcing a policy to a packet stream based on a classification and a determination that a proxy connection is associated with the packet stream. In the example, the packet stream is received. In this example, a host value is determined for the packet stream. Also, in the example, it is determined whether the packet stream is associated with the proxy connection. Further, in the example, a classification is determined based on the host value. In this example, the policy is enforced for the packet stream based on the classification and the determination that the proxy connection is associated with the packet stream. |
US10771390B2 |
Techniques for optimizing egress tunnel router failure scenarios in intelligent wide area networks
One embodiment of a method includes receiving at a first network node traffic from a second network node; and sending by the first network node to a third network node information identifying the second network node via a Local Area Network (“LAN”) connection between the first and third network nodes. Subsequent to receipt of the information identifying the second network node, the third network node updates a locator table maintained by the third network node to include an entry including the information identifying the second network node received by the third network node from the first network node. Upon receipt by the third network node of a notification that the first network node has failed, the third network node sends an update only to network nodes that have an entry in the locator table indicating that the first network node has failed. |
US10771389B2 |
Virtual tunnel endpoints for congestion-aware load balancing
Example methods are provided for a source virtual tunnel endpoint (VTEP) to perform congestion-aware load balancing in a data center network. The method may comprise the source VTEP learning congestion state information associated with multiple paths provided by respective multiple intermediate switches connecting the source VTEP with a destination VTEP. The method may also comprise the source VTEP receiving second packets that are sent by a source endpoint and destined for a destination endpoint; and selecting a particular path from multiple paths based on the congestion state information. The method may further comprise the source VTEP generating encapsulated second packets by encapsulating each of the second packets with header information that includes a set of tuples associated with the particular path; and sending the encapsulated second packets to the destination endpoint. |
US10771388B2 |
Machine for smoothing and/or polishing slabs of stone material, such as natural or agglomerated stone, ceramic and glass
A machine (10) for grinding and/or polishing slabs of stone material, such as natural or agglomerated stone, ceramics or glass, comprises: a support bench (12) for the slabs to be machined. At least one working station (14) is provided above the support bench (12), said station comprising at least one pair of bridge support structures (16, 18) situated opposite each and arranged transversely on either side of the support bench (12). First means (19) are provided for performing a relative movement in the longitudinal direction of machining station (14) and slab on the support bench (12). The machine further comprises at least one beam (20, the two ends (22, 24) of which are supported by the support structures (16, 18), and at least one rotating spindle (26) with a sliding vertical axis mounted on the at least one beam (20). The beam (20) is movable transversely on the support structures (16, 18). The bottom end of the spindle (26) is provided with at least one tool-carrying support (28) rotating about the axis of rotation of the spindle (26). The machine is characterized in that it comprises second means (32) for performing a relative movement in the longitudinal direction of the at least one spindle (26) with respect to the support bench (12). |
US10771384B2 |
Routing based blockchain
Disclosed are various embodiments for implementing a blockchain utilizing routed packets to generate blocks. A given packet can be signed and analyzed to determine whether the signed packet satisfies root packet criteria. Packets that satisfy root packet criteria can be analyzed to determine whether they collectively satisfy a predetermined block criteria. A block can be added to the blockchain when the block criteria is met. |
US10771382B2 |
Method and system for balancing network load in a virtual environment
In an embodiment, a method for providing automatic router assignment in a virtual environment involves receiving a gratuitous ARP packet and setting a default gateway MAC address to a sender hardware address of the received gratuitous ARP packet, wherein the sender hardware address of the received gratuitous ARP packet is a MAC address of a master virtual router elected from a plurality of virtual routers, wherein a virtual router in the plurality of virtual routers is configured to elect a master virtual router by receiving at least one priority value advertised by another virtual router in the plurality of virtual routers, comparing the at least one received priority value to a priority value local to the virtual router to determine which priority value is the highest, and electing the virtual router having the highest priority value as the master virtual router. |
US10771379B2 |
Apparatus, system, and method for discovering network paths
The disclosed computer-implemented method may include (1) receiving, at a source node, a request to discover a plurality of network paths that each lead from the source node to a destination node and (2) discovering the plurality of network paths by (A) identifying each next hop between the source node and the destination node, (B) sending, from the source node to each next hop, a path-request probe that prompts the next hop to (i) determine each next-closest hop and (ii) return, to the source node, a path-response probe that identifies the next-closest hops, (C) receiving the path-response probes from the next hops, (D) determining, at the source node based on the path-response probes, that one or more of the plurality of network paths include the next hops and the next-closest hops, and then (E) iteratively discovering any subsequent hops by sending a subsequent path-request probe to each next-closest hop. |
US10771377B2 |
System and method for real-time load balancing of network packets
Internet protocol packets are statelessly identified as associated with a particular session-instance by identifying a key, or session-instance identifier, within the data (or payload) portion of a user plane packet. This identifier is specific to the session-instance and remains constant throughout the session-instance. Using this stateless identification, transmitted user plane packets are automatically routed at the transmission speed of the transmission link using a method that automatically balances the analysis processing load between network probes. The load is balanced by routing the user plane packet to a network probe that is either already analyzing the session-instance or by routing the user plane packet to a system that has processing capacity to analyze a new session-instance. The network probe then analyzes the user plane packet and the session-instance to measure the quality of the user experience of the session-instance and performance of the network. |
US10771374B2 |
Delay measurement method and device
A physical layer chip of a first physical port of a network device receives a packet and sends a first time stamp and the packet to a Media Access Control (MAC) chip of the first physical port. The MAC chip of the first physical port adds the first time stamp to the packet and sends the packet. A MAC chip of a second physical port receives the packet, extracts the first time stamp of the packet, and sends the packet to a physical layer chip of the second physical port. The MAC chip of the second physical port receives a second time stamp of the packet. The network device calculates a processing delay for the packet. The processing delay is a value obtained by subtracting the first time stamp from the second time stamp. |
US10771364B2 |
Network interface controller
A network interface controller is provided, including a receiving module, a boundary determination module, a first checksum calculation module, and a second checksum calculation module. The receiving module receives a packet having a segment of a first layer protocol and a segment of a second layer protocol. The boundary determination module performs a boundary determination operation on the packet to generate boundary information, wherein the boundary information includes a length of the segment of the second layer protocol and a boundary indication signal. The first checksum calculation module finishes the calculation of a first checksum corresponding to the segment of the first layer protocol after receiving the length of the segment of the second layer protocol. The second checksum calculation module starts to calculate a second checksum corresponding to the segment of the second layer protocol after receiving the boundary indication signal. |
US10771363B2 |
Devices for analyzing and mitigating dropped packets
A control device may subscribe to receive data from a network device. The data may be associated with a plurality of packets that have been dropped by the network device and include a first descriptor based on a type of packet drop associated with a packet of the plurality of packets that have been dropped by the network device, and one or more second descriptors based on a packet flow associated with the plurality of packets that have been dropped by the network device. The control device may determine a dropped packet profile associated with the network device, based on the first descriptor and the one or more second descriptors. The control device may generate a first notification based on the dropped packet profile associated with the network device and transmit the first notification to cause an action to be performed based on the first notification. |
US10771361B2 |
Apparatus and method for providing power to machine measurement devices via data communication network
A machine health management system incorporates machine measurement units that are connected via Power Over Ethernet (PoE) to a central logic unit. Each measurement unit includes one or more sensor modules to which sensors are connected, or one or more output modules to which output devices are connected, or a combination of sensor modules and output modules. The energy needed to power the measurement units comes through the PoE network. Sensor signals generated by the sensors are digitalized and may be analyzed in the sensor modules. Raw data, and in some cases preprocessed data, are transported over the Ethernet network to the central logic unit, where the data is analyzed and/or combined with other data to perform prediction analysis, build decisions and possibly implement protection solutions, predict performance of the machine/system, or control the machine/system. |
US10771359B2 |
System capacity heatmap
The methods and systems described herein can be used for generating a graphical representation, such as a heatmap, for displaying and visualizing a given metric associated with one or more distributed resources in a distributed environment. A heatmap generally refers to a graphical display of data in which values are located in a matrix and indicated by the intensity of a color, hue, shading or some other gradient, or by geometric shape or other format. Heatmaps provide a way of visualizing metrics of a large number of resources easily for capacity management, among other uses. Generally, and as set forth in greater detail, the disclosed subject matter provided herein includes methods and systems for collecting, processing, and visualizing operational data of distributed resources via a heatmap by a monitoring system in a distributed environment. |
US10771353B2 |
Policy enforcement as a service for third party platforms with asynchronous user tracking mechanisms
Systems, methods, and computer-readable media for providing a Policy Enforcement as a Service (PEaaS) are described. The PEaaS may allow customer service providers to define policies for usage restrictions to be implemented across their distributed systems/platforms. The policy enforcement mechanisms of the PEaaS may prevent users from overloading the systems/platforms of the customer service providers. The PEaaS may also include mechanisms for asynchronously (or “lazy”) tracking user infractions or suspensions. The lazy tracking mechanism may track and perform asynchronous (async) computation of infraction records and suspension sets/lists. Other embodiments may be described and/or claimed. |
US10771349B2 |
Topology remediation
A topology remediation method includes with a remediation engine, deriving a number of remediation actions based on a number of incidents within an instantiated topology, and with a lifecycle management engine, modifying the instantiated topology based on a number of lifecycle management actions (LCMAs) determined to remediate the incidents. |
US10771342B2 |
Encoding and verifying network intents for stateful networks
Example method includes: identifying three relationships about a network function in an intent-based stateful network—(1) the network function forwarding a network packet implies that at least one previous network packet was received by the network function in the same direction prior to the network packet is forwarded, (2) an established state in the network function implies that at least one previous network packet was received at the network function, (3) the network function receiving the network packet as a downward network function implies the network packet was previously sent by a second network function acting as an upward network function; encoding the network function using a combination of at least one of the three identified relationships; and verifying a plurality of network intents in the intent-based stateful network based at least in part on the encoding of the network function. |
US10771339B2 |
Automated topology scan
A method for automatically registering a topology of a fieldbus network from a device access software. The device access software is installed in a host, which is in data connection with the fieldbus network, and the fieldbus network includes a plurality of field devices and gateway devices. The method includes scanning an address space of a field access device or a predetermined gateway device of the fieldbus network and determining gateway devices and field devices present in this address space. For each found gateway device, the method includes scanning an additional address space provided by the found gateway device and determining additional gateway devices and field devices present in the additional address space. The method is repeated until all gateway devices present in the fieldbus network in the region below the field access device or the predetermined gateway device are found or until a break condition is fulfilled. |
US10771335B2 |
Generating and sharing models for Internet-of-Things data
A network device stores capability designations associated with Internet-of-Things (IoT) devices and receives, from a customer device, one or more of the capability designations associated with a first type of IoT device. The network device receives event data generated by the first type of IoT device and maps the event data to the one or more of the capability designations. The mapping produces normalized IoT data for the first type of IoT device. The network device generates semantic information for the normalized IoT data and assembles a device model for the first type of IoT device. The device model includes the one or more of the capability designations and the semantic information. |
US10771332B2 |
Dynamic scheduling of network updates
The techniques and/or systems described herein are configured to determine a set of update operations to transition a network from an observed network state to a target network state and to generate an update dependency graph used to dynamically schedule the set of update operations based on constraint(s) defined to ensure reliability of the network during the transition. The techniques and/or systems dynamically schedule the set of update operations based on feedback. For example, the feedback may include an indication that a previously scheduled update operation has been delayed, has failed, or has been successfully completed. |
US10771320B2 |
Automatic setup of failure detection sessions
For a network with host machines that are hosting virtual machines, a method for facilitating BUM (broadcast, unknown unicast, and multicast) traffic between a hardware switch (e.g., ToR switch) and the host machines is provided. The network has a set of host machines configured as a cluster of replicators for replicating BUM traffic from the hardware switch to the host machines. A set of network controllers establishes failure-detection tunnels for links between the hardware switch and the replicator cluster. The replicator cluster informs the set of controllers of a change in the membership of the replicator cluster to initiate an update to the active failure-detection sessions. The set of network controllers communicates with the replicator cluster and a ToR switch to establish bidirectional forwarding detection (BFD) sessions between one or more replicator nodes in the replicator cluster and the ToR switch. |
US10771319B1 |
Robustness verification method and apparatus for distributed control plane in software-defined network
Provided are a robustness verification method and apparatus for a distributed control plane in a software-defined network, including constructing a robustness verification framework, where the robustness verification framework accommodates a failure scenario set and a failure recovery strategy set; selecting a failure recovery strategy, and querying a worst failure scenario under the failure recovery strategy; verifying a utilization rate of a biggest controller in the control plane under the combination of the worst failure scenario and the failure recovery strategy; and verifying the robustness of the control plane based on the utilization rate. The verification problem of the control plane is taken as a robustness optimization problem under different failure cases and failure recovery strategies. After the failure recovery strategy is selected, the worst failure scenario is obtained to determine whether the performance of the control plane satisfies requirements. |
US10771317B1 |
Reducing traffic loss during link failure in an ethernet virtual private network multihoming topology
A first network device permits a bidirectional forwarding detection (BFD) session with a second network device. The first network device is a designated forwarder for a third network device, a first link is provided between the first network device and the third network device, the second network device is a backup designated forwarder for the third network device, a second link is provided between the second network device and the third network device. The first network device detects a link failure associated with the first link between the first network device and the third network device, and provides, via the BFD session, a BFD message to the second network device. The BFD message includes an indication of the link failure, and the BFD message is to cause the second network device to be a new designated forwarder for the third network device. |
US10771316B1 |
Debugging of a network device through emulation
An emulation mode for network devices is described as a means of isolating a defective network device from real network traffic, while continuing to transmit faux traffic to the defective network device, wherein the faux traffic is intentionally dropped. The emulation mode allows the defective network device to be tested in an environment that appears real, without impacting user traffic. A management server can control one or more neighbor network devices and place them in the emulation mode as a way to isolate and test the defective network device. In the emulation mode, the neighbor network device monitors for packets that, based on previous routing history, would be sent to the defective network device and, instead, routes them to functioning network devices using a current FIB. A virtual RIB/FIB can also be used to route the same packets to the defective network device. |
US10771311B2 |
Communication of event messages in computing systems
A method and system. A first computer device sends to a second computer device, via a broadcast or multicast communication, an event notification of a notifiable management event, The first computer device may connect to a management network via only a first network switch, wherein the first computer device is unable to notify a management device of the notifiable management event via the management network because the first computer device is unable to connect to the management network via the first network switch. The first computer device receives, from the second computer device via a first unicast communication, an acknowledgment of the event notification, wherein the second computer device is able to connect to the management network via the second network switch. The broadcast or multicast communication and the first unicast communication each use a short-range wireless communications technology comprising visible light communication or data-over-audio communication. |
US10771309B1 |
Border gateway protocol routing configuration
A technology is described for updating an Autonomous System Number (ASN) in a Border Gateway Protocol (BGP) routing configuration. An example method may include receiving a request to update a BGP routing configuration on a gateway with an ASN associated with a customer. In response to the request, the BGP routing configuration on the gateway may be updated to replace a default ASN associated with a computing service provider with the ASN associated with the customer. The BGP routing configuration on the gateway may also be updated to allow the ASN associated with the customer to appear in an Autonomous System (AS) path at least twice, thereby allowing for BGP routes to be exchanged between gateways. |
US10771306B2 |
Log monitoring system
Disclosed are various embodiments for a log monitoring system to monitor the health of server log files. The log monitoring system may generate at least one log health signal based on an analysis of the server log content generated by at least one host application. Furthermore, the application may generate a system integrity record based on the at least one log health signal and an external signal, wherein the external signal embodies a system health metric of the at least one host application. |
US10771302B2 |
Channel probing signal for a broadband communication system
In a broadband wireless communication system, a spread spectrum signal is intentionally overlapped with an OFDM signal, in a time domain, a frequency domain, or both. The OFDM signal, which inherently has a high spectral efficiency, is used for carrying broadband data or control information. The spread spectrum signal, which is designed to have a high spread gain for overcoming severe interference, is used for facilitating system functions such as initial random access, channel probing, or short messaging. Methods and techniques are devised to ensure that the mutual interference between the overlapped signals is minimized to have insignificant impact on either signal and that both signals are detectable with expected performance by a receiver. |
US10771299B2 |
Reference signal configurations for doppler support in new radio design
Certain aspects of the present disclosure provide techniques for transmitting and processing reference signals, such as DMRS, that may account for mobility characteristics (e.g., that relate to a Doppler measurement) of a wireless node (e.g., a UE), such as Doppler measurements indicating how fast such a device is moving. |
US10771297B2 |
Method and device for multi-service transmission with FC-OFDM modulation and corresponding receiver
A method implementing the same frequency-time transform of size M irrespective of the service. The method adds, during a frame setup, a cyclic extension of L=L1+L2 samples in order to obtain a sequence of M+L samples. The method carries out a time-domain filtering according to a function ƒ(n) of the samples n of the sequence of M+L samples. |
US10771295B2 |
High speed signaling system with adaptive transmit pre-emphasis
A high-speed signaling system with adaptive transmit pre-emphasis. A transmit circuit has a plurality of output drivers to output a first signal onto a signal path. A receive circuit is coupled to receive the first signal via the signal path and configured to generate an indication of whether the first signal exceeds a threshold level. A first threshold control circuit is coupled to receive the indication from the receive circuit and configured to adjust the threshold level according to whether the first signal exceeds the threshold level. A drive strength control circuit is coupled to receive the indication from the receive circuit and configured to adjust a drive strength of at least one output driver of the plurality of output drivers according to whether the first signal exceeds the threshold level. |
US10771294B1 |
Power efficient metadata transport signaling mechanism for codec control and configuration
A compressed over pulse-code modulation (PCM) (CoP) format (e.g., for data transfer between a Bluetooth component and an audio digital signal processor (ADSP) component) may be modified to transport additional metadata (e.g., sideband data). Sideband data may be transported to convey parameter control information (e.g., control information for codec parameter control interfaces, such as information for quality mode changes), in band data (e.g., data specific parameters, such as timestamps for playback timing control and synchronization purposes), etc. Sideband data may be transported (e.g., communicated) over an interface between a Bluetooth component and an ADSP component while an applications processor is operating in a low power state or sleep mode. According to some aspects, the modified CoP format (e.g., a sideband packet) may include a sideband identification (ID) field and a sideband data payload (e.g., where the sideband ID field indicates the structure of a corresponding sideband data payload). |
US10771293B2 |
Systems and methods for automatic level control
Systems and methods for automatic level control (ALC) are provided. In one embodiment, a system comprises a multi-threshold programmable ALC controller; and at least one signal path that includes: a digital step attenuator to receive an analog communications signal and attenuate the communications signal in response to an attenuation adjustment signal from the ALC controller; and an analog-to-digital converter configured to receive the communications signal as attenuated by the digital step attenuator, wherein the ALC controller receives complex IQ samples of the attenuated communication signal; wherein the ALC controller comprises a plurality of clip detectors that function in parallel, wherein each of the clip detectors are programmed with a respective amplitude and time threshold, wherein based on which of the plurality of clip detectors determine that the complex IQ samples exceed their respective amplitude and time threshold, the ALC controller generates the attenuation adjustment signal to the digital step attenuator. |
US10771285B2 |
Method and apparatus for mapping network data models
In one embodiment, a method includes processing network data models at a network device operating in a network comprising a plurality of network components, each of the network components associated with one of the network data models, performing semantic matching at the network device for at least two of the network data models, the semantic matching comprising computing labels for elements of the network data models utilizing label computation algorithms configured for notational conventions used in the network data models, computing contexts for the elements based on a hierarchy of each of the network data models, removing one or more of the labels used to form the contexts to create reduced contexts, and computing a semantic relationship for the reduced contexts of the network data models. The network data models are mapped at the network device based on the semantic matching for use in a network application. An apparatus and logic are also disclosed herein. |
US10771283B2 |
Virtual cloud node
Data packets are received by a virtual cloud node from a cloud server. The virtual cloud node is one of a plurality of computing nodes forming part of an on-premise computing environment. Each of the computing nodes include at least one computing device and executed a plurality of servers with one of the servers being a central management server. Thereafter, the virtual cloud node converts the data packets from a first protocol compatible with the cloud server to a second protocol. The central management server routes the converted data packets to another one of the computing nodes for processing or consumption. Related apparatus, systems, techniques and articles are also described. |
US10771273B2 |
Network information for assisting user equipment
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE that acquires information regarding an interfering non-serving cell and uses the information to improve decoding of serving cell signals. The method includes receiving, from a serving evolved Node B (eNB), information that includes one or more transmission characteristics of at least one non-serving cell and performing at least one of interference cancellation, demodulation, or provides an improved channel quality indicator (CQI) based on the received information. |
US10771270B2 |
Channeling messaging communications in a selected group-based communication interface
Provided is a group-based communication interface configured to allow users of the interface to communicate within group-based communication channels and across group-based communication channels to provide relevant information to other users efficiently and effectively. Group-based messaging communications across the plurality of group-based communication channels can be channeled to specific receiver channels providing relevant information to users of the group-based communication interface thereby increasing the efficiency and effectiveness of group-based messaging communications and the lifetime of the system. |
US10771264B2 |
Securing firmware
A method for secure data protection includes generating a firmware digital certificate for a layer of firmware. The firmware operates a hardware component of a compute node. The firmware digital certificate is an attribute certificate. The firmware digital certificate includes a cumulative hash of the layer of firmware and a nonce. The cumulative hash includes a concatenation of a hash of the layer of firmware and a hash of each one or more lower layers of the firmware. The method includes authenticating the layer of firmware using a trusted data store. The trusted data store includes a binary image of an expected layer of firmware and a certificate chain comprising the hardware digital certificate and the firmware digital certificate. |
US10771256B2 |
Method for generating an electronic signature
A method for generating an electronic signature of a user for an electronic document including establishing a secure Internet session between a telecommunication terminal of a user and a signature server computer system; receiving a code from the signature server computer system via a separate and/or separately secured side channel by the telecommunication terminal; transmitting a combination of code and authentication information of the user via the secure Internet session to the signature server computer system; checking the validity of the combination of code and authentication information by the signature server computer system; and generating the electronic signature of the user by a high-security module of the signature server computer system, wherein the private key of the user for generating the electronic signature is stored in the high-security module. |
US10771254B2 |
Systems and methods for email-based card activation
Example embodiments of systems and methods for data transmission between a contactless card, a client device, and one or more servers are provided. The contactless card may include one or more processors and memory, which may include one or more applets. The client device may include one or more processors and memory. The client device may be in data communication with the contactless card. One or more servers may be in data communication with the client device. A first set of information may be transmitted from the contactless card to the client device. The first set of information may include one or more links to activate the contactless card via a designated email program. Upon validation of the first set of information by the one or more servers, the contactless card may be activated. |
US10771251B1 |
Identity management service via virtual passport
A method includes verifying the identity of an individual. A virtual passport for the individual is created upon verifying the identity of the individual. The virtual passport uniquely identifies the individual. A public/private key pair associated with the individual is generated. The virtual passport is signed with the private key. The signed virtual passport is entered in a public block chain. The signed virtual passport may be retrieved from the public block chain. The authenticity of the signed virtual passport may be determined via the public key. |
US10771250B2 |
Distributed token-less authentication
Distributed token-less authentication. In an embodiment, a partially-hashed personal identification number (PIN) is received from a terminal via at least one first network, wherein the partially-hashed PIN comprises an unhashed first portion that identifies a service-specific interface associated with the user account, and a hashed second portion. The partially-hashed PIN is relayed to the service-specific interface, identified by the first unhashed portion of the partially-hashed PIN, via at least one second network. Subsequently, a first-level confirmation or rejection is received from the service-specific interface via the at least one second network, and the first-level confirmation or rejection is relayed to the terminal via the at least one first network. |
US10771245B2 |
Systems and methods for use in computer network security
Systems and methods are provided for managing data across a network based on multiple keys assigned to different participants in association with the data. One exemplary method includes identifying, by an originating party, a relying party, identifying data relevant to at least one interaction between the originating party and the relying party, and encrypting the data based on a secret. The method also includes generating a key set based on the secret, where the key set has at least three keys and is structured such that the secret is derivable from at least two of the at least three keys, and disseminating a first key of the key set and the encrypted data to a control party and disseminating a second key of the key set to the relying party. |
US10771243B1 |
Multicast encryption scheme for data-ownership platform
Disclosed herein are embodiments for implementing periodic management of cryptographic keys. An embodiment includes a processor configured to perform operations comprising receive a first input associating a first set of subscribers with a first data stream published by the first publisher device, and a first cryptographic key. Processor may transmit, to the first publisher device, a first confirmation, indicating that the first cryptographic key is ready for use, for example. In some embodiments, processor may release the first cryptographic key to a first set of subscribers, receive a second input from a publishing user, associating a different, second set of subscribers with the first data stream, and receive a second cryptographic key after a certain time period. Processor may further transmit, to the first device, a second confirmation, indicating that the second cryptographic key is ready for use, and release the second cryptographic key to the second set of subscribers. |
US10771241B2 |
Time authentication method, apparatus and device in blockchain-type ledger
Computer-implemented methods, systems, and non-transitory, computer-readable media for server-based time authentication of blockchain-type ledgers are provided. One computer implemented method includes: determining at least one ledger that needs time authentication and includes one or more consecutive data blocks. For each ledger, determining ledger information corresponding to the ledger and including a plurality of items, such as: an identifier of the ledger, a block height of a starting block of the ledger, a block height of an ending block of the ledger, and a root hash of a Merkle tree formed by the one or more consecutive data blocks in the ledger. The ledger information is sent to a trusted time authentication agency for time authentication on each of the plurality of items. A time certificate, including a timestamp, the ledger information, and a digital signature of the time authentication agency is received from the time authentication agency. |
US10771235B2 |
Protecting block cipher computation operations from external monitoring attacks
Systems and methods for protecting block cipher computation operations, from external monitoring attacks. An example apparatus for implementing a block cipher may comprise: a first register configured to store a first pre-computed mask value represented by a combination of a first random value and a second random value; a second register configured to store an output mask value, wherein the output mask value is an inverse permutation function of the first random value; a third register configured to store a second pre-computed mask value represented by a combination the first pre-computed mask value and a permutation function of the output mask value; a fourth register configured to store an input mask value, wherein the input mask value is a combination of an expansion function of the first random value and a key mask value; a non-linear transformation circuit configured to apply the expansion function to a masked round state, perform a non-linear transformation of a combination of a masked key with an output of the expansion function, and apply the permutation function to the output of the non-linear transformation, wherein the non-linear transformation is defined using the input mask value stored in the fourth register and the output mask value stored in the second register; and two round feedback circuits configured to swap the masked round state produced by the non-linear transformation and combine the masked round state with the first pre-computed mask value stored in the first register and the second pre-computed mask value stored in the third register. |
US10771226B2 |
Method for limiting spurious emission and user equipment performing the method
There is provided a method for limiting a spurious emission, the method performed by a user equipment (UE) and comprising: configuring a transceiver of the UE to use an operating band 71; and determining at least one operating band to be protected among a plurality of operating band, wherein if the determined operating band to be protected is an operating band 29, a maximum level of spurious emission is limited to −38 dBm for protecting other UE using the operating band 29. |
US10771225B2 |
Techniques and apparatuses for using mini-slots for hybrid automatic repeat request (HARQ) transmissions
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive, from a base station, an indicator associated with a hybrid automatic repeat request (HARQ) process, wherein the indicator indicates a number of mini-slots to be bundled for a HARQ transmission of the HARQ process; and decode the HARQ transmission based at least in part on the mini-slots. In some aspects, a base station may transmit an indicator, associated with a HARQ process, to a user equipment, wherein the indicator indicates a number of mini-slots to be bundled for a HARQ transmission of the HARQ process; and transmit the HARQ transmission to the user equipment using the mini-slots. Numerous other aspects are provided. |
US10771221B2 |
Determination of demodulation reference signal and phase tracking reference signal parameters
Methods, systems, and devices for wireless communications are described. One method may include receiving radio resource control signaling configured with a first set of demodulation reference signal parameters for transmission of an uplink data channel of a type, receiving downlink control information of a format to activate the transmission of the uplink data channel, identifying a second set of demodulation reference signal parameters for transmission of the uplink data channel of the type based on the received downlink control information, and activating the transmission of the uplink data channel using the first and second set of demodulation reference signal parameters. |
US10771217B2 |
Wireless base station apparatus, wireless terminal apparatus, frequency resource allocation method, and method of forming transmission signal
A wireless base station apparatus and wireless terminal apparatus with a configuration which can prevent reductions in the accuracy of channel estimation when non-contiguous band transmission and SRS transmission are employed in an uplink line. In the base station apparatus (100), an allocation setting unit (106), which sets the reception band of an SRS at an SRS extraction unit (103) and sets the units of frequency allocation (RBG) at a CQI estimation unit (104) and allocation unit (105), matches the frequency position at the end of the SRS reception band to the frequency position at the end of any of the units of frequency allocation and sets the reception bandwidth of the reference signal to a natural number multiple of the bandwidth of the unit of frequency allocation. In the terminal apparatus (200), a band information setting unit (204), which sets the transmission band and units of frequency allocation (RBG), matches the frequency position at the end of the transmission band to the frequency position at the end of any of the units of frequency allocation and sets the transmission bandwidth of the SRS to a natural number multiple of the bandwidth of the unit of frequency allocation. |
US10771212B2 |
Reference signal having variable structure
A method for transmitting a data demodulation reference signal (DMRS) in a wireless communication system and a device therefor are disclosed. To this end, a basic DMRS is transmitted via the first OFDM symbol in a data transmission region of a predetermined subframe, and an additional DMRS is transmitted in the predetermined subframe in accordance with a level determined by a transmission environment, wherein the basic DMRS is characterized by being transmitted via the first OFDM symbol in the data transmission region of the predetermined subframe regardless of a transmission link, the structure of the subframe, and the transmission environment. |
US10771206B2 |
Method and apparatus for performing fractional subframe transmission
Embodiments of the disclosure provide a method and apparatus for performing fractional subframe transmission. The method may comprise: in response to detecting that a channel becomes available, determining a target position from at least one potential position predefined in a subframe; and performing the fractional subframe transmission from the target position. |
US10771205B2 |
Method and device for performing communication by using non-orthogonal code multiple access scheme in wireless communication system
A method and a device for performing communication by using a non-orthogonal code multiple access scheme in a wireless communication system are provided. Particularly, a terminal receives control information from a base station. The terminal modulates or demodulates a terminal-specific NCC on the basis of the control information. The terminal performs the non-orthogonal code multiple access scheme by using the terminal-specific NCC. The control information includes information on a codeword composed of a Grassmannian sequence. The codeword is included in a codebook predefined for the non-orthogonal code multiple access scheme. Each coefficient of the Grassmannian sequence is quantized on the basis of an M-quadrature amplitude modulation (M-QAM) constellation. |
US10771202B2 |
Transmission apparatus, reception apparatus, communication method, and integrated circuit
A terminal apparatus includes a coding unit configured to divide a transport block into one or more code blocks and generate coded bit(s) by coding the one or more code blocks; and a transmitter configured to transmit the coded bit(s) by using a channel, wherein multiplex bit(s) are given based on at least coupling of the coded bit(s) generated by coding of the one or more code blocks, the coding unit maps the multiplex bit(s) to a matrix in a first-axis prioritized manner and reads the multiplex bit(s) from the matrix in the first-axis prioritized manner or in a second-axis prioritized manner, and whether the first axis or the second axis is prioritized in a case that the multiplex bit(s) are read from the matrix is given based on at least whether a signal waveform applied to a prescribed channel is an OFDM. |
US10771201B2 |
On-demand retransmissions in broadcast communication
Methods, systems, and devices for wireless communications are described. Described techniques may include broadcasting a first Bluetooth packet over a channel bandwidth during a first set of one or more master slots of a periodic broadcast window; performing one or more received signal strength indication (RSSI) measurements during a first set of one or more slave slot of the periodic broadcast window; receiving from one or more receiving devices, based at least in part on the one or more RSSI measurements, one or more negative acknowledgement (NACK) signals corresponding to the first Bluetooth packet; and rebroadcasting, during a second set of one or more master slots of the periodic broadcast window, the first Bluetooth packet based at least in part on the one or more NACK signals. |
US10771193B2 |
Channel adaptive error-detecting codes with guaranteed residual error probability
A method for checking a signal transmission of a specified message with a number of d bits from a sender to a receiver by a control unit using a linear block code generated via a coding tool, a channel model, and a specified linear feedback shift register, which is parameterized via a generator polynomial, wherein the residual error probability of different Markov-modulated Bernoulli processes is calculated, where boundary conditions for signal transmission can be specified by using a characterizing Markov-modulated Bernoulli process and also a linear feedback shift register, where integration of the calculation of the residual error probability is performed in a dynamic, intelligent control circuit such that the respective residual error probabilities can be determined for different generator polynomials. |
US10771191B2 |
System for highly reliable file delivery of using continuous FEC encoding/decoding
For correction coding of a source file for transmission, the source file is divided into a plurality of groups each having a plurality of source packets. Each group is arranged into a matrix format, and braided forward error correction (FEC) packets are generated for each column, row and diagonal of a respective group by XOR'ing the source packets from the corresponding column, row and diagonal. Then, low density parity check (LDPC) FEC packets are generated for the respective group of source packets and corresponding braided FEC packets. The FEC packets generated in this manner, which are referred to as continuous FEC packets, are transmitted to a receiver component, and upon reception, an iteration of braided FEC decoding and LDPC FEC decoding is applied to the received continuous FEC packets, until all the source packets are recovered and the source file is reconstructed or until there is no more incoming packets. |
US10771190B2 |
Transmitter and signal processing method thereof
A transmitter is provided, which includes: an encoder configured to generate a low density parity check (LDPC) codeword comprising information word bits, first parity bits and second parity bits based on a parity check matrix; an interleaver configured to interleave the LDPC codeword; and a constellation mapper configured to map the interleaved LDPC codeword on constellation points, wherein the first parity bits are generated based on one of parity submatrices constituting the parity check matrix and the second parity bits are generated based on another of the parity submatrices constituting the parity check matrix. |
US10771188B2 |
Reduction in latency for cellular handover in wearable devices
An accessory device may establish a short range link to a companion device, and the accessory device may use the companion device as a proxy to conduct a data session over a cellular network. Based on a latency requirement associated with the data session and/or a signal strength of the short range link, the accessory device may dynamically determine to transition its cellular radio from a powered-off mode to a low power mode. |
US10771177B2 |
Method for transmitting client signal in optical transport network, and optical transport device
A method for transmitting a client signal in an optical transport network includes: dividing a payload of an optical payload unit signal into m first-granularity tributary slots; dividing one of the m first-granularity tributary slots into n second-granularity tributary slots, where a rate of the first-granularity tributary slot is n times that of the second-granularity tributary slot, m is a positive integer, and n is a positive integer greater than 1; mapping a first client signal onto a payload in which one or more of the n second-granularity tributary slots are located; adding an overhead of the first-granularity tributary slot and an overhead of the second-granularity tributary slot for the optical payload unit signal, to generate an optical data unit signal; and sending the optical data unit signal. |
US10771175B2 |
Receiving apparatus, receiving method, transmitting apparatus, and transmitting method
A receiving apparatus includes circuitry configured to receive a digital broadcast signal which uses an internet protocol (IP) transfer method. Based on control information included in the digital broadcast signal, the circuitry acquires at least one of a broadcast component or a communication component, and controls an operation of each section which performs a predetermined process relating to the acquired at least one component. The broadcast component and the communication component are associated with a component hierarchy including a first hierarchy level, a second hierarchy level, and a third hierarchy level for each component category. |
US10771171B2 |
High frequency radio signal classifications
Examples include classifying high frequency radio signals. Some examples include receiving a fast Fourier transform (FFT) of a high frequency radio signal, determining a first signal strength at a first guard frequency bin, determining a second signal strength at a second guard frequency bin, and determining a third signal strength at a direct current carrier frequency bin. Examples also include classifying the high frequency radio signal based on the first signal strength, the second signal strength, and the third signal strength. |
US10771169B2 |
Wide band radio-frequency localization devices and associated systems and methods
A device comprising: a radio frequency (RF) coupler comprising input, output, and coupled ports; an antenna capable of receiving RF signals having a first characteristic and transmitting RF signals having a second characteristic, the antenna connected to the RF coupler to provide received RF signals to the input port of the RF coupler and transmit RF signals received at the input port via coupling to signals received at the coupled port; and signal transformation circuitry having an input connected to the output port of the RF coupler to receive RF signals provided by the antenna to the input port and an output connected to the coupled port, the signal transformation circuitry configured to transform first RF signals having the first characteristic received from the output port to second RF signals having the second characteristic and to provide them to the coupled port. |
US10771164B2 |
Communication unit and communication system
A communication unit of the disclosure includes a human-body electrode and a space electrode that perform communication through a human body by means of an electric field method, and a first auxiliary conductor section that includes a first end and a second end, the first end causing electrostatic induction corresponding to a transmission signal with respect to the human body, the second end being disposed at a position closer to the human-body electrode than to the space electrode. |
US10771162B2 |
Coherent optical receiver with improved noise performance for optical fiber communication links
The technology disclosed in this patent document can be implemented to provide an analog front part of an optical receiver module for coherent optical detection where the optical receiver module receives the optical input from a fiber link, performs optical to electrical conversion and analog processing for carrier frequency compensation, optical phase noise compensation and polarization rotation, and generates an analog electrical output for subsequent signal processing for coherent optical detection. The analog processing for the polarization rotation is placed downstream from the analog processing for carrier frequency compensation, and in some implementations, downstream from the analog processing for optical phase noise compensation. |
US10771158B2 |
Light communication system
Systems and methods are disclosed with one or more light emitting diodes (LEDs) with at least one optical transmitter and receiver optically coupled to an optical network over 1 Mbps using at least one LED with a first mode to using broadband optical transmission; and a controller coupled to the LEDs, the controller communicating with the optical network using the optical transmitter and receiver. |
US10771154B2 |
Method for operating a non-track-bound column of vehicles and driver assistance system and non-track bound column
A method for operating a non-track-bound convoy, the convoy having at least one vehicle traveling ahead and at least one vehicle that is contactlessly coupled to the vehicle traveling ahead and directly following the vehicle traveling ahead, in at least a largely automated manner, including: providing that the at least one vehicle directly following the vehicle traveling ahead follows the vehicle traveling ahead by at least largely automatic open-loop/closed-loop control; and effecting a car-to-car communication between the vehicle traveling ahead and the at least one vehicle directly following the vehicle traveling ahead for the automatic open-loop/closed-loop control; in which a photo-optical, an optical-waveguide-less or an optical-fiber-less car-to-car communication is effected in each case between a light wave emitter and a light wave receiver for at least part of the car-to-car communication. Also described is a related driver assistance system and non-track bound convoy. |
US10771144B2 |
Concurrent uses of non-cellular interfaces for participating in hybrid cellular and non-cellular networks
The subject matter describes software, devices, networks, and methods to configure a non-cellular interface of a wireless device to establish two or more wireless links in a hybrid of cellular network and a non-cellular network. The advantage of concurrent uses of non-cellular interfaces maximizes the use of computing and communication resources to perform multi-hop communication and to expand the coverage of cellular networks. |
US10771142B2 |
System and method for hierarchal beamforming and rank adaptation for hybrid antenna architecture
An embodiment method for beam-related information and channel state information feedback includes receiving first analog beamformed reference signals; transmitting a first report indicating a set of selected analog beamformed reference signals and a transmission rank that jointly maximize a first performance criterion for subsequent transmissions by a transmitter that transmitted the first analog beamformed reference signals; receiving second analog beamformed reference signals maximized in accordance with the set of selected analog beamformed reference signals and the transmission rank; and transmitting a second report, in accordance with the second analog beamformed reference signals, indicating a channel quality indicator and a precoding matrix indicator that maximize a second performance criterion for subsequent transmissions by the transmitter that transmitted the first analog beamformed reference signals and the second analog beamformed reference signals. |
US10771141B2 |
Method for channel state report in wireless communication system, and device therefor
A channel state reporting method on the basis of an aperiodic channel state information-reference signal (CSI-RS) in a wireless communication system according to an embodiment of the present invention may comprise the steps of: receiving an aperiodic channel state information (CSI) request; and transmitting aperiodic CSI-RS-based CSI at a timing corresponding to one among a plurality of candidate values in response to the aperiodic CSI request, wherein the plurality of candidate values are selected according to a CSI-related parameter, and the CSI-related parameter includes at least one among a type of information included in the CSI, frequency granularity of the CSI, use or non-use of a code book when the CSI is derived, and the number of antenna ports of the CSI-RS. |
US10771138B2 |
Uplink multi-antenna transmission method in wireless communication system and apparatus therefor
Disclosed in the present application is a method for transmitting, by a terminal, an uplink signal to a base station through a plurality of antenna ports in a wireless communication system. Specifically, the method comprises the steps of: transmitting, to the base station, uplink reference signals corresponding to the plurality of antenna ports and antenna port grouping information: receiving, from the base station, information on an uplink precoder, which is determined on the basis of the uplink reference signals and the antenna port group information; precoding the uplink signal using the information on the uplink precoder; and transmitting the precoded uplink signal to the base station, wherein the antenna port grouping information comprises information on antenna port groups comprising the plurality of antenna ports and information of the signal distortion level between the antenna port groups. |
US10771135B2 |
Apparatus and method for establishing and maintaining a communications link
An example apparatus for establishing a communications link is provided. The example apparatus may include a phased array antenna, a radio frequency beamformer, and a processor. The processor may be in operable communication with the radio frequency beamformer and configured to operate as an antenna controller. As the antenna controller, the processor may be configured to direct the radio frequency beamformer to steer an antenna beam generated by the phased array antenna in a plurality of beam directions across an operating range of the phased array antenna, determine a signal strength of a source signal received by the phased array antenna at each beam direction, determine a current beam direction, and direct the radio frequency beamformer to steer the antenna beam to the current beam direction. |
US10771129B2 |
Method and arrangement in a wireless communication system
A method for assisting the adaptation of a signal from a first node to a second node is provided. The first node communicates with the second node in a wireless communication system over a radio link. The second node has a codebook comprising a set of possible information alternatives for assisting the adaptation of a signal received from the first node. The second node may select an information alternative from the codebook and send it to the first node to assist the first node in adapting the signal. The first node is configured with a number of subsets, each comprising a part of the possible information alternatives. The first node requests that the second node restrict the selection of information alternatives to one of the subsets, and in response, receives an information alternative from the second node that is selected from among the subsets configured according to the configuration request. |
US10771126B2 |
Uplink multi-user multiple input multiple output for wireless local area network
A first communication device transmits a first communication frame that includes scheduling information corresponding to a time period in which an uplink multi-user transmission is to occur. The scheduling information indicates a start time of the time period. The first communication frame includes an indication of a group of two or more second communication devices that are to transmit simultaneously during the time period as part of the uplink multi-user transmission. The first communication device transmits a second communication frame during the time period. The second communication frame is configured to trigger at least some second communication device in the group of two or more second communication devices to transmit simultaneously as part of the uplink multi-user transmission. The first communication device receives the uplink multi-user transmission during the time period, the uplink multi-user transmission being responsive to the second communication frame. |
US10771125B2 |
First communication device and methods performed thereby for transmitting radio signals using beamforming to a second communication device
Method performed by a first communication device (201) for adapting a pre-coder used by a second communication device (202) to transmit radio signals using beamforming to a third communication device (203). The first communication device (201), the second communication device (202), and the third communication device (203) operate in a wireless communications network (200). The first communication device (201) adapts (301), over a single time period of transmission of the radio signals, the pre-coder used by the second communication device (202) to transmit the radio signals to the third communication device (203) using beamforming. The adapting (301) is based on a change, over the single time period, in a state of a channel used to transmit the radio signals. The state is measured by the second communication device (202). |
US10771124B2 |
Virtual beam steering using MIMO radar
Examples disclosed herein relate to a Multiple-Input Multiple-Output (MIMO) radar for virtual beam steering. The MIMO radar has a plurality of transmit antennas and a receive antenna array having a plurality of radiating elements. The MIMO radar also includes a digital signal processor (DSP) configured to synthesize a virtual receive array having N×M receive subarrays from the plurality of transmit antennas and the receive antenna array, where N is the number of transmit antennas and M is the number of receiving elements. Other examples disclosed herein relate to a method of virtual beam steering. |
US10771121B2 |
Method for performing beam search or beam transmission in wireless communication system
An embodiment of the present invention relates to a method for performing beam search or beam transmission by a first UE in a wireless communication system, the method comprising the steps of: receiving location information from a second UE; and performing at least one of beam search and beam transmission for an area determined on the basis of the received location information, wherein one or more of a beam direction, a beam first search direction, and a beam width for the beam search or the beam transmission are determined according to one or more of a location, a speed, and a moving direction of the first UE, and a service and a required packet delay value for the first UE. |
US10771120B2 |
Base station front end preprocessing
Embodiments of the present disclosure describe systems, devices, and methods for preprocessing in a base station of a multiple-input multiple-output (MIMO) wireless system. In embodiments, remote radio unit (RRU) circuitry may control radio communication related to the MIMO wireless system, including applying a user equipment (UE)-specific spatial filter. |
US10771118B2 |
Channel state measurement method and apparatus
A channel state measurement method and an apparatus are provided. In embodiments of the present invention, a terminal receives CSI reporting mode indication information. The CSI reporting mode indication information is used to instruct the terminal to perform joint CSI measurement and feedback based on N pieces of associated CSI measurement configuration information. Therefore, the terminal may perform CSI measurement and feedback according to the CSI reporting mode indication information, so as to implement CSI measurement and feedback in a scenario in which a plurality of coordinated transmission points perform coordinated transmission. |
US10771117B2 |
Radio resource scheduling for coordinated multi-point transmission in cellular networks
A method scheduling allocation of radio resources in a cellular network, including: selecting at least one first user equipment for performing a first type data exchange based on Coordinated Multi-Point technique and a second type data exchange not based on Coordinated Multi-Point technique, and selecting at least one second user equipment for performing only the second type data exchange; selecting at least one network node for performing the first type data exchange with the at least one first user equipment and the second type data exchange with at least one among the first and second user equipment; determining, for the at least one network node, a radio resource parameter indicative of a number of radio resources to be allocated for the first type data exchange and a number of radio resources to be allocated for the second type data exchange; allocating the radio resources based on the radio resource parameter. |
US10771116B2 |
Vibrating magnet antenna
A vibrating magnetic antenna for generating reversable magnetic dipoles is provided. Soft magnetic materials are used to project the magnetic field as the magnet moves linearly between soft magnetic stators arranged in a “Y” configuration. The soft magnetic stators include a nickel-iron alloy, having high magnetic permeability. Also provided is a magnetic coupling circuit for upshifting the frequency of the magnetic field. |
US10771113B2 |
Method and apparatus for PTU detection of NFC devices
Embodiments related to systems, methods, and computer-readable media to enable a power transmit unit (PTU) device are described. In one embodiment a PTU comprises a transmit coil configured for wireless charging via magnetic coupling, a power delivery system coupled to the transmit coil, signal processing circuitry to detect harmonic distortion that is induced in the transmit coil by a device inside the near field of the transmit coil, and control circuitry configured to adjust an output power of the power amplifier when triggered by a detection of an Near Field Communications (NFC) device, a Radio Frequency Identification Device (RFID), or any other such device which may be damaged by the energy emitted from the transmit coil. |
US10771112B2 |
Wireless inductive power transfer
A power transmitter is configured to transfer power to a power receiver using a wireless inductive power signal. The power transmitter includes a power signal generator configured to drive an inductor to provide the power signal to an inductor of the power receiver. A power loop control is employed by the power receiver for providing power control error messages to the power transmitter, which also includes a query message processor configured to detect a query message from the power receiver using load modulation of the power signal. A modification processor of the power receiver is configured to modify a response of the power loop controller to the power control error messages dependent on the query message. The power receiver is configured to detect the modifications to the operation of the power control and interpret this as a response from the power transmitter to the query message from the power receiver. |
US10771111B2 |
Communication set-up for wireless communication and method for controlling such a communication set-up
A communication set-up having an electronic circuit; the circuit including at least one communication unit for wireless communication. The communication unit includes an antenna network connected to an antenna; and also includes an actuating unit. The circuit of the communication set-up further includes a signal processing unit, and in response to operation of the actuating unit, the actuating unit is configured to release a signal to the signal processing unit, which, on the basis of this, converts the communication set-up from a blocked state to an enabled state, or vice versa. In addition, a method for controlling such a communication set-up is described. |
US10771107B2 |
Circuit device
A circuit device includes a positive phase signal line, a negative phase signal line and a single-ended signal line. The positive phase signal line includes a first positive-phase-signal-line terminal and a second positive-phase-signal-line terminal for transmitting a first signal. The negative phase signal line includes a first negative-phase-signal-line terminal and a second negative-phase-signal-line terminal for transmitting a second signal. The single-ended signal line is disposed between the positive phase signal line and the negative phase signal line, and includes a first single-ended signal line terminal and a second single-ended signal line terminal for transmitting a single-ended signal. The first signal of the positive phase signal line causes a first noise on the single-ended signal line. The second signal of the negative phase signal line causes a second noise on the single-ended signal line. The first noise and the second noise eliminate one another. |
US10771104B2 |
Processing device, network node, client device, and methods thereof
This disclosure relates to techniques for synchronization signals. The synchronization signal comprise a primary synchronization signal (PSS) generated based on a PSS sequence and a secondary synchronization signal (SSS) generated based on an SSS sequence. The SSS sequence may be generated based on a first sequence corresponding to a first cyclic shift and a second sequence corresponding to a second cyclic shift. The first cyclic shift and the second cyclic shift are associated with Cell ID. The PSS sequence may be generated based on one of the first and the second sequences. |
US10771101B2 |
Devices and methods related to packaging of radio-frequency devices on ceramic substrates
Devices and methods related to packaging of radio-frequency (RF) devices on ceramic substrates. In some embodiments, a packaged electronic device can include a ceramic substrate configured to receive one or more components. The ceramic substrate can include a conductive layer in electrical contact with a ground plane. The packaged electronic device can further include a die having an integrated circuit and mounted on a surface of the ceramic substrate. The packaged electronic device can further include a conformal conductive coating implemented over the die to provide shielding functionality. The packaged electronic device can further include an electrical connection between the conformal conductive coating and the conductive layer. |
US10771096B2 |
Antenna impedance tuner
An antenna impedance tuner can include first and second nodes, a bypass path, first and second series capacitance paths, and an inductance path, with each path being implemented between the first and second nodes and including a switch configured to allow the path to couple or uncouple the first and second nodes. The tuner can further include first and second shunt paths, with each shunt path being implemented between the second node and ground and including a switch configured to allow the shunt path to couple or uncouple the second node and the ground. The tuner can further include a switchable grounding path implemented along the inductance path and configured to allow the inductance path to function as a series inductance path between the first and second nodes, or as a shunt inductance path between the ground and a node along the inductance path. |
US10771088B1 |
Optimal multi-dimensional data compression by tensor-tensor decompositions tensor
A tensor decomposition method, system, and computer program product include compressing multi-dimensional data by truncated tensor-tensor decompositions. |
US10771087B2 |
Methods, devices and systems for data conversion
In accordance with an embodiment, a method of monitoring a data converter includes determining a multiplicity of time-associated linearity parameters that describe a linearity of the data converter at a multiplicity of different times, and determining a state of the data converter based on comparing at least one linearity parameter of the multiplicity of time-associated linearity parameters with a comparison parameter. |
US10771081B2 |
Multi-core circuit with mixed signaling
In one example, a mixed signaling socket includes a set of central processing unit (CPU) cores coupled via an inter-core link and a set of analog circuits having an analog input, each analog circuit coupled to a respective CPU core via a separate private bus. A field programmable gate array (FPGA) control circuit is coupled to the inter-core link and the set of analog circuits to provide predicable clock timing to the set of analog circuits and control signals to the set of CPU cores. An analog to digital module in at least one CPU core includes instructions to perform an analog to digital conversion to create a digital representation of the analog input using the predictable clock timing and control signals from the FPGA. |
US10771080B1 |
System and method for mode control using an input of an analog-to-digital converter
In accordance with an embodiment, a method includes performing an analog-to-digital conversion on a signal at an input pin of an integrated circuit using an analog-to-digital converter having a first input range, monitoring the signal at the input pin using a first comparator having a first threshold outside of the first input range, operating the integrated circuit in a first mode when the signal at the input pin is within the first input range, and operating the integrated circuit in a second mode different from the first mode when the signal at the input pin is outside of the first input range and crosses the first threshold. |
US10771079B2 |
Ad converter
There provided an AD converter that includes an analog processing part configured to select one of the measurement target voltages and a plurality of reference voltages for each channel, to output an analog voltage signal; a first selection part configured to select one of a plurality of analog voltage signals; a first AD conversion part configured to perform AD conversion on the analog voltage signal to generate a first original digital signal; a second selection part configured to select one of the plurality of analog voltage signals; a second AD conversion part configured to perform AD conversion on the analog voltage signal to generate a second original digital signal; a digital processing part configured to receive the first original digital signal and the second original digital signal; and a controller configured to control contents selected in the analog processing part, the first selection part, and the second selection part. |
US10771078B2 |
Comparator offset calibration system and analog-to-digital converter with comparator offset calibration
A comparator offset calibration system having a comparator offset evaluator and a switched-capacitor network is disclosed, which is in an analog and digital dual domain structure. The comparator offset evaluator receives digital data from an analog-to-digital conversion module, evaluates an offset of a comparator of the analog-to-digital conversion module based on the received digital data, and outputs an evaluated result. The switched-capacitor network processes the evaluated result to generate a control signal. The analog-to-digital conversion module adjusts the offset of the comparator according to the control signal. |
US10771072B2 |
Frequency generator and associated method
A frequency generator is disclosed. The frequency generator is for generating an oscillator clock according to a reference clock, and the frequency generator is used in a frequency hopping system that switches a carrier frequency among a plurality of channels, and the carrier frequency further carries a modulation frequency for data transmission. The frequency generator includes: a frequency hopping and modulation control unit, arranged for generating a current channel according to a channel hopping sequence and a frequency command word (FCW) based on the reference clock, a digital-controlled oscillator (DCO), arranged for to generating the oscillator clock according to an oscillator tuning word (OTW) obtained according to the estimated DCO normalization value. An associated method is also disclosed. |
US10771071B1 |
Redundant DCO tuning with overlapping fractional regions
A digitally controlled oscillator (DCO) circuit is disclosed. The DCO circuit comprises a tuning circuit configured to tune an oscillation frequency of the DCO circuit based on processing an integer tuning codeword and a fractional tuning codeword associated with an input tuning codeword. In some embodiments, the tuning circuit comprises an integer tuning circuit configured to process the integer tuning codeword and a fractional tuning circuit configured to process the fractional tuning codeword, in order to implement the input tuning codeword. In some embodiments, the integer tuning codeword comprises an integer tuning range associated therewith and the fractional tuning codeword comprises a fractional tuning range associated therewith. In some embodiments, the fractional tuning range associated with the fractional tuning codeword is configured to cover more than one step of the integer tuning range associated with the integer tuning codeword. |
US10771070B2 |
Low voltage inverter-based amplifier
A low voltage inverter-based amplifier includes a first inverter-based amplification module, a second inverter-based amplification module, an inverter-based feedforward module, and an inverter-based common mode detector. The first inverter-based amplification module receives an input signal. The second inverter-based amplification module receives the input signal through the inverter-based feedforward module, and receives a first output signal from the first inverter-based amplification module. The inverter-based common mode detector receives an amplified signal from the second inverter-based amplification module, and outputs a feedback signal to the second inverter-based amplification module. Since the first and the second inverter-based amplification modules are both inverter-based, the supply voltage of the low voltage inverter-based amplifier is provided to supply one PMOS and one NMOS for normal operation. Therefore, a number of cascade MOSs of the low voltage inverter-based amplifier is two, and the low voltage inverter-based amplifier can be normally operated under the low supply voltage. |
US10771065B2 |
Charge pump circuits for clock and data recovery
The present invention is directed to electrical circuits. More specifically, embodiments of the present invention provide a charge pump, which can be utilized as a part of a clock data recovery device. Early and late signals are used as differential switching voltage signals in the charge pump. The first switch and a second switch are used for controlling the direction of the current flowing into the loop filter. Input differential voltages to the switches are being generated with an opamp negative feedback loop. The output voltage of the first switch and the second switch is used in conjunction with a resistor to generate a charge pump current. There are other embodiments as well. |
US10771063B2 |
Configurable first in first out and deserializer circuitry
An integrated circuit device with a single via layer, in which the via layer includes selectable via sites and/or jumpers. The selectable via sites and/or placement of jumpers may be used to configure and interconnect components and circuitry between distinct layers of multilayer circuits. In some implementations, selectively enabling via sites, such as by filling via opening and/or using jumpers, may form a deserializer circuit with a first via configuration or a first-in first-out (FIFO) circuit with a second via configuration. |
US10771058B2 |
Aircraft high current switch module
A switch module includes a first single-throw switch having a first input terminal 20 switchable to a common terminal. A second single-throw switch has a second input terminal switchable to the common terminal. A first control is coupled to the first single-throw switch and a second control is coupled to the second single-throw switch. The first and second controls are configured to independently control, respectively, the first and second single-throw switches. |
US10771056B2 |
Switch circuit and high-speed multiplexer-demultiplexer
A switch circuit and a high-speed multiplexer-demultiplexer are provided. The switch circuit includes an equalization module and an MOS transistor. A gate of the first MOS transistor is connected to an output terminal of the equalization module. An input terminal of the first MOS transistor is connected to a signal source. An output terminal of the first MOS transistor is connected to a subsequent circuit. The equalization module is configured to: supply a turning-on signal to the first MOS transistor in a case that an operation signal is acquired, to turn on the first MOS transistor; and generate a compensation signal for compensating an attenuation of the signal transmitted through the first MOS transistor, and apply the compensation signal to the gate of the first MOS transistor. The switch circuit operates in response to the operation signal. |
US10771053B2 |
Semiconductor device having first and second switching regions respectively controlled by first and second control signals output by a controller
First and second switching regions include first and second gate electrodes respectively. Channel currents of the first and second switching regions are controlled according to electric charge amounts supplied by control signals input to the first and second gate electrodes respectively. The second switching region is connected in parallel with the first switching region. A control section outputs a first control signal for turning-on the first switching region to the first gate electrode and a second control signal for turning-on the second switching region to the second gate electrode. The control section stops outputting the second control signal after a first predetermined period elapses from a start of outputting the first and second control signals, and outputs the second control signal after a second predetermined period elapses from a stop of outputting the second control signal. |
US10771047B2 |
Modulators
This application relates to time-encoding modulators (TEMs). A TEM (100) receives an input signal (SIN) and outputs a time encoded signal (SPWM). A comparator (101) is located within a forward signal path of a feedback loop of the TEM. Also in the feedback loop are a filter (104) and a delay element (106) for applying a controlled delay. In some embodiments a latching element (101, 302; 106, 402) is located within the forward signal path to synchronise any signal transitions output from the latching element to a received first clock signal. Any signal transitions in the output (SOUT) from the modulator are thus synchronised to the first clock signal. In some embodiments the delay element (106) is a digital delay element which is synchronised to the first clock signal. |
US10771046B2 |
Comparator and oscillator circuit using said comparator
Oscillator circuit uses a comparator, and controls charge-discharge of Miller capacitance between gate and drain of a MOSFET serving as an amplifier of the comparator gain unit and gate capacitance of the MOSFET, and enables comparator output to follow a high-frequency control signal that is input externally. An oscillator circuit uses a comparator CMP having differential and gain units. This oscillator circuit includes: a charge-discharge controller to control charge-discharge of Miller capacitance between gate and drain of a MOSFET and gate capacitance of the MOSFET; and an output controller to control output of the gain unit. Output controller includes: an inverter to connect to an input of the differential unit and receive a control signal input; a logic circuit to receive output of the inverter and output of the gain unit as an input; a transistor; and a capacitor to connect to input and output of the logic circuit. |
US10771045B1 |
Apparatus and method for reducing output skew and transition delay of level shifter
An apparatus and method are provided. According to one embodiment, an apparatus includes a level-shifter circuit configured to output voltages Vo1+ and Vo1−; and an output alignment circuit configured to output voltages Vo+ and Vo− that are triggered by an edge of a combination of Vo1+ and Vo1−, and where Vo+ and Vo− are set by high states of Vo1+ and Vo1− prior to a transition on an input of the level-shifter circuit, and the method includes outputting, by a level-shifter circuit, voltages Vo1+ and Vo1−; and outputting, by an output alignment circuit, voltages Vo+ and Vo− that are triggered by an edge of a combination of Vo1+ and Vo1−, and where Vo+ and Vo− are set by high states of Vo1+ and Vo1− prior to a transition on an input of the level-shifter circuit. |
US10771041B2 |
Tunable narrow bandpass MEMS technology filter using an arch beam microresonator
Embodiments of a tunable bandpass microelectromechanical (MEMS) filter are described. In one embodiment, such a filter includes a pair of arch beam microresonators, and a pair of voltage sources electrically coupled to apply a pair of adjustable voltage biases across respective ones of the pair of arch beam microresonators. The pair of voltage sources offer independent tuning of the bandwidth of the filter. Based on the structure and arrangement of the filter, it can be tunable by 125% or more by adjustment of the adjustable voltage bias. The filter also has a relatively low bandwidth distortion, can exhibit less than 2.5 dB passband ripple, and can exhibit sideband rejection in the range of at least 26 dB. |
US10771037B2 |
Piezoelectric resonator device
A piezoelectric resonator device having a sandwich structure is provided, which is stably bonded to an external element. In the piezoelectric resonator device 1, at least a vibrating part 21 of a piezoelectric substrate 2 is sealed by a first sealing member 3 and a second sealing member 4. The piezoelectric substrate 2 includes: the vibrating part 21; and an external frame part 23 that is thicker than the vibrating part 21 and that surrounds the outer periphery of the vibrating part 21. External electrodes 31 to be connected to an external element 5 are provided on at least one of the first sealing member 3 and the second sealing member 4. The external element 5 is connected to the external electrodes 31 at least on the external frame part 23 of the piezoelectric substrate 2. |
US10771034B2 |
Conductive path with noise filter
A conductive path with noise filter that includes a plurality of conductive path main bodies; a plurality of insulating layers that surround respective outer circumferences of the conductive path main bodies; a plurality of conductors that are provided with the insulating layers being sandwiched between the conductors and the conductive path main bodies and form respective capacitors; a plurality of inductors that are connected to the respective conductors; and an electrical connector that includes a plurality of fitting portions into which the respective inductors can be fitted and that is attached to an electrical connection holder. |
US10771030B2 |
Phase-locked loop with adjustable bandwidth
Aspects of this disclosure relate to a VLIF receiver with automatic phase noise adjustment. The presence of an interfering signal is sensed within a bandwidth around a desired channel frequency. Then the local oscillator phase noise is automatically adjusted to optimize blocking. The phase noise adjustment includes increasing the bandwidth of a phase-locked loop. |
US10771029B2 |
Amplifier with scalable impedance adjustments over gain modes
Disclosed herein are signal amplifiers that provide impedance adjustments for different gain modes. The impedance adjustments are configured to result in a constant real impedance for an input signal at the amplifier. The amplifiers include a scalable impedance adjustment circuit that adjusts inductance and/or a device width to compensate for changes in the total impedance presented to an input signal. By providing impedance adjustments, the amplifiers reduce losses and improve performance by improving impedance matching over a range of gain modes. |
US10771028B2 |
Programmable gain amplifier apparatus and method
An apparatus comprises a plurality of selectable gain stages connected in parallel between a first bias voltage and ground, wherein each selectable gain stage comprises an amplification portion and a current steering portion, and wherein the current steering portion comprises a first selectable signal path connected between an output of the amplification portion and a signal output terminal, and a second selectable signal path connected between the output of the amplification portion and ground through a shunt device. |
US10771020B1 |
Class D transconductance amplifier
A circuit that outputs a current which is proportional to an input voltage includes input and output terminals, a comparator, first and second transistors, an inductor, a first resistor, and a differential amplifier. A first input terminal of the comparator is coupled to the input terminal of the circuit, and a second input terminal of the comparator is coupled to an output terminal of the comparator. The first and second transistors are coupled to the output terminal of the comparator. The inductor is coupled to the first and second transistors. The first resistor is coupled between the inductor and the output terminal of the circuit. The differential amplifier includes a first input terminal coupled to a first terminal of the first resistor, a second input terminal coupled to a second terminal to the first resistor, and an output terminal coupled to the first input terminal of the comparator. |
US10771018B2 |
Harmonic suppression method, corresponding low-noise amplifier, and communication terminal
Provided is a harmonic suppression method, a corresponding low-noise amplifier (20, 30, 40), and a communication terminal. In the harmonic suppression method, an isolation unit (23, 33, 43) is arranged between a harmonic suppression unit (24, 34, 44) of the low-noise amplifier (20, 30, 40) and an output match network (25, 35, 45)/input match network (21, 31, 41). The harmonic suppression unit (24, 34, 44) is isolated from the output match network (25, 35, 45)/input match network (21, 31, 41) by means of the isolation unit (23, 33, 43), so that the two are not affected or compromised by each other, and can be designed separately. In this way, the design flexibility of a signal amplification circuit is greatly improved, and the design difficulty is reduced. |
US10771016B2 |
Amplifier circuit with overshoot suppression
An amplifier circuit including an input amplifier, an output amplifier and a diode device is provided. The output amplifier is coupled to the input amplifier and outputs an output voltage. The diode device is coupled between an output end and an input end of the output amplifier. When a voltage difference between the output end and the input end of the output amplifier is greater than a barrier voltage of the diode device, the diode device is turned on, and an overshoot of the output voltage is reduced. |
US10771015B2 |
Method and device for selectively supplying voltage to multiple amplifiers by using switching regulator
Various embodiments disclose a method and a device including: an antenna, a switching regulator, communication chip including an amplifier and a linear regulator operably connected to the amplifier and the switching regulator, the communication chip configured to transmit a radio-frequency signal from the electronic device through the antenna, and control circuitry configured to control the communication chip such that the linear regulator provides the amplifier with a voltage corresponding to an envelope of an input signal input to the amplifier, the input signal corresponding to the radio-frequency signal. |
US10771013B2 |
Oscillator, electronic apparatus, vehicle, and manufacturing method of oscillator
An oscillator includes: an external terminal, a resonator, and an oscillation circuit that oscillates the resonator, in which the oscillation circuit includes an amplification circuit and a current source which supplies a current to the amplification circuit, in which the current is set according to a first control signal which is input from the external terminal and a drive level of the resonator is changed according to the setting of the current. |
US10771005B2 |
Inverter system for vehicle
An inverter system for a vehicle includes: an energy storage device configured to store electrical energy, a first inverter including a plurality of first switching elements and configured to convert the electrical energy stored in the energy storage device into alternating-current (AC) electric power, a second inverter including a plurality of second switching elements different from the plurality of first switching elements, a motor configured to be driven by receiving the AC power converted by the first inverter and the second inverter, current sensors disposed between the first inverter and the motor and the second inverters and the motor, respectively, and configured to detect a current input to the motor, and a controller configured to generate a pulse width modulation (PWM) signal for controlling driving of the motor. |
US10771000B2 |
Motor control system, motor control apparatus, and method for controlling motor
A motor control system includes a motor, a motor control apparatus that drives the motor and includes a first communication port and a second communication port, an upper-level control apparatus connected to the first communication port via a first communication path, an interface connected to the second communication port via a second communication path, and one or more detectors that detect information for controlling the motor and are connected to or including the interface. The motor control apparatus includes processing circuitry that obtains the information detected by the detector and exchanged between the upper-level control apparatus and the interface, and controls the motor based on the obtained information. |
US10770997B2 |
Power system
A power system includes a synchronous electrical generator having a rotor driven by a shaft; a permanent magnet signaling generator, coupled to the shaft; and an angle computation unit configured to calculate a rotor angle or load angle based on a voltage from the permanent magnet signaling generator and a voltage from the synchronous electrical generator. |
US10770994B2 |
Variable torque electric motor assembly
An actuator assembly includes an electric motor including a rotor assembly and a stator assembly configured to be actuated to cause the rotor assembly to rotate based on an amount of magnetic flux in the rotor assembly is disclosed. The assembly also includes a controllable magnetic device coupled to the rotor assembly, an actuator coupled to the rotor assembly; and a controller configured to apply electric current to the controllable magnetic device to adjust an amount of torque provided by the electric motor by adjusting the magnetic flux in the rotor assembly. |
US10770991B2 |
Vibrator manufacturing method
A method of manufacturing a vibration type actuator providing a satisfactory actuator performance even when an increase in speed is achieved and having a contact spring. The actuator includes an elastic member and a hollow protrusion having a side wall portion protruding with respect to a surface of the elastic member, a contact portion configured to come into contact with a body, and a first connection portion connecting the side wall portion and the contact portion, the method includes, forming the hollow protrusion including the side wall portion and a distal end portion by performing drawing on an elastic plate and forming the contact portion and the first connection portion by performing drawing or squeezing on the distal end portion, wherein the contact portion is surrounded by the first connection portion. |
US10770989B2 |
Electrode structure, triboelectric generator including the same, and method of manufacturing the electrode structure
Example embodiments relate to an electrode structure, a triboelectric generator including the electrode structure, and a method of manufacturing the electrode structure. The electrode structure includes a flexible layer configured to be bendable by an external force and an electrode, at least some regions thereof being embedded in the flexible layer. |
US10770987B2 |
Motor drive architecture for variable frequency alternating current loads
A method and system for controlling a three-phase drive connected to a three phase power source. The method includes connecting a converter to transfer power from the power source to a first direct current (DC) bus, where the converter and the first DC bus each have a neutral common point (NCP). Connecting a second DC bus to the first DC bus and configuring an inverter connected to the second DC bus to draw power from the second DC bus to provide a plurality of motor signals, the inverter having an inverter NCP. The method also includes connecting a neutral point selection device to the first DC bus NCP and selectively connecting to the converter NCP or the inverter NCP, the bus selection device configured to disconnect the converter NCP or the inverter NCP from the first DC bus NCP under selected conditions. |
US10770986B2 |
Power conversion device
First to third-phase converters convert first to third-phase AC voltages into DC voltages, respectively. First to third DC positive buses and first to third DC negative buses are electrically connected to the first to third-phase converters. Fourth to sixth-phase inverters convert the DC voltages into fourth to sixth-phase AC voltages. The first to third-phase converters include diode rectifiers. First to third fuses are connected between an AC power supply and the first to third-phase converters, respectively. Fourth to sixth fuses are inserted into the first to third DC positive buses, respectively. Seventh to ninth fuses are inserted into the first to third DC negative buses, respectively. |
US10770974B2 |
Multi-level DC-DC converter with lossless voltage balancing
Multi-level DC-to-DC converter circuits and methods that permit a full range of output voltages, including near and at zone boundaries. Embodiments alternate among adjacent or near-by zones, operating in a first zone for a selected time and then in a second zone for a selected time. Embodiments may include a parallel capacitor voltage balancing circuit that connects a capacitor to a source voltage to charge that capacitor, or couples two or more capacitors together to transfer charge, all under the control of real-time capacitor voltage measurements. Embodiments may include a lossless voltage balancing solution where out-of-order state transitions are allowed, thus increasing or decreasing the voltage across specific capacitors to prevent voltage overstress on the converter main switches. Restrictions may be placed on the overall sequence of state transitions to reduce or avoid transition state toggling, allowing each capacitor an opportunity to have its voltage steered as necessary for balancing. |
US10770971B2 |
Single-input multiple-output (SIMO) converter having a controller with switchable rest states
A system includes an inductor and a first switch coupled between a first end of the inductor and a voltage supply node. The system also includes a second switch coupled between the first end of the inductor and a negative output supply node. The system also includes a third switch coupled between a second end of the inductor and a positive output supply node. The system also includes a fourth switch coupled between the second end of the inductor and a ground node. The system also includes a controller coupled to the first, second, third, and fourth switches. The controller is configured to provide an inductor charge mode, a positive boost mode, a negative boost mode, a first rest state involving the first switch, and a second rest state involving the fourth switch. |
US10770970B2 |
Flying capacitor based variable voltage converter
A powertrain for a vehicle may include a variable voltage converter (VVC), and a controller. The VVC may include an inductor, a bus capacitor and a flying capacitor. The controller may be configured to, in response to a power demand signal exceeding a threshold, modulate switches of the VVC such that an inductor current created by a collapsing field of the inductor is directed into the flying capacitor or the bus capacitor such that a bus capacitor voltage exceeds a flying capacitor voltage, and in response to the power demand signal dropping below the threshold, modulate switches such that the flying capacitor and the bus capacitor are coupled in parallel. |
US10770969B2 |
Digital average current-mode control voltage regulator and a method for tuning compensation coefficients thereof
A digital controller for controlling an average-current-mode voltage regulator with an output connected to a load. The controller comprises a digital voltage-sampling window Analog-to-Digital Converter (ADC), based on Delay-Lines (DLs) and configured to obtain a sample of a voltage error signal being the difference between the reference voltage and the output voltage, and to convert the voltage error signal from analog to digital representation; a digital current-sampling window ADC, based on DLs and configured to obtain a sample of the output current and to convert the current output from analog to digital representation; a digital compensator for voltage regulation, receiving as input the digital voltage error signal, configured to generate a current reference signal based thereupon; a digital compensator for current regulation, receiving as input the current error signal and the current reference signal, configured to generate a duty-ratio command signal based thereupon; and a digital hybrid High Resolution (HR) Digital Pulse Width Modulator (HR-DPWM) receiving as input the duty-ratio command signal and generating a pulse-width-modulated signal that is fed to the gates of the converter's transistors, to thereby control the current and voltage supplied to the load. |
US10770968B1 |
Switching power converter with adaptive pulse frequency modulation
An adaptive pulse frequency modulation for a switching power converter is provided that varies the switching frequency across a cycle of a rectified input voltage for the switching power converter From a beginning of the cycle of the rectified input voltage, the switching frequency decreases from a maximum value to a minimum value at a mid-point of the cycle and then increases from the mid-point back to the maximum value at an end of the cycle. |
US10770965B2 |
Control of series-parallel mode (SPM) clamped flyback converter
This disclosure describes a flyback converter with a series-parallel mode (SPM) active clamp. The active clamp, coupled in parallel with the primary coil, may include a clamp switch, two or more snubber capacitors, and associated diodes. The active clamp may be configured to absorb and retain the leakage energy from the leakage inductance of the flyback converter. The clamp switch may be turned on selectively as the primary switch approaches one of a plurality peak values to adjust frequencies of the switching devices. With the active clamp circuit, the flyback converter may first re-capture the leakage energy in the active clamp circuit and then recover it back to the power source. |
US10770964B1 |
Overshoot reduction circuit for buck converter
An overshoot reduction circuit for a buck converter includes an operational amplifier, a first sampler circuit, a pulse generator circuit, a pulse calculator circuit, a second sampler circuit and a comparator. The operational amplifier outputs an operation amplified signal according to a buck converted signal of the buck converter and a voltage feedback signal of the operational amplifier. The first sampler circuit samples a first capacitor voltage signal according to a lower bridge conducted signal of the buck converter. The pulse generator circuit outputs a pulse signal. The pulse calculator circuit outputs a first sample compared signal according to the first capacitor voltage signal and the pulse signal. The second sampler circuit samples a second capacitor voltage signal according to the lower bridge conducted signal. The comparator compares the second capacitor voltage signal with the first sample compared signal to output a comparing signal to the buck converter. |
US10770959B2 |
Pole piece for a torque motor
There is provided a pole-piece for a torque motor, the pole-piece comprising a first section formed separate from a second section, wherein the first section is held in position with respect to the second section using one or more rigid members. |
US10770952B2 |
Device for converting kinetic energy of a flowing medium to electrical energy
A device for converting kinetic energy of a flowing medium to electrical energy includes a rotor for placing in the flowing medium and a generator connected to the rotor. The rotor includes a tube with one or more vanes mounted on the inner side of the tube and extending radially to the centre thereof, wherein the tube is mounted for rotation about a horizontal axis. A length of the tube in horizontal direction amounts here to at least 25% of a diameter of the tube in vertical direction. An outflow part diverging in the flow direction can connect to a rear edge of the tube as seen in flow direction of the medium. The tube can be bearing-mounted in a frame via a central shaft mounted on the inner ends of the vanes. The frame can on the other hand include an outer bearing, for instance a stator tube. |
US10770949B2 |
Electric machine and motor vehicle
An electric machine with a housing, in which a stator having a plurality of winding heads is arranged. The housing has at least one cooling channel through which can flow a cooling medium. The cooling channel has at least one circular-shaped or circular-segment-shaped annular channel section, by way of which the cooling medium can be introduced to at least one winding head through at least one opening. |
US10770948B2 |
Motor including an elastic mesh supporting a bearing
A motor includes a motor housing, a rotating shaft assembly including a rotating shaft, a rotor, and a bearing in which the rotor and the bearing are mounted to the rotating shaft. The motor further includes a stator installed in the motor housing, the stator surrounding the rotor, a bracket mounted to the motor housing, and an elastic mesh that defines a plurality of pores, that is disposed between the bracket and the bearing, and that contacts at least one of the bracket or the bearing. |
US10770947B2 |
Method for manufacturing a motor
A method of making a motor having a shaft; a pair of end plates arranged to be spaced apart from each other on the shaft; a magnet disposed between the pair of end plates; and a rotor case which surrounds the outer peripheries of the pair of end plates and the outer periphery of the magnet and is made of a synthetic resin material, wherein each of the pair of end plates includes: a flange part, one surface of which faces the magnet; and a cylinder part protruding in a direction opposite to the magnet from the flange part, and the flange part includes a tapered part having an outer diameter which decreases toward the cylinder part. |
US10770946B2 |
Stator having seal member, and motor
A stator includes a first stator part, a second stator part, and an annular seal member. The annular seal member is provided with a plurality of protrusions extending radially outward. A groove part corresponding to the annular seal member, and a plurality of recessed parts, which correspond to the plurality of protrusions of the annular seal member and which are to be connected to the groove part, are formed in at least one of the first stator part and the second stator part. |
US10770945B2 |
Rotating electrical machine coil
According to one embodiment, there is provided a rotating electrical machine coil with a conductor and an insulation layer that is provided around the conductor to cover the conductor, the rotating electrical machine coil including a linear part of the coil and a coil end that is separable from and electrically connectable to the linear part of the coil. |
US10770944B2 |
Rotary electric machine
A plurality of bus rings, which are arranged at bus ring maintaining portions, include coil connecting portions, which are protruded in an outer direction in a shaft direction of a stator core with respect to the bus ring maintaining portions, and terminals of coils of a stator are bent in an outer direction in a diameter direction of the stator core in a state where end surfaces of wall portions of bobbins are used as base points, and are connected to the coil connecting portions of the bus rings, and the end surfaces of the wall portions are protruded in an outer direction in a shaft direction of the stator core with respect to end surfaces of the bus rings, and are positioned in an inner direction in a shaft direction of the stator core with respect to end surfaces of the coil connecting portions of the bus rings. |
US10770941B2 |
Rotor of rotating electrical machine
A rotor of a rotating electrical machine includes: a magnet; and a rotor yoke including at least a first core block and a second core block formed by stacking steel plates, each of the steel plates includes an opening portion serving as a coolant flow path, the opening portion positioned on an outermost diameter side includes an outer-diameter-side inner wall portion with a predetermined width in a circumferential direction and located on an imaginary circle centered on an axis of the rotor, the second core block is arranged adjacent to the first core block while the second core block is rotated by a predetermined angle with respect to the first core block, and the predetermined width is a length at which the outer-diameter-side inner wall portions of the opening portions of the first core block and the second core block overlap each other when seen from the axial direction. |
US10770939B1 |
Rotor for permanent magnet rotary electric machine and permanent magnet rotary electric machine
Provided is a rotor for a permanent magnet rotary electric machine, which enables the bonding of a permanent magnet to a rotor core in a skewed manner with respect to an axial direction of the rotor core. The rotor includes a rotor core including a cylindrical portion and a pair of polygonal columnar portions provided to both ends of the cylindrical portion in the axial direction, and a permanent magnet having a bonding surface, which is flat and bonded to the rotor core. The pair of polygonal columnar portions has flat surfaces that are arranged so that center positions are spaced apart from each other as viewed in the axial direction. The bonding surface of the permanent magnet is bonded to the respective flat surfaces of the pair of polygonal columnar portions under a state in which the permanent magnet is skewed with respect to the axial direction. |
US10770937B2 |
High efficiency power generation system and a method of operating same
A power generating system using magnetic induction and a method of operating same are disclosed. The power generating system includes at least one stationary electromagnet receiving an excitation voltage from a power supply. The at least one stationary electromagnet has a north pole, a south pole and a magnetic field. The system also includes at least one stationary coil positioned inside the magnetic field and intersected by magnetic field lines of the at least one electromagnet such that when the at least one electromagnet is excited, an electromotive force (EMF) is induced in the at least one stationary coil. The power supplied may be AC or DC. The system also includes a frequency modulator for changing the rate of electric current introduced to the at least one electromagnet so that the change of current rate will cause an EMF to be induced in the coil. |
US10770934B2 |
Electrical machine
The invention relates to an electrical machine having a rotor (1), a stator (2) radially surrounding the rotor, and a housing (4) radially surrounding the stator. In order to minimize stresses in the housing and nonetheless decrease the tendency of the stator to torsional vibrations, the stator is connected to the housing at least at one end in a radially and torsionally rigid but axially movable manner, for example, by way of an axially compliant material area. The electrical machine can, in particular, be a motor spindle in a gear finishing machine. |
US10770928B2 |
Wireless charging device with multi-tone data receiver
A wireless power transmitting device transmits wireless power signals modulated at a given power frequency to a wireless power receiving device using a wireless power transmitting coil. The wireless power receiving device may transmit data signals to the wireless power transmitting device. The wireless power transmitting device may include a data receiver that is coupled to the wireless power transmitting coil and that receives the transmitted data. The data receiver may include an input stage, bandpass filter circuitry, demodulator circuitry, and a data stream combiner. The bandpass filter circuitry may include at least two bandpass filter circuits for passing through signals at the power frequency and some harmonic of the power frequency. The demodulator circuitry may extract amplitude and phase information from the bandpass filtered signals and to generate multiple demodulated data streams. The data stream combiner may correlate the demodulated data streams and combine the correlated data streams. |
US10770923B2 |
Systems and methods for elastic wireless power transmission devices
A wireless power transmission device wearable by a subject is provided. The wireless power transmission device includes a power conditioner including a first end and an opposite second end, and a band. The band includes a first end fixedly coupled to the power conditioner first end, a second end fixedly coupled to the power conditioner second end, a body extending between the band first end and the band second end, the body including at least one elastic segment, and a plurality of conductive wires extending along the body to form a plurality of conductive loops, at least one of the plurality of conductive wires electrically coupled to the power conditioner. |
US10770922B2 |
Resonant inductive converter
A system that converts between electromagnetic configurations for power transfer including an inductive power supply defining a driver, a primary resonator coil, a secondary resonator coil, a secondary inductive coil and an electromagnetic shield. The primary resonator coil is powered by the driver. The secondary resonator coil is electromagnetically coupled to the primary resonator coil. The secondary inductive coil transfers power to a wirelessly powered device, and the secondary inductive coil is electrically connected to the secondary resonator coil. The electromagnetic shield is positioned to provide electromagnetic shielding of the secondary inductive coil from the secondary resonator coil. |
US10770920B2 |
Wireless power transmission system, control method, and storage medium
A wireless power transmission system includes a first antenna, a second antenna configured to perform wireless power transmission with the first antenna, and a movement unit configured to move a position of the second antenna relative to the first antenna in a predetermined moving direction, wherein the second antenna is shorter in length in the moving direction than the first antenna, wherein a distance between at least one end portion of the first antenna in the moving direction and the second antenna at a position where the second antenna faces the end portion is longer than a distance between an intermediate portion of the first antenna and the second antenna at a position where the second antenna faces the intermediate portion, and wherein the intermediate portion of the first antenna is a portion of the first antenna excluding both end portions of the first antenna. |
US10770919B2 |
Wireless energy transfer system and wearables
Disclosed are systems for wireless energy transfer including transcutaneous energy transfer. Embodiments are disclosed for user interface (UI) hubs to connect multiple batteries and to output system information to a patient. Embodiments are further disclosed for garments and devices to be worn by a patient requiring treatment. The garments are configured for a desired placement of a transmitter coil relative to a body of the patient and for facilitating patient comfort and quality of life. Methods for manufacturing and using the devices and the systems are also disclosed. |
US10770917B2 |
Power transmission system transmitting powers from multiple power transmitter apparatuses to multiple power receiver apparatuses, and capable of distinguishing and separating transmitted powers
Each one of code modulators modulates first power to generate a code-modulated wave using a modulation code based on a code sequence, and transmits the code-modulated wave to one of code demodulators. Each one of code demodulator receives the code-modulated wave from one of the code modulators, and demodulates the received code-modulated wave to generate second power using a demodulation code based on a code sequence identical to the code sequence of the modulation code used. When power is transmitted between each one of transmitter and receiver pairs, a controller selects and assigns code sequences to the transmitter and receiver pairs, so as to reduce an average of an absolute value of a total current of the code-modulated waves of the transmitter and receiver pairs in a transmission path, as compared to a reference value, the average being averaged over a predetermined time. |
US10770915B2 |
Power generating apparatus
A power generating apparatus for use in remote locations, the apparatus including a static base adapted to support a housing and an elongate device support element which is adapted to be upstanding in use, wherein the housing is insulated; an electrical energy storage assembly located within a compartment defined by the housing, the electrical energy storage assembly having an electrical input and an electrical output, and comprising one or more rechargeable batteries; an electrical energy generator carried externally by the housing, wherein the electrical energy generator is the sole source of electrical energy and is in the form of one or more photovoltaic panels configured to convert solar energy into electrical energy, the electrical energy from the electrical energy generator being electrically connected to the input of the energy storage assembly; and a powered device carried by the device support element, the powered device being selected from a camera, a lighting apparatus, a wireless communications assembly and combinations thereof, wherein the powered device is electrically coupled to the output of the energy storage assembly. |
US10770914B2 |
Dual control loop for charging of batteries
A system for generator-based charging of a battery module may include the battery module, a sensor located adjacent the battery module, a generator controller comprising a processor and a non-transitory memory device storing instructions. The battery modules include one or more battery types, such as lithium ion batteries. The generator controller analyzes one or more sensor signals received from the sensor, the signals associated with battery conditions including temperature, a current, a voltage, a state of charge, a state of health and the like. The generator controller calculates a generator current value for use in charging the battery module. Next, the generator controller may generate a control signal comprising a command that may cause the generator to provide a charging current having the current value. The control signal is generated using a first control loop associated with a battery voltage and a second control loop associated with a battery current. |
US10770911B1 |
Calibrating battery fuel gages
Calibrating a battery capacity gage employs a controlled discharge of a backup battery unit. A method of updating a capacity gage includes charging a backup battery unit to a predetermined high charge level. A first amount of energy is discharged from the backup battery unit at a first controlled discharge rate so as to discharge the backup battery unit from the predetermined high charge level to a first low charge level. The backup battery unit is charged back to the predetermined high charge level. A power system controller estimates, based on the first amount of energy and the first controlled discharge rate, a second amount of energy that can be discharged from the backup battery unit at a second controlled discharge rate greater than the first controlled discharge rate. The capacity gage is updated based on the second amount of energy estimated by the power system controller. |
US10770909B2 |
Short circuit protection for data interface charging
A switching power converter is provided with an overvoltage protection circuit that monitors the differential data signal voltages in a data interface such as a USB data interface powering a load device to detect soft short conditions. |
US10770907B2 |
Battery device and control method thereof
A battery device includes battery module, each including an assembled battery and a battery monitoring circuit. The assembled battery comprises battery cells. The battery monitoring circuit measures voltages of the battery cells, current and temperature levels of the assembled battery. A control circuit is connected to the battery monitoring circuits through a communication line and supplies power to the battery monitoring circuits. The control circuit communicates with the battery monitoring circuits through the communication line. Each battery monitoring circuit is configured to monitor signals transmitted on the communication line for a predetermined time period after its startup, and then to select a communication ID to one that does not conflict with any other ID used to communicate through the communication line during the predetermined time period. The selected ID is then transmitted on the communication line. |
US10770905B2 |
Combined power generation system
While a power storage installation operates as a virtual generator to maintain an power storage amount, a power generating installation calculates a first generated power change rate command value from a deviation between a frequency of a power distribution system and a frequency command value, calculates a second generated power change rate command value from received power measured by a received power measurer, calculates a second active power command value by integrating a generated power change rate command value to which the first generated power change rate command value and the second generated power change rate command value are added, and controls an output of the power generating installation based on the second active power command value. |
US10770899B2 |
Resource control by probability tree convolution production cost valuation by iterative equivalent demand duration curve expansion (aka. tree convolution)
A method, system and program product for quantifying risk of unserved energy in an energy system using a digital simulation. An energy demand forecast is generated based at least in part on a weather model for near term future periods. A plurality of energy supply resources are committed to meet the plurality of energy demand assisted by a plurality of storage devices and associated ancillary services. A probable operating status is specified for each committed energy supply resource in the energy system. Renewable energy resources such as wind, solar cells, and biofuels are also included in the models for energy supply sources. A determination is made as to whether or not the committed supply resources and storage devices are sufficient to meet the energy demand as well as determine the cost of production above a prespecified loss of demand probability (LODP) and expected unserved energy (EUE). |
US10770897B1 |
Load reduction optimization
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing load reduction optimization. In one aspect, a method includes accessing load reduction parameters for a load reduction event, accessing energy consumption models for multiple systems involved in the load reduction event, and performing, based on the load reduction parameters and the energy consumption models, a plurality of simulations of load reduction events that simulate variations in control parameters used to control the multiple systems. The method also includes optimizing, against a load reduction curve, the load reduction event by iteratively modifying the control parameters used in the plurality of simulations of load reduction events, and outputting the optimal load reduction event with optimized control parameters. |
US10770895B2 |
Power distribution systems
A power distribution system such as a marine power distribution and propulsion system. The system includes an ac busbar and a plurality of active front end power converters. Each AFE power converter includes a first active rectifier/inverter connected to the busbar and a second active rectifier/inverter connected to an electrical load such as an electric propulsion motor. Power sources are connected to the dc link of the AFE power converters and can be operated under the control of a power management controller or power management system. |
US10770889B2 |
Semiconductor circuit
To provide a semiconductor circuit capable of slightly generating inductance in two facing bus bars. Provided with a semiconductor circuit in which a collector-side bus bar 46 and an emitter-side bus bar 41 are arranged in parallel in a state of being isolated from each other and are fitted in a fixed manner to each other, and a inductance generation portion 411 is provided in one or both of the collector-side bus bar 46 and the emitter-side bus bar 41, the inductance generation portion 411 generating a difference in inductance between the collector-side bus bar 46 and the emitter-side bus bar 41. |
US10770885B2 |
Ground fault circuit interrupter with combined tripping curve for electric vehicle charging
A ground fault circuit interrupter with a residual current device is suggested which comprises a tripping characteristic having a combined time-current curve that implements a minimum tripping time value of a first time-current curve and a second time-current curve for each current value. |
US10770882B2 |
Power module
When a short-circuit failure has occurred in a power semiconductor device provided in a power module, a radical and rapid temperature increase is prevented by instantly interrupting a short-circuit current. A power module 10 has a package 10a. Provided in the package 10a are: a MOSFET 21 serving as the power semiconductor device; a resistor 23 serving as a detecting means for detecting an operation state of the MOSFET 21 and outputting a detection signal; and a MOSFET 22 serving as a current-interrupting purpose switch connected in series to the MOSFET 21. In response to a control signal Si2 generated on the basis of the detection signal, the MOSFET 22 goes into a conduction state during a normal operation of the MOSFET 21 and goes into an interruption state so as to interrupt a current flowing in the MOSFET 21 when a short-circuit failure has occurred in the MOSFET 21. |
US10770881B2 |
Systems and methods for script implemented logic for trigger for converting electromechanical relay outputs into fault indication for automatic restoration application
A system for automatic power outage restoration includes a conversion module, the conversion module receiving relay package input from an electro-mechanical relay package and executing code to convert the relay package input to readable output transmitted to an automatic outage restoration system. The conversion module is configured to receive the relay package input and determine whether a circuit breaker corresponding to the electro-mechanical relay package is opened manually. The conversion module is further configured to determine whether a non-fault scenario has occurred at the circuit breaker and determine whether a time from an opening of the circuit breaker has been more than a preset time. The conversion module is further configured to, based on determining that the circuit breaker was not opened manually, that a non-fault scenario has not occurred, and that the time has not been more than the preset time, outputting a set signal from the conversion module, wherein an automatic outage restoration application resets the circuit breaker based on the set signal. |
US10770876B2 |
Electrical connection box and ground connection structure thereof
An electrical connection box includes an outer box and an inner box to be accommodated in the outer box. The outer box includes an outer box body, a first lock portion to lock the inner box and a ground member to be electrically connected to a ground conductor, the ground member including a first ground contact portion provided at or adjacent to the first lock portion. The inner box includes an inner box body, a second lock portion to be engaged with the first lock portion, a ground circuit element to which the circuit base is connected to ground the circuit base and a contact conductor electrically connected to the ground circuit element, the contact conductor including a second ground contact portion to be electrically connected to the first ground contact portion when the first lock portion and the second lock portion are engaged with each other. |
US10770874B2 |
Flexible cover for wires or cables
A flexible covering for wires, cables, and the like includes a flexible sleeve in a partially rolled natural state and capable of being unrolled, and at least one pliable rod or insert running through an entire length of the flexible sleeve capable of firmly holding the flexible sleeve in a bent shape while allowing the flexible sleeve to remain wrapped around a bundle of wires. |
US10770869B2 |
AC power adapter and power distribution system employing same
The present disclosure provides an AC power adapter comprising plural connectors, plural first power conveying wires, a junction box, a power conveying wire assembly and a plug. The first power conveying wire is connected with the connector and comprises an input neutral wire, an input live wire and an input ground wire. The first power conveying wire is inserted into the junction box. The power conveying wire assembly is inserted into the junction box and comprises plural output neutral wires, plural output live wires and an output ground wire. The output neutral wires are connected with the input neutral wires one-to-one, the output live wires are connected with the input live wires one-to-one, and the output ground wire is connected with the input ground wires. The plug comprises a housing and an electrical connector. The power conveying wire assembly is inserted into the housing and connected with the electrical connector. |
US10770865B1 |
Multi-stripe edge-emitting laser
An edge-emitting laser including a substrate, a lower power optical cavity located on the substrate and a higher power optical cavity located on the substrate adjacent the lower power optical cavity. The lower power optical cavity includes a first active gain section having a first length. The higher power optical cavity includes a second active gain section having a second length greater than the first length. |
US10770863B2 |
Semiconductor laser device
A disclosed semiconductor laser device includes a distributed feedback portion serving as a light-emittable active region the distributed feedback portion having a diffraction grating; and a distributed reflective portion serving as a passive reflective mirror, the distributed reflective portion having a diffraction grating, wherein the distributed feedback portion includes a first region adjacent to the distributed reflective portion and having a diffraction grating having a predetermined standard period, a phase shift region adjacent to the first region, the phase shift region being longer by twice or more than the standard period, and a second region adjacent to an opposite side to the first region of the phase shift region and having a diffraction grating with the standard period, and the phase shift region optically changes a phase of laser beam between the first region and the second region. |
US10770861B1 |
Light-emitting device having self-cooled semiconductor laser
A light-emitting device having a self-cooled semiconductor laser having a laser cavity. |
US10770857B2 |
Electronic equipment assembly method
An electronic equipment assembly apparatus includes a cable holding tool, a work stage, and a robot unit. The cable holding tool holds the cable. The work stage holds the electronic equipment. The robot unit relatively moves the cable holding tool with respect to the electronic equipment held by the work stage. The cable holding tool includes a contactor and a width direction regulator. The contactor holds the cable by vacuum-sucking. The width direction regulator regulates a position in a width direction of the cable which comes into contact with the contactor. |
US10770854B2 |
High integration assembly process for AC adapter with foldable prongs
Methods of assembly are provided for an AC plug supporting foldable prongs. The AC plug includes: a cover including slots and prongs. In an extended position, the prongs are insertable in AC outlet receptacles and each prong contacts a spring mounted terminal that is coupled to a power circuit. In a retracted position, each prong is recessed in a slot of the cover and does not contact a spring mounted terminal. In the extended position, the coupling between each prong and the power circuit does not utilize wires. A first end of each spring mounted terminal is positioned on a contact pad of a printed circuit board (PCB) that connects the AC plug to the power circuit. A cap is fastened to the cover and secures the spring mounted terminals to the respective contact pads and secures the PCB and spring mounted terminal to the cover. |
US10770851B2 |
Lug assemblies and related electrical apparatus and methods
Lug assemblies include a housing with at least one internal printed circuit board with electronics and lugs. The lugs attach to cables providing power/current. The printed circuit board includes at least one electrical ground connector and at least one electrical contact connector. The lug assemblies include terminals that indirectly electrically couple the cables to terminals of switching devices such as circuit breakers. |
US10770850B2 |
Strut end condition, end block, and connector
Various embodiments of a strut end condition, end block, and connector are disclosed. In one embodiment, a system including a series of strut assemblies is provided, comprising: two strut assemblies oriented end-to-end, each including: a strut; an insulator; at least one conductor wire; and an end block oriented within an end of the strut, the end block nesting within the strut; a connector spanning a junction created by adjacent ends of the two strut assemblies, the connector including: an upper housing having at least conductor element having vertical elements at opposing ends; a lower housing, the lower housing including: two lower housing wings, and rotatable locking cams oriented on each of the lower housing wings, the rotatable locking cams having two opposing flat sides and two opposing rounded ends; wherein the locking cams are rotatable to engage the connector with each of the two strut assemblies. |
US10770848B2 |
Connecting element
A connecting element (1) serves to establish electrical contact between two busbars. The connecting element (1) comprises a housing (2) with an interior (20) and a contact element (3) which is mounted in the interior (20). The contact element (3) comprises at least one resilient contact web (32) and defines a substantially flat plane (39). The contact element (3) divides the interior (20) along the plane (39) into at least a first receiving space (21) for receiving a first busbar (4) and a second receiving space (22) for receiving a second busbar (5), wherein the contact element (3) establishes electrical contact between the first busbar (4) and the second busbar (5) by way of the at least one contact web (32). |
US10770847B2 |
High current DC dispersing and converging connector
A high current DC dispersing and converging connector comprises a dispersing and connecting terminal, a sheath I, a converging and connecting terminal and a sheath II, the dispersing and connecting terminal comprises three connecting ends I and a connecting end II; two connecting ends I are symmetrically fixed to the connecting end II; the sheath I is provided with three inserting ports I and an inserting port II; the sheath I is sleeved on an outer surface of the dispersing and connecting terminal; the tail of the connecting end II is provided with an inserting groove; the converging and connecting terminal is an umbrella-shaped copper-aluminum terminal; the sheath II is provided with two connecting ports; the sheath II is sleeved on an outer surface of the converging and connecting terminal; when the umbrella-shaped end is inserted into and fixed with the inserting groove, the inserting port II of the sheath I is inserted into and fixedly connected with the connecting port of the sheath II; and a seal ring is arranged at a contact position where the inserting port II and the connecting port are contacted. By improving the structure of the existing high current DC single-input and single-output connector, the solution reduces the convergence box, saves a connection space, makes processing more convenient, and also reduces processing time. |
US10770845B2 |
Compact high speed connector
A connector system includes a plug assembly that has a front connector mounted to a circuit board. The connecter has two wafers that each support a row of terminals and uses shims and pegs to precisely control the spatial relationship of the two wafers to the circuit board. The wafers need not be directly contacting the circuit board and the terminals can have tails that can be positioned slightly above the circuit board and connector to pads on the circuit board via solder connections. The connector system is optimized so as to enable support of 25 Gbps data rates. |
US10770840B1 |
Shielded electrical connector assembly
A shielded electrical connector assembly is presented herein. The shielded electrical connector assembly includes a shield terminal having an attachment portion configured to be connected to a shield conductor of a coaxial cable and a connection portion configured to be received within a mating shield terminal and a contact cage surrounding a forward segment of the connection portion and slideably attached to the shield terminal. The contact cage defines a plurality of arcuate contact arms configured to be in intimate compressive contact with a mating shield terminal inner wall which causes the contact cage to extend rearwardly when the shield terminal is inserted within the mating shield terminal. Methods of forming and interconnecting a shielded electrical connector assembly are also presented herein. |
US10770836B2 |
Plug connector including a profiled latch
A plug connector includes a housing having a front and a rear, a first end and a second end opposite the first end, and a first side and a second side opposite the first side. The housing has a mating end at the front for mating with a mating connector. The housing has a latch pocket at the first end. The plug connector includes plug contacts held by the housing provided proximate to the mating end for mating with the mating connector. The plug connector includes a latch received in the latch pocket having a main body and a latch beam extending from the main body. The latch beam includes a dual tip latch including a first tip latch and a second tip latch both configured to be received in a same latch opening of the mating connector. |
US10770834B2 |
Fitting connector
In a fitting connector, a latch hold body includes a first fulcrum portion provided on a latch-release arm portion and exerting force in a detaching direction from a second latch hold portion on a first latch hold portion with a contact point with a first release-operation force receiving portion as a fulcrum when a latch-release operation portion is pushed, and a second fulcrum portion provided on the latch-release operation portion side relative to the first fulcrum portion in the latch-release arm portion and exerting the force in the detaching direction from the second latch hold portion on the first latch hold portion with a contact point with a second release-operation force receiving portion that contacted along with continuation of push operation as a new fulcrum. |
US10770832B2 |
Electric cable subassembly
The present disclosure relates to an electrical cable assembly with a connector, in particular a trunk line cable assembly for a photovoltaic system, and to an assembly consisting of a module inverter and the trunk line cable assembly connected thereto, and also relates to a photovoltaic system comprising a plurality of photovoltaic modules and module inverters and AC side cabling between the module inverters and the trunk line cable assemblies, wherein the drop lines are connected to the trunk line cable by means of the connector, wherein the junction is enclosed by a two-piece connector housing which includes strain relief means for the trunk line cable and is optionally additionally overmolded. |
US10770831B2 |
Strain relief hose barb cable connector
An electrical cable connector assembly comprises an electronics connector fitting having a first coupling portion and a second coupling portion, and a connector body having a connection portion coupled to the second coupling portion of the electronics connector fitting. The connector body has a sleeve interface portion formed about an outer surface of the connector body. An elongate compliant sleeve has a connector interface portion coupled to the sleeve interface portion of the connector body to form a coupling interface having a keyed profile. The elongate compliant sleeve has an electrical cable channel configured to receive a portion of an electrical cable electrically coupleable to an electronics device, and configured to relieve strain on the electrical cable in at least one radial direction relative to a longitudinal central axis of the connector body. The electrical cable channel is sized larger than the electrical cable to permit some movement of the electrical cable relative to the elongate compliant sleeve. |
US10770830B2 |
Electronic product and USB cover connecting structure thereof
A universal serial bus (USB) cover connecting structure of an electronic product is provided, including a USB cover, covering a USB port of the electronic product, and disposed on a case of the electronic product. A first extending part and a second extending part are disposed on opposite ends of the USB cover, and a first gap and a second gap are formed between the first extending part, the second extending part, and sidewalls of the USB cover, so that while one of first and second extending parts is pressed, the other one of the first and second extending parts will be lifted, thereby forming a digging position for a finger to easily pull the USB cover out. Costs of molds and production are reduced due to removal of a groove. |
US10770829B2 |
Connector
A connector (10) includes a housing (12) having an opening (24) open rearward. A seal ring (28) prevents water from entering the housing (12) from the side of the opening (24) by being inserted into the opening (24) and resiliently contacting an inner peripheral surface (29) of the opening (24). A retainer (16) has a contact portion (86) configured to contact the seal ring (28) from behind. The retainer (16) is configured to hold the seal ring (28) in the housing (12) by having the contact portion (86) contact the seal ring (28). The retainer (16) is mounted on the housing (12) to cover the opening (24) of the housing (12). A first drainage port (80) is open in an inner wall of the retainer (16) and is configured so that water that has entered the retainer (16) and adhered to the seal ring (28) is discharged to outside. |
US10770828B2 |
Charging gun with magnetic element controlling magnetic switch
A charging gun includes a housing provided with a receiving cavity, a latching member movably assembled at a periphery of the housing, a circuit module mounted in the receiving cavity, and a waterproof and air-permeable assembly. The circuit module includes a magnetic switch. A mounting recess into which the latching member is mounted is provided at the periphery of the housing, and the latching member is rotatable about a rotation shaft in the mounting recess. The latching member is provided with a magnetic element, a state of the magnetic switch is controlled by a change of a relative distance between the magnetic element and the magnetic switch with rotation of the latching member. A mounting hole communicating with the receiving cavity is provided in a bottom surface of the mounting recess. The waterproof and air-permeable assembly is mounted in the mounting hole to discharge heat in the receiving cavity. |
US10770823B1 |
Safety shield assembly for power receptacle and related power receptacle
A safety shield assembly for a power receptacle and a power receptacle incorporating the same. The safety shield assembly includes a frame and a sliding block and a resilient member disposed in the frame. The frame has multiple openings corresponding to multiple socket holes of the power receptacle, a position limiting member configured to abut the sliding block, and a balancing support member. In its initial state, the resilient member urges the sliding block to a closed position to covers the openings. The sliding block has two inclined surfaces. When an inserted object pushes on only one of the two inclined surfaces, the position limiting member limits the sliding motion of the sliding block; when two inserted objects simultaneously push on both inclined surfaces, the sliding block is balanced on the balancing support member and is able to slides along the frame to expose the openings. |
US10770821B2 |
Electrical connector and connector assembly having the same
An electrical connector has an insulative housing, a plurality of conductive terminals mounted in the housing and a locking structure integrally formed on the housing. The locking structure has an elastic locking member and an elastic supporting arm. The locking member has an elastic locking arm and a locking portion provided on the locking arm, one end of the locking arm is connected to the housing, the other end of the locking arm is free and is suspended above an upper surface of the housing. The supporting arm is positioned between the locking arm and the upper surface of the housing. When the locking arm and the upper surface of the housing together apply a pressure to the supporting arm, the supporting arm is capable of providing an elastic supporting force for the locking arm in a direction away from the upper surface of the housing. |
US10770820B2 |
Conductive terminal and connector
A conductive terminal comprises a body and a pair of first elastic cantilevers adapted to clamp a first conductor. The pair of first elastic cantilevers are connected to the body and accommodated within a first accommodation chamber formed in the body. Each first elastic cantilever or the body has a first elastic support structure. A free end of each first elastic cantilever is elastically supported on an inner wall of the first accommodation chamber by the first elastic support structure when the first conductor is clamped between the pair of first elastic cantilevers. |
US10770814B2 |
Orthogonal electrical connector assembly
A direct mate orthogonal electrical connector assembly includes first and second electrical connectors configured to be mated to respective first and second substrates such that the second substrate is perpendicular to the first substrate. |
US10770808B2 |
Connector with a locking mechanism
A coaxial cable termination device includes a barrel having opposed front and rear ends and a circumferential channel. A collet is at the front end of the barrel, and a sleeve is mounted over the barrel for reciprocal movement between a retracted position, in which the sleeve allows expansion and compression of the collet, and an advanced position, in which the sleeve prevents expansion of the collet. A locking mechanism is formed integrally in the sleeve and includes an arm mounted at a living hinge for movement between an unlocked position and a locked position in which a tooth on the arm is disposed within the circumferential channel. A lever is opposite the tooth from the living hinge and releases the arm from the locked position thereof. |
US10770807B2 |
Electrical receptacle for coaxial cable
An electrical receptacle that has a conductive body and a dielectric assembly received in the conductive body. The dielectric assembly has an entry dielectric portion, a distal support dielectric portion opposite the entry dielectric portion, and a reduced-diameter dielectric portion therebetween. An air region is defined between the inner surface of the conductive body and the reduced-diameter dielectric portion. An outer conductor is coupled to the conductive body and receives at least part of the entry dielectric portion. An inner contact is received in the dielectric assembly and has a mating interface end for receiving a corresponding mating contact, a termination end for coupling to a printed circuit board or adapter contact, and an inner through bore therebetween. |
US10770802B2 |
Antenna on a device assembly
Aspects disclosed in the detailed description include an antenna on a device assembly. A device assembly includes a silicon device layer having at least one antenna. The device assembly also includes a polymer substrate that is formed with insulating material that does not interfere with the at least one antenna in the silicon device layer. As a result, it is unnecessary to shield the at least one antenna from the polymer substrate, thus allowing radio frequency (RF) signals radiating from the at least one antenna to pass through the polymer substrate. |
US10770801B2 |
Antenna structure including parasitic conductive plate
An antenna structure is provided. The antenna structure includes at least one feeder, a plurality of dielectric substrates, a plurality of conductive plates disposed between the plurality of dielectric substrates, the plurality of conductive plates including at least one opening, and a radiator electrically connected to the at least one feeder through conductive vias in the plurality of dielectric substrates and the plurality of conductive plates. The radiator includes a plurality of first parasitic conductive plates spaced apart from each other, and a second parasitic conductive plate disposed between the plurality of first parasitic conductive plates, the second parasitic conductive plate being spaced apart from the plurality of first parasitic conductive plates. |
US10770791B2 |
Systems and methods for reducing signal radiation in an unwanted direction
An antenna system that can reduce signal radiation in an unwanted direction while preserving signal radiation outside of the unwanted direction is provided. The antenna system can include a signal input source with a main antenna and a secondary antenna each electrically coupled to the signal input source. The main antenna can transmit a primary signal to produce a primary radiation pattern in response to a first portion of energy from the signal input source, and the secondary antenna can transmit a secondary signal to produce a secondary radiation pattern in response to a second portion of energy from the signal input source. The secondary signal can be amplitude modified and phase shifted to position the secondary radiation pattern to cancel out or reduce a portion of the primary radiation pattern extending in an unwanted direction while substantially preserving portions of the primary radiation pattern outside of the unwanted direction. |
US10770789B2 |
Antenna structure
An antenna structure includes a substrate, a vertical radiator, a reflective structure and a horizontal metal branch. The vertical radiator is in the substrate. The reflective structure is laterally disposed external to the vertical radiator. The horizontal metal branch is coupled to the reflective structure. |
US10770787B2 |
Multi-sector antennas
Multi-directional antenna assemblies including a plurality of individual antenna sections arranged in-line with a long axis, forming a linear assembly. An antenna assembly may include a radome over the linear assembly. A linear assembly may include three or more antenna sections, each with a trough-like reflector formed by two parallel walls, and may have corrugations at the outer edges to reduce noise. An array of radiators may be positioned at the base of each antenna section. The antenna sections may share a common vertical axis and each may have a beam axes that is offset by an angle. Adjacent antenna sections may be separated by an isolation plate with a corrugated outer edge. Each antenna section may radiate greater power in a specific direction as compared to the other antenna sections. |
US10770785B2 |
Plasma radome with flexible density control
An antenna assembly may include an antenna element, a radome structure disposed proximate to the antenna element and including a plurality of plasma elements, a driver circuit operably coupled to the plasma elements to selectively ionize individual ones of the plasma elements, and a controller. The controller may be operably coupled to the driver circuit to provide control of plasma density of the individual ones of the plasma elements. The plasma elements may include respective enclosures. At least some of the enclosures may have at least two peripheral edge surfaces substantially fully contacted by corresponding peripheral edge surfaces of adjacent enclosures at at least one section along a longitudinal length thereof. |
US10770784B2 |
Antenna radome with absorbers
In one embodiment, an antenna assembly includes a reflector antenna whose aperture is covered by a radome. The radome has a principle plane corresponding to the azimuth axis of the antenna. The radome has a bulk material and a pair of absorbers made of a radio-frequency (RF)-absorbent material different from the bulk material. The pair of absorbers are arranged symmetrically along the principle plane and about the center of the radome. The pair of absorbers are located near the perimeter of the radome and are at least partially embedded in the bulk material. The pair of absorbers cover from 4%-8% of the total aperture area of the antenna. |
US10770782B2 |
Electronic apparatus
An electronic apparatus includes: a circuit substrate on which circuit components are disposed; and an antenna that includes a first electrode and a second electrode which is opposite to a surface of the circuit substrate, on which the circuit components are disposed, and includes a projection portion protruding in a direction from the second electrode toward the circuit substrate, a top portion of the projection portion not overlapping with the circuit components in plan view along a thickness direction of the circuit substrate. In the antenna including the first electrode and the second electrode, even if a surface of the antenna has an unevenness shape, as an average of thicknesses of the antenna is thicker, sensitivity of the antenna is improved. |
US10770777B2 |
Foil laminate intermediate and method of manufacturing
The present invention relates to a method of manufacturing a metal foil laminate which may be used for example to produce an antenna for a radio frequency (RFID) tag, electronic circuit, photovoltaic module or the like. A web of material is provided to at least one cutting station in which a first pattern is generated in the web of material. A further cutting may occur to create additional modifications in order to provide additional features for the intended end use of the product. The cutting may be performed by a laser either alone or in combinations with other cutting technologies. |
US10770767B2 |
Lithium-air battery system using vortex tube
A lithium-air battery system using a vortex tube is provided, in which the vortex tube is connected to an oxygen supply port of a lithium-air battery having a stack form. A high-temperature gas generated in the vortex tube is supplied to the lithium-air battery to induce a stimulating reaction and simultaneously, a low-temperature gas generated in the vortex tube is supplied to a cooling path in the lithium-air battery to realize efficient cooling of the lithium-air battery. |
US10770766B2 |
Heating control device
A heating control device includes: a storage battery that supplies electric power to an electric motor of an electric vehicle; a heat generation portion that heats the storage battery using heat generated by current flowing; an estimation portion that estimates a change in effective capacity when the heat generation portion heats the storage battery to a target temperature using heat generated by current flowing due to electric power supplied from the storage battery based on an effective capacity corresponding to a temperature and a state of charge of the storage battery; and a controller that causes current flowing from the storage battery to the heat generation portion only in a case where the effective capacity estimated by the estimation portion is expected to be improved. |
US10770761B2 |
Fuel cell control device, control method thereof, and fuel cell vehicle
Under a condition that a command to stop a fuel cell system is received and a state of charge of a secondary battery is equal to or lower than a threshold which is a value obtained by adding a first predetermined value to a lower limit at which electric power required to stop and start the fuel cell system is supplied, forced charging of the secondary battery by a fuel cell is performed until the state of charge reaches the threshold. After the forced charging is performed, in a case where the command to stop the fuel cell system is received within a predetermined period, the controller sets the threshold to a value obtained by adding a second predetermined value lower than the first predetermined value to the lower limit under the condition. |
US10770759B2 |
Method of manufacturing lithium ion secondary battery
Provided is a method of manufacturing a lithium ion secondary battery. The method includes a step of initially charging the battery. The step includes: a first step of charging the battery such that a voltage Vt of the battery is increased to a first voltage Vh which is in a lower decomposition range Ad; a second step of holding the voltage Vt of the battery at the first voltage Vh; and a third step of charging the battery to a second voltage Ve, which is higher than the first voltage Vh, after the second step. |
US10770756B2 |
Method of manufacturing a lithium battery
A method of manufacturing a battery with a substrate current collector, wherein the method comprises: forming elongate and aligned electrically conductive structures on the substrate face with upstanding walls; wherein the walls are formed with a first electrode layer covering said walls, and a solid state electrolyte layer provided on the first electrode layer; and wherein a second electrode layer is formed by covering the electrolyte layer with an electrode layer; and forming a top current collector layer in electrical contact with the second electrode layer, wherein the second electrode layer is shielded from the conductive structure by an insulator covering a part of said conductive structure adjacent an end side thereof. |
US10770749B2 |
Electrolyte additive and lithium secondary battery comprising the same
Provided is an electrolyte additive including a salt of an anion represented by Chemical Formula 1 below, with Cs+ or Rb+: wherein A is O or S, and R1 and R2 are each independently a C1-C10 alkyl group in which all or some of the hydrogen atoms are substituted with halogen atoms. |
US10770741B2 |
Fuel cell module with hydrodesulfurizer and preheating
A fuel cell module according to the present embodiment includes a hydrodesulfurizer, a cell stack, an exhaust gas channel portion, and an air-preheating channel portion. The hydrodesulfurizer is configured to desulfurize fuel gas using a hydrodesulfurization catalyst. A reformer is configured to generate a hydrogen-containing gas. The cell stack is constituted by stacking a plurality of fuel cells and is configured to generate electric power. The exhaust gas channel portion is configured to discharge the hydrogen-containing gas, and discharge exhaust gas that is generated by the combustion of the oxygen-containing gas. The air-preheating channel portion is an air-preheating channel portion that is disposed so as to be adjacent to the exhaust gas channel portion and that is configured to preheat the oxygen-containing gas through heat exchange with the exhaust gas channel portion. The air-preheating channel portion is disposed between the hydrodesulfurizer and the cell stack. |
US10770740B2 |
Method of shutting down operation of fuel cell vehicle
A method of shutting down operation of a fuel cell vehicle includes: blocking, by a controller, an air supply to a fuel cell stack when an operation shutting down command of the fuel cell vehicle is applied; increasing, by the controller, a voltage at an rear end of a stack main relay connected to the fuel cell stack; and opening, by the controller, the stack main relay when the voltage at the rear end of the stack main relay is higher than a stack voltage by a predetermined voltage or more. |
US10770739B2 |
Method of inspecting output of fuel cell
In a method of inspecting an output of a fuel cell, an oxidation step is performed, and thereafter, a measurement step is performed. In the oxidation step, oxidation treatment is applied to an electrode catalyst contained in an anode and a cathode. After the oxidation treatment is applied to the electrode catalyst of the anode and the cathode, in the measurement step, a measurement current which is smaller than a rated current of the fuel cell is applied to the anode and the cathode to measure the output of the fuel cell. |
US10770736B2 |
Via designs for removing water in fuel cell stacks
Structures and methods are disclosed for removing water, and particularly for preventing ice blockages, in solid polymer electrolyte fuel cells comprising reactant vias that fluidly connect a reactant transition region to a reactant port. Water can be removed from the reactant via by making its surface superhydrophobic while incorporating at least one additional via with a hydrophilic surface in parallel therewith. |
US10770733B2 |
Diatomaceous energy storage devices
An energy storage device can include a cathode having a first plurality of frustules, where the first plurality of frustules can include nanostructures having an oxide of manganese. The energy storage device can include an anode comprising a second plurality of frustules, where the second plurality of frustules can include nanostructures having zinc oxide. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include an oxide of manganese. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include zinc oxide. An electrode for an energy storage device includes a plurality of frustules, where each of the plurality of frustules can have a plurality of nanostructures formed on at least one surface. |
US10770730B2 |
Through-wall current collector for a pouch cell
A pouch cell (20A, 20) includes a generally rectangular cell housing (20, 21) formed of a metal laminated film, an electrode assembly (60) that is sealed within the cell housing (20, 21), and a current collector device disposed in the cell housing (20, 21). The electrode assembly (60) includes positive electrode portions alternating with negative electrode portions, the positive electrode portions and the negative electrode portions being separated by at least one separator and stacked along a stack axis (66). The current collector device is electrically connected to one of the positive electrode portions and the negative electrode portions and exits the cell housing (20, 21) via an opening (28, 428) formed in the cell housing (20, 21). The opening (28, 428) is formed in a side (22, 24) wall of the cell housing (20, 21) at a location spaced apart from the sealed joint (40) that closes the cell housing (20, 21) and at a location facing the stack axis (66). |
US10770725B2 |
Alkaline battery cathode structures incorporating multiple carbon materials and orientations
Cathode active materials for alkaline cells are disclosed. In particular, the cathode structures encompass conductive carbons introduced to the cathode so as to have a specific spatial orientation and/or a multi-carbon structure. The overall intent is to leverage the conductor(s) provided to the cathode structure to improve electronic and ionic conductance and, by extension, improve battery discharge performance. |
US10770721B2 |
Lithium metal secondary battery containing anode-protecting polymer layer and manufacturing method
Provided is lithium secondary battery comprising a cathode, an anode, and an electrolyte or separator-electrolyte assembly disposed between the cathode and the anode, wherein the anode comprises: (a) a foil or coating of lithium or lithium alloy as an anode active material; and (b) a thin layer of a high-elasticity polymer having a recoverable tensile strain no less than 5%, a lithium ion conductivity no less than 10−6 S/cm at room temperature, and a thickness from 1 nm to 10 μm, wherein the high-elasticity polymer contains an ultrahigh molecular weight polymer having a molecular weight from 0.5×106 to 9×106 g/mole and is disposed between the lithium or lithium alloy and the electrolyte or separator-electrolyte assembly. |
US10770717B2 |
Composition for secondary battery negative electrode and negative electrode for secondary battery using the same and secondary battery
A composition for a secondary battery negative electrode including a carbonaceous material (a) and a silicon oxide structure (b), wherein the silicon oxide structure (b) includes a silicon oxide framework containing Si and O in its atomic composition and silicon-based nanoparticles that are chemically bonded to the silicon oxide framework as components, wherein the silicon oxide structure (b) is contained in a proportion of 15 mass % or more with respect to a total amount of the carbonaceous material (a) and the silicon oxide structure (b), and wherein the silicon oxide structure (b) satisfies the following conditions (i) to (iii): (i) having an atomic composition represented by a general formula SiOx2Hy2 (0.3 |
US10770715B2 |
High capacity primary lithium cells and methods of making thereof
A high capacity primary electrochemical lithium cell includes an anode comprising metallic lithium, a hybrid cathode comprising a liquid SO2 cathode and a solid cathode including a cathode material characterized by having a first electromotive force (EMF) when coupled to a metallic lithium anode. The first EMF is greater than a second EMF of a cell having a metallic lithium anode and a liquid SO2 cathode. A separator may separate the anode from the solid cathode. The cell includes an electrolyte solution including at least one ionizable salt dissolved in at least one organic solvent. The solid cathode material may include carbon monofluoride (CFX), a transition metal oxide, a mixture of two or more transition metal oxides or any combinations of such cathode materials. The solid cathode may also include a binder and a carbon based conductive material. |
US10770713B2 |
Fabricating method of electrode assembly and electrochemical cell containing the same
A fabricating method of an electrode assembly according to the present invention includes forming a radical unit having a four-layered structure obtained by stacking a first electrode, a first separator, a second electrode, and a second separator one by one, and stacking at least one radical unit one by one to form a unit stack part. |
US10770710B2 |
Connection module for a power storage element group
A connection module includes bus bars connecting positive and negative electrode terminals of adjacent power storage elements, a first sheet member that is expandable, and second sheet members fixing each of the bus bars independently. Each of the bus bars includes a fitting portion extending from one edge of the plate member with respect to a width direction (an arrow Y-direction) and fitting in a fixing portion of each second sheet member. The first sheet member holds each second sheet member to which each of the bus bars is fixed, and the first sheet member is expandable at sections between adjacent second sheet members in a longitudinal direction of the first sheet member in a distance of a maximum value of tolerance ΔL max that is a total value of tolerances of an electrode pitch with respect to an arrangement direction in which the adjacent power storage elements are arranged. |
US10770702B2 |
Jig set including handle for mounting energy storage system
A jig set for mounting an ESS pack, which is used to mount an ESS pack to a wall or a structure corresponding to the wall, includes: a mounting unit having a partially protruding portion capable of being coupled to one surface of an ESS pack case; and a handle unit including a handlebar to be grasped by an operator, and a locking bar, which is integrally connected to the handlebar and is attachable to and detachable from the protruding portion of the mounting unit. |
US10770700B2 |
Battery pack
A battery pack includes: battery cells arranged such that the positive terminals and the negative terminals are alternately arranged; bus bars electrically connecting the positive terminals and the negative terminals of the adjacent battery cells; an insulating cover attachable to the battery cells and covering the positive terminals and the negative terminals; a monitor substrate in which a monitor circuit is mounted; and detection terminals electrically connected to the monitor substrate and electrically connected to the respective bus bars. The monitor substrate and the detection terminals are disposed integrally to an inner surface of the insulating cover. The detection terminals are electrically connected to the respective bus bars in a state in which the insulating cover is attached to the battery cells. |
US10770699B2 |
Stable bromine charge storage in porous carbon electrodes using tetraalkylammonium bromides for reversible solid complexation
Electrolytes for use in electric double-layer capacitors (EDLCs; often referred as supercapacitors or ultracapacitors) are disclosed. In one example, the electrolyte comprises viologen in both the anolyte and the catholyte (with bromide). In another example, the electrolyte comprises viologen (in the anolyte) and tetraalkylammonium with bromide (in the catholyte), wherein the tetraalkylammonium is used to achieve solid complexation of bromine in the activated carbon of the cathode. In a third example, a zinc bromine/tetraalkylammonium supercapacitor/battery hybrid is disclosed. Also disclosed is a corrosion resistant bipolar pouch cell that can be used with the electrolyte embodiments described herein. |
US10770693B2 |
Apparatus comprising battery cells and a method of assembling
An apparatus (101, 101B, 101C, 101D, 101E), an electrical system (706), a vehicle (701) and a method (800) are disclosed. The apparatus (101) comprises a plurality of battery cells (102), each of the battery cells (102) comprising a layer of positive electrode material (103), a layer of electrolyte material (104) and a layer of negative electrode material (105). The apparatus also comprises a container means for containing battery cells (106, 106B, 106D, 6E) formed of an electrically conductive material and having a plurality of cavities (107). Each of the cavities contains at least a respective one of the battery cells (102), and the container means (106, 106B, 106D, 106E) is in direct contact with at least one of the positive electrode material (103) and the electrolyte material (104) of each battery cell (102) or alternatively at least one of the negative electrode material (105) and the electrolyte material (104) of each battery cell (102). |
US10770692B1 |
Solid state batteries made on a mobile computing device
An example system includes an enclosure of a mobile computing device, where the enclosure includes an external surface and an internal surface. The system also includes a lithium-based battery having a plurality of battery layers deposited on the external surface of the enclosure such that the enclosure is a substrate for the plurality of battery layers. The plurality of battery layers include at least (i) a first conductive layer plated on a portion of the external surface of the enclosure, where the first conductive layer is configured as a cathode current collector of the lithium-based battery, and (ii) a second conductive layer plated on a respective portion of the external surface of the enclosure, where the second conductive layer is configured as a portion of an anode current collector of the lithium-based battery. |
US10770689B2 |
Light emitting apparatus and lighting device
Discussed are a light emitting device and a lighting apparatus, which include a substrate, a light emitting diode on the substrate, a refractive index adjustment layer on the light emitting diode, a light scattering layer on the refractive index adjustment layer, a first electrode disposed on the light scattering layer and connected to the light emitting diode, an organic light emitting layer on the first electrode, and a second electrode on the organic light emitting layer. The light scattering layer has a smaller refractive index than the refractive index adjustment layer. |
US10770687B2 |
Light-emitting system
A standard direction (S) is a horizontal direction (a direction along X direction in the drawing). A base material (200) is supported by a frame body (250) so that a second surface (204) of the base material (200) is oriented obliquely upward from the standard direction (S). Thereby, a reference direction (R) is oriented obliquely upward from the standard direction (S). Light from the light-emitting system (20) has standard chromaticity in the standard direction (S). In addition, the light from the light-emitting system (20) has first chromaticity and second chromaticity in a first side direction (S1) and a second side direction (S2), respectively, the first side direction (S1) and the second side direction (S2) being symmetric with respect to the standard direction (S). A difference between the first chromaticity and the standard chromaticity is smaller than a difference between the second chromaticity and the standard chromaticity. |
US10770684B2 |
Display device including a stress neutralizing layer
A display device includes a substrate having a first area, a second area, and a bending area between the first area and the second area. A display element is disposed in the first area of the substrate. A stress neutralizing layer is disposed in the first area, the second area and the bending area. A thickness of the stress neutralizing layer in the bending area is less than a thickness of the stress neutralizing layer in at least one of the first area or the second area. |
US10770681B2 |
Organic light-emitting display apparatus
An organic light-emitting display apparatus includes a substrate having a display area displaying an image and a periphery area. The periphery area is located next to the display area. A first organic insulating layer is disposed on the substrate. The first organic insulating layer includes a valley portion separating the first organic insulating layer from the periphery area. A plurality of organic light-emitting devices is disposed on the substrate. Each of the organic light-emitting devices includes a first electrode, an emission layer, and a second electrode, sequentially disposed over the first organic insulating layer. The second electrode covers the emission layer and the valley portion. A second organic insulating layer is disposed over the first organic insulating layer and includes a first opening exposing a center portion of the first electrode and a second opening overlapping the valley portion. A capping layer covers the second electrode. |
US10770680B2 |
Organic light-emitting diode display
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a substrate including a display area in which an OLED is formed and a non-display area surrounding the display area. The OLED display also includes a pixel defining layer formed over the substrate and having an opening defining an emission area of the OLED, a first passivation layer covering a portion of the pixel defining layer formed in the non-display area and a second passivation layer formed in the non-display area, wherein a portion of the second passivation layer does not overlap the first passivation layer in the depth dimension of the OLED display. The OLED display further includes an encapsulation substrate formed to be opposite to the substrate and a filler filling a space between the substrate and the encapsulation substrate and contacting the first and second passivation layers. |
US10770679B2 |
Display apparatus and manufacturing method thereof inlcuding substrate having guide mark disposed overlapping sealing member
A display apparatus includes a first substrate corresponding to an active area, and a sealing area surrounding the active area, a second substrate facing the first substrate, a display portion in the active area, a sealing member in the sealing area between the first substrate and the second substrate, and a guide mark on one surface of the second substrate in an area where the sealing member and the second substrate overlap each other. |
US10770678B2 |
Cover for flexible display panel, flexible display panel and method for manufacturing the same
An embodiment of the present disclosure provides a cover for a flexible display panel, including an organic film including a recessed portion, a reinforcing layer disposed in the recessed portion, and a first and second rigid structure adjacent to each other disposed on the organic film, the first rigid structure includes a first joint portion, and the second rigid structure includes a second joint portion, the first joint portion and the second joint portion being configured to be separated from each other when the reinforcing layer is bent, and to be joined to form a one-piece structure when the reinforcing layer is not bent. In an embodiment of the present disclosure, by providing on the organic film a reinforcing layer and rigid structures that can be joined and separated, the cover may exhibit enhanced surface hardness, impact resistance and user's feel while the bending of the cover can be realized. |
US10770676B2 |
Flexible display apparatus
A flexible display apparatus includes a substrate having a bending portion, a display over the substrate, and a cover over the substrate and covering the display. The cover includes a first film having a first surface and a second surface opposite the first surface, a second film over the first film, and an adhesive layer between the first film and the second film and attaching the first film to the second film. The first film includes at least one division line in at least some regions thereof in a direction from the first surface toward the second surface. |
US10770671B2 |
Display panel, display device, and manufacturing method of the display panel
The present disclosure provides a display panel, a display device, and a manufacturing method of the display panel. The display panel includes a light emitting unit; a color filter layer located on a light emission side of the light emitting unit; and a bonding structure located between the light emitting unit and the color filter layer configured to bond the light emitting unit and the color filter layer, wherein, the bonding structure comprises a quantum dot material for converting ultraviolet light into visible light. |
US10770665B2 |
Fluorinated dye compounds for organic solar cells
Electronic or optoelectronic device comprising a first electrode, a second electro, and an active layer arranged between and in electrical connection with the first and the second electrode. The active layer comprises at least one dye compound, which comprises small-molecule organic solar cells. |
US10770660B2 |
Heterocyclic compound, light-emitting element, light-emitting device, electronic device, and lighting device
Provided is a novel heterocyclic compound, a novel heterocyclic compound that can be used in a light-emitting element, or a highly reliable light-emitting device, electronic device, and lighting device in each of which the light-emitting element using the novel heterocyclic compound is used. One embodiment of the present invention is a heterocyclic compound represented by General Formula (G1). In General Formula (G1), each of A1 and A2 independently represents nitrogen or carbon bonded to hydrogen, and at least one of A1 and A2 represents nitrogen; Ar represents a substituted or unsubstituted arylene group having 6 to 18 carbon atoms; B represents a substituted or unsubstituted fluorenyl group; and R1 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 13 carbon atoms. |
US10770655B2 |
CHIP package
An integrated fan-out package including an integrated circuit, a plurality of memory devices, an insulating encapsulation, and a redistribution circuit structure is provided. The memory devices are electrically connected to the integrated circuit. The integrated circuit and the memory devices are stacked, and the memory devices are embedded in the insulating encapsulation. The redistribution circuit structure is disposed on the insulating encapsulation, and the redistribution circuit structure is electrically connected to the integrated circuit and the memory devices. Furthermore, methods for fabricating the integrated fan-out package are also provided. |
US10770651B2 |
Perpendicular spin transfer torque memory (PSTTM) devices with enhanced perpendicular anisotropy and methods to form same
A material layer stack for a pSTTM device includes a fixed magnetic layer, a tunnel barrier disposed above the fixed magnetic layer and a free layer disposed on the tunnel barrier. The free layer further includes a stack of bilayers where an uppermost bilayer is capped by a magnetic layer including iron and where each of the bilayers in the free layer includes a non-magnetic layer such as Tungsten, Molybdenum disposed on the magnetic layer. In an embodiment, the non-magnetic layers have a combined thickness that is less than 15% of a combined thickness of the magnetic layers in the stack of bilayers. A stack of bilayers including non-magnetic layers in the free layer can reduce the saturation magnetization of the material layer stack for the pSTTM device and subsequently increase the perpendicular magnetic anisotropy. |
US10770649B1 |
Lattice matched tunnel barriers for perpendicularly magnetized Heusler alloys
A device comprising a first magnetic layer (e.g., Co2MnSi Heusler alloy or a tetragonally distorted perpendicularly magnetized (PMA) Heusler alloy such as Mn3Ga, Mn3Ge, etc.) and a second magnetic layer (e.g., Co2MnSi Heusler alloy or a tetragonally distorted perpendicularly magnetized (PMA) Heusler alloy such as Mn3Ga, Mn3Ge, etc.), and a metal halide tunnel barrier in between the first and second magnetic layers, wherein the metal halide tunnel barrier (e.g., NaF, NaCl, NaBr, LiF, LiCl, and LiBr or their combination) is lattice matched within a predetermined limit (e.g. 5%) of both the first and second magnetic layers. |
US10770647B2 |
Electroacoustic conversion film web, electroacoustic conversion film, and method of manufacturing an electroacoustic conversion film web
Provided are an electroacoustic conversion film web, an electroacoustic conversion film, and a method of manufacturing an electroacoustic conversion film web in which costs can be reduced by reducing the number of operations without damage to thin film electrodes, the points of electrode lead-out portions can be freely determined, and thus high productivity can be achieved. A preparation step of preparing an electrode laminated body in which a single thin film electrode and a single protective layer are laminated and a lamination step of laminating the electrode laminated body and an piezoelectric layer are included. A non-adhered portion that is not adhered to the piezoelectric layer is provided in at least one end portion of the thin film electrode in a case where the electrode laminated body and the piezoelectric layer are laminated in the lamination step. |
US10770645B2 |
Oriented piezoelectric film, method for producing the oriented piezoelectric film, and liquid dispensing head
An oriented piezoelectric film, wherein a crystal forming the oriented piezoelectric film, is a perovskite type crystal of the general formula of Ba1-xCaxTi1-yZryO3 (0≤x≤0.2, and 0≤y≤0.2), and the oriented piezoelectric film has (111) orientation according to a pseudocubic crystal notation. |
US10770643B2 |
Piezoelectric micro-electro-mechanical actuator device, movable in the plane
A MEMS actuator device of a piezoelectric type formed on a substrate, with a base unit including a base beam element having a main extension in a extension plane and a thickness in a thickness direction perpendicular to the extension plane, smaller than the main extension. A piezoelectric region extends over the beam element. An anchor region is rigid to the base beam element and to the substrate. A base constraint structure is connected to one end of the base beam element and is configured to allow a deformation of the base beam element in the extension plane and substantially reduce a deformation of the base beam element in the thickness direction. |
US10770635B2 |
Light-emitting device and manufacturing method thereof
This disclosure discloses a light-emitting device. The light-emitting device includes a light-emitting stack with a first (top) surface, a bottom surface and at least one side surface connected to the first surface and the bottom surface, a light-reflective enclosure with a second (top) surface, a contact electrode formed on the bottom surface of the light-emitting layer, and a wavelength converting layer. Moreover, the light-reflective enclosure surrounds the side surface of the light-emitting stack and exposes to the first surface. The wavelength converting layer covers the first surface and the second surface. In addition, the second surface has a plurality of fine concave structures distributed on the second surface. |
US10770634B1 |
Reflectors having overall mesa shapes
Disclosed are techniques related to reflectors having overall mesa shapes. Such a reflector may be formed over an overall mesa-shaped, layered structure of an apparatus for emitting light. The overall mesa-shaped, layered structure may comprise a mesa complement structure, a first-type doped semiconductor, a light emission layer, and a second-type doped semiconductor arranged in layers. Thus, the reflector may be configured to collimate light that emits from the light emission layer and reaches the reflector through the mesa complement structure. |
US10770624B2 |
Semiconductor device package, optical package, and method for manufacturing the same
A semiconductor package includes a first substrate having a first surface, a second substrate on the first surface of the first substrate, the second substrate having a first surface and a second surface adjacent to the first surface, and the first surface of the second substrate being disposed on the first surface of the first substrate, and a light source on the second surface of the second substrate. A method for manufacturing the semiconductor device package is also provided. |
US10770617B2 |
Light emission diode with flip-chip structure and manufacturing method thereof
A light emitting diode device with flip-chip structure includes a transparent protective substrate, a transparent conductor layer, a glue layer, a group III-V stack layer, a first conductivity metal electrode, a second conductivity metal electrode and an insulating layer. The transparent conductor layer is formed on the transparent protective substrate. The glue layer bonds the transparent protective substrate and the transparent conductor layer. The group III-V stack layer and the first conductivity metal electrode are respectively formed on a first portion and a second portion of the transparent conductor layer. The second conductivity metal electrode is formed on a portion of the group III-V stack layer. The insulating layer covers exposed portions of the transparent conductor layer and the group III-V stack layer, and the insulating layer further covers portions of the first and second conductivity metal electrodes, so as to expose the first and second conductivity metal electrodes. |
US10770615B2 |
Al—Ga—N template, a method for preparing Al—Ga—N template, and semiconductor device comprising Al—Ga—N template
An AlGaN template including a substrate and an Al1-xGaxN crystallization thin film deposited on the substrate, where 0 |
US10770613B2 |
Methods for creating a semiconductor wafer having profiled doping and wafers and solar cell components having a profiled field, such as drift and back surface
A semiconductor wafer forms on a mold containing a dopant. The dopant dopes a melt region adjacent the mold. There, dopant concentration is higher than in the melt bulk. A wafer starts solidifying. Dopant diffuses poorly in solid semiconductor. After a wafer starts solidifying, dopant can not enter the melt. Afterwards, the concentration of dopant in the melt adjacent the wafer surface is less than what was present where the wafer began to form. New wafer regions grow from a melt region whose dopant concentration lessens over time. This establishes a dopant gradient in the wafer, with higher concentration adjacent the mold. The gradient can be tailored. A gradient gives rise to a field that can function as a drift or back surface field. Solar collectors can have open grid conductors and better optical reflectors on the back surface, made possible by the intrinsic back surface field. |
US10770610B2 |
Photovoltaic module interconnect joints
Photovoltaic (PV) cells that can be interconnected with improved interconnect joints to form PV cell strings and PV modules. The improved interconnect joints comprise at least two types of adhesive bonding regions to maximize both electrical conductivity and mechanical strength of interconnect joints coupling terminals of PV cells. The disclosed approaches to PV cell interconnection provide greater manufacturing rates and higher quality PV cell strings and PV modules. |
US10770608B2 |
Semi-transparent thin-film photovoltaic mono cell
The invention relates to a photovoltaic mono cell that is semi-transparent to light, comprising a plurality of active photovoltaic zones that are separated by transparent zones, said active photovoltaic zones being formed from a stack of thin films arranged on a substrate that is transparent to light, said stack of thin films consisting at least of a transparent electrode, an absorber layer and a metal electrode, said transparent zones being apertures produced at least in the metal electrode and in the absorber layer in order to allow as much light as possible to pass, characterized in that it furthermore comprises an electrically conductive collecting gate arranged either making contact with the front electrode in order to decrease the electrical resistance of the transparent electrode, or making contact with the absorber in order to facilitate collection of the electrical current generated by said mono cell. |
US10770607B2 |
Interconnected photovoltaic module configuration
Embodiments of the present disclosure generally relate to an apparatus and method of forming a photovoltaic module assembly that contains a plurality of interconnected photovoltaic modules that are used to generate an amount of power when exposed to electromagnetic radiation. The formed photovoltaic module assembly will generally include two or more photovoltaic modules that can generate and deliver power to an external grid, external network or external device. The photovoltaic module assembly can be a stand alone power generating device or be disposed within an array of interconnected photovoltaic devices. |
US10770605B2 |
Photodiode with spinel oxide photoactive layer
A photodiode comprising a photoactive spinel oxide layer is described. This photoactive spinel oxide layer forms a contact with both a light absorption layer of quantum dots, quantum wires, or quantum rods, and an inorganic substrate layer. In some embodiments, the inorganic substrate layer and the photoactive spinel oxide layer form an isotype junction. Methods of characterizing the photodiode are provided and demonstrate commercially relevant electrical and optoelectronic properties, particularly the ability to operate as a photodetector with a high photosensitivity. An economical process for preparing the photodiode is provided as well as applications. |
US10770598B2 |
Memory devices and methods of manufacture thereof
Representative methods of manufacturing memory devices include forming a transistor with a gate disposed over a workpiece, and forming an erase gate with a tip portion extending towards the workpiece. The transistor includes a source region and a drain region disposed in the workpiece proximate the gate. The erase gate is coupled to the gate of the transistor. |
US10770589B2 |
Fin field effect transistor including a single diffusion break with a multi-layer dummy gate
In one example, a fin field effect transistor including a single diffusion break with a multi-layer dummy gate is disclosed. One example of field effect transistor includes a first transistor array comprising a first active gate, a second transistor array comprising a second active gate, and a single diffusion break formed between the first transistor array and the second transistor array, wherein the single diffusion break comprises a dummy gate comprising multiple layers of different materials. |
US10770586B2 |
Stressing structure with low hydrogen content layer over NiSi salicide
A multi-layer SiN stressing stack (structure) including a thin lower SiN layer and a thick upper SiN layer is formed over NiSi silicide structures and functions to generate tensile channel stress in NMOS transistors. The lower SiN layer is formed directly on the silicided surfaces, and has a low hydrogen content and a relatively low residual stress. The upper SiN layer is then formed on the lower SiN layer using process parameters that produce a relatively high residual stress, and also cause the upper SiN material to have relatively high hydrogen content. The lower SiN layer functions as a barrier that prevents/minimizes hydrogen migration to the silicide structures, which prevents defects leading to NiSi failures. The upper SiN layer functions to generate desirable high tensile stress in the underlying NMOS channel region to enhance the mobility of channel electrons. In some embodiments other dielectric materials are used. |
US10770583B2 |
Semiconductor device and method of manufacturing the same
A wide band gap semiconductor device includes a semiconductor layer, a trench formed in the semiconductor layer, first, second, and third regions having particular conductivity types and defining sides of the trench, and a first electrode embedded inside an insulating film in the trench. The second region integrally includes a first portion arranged closer to a first surface of the semiconductor layer than to a bottom surface of the trench, and a second portion projecting from the first portion toward a second surface of the semiconductor layer to a depth below a bottom surface of the trench. The second portion of the second region defines a boundary surface with the third region, the boundary region being at an incline with respect to the first surface of the semiconductor layer. |
US10770581B2 |
Semiconductor device
A first side wall and a second side wall of a trench are each an a-plane having high carrier mobility. Along the first side wall of the trench, a gate insulating film is provided. A gate electrode is provided in the trench, and across the gate insulating film, opposes a portion of a p-type base region between an n+-type source region and an n-type current spreading region. Along the second side wall of the trench, a conductive layer is provided. The conductive layer, at the second side wall of the trench, forms Schottky contacts with a p++-type contact region, the p-type base region, and the n-type current spreading region. The trench has a bottom corner portion that is at the second side wall and encompassed by a p+-type region that is provided in the n-type current spreading region so as to be separated from the p-type base region. |
US10770580B2 |
Semiconductor device
In an end portion of a trench, an opening where the end portion of the trench is exposed is formed in a lead-out electrode, a side surface of the trench gate electrode on a top surface side of a semiconductor substrate is spaced from a trench side surface, and a range adjacent to a boundary line positioned between a top surface of the semiconductor substrate and the trench side surface is covered with a laminated insulating film configured such that an interlayer insulating film is laminated on a gate insulating film. This makes it possible to prevent dielectric breakdown of an insulating film. |
US10770576B2 |
Power MOSFET device and manufacturing process thereof
A MOSFET device is integrated in a body of semiconductor material of a first conductivity type accommodating a body region, of a second conductivity type, and a source region, of the first conductivity type. A gate region extends over the top surface of the body; a source pad extends over the first top surface and is electrically coupled to the source region, a first gate pad extends over the first main surface, alongside the source pad, and is electrically coupled to the gate region; a drain pad extends over the rear surface and is electrically coupled to the body; a second gate pad extends over the rear surface, alongside the drain pad; and a conductive via extends through the body and electrically couples the gate region to the second gate pad. |
US10770572B2 |
Lateral insulated-gate bipolar transistor and manufacturing method therefor
A lateral insulated-gate bipolar transistor and a manufacturing method therefor. The lateral insulated-gate bipolar transistor comprises a substrate, an anode terminal and a cathode terminal on the substrate, and a drift region and a gate electrode located between the anode terminal and the cathode terminal. The anode terminal comprises an N-shaped buffer zone on the substrate, a P well in the N-shaped buffer zone, an N+ zone in the P well, a groove located above the N+ zone and partially encircled by the P well, polycrystalline silicon in the groove, P+ junctions at two sides of the groove, and N+ junctions at two sides of the P+ junctions. |
US10770571B2 |
FinFET with dummy fins and methods of making the same
A semiconductor structure includes semiconductor fins protruding out of a substrate, dielectric fins protruding out of the substrate and disposed among the semiconductor fins, and gate stacks disposed over the semiconductor fins and the dielectric fins. The dielectric fins include a first dielectric material layer, a second dielectric material layer disposed over the first dielectric material layer, and a third dielectric material layer disposed over the second dielectric material layer, where the first and second dielectric material layers have different compositions and the first and the third dielectric material layers have the same compositions. |
US10770568B2 |
Method to remove III-V materials in high aspect ratio structures
Methods for forming semiconductor devices, such as FinFETs, are provided. In an embodiment, a fin structure processing method includes removing a portion of a first fin of a plurality of fins formed on a substrate to expose a surface of a remaining portion of the first fin, wherein the fins are adjacent to dielectric material structures formed on the substrate; performing a deposition operation to form features on the surface of the remaining portion of the first fin by depositing a Group III-V semiconductor material in a substrate processing environment; and performing an etching operation to etch the features with an etching gas to form a plurality of openings between adjacent dielectric material structures, wherein the etching operation is performed in the same chamber as the deposition operation. |
US10770566B2 |
Unique gate cap and gate cap spacer structures for devices on integrated circuit products
A device is disclosed that includes an active layer, a gate structure positioned above a channel region of the active layer and a first sidewall spacer positioned adjacent the gate structure. The device also includes a gate cap layer positioned above the gate structure and an upper spacer that contacts sidewall surfaces of the gate cap layer, a portion of an upper surface of the gate structure and an inner surface of the first sidewall spacer. |
US10770562B1 |
Interlayer dielectric replacement techniques with protection for source/drain contacts
Techniques are provided for fabricating a semiconductor integrated circuit device which implement an interlayer dielectric (ILD) layer replacement process to replace an initial sacrificial ILD layer with a low-k ILD layer, while forming silicide or dielectric capping layers to protect source/drain contacts of field-effect transistor devices from etch damage during the ILD replacement process. For example, source/drain contact openings (e.g., trenches) are formed in a sacrificial ILD layer and metallic source/drain contacts are formed in the source/drain contact openings. Protective capping layers (e.g., metal-semiconductor alloy capping layers or dielectric capping layers) are formed on upper surfaces of the metallic source/drain contacts. The sacrificial ILD layer is removed using an etch process to etch down the sacrificial ILD layer selective to the protective capping layers, and a low-k ILD layer is formed in place of the removed sacrificial ILD layer. |
US10770559B2 |
Gate structure and methods of forming metal gate isolation
A method of forming high-k metal gates (HKMGs) includes removing a dummy gate structure formed over a first fin and a second fin to form a trench that exposes portions of the first fin and the second fin, forming a high-k dielectric layer over the exposed portions of the first fin and the second fin, forming a capping layer over the high-k dielectric layer, forming a hard mask layer over the capping layer, such that the hard mask layer fills the trench completely, forming an isolation feature in the hard mask layer between the first fin and the second fin, the isolation feature having sidewalls that extend through the capping layer, removing the hard mask layer to expose the capping layer and the sidewalls of the isolation feature, and forming a conductive electrode over the capping layer and along the sidewalls of the isolation feature. |
US10770556B2 |
Fluorinated graphene passivated AlGaN/GaN-based HEMT device and manufacturing method
An AlGaN/GaN HEMT based on fluorinated graphene passivation and a manufacturing method thereof. Monolayer graphene (108) is transferred to an AlGaN (104) surface, is treated by using fluoride ions and then is insulated to thereby replace a conventional nitride passivation layer. Then, a high-k material (109) is grown on the graphene (108), and the high-k material (109) and the graphene (108) are jointly used as a gate dielectric for preparing an AlGaN/GaN metal-insulator-semiconductor (MIS) HEMT. Compared with the traditional passivation structure, the graphene (108) has the advantages of small physical thickness (sub-nanometer scale) and low additional threshold voltage. The structure and the method are simple, the effect is remarkable and the application prospect in technical fields of microelectronics and solid-state electronics is wide. |
US10770549B2 |
Semiconductor device, inverter circuit, driving device, vehicle, and elevator
A semiconductor device according to an embodiment includes a silicon carbide layer having a first and second plane, first and second trench extending in first direction, and in the silicon carbide layer, n-type first region, p-type second region between the n-type first region and the first plane and between the first and second trench, p-type fifth region covering bottom of the first trench, p-type sixth region covering bottom of the second trench, n-type seventh region between the fifth region and the second region, n-type eighth region between the sixth and second regions, p-type ninth regions contacting the fifth and second regions, and p-type tenth regions contacting the sixth region and the second region, the ninth and tenth regions repeatedly disposed in the first direction, and a line segment connecting the ninth region and the tenth region is oblique with respect to second direction perpendicular to the first direction. |
US10770547B2 |
Integrated circuit comprising components, for example NMOS transistors, having active regions with relaxed compressive stresses
An integrated circuit includes a substrate and at least one component unfavorably sensitive to compressive stress which is arranged at least partially within an active region of the substrate limited by an insulating region. To address compressive stress in the active region, the circuit further includes at least one electrically inactive trench located at least in the insulating region and containing an internal area configured to reduce compressive stress in the active region. The internal area is filled with polysilicon. The polysilicon filled trench may further extend through the insulating region and into the substrate. |
US10770542B2 |
Isolation structure, semiconductor device having the same, and method for fabricating the isolation structure
An isolation structure of a semiconductor, a semiconductor device having the same, and a method for fabricating the isolation structure are provided. An isolation structure of a semiconductor device may include a trench formed in a substrate, an oxide layer formed on a bottom surface and an inner sidewall of the trench, a filler formed on the oxide layer to fill a part of inside of the trench, and a fourth oxide layer filling an upper portion of the filler of the trench to a height above an upper surface of the trench, an undercut structure being formed on a boundary area between the inner sidewall and the oxide layer. |
US10770539B2 |
Fingered capacitor with low-K and ultra-low-K dielectric layers
An integrated circuit having a fingered capacitor with multiple metal fingers formed in inverted-trapezoid-shaped trenches in a multi-layer structure having a polish stop layer over an ultra-low-K dielectric layer over a low-K dielectric layer over a dielectric cap layer. The ultra-low-K dielectric layer reduces capacitance variations between the fingers, while the polish stop layer prevents metal height variations that would otherwise result from performing CMP directly on the ultra-low-K dielectric layer. The layered structure may include another low-K dielectric layer over the polish stop layer that provides a soft landing for the CMP. The polish stop layer may be removed after the CMP polishing and another ultra-low-K dielectric layer may be formed to encapsulate the tops of the metal fingers in the ultra-low-K dielectric material. |
US10770536B2 |
Flexible display apparatus
A flexible display apparatus includes: a flexible substrate including a bending area and a non-bending area; and a wiring line extending across the bending area. The bending area is configured to bend along a bending axis, and a portion of the wiring line at the bending area includes a plurality of recessed portions recessed in a width direction of the wiring line. |
US10770535B2 |
Display device
A display device includes a substrate having a display area and a non-display area, a plurality of pixels in the display area, scan lines for supplying a scan signal to the pixels, the scan lines extending in a first direction, data lines for supplying a data signal to the pixels, the data lines extending in a second direction crossing the first direction, and a first dummy part in the non-display area, adjacent to an outermost pixel, connected to an outermost data line of the display area, forming a parasitic capacitor with the outermost pixel, and including a first dummy data line and a first dummy power pattern extending in parallel to the data lines. |
US10770530B2 |
Organic light emitting display device
An organic light emitting display device includes a reflective electrode in a pixel region on a substrate and including a concave portion defining a concave furrow, a first filling pattern filling the concave furrow, a first electrode on the first filling pattern and on a portion of the reflective electrode around the first filling pattern, an organic light emitting layer on the first electrode, and a second electrode on the organic light emitting layer. |
US10770527B2 |
Display panel and display device including the same
A display panel includes a substrate including a circuit layer, an insulation layer on the substrate, the insulation layer defining a hole, a first electrode on the insulation layer, the first electrode being electrically connected to the circuit layer in the hole, a light absorbing layer on the first electrode and overlapping the hole, a pixel defining layer on the insulation layer and defining an opening through which a top surface of the first electrode is exposed, at least one organic layer including a light emitting layer in the opening, and a second electrode on the at least one organic layer. |
US10770525B2 |
Organic light-emitting display panel, display device, and fabrication method thereof
An organic light-emitting display panel, divided into a display region and a non-display region surrounding the display region, includes a substrate; an array layer formed over the substrate; a pixel defining layer formed on the surface of the array layer away from the substrate; and a plurality of organic light-emitting devices formed in a plurality of openings of the pixel defining layer. The plurality of organic light-emitting devices are disposed in the display region, and each organic light-emitting device includes an anode, an organic light-emitting layer, and a cathode sequentially formed on the substrate. The organic light-emitting display panel also includes a plurality of support units disposed in the non-display region. At least one support unit of the plurality of support units is disposed on the surface of the pixel defining layer away from the substrate. |
US10770524B2 |
Organic light-emitting display device
An organic light-emitting display device includes pixels, a bank that defines the pixels and has at least one hollow portion formed between the pixels which neighbor each other, and a light stopper. At least part of the light stopper is inserted into the hollow portion. |
US10770522B2 |
EL device, manufacturing method for EL device, and manufacturing apparatus for EL device
An EL device includes a display panel and an imaging element, and the display panel includes a panel substrate and an EL layer, and an imaging hole for guiding light from a subject to the imaging element is formed in the display area to straddle a plurality of scanning signal lines and a plurality of data signal lines when viewed from a direction perpendicular to a display area. |
US10770519B2 |
Organic light-emitting diode display panel and organic light-emitting diode display apparatus
An organic light-emitting diode display panel may include a base substrate, an array structure layer, an organic light-emitting layer, a thin film packaging layer, a touch screen layer, and a polarizer layer. The array structure layer, the organic light-emitting layer, and the thin film packaging layer may be sequentially arranged on the base substrate. At least one of the touch screen layer and the polarizer layer may be located in the thin film packaging layer. An inorganic material layer in the thin film packaging layer may be replaced by the touch screen layer and/or the polarizer layer arranged in the thin film packaging layer to reduce a thickness of an OLED display panel. |
US10770510B2 |
Dual threshold voltage devices having a first transistor and a second transistor
A device having two transistors with dual thresholds, and a method of fabricating the device, including fabricating a silicide source, a conductive layer, and contacts to a plurality of layers of the device, is provided. The device has a core and a plurality of layers that surround the core in succession, including a first layer, a second layer, a third layer, and a fourth layer. The device further comprises a first input terminal coupled to the core, the first input terminal being configured to receive a first voltage and a second input terminal coupled to the fourth layer, the second input terminal being configured to receive a second voltage. The device comprises a common source terminal coupled to the core and the fourth layer. A memory device, such as an MTJ, may be coupled to the device. |
US10770509B2 |
Magnetic storage device radiating heat from selector
According to one embodiment, a magnetic device includes a first memory cell including a magnetoresistive effect element, a selector, and a first barrier material disposed between the selector and the magnetoresistive effect element, wherein the first barrier material has a thermal conductivity of 5 W/mK or lower. |
US10770507B2 |
Devices and systems incorporating energy harvesting components/devices as autonomous energy sources and as energy supplementation, and methods for producing devices and systems incorporating energy harvesting components/devices
An electrically-powered device, structure and/or component is provided that includes an attached electrical power source in a form of a unique, environmentally-friendly energy harvesting element or component. The energy harvesting component provides a mechanism for generating autonomous renewable energy, or a renewable energy supplement, in the integrated circuit system, structure and/or component. The energy harvesting element includes a first conductor layer, a low work function layer, a dielectric layer, and a second conductor layer that are particularly configured in a manner to promote electron migration from the low work function layer, through the dielectric layer, to the facing surface of the second conductor layer in a manner that develops an electric potential between the first conductor layer and the second conductor layer. The energy harvesting component includes a plurality of energy harvesting elements electrically connected to one another to increase an electrical power output. |
US10770503B2 |
Solid-state imaging element and electronic device
An imaging device and an electronic apparatus including an imaging device are provided. The imaging device includes a substrate and a first pixel including a first region of a first photoelectric conversion element, a first region of a second photoelectric conversion element, wherein the first and second photoelectric conversion elements are formed in the substrate, and a first vertical transistor connected to the first region of the first photoelectric conversion element. A second pixel includes a second region of the first photoelectric conversion element, a second region of the second photoelectric conversion element, and a second vertical transistor connected to the second region of the first photoelectric conversion element. The imaging device also includes a first floating diffusion. The first floating diffusion stores charges from the first and second regions of the first photoelectric conversion element in the first and second pixels. The imaging device includes a photoelectric conversion film disposed above the substrate. |
US10770502B2 |
Semiconductor image sensor device having back side illuminated image sensors with embedded color filters
Disclosed is a method of fabricating a semiconductor image sensor device. The method includes providing a substrate having a pixel region, a periphery region, and a bonding pad region. The substrate further has a first side and a second side opposite the first side. The pixel region contains radiation-sensing regions. The method further includes forming a bonding pad in the bonding pad region; and forming light-blocking structures over the second side of the substrate, at least in the pixel region, after the bonding pad has been formed. |
US10770499B2 |
Image sensor
An image sensor including a substrate having a first, a first device isolation region adjacent to the first surface and defining a unit pixel, a transfer gate on the first surface at an edge of the unit pixel, a photoelectric conversion part in the substrate and adjacent to a first side surface of the transfer gate, and a floating diffusion region in the substrate and adjacent to a second side surface of the transfer gate. The second side surface faces the first side surface. The first device isolation region is spaced apart from the second side surface. The substrate and the first device isolation region are doped with impurities having a first conductivity. A first impurity concentration of the first device isolation region is greater than a second impurity concentration of the substrate. |
US10770495B1 |
Solid-state imaging device, manufacturing method thereof, and camera with alternatively arranged pixel combinations
A solid-state imaging device includes a semiconductor substrate; and a pixel unit having a plurality of pixels on the semiconductor substrate, wherein the pixel unit includes first pixel groups having two or more pixels and second pixel groups being different from the first pixel groups, wherein a portion of the pixels in the first pixel groups and a portion of the pixels in the second pixel groups share a floating diffusion element. |
US10770493B2 |
Solid-state imaging apparatus with high handling reliability and method for manufacturing solid-state imaging apparatus
Provided are a solid-state imaging apparatus capable of having reduction in height and size while easily controlling warp with high handling reliability when the solid-state imaging apparatus is mounted on another substrate, and a method for manufacturing the solid-state imaging apparatus. The solid-state imaging apparatus includes a substrate having a recess on a surface thereof, an imaging chip disposed and fixed on an inner bottom surface of the recess, and a filler filled and solidified in the whole of a gap between a side surface of the imaging chip and an inner surface of the recess. A groove having a substantially constant width is formed between the side surface of the imaging chip and the inner surface of the recess. An expansion portion having width equal to or larger than the constant width is in a portion of the groove. |
US10770492B2 |
Chip scale package and related methods
Implementations of semiconductor packages may include: a die coupled to a glass lid; one or more inner walls having a first material coupled to the die; an outer wall having a second material coupled to the die; and a glass lid coupled to the die at the one or more inner walls and at the outer wall; wherein the outer wall may be located at the edge of the die and the glass lid and the one or more inner walls may be located within the perimeter of the outer wall at a predetermined distance from the perimeter of the outer wall; and wherein a modulus of the first material may be lower than a modulus of the second material. |
US10770491B2 |
Imaging device including photoelectric converter and capacitor with a capacitor and a switching element connected in series between a first electrode of a photoelectric converter and a voltage source or a ground
An imaging device includes a photoelectric converter that includes a first electrode, a second electrode, and a photoelectric conversion layer between the first electrode and the second electrode, a first transistor that has a gate connected to the first electrode, and a first capacitor and a switching element that are connected, in series, between the first electrode and either a voltage source or a ground. |
US10770489B2 |
Optoelectronic device arranged as a multi-spectral light sensor having a photodiode array with aligned light blocking layers and N-well regions
An optoelectronic device is disclosed, comprising: a photodiode array including a plurality of first photodiodes, each first photodiode including a respective n+ region and a respective n-well region; a guide array disposed over the photodiode array, the guide array including a plurality of guide members separated from one another by a layer of light-blocking material, the guide members being aligned with the n+ regions of the first photodiodes, such that each guide member is disposed over a different respective n+ region, and the layer of light-blocking material being aligned with the n-well regions of the first photodiodes; and a filter array disposed over the guide array, the filter array including a plurality of bandpass filters, each bandpass filter being aligned with a different one of the plurality of guide members, each bandpass filter having a different transmission band. |
US10770479B2 |
Three-dimensional device and method of forming the same
A semiconductor device includes a plurality of first sources/drains and a plurality of first source/drain (S/D) contacts formed over the first sources/drains. The device also includes a plurality of first dielectric caps. Each of the plurality of first dielectric caps is positioned over a respective first S/D contact to cover a top portion and at least a part of side portions of the respective first S/D contact. The device also includes a plurality of second sources/drains and a plurality of second S/D contacts that are staggered over the plurality of first S/D contacts so as to form a stair-case configuration. A plurality of second dielectric caps are formed over the plurality of second S/D contacts. Each of the plurality of second dielectric caps is positioned over a respective second S/D contact to cover a top portion and at least a part of side portions of the respective second S/D contact. |
US10770477B2 |
Vertical semiconductor devices
A vertical semiconductor device includes a plurality of channel connection patterns, a lower insulation layer, a supporting layer, a stacked structure, and a channel structure. The channel connection patterns, on which the lower insulation layer is formed, contact a substrate. The supporting layer is formed on the lower insulation layer to be spaced apart from the channel connection patterns, and includes polysilicon doped with impurities. The stacked structure is formed on the supporting layer, and includes insulation layers and gate electrodes to form a memory cell string. The channel structure passes through the stacked structure, the supporting layer and the lower insulation layer, and includes a charge storage structure and a channel which contacts the channel connection patterns. The charge storage structure and the channel face the gate electrodes and the supporting layer. The supporting layer serves as a gate of a gate induced drain leakage (GIDL) transistor. |
US10770476B1 |
Semiconductor structure for three-dimensional memory device and manufacturing method thereof
A semiconductor structure for three-dimensional memory device and a manufacturing method thereof are provided. In the manufacturing method, clean plasma is used to clean the impurity doped regions, formed by slit etching, in the surface layer of the substrate to decrease the contact resistance between substrate and conductive plugs formed in the slits. The bottom part of the conductive plugs each has a reduced neck structure and an enlarged bottom structure. |
US10770473B2 |
Vertical type semiconductor devices and methods of manufacturing the same
A vertical type semiconductor device includes insulation patterns on a substrate and spaced apart from each other in a first direction perpendicular to a top surface of the substrate, a channel structure on the substrate and penetrating through the insulation patterns, a first conductive pattern partially filling a gap between the insulation patterns adjacent to each other in the first direction and the channel structure and having a slit in a surface thereof, the slit extending in a direction parallel with the top surface of the substrate, and a second conductive pattern on the first conductive pattern in the gap and filling the slit. |
US10770471B2 |
Semiconductor device
A semiconductor device according to an embodiment includes a first contact electrically connected to a first conductive layer with a diameter size smaller than a diameter size of a first support pillar at a region position on an inner side in a radial direction of the first support pillar in a first region and extending to the opposite side of the substrate with respect to the first conductive layer; and a second contact electrically connected to a second conductive layer with a diameter size smaller than a diameter size of a second support pillar at a position of penetrating through the first conductive layer at a region position on an inner side in a radial direction of the second support pillar in the first region and extending to the opposite side of the substrate with respect to the second conductive layer. |
US10770469B2 |
Semiconductor device and method of manufacturing the same
In a method of manufacturing a semiconductor device, the semiconductor device includes a non-volatile memory formed in a memory cell area and a ring structure area surrounding the memory cell area. In the method, a protrusion of a substrate is formed in the ring structure area. The protrusion protrudes from an isolation insulating layer. A high-k dielectric film is formed, thereby covering the protrusion and the isolation insulating layer. A poly silicon film is formed over the high-k dielectric film. The poly silicon film and the high-k dielectric film are patterned. Insulating layers are formed over the patterned poly silicon film and high-k dielectric film, thereby sealing the patterned high-k dielectric film. |
US10770466B2 |
Semiconductor devices comprising digit line contacts and related systems
A semiconductor device comprises laterally-neighboring word lines having respective word line caps thereon, an active region between the laterally-neighboring word lines and word line caps, an insulating material and a semiconductive material adjacent the word line caps, and a digit line contact between opposing substantially vertical surfaces of the semiconductive material, between opposing substantially vertical surfaces of the insulating material, adjacent to substantially horizontal surfaces of the word line caps, and between opposing substantially vertical surfaces of the word line caps. A transition surface extending between and connecting the substantially horizontal surface and the substantially vertical surface of the respective word line caps projects toward a longitudinal axis extending centrally through the digit line contact. Methods of forming the semiconductor device are also disclosed, as are electronic systems including the semiconductor device. |
US10770464B2 |
Semiconductor device including bit line structure of dynamic random access memory (DRAM) and method for fabricating the same
A method for fabricating semiconductor device includes the steps of: forming a bit line structure on a substrate; forming a first spacer, a second spacer, and a third spacer around the bit line structure; forming an interlayer dielectric (ILD) layer on the bit line structure; planarizing part of the ILD layer; removing the ILD layer and the second spacer to form a recess between the first spacer and the third spacer; and forming a liner in the recess. |
US10770462B2 |
Circuit and layout for single gate type precharge circuit for data lines in memory device
Some embodiments include apparatus and methods using a first diffusion region, a second diffusion region, a third diffusion region, and a fourth diffusion region; a first channel region located between a portion of the first diffusion region and a portion of the third diffusion region; a second channel region located between the portion of the third diffusion region and a portion of the second diffusion region; a third channel region located between the portion of the second diffusion region and a portion of the fourth diffusion region; and a gate located over the first, second, and third channel regions. The first and second diffusion regions are located on a first side of the gate. The third and fourth diffusion regions are located on a second side of the gate opposite from the first side. |
US10770461B2 |
Enhanced field resistive RAM integrated with nanosheet technology
A semiconductor structure containing a resistive random access memory device integrated with a gate-all-around nanosheet CMOS device is provided. In one embodiment, the semiconductor structure includes a gate-all-around nanosheet CMOS device includes a functional gate structure present on, and between, each semiconductor channel material nanosheet of a nanosheet stack of suspended semiconductor channel material nanosheets. The structure of the present application further includes a resistive memory device located laterally adjacent to the gate-all-around nanosheet CMOS device that includes a second functional gate structure present on, and between, each recessed semiconductor channel material layer portion of a material stack, wherein a recessed sacrificial semiconductor material layer portion is located above and below each recessed semiconductor channel material layer portion. A shared source/drain region is located between the gate-all-around nanosheet CMOS device and the resistive memory device. |
US10770460B2 |
Vertical field-effect transistors for monolithic three-dimensional semiconductor integrated circuit devices
Devices and methods are provided for fabricating vertical field-effect transistor devices for monolithic three-dimensional semiconductor integrated circuit devices. A semiconductor structure is formed to include a substrate and a stack of layers formed on the substrate including a first active semiconductor layer, an insulating layer, and a second active semiconductor layer. A vertical fin structure is formed by patterning the first and second active semiconductor layers and the insulating layer, wherein the vertical fin structure includes first and second vertical semiconductor fins, and an insulating fin spacer disposed between the first and second vertical semiconductor fins. The first and second vertical semiconductor fins are utilized to fabricate first and second vertical field-effect transistor devices on first and second device layers of a monolithic three-dimensional semiconductor integrated circuit device. |
US10770459B2 |
CMOS devices containing asymmetric contact via structures
A silicon oxide liner, a silicon nitride liner, and a planarization silicon oxide layer may be sequentially formed over p-type and n-type field effect transistors. A patterned dielectric material layer covers an entirety of the n-type field effect transistor and does not cover at least a fraction of each area of p-doped active regions. An anisotropic etch process is performed to form p-type active region via cavities extending to a respective top surface of the p-doped active regions and n-type active region via cavities having a respective bottom surface at, or within, one of the silicon nitride liner and the silicon oxide liner. Boron-doped epitaxial pillar structures may be formed on top surfaces of the p-type active regions employing a selective epitaxy process. The n-type active region via cavities are extended to top surfaces of the n-doped active regions. Contact via structures are formed in the via cavities. |
US10770457B2 |
Compensated alternating polarity capacitive structures
Embodiments are provided for a capacitive array including: a first row of alternating first fingers and second fingers formed in a first conductive layer, wherein each first and second finger has a uniform width in a first direction and a uniform length in a second direction perpendicular to the first direction, the first row of alternating first and second fingers include a same integer number of first fingers and second fingers, and the first and second fingers are interdigitated in the first direction; and a first compensation finger formed in the first conductive layer at an end of the first row of alternating first and second fingers nearest a first outer boundary of the capacitive array, the first compensation finger configured to have an opposite polarity as a neighboring finger on the end of the first row. |
US10770454B2 |
On-chip metal-insulator-metal (MIM) capacitor and methods and systems for forming same
We report a semiconductor device, containing a semiconductor substrate; an isolation feature on the substrate; a plurality of gates on the isolation feature, wherein each gate comprises a gate electrode and a high-k dielectric layer disposed between the gate electrode and the isolation feature and disposed on and in contact with at least one side of the gate electrode; and a fill metal between the plurality of gates on the isolation feature. We also report methods of forming such a device, and a system for manufacturing such a device. |
US10770449B2 |
Integrated standard cell structure
An integrated circuit includes a first standard cell having a first pFET and a first nFET integrated, and having a first dielectric gate on a first standard cell boundary. The integrated circuit further includes a second standard cell being adjacent to the first standard cell, having a second pFET and a second nFET integrated, and having a second dielectric gate on a second standard cell boundary. The integrated circuit also includes a first filler cell configured between the first and second standard cells, and spanning from the first dielectric gate to the second dielectric gate. The first pFET and the second pFET are formed on a first continuous active region. The first nFET and the second nFET are formed on a second continuous active region. |
US10770448B2 |
Methods of manufacturing semiconductor devices
A method of manufacturing a semiconductor device includes forming a first masking layer and second masking layer over a substrate. The first masking layer includes an opening over an active area and a spacer in the substrate, and the second masking layer blocks a portion of the opening in the first masking layer. The method includes performing an etching process, using the first masking layer and the second masking layer as an etching mask, to form a contact opening which exposes a portion of the active area and a portion of the spacer, and forming a contact plug in the contact opening and over the exposed portion of the active area and the exposed portion of the spacer. |
US10770446B2 |
Semiconductor packages and methods of manufacturing the same
Provided are a semiconductor package and a method of manufacturing the same. The semiconductor package comprises a substrate, a semiconductor chip on the substrate, an interconnect substrate spaced apart from the semiconductor chip on the substrate and including a conductive member therein, a solder ball on the interconnect substrate and electrically connected to the conductive member, a polymer layer on the interconnect substrate and the semiconductor chip and including an opening through which the solder ball is exposed, and polymer particles in the solder ball and including the same material as the polymer layer. |
US10770445B2 |
Methods of fabricating semiconductor packages including reinforcement top die
A method of fabricating semiconductor packages may include forming stack structures on a base die wafer, disposing a top die wafer on the stack structures, and forming a molding layer filling a space between the base die wafer and the top die wafer. |
US10770442B2 |
Display device
A display device is disclosed. In an embodiment a display device includes a carrier including a plurality of switches, a semiconductor layer sequence arranged on the carrier, the semiconductor layer sequence comprising an active region configured to generate primary radiation and forming a plurality of pixels, wherein each switch is configured to control at least one pixel and an optical element arranged on each pixel on a radiation exit surface of the semiconductor layer sequence facing away from the carrier. |
US10770440B2 |
Micro-LED display assembly
The present disclosure relates to semiconductor structures and, more particularly, to a micro-light emitting diode (LED) display assembly and methods of manufacture. The structure includes an interposer and a plurality of micro-LED arrays each of which include a plurality of through-vias connecting pixels of the plurality of micro-LED arrays to the interposer. |
US10770439B2 |
Electronic module
An electronic module comprising a first electronic unit 51 which has a first insulating substrate 61 and a first electronic element 41 provided on the first insulating substrate 61 via a first conductor layer 21, a second electronic unit 52 which has a second insulating substrate 62 and a second electronic element 42 provided on the second insulating substrate 62 via a second conductor layer 22, a connecting body 29 provided between the first electronic unit 51 and the second electronic unit 52 and a coil 70 wound around the connecting body 29. |
US10770438B2 |
Bonded two-die device including an integrated circuit (IC) die and a phase-change material (PCM) switch die
In a method for wafer-to-wafer bonding, an integrated circuit (IC) wafer and a phase-change material (PCM) switch wafer are provided. The IC includes at least one active device, and has an IC substrate side and a metallization side. The PCM switch wafer has a heat spreading side and a radio frequency (RF) terminal side. A heat spreader is formed in the PCM switch wafer. In one approach, the heat spreading side of the PCM switch wafer is bonded to the metallization side of the IC wafer, then a heating element is formed between the heat spreader and a PCM in the PCM switch wafer. In another approach, a heating element is formed between the heat spreader and a PCM in the PCM switch wafer, then the RF terminal side of the PCM switch wafer is bonded to the metallization side of the IC wafer. |
US10770437B2 |
Semiconductor package and manufacturing method of the same
The present disclosure provides a semiconductor package, including a first layer, a second layer, and a conductive array. The first layer includes a packaged die having a carrier surface and a molding surface, and a first die structure in proximity to the carrier surface. An active region of the first die structure is electrically coupled to the packaged die through a solder. The second layer includes a second die structure, the second die structure being connected to the active region of the first die structure by a first redistributed layer (RDL). The conductive array is connected to an active region of the second die structure by a second RDL. The present disclosure also provides a method for manufacturing the aforesaid semiconductor package. |
US10770435B2 |
Apparatuses and methods for semiconductor die heat dissipation
Apparatuses and methods for semiconductor die heat dissipation are described. For example, an apparatus for semiconductor die heat dissipation may include a substrate and a heat spreader. The substrate may include a thermal interface layer disposed on a surface of the substrate, such as disposed between the substrate and the heat spreader. The heat spreader may include a plurality of substrate-facing protrusions in contact with the thermal interface layer, wherein the plurality of substrate-facing protrusions are disposed at least partially through the thermal interface layer. |
US10770434B2 |
Stair-stacked dice device in a system in package, and methods of making same
A system in package includes a stair-stacked memory module that is stacked vertically with respect to a processor die. A spacer is used adjacent to the processor die to create a bridge for the stair-stacked memory module. Each memory die in the stair-stacked memory module includes a vertical bond wire that emerges from a matrix for connection. The matrix encloses the stair-stacked memory module and at least a portion of the processor die. |
US10770425B2 |
Flip-chip method
A flip-chip method includes providing a semiconductor chip and conductive connection pillars. Each of the conductive connection pillars has a first surface and a second surface opposite to the first surface. The flip-chip method also includes fixing the conductive connection pillars on a surface of the semiconductor chip. The first surfaces face the semiconductor chip. The flip-chip method also includes providing a carrier plate, forming solder pillars on the carrier plate, and forming a barrier layer on the carrier plate around the solder pillars. The flip-chip method further includes bringing the solder pillars into contact with the second surfaces of the conductive connection pillars. The conductive connection pillars are located above the solder pillars. The flip-chip method further includes performing a reflow-soldering process on the solder pillars, thereby forming solder layers from the solder pillars. |
US10770421B2 |
Bond chucks having individually-controllable regions, and associated systems and methods
A bond chuck having individually-controllable regions, and associated systems and methods are disclosed herein. The bond chuck comprises a plurality of individual regions configured to be individually heated independent of one another. In some embodiments, the individual regions include a first region configured to be heated to a first temperature, and a second region peripheral to the first region and configured to be heated to a second temperature different than the first temperature. In some embodiments, the bond chuck further comprises (a) a first coil disposed within the first region and configured to heat the first region to the first temperature, and (b) a second coil disposed within the second region and configured to heat the second region to the second temperature. The bond chuck can be positioned proximate a substrate of a semiconductor device such that heating the first region and/or second region affect the viscosity of an adhesive used to bond substrates of the semiconductor device to one another. Accordingly, heating the first region and/or the second region can cause the adhesive on the substrate to flow in a lateral, predetermined direction. |
US10770419B2 |
Apparatus and method for reducing volume of resource allocation information message in a broadband wireless communication system
An apparatus and method for reducing the volume of a resource allocation information message in a broadband wireless communication system are provided. The method includes transmitting a message including information indicating a periodicity of an uplink control channel for an initial network entry; and receiving an uplink signal for the initial network entry through the uplink control channel. |
US10770418B2 |
Fan-out semiconductor package
A fan-out semiconductor package includes: a first connection member having a through-hole; a semiconductor chip disposed in the through-hole and having an active surface having connection pads disposed thereon and an inactive surface opposing the active surface; an encapsulant encapsulating at least portions of the first connection member and the inactive surface of the semiconductor chip; a second connection member disposed on the first connection member and the active surface of the semiconductor chip; a resin layer disposed on the encapsulant; and a rear redistribution layer embedded in the encapsulant so that one surface thereof is exposed by the encapsulant, wherein the resin layer covers at least portions of the exposed one surface of the rear redistribution layer, and the rear redistribution layer is electrically connected to the redistribution layer of the first connection member through connection members formed in first openings penetrating through the resin layer and the encapsulant. |
US10770413B2 |
Chip packaging structure and method, and electronic device
A chip packaging structure and method, and an electronic device, are provided. The chip packaging structure includes a support, a chip, at least one conductor, and a package for plastic packaging the support, the chip and the conductor. The chip is arranged on an upper surface of the support, a chip pad is formed on the upper surface of the chip, and the chip pad is connected to an external pad of the support by a bonding wire. The conductor is connected to the external pad or a ground pad of the chip pad, and the shortest distance from the conductor to the upper surface of the package is less than the shortest distance from the bonding wire to the upper surface of the package, whereby chip failure caused by static electricity discharge is greatly reduced. |
US10770411B2 |
Device comprising a stack of electronic chips
A method of protecting a first chip in a multi-chip stack includes determining an electrical characteristic of a conductive loop. The conductive loop extends over a top portion of the first chip. The conductive loop also extends through the first chip and within a top portion of a second chip. The top portion of the second chip is adjacent to a bottom portion of the first chip. The method further includes determining whether the electrical characteristic indicates that an attack is being made to determine contents or operation of the first chip. |
US10770409B2 |
Method for detecting thinning of the substrate of an integrated circuit from its back side, and associated integrated circuit
An integrated electronic circuit includes a semiconductor substrate with a semiconductor well that is isolated by a buried semiconductor region located under the semiconductor well. A vertical MOS transistor formed in the semiconductor well includes a source-drain region provided by the buried semiconductor region. Backside thinning of the semiconductor substrate is detected by biasing the vertical MOS transistor into an on condition to supply a current and then comparing that current to a threshold. Current less than a threshold is indicative that the semiconductor substrate has been thinned from the backside. |
US10770399B2 |
Semiconductor package having a filled conductive cavity
A semiconductor package includes a frame having an insulative body with a first main surface and a second main surface opposite the first main surface, a first plurality of metal traces at the first main surface, and a first cavity in the insulative body. A thermally and/or electrically conductive material filling the first cavity in the insulative body and having a different composition than the first plurality of metal traces. The thermally and/or electrically conductive material provides a thermally and/or electrically conductive path between the first and the second main surfaces of the insulative body. A semiconductor die attached to the frame at the first main surface of the insulative body is electrically connected to the first plurality of metal traces and to the thermally and/or electrically conductive material filling the first cavity in the insulative body. A corresponding method of manufacture is also described. |
US10770393B2 |
BEOL thin film resistor
Back end of the line precision resistors that allow for high currents and for configuration as an eFuse by embedding a single thin film high resistive metal material within a dielectric layer, wherein the resisters are coupled to sidewalls of adjacent metal interconnects are described. The resistors can be formed in the metal one (M1) dielectric layer and can be coupled to sidewalls of the M1 interconnects. Also described are processes for fabricating integrated circuits including the resistors and/or e-Fuses. |
US10770384B2 |
Printed circuit board having insulating metal oxide layer covering connection pad
A printed circuit board (PCB) is provided as follows. A first connection pad and a second connection pad are disposed on a first surface and a second surface of the base substrate layer, respectively. The first connection pad and the second connection pad each includes a first metal. A first pad cover layer covers a top surface of the first connection pad and includes an insulating metal oxide having a second metal different from the first metal. |
US10770383B2 |
Semiconductor device having flexible interconnection and method for fabricating the same
A semiconductor device includes a plurality of semiconductor chips spaced apart from each other. A space region is formed between adjacent semiconductor chips of the plurality of semiconductor chips. A redistribution layer is disposed on at least one of the semiconductor chips. The redistribution layer includes at least one redistribution line electrically connected to the at least one of the semiconductor chip. The redistribution layer includes an interconnection disposed in the space region. The interconnection includes an organic layer disposed on the at least one redistribution line. The organic layer is more flexible than the plurality of semiconductor chips. |
US10770381B2 |
Semiconductor component and method of manufacture
In accordance with an embodiment, a semiconductor component includes a support and a plurality of leads. An insulated metal substrate having a first portion and a second portion bonded to the support. A semiconductor chip comprising a III-N semiconductor material is bonded to the first portion of the insulated metal substrate and a first electrical interconnect is coupled between a drain bond pad the first portion of the insulated metal substrate. A second semiconductor chip is bonded to the first electrical interconnect. A second electrical interconnect coupled between a lead of the plurality of leads and the second semiconductor chip. In accordance with another embodiment, a method of manufacturing a semiconductor component includes coupling a first semiconductor chip to a first electrically conductive layer and coupling a second semiconductor chip to a second electrically conductive layer. |
US10770380B2 |
Semiconductor device and method for manufacturing semiconductor device
A method includes the steps of: preparing a lead frame including a plurality of die pads, and preparing a plurality of semiconductor chips; disposing each of the semiconductor chips on a respective one of the die pads; forming a sealing resin to cover the die pads and the semiconductor chips; and attaching a heat dissipation plate to the die pads by pressing the heat dissipation plate against the die pads via a resin sheet which is an adhesive layer after the sealing resin is formed. |
US10770379B2 |
Semiconductor device
A semiconductor device 1 includes a first drain terminal 4, connected to a drain electrode of a first semiconductor chip, a first gate terminal 5, connected to a gate electrode of the first semiconductor chip, a second drain terminal 6, connected to a drain electrode of a second semiconductor chip, a second gate terminal 7, connected to a gate electrode of the second semiconductor chip, a common source terminal 8, connected to a source electrode of the first semiconductor chip and a source electrode of the second semiconductor chip, and a sealing resin 9, sealing the respective semiconductor chips and the respective terminals. The respective terminals have exposed surfaces (lower surfaces) 43, 53, 63, 73, and 83 substantially flush with an outer surface (lower surface) 9b of the sealing resin 9 and exposed from the outer surface 9b. |
US10770364B2 |
Chip scale package (CSP) including shim die
Examples of the present disclosure provide example Chip Scale Packages (CSPs). In some examples, a structure includes a first integrated circuit die, a shim die that does not include active circuitry thereon, an encapsulant at least laterally encapsulating the first integrated circuit die and the shim die, and a redistribution structure on the first integrated circuit die, the shim die, and the encapsulant. The redistribution structure includes one or more metal layers electrically connected to the first integrated circuit die. |
US10770363B2 |
Power switching system for ESC with array of thermal control elements
A semiconductor substrate support for supporting a semiconductor substrate in a plasma processing chamber includes a heater array comprising thermal control elements operable to tune a spatial temperature profile on the semiconductor substrate, the thermal control elements defining heater zones each of which is powered by two or more power supply lines and two or more power return lines wherein each power supply line is connected to at least two of the heater zones and each power return line is connected to at least two of the heater zones. A power distribution circuit is mated to a baseplate of the substrate support, the power distribution circuit being connected to each power supply line and power return line of the heater array. A switching device is connected to the power distribution circuit to independently provide time-averaged power to each of the heater zones by time divisional multiplexing of a plurality of switches. |
US10770358B2 |
Semiconductor device and manufacturing method thereof
In a method of manufacturing a semiconductor device, a fin structure having a bottom portion, an intermediate portion disposed over the bottom portion and an upper portion disposed over the intermediate portion is formed. The intermediate portion is removed at a source/drain region of the fin structure, thereby forming a space between the bottom portion and the upper portion. An insulating layer is formed in the space. A source/drain contact layer is formed over the upper portion. The source/drain contact layer is separated by the insulating layer from the bottom portion of the fin structure. |
US10770356B2 |
Contact structure and method of fabricating the same
An apparatus includes a first source and a common drain and on opposite sides of a first gate surrounded by a first gate spacer, a second source and the common drain on opposite sides of a second gate surrounded by a second gate spacer, a first protection layer formed along a sidewall of the first gate spacer, wherein a top surface of the first protection layer has a first slope, a second protection layer formed along a sidewall of the second gate spacer, wherein a top surface of the second protection layer has a second slope, a lower drain contact between the first gate and the second gate and an upper drain contact over the lower drain contact and between the first gate and the second gate, wherein at least a portion of the upper drain contact is in contact with the first slope and the second slope. |
US10770353B2 |
Method of forming multi-threshold voltage devices using dipole-high dielectric constant combinations and devices so formed
A method provides a gate structure for a plurality of components of a semiconductor device. The method provides a first dipole combination on a first portion of the components. The first dipole combination includes a first dipole layer and a first high dielectric constant layer on the first dipole layer. A second dipole combination is provided on a second portion of the components. The second dipole combination includes a second dipole layer and a second high dielectric constant layer on the second dipole layer. The first dipole combination is different from the second dipole combination. At least one work function metal layer is provided on the first dipole combination and the second dipole combination. A low temperature anneal is performed after the step of providing the work function metal layer(s). A contact metal layer is formed on the work function metal layer. |
US10770352B2 |
Semiconductor device and fabrication method thereof
A semiconductor device and a fabrication method are provided. The fabrication method includes providing a base substrate including a first region for forming a first transistor and a second region for forming a second transistor, the first transistor having a working current less than the second transistor. The fabrication method further includes forming a gate electrode layer on the base substrate; etching the gate electrode layer to form a first gate electrode in the first region; after forming the first gate electrode, etching the gate electrode layer to form a second gate electrode in the second region, with the second gate electrode having an undercut structure; forming a first source/drain doped region in the base substrate on both sides of the first gate electrode and forming a second source/drain region in the base substrate on both sides of the second gate electrode. |
US10770351B2 |
Semiconductor substrate production systems and related methods
Implementations of a method of separating a wafer from a boule including semiconductor material may include: creating a damage layer in a boule comprising semiconductor material. The boule may have a first end and a second end. The method may include cooling the first end of the boule and heating the second end of the boule. A thermal gradient may be formed between the cooled first end and the heated second end. The thermal gradient may assist a silicon carbide wafer to separate from the boule at the damage layer. |
US10770350B2 |
Method of separating a back layer on a singulated semiconductor wafer attached to carrier substrate
A method for forming an electronic device includes providing a wafer having a plurality of die formed as part of the wafer and separated from each other by spaces. A layer of material is disposed atop a major surface of the wafer and the layer of material is placed adjacent to first carrier substrate comprising a first adhesive layer. The wafer is singulated through the spaces to form singulation lines. A second carrier substrate comprising a second adhesive layer is placed onto an opposite major surface of the wafer. The method includes moving a mechanical device adjacent to and in a direction generally parallel to one of the first carrier substrate or the second carrier substrate to separate the layer of material in the singulation lines. In one example, the second adhesive layer has an adhesive strength that is less than that of the first adhesive layer. |
US10770348B2 |
Location-specific laser annealing to improve interconnect microstructure
A method (and structure) includes performing an initial partial anneal of a metal interconnect overburden layer for semiconductor devices being fabricated on a chip on a semiconductor wafer. Orientation of an early recrystallizing grain at a specific location on a top surface of the metal overburden layer is determined, as implemented and controlled by a processor on a computer. A determination is made whether the orientation of the early recrystallizing grain is desirable or undesirable. |
US10770341B2 |
Method for manufacturing semiconductor device
A method for manufacturing a semiconductor device according to an embodiment includes forming a first insulating film on a semiconductor substrate, the first insulating film being patterned; forming a trench in the semiconductor substrate using the first insulating film as a mask; depositing a second insulating film in the trench and on the first insulating film; removing the second insulating film on the first insulating film using a CMP method; removing a portion of the first insulating film; removing a portion of the second insulating film using isotropic etching; and removing a remaining portion of the first insulating film. |
US10770340B2 |
Isolation structure and manufacturing method thereof for high-voltage device in a high-voltage BCD process
The invention provides an isolation structure and a manufacturing method thereof for a high-voltage device in a high-voltage BCD process, the isolation structure comprising: a semiconductor substrate having a first type of doping; an epitaxial layer having a second type of doping over the semiconductor substrate, wherein the first type of doping is opposite to the second type of doping; an isolation region having the first type of doping, wherein the isolation region extends through the epitaxial layer into the semiconductor substrate, and wherein the isolation region has a doping concentration on the same order as a doping concentration of the epitaxial layer; a field oxide layer over the isolation region. This invention effectively isolates the epitaxial island where the BCD high-voltage device is located, thereby increasing the breakdown voltage of the high-voltage device in the BCD process. Further, with a minimum thickness of the field oxide layer, the parasitical threshold voltage between the aluminum wiring and the silicon surface of the high-voltage device can be higher than 1200V, thereby improving the planarization of oxide layer steps on the silicon surface in the whole high-voltage BCD process, and enhancing the reliability of the product. |
US10770338B2 |
System comprising a single wafer, reduced volume process chamber
One illustrative system disclosed herein includes a process chamber positioned within a processing tool and a wafer chuck that is adapted to be positioned at a wafer processing position located within the process chamber and at a chuck wafer transfer position located outside of the process chamber. |
US10770336B2 |
Substrate lift mechanism and reactor including same
A substrate support assembly suitable for use in a reactor including a common processing and substrate transfer region is disclosed. The substrate support assembly includes a susceptor and one or more lift pins that can be used to lower a substrate onto a surface of the susceptor and raise the substrate from the surface, to allow transfer of the substrate from the processing region, without raising or lowering the susceptor. |
US10770334B2 |
Substrate holding device
A substrate holding device includes a base body that has a flat plate-like shape and in which gas holes that open in an upper surface of the base body are formed, and a plurality of protrusions that protrude upward from the upper surface of the base body. A groove that opens in a lower surface of the base body and that is connected to the gas holes is formed in the base body, and a plurality of protrusions that protrude downward are formed in the groove. |
US10770332B2 |
Wafer level flat no-lead semiconductor packages and methods of manufacture
Methods of manufacturing semiconductor packages. Implementations may include: providing a substrate with a first side, a second side, and a thickness; forming a plurality of pads on the first side of the substrate; and applying die attach material to the plurality of pads. The method may include bonding a wafer including a plurality of semiconductor die to the substrate at one or more die pads included in each die. The method may also include singulating the plurality of semiconductor die, overmolding the plurality of semiconductor die and the first side of the substrate with an overmold material, and removing the substrate to expose the plurality of pads and to form a plurality of semiconductor packages coupled together through the overmold material. The method also may include singulating the plurality of semiconductor packages to separate them. |
US10770327B2 |
System and method for correcting non-ideal wafer topography
A scanner includes a light source configured to apply a light to a backside of a wafer. The light is reflected from the backside of the wafer. A first mirror is configured to receive the light from the backside of the wafer and reflect the light. A sensor is configured to receive the light from the first mirror and generate an output signal indicative of a backside topography of the wafer. |
US10770323B2 |
Stackable substrate carriers
In an embodiment, the present invention discloses a stackable substrate carrier for scalably storing, transporting or processing multiple substrates. The present substrate carriers can be stacked side-by-side by an attaching mechanism, forming an integrated carrier with double, triple or multiple capacity. The attaching mechanism comprises a locking mechanism to secure the substrate carriers together, engaged by mating two substrate carriers, together with an additional rotating or translating action of the two substrate carriers. Alternatively, the locking mechanism can be engaged by pressing two substrate carriers against each other, using friction to keep the carriers together. Other locking mechanism can also be used, such as hooks or latches. |
US10770317B2 |
Leak tolerant liquid cooling system employing improved air purging mechanism
A cooling system for at least one thermal unit includes a tank assembly that includes: a sump chamber, a purge chamber that is located above the sump chamber, and a reservoir chamber that is located above the purge chamber; a cooling circuit that includes a pump, a heat exchanger, and conduits, the cooling circuit being configured to circulate a liquid coolant through the at least one thermal unit, the sump chamber, the pump, the heat exchanger, and the reservoir chamber; a first valve located externally of the tank assembly and configured such that, when the first valve is open, (i) the liquid coolant is flowable from the purge chamber to the sump chamber via the first valve, and (ii) air is simultaneously flowable from the sump chamber to the purge chamber via the first valve; and a second valve located externally of the tank assembly and configured such that, when the second valve is open, (i) the liquid coolant is flowable from the reservoir chamber to the purge chamber via the second valve, and (ii) air is simultaneously flowable from the purge chamber to the reservoir chamber via the second valve. |
US10770314B2 |
Semiconductor device, tool, and method of manufacturing
A semiconductor device is manufactured using a cleaning process. The cleaning process utilizes a semiconductor manufacturing tool that has a wet cleaning section and a plasma cleaning section. The semiconductor device is placed within a wet cleaning chamber within the wet cleaning section, where a wet cleaning process is performed. Once completed, and without breaking atmosphere, the semiconductor device is removed from the wet cleaning section and placed within a plasma cleaning chamber within the plasma cleaning section. A plasma clean is then performed. |
US10770313B2 |
Integrated fan-out package and manufacturing method thereof
An integrated fan-out package includes a first redistribution structure, a die, an insulation encapsulation, and a second redistribution structure. The first redistribution structure has a dielectric layer and a feed line disposed on the dielectric layer. The die is disposed on the first redistribution structure. The insulation encapsulation encapsulates the die. The insulation encapsulation has a protrusion laterally wraps around the feed line. The insulation encapsulation has a lower dissipation factor (Df) and/or a lower permittivity (Dk) than the dielectric layer. The second redistribution structure is disposed on the die and the insulation encapsulation. |
US10770312B2 |
Under-fill deflash for a dual-sided ball grid array package
Described herein methods of manufacturing dual-sided packaged electronic modules that control the distribution of an under-fill material between one or more components and a packaging substrate. The disclosed technologies include under-filling one or more components and deflashing a portion of the under-fill to remove under-fill material prior to attaching solder balls. The deflashing step removes a thin layer of under-fill material that may have coated contact pads for the ball grid array. Because the solder balls are not present during under-fill, there is little capillary action drawing material away from the components being under-filled. This can reduce the frequency of voids under the components being under-filled. Accordingly, the disclosed technologies control under-fill for dual-sided ball grid array packages using under-fill deflash prior to attaching solder balls of the ball grid array. |
US10770306B2 |
Method of etching a cavity in a stack of layers
A cavity is etched in a stack of layers which includes a first layer made of a first material and a second layer made of a second material. To etch the cavity, a first etch mask having a first opening is formed over the stack of layer. The stack of layers is then etched through the first opening to a depth located in the second layer. A second mask having a second opening, the dimensions of which are smaller, in top view, than the first opening, is formed over the stack of layer. The second opening is located, in top view, opposite the area etched through the first opening. The second layer is then etched through the second opening to reach the first layer. The etch method used is configured to etch the second material selectively over the first material. |
US10770300B2 |
Remote hydrogen plasma titanium deposition to enhance selectivity and film uniformity
Methods and apparatus to selectively deposit metal films (e.g., titanium films) are described. One of the precursors is energized to form ions and radicals of the precursor. The precursors flow through separate channels of a dual channel gas distribution assembly to react in a processing region above a substrate. |
US10770299B2 |
Semiconductor device and method of forming the same
A semiconductor device includes a semiconductor fin and a gate structure. The semiconductor fin extends along a first direction above a substrate. The gate structure extends across the semiconductor fin along a second direction substantially perpendicular to the first direction. The gate structure includes a chlorine-containing N-work function metal layer wrapping around the semiconductor fin, and a filling metal over and in contact with the chlorine-containing N-work function metal layer. |
US10770298B2 |
Automatic inspection device and method of laser processing equipment
Provided is an automatic inspection device and method for inspecting processing quality of laser processing equipment that forms a modified area by irradiating a laser beam into an object to be processed. The automatic inspection device includes: an image film coated on a bottom surface of the object to be processed; an image sensing unit configured to detect a damage image of the object to be processed formed on the image film through irradiation of the laser beam; and an image processing unit configured to process the damage image detected by the image sensing unit. |
US10770295B2 |
Patterning method
An example embodiment includes a patterning method comprising: forming a layer stack comprising a target layer, a lower memorization layer and an upper memorization layer, forming above the upper memorization layer a first mask layer, patterning a set of upper trenches in the upper memorization layer, forming a first block pattern, the first block pattern comprising a set of first blocks, patterning a first set of lower trenches in the lower memorization layer, patterning the patterned upper memorization layer to form a second block pattern comprising a set of second blocks, forming above the patterned lower memorization layer and the second block pattern a second mask layer, patterning a second set of lower trenches in the patterned lower memorization layer, the patterning comprising using the second mask layer, the spacer layer and the second block pattern as an etch mask. |