Document Document Title
US10652663B1 Endpoint device using the precedence effect to improve echo cancellation performance
An endpoint device includes a microphone array and spaced-apart loudspeakers including an active loudspeaker among the loudspeakers that is closest to the microphone array. The endpoint device forms at the microphone array an audio receive beam having a main lobe pointed in a direction from which audio is to be received, and determines which of the loudspeakers are not in the main lobe. The endpoint device identifies at least one additional loudspeaker among the loudspeakers determined not to be in the main lobe and that is farther away from the microphone array than the active loudspeaker. The endpoint device spreads audio energy of input audio associated with, and intended for, the active loudspeaker across the active loudspeaker and the at least one additional loudspeaker, and no other ones of the loudspeakers, using a precedence effect.
US10652662B2 Connectors for data transfer
Embodiments of the present disclosure relate to methods and apparatus for peripheral device discovery, the detection of orientation of a connector having multiple degrees of rotational symmetry, and the provision of appropriate signal paths between a host device and a peripheral device. Some embodiments provide a characteristic impedance within the peripheral device that is coupled between rotationally symmetric contacts of the connector and thus enables detection of the connector orientation. The value of the characteristic impedance may be used in some embodiments to determine the type or model of peripheral device. Some embodiments are concerned with the enablement of appropriate signal paths to a peripheral device having a transducer (e.g. a loudspeaker) coupled only to rotationally symmetric contacts of the connector, such as headphones implemented in a “balanced” configuration.
US10652661B2 Headset cord holder
A headset cord holder comprises a body and a first groove built into the body configured to receive and releasably hold a headset cord. In some embodiments, the first groove has a diameter less than or equal to approximately 2 mm. In further embodiments, the body is integrally formed within the closure mechanism. In some embodiments the body comprises one or more of glass, wood and metal. In some embodiments, the body comprises one or more of stamped metal and molded metal. In further embodiments, the body comprises molded plastic. In some embodiments, the body comprises one or more additional grooves configured to receive and releasably secure the headset cord.
US10652660B2 Data packet compensation in multi-device media systems
Various embodiments relate to data packet compensation in multi-device media systems. A primary headphone device may include one or more communication interfaces configured to communicate with an audio source and a secondary headphone device. The primary headphone device may further include communication logic configured to transmit information to the secondary headphone device identifying one or more data packets received by the primary headphone device. The communication logic may also be configured to receive reporting information identifying one or more data packets missed by the secondary headphone device. Also, the communication logic may be configured to transmit compensation information for the one or more data packets missed by the secondary headphone device.
US10652658B2 System, control method, and control terminal
A plurality of reproduction sections are set. With regard to the reproduction section provided with the first reproduction device group that includes at least one reproduction device connected via a network with a storage that stores audio data, the audio data is transmitted via the network to each reproduction device. With regard to the reproduction section provided with the second reproduction device group includes a plurality of reproduction devices that are connected to each other using at least one audio cable and that include at least one reproduction device connected via the network with the storage, the audio data is transmitted via the network to at least one reproduction device connected via the network with the storage, and the at least one reproduction device is caused to transmit the received audio data via the at least one audio cable to at least one other reproduction device.
US10652656B2 Digital signal processing device and audio device
Disclosed is a digital signal processing device including a digital filter unit for performing a filtering process on a signal inputted to the digital signal processing device on the basis of a filter coefficient set by a control device, a maximum allowable amplitude estimation unit for estimating a maximum allowable amplitude value allowable by the digital signal processing device in a system including the digital signal processing device, by using an impulse response of the digital filter unit, and a restart request unit for making a request of the control device for a restart of the digital signal processing device when the amplitude value of a signal to be outputted from the digital signal processing device is equal to or greater than the maximum allowable amplitude value or when the amplitude value exceeds the maximum allowable amplitude value.
US10652654B1 Dynamic device speaker tuning for echo control
Dynamic device speaker tuning for echo control includes detecting audio rendering from a speaker on a device; based at least on detecting the audio rendering, capturing, with a microphone on the device, an echo of the rendered audio; performing a Fourier Transform on the echo and the rendered audio; determining a real-time transfer function for at least one signature band; determining a difference between the real-time transfer function and a reference transfer function; and tuning the speaker for audio rendering, based at least on the difference between the real-time transfer function and the reference transfer function, by adjusting an audio amplifier equalization. For some examples, the signature band represents a wall echo or an alternative mounting option. For some examples, the echo is collected during intervals while the audio rendering is ongoing.
US10652650B2 Loudspeaker with reduced audio coloration caused by reflections from a surface
Loudspeakers are described that may reduce comb filtering effects perceived by a listener by either 1) moving transducers closer to a sound reflective surface (e.g., a baseplate, a tabletop or a floor) through vertical (height) or rotational adjustments of the transducers or 2) guiding sound produced by the transducers to be released into the listening area proximate to the reflective surface through the use of horns and openings that are at a prescribed distance from the reflective surface. The reduction of this distance between the reflective surface and the point at which sound emitted by the transducers is released into the listening area may lead to shorter reflected path that reduces comb filtering effects caused by reflected sounds that are delayed relative to the direct sound. Accordingly, the loudspeakers shown and described may be placed on reflective surfaces without severe audio coloration caused by reflected sounds.
US10652649B2 Determination of environmental effects on electrical load devices
An improved system and method for reducing the ambient noise experienced by a user listening to an earpiece without the use of a microphone is disclosed. An “ambient noise signal” created by the sound pressure wave of the ambient noise acting on the earpiece transducer is obtained. In some embodiments, the ambient noise signal is inverted and fed back, and the inverted signal is added to the intended audio signal being sent to the earpiece so that the ambient noise is cancelled. In other embodiments, a processor receives the ambient noise signal and predicts the modification to the intended audio signal needed to counteract the ambient noise. The ambient noise signal may be obtained by comparing the actual signal across the earpiece transducer to the intended audio signal, or by detecting variations in the current across the transducer from the current generated to drive the transducer.
US10652646B2 In-ear speaker hybrid audio transparency system
A user content audio signal is converted into sound that is delivered into an ear canal of a wearer of an in-ear speaker, while the in-ear speaker is sealing off the ear canal against ambient sound leakage. An acoustic or venting valve in the in-ear speaker is automatically signaled to open, so that sound inside the ear canal is allowed to travel out into an ambient environment through the valve, while activating conversion of an ambient content audio signal into sound for delivery into the ear canal. Both user content and ambient content are heard by the wearer. The ambient content audio signal is digitally processed so that certain frequency components have been gain adjusted, based on an equalization profile, so as to compensate for some of the insertion loss that is due to the in-ear speaker blocking the ear canal. Other embodiments are also described and claimed.
US10652643B2 Adjustable in-ear plug
Generic adjustable in-ear monitors (IEMs) may suffer from a limited range of resilient ear plugs that may not adequately fit each user, and the user may prefer different ear plugs for different purposes (e.g., the user's interest in secure fitment may be higher when exercising, while the user's interest in comfort may be higher when the user is relaxing). The presently disclosed technology is directed to IEMs that permit a user to adjust without removing and replacing an associated ear plug. Instead, the ear plug is adjustable by the user to achieve a desired fit and may be adjusted repeatedly for different desired fits and/or different users.
US10652635B2 Passive optical network communications method and apparatus, and system
Embodiments of the present disclosure provide a passive optical network communications method and apparatus, and a system. The method includes: determining a wavelength channel group of an optical network unit (ONU) and a wavelength channel in the wavelength channel group; and sending a first message to the ONU, where the first message carries identification information of the wavelength channel group and identification information of the wavelength channel in the wavelength channel group. In the embodiments of the present disclosure, such a logical channel group as a wavelength channel group is established, and when a channel in a channel group is faulty, a scheduling module of an OLT can rapidly and easily reallocate a service to another member in the channel group, so that channel interaction is avoided. Therefore, bandwidth scheduling efficiency and bandwidth utilization of a PON system are higher.
US10652634B2 System and method for providing a distributed directional aperture
A distributed directional aperture (DDA) system provides the capability to receive and/or transmit signals, limiting that reception or transmission to a 3-dimensional beam. The DDA system includes sensing and/or emitting array subsystems which comprise sensors and/or emitters distributed across, within, or under the skin of an aircraft, ship, ground vehicle, or fixed installation. The sensors receive energy, convert the received signals to digital information, and transmit that information via a telemetry subsystem to a beamformer subsystem. The beamformer subsystem analyzes the received signals from the sensors and/or emitters in order to determine the signal content from a specific direction. The emitters transmit energy, converting signals received from the beamformer subsystem via the telemetry subsystem into energy emissions. Methods of providing the DDA system including subsystems thereof are also disclosed.
US10652632B2 Seamless augmented user-generated content for broadcast media
The disclosed technology can seamlessly integrate consumers into a broadcaster's products and may seamlessly add broadcaster products to their consumer's social sharing. This technology allows broadcasters to define rules for filtering and modifying myriad user-generated content to be suitable for seamless integration in broadcast media. A broadcaster interface allows the broadcaster to select user-generated content in real-time for use within the broadcast presentation. The technology can accomplish this by receiving multiple pieces of user-generated content; curating the user-generated content with ratings, categorizations, or tags; verifying suitability of the user-generated content for broadcast media; and applying broadcaster-defined rules to modify eligible pieces of user-generated content into a form suitable for inclusion in broadcast media.
US10652627B2 Controlling digital video bandwidth utilization with a virtualized communication hub
Example methods, apparatus, systems and articles of manufacture (e.g., physical storage media) to control digital video bandwidth utilization with a virtualized communication hub are disclosed. Example methods disclosed herein include monitoring, with a virtual access function of the virtualized communication hub, an aggregate load on a broadband access medium to detect bandwidth utilization events. Disclosed example methods also include sending, from the virtual access function, a first notification message to a virtual set-top box of the virtualized communication hub in response to detecting a first bandwidth utilization event. Disclosed example methods further include adjusting, at the virtual set-top box and based on the first notification message, an output bandwidth for streaming digital media from the virtual set-top box to a physical set-top box via a broadband access medium.
US10652625B1 Synchronization of multiple encoders for streaming content
Systems and methods are described to enable synchronized encoding of streaming audio or video content between multiple encoders, in a manner that provides for seamlessly interchangeable encodings. Within a pool of encoders, each encoder can periodically generate state information regarding its state of encoding, and share that state information with other encoders. The other encoders can compare the state information to their current state, to determine whether a desynchronization has occurred. When a desynchronization does occur, such as due to intermittent network packet loss, the encoders within the pool can evaluate the shared state information to determine an authoritative state, and then resynchronize to the authoritative state, resulting in identical or interchangeable encoded content being output from each encoder of the pool.
US10652624B2 Next generation terrestrial broadcasting platform aligned internet and towards emerging 5G network architectures
A Next Generation Broadcast Platform (NGBP) is disclosed that utilizes 5G software-defined networking (SDN) and network function virtualization (NFV) technologies. The NGBP is designed to enable a new paradigm for broadcasters, wherein the model of fixed wireless spectrum access granted only to the licensees of the spectrum is replaced by a flexible model in which licensed spectrum is pooled together and allocated dynamically to broadcast licensees as well as outside tenants. The NGBP is implemented using SDN/NFV technology, and includes a broadcast market exchange (BMX) entity that allocates the spectrum between tenants based on service level agreements (SLAs) with those users. The NGBP also includes an internet protocol (IP) core and a broadcast centralized radio access network (BC-RAN) which apply the major network functions to broadcaster content in accordance with the determinations of the BMX. The SDN/NFV implementation offers several distinct advantages over NGBP implemented with dedicated network hardware.
US10652621B2 Media content search results ranked by popularity
Media content search results ranked by popularity is described. In embodiment(s), a search request for television media content can be initiated by a viewer, and television media content that is relevant to the search request can be identified. The relevant television media content can then be ranked based on a popularity rating and the relevant television media content can be displayed in an ordered list that is ordered by popularity rankings.
US10652619B1 Systems and methods for providing media asset recommendations
Methods and systems for providing media asset recommendations are described. An input to a user interface requesting content associated with a media asset is detected without corresponding display of the media asset on a display device associated with the user interface. In response, a user interaction history comprising interaction data associated with the media asset is retrieved. The interaction data is analyzed to identify an indecision pattern. In response to detecting the indecision pattern, a plurality of people are identified based on a match between the media asset and media profile information of the people. An electronic query is transmitted to each of the people requesting a recommendation for the media asset. The received responses are generated for display for the user.
US10652616B2 Method of providing image data based on cloud streaming, and apparatus therefor
The present invention relates to a method of providing image data based on cloud streaming. In particular, the method uses memory space of a terminal, prestores image data in the terminal, captures an execution screen regarding execution of a specific application, extracts video content from the prestored image data based on the captured execution screen and information regarding the execution screen, simultaneously encodes individual items of the extracted video content, and provides the encoded video content to a screen. Thus, according to the present invention, usage of the cloud streaming server and the network may be reduced by an amount commensurate with the resources utilization of the terminal. Network load may also be reduced when a live video or a VOD video is not being watched, and the rich GUI experience may be guaranteed in a standby state.
US10652602B2 System and monitoring of video quality adaptation
Systems and method of video quality adaptation include acquiring video data to be streamed. An available bandwidth on a communications network is determined. A determined playback speed is determined based upon a bitrate of the video data to be streamed and the available bandwidth on the communications network. The video data is decoded to produce decoded video data which is encoded at the determined playback speed to produce encoded video data. The encoded video data is streamed across the communications network.
US10652601B2 System and method for monitoring whole home digital video recorder usage for internet protocol television
The subject disclosure describes identifying a table associated with a set-top box that receives services from equipment of a video head-end office, where the table indicates that the set-top box has requested a video stream that would exceed a first number of video streams allocated to the set-top box and would exceed a bandwidth configuration, detecting a conflicting event according to information in the table, reconfiguring the bandwidth configuration allocated to the plurality of set-top boxes to resolve the conflicting event, determining a second number of video streams requested by the plurality of set-top boxes when the conflicting event occurred, determining a third number of video streams to resolve the conflicting event based on a difference between the first number of video streams and the second number of video streams, and instructing the equipment to provide the third number of video streams to the set-top box. Other embodiments are disclosed.
US10652599B2 Generated messaging to view content on media devices
Techniques, systems, and methods are disclosed to generate messaging to view content on media devices based on predictive factors. Information may be received to trigger one or more predictive factors and then generate a candidate set of offers to view content at a media device based on the information. Based on the one or more predictive factors, confidence values may be determined for each offer in the candidate set of offers. The candidate set of offers may be ranked based on the associated confidence values. Subsequently, presentation of at least one offer of the candidate set of offers may be caused to display in a user interface screen on the media device based on the ranking.
US10652598B2 Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
A broadcast transmitter for processing a broadcast signal is discussed. The broadcast transmitter includes a packetizer to generate transport packets based on a Layered Coding Transport (LCT) format, wherein the transport packets are used to transport at least one delivery object and signaling data; and a transmitter to transmit the broadcast signal comprising the transport packets, wherein the signaling data includes a real-time attribute which is a boolean flag that is set to true when the transport packets carry a real-time content that is comprised of the at least one delivery object, and wherein a header of at least one transport packet of the transport packets includes codepoint information for indicating a type of a payload that is carried by the at least one transport packet, transport object identifier information for identifying the at least one delivery object, and information for identifying a starting position of a fragment of the delivery object carried in the at least one transport packet.
US10652597B2 Transmitting device, receiving device, transmitting method and receiving method
A transmitting device includes: a generator that generates an encoded stream by using rate control satisfying a determined definition of a receiving buffer model; and a transmitter that sequentially transmits a transmitting packet, and the receiving buffer model includes a first buffer that converts a packet into a first packet where the packet includes a packet header of a variable length, and the first packet includes a packet header of a fixed length of a decompressed header, a second buffer that converts the first packet into a second packet including a payload of a variable length, a third buffer that converts the second packet into a Network Abstraction Layer (NAL) unit, and a fourth buffer that outputs an access unit generated from a plurality of sequentially accumulated NAL units to a decoder at a timing of a decoding time corresponding to the access unit.
US10652595B2 Content transmission device and content transmission method thereof
A content transmission device has a first encryption process means that encrypts, by a digital communication interface, a digital content for transmission to a content reception device and encrypts a low-resolution content by a first encryption process; a second encryption process that encrypts a high-resolution content by a second encryption process; and a down-conversion means that down-converts the high-resolution content to the low-resolution content. The content transmission device receives, from a digital reception device, information related to an encryption process of the digital reception device. Then, if the digital reception device supports the second encryption process, the content transmission device transmits the high-resolution content as encrypted by the second encryption process. If the digital reception device does not support the second encryption process, the content transmission device down-converts the high-resolution content and encrypts, by the first encryption process, the down-converted content for transmission.
US10652594B2 Apparatus and methods for presentation of key frames in encrypted content
Apparatus and methods for presentation of key frames. In one embodiment, an encoded video file is generated where one or more bits are assigned to key frames and minimizes the number of bits assigned to delta frames. Each key frame may be presented to a user during trick mode operation (e.g., fast forward, rewind, pause, or random seek operation). When the encoded video file is given to a packager, the packager generates a manifest file listing the byte information (byte offset and number of bytes) for each key frame in the encoded video file. When a user inputs a trick play mode command, the packager provides the manifest file to the client device of the user and the client device requests the bytes for the key frames of the video file from the content delivery network.
US10652591B2 System for cloud streaming service, method for same using still-image compression technique and apparatus therefor
The present invention relates to a system for a cloud streaming service, a method for same using a still-image compression technique and an apparatus therefor, particularly the method allowing a still image-based cloud streaming service by comparing the previous frame and current frame to determine and capture the region in the current frame which has changed from the previous frame, and transmitting, to a user, the changed region encoded with the still-image compression technique. By utilizing a still-image compression technique appropriate to the image type when providing the cloud streaming service, the compression efficiency of the still image and the speed of the cloud streaming service can be improved.
US10652590B2 Modular software based video production server, method for operating the video production server and distributed video production system
A video production server comprising at least one processor and a storage is suggested. Software modules composed of executable program code are loaded into a working memory of the at least one processor. Each software module, when executed by the at least one processor, provides an elementary service. A concatenation of elementary services provides for a functionality involving processing of video and/or audio signals needed for producing a broadcast program. The video production server includes a set of software components that runs on conventional hardware. Each functionality of the video production server is achieved by using a specific piece of software that is assembled from reusable functional software blocks and that can run on any compatible hardware platform. Furthermore, a method for operating the video production server and a distributed video production system including the video production server is suggested.
US10652588B2 Inverse reshaping for high dynamic range video coding
Systems, methods, and instrumentalities are disclosed for inverse shaping for high dynamic range (HDR) video coding. A video coding device, e.g., such as a decoder, may determine a plurality of pivot points associated with a plurality of piecewise segments of an inverse reshaping model. The plurality of pivot points may be determined based on an indication received via a message. Each piecewise segment may be defined by a plurality of coefficients. The video coding device may receive an indication of a first subset of coefficients associated with the plurality of piecewise segments. The video coding device may calculate a second subset of coefficients based on the first subset of coefficients and the plurality of pivot points. The video coding device may generate an inverse reshaping model using one or more of the plurality of pivot points, the first subset of coefficients, and the second subset of coefficients.
US10652583B2 Compression of image assets
A hybrid compression method for compressing images is provided. The method identifies a first set of image components to be compressed by a lossy compression format and a second set of image components to be compressed by a lossless compression format. The method then encodes the first set of image components according to the lossy compression format and encodes the second set of image components according to the lossless compression format. The method then generates a compressed structure that includes the lossy-compressed first set of image components and the lossless-compressed second set of image components.
US10652582B2 Optimized edge order for de-blocking filter
A de-blocking filter includes a reconstructed memory that is configured to store reconstructed pixels corresponding to a current macroblock of a video image to be filtered. The current macroblock includes a set of sub-blocks, each sub-block having horizontal edges and vertical edges. An internal pixel buffer in the de-blocking filter is configured to store pixels corresponding to the set of sub-blocks from the reconstructed memory, and to store partially filtered pixels corresponding to a set of partially filtered macroblocks. An edge order controller in the de-blocking filter is configured to load the pixels corresponding to the set of sub-blocks into a filter engine from the internal pixel buffer, to filter the set of sub-blocks, such that, at least one horizontal edge is filtered before filtering all vertical edges of the set of sub-blocks.
US10652580B2 Video data processing method and apparatus
Video data processing method and apparatus are provided. The method includes: encoding, by an encoder side, obtained original video data according to a hierarchical P-frame prediction HPP structure to obtain an HPP bitstream; redundancy-coding the HPP bitstream according to a forward error correction FEC code, redundancy packet quantities in frames in the HPP bitstream progressively decreasing from lower to higher temporal layers to which the frames belong in the HPP structure; and sorting the frames in the redundancy-coded HPP bitstream and sequentially sending the frames in the redundancy-coded HPP bitstream to a decoder side.
US10652578B2 Processing of multi-directional images in spatially-ordered video coding applications
Image processing techniques may accelerate coding of viewport data contained within multi-view image data. According to such techniques, an encoder may shifting content of a multi-directional image data according to the viewport location data provided by a decoder. The encoder may code the shifted multi-directional image data by predictive coding, and transmit to the decoder, the coded multi-directional image data and data identifying an amount of the shift. Doing so may move the viewport location to positions in the image data that are coded earlier than the positions that the viewport location naturally occupies and, thereby, may accelerate coding. On decode, a decoder may compare its present viewport location with viewport location data provided by the encoder with coded video data. The decoder may decode the coded video data and extract a portion of the decoded video data corresponding to a present viewport location for display.
US10652574B2 Intra block copy (IntraBC) cost estimation
A method for encoding video data is provided that includes determining whether a parent coding unit of a coding unit of the video data was predicted in intra-prediction block copy (IntraBC) mode and, when the parent coding unit was not predicted in IntraBC mode: computing activity of the coding unit, determining an IntraBC coding cost of the coding unit by computing the IntraBC coding cost of the coding unit using a two dimensional (2D) search when the activity of the coding unit is not than an activity threshold, and computing the IntraBC coding cost of the coding unit using a one dimensional (1D) search; and when the activity of the coding unit is less than the activity threshold, using the IntraBC coding cost to select an encoding mode, and encoding the coding unit using the selected encoding mode.
US10652570B2 Moving image encoding device, moving image encoding method, and recording medium for recording moving image encoding program
Provided is a moving image encoding device which is capable of determining an encoding mode through a small amount of calculation while suppressing a deterioration in encoding efficiency. In the present invention, a moving image encoding device includes an encoding mode determining unit for determining a combination of a plurality of encoding modes for each block.
US10652567B2 Applications for decoder-side modeling of objects identified in decoded video data
Techniques are disclosed for coding and decoding video data using object recognition and object modeling as a basis of coding and error recovery. A video decoder may decode coded video data received from a channel. The video decoder may perform object recognition on decoded video data obtained therefrom, and, when an object is recognized in the decoded video data, the video decoder may generate a model representing the recognized object. It may store data representing the model locally. The video decoder may communicate the model data to an encoder, which may form a basis of error mitigation and recovery. The video decoder also may monitor deviation patterns in the object model and associated patterns in audio content; if/when video decoding is suspended due to operational errors, the video decoder may generate simulated video data by analyzing audio data received during the suspension period and developing video data from the data model and deviation(s) associated with patterns detected from the audio data.
US10652564B2 Sample array coding for low-delay
The entropy coding of a current part of a predetermined entropy slice is based on, not only, the respective probability estimations of the predetermined entropy slice as adapted using the previously coded part of the predetermined entropy slice, but also probability estimations as used in the entropy coding of a spatially neighboring, in entropy slice order preceding entropy slice at a neighboring part thereof. Thereby, the probability estimations used in entropy coding are adapted to the actual symbol statistics more closely, thereby lowering the coding efficiency decrease normally caused by lower-delay concepts. Temporal interrelationships are exploited additionally or alternatively.
US10652553B2 Systems and methods of signaling of regions of interest
Techniques and systems are provided for processing video data. In one example, a media file associated with 360-degree video data can be obtained. The 360-degree video data may include a spherical representation of a scene. The media file may include first signaling information and second signaling information of a viewport region corresponding to a region of interest (ROI) in the spherical representation. The first signaling information may include a center position and a dimension of the viewport region measured in a spherical space associated with the spherical representation. The second signaling information may indicate a region of a picture comprising the viewport region, the picture being formed by projecting the spherical representation including the ROI onto a plane. Pixels corresponding to the viewport region from the data of the picture can be extracted based on the first signaling information and second signaling information, and can be provided for rendering.
US10652546B2 Image processing device and image processing method
Provided is an image processing apparatus including a decoding section that decodes a luminance component and a color difference component of a block inside a coding unit in an order of the luminance component and the color difference component in each block.
US10652541B2 Method and device for encoding video data
The present invention concerns a method for encoding a video sequence, comprising the following steps by a processing unit of an encoding device: splitting a digital image from the video sequence into blocks of values; for each block: transforming the values of the block into transform coefficients; organizing these transform coefficients into several sets of transform coefficients; quantizing the transform coefficients into quantized coefficients; encoding the block using the quantized coefficients; encoding the video sequence based on the encoding of the blocks; wherein the quantizing step further comprises for quantized coefficients corresponding to one set of transform coefficients: comparing a sum value representing a result of summing magnitudes of the quantized coefficient values with a threshold, the threshold depending on the number of the summed quantized coefficients, the quantized coefficient magnitudes being comprised within a predefined range; and setting the quantized coefficients to zero if the summing result is below the threshold.
US10652537B1 Coding unit size adaptive palette mode for video compression system
Systems and methods are provided for improving efficiency of decoding performance of a video compression system by selectively applying, based on the size of the coding unit, a prediction method, a palette mode, or palette-based residual refinement method which combines the palette mode and the traditional prediction methods comprising deriving a prediction block of a coding unit, decoding palette-based residual information of the coding unit, deriving a palette-based residual block based on the decoded palette-based residual information, and combining the prediction block and the palette-based residual block to construct a reconstructed block.
US10652536B2 Encoder, decoder, encoding method, and decoding method
An encoder according to one aspect of the present disclosure encodes a block of an image, and includes a processor and memory connected to the processor. Using the memory, the processor partitions a block into a plurality of sub blocks and encodes a sub block included in the plurality of sub blocks in an encoding process including at least a transform process or a prediction process. The block is partitioned using a multiple partition including at least three odd-numbered child nodes and each of a width and a height of each of the plurality of sub blocks is a power of two.
US10652535B1 Memory-efficient filtering approach for image and video coding
A memory-efficient filtering approach is used to code images and video. A buffer having a fixed size based on a size of processing units to use for filtering a video frame is allocated. For each of the processing units, pre-filtered pixel values are copied from a respective region of the video frame to the buffer based on a writing point for the video frame and an offset applied to the writing point, filtering is performed against the pre-filtered pixel values from the buffer to produce filtered pixel values, and the filtered pixel values are written to the video frame based on the writing point and the offset. The filtering may be performed using a loop restoration tool, such as where the pre-filtered pixel values are output from a constrained directional enhancement filter (CDEF) tool. Alternatively, the filtering may be performed using the CDEF tool or another coding tool.
US10652534B2 Methods and apparatus for directional intra prediction in video compression
A method of and an apparatus for controlling intra and/or inter prediction for decoding of a video sequence are provided. The method includes determining a total number of intra prediction modes for a current block, a number of Most Probable Modes (MPMs) in the current block, and a number of non-MPMs in the current block, wherein the total number of intra prediction modes for the current block is equal to a sum of the number of MPMs in the current block and the number of non-MPMs in the current block. The method further includes adjusting the total number of intra prediction modes to a value such that the number of non-MPMs is a power of 2 or a sum of multiple power of 2.
US10652524B2 Parallax barrier, display device and manufacturing method thereof
A parallax barrier, a display device and a manufacturing method thereof are disclosed. The parallax barrier includes a plurality of strip-shaped polarizing portions and a plurality of strip-shaped transparent portions, the plurality of strip-shaped polarizing portions and the plurality of strip-shaped transparent portions extend in the same direction, and the plurality of strip-shaped polarizing portions and the plurality of strip-shaped transparent portions are alternately arranged. With the parallax barrier, naked eye or multi-view display can be achieved by light splitting, and the curing non-uniformity in the curing and bonding process can be alleviate to increase the manufacturing yield.
US10652520B2 Three dimensional image capture
Apparatuses and methods are disclosed for capturing three-dimensional images, particularly of all or parts of human subjects and employing polarization. In disclosed implementations, cross-polarized, whole-body images of human subjects can be captured.
US10652519B2 Virtual insertions in 3D video
Embodiments relate to insertions in 3D video. Virtual camera models enable insertions to be reconciled relative to left and right channels of the 3D video to maximize 3D accuracy and realism of the insertions. Cameras are formed as composites, and can be derived from other models. The camera models can be based on a visual analysis of the 3D video, and can be based on 3D camera data including toe-in and ocular spacing. The camera data may be derived from information collected using instrumentation connect to a 3D camera system, derived based on visual analysis of the 3D video, or derived using a combination of information collected using instrumentation and visual analysis of 3D video. Insertions can be made on-site or at a remote site, and camera data can be embedded in the 3D video and/or separately transmitted to a remote site. Insertions can be adjusted in 3D space based on a type of insertion, the 3D video scene composition, and/or user feedback, including interactive adjustment of 3D insertions and adjustments in view of user sensitivity to eye strain.
US10652517B2 Virtual reality 360-degree video camera system for live streaming
The present disclosure relates to imaging systems and methods that include a plurality of cameras configured to capture video image data based on respective fields of view of an environment. Each camera of the plurality of cameras is communicatively coupled to neighbor cameras of the plurality of cameras via a communication interface. Each camera may carry out operations include capturing video image data of the respective field of view and determining an overlay region. The overlay region includes an overlapping portion of video image data captured by the respective camera and at least one of the neighbor cameras. The operations also include cropping and warping the captured video image data of the respective field of view based on the overlay region to form respective processed video image data. The processed video image data may be uploaded to a cloud server and provided, via multiple trunk links, to a client device.
US10652504B2 Simple video communication platform
A system offering simplified bi-directional video communication between a user and a device of a pre-configured one or more persons of interest includes a touch display with a pictorial representation of each of the one or more persons of interest and a pictorial representation of one or more health indicators. The touch display is configured to establish the bi-directional video communication with a selected one of said persons of interest in response to a single touch of the pictorial representation of the selected one of the persons of interest. In one implementation, the system includes one or more biometric telemetry devices for acquiring and transmitting biometric data associated with a specific health indicator to the touch display, which is then transmitted to a database, processed and accessed by one or more authorized persons. In another implementation, the system includes a workflow engine for healthcare management of the patient.
US10652503B2 Camera video recorder
A camera video recorder may include a housing operatively mounting a digital video camera. A digital video recorder disposed in the housing is linked to the digital video camera and records images provided by the camera. A network switch disposed in the housing provides at least one network connection, and a processor adapted to run an operating system, and control the digital video camera, digital video recorder and network switch is also disposed in the housing. The network ports may be switched, selectively providing pass-through and switched communication. The processor may be adapted to provide an Internet protocol-based interface for accessing the camera video recorder and to provide analytics. A plurality of camera video recorders may be linked in series, and at least one of the camera video recorders may be linked to a network, via network connections provided by the network switch in the camera video recorders.
US10652497B2 Quanta image sensor with polarization-sensitive jots
Some embodiments provide an image sensor that includes (i) quanta image sensor having an array of jots and configured for spatial and temporal oversampling, and (ii) a polarization filter array monolithically integrated with the quanta image sensor, so as to provide for a polarization image sensor. The image sensor may also include a color filter array.
US10652492B1 CMOS image sensor with improved column data shift readout
An imaging sensor having a pixel array with a separate analog-to-digital conversion (ADC) circuit coupled on an input side to each column line and on an output side to a separate M-bit wide digital memory circuit and a column data readout circuit comprising N M-bit data shifters. Each M-bit data shifter has an M-bit wide output, and single pole double throw (SPDT) switches whose common terminals provide inputs to the M-bit data shifters, wherein a first switch state of the SPDT switches connects the input of their associated M-bit data shifters to their associated M-bit wide digital memory circuits and wherein a second switch state of the SPDT switches connects the input of their associated M-bit data shifters to an M-bit wide output bus from an adjacent M-bit data shifter.
US10652491B2 Solid-state imaging element, driving method, and electronic device
The disclosure relates to a solid-state imaging element, a driving method, and an electronic device that generates an arbitrary intermediate voltage level between a high voltage level and a low voltage level. The solid-state imaging element includes a first driving line that supplies selectively to a posterior stage, a first voltage level that is output from a first power source and a second voltage level that is output from a second power source and lower than the first voltage level. Also included is a second driving line that is different from the first driving line, a capacitance that is formed between the first driving line and the second driving line, and a floating setting unit that sets the first driving line to a floating state. The disclosure is applicable to, for example, a CMOS image sensor.
US10652487B2 Image processing apparatus and image processing method
An image processing apparatus of an embodiment includes: a distortion correction circuit configured to perform a correction operation to a plurality of pixels composing an input image; a plurality of output buffers layered to two or more stages configured to receive an output of the distortion correction circuit, and perform output for each transmission block which is a set of pixels with the consecutive corrected pixel positions; and a controller configured to write an output pixel of the distortion correction circuit in the first-stage output buffer, sequentially transfer the written pixel to a post-stage output buffer, and cause output buffers at respective stages to store pixels of sub-blocks into which the transmission block is divided.
US10652476B2 Solid-state image pickup element, image pickup apparatus, and control method of solid-state image pickup element
To prolong an exposure time in an image pickup apparatus that combines a plurality of images. A gain processing unit increases or decreases a plurality of image signals using gains different from each other. An analog to digital conversion unit generates a plurality of image data by performing analog to digital conversion on the increased or decreased plurality of image signals. A calculation unit adds data obtained by multiplying short-time exposure data being any of the plurality of image data, by a ratio between the gains, and data among the plurality of image data that does not correspond to the short-time exposure data, and outputs the added data as long-time exposure data. A combining unit combines the short-time exposure data and the long-time exposure data at a predetermined combining ratio.
US10652475B2 Structured light 3D sensors with variable focal length lenses and illuminators
A method for three-dimensional imaging includes emitting an output light with a structured light illuminator in a structured light pattern, receiving a trigger command, changing a field of illumination of the illuminator, and changing a field of view of an imaging sensor. The field of view and the field of illumination are linked, such that the field of view of the imaging sensor is the same as the field of illumination of the illuminator at a short throw field of view and a long throw field of view. The method further includes detecting a reflected light with the imaging sensor and measuring a depth value by calculating a distortion of the structured light pattern.
US10652474B2 Method for adjusting an angle of an element of a photographing unit and a head mounted display
A method for adjusting the angle of an element of a photographing unit of a head mounted display is provided by the present disclosure, including determining a rotation angle of a user's head when the user's head rotates, and adjusting an angle of the element of the photographing unit of the head mounted display according to the rotation angle, to align a photographing lens with a specific subject. A head mounted display is provided by the present disclosure, thus automatically capturing a photographing scene may be realized.
US10652471B2 Image processing systems for correcting processed images using image sensors
An image processing system may include a first image sensor, a second image sensor, and an image processing device. The image processing device may be configured to obtain a first image and a second image by respectively processing the first image data and the second image data. The image processing device may output an image based on the first image when a zoom factor of the output image is lower than a first reference value, generate a correction image by correcting locations of second reference coordinates of the second image based on first reference coordinates of the first image when the zoom factor of the output image is between the first reference value and the second reference value, and may output an image based on the second image when the zoom factor exceeds the second reference value.
US10652469B2 Method and apparatus for self camera shooting
An apparatus capable of taking a self-portrait picture includes a screen, a camera, and a controller configured to cause the screen to display a live preview image received from the camera, after the live preview image is displayed, detect a first user gesture for triggering a display of an indicator on the screen, cause the screen to display the indicator at a changeable position where the first user gesture is detected, wherein the indicator indicates that a gesture detection mode is entered to recognize a second user gesture different from the first user gesture, while the indicator is displayed on the screen, detect the second user gesture in the indicator, and after detecting the second user gesture, cause the camera to automatically take a self-portrait picture.
US10652468B2 Camera apparatus
There is provided a camera apparatus, including circuitry configured to: output a first image signal for displaying a first image, output a second image signal for displaying a second image. The second image signal is an image signal transmitted as a return signal. Further, the second image is an image that includes one of a location of a focus adjustment in the first image and an enlarged image corresponding to a part of the first image.
US10652467B2 Shake correction device, shake correction method, shake correction program, lens device, and imaging device
A shake correction device that corrects a shake of a captured image captured by an imaging element which images subjects through an imaging optical system, and includes: a movement detection sensor as defined herein; a drive mechanism as defined herein; an optical element as defined herein; a subject light detection unit as defined herein; a movement detection unit as defined herein; and a drive controller as defined herein, and the movement detection unit calculates distances of the subjects formed on the light receiving surface of the subject light detection unit from the imaging optical system based on output signals of the subject light detection unit, and detects the movement amount as the second movement in a case where a movement amount of the subject of which the distance is maximum exceeds a threshold value.
US10652465B2 Systems and methods for combining multiple frames to produce media content with simulated exposure effects
Systems, methods, and non-transitory computer-readable media can capture media content including an original set of frames. A plurality of subsets of frames can be identified, based on a subset selection input, out of the original set of frames. An orientation-based image stabilization process can be applied to each subset in the plurality of subsets of frames to produce a plurality of stabilized subsets of frames. Multiple frames within each stabilized subset in the plurality of stabilized subsets of frames can be combined to produce a plurality of combined frames. Each stabilized subset of frames can be utilized to produce a respective combined frame in the plurality of combined frames. A time-lapse media content item can be provided based on the plurality of combined frames.
US10652463B2 Imaging device having a charge controller for regulating battery charging during interval shooting
An imaging device is capable of interval shooting that allows images to be consecutively captured at predetermined image-capture intervals. The imaging device includes power input unit through which the imaging device receives power from an external device; battery configured to be charged with power received via the power input unit, and to supply power to operate the imaging device; and charge controller configured to control charging of the battery. Charge controller prohibits, under a predetermined condition, charging of the battery during the interval shooting performed by the imaging device.
US10652461B2 Imaging apparatus, imaging method, and program
An image processing apparatus including an interface that receives an input identifying a subject, and a processor that generates a panoramic image based on captured image data so that the subject is positioned in a reference position in the panoramic image.
US10652460B2 Image-capturing apparatus and image-capturing control method
The image-capturing apparatus includes an image-capturing device configured to perform image capturing through multiple magnification-variable optical systems, which face in mutually different directions, to acquire multiple images to be continuously joined together, a controller configured to control magnification-varying operations of the respective magnification-variable optical systems to set field angles thereof, a main body holding the multiple magnification-variable optical systems, and a protrusion detector configured to detect a protruding member. The controller is configured to perform, depending on a detection result of the protrusion detector, a field angle setting process for setting the field angles of the respective magnification-variable optical systems such that the detected protruding member is not included in all the field angles of the magnification-variable optical systems.
US10652454B2 Image quality evaluation
A method of evaluating image quality includes capturing a first digital image of a target object using a first digital camera of a smart device. A second digital image of a user of the smart device is captured using a second digital camera of the smart device. The second digital image includes an image of the user's facial expression. A quality index is generated for the first digital image by analyzing one or more features of the second digital image. Analyzing the second digital image includes determining the user's sentiment. The quality index is then associated with the first digital image.
US10652452B2 Method for automatic focus and PTZ camera
Embodiments of the present application provide an automatic focusing method and a PTZ camera. The method is applicable to the PTZ camera and comprises: calculating a current target object distance from a lens of the PTZ camera to a monitored target monitoring plane based on a pre-established spatial object distance parameter; wherein, the spatial object distance parameter contains a spatial plane equation of a reference monitoring plane; the reference monitoring plane is an equivalent plane of the target monitoring plane; searching in a preset relation table based on the current target object distance, a current magnification of the PTZ camera, determining a position information corresponding to a focus motor of the PTZ camera, the preset relation table including the relationship of the object distance, the magnification and the position information of the focus motor, and driving the focus motor to a position corresponding to the determined position information. Embodiments of the present application are applied to realize fast automatic focusing of the PTZ camera.
US10652447B1 Selfie mirror speaker
A selfie mirror speaker may include a surface-mounted mirror that includes a module capable of capturing, broadcasting, and recording still photos, audio, and video of a user; and at least one mirror light, wherein the mirror is capable of being adjusted in height and angle for viewing, demonstrating, documenting, and sharing use and application of cosmetics, grooming techniques, skincare products, and related tools and accessories. The selfie mirror speaker includes an acoustic chamber connected to a bottom portion of the mirror, the acoustic chamber having a speaker integrated within the acoustic chamber. The acoustic chamber may include a downward-facing full-range driver on a lower end of the acoustic chamber; and a passive base isolator on an upper end of the acoustic chamber. The selfie mirror speaker may pair with at least one Bluetooth®-enabled device or MP3 player.
US10652445B2 System and method for generating a light pattern for object illumination
A light generator system may include: a light source providing a diverging light beam, a first lens element having a first surface and a second surface, the first surface of the first lens element having a positive optical power in a first cross section, a second lens element having a first surface and a second surface, the first surface of the second lens element having a negative optical power in a second cross section different from the first cross section, and a multiplication function on at least one of the second surface of the first lens element, the first surface of the second lens elements, or the second surface of the second lens element, in the first cross section.
US10652444B2 Multiplexed Fourier ptychography imaging systems and methods
Certain embodiments pertain to Multiplexed Fourier Ptychographic imaging systems and methods. In one example, the Multiplexed Fourier Ptychographic imaging system includes an LED array configured to illuminate a sequence of LED patterns for illuminating a sample being imaged. The system includes LED circuitry configured to independently control power to turn on multiple LEDs simultaneously in each LED pattern of the array. The system has a light detector that acquires a first set of lower resolution images of the sample each image acquired during exposure time during illumination by a unique LED pattern. The system uses the first set of lower resolution images to generate a second set of lower resolution images associated with each LED in the LED array and iteratively updates overlapping regions in the Fourier domain with the second set of lower resolution images to generate a higher resolution image.
US10652441B1 Systems and methods for protecting imaging devices against high-radiant-flux light
Systems and methods for preventing high-radiant-flux light, such as laser light or a nuclear flash, from causing harm to imaging devices, such as a camera or telescope. The optical components of the imaging device have first and second foci. The second focus forms an image on an array of photodetectors and occurs at a large f-number. The first focus occurs at a small f-number in a gas that is dense enough to dissipate most of a femtosecond laser pulse of potentially damaging intensity and conditioned to easily undergo dielectric breakdown when exposed to high-radiant-flux light that is less intense than a femtosecond laser pulse. Dielectric breakdown forms a conductive arc that dissipates or scatters light, blocking high-radiant-flux light from reaching the array of photodetectors. Several methods may be used for conditioning the gas to break down quickly when exposed to laser attack.
US10652437B2 Vehicle camera with aluminum extruded body
A method of assembling a camera for a vehicular vision system includes providing a camera housing and forming a post at an interior portion of the camera housing, and positioning a printed circuit board in the camera housing so that the post is received through a hole through the printed circuit board such that a protruding end of the post protrudes from the side of the printed circuit board opposite the imager. Circuitry disposed at one side of the printed circuit board includes an imager. The protruding end of the post is adapted to limit retraction of the post from the hole through the printed circuit board so as to secure the printed circuit board relative to the post and the camera housing. A lens is provided at the camera housing.
US10652431B2 Image forming apparatus performing specified-color removal process, control method therefor, and storage medium storing control program therefor
An image forming apparatus that is capable of improving a specified-color removal process. An obtaining unit obtains color image data. A color specification unit specifies removal color. A specified-color removal unit removes color that is determined to be removed according to determination based on a brightness threshold and a first saturation threshold about the removal color from the color image data obtained.
US10652430B2 Image processing apparatus, image processing method, and storage medium to convert image data
An image processing method includes determining whether image data acquired by reading a document with a reading unit is color or monochrome, saving color image data determined to be color and monochrome image data generated by monochrome conversion of the color image data, in association with each other as a learning sample, deciding a color conversion parameter to be used when image data read by the reading unit and determined to be monochrome image data is converted into a color image, using the saved learning sample, and converting the image data read by the reading unit and determined to be the monochrome image data into color image data, using the decided color conversion parameter.
US10652428B2 Information processing apparatus, information processing method, and non-transitory computer readable storage medium
An information processing apparatus includes plural communication units, a determination unit, and a controller. The plural communication units are configured to be capable of conducting a wireless communication. The determination unit is configured to determine a communication unit from among the plural communication units in accordance with whether a mobile communication terminal that is attempting to conduct a communication is approaching the information processing apparatus. The controller is configured to perform a control so as to start the communication using the communication unit determined by the determination unit.
US10652421B2 Apparatus and method for capturing image with audio data
A method for capturing an image with audio data includes recording and storing audio data, capturing an image on request, and matching and storing the recorded audio data with the captured image, thereby allowing a user to more lively record an audio signal when an image is captured. An apparatus for capturing an image with audio data includes a camera unit configured to capture an image, an audio data recording unit configured to record audio data, and a controller configured to store an image captured by the camera unit, and match and store audio data recorded by the audio data recording unit for a predetermined period of time after the camera unit captured the image.
US10652411B2 Remote operation apparatus, remote operation system, and non-transitory computer readable medium storing program with text input assistance
A remote operation apparatus includes a display that displays a desktop screen of an apparatus to be remotely operated; and a controller that displays an input field on a desktop screen of the remote operation apparatus and activates a text input assistance module of the remote operation apparatus in a case in which an activation instruction to activate the text input assistance module of the remote operation apparatus is input, and enables the text input assistance module of the remote operation apparatus to input text to the input field.
US10652408B2 Reading apparatus, control method for reading apparatus, control apparatus, and program
A reading apparatus includes a storage configured to store data in the storage, a reader configured to optically read a medium, and a processor configured to, in response to the reading of the medium by the reader, acquire a set of read data based on the result of the reading, generate an image file based on the acquired set of read data, and allow the storage to store in itself the generated image file. Further, the processor includes the function of, when generating the image file, generating a plurality of image files resulting from a division that allows the file size of each of the plurality of image files to be smaller than a size upper limit, and of allowing the storage to store in itself the generated plurality of image files in a state in which the plurality of image files are associated with one another.
US10652405B2 Electronic apparatus, information processing apparatus, and communication system
An electronic apparatus includes circuitry to receive a request for generating electronic data from an information processing apparatus via a first communication network, generate the electronic data, receive storage destination information designating a storage destination of the electronic data from the information processing apparatus via the first communication network, and transmit the generated electronic data to the storage destination via a second communication network, different from the first communication network, based on the storage destination information received from the information processing apparatus.
US10652404B2 Image forming device and non-transitory computer-readable recording medium storing program
An image forming device includes: an image forming unit that forms an image on a transfer medium in accordance with a JOB; and a controller that controls the image forming unit. The controller is capable of acquiring a read image obtained by reading the image on the transfer medium, and determining failure/no-failure in the image on the transfer medium in accordance with the read image. When the image is determined to have a failure in accordance with the determination, the controller saves, for each JOB, original image information related to at least a failure-detected page in which the failure has been detected in a state in which the original image information is associated with output history information, and makes at least the failure-detected page re-printable in accordance with the associated original image information.
US10652402B2 Image reading apparatus with abnormality notification for driving unit and for position sensor
An image reading apparatus comprises a driving control part which detects a driving abnormality of a motor which drives a moving unit configured to be movable. Further, the image reading apparatus comprises a HP sensor an output of which changes in accordance with a position of the moving unit, and a CPU(A) which moves the moving unit by controlling operation of the motor based on the output change of the HP sensor. The CPU(A) determines that a driving abnormality occurs in a case where the driving control part detects an abnormality while moving the back surface glass unit. The CPU(A) determines that a position detection abnormality occurs if the output of the HP sensor does not change even when the moving unit is moved by a predetermined distance (ON reference moving amount and OFF reference moving amount) or more in a state where no abnormality is detected by the driving control part.
US10652401B2 Access node and method
An all-encompassing fully integrated communication Access Node for call stations and other security and communications equipment includes a modular housing within which is mounted wire and wireless communication systems and power systems. The housing has a chassis for mounting the electronics and battery modules and a backbox and panel for staged installations, managing cables and providing heat dissipation. A door to the chassis is secured using latch hooks with roller bearings. Optical cable termination is provided as a two sided patch panel. Dual power supplies provide power to internal components and to external components via a distribution module. Backup power is provided by a custom battery backup with a charging controller. Cooling is controlled by dual fans and a fan controller moving air through the housing using openings and baffles. Freestanding pedestal mounting of the Access Node and various other mounts for column, wall, or ceiling to any substrate or condition is an option. Venting through a plug prevents pressure build up.
US10652395B2 Methods, apparatuses and system for synchronizing call media and content
Provided are methods, apparatuses and a system for synchronizing call media and content. In a process of playing call media to a user and displaying content associated with the call media, a terminal acquires new call media from a call media server and acquires, after querying a synchronization server for content information corresponding to the new call media, content associated with the new call media from a content server, respectively, in response to a user operation. The terminal plays the new call media to the user, and displays the content associated with the new call media simultaneously.
US10652394B2 System and method for processing voicemail
In one example, a recorded voicemail is first converted from speech to text, and a proposed action to be performed by the user is extracted from the voice message. For example, in the voicemail “this is John, call me at 650.987.0987 at 9 am tomorrow,” the action is to call John. At least one action parameter for undertaking the action is determined. For example, the action parameters may include the 650.987.0987 telephone number and the 9 am time the following morning, The at least one action parameter may be extracted from the voicemail message or it may be determined by other means, e.g., from a user's contact book. Finally, the user is presented with a prompt to facilitate undertaking the action using the at least one the parameter. For example, the user may be given the option to set a reminder to call John the following morning at 9 am.
US10652392B1 System and method of automated routing and guidance based on continuous customer and customer service representative feedback
The present invention is a system and method of routing incoming communications to a CSR and providing guidance to the CSR based on the incoming communication using feedback information such as sentiment feedback, survey feedback, and feedback from actions taken by CSRs based on skill level. A CEC system receives an incoming communication, analyzes the communication and creates metadata based off of the analysis. The metadata is used by the RAE routing module to route the communication to an appropriate party. The metadata is also used by the GAE guidance module to determine the guidance to provide to the CSR. The CSR then performs an action based on the guidance. The CEC system continues to monitor the interaction until the interaction is completed. The communication metadata, the communication, the guidance, and the CSRs action are all provided to a RAS rules analysis module wherein the RAS analyzes the data and automatedly updates the rules (RAR and GAR) according to the analysis.
US10652391B2 System and method for automatic quality management in a contact center environment
A method for automatically managing a recorded interaction between a customer and an agent of a contact center includes: extracting, by a processor, features from the recorded interaction; computing, by the processor, a score of the recorded interaction by supplying the features to a prediction model; detecting, by the processor, a condition based on the score; matching, by the processor, the condition with an action; and transmitting, by the processor, a command to control a component of the contact center to perform the action.
US10652389B2 Call hold method and mobile terminal
A call hold method includes receiving a call hold request sent from a peer end; returning a 200 OK message to the peer end; receiving a user instruction for sending a call hold request to the peer end; determining whether an acknowledgement message based on the call hold request of the peer end is received from the peer end; and processing, based on an acknowledgement message determining result, the user instruction for sending a call hold request to the peer end. Accordingly, when a user has a call hold request, a mobile terminal first determines whether a procedure based on the call hold request of the peer end is completed at the peer end, and then determines to process the call hold request of the user, thereby preventing a call drop.
US10652386B2 Cloud system for controlling outdoor grill with mobile application
Embodiments are directed to communicating with and controlling operation of electronically-controlled appliances. In one scenario, a computer system receives a first input from a computing system indicating that an electronically-controlled appliance is permitted to communicate with a cloud computing platform. The computer system generates a notification that is to be sent to a software application, where the software application is configured to control functions of the electronically-controlled appliance. The computer system transmits the generated notification to the software application, where the generated notification indicates that the cloud computing platform is communicably connected to the electronically-controlled appliance. The computer system then receives a second input from the software application indicating that specified functions are to be performed on the electronically-controlled appliance, and transmits instructions to the electronically-controlled appliance to perform the specified functions. These functions are then interpreted and carried out by a hardware controller on the electronically-controlled appliance.
US10652382B2 Switching to a single radio chain for voice communications
In general, the subject matter described in this disclosure can be embodied in methods, devices, and program products for selecting a wireless transmission mechanism. A computing device receives a request to begin a full-duplex voice communication session with a remote computing system. The computing device identifies that it has wirelessly connected to both a WWAN access point and a WLAN access point. The computing device determines whether a level of non-voice session data that is queued for transmission or receipt by the computing device falls beneath a threshold level of data, and as a result, switches to using a single one of multiple WLAN radio chains. The computing device communicates data over the single one of the multiple WLAN radio chains, including voice session data from the full-duplex voice communication session.
US10652379B2 Hands-free mount for mobile devices
A hands-free mount for a mobile device. An example hands-free mount includes a first magnetic attachment for combining with the mobile device, and a second mating magnetic attachment for combining with the first magnetic attachment. In an example, the hands-free mount includes a housing for the second mating magnetic attachment. A strap may be fitted through the opening in the housing to secure the housing to an object for attaching the mobile device to the object via magnetic connection of the first magnetic attachment on the mobile device to the second mating magnetic attachment of the housing. An example hands-free mount may also include a kickstand on the housing. The kickstand in the open position supports the mobile device in a substantially upright position. The kickstand folds into the closed position for carrying the mobile device.
US10652375B2 Electronic device and structure of housing for same
The disclosure relates to a 5G or pre-5G communication system for supporting higher data transmission rates than 4G communication systems such as LTE systems. The disclosure relates to the structure of a housing with a dielectric. A housing of a terminal device using an antenna is provided. The at least one protrusion formed of a dielectric in the housing is configured to be positioned between a side surface of the housing and the antenna.
US10652371B2 Method and apparatus for transmitting and receiving data packet in multimedia system
Disclosed is a method for receiving a data packet by a receiving apparatus in a multimedia system, the method comprising: receiving the data packet; obtaining, from a payload header of the data packet, a fragment indicator including information about fragmentation of a data unit in a payload of the data packet and a fragment counter indicating a number of at least one payload containing at least one fragment of the data unit succeeding the payload; and identifying that at least one number indicated by the fragment counter is to be reused in a case that the fragment indicator includes a value indicating that the payload contains a fragment of the data unit that is neither a first nor a last fragment, and the fragment counter indicates a number indicating that there is no at least one payload containing the at least one fragment of the data unit succeeding the payload, wherein a total number of fragments of the data unit is larger than a maximum number indicated by the fragment counter.
US10652367B2 Reducing network latency
A method of transmitting data for use at a data processing system and network interface device, the data processing system being coupled to a network by the network interface device, the method comprising: forming a message template in accordance with a predetermined set of network protocols, the message template including at least in part one or more protocol headers; forming an application layer message in one or more parts; updating the message template with the parts of the application layer message; processing the message template in accordance with the predetermined set of network protocols so as to complete the protocol headers; and causing the network interface device to transmit the completed message over the network.
US10652364B2 Shared display links in a user system
Embodiments include apparatuses, methods, and systems including a communication aggregator having a first interface to communicate with a host through a first link based on a first protocol, a second interface coupled to the first interface to communicate with a display device through a second link based on the first protocol, and a third interface coupled to the first interface to communicate with a sensor through a third link coupled to the third interface based on a second protocol. Moreover, the host is to communicate with the display device through the first link based on the first protocol, and the second link based on the first protocol; and the sensor is to communicate with the host through the third link based on the second protocol, and the first link based on the first protocol. Other embodiments may also be described and claimed.
US10652362B1 Vendor non-specific computer server software system
A computer server software system implemented on a computing device comprises a bare metal automation interface, a request processor, a scheduler, a vendor non-specific bare metal interface, and an orchestration engine. The bare metal automation interface is configured to receive requests for configuration of one or more of a plurality of servers. The request processor is configured to receive the requests from the bare metal automation interface and to forward the requests. The scheduler is configured to receive instructions from a runtime environment in which the computer server software system operates and forward the instructions. The vendor non-specific bare metal interface is configured to interface with a plurality of vendor-specific server interfaces, wherein each vendor-specific server interface communicates with a server from the specific vendor. The orchestration engine is configured to execute a workflow for the requests from the request processor and for the instructions from the scheduler.
US10652360B2 Access scheduling method and apparatus for terminal, and computer storage medium
A terminal access scheduling method is provided. The method is applied to a scheduling server and includes performing grouping on terminals that need access to obtain multiple terminal groups; and performing cluster division on machines providing resources for access to obtain multiple machine clusters. The method also includes obtaining resource demands of the terminal groups, available resources of the machine clusters, and access quality between the terminal groups and the machine clusters; obtaining coverage ratios of the machine clusters to the terminal groups according to the resource demands of the terminal groups, the available resources of the machine clusters, and the access quality; and performing access scheduling for the terminals according to the coverage ratios.
US10652359B2 Server-side caching for web user interfaces
The described technology relates to rendering a client-side user interface using a server-side cache for providing the displayed data. In an example implementation, in response to a user interface (e.g., dashboard with multiple widgets in a web application) being launched on the client device, the server initiates a refresh of the cache for the widgets; and transmits a first set of data obtained from the cache for widgets in the user interface before the cache is updated in response to the initiated refresh. The first set of data is followed by a second set of data obtained from the cache for at least some of the widgets after the cache is updated in response to the initiated refresh. The client displays the user interface using the second set of data while overwriting, for one or more of the widgets, information previously displayed using the first set of data.
US10652358B2 System and method for improving internet communication by using intermediate nodes
A method for fetching a content from a web server to a client device is disclosed, using tunnel devices serving as intermediate devices. The client device accesses an acceleration server to receive a list of available tunnel devices. The requested content is partitioned into slices, and the client device sends a request for the slices to the available tunnel devices. The tunnel devices in turn fetch the slices from the data server, and send the slices to the client device, where the content is reconstructed from the received slices. A client device may also serve as a tunnel device, serving as an intermediate device to other client devices. Similarly, a tunnel device may also serve as a client device for fetching content from a data server. The selection of tunnel devices to be used by a client device may be in the acceleration server, in the client device, or in both. The partition into slices may be overlapping or non-overlapping, and the same slice (or the whole content) may be fetched via multiple tunnel devices.
US10652353B2 Technologies for automatic processor core association management and communication using direct data placement in private caches
Technologies for communication with direct data placement include a number of computing nodes in communication over a network. Each computing node includes a many-core processor having an integrated host fabric interface (HFI) that maintains an association table (AT). In response to receiving a message from a remote device, the HFI determines whether the AT includes an entry associating one or more parameters of the message to a destination processor core. If so, the HFI causes a data transfer agent (DTA) of the destination core to receive the message data. The DTA may place the message data in a private cache of the destination core. Message parameters may include a destination process identifier or other network address and a virtual memory address range. The HFI may automatically update the AT based on communication operations generated by software executed by the processor cores. Other embodiments are described and claimed.
US10652350B2 Caching for unique combination reads in a dispersed storage network
A method includes receiving a first access request that indicates a first data object stored as encoded slices in a plurality of storage units. A first desired slice set is selected, based on the requesting module, that includes a first subset of encoded slices of the first data object. Absent slice data is generated based on searching a local cache, indicating an encoded slice not present in the local cache. A read request to read the encoded slice indicated by the absent slice data from one of the storage units is transmitted. The encoded slice indicated by the absent slice data from the storage unit is received and the local cache is updated to include the encoded slice. The first data object is regenerated for transmission to the first requesting module by decoding the first subset of encoded slices in the first desired slice set.
US10652349B2 Managing distributed data by calculating co-occurrence probabilities of combinations of first identification information items for device information items and compressing the device information items using the a second identification information assigned to the first information items based on the co-occurrence probabilities
A method, which is performed by a computer for management of distributed data, includes: associating device information items including information acquired from devices with first identification information items to be used to identify the devices and storing the device information items and the first identification information items in a storage device; calculating co-occurrence probabilities of combinations of the associated first identification information items for the device information items stored in the storage device; assigning second identification information items to the first identification information items based on the co-occurrence probabilities; generating compressed data by compressing the device information items using the second identification information items assigned to the first identification information items associated with the device information items upon the compression of the device information items; and transmitting the compressed data to a managing device.
US10652348B2 Device mode settings to provide an enhanced user experience
According to some aspects of the disclosure, when a computing device sends a request for content, such as an Internet page, the computing device can include with the request one or more device context parameters, such as the computing device's power preferences (e.g., current battery level), wireless settings, network connection, etc. The content provider may then use this device context information to select the most appropriate version of the requested content. One example of device context information may be a low-power power save mode setting, or other mode setting.
US10652347B2 Access to data source via proxy
In accordance with an example embodiment of the present invention, there is provided an apparatus, comprising at least one processor configured to execute a computer executable program stored in a memory comprised in the apparatus, wherein the computer executable program thereby causes the apparatus to at least open a first connection to a data source device, open a second connection to a proxy device, the second connection employing a first protocol and a cross origin resource sharing context, and receive from the proxy device information of the data source device.
US10652345B2 Implicit geolocation of social networking users
In one embodiment, one or more computing systems receive a request for a location prediction for a user from a service. The computing systems access one or more real-time location signals and one or more aggregated location signals. The aggregated location signals may comprise one or more previous location signals. The computing systems may then generate one or more location predictions from the one or more real-time location signals and the one or more aggregated location signals, and calculate a single location prediction for the user from the one or more location predictions. The computing systems may then send, in response to the request, the single location prediction for the user to the requesting service.
US10652343B2 Locating and retrieving segmented content
Methods and systems are described for retrieving segmented content originating from two or more content delivery networks. The method may comprise the steps of: retrieving a manifest file template associated with said segmented content comprising one or more pointers to database entries of said first content location database; using said one or more database entries for determining a location of a delivery node in said first or second content delivery network, said delivery node being configured for delivering a segment associated with said database entry; and, generating a manifest file for locating said segmented content by replacing pointers with said determined locations.
US10652341B2 Restful interface system for an application
An endpoint system provides a REST endpoint for an application. The endpoint system processes request messages based on message pair data for each message that includes an operation and parameter data. The parameter data includes parameter information for each parameter that identifies whether the value for the parameter is to be taken from the URI or payload of a request message. The endpoint system receives request messages that have a URI and payload. The URI includes an operation name. The endpoint system processes each request message in accordance with the message pair data for the operation specified in the request message. For each parameter of the message pair data, the endpoint system extracts the value for the parameter from either the URI or payload as specified by the parameter information for the parameter. The endpoint system then invokes the operation passing the one or more extracted values as actual parameters.
US10652340B2 Quick relay interface and transport selection
When direct communication, such as via Bluetooth, is unavailable, a communication protocol is used by an initiating communication device and/or a recipient communication device to establish a communication session via a cloud-based relay server. Establishing the communication session, such as a phone call or video streaming, includes setting up at least a first connection or link between the initiating communication device and the relay server, and at least a second connection or link between the relay server and the recipient communication device. Transports and interfaces for the first link and the second link may be selected independently of each other, and at least one of transports and interfaces for the first link and the second link may differ, e.g., the communication session may include asymmetric transport.
US10652335B2 Dynamically presenting vehicle sensor data via mobile gateway proximity network
A new sensor is detected being added to a vehicle sensor bus. A publication topic is created based on the new sensor. The publication topic is made available via at least a server component operating via the proximity networking radio. Data from the new sensor is added to the publication topic. In response to a subscription to the publication topic via a user device, the data is dynamically presented to the user device via the server component.
US10652334B2 Method and apparatus for managing data communications using communication thresholds
Aspects of the subject disclosure may include, for example, allocating virtual network function resources for a wireless connection with a gateway device, facilitating establishing the wireless connection with the gateway device utilizing the virtual network function resources to provide for transmitting of data from the gateway device to an application server where the data is stored by the gateway device until a determination is made that a threshold associated with the data has been satisfied, and tearing down the virtual network function resources responsive to a determination that the transmitting of the data from the gateway device to the application server via the wireless connection has been completed. Other embodiments are disclosed.
US10652332B2 System, method, and apparatuses for dynamic authorization
Systems and methods are provided for dynamically authorizing access to content stored on a front-end system by one or more applications hosted on a remote back-end system. The content stored on the front-end system may be static files. The front-end system may store content in distinct content storage locations. Each content storage location may correspond to a respective application hosted by the back-end system. In one embodiment, there may be multiple back-end systems each hosting one or more applications. Each application on the back-end system may employ operation logic to determine authorization to a content storage location associated with the application.
US10652330B2 Object storage in cloud with reference counting using versions
A data storage apparatus includes an interface and one or more processors. The interface is configured for communicating with a cloud-based object storage system having a built-in versioning mechanism that assigns version numbers to objects stored therein. The one or more processors are configured to receive data for storage from one or more workloads, to store the data as objects in the cloud-based object storage system, and to update and record reference counts for at least some of the objects, by forcing the built-in versioning mechanism of the cloud-based object storage system to update the version numbers so as to match the reference counts.
US10652328B2 Gateway management using virtual gateways and wildcards
Systems, methods, and media for managing gateways. In an embodiment, a virtual gateway is generated which comprises a representation of each of one or more active scripts and/or device information (e.g., device drivers, and/or definitions and/or configurations for devices, device types, and/or device groups) stored on at least one remote physical gateway. At least one user interface is provided for editing each of the one or more active scripts and/or device information represented in the virtual gateway. Synchronization is automatically maintained, across at least one network, between the one or more active scripts and/or device information represented in the virtual gateway and the one or more active scripts and/or device information stored on the at least one remote physical gateway.
US10652323B2 Secure and seamless offline file transfer through peer to peer wireless communication
A computer system allows two devices operated by two users from a plurality of trusted users to establish a direct peer to peer limited range wireless connection based on a social network connection between the users. The first client device associated with a first user receives a list of the plurality of trusted users from the computer system. The first client device receives a limited range signal broadcast by a second client device. The first client device determines that the second client device is associated with a second user from the plurality of trusted users based on the list and the limited range signal. Responsive to determining that the second client device is associated with the second user from the plurality of trusted users, the first client device establishes a direct peer to peer wireless connection. The first client device transmits content to the second client device via the peer to peer wireless connection.
US10652322B2 Scalable parallel messaging process
Methods and apparatus, including computer program products, implementing and using techniques for event processing in a content management system. In response to determining that an inter-dependence exists between two or more events in the content management system, a same group event key is assigned to each inter-dependent event. All events having the same group event key are distributed to a same event processing node on a consistent hashing ring.
US10652311B2 Computerized system and method for determining and communicating media content to a user based on a physical location of the user
Disclosed are systems and methods for improving interactions with and between computers in content searching, generating, hosting and/or providing systems supported by or configured with personal computing devices, servers and/or platforms. The systems interact to identify and retrieve data within or across platforms, which can be used to improve the quality of data used in processing interactions between or among processors in such systems. The disclosed systems and methods automatically determine media content to communicate to a user based on the user's location. The disclosed systems and methods enable novel media content distribution to a user based on 1) the location of the user (i.e., physical location or geo-location), 2) other users' classified relationships to the location; and 3) user generated media content by the classified other users.
US10652309B2 Mechanism to allow a messaging system to automatically switch to asynchronous operation due to high demand
An embodiment can include a method and one system comprising receiving documents, via a processor, the documents having a source application and a destination application and generating one or more chunks including the documents. The method and system can include determining a destination threshold of the destination application representing a maximum volume the destination application can receive in a timeframe. The method and system can further determine using one or more characteristics of the destination application and attributes of the one or more chunks that the maximum volume was not reached in the timeframe. The method and system can transmit the one or more chunks to the destination application.
US10652305B2 High availability voice over internet protocol telephony
The present invention is directed to processes and systems for high availability Voice Over Internet Protocol telephony. Exemplary embodiments comprise a VOIP proxy cluster in communication with an IP private branch exchange cluster in communication with a PSTN VOIP gateway cluster, all at a first call cluster locale. In exemplary configuration, nodes within each of the clusters mount a database node from the database cluster, and store and retrieve persistent telephony operation data within the database cluster. Embodiments employ the clustering mechanisms to separate telephony elements in a cluster to cluster topology. In exemplary usage, multiple physically separate call cluster locales are deployed for higher availability.
US10652304B1 Instantaneous egress management service
Quality parameters, such as encoding bitrate, can be determined for the providing of media content based at least in part upon aggregate consumption data. An unknown number of media players can obtain content at a bitrate that depends upon network conditions, and encoders can use variable bitrate encoding, such that egress bandwidth usage can vary widely over time. Aggregate consumption data can be obtained for the various client devices to project the egress costs for a particular period. If the projected resources deviate unacceptably from the target for the period, new quality setting values can be determined, such as new maximum, minimum, target bitrate, or target quality values for the various quality levels. These settings can be automatically applied or suggested to customers, who can then accept any or all of the suggestions, or choose to adjust at least some of the settings based on the suggestions or cost projections.
US10652303B2 Screencast orchestration
A method comprising by one or more computing systems of a virtual-room networking system, receiving, from a client computing device, a request to access a remote client; by the one or more computing systems of the virtual-room networking system, capturing, from the remote client, content to be presented to one or more client computing devices; by the one or more computing systems of the virtual-room networking system, encoding the captured content to be presented to the one or more client computing devices, wherein the encoding processes and converts the captured content in a format to be presented to the one or more computing devices; by the one or more computing systems of the virtual-room networking system, transmitting the encoded captured content to the one or more client computing systems.
US10652302B1 Fast loading and display of image previews
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for providing images in the form of tiny previews in messages of a message stream sent to user devices in an online social messaging platform.
US10652299B2 Controlling dynamic media transcoding
A number of approaches for transcoding media is described, which allow various users to control one or more aspects of transcoding (e.g. bit rate, resolution) when delivering media content to a client device from a network edge server or other location. The client device is provided with an interface that allows the user to increase or decrease the resolution, bit rate or other settings of the media content. Upon receiving a request from the user, the system transcodes the media content in accordance with the request and dynamically delivers the transcoded media content to the user's device. The system also enables content publishers and network operators to impose restrictions (e.g. minimum and maximum values for various settings) on user control.
US10652296B2 Method and apparatus to efficiently smooth adaptive content playback in HTTP live streaming
A system is provided that is designed to smooth and reduce the transition time of a live stream while switching to different bitrate transcode profiles. This accomplishment is achieved by avoiding pre buffer time using parallel transcode sessions and enabling a fast response to network congestion, as desired bitrate chunks/segments are readily available. The client, for example the HLS client, is not aware of switching the bitrate and is not taxed with any demands, as only the HLS server needs to manage synchronization of any pre-transcoded content and continue with further transcoding of the content.
US10652294B2 Anchors for live streams
A stream hosting server generates anchors associated with a live stream, each anchor specifying a timestamp of the live stream that represents an opportune moment for a user to join the live stream. When a viewer client device sends a request to join the live stream, the stream hosting server analyzes the anchor list and selects an appropriate anchor. The stream hosting server provides the live stream to the viewer client device beginning at the timestamp specified by the anchor. Thus, the viewer client device can begin displaying the live stream at the opportune moment specified by the anchor. The stream hosting server also creates video on demand content that include a completed live stream as well as anchors associated with the live stream. The viewer client device can display the VOD beginning at different anchors.
US10652293B2 Method to record and replay synchronized media streams, commands, and on-screen events transmitted through different internet pathways
Systems maintain synchronicity among elements intended to be displayed at various points during a live media stream. At a multimedia player, start playback of a live media stream. The systems receive input from a user selecting a new time of the media stream to playback, which is different than the current playback time of the media stream. The systems adjust playback of the media stream to restart at the new selected time, such that the current playback time of the output media stream is updated to the new selected time. The systems monitor the current playback time of the media stream as adjusted. The systems determine a user-initiated command to execute for displaying one or more visual elements at the multimedia player by polling a command manifest file based on the current playback time as adjusted.
US10652288B2 Computer-implemented method of performing a real-time collaboration session, collaborative platform for performing real-time collaboration sessions, and collaborative chat post object
A telecommunication device, apparatus, and a computer-implemented method of performing a real-time collaboration session with a plurality of participants can be configured so that a method can be performed. The method can include starting a chat application (e.g. a group chat application) for the participants of the real-time collaboration session; automatically creating, upon a first event being external or internal to the chat application, creating a collaborative chat post object (CCPO), for the session, authorizing the participants to edit the chat conversation content of the CCPO; and automatically sealing permanently the CCPO upon a second event being external or internal event to the chat application. For sealing the CCPO, the editable content of the CCPO can be converted into read-only content.
US10652286B1 Constraint based communication sessions
Described are systems, methods, and apparatus that enable constraint based communications between two or more devices. For example, a first user of a first device may submit a communication request to establish a communication session with a second user and provide a constraint for that communication session, such as a time-limit (e.g., limit the communication session to five minutes). In such an example, if the second user accepts the communication request with the constraint, a communication session is established and the system monitors the communication session to determine when a condition corresponding to the constraint has been satisfied. When the condition is satisfied, the communication session is terminated by the system.
US10652285B2 Instantaneous call sessions over a communications application
In one embodiment, a method includes sending an availability-notification a caller-user in response to an occurrence of a trigger event; establishing a call session to enable a media stream comprising media of the caller-user that is of a first type to be received by a callee-user; sending the media of the first media type to the callee-user; re-establishing the call session to enable a media stream comprising media of the callee-user that is of a second media type to be received by the caller-user; and sending the media of the second media type to the caller-user.
US10652284B2 Method and apparatus for session control support for field of view virtual reality streaming
A server for streaming content includes a communication interface and a processor. The communication interface is configured to communicate with a user equipment (UE). The processor is configured to determine whether the UE supports viewing direction feedback. When the UE supports viewing direction feedback, the processor generates a first portion of the content corresponding to a first field of view of the UE and transmits the first portion of the content to the UE.
US10652278B2 Compliance monitoring
Systems, methods, and related technologies for device compliance monitoring are described. In certain aspects, one or more compliance rules associated with a device classification are used to determine a compliance level of a device. The one or more compliance rules may be based on a standard. An action can be initiated based on the compliance level.
US10652274B2 Identifying and responding to security incidents based on preemptive forensics
A system is connected to a plurality of user devices coupled to an enterprise's network. The system continuously collects, stores, and analyzes forensic data related to the enterprise's network. Based on the analysis, the system is able to determine normal behavior of the network and portions thereof and thereby identify abnormal behaviors within the network. Upon identification of an abnormal behavior, the system determines whether the abnormal behavior relates to a security incident. Upon determining a security incident in any portion of the enterprise's network, the system extracts forensic data respective of the security incident and enables further assessment of the security incident as well as identification of the source of the security incident. The system provides real-time damage assessment respective of the security incident as well as the security incident's attributions.
US10652268B2 System and method for performing remote security assessment of firewalled computer
Methods and systems for scanning an endpoint terminal across an open computer network are disclosed. An exemplary method includes providing a scanner engine in a computer server in communication with an open computer network, and establishing a secure connection across the open computer network between the scanner engine and a scanner agent installed on the endpoint terminal in communication with the open computer network. Commands for collecting data regarding the endpoint terminal are sent from the scanner engine across the secure connection to the scanner agent. The scanner engine then receives the collected data from the scanner agent across the secure connection, analyzes the data to assess a current posture of the endpoint terminal, and determines any updates for the endpoint terminal from the analysis. Updates are sent across the secure connection to the scanner agent for installation on the endpoint terminal, and the secure connection may then be terminated.
US10652262B2 Data flow forwarding abnormality detection method and system, and controller
The present disclosure relates to a data flow forwarding abnormality detection method. In one example method, a switching device through which a to-be-detected data flow passes is determined by a controller. At least one flow entry in the switching device that matches the to-be-detected data flow is obtained. The at least one flow entry comprises actual traffic and a match field. The actual traffic is a value of a counter corresponding to the match field. An overdetermined equation set is established based on the actual traffic and theoretical traffic of a data flow in the switching device that matches the match field. Based on the overdetermined equation set, a determination is made on whether the at least one flow entry is abnormal.
US10652260B1 Detecting botnet domains
A method and an apparatus for detecting botnet domains is described. In one embodiment, the method includes monitoring network traffic associated with a plurality of clients in a network. Based on the monitoring, information related to a plurality of domains that are queried is stored. The method includes identifying one or more suspect clients in the network based on the stored information and determining a subset of suspect domains based on the stored information related to the domains queried by the suspect clients. The method can include determining client activity information and using the client activity information to determine a polytope region for a client. The method includes comparing each suspect domain to the polytope region and associating a domain with a group of blocked domains if the domain falls within the polytope region.
US10652257B1 Detection of anomalous computer behavior
A computer-implemented method for detecting anomalous behavior of one or more computers in a large group of computers comprises (1) receiving log files including a plurality of entries of data regarding connections between a plurality of computers belonging to an organization and a plurality of websites outside the organization, each entry being associated with the actions of one computer, (2) applying a first plurality of algorithms to determine features of the data which may contribute to anomalous behavior of the computers, and (3) applying a second plurality of algorithms to determine which computers are behaving anomalously based upon the features.
US10652256B2 Real-time active threat validation mechanism for vehicle computer systems
A vehicle system, comprising multiple electronic control units (ECUs) configured to manage operation of multiple vehicle components, a controller area network (CAN) bus that provides communication pathways between the multiple ECUs, and a threat validation module configured to receive a message from an electronic control unit (ECU) of the multiple ECUs, wherein the message comprises data of a suspicious message flagged by the ECU, generate a query to determine authenticity of the message, broadcast the query to at least one ECU of the multiple ECUs, listen for responses from the at least one ECU, and determine whether the suspicious message is an actual threat based at least on a count of received responses.
US10652253B2 Cable assembly having jacket channels for LEDs
A cable assembly may include an outer jacket, a printer circuit board including light emitting diodes, and a cable configured to transmit information. The outer jacket may include a channel opening and the printed circuit board may be configured to be positioned within the channel opening and between the cable and the outer jacket. Another cable assembly may include an inner jacket, an outer jacket, a printed circuit board including light emitting diodes, and a cable configured to transmit information. The inner jacket may include a channel opening, and the printer circuit board may be configured to be positioned within the channel opening and between the inner jacket and the outer jacket.
US10652252B2 Machine learning classification using Markov modeling
Systems, methods, and articles of manufacture, including computer program products, are provided for classification systems and methods using modeling. In some example embodiments, there is provided a system that includes at least one processor and at least one memory including program code which when executed by the at least one memory provides operations. The operations can include generating a representation of a sequence of sections of a file and/or determining, from a model including conditional probabilities, a probability for each transition between at least two sequential sections in the representation. The operations can further include classifying the file based on the probabilities for each transition.
US10652250B2 Systems and methods for connecting a public device to a private device using mirroring applications
Systems and methods for providing access to media content by connecting, to a public device, a private device that has installed a mirror-capable application associated with the media content. A media guidance application may receive a communication from a private device, with a private interface application and a public interface application, wherein the communication is a request to access content using the public device. In response, the media guidance application may request, at the public device, the public interface application from the private device. The private device may thus transmit the public interface application with user authorization information to the public device. The private interface application may be configured to mirror the graphical user interface of the public interface application. Accordingly, the user may be able to access content via the public device and mirror the content on the private device, when the private device is within a predetermined proximity to the public device.
US10652248B2 Systems and methods of managing data rights and selective data sharing
A method includes receiving an access request at a first computing device from a second computing device, the access request specifying a data structure, the data structure including first data stored in a first portion of the data structure and second data stored in a second portion of the data structure. The method also includes extracting a first key from the access request and identifying a data rights definition that is associated with the data structure and that is associated with a second key, the data rights definition indicating that the first data but not the second data is shared with an entity associated with the second computing device. The method further includes comparing the first key to the second key, and, based on the comparison, determining whether to grant the second computing device access to the first data but not the second data.
US10652247B2 System and method for user authorization in a virtual desktop access device using authentication and authorization subsystems of a virtual desktop environment
A virtual desktop system includes a directory service system and an access device. The directory service system include a group list, each group including a list of authorized users and an associated privilege level. The access device includes privilege logic to implement privilege levels, each privilege level being associated with one of the groups. The access device is only permitted to log on to the directory service to the exclusion of other functions of the access device until the access device receives an indication of a particular group from the directory service. The directory service receives a log on from a user of the access device, authenticates the user as being associated with the particular group, and sends the indication to the access device. The privilege logic enables the other functions of the access device in accordance with the privilege level associated with the particular group.
US10652244B2 Cross-site request forgery (CSRF) prevention
A computer program product for cross-site request forgery (CSRF) prevention is provided and includes a computer readable storage medium having program instructions embodied therewith. The program instructions are readable and executable by a processing circuit to cause the processing circuit to issue a server request for a certificate, which is associated with a user, responsive to a client request to visit a uniform resource indicator (URI) being received, validate the certificate upon receipt in fulfillment of the server request, compare a referrer listed in a header of the client request with a list of certificate elements in the certificate, authenticate the user in accordance with correlation between the referrer and at least one of the certificate elements and authorize the client request to visit the URI upon the user being authenticated.
US10652239B2 Block-chain enabled service provider system including permission data structure and state channel monitoring
A distributed ledger, e.g., blockchain, enabled operating environment includes a user device that accesses services of a service device by leveraging the decentralized blockchain. For example, a user device can lock/unlock a door (e.g., service device) by interfacing with a smart contract stored on the decentralized blockchain. The user device provides parameters, such as payment, that satisfies the variables of the smart contract such that the user device can access the service device. The service device regularly retrieves information stored in the smart contract on the decentralized blockchain. For example, the retrieved information can specify that the user device is authorized to access the service device or that the service device is to provide a service. Therefore, given the retrieved information, the service device provides the service to the user device.
US10652236B2 Electronic crowd-based authentication
Methods and systems for electronic crowd-based authentication. An example embodiment includes operations or steps for selecting authentication criteria with corresponding validity criteria through a key ring application, pairing the key ring application with authentication data, and transmitting the authentication data for verification by a security server, thereby allowing a trusted user to endorse an unregistered user to provide the unregistered user with access to a secured resource by the selecting of the authentication criteria, the pairing of the key ring application, and the transmitting of the authentication data for verification by the security server.
US10652230B2 Generation and distribution of secure or cryptographic material
A user having remote device wants to access an application that requires that the user possess a user application cryptographic credential. If the application needs to verify the identity of the user, the user's remote device performs a cryptographic operation using the user application cryptographic credentials, and sends the result to the application. A configuration for securely distributing the user application cryptographic credentials includes at least one gateway located at an enterprise that is under the control of an enterprise administrator, and a controller that is not located at the enterprise but can be configured by the enterprise administrator to cooperate with the at least one gateway.
US10652228B2 Resource transfer setup and verification
Systems and techniques are provided for a resource transfer setup and verification. A request for transfer conditions for a transfer of resources may be received from a first computing device. A set of transfer conditions may be generated in response to the request for transfer conditions and sent to the first computing device. The set of transfer conditions and an indication of an acceptance of the set of transfer conditions by a second computing device may be received from the first computing device. A transfer identifier for the set of transfer conditions may be generated from data from the set of transfer conditions which may specify a first sub-transfer. Transfer instructions may be sent to a third computing device, including instructions for a sub-transfer specified in the set of transfer conditions. The set of transfer conditions may be stored with the transfer identifier as a transfer record in non-volatile storage.
US10652223B1 Wireless peer to peer mobile wallet connections
Disclosed in some examples are devices, systems, and machine readable mediums for establishing peer to peer mobile wallet communications (P2PMW) over short range wireless communication networks. These P2PMW communications allow exchange of information between two wallet clients. Example communications include payments, providing identification, providing loans, and the like. The use of P2PMW communications opens up the prospect of anyone accepting payment from anybody else at any time. All that is needed is a computing device with a mobile wallet. Example short range wireless communications include Wireless LANs (WLAN) such as WIFI (e.g., communicating according to an Institute for Electrical and Electronics Engineers (IEEE) 802.11 family of standards), BLUETOOTH® or the like.
US10652221B2 Generating bridge match identifiers for linking identifers from server logs
Systems and methods of matching identifiers between multiple datasets are described herein. A system can transmit a first identifier vector to a third party server. The first identifier vector can include a first identifier, first parameters, and second parameters. The system can receive, from the third party server, the first identifier vector encrypted based on a third-party encryption. The system can receive, from the third party server, a second identifier vector encrypted based on the third-party encryption associated with the third party server. The second identifier vector can include a second identifier, third parameters, and fourth parameters. The system can determine a correlation count between the first identifier vector and the second identifier vector. The system can determine that the first identifier corresponds to the second identifier based on the correlation count. The system can generate one identifier key for both the first identifier and the second identifier.
US10652217B2 Method and system for rateless and pollution-attack-resilient network coding including decoder(s)
A decoder deployed in one or more terminals, includes a computer readable storage medium storing program instructions, and a processor executing the program instructions, the processor configured to receiving a noisy message and a noisy hash from the network, searching for a pair of matching candidates for the hash and message from two row spaces of noisy message vectors using a shared secret with an encoder, and outputting, by the decoder, a decoded message if the searching is successful.
US10652208B2 System and method for managing network connected devices
A system for managing network connected devices, comprising at least one hardware processor adapted to produce a plurality of unique device descriptors, each describing one of a plurality of network connected devices, by: for each of a plurality of device descriptors, each having a plurality of supported actions, and one or more domain device identifiers, each identifier associating the device descriptor with one of a plurality of management domains: for each of the plurality of management domains not associated with the device descriptor: instructing execution on a network connected device described by the device descriptor a domain identification query according to the descriptor's plurality of supported actions, to determine a new domain device identifier; identifying in the plurality of device descriptors a second device descriptor having a domain device identifier equal to the new domain device identifier; and merging the device descriptor with the second device descriptor.
US10652197B2 Systems and methods for directing messages based on social data
Systems, methods, and non-transitory computer-readable media can receive a request to send a message from a sender to a recipient. It can be determined that the sender and the recipient have at least a specified number of degrees of separation within a social network. The systems, methods, and non-transitory computer readable media can acquire social data about at least one of a set of groups joined by the sender and the recipient, a set of events attended by the sender and the recipient, a set of locations visited by the sender and the recipient, or a set of common interests shared by the sender and the recipient. It can be determined whether to deliver the message to a primary inbox of the recipient based on the social data.
US10652196B2 Relationship change alert
A first input is received. The first input is from a first user to one or more second users. The first input includes a text to be sent from the first user to the one or more second users. Whether the text includes a third user is determined. Responsive to determining the text includes the third user, whether a relationship change within a time interval between the one or more second users and the third user is determined. Responsive to determining that there was the relationship change between the one or more second users and the third user, the first user is notified of the relationship change.
US10652192B1 Method, system and computer readable medium for notification delivery
In a system, method and computer readable medium for managing message delivery, message delivery jobs are dynamically prioritized into a plurality of priority queues based on a delivery timeframe for each job. A delivery manager controls delivery of the message delivery jobs through a number of delivery channels and ports. A priority manager reviews jobs pending in the queues. If the priority manager determines that a message delivery job will not be completed within its delivery timeframe, the priority manager assigns a higher priority to the message delivery job.
US10652190B2 System and method for detecting geo-locations in social media
A method of determining locations for social media postings may include: retrieving, by communicating with at least one application programming interface (API) of a social media system over one or more first communication networks, at least one social media posting; determining at least one location mention in the at least one social media posting; determining at least one location based on the at least one location mention; determining a primary location from the at least one location; storing, in at least one database on a non-transitory machine-readable storage medium, at least one set of geo-coordinates for the primary location in at least one posting object for the at least one social media posting; and outputting, by communicating with a user system over one or more second communication networks, the at least one social media posting with the stored at least one set of geo-coordinates for display on the user system.
US10652184B1 System and method using blockchain ledger and zero knowledge proof for tokenized communications
A Tokenized Communication Service Provider (TCSP) for providing secure messaging between a consumer and a message sender without exposing the consumer communication preferences and Personally Identifiable Information (PII) to the message sender. TCSP issues a communication token to be used for the communication between the consumer and the message sender. Consumer authorization is recorded in a blockchain ledger and a Zero Knowledge Proof mechanism is used to establish that the TCSP possesses the consumer contact information and authorization. The consumer authorization is revocable by the consumer, and the revocation is recorded in the blockchain ledger.
US10652181B2 Roaming between various link service and messengers and alternative roaming for telephone connection
Systems and methods are provided for facilitating communication between two or more incompatible communication application. A first request is transmitted from a first communication application to open a communication channel with a conference server. The conference server includes a program for facilitating communication between incompatible communication applications. After receiving the first request transmitted by the first electronic device, the server establishing a communication channel with the first electronic device operating a first communication application and establishes a second communication channel with a second electronic device operating a second communication application. The conference server then facilitates communication between the first communication channel and the second communication channel, e.g., by converting communication signals sent through the first communication application into communication signals compatible with the second communication application and vice versa.
US10652179B2 Managing instant messaging sessions on multiple devices
Transferring instant messaging sessions includes receiving a selection, from a user within a user interlace, of at least one instant messaging session from among multiple instant messaging sessions to transfer from a first instant messaging controller on a first device to at 5 least a second instant messaging controller on a second device, where the user is signed on concurrently to the first instant messaging controller on the first device and the second instant messaging controller on the second device. At least a portion of the selected instant messaging session is transferred from the first instant messaging controller on the first device to the second instant messaging controller on the second device and the transferred portion of 10 the instant messaging session is made perceivable on the second instant messaging controller on the second device.
US10652177B2 Initiating multiple connections from multiple communication devices
Methods for establishing simultaneous connections on a plurality of communication devices associated with a user implemented on an instant messaging program by issuing ring tones, audible notifications, or visual indications to the plurality of communication devices and constructing a state diagram for sending the ring tones, the audible notifications, or the visual indications to the plurality of communication devices.
US10652174B2 Real-time message-based information generation
This disclosure relates generally to data processing, and more particularly, to methods and systems for real-time message-based information generation. In one embodiment, a system for real-time message-based information generation is provided. The system comprises one or more hardware processors, and a memory storing instructions executable by the one or more hardware processors that support multiple-thread processing for: receiving a plurality of input data files, each input data file comprising a plurality of records; extracting, from each input data file, the plurality of records on a record-by-record basis; transforming each extracted record from among the plurality of extracted records to comply with a messaging format; constructing a unique message for each transformed record according to the messaging format; and transferring, immediately upon construction, the message to a second system using an Application Programming Interface (API), wherein the message enables the second system to generate information based on a transformed record.
US10652172B2 Smart automatic composition of short messaging responses
An electronic communication device and method for communication including automatically selecting, composing, and/or presenting a number of proposed responses to a message is disclosed. The device can present the incoming message content to the user together with an alert to the user that one or more proposed responses are available for review and selection. The device can calculate a confidence metric for each proposed response. The user alert and/or presentation of the messages can be made to vary in intensity in accordance with the confidence metric of the one or more proposed responses. The presentation of the proposed responses can be alternated and/or combined with a method for the device to receive user input to the content of the proposed response. The user can edit a proposed response rather than composing a complete response.
US10652170B2 Modification of audio-based computer program output
Modifying computer program output in a voice or non-text input activated environment is provided. A system can receive audio signals detected by a microphone of a device. The system can parse the audio signal to identify a computer program to invoke. The computer program can identify a dialog data structure. The system can modify the identified dialog data structure to include a content item. The system can provide the modified dialog data structure to a computing device for presentation.
US10652168B2 Packet inspection to determine destination node
Techniques to inspect packets to determine a destination node are provided. In one aspect, a Wake on Lan (WOL) packet may be received at a switch. A destination node of the WOL packet may be determined. An indication of the determined destination node may be sent to a management controller. The management controller may cause the destination node to awaken.
US10652167B2 Packet switch device and message exchange system
A packet switch device for a message exchange among a plurality of computing devices, including a message transceiver transmitting and receiving a message, a transmission table storage unit storing a transmission table for determining a computing device to which the message is transmitted, a transmission processor determining the computing device to which the message is transmitted based on a topic address included in the message, a reference processing information receiver receiving a usage status that indicates information used in a calculation process in the computing device, a transmission table compatibility calculation unit calculating compatibility of the transmission table based on the received reference processing information, and a transmission table update unit that updates the transmission table based on the calculated compatibility.
US10652165B2 Merging multicast ABR and unicast ABR with progressive download ABR in a customer premises device within the same video delivery pipe
A method of managing bandwidth allocation across a video pipe that delivers both streaming adaptive bitrate (ABR) content and progressive download ABR content includes receiving a designation of a congestion boundary within a video pipe, the congestion boundary designating a first percentage of the video pipe that is to be used for streaming ABR content when congestion exists on both sides of the congestion boundary, wherein a remaining percentage of the video pipe is to be used for progressive download ABR; allocating bandwidth for streaming ABR content, wherein the gateway device can allocate for streaming content only that portion of the remaining percentage of bandwidth that is not requested for progressive download content; and allocating bandwidth for progressive download content, wherein the gateway device can allocate for progressive download content only that portion of the first percentage of bandwidth that is not requested for streaming content.
US10652162B2 Scalable packet processing
Particular embodiments described herein provide for an electronic device that includes at least one processor operating at eight hundred (800) megahertz and can be configured to receive a data stream, parse packets in the data stream, and process at least two (2) full packets from the data stream in a single clock cycle. In an example, the data stream is at least a two hundred (200) gigabit Ethernet data stream and a bus width is at least thirty-two (32) bytes.
US10652160B2 On-vehicle system, gateway, relay, non-transitory computer-readable medium storing program, information processing method, information processing system, and vehicle
In an on-vehicle system, on-vehicle device and gateway are connected via a first network, and the gateway and relay are connected via a second network. The relay performs open-close control of a gate, using a TAS standard of Ethernet TSN. The gateway receives first and second packets including given data, generates a third packet including the first and second packets, and sends the third packets at the transmission timing that is a timing the gate is placed in from closed state to open state to the relay. The relay receives the third packet from the gateway. The relay switches timing to transfer data, for each type of data, and transfer the third packet to the other relay, during a period in which the gate for the type of data is in an open state.
US10652157B2 Systems and methods of receiving informational content based on transmitted application information
An example of an information processing system includes an information processing terminal and a server configured to communicate with the information processing terminal. The information processing terminal starts an application in accordance with an instruction of a user and transmits identification information of the started application to the server. The server stores specifying information for specifying, from among a plurality of contents, a content or a group of contents as a target to be transmitted to the information processing terminal, in association with identification information of an application. The server receives identification information from the information processing terminal and selects, from the stored specifying information, specifying information associated with the identification information received from the information processing terminal. The information processing system registers a content or a group of contents specified by the selected specifying information, as a target to be transmitted to the information processing terminal.
US10652156B2 Method, apparatus and device for multicast and unicast communications of RTP packets
When a Real-Time Transport Protocol (RTP) packet receiving manner of a user equipment (UE) is switched between a unicast transmission manner and a multicast transmission manner, a group communication service application server (GCS AS) obtains a time difference between a time at which the UE receives a first RTP packet before the switching and a time at which the UE receives a second RTP packet after the switching. The GCS AS calculates a delay difference, according to the time difference, of RTP packet transmissions in different transmission manners, and adjusts, according to the delay difference, timing for RTP packet transmission in the unicast transmission manner.
US10652148B2 Distributed customer premises equipment
Techniques are disclosed for providing a distributed customer premises equipment (CPE) comprising several devices. The distributed CPE may include a control plane subsystem configured to execute on a first device, a first data plane subsystem configured to execute on a second device, and a second data plane subsystem configured to execute on a third device. The second device may be further configured to execute a first virtual machine capable of executing a first network function. The third device may be further configured to execute a second virtual machine capable of executing a second network function. In certain embodiments, the control plane subsystem may be configured to control forwarding functionality of the first data plane subsystem and the second data plane subsystem, and control the first network function and the second network function. In certain embodiments, the first device and the second device are customer premises equipment (CPE) devices.
US10652147B2 Packet coalescing
In general, in one aspect, the disclosures describes a method that includes receiving multiple ingress Internet Protocol packets, each of the multiple ingress Internet Protocol packets having an Internet Protocol header and a Transmission Control Protocol segment having a Transmission Control Protocol header and a Transmission Control Protocol payload, where the multiple packets belonging to a same Transmission Control Protocol/Internet Protocol flow. The method also includes preparing an Internet Protocol packet having a single Internet Protocol header and a single Transmission Control Protocol segment having a single Transmission Control Protocol header and a single payload formed by a combination of the Transmission Control Protocol segment payloads of the multiple Internet Protocol packets. The method further includes generating a signal that causes receive processing of the Internet Protocol packet.
US10652143B2 Route server mode for dynamic routing between logical and physical networks
Some embodiments provide a method for configuring a logical router that interfaces with an external network. The method receives a configuration for a logical network that includes a logical router with several interfaces that connect to at least one physical router external to the logical network. The method selects a separate host machine to host a centralized routing component for each of the interfaces. The method selects a particular one of the host machines for operating a dynamic routing protocol control plane that receives routing protocol data from each of the centralized routing components and updates routing tables of each of the centralized routing components.
US10652140B2 System and a method for controlling management processes directed to a link aggregation group
A transmission control system for controlling management processes, such as shaping, is presented. The management processes are directed to data streams that are parts of data traffic transmitted via a link aggregation group having egress ports in separate functional entities of a network element. For each data frame of the data traffic, it is detected whether the data frame belongs to any of the data streams. Data frames belonging to none of the data streams are forwarded so that these data frames are distributed between the functional entities according to a link aggregation rule. A management rule is maintained for indicating, for each of the data streams, a stream-specific functional entity that runs each management process directed to the data stream. Each data frame belonging to one of the data streams is forwarded to the appropriate stream-specific functional entity in accordance with the management rule.
US10652138B2 Link decision-making method and decision-making device
This application discloses a link decision-making method, applied to a link decision-making system including first and second user equipment that are in a Voice over Internet Protocol (VoIP) call status, a transit server, and a decision-making computing device. A first link directly connecting the two user equipment and a second link that transits by using the transit server exist between the two user equipment. The decision-making computing device is responsible for making, according to a link quality score of a current sending link between the first and second user equipment, a decision about using the first link or the second link as a subsequent sending link of the first user equipment. According to the link decision-making method provided in this application, it can be ensured that a better link can be selected to transmit a data stream of VoIP, thereby improving the quality of service (QoS) of the VoIP.
US10652130B2 Handling of intermittent disconnection in a millimeter wave (mmW) system
Apparatus and methods are provided to handle the intermittent disconnections in an mmW system. In one novel aspect, the beam tracking failure is determined upon detection of one or more tracking failure conditions. In one embodiment, the UE further considers potential recoveries to avoid frequent triggering of the beam-tracking failure condition. In another novel aspect, the UE performs one or more recovery procedures based on one or more recovery conditions. In one embodiment, the UE performs the initial alignment procedure to recover the connection. In another embodiment, the UE performs the beam-switching request procedure before triggers the initial alignment procedure. In one embodiment, timers are used to supervise the recovery procedures. In another embodiment, macro-assisted procedures are used for the beam-switching request procedure. In yet another novel aspect, the UE performs reestablishment of a new connection at the upper layer upon receiving the beam-tracking failure indicator.
US10652125B2 System and method for managing multiple remote-office and branch-office (ROBO) sites
System and method for managing multiple Remote-office and Branch-office (ROBO) sites use a central management computer to monitor operation statuses of host computers within the multiple ROBO sites and in response to a communication disruption in a particular ROBO site of the multiple ROBO sites, determining a cause of the communication disruption based on the operation statuses of the host computers within the particular ROBO site.
US10652124B2 Network speed detection
Disclosed are various examples for facilitating network speed testing on behalf of a client device that is associated with an enterprise. In a client device that can be a managed device managed by a management service, a network testing profile can be obtained which specifies a testing schedule as well as a network testing endpoint with which network testing can be conducted. Results of the network speed test can be transmitted to the management service, which can determine if the network speed implicates a compliance rule associated with the client device or an enterprise with which the client device is associated.
US10652123B2 Throughput measuring apparatus, method, and recording medium
In order to enable to measure a throughput with high accuracy in an application layer, a throughput measuring method according to an exemplary aspect of the invention includes: transmitting data to a receiving device, receiving a feedback indicating a receiving completion of the data, from the receiving device, calculating a boundary value of a range of values allowable for a throughput, based on the feedback and a transmitted data amount of the data, measuring a theoretical value of the throughput, and outputting the boundary value when the theoretical value falls outside the range, and outputting the theoretical value when the theoretical value falls within the range.
US10652116B2 Device classification
Systems, methods, and related technologies for device classification are described. In certain aspects, traffic data associated with a device and data from an external system can be accessed. The data can be processed to determine a device classification for the device. An action can be initiated based on the classification.
US10652112B2 Network traffic pre-classification within VM platforms in virtual processing environments
Methods and systems are disclosed that pre-classify network traffic monitored within virtual machine (VM) platforms. Client packet monitor applications operate within client VM platforms to monitor network packets, generate monitored packets representing traffic of interest, determine packet classifications for the monitored packets based upon packet contents, identify tags associated with the packet classifications, encapsulate monitored packets with encapsulation headers including the tags to form encapsulated packets, and forward the encapsulated packets to tool VM platforms. Tool packet monitor applications operate within the tool VM platforms to receive the encapsulated packets, identify packet classifications associated with the tags, remove the encapsulation headers from the encapsulated packets, and forward de-encapsulated packets to network destinations based upon the packet classifications. The tool packet monitor applications can also aggregate de-encapsulated packets having the same packet classification prior to forwarding the aggregated packets to one or more network destinations.
US10652107B2 Accessing gateway management console
Technical solutions are described for accessing a management console of a gateway device in an internet of things (IoT) system. An example method includes receiving wirelessly, by an administrative device, access information for the management console of the gateway device. The method further includes receiving, by the administrative device, from a gateway resolver device, an address for the gateway device in response to sending the access information to the gateway resolver device. The method further includes accessing, by the administrative device, the management console of the gateway device using the address. The method further includes adjusting, by the administrative device, one or more settings of the gateway device using the IoT system.
US10652105B2 Display apparatus and controlling method thereof
A display apparatus is provided. The display apparatus includes a display configured to display at least one of a first Graphic User Interface (GUI) representing a domain which provides an execution screen according to a depth, a user interface configured to receive a user command, and a controller configured to, when one of the at least one of the first GUI is selected according to the user command, display at least one of a second GUI representing a sub domain which is available in a domain represented by the selected first GUI, and when one of the at least one of the second GUI is selected, provide an execution screen corresponding to the sub domain based on sub domain information which is mapped with the selected second GUI.
US10652104B1 System for inferring network dynamics and sources within the network
Described is a system for inferring network dynamics and their sources within the network. During operation, a vector representation is generated based on states of agents in a network. The vector representation including attribute vectors that correspond to the states of the agents in the network. A matrix representation is then generated based on the changing states of agents by packing the attribute vectors at each time step into an attribute matrix. Time-evolving states of the agents are learned using dictionary learning. Influential source agents in the network are then identified by performing dimensionality reduction on the attribute matrix. Finally, in some aspects, an action is executed based on the identity of the influential source agents. For example, marketing material may be directed to a source agent's online account, or the source agent's online account can be deactivated or terminated or some other desired action can be taken.
US10652100B2 Computer system and method for dynamically adapting a software-defined network
Computer system and method for dynamically adapting a software-defined network A computer system for dynamically adapting a software-defined network is suggested. The computer system comprises a plurality of virtual domains, each virtual domain comprising a network controller to which a back-up network controller is assigned, wherein the network controller is adapted to manage a plurality of switches being assigned to the virtual domain, wherein the software-defined network is partitioned into the plurality of virtual domains, and a root controller, wherein the root controller is adapted to manage the software-defined network by dynamically adding and/or removing virtual domains based on a threshold of the software-defined network, wherein a back-up root controller is assigned to the root controller. Further, a method for dynamically adapting a software-defined network is suggested. The suggested computer system provides the advantage of a dynamical adaptation of the software-defined network and at the same time, due to the back-up controllers, an improved fault-tolerance.
US10652099B2 Site asymmetric topology reconciliation in a computer cluster
A site asymmetric topology reconciliation module (SATRM) provides a stable topology for nodes located at different sites of the cluster during loss and reconnection of communication links between the sites. The SATRM monitors the cluster topology for changes in communication links between nodes. When there is an unstable cluster topology due to a loss in the communication links, the SATRM severs links to one or more sites to create a stable topology. When a communication links recovers, the SATRM merges sites to create a stable topology with the sites connected with the recovered communication links.
US10652092B2 Methods and systems that collect and manage latency data in an automated resource-exchange system
The current document is directed a resource-exchange system that facilitates resource exchange and sharing among computing facilities. The currently disclosed methods and systems employ efficient, distributed-search-based auction methods and subsystems within distributed computer systems that include large numbers of geographically distributed data centers to locate resource-provider computing facilities that match the resource needs of resource-consumer computing facilities. In one implementation, the resource-exchange system continuously collects communications-latency data for pairs of resource-exchange participants, in order to support latency constraints associated with potential resource exchanges. The collected data facilitates efficient, rapid, automated candidate-resource-provider selection during auction-based matching of resource consumers to resource providers.
US10652091B2 Device migration
Personalization data such as settings and/or state is migrated across devices including mobile phones. Device personalizations are pushed to a cloud service or other mechanism for backup and subsequent transmission to other devices. The personalization data can later be employed to configure one or more other devices in the same manner as a first device.
US10652090B2 Method for self-constructing a multi-hop structured wireless communication network
Provided is a method for self-constructing a multi-hop cluster-tree structured wireless communication network performed by a terminal device attempts to join a network includes determining at least one parent candidate device, requesting the determined parent candidate devices a network joining, joining the network as a child device based on a decision whether the requested parent candidate device has an address space available for a main transmission link of the terminal device, determining at least one cluster head as reserved parent candidate devices, requesting the determined reserved parent candidate devices a network joining, joining the network as a reserved child device based on a decision whether the requested reserved parent candidate device has an address space available for a reserved transmission link of the terminal device, and constructing a new main transmission link when the terminal device determines that the main transmission link is in an abnormal condition.
US10652083B1 System and method for a self service portal and automation for internally hosted virtual server resources
A computer-implemented method for provisioning computer code in a cloud computing system is implemented. A computer code file may be received at a server from a first additional computer device. A metabase of metadata may be built by a second additional computer device in response to the first additional computer device uploading the computer code file to the server. The metadata may be based upon the computer code file and may describe one or more dependencies of the computer code file. One or more provisioning conditions may be received at the second additional computer device. Based upon the provisioning conditions and the metadata, in response to the first additional computer device executing instructions to initiate provisioning of the computer code file, the computer code file may be sent to a plurality of cloud computing system nodes so as to provision the computer code in the cloud computing system.
US10652070B2 Synchronization signal sending method and receiving method, and apparatus
This application provides a synchronization signal sending method and receiving method, and an apparatus. In the method, a base station determines a frequency domain position of a target frequency resource based on a frequency interval of synchronization channels, wherein the frequency interval of synchronization channels is 2m times a predefined frequency resource of a physical resource block, and m is a preset nonnegative integer. The base station sends a synchronization signal by using the target frequency resource.
US10652069B2 Resource element group mapping for a downlink control channel
Methods, systems, and devices for wireless communications are described. A transmitting node, such as a base station, may transmit downlink control information (DCI) to a user equipment (UE) using a number of shortened control channel elements (sCCEs). Each sCCE may consist of a number of shortened resource element groups (sREGs). The base station may map each sCCE to one or more sREGs using a mapping function to ensure that each sCCE is mapped to a unique set of sREGs (e.g., no single sREG is allocated to more than one sCCE). Use of the mapping function may further ensure that each sREG mapped to an sCCE is within a single symbol. The transmitting node may also configure a set of resource blocks (RBs) corresponding to the sREGs such that the number of RBs per symbol is an integer multiple of the number of sREGs per sCCE.
US10652068B2 Synchronization signal detection
Detection of Narrow-Band IOT (NB-IOT) Synchronization signal and Cyclic Prefix length determination at UE. The detection method implements symbol level correlation, comprising: filtering the radio signal with a plurality of matched filters to obtain a correlation for each OFDM symbol in the synchronization signal, wherein each matched filter provides a correlation with one OFDM symbol in the synchronization signal; delaying and combining the outputs of the plurality of matched filters in a first way to provide a first combined output for the normal cyclic prefix configuration and delaying and combining the outputs of the plurality of matched filters in a second way to provide a second combined output for the extended cyclic prefix configuration; and detecting a correlation peak indicative of the synchronization signal in one of the first or second combined outputs. The present disclosure also relates to a user equipment including the apparatus.
US10652067B2 Orthogonal differential vector signaling codes with embedded clock
Orthogonal differential vector signaling codes are described which support encoded sub-channels allowing transport of distinct but temporally aligned data and clocking signals over the same transport medium. Embodiments providing enhanced LPDDR interfaces are described which are suitable for implementation in both conventional high-speed CMOS and DRAM integrated circuit processes.
US10652066B2 Device, method, and program for identifying a preferred codebook for non-orthogonal multiplexing/non-orthogonal multiple access
To enable a base station to select a more preferable codebook, a device includes a communication unit configured to perform radio communication and a control unit configured to perform control such that information regarding a codebook for multi-dimensionally modulating input data into a codeword is transmitted from the communication unit to a base station.
US10652065B2 Systems and methods for compression distortion compensation for wireless signals
Systems, methods, and devices are provided for correcting compression distortion of wireless signals due to variations in operation parameters of the radio frequency system. The method may include using circuitry to generate a reference signal that is not pre-distorted by a processing block. The method may involve receiving an envelope signal representative of a signal being transmitted by a transceiver. The method may also involve determining a first peak-to-average ratio of the envelope signal and receiving a second peak-to-average ratio of the reference signal. The method may additionally involve determining a difference between the first peak-to-average ratio and the second peak-to-average ratio. The method may also include adjusting a gain of an amplifier of the transceiver based on the difference.
US10652061B2 Method and apparatus of transmitting information in wireless communication system
A method and an apparatus of transmitting information in a wireless communication system are provided. The method includes transmitting information based on a first resource index through a first antennae and transmitting the information based on a second resource index through a second antennae.
US10652055B2 Interference mitigation
Symbols are received on a downstream channel. A value of a channel synchronization parameter is determined based on the received symbols. An interference event on the downstream channel is detected. In response to detecting the interference event: an output signal is determined based on at least one cached value of the channel synchronization parameter, the at least one cached value being determined based on symbols received prior to and offset from the detecting of the interference event.
US10652048B2 3-D MIMO communication system, radio base station, and user equipment
A user equipment is disclosed that includes a receiver configured to receive candidates of phase rotation in a horizontal direction and candidates of phase rotation in a vertical direction for precoding. The user equipment also has a processor configured to report feedback information including a phase rotation in the horizontal direction and a phase rotation in the vertical direction to a radio base station based upon the candidates of the phase rotation in a horizontal direction and the candidates of phase rotation in a vertical direction. Additionally, the candidates of phase rotation in the horizontal direction or the candidates of phase rotation in the vertical direction are a part of predetermined candidates, the part being selected from the predetermined candidates according to a predetermined method.
US10652046B1 Infrastructure support in cloud environments
Techniques are disclosed for implementing networks in a virtualized computing environment. One or more spoke virtual networks are instantiated and connected to a first virtual network hub to form a first hub and spoke topology. One or more spoke virtual networks are instantiated and connected to a second hub virtual network to form a second hub and spoke topology. A virtual connection is established from the first virtual network hub to the second hub virtual network. The first and second hub and spoke networks are allocated to a user of the virtualized computing environment.
US10652043B2 Communication regulation in computing systems
Systems and methods for regulating communications in computing systems are provided. For instance, a computing system can include a first processing board including a first processing device and a first control device. The system can further include a second processing board including a second processing device and a second control device. The system can further include a communications interface communicatively coupled to the first processing board. The communications interface includes one or more input/output ports configured to facilitate communication between the avionics system and one or more external devices. The first control device of the first processing board is communicatively coupled to the second control device of the second processing board via a shared bus. The first control device is configured to regulate communications associated with the communications interface.
US10652040B2 Common social interface for system controls
Methods, systems, and computer program products for interfacing system controls are provided. Aspects include receiving, by a processor, object data for a plurality of objects. An object profile is generated for each of the plurality of objects based at least in part on the object data and one or more communication platforms are accessed. The object profiles for each of the plurality of objects are registered with the one or more communication platforms.
US10652030B1 Digital certificate filtering based on intrinsic and derived attributes
A method and system for generating multiple profiles corresponding to different digital certificates. The profile includes intrinsic attributes and derived attributes associated with a digital certificate. The system enables a customer system to filter digital certificates based on a suitability of the various digital certificates for use with a given application to be executed by or on behalf of the customer system. The suitability may be determined based on a comparison of certificate requirements associated with a customer system's request and one or more of the intrinsic attributes and derived attributes.
US10652028B2 Systems and methods for secure detokenization
A method for requesting a credential associated with token in a multiple token layer environment is disclosed. A tokenization certificate serves to validate the identity of a credential requestor and provide information about the requestor's authorization for de-tokenizing a token. Also, a public key in the tokenization certificate is used to encrypt the credential for secure transmission to the requestor.
US10652025B2 Secure snapshot management for data storage devices
A data storage device is provided. The data storage device includes a storage medium having a first subset configured to store user data and a second subset configured to store snapshot data. The data storage device further includes a controller configured to (i) receive, from a host operably coupled to the data storage device, a command to configure the second subset, to (ii) verify an authenticity of the command, and to (iii) execute the command in response to the verification of the authenticity of the command.
US10652024B2 Digital signature systems and methods for network path trace
Digital signature systems and methods to represent network path trace information in a packet, implemented by a network element in a network include updating a digital signature based on a unique identifier of the network element, wherein the digital signature is carried in-band with the packet; and transmitting the packet by the network element with the updated digital signature, wherein the digital signature represents the network path trace information of the packet up to the network element. The digital signature is a key carried in-band with the packet, and the updating can include performing an exclusive OR function with a current key and a Cyclic Redundancy Check (CRC) of a bit field with the unique identifier included therein to derive a new key which is inserted as the digital signature in the packet.
US10652022B1 Secure digital information infrastructure
An authentication and encryption computer system is disclosed including processing devices, a network interface, and a data store. The authentication and encryption system is configured to maintain in the data store content common to a plurality of entities and content independently specified by each of the plurality of entities. The system is configured to receive a content request from an application executing on a mobile device, the content request comprising a secure access code corresponding to an entity, and the content request encrypted by the mobile device. An interface, comprising the content common to the plurality of entities, is customized to include content independently specified by the entity, wherein the content independently specified by the entity comprises a token value. A user request for an item presented via the interface is received and the token value is transferred to the entity.
US10652019B1 Atomic swap using zero-knowledge proofs, and applications thereof
Disclosed herein are system, method, and computer program product embodiments for performing transactions or atomic swaps using zero-knowledge proofs (“ZKPs”). A first system may propose a transaction between with a second system. The first system may generate a first ZKP indicating that the first system has possession of an asset desired by the second system and that the first system is committing the asset to the transaction. The second system may also similarly generate a second ZKP. These ZKPs may be encrypted and exchanged. The second system may receive an encrypted version of the first ZKP, perform a decryption using a key specific to the second system, and verify the ZKP. When the parties verify the ZKPs, this confirms that each party has committed the requested asset and that the transaction may proceed. The transaction may be committed to a blockchain.
US10652013B2 Reconfigurable free-space quantum communication system
A system, and methods, for transmitting quantum states between a first node and a second node, or among more than two nodes. Each node is characterized by an instantaneous spatial position, and the instantaneous spatial position of the second node is repositionable within a frame of reference associated with the first node. A hovering drone is adapted either for running a quantum key transmission protocol in secure communication with the first node, and/or for running a quantum key reception protocol in secure communication with the second node. Either drone may serve as a relay of optical data between a base station and another drone. Secure communication among more than two nodes may be reconfigured.
US10652009B2 Logic circuit for codeword synchronization for fiber channel protocol
Efficient codeword synchronization methods and systems for fiber channel protocol are disclosed. The method includes identifying a codeword boundary by detecting 100-bit known patterns in a bit codeword in a transmission.
US10652001B2 Method and apparatus for reducing inter-cell interference in radio communication system
A method of a first cell for supporting a downlink channel demodulation at a user equipment, includes receiving, from a second cell, Multicast/Broadcast over Single Frequency Network (MBSFN) subframe configuration information for the second cell; and transmitting, by the first cell to the user equipment via a higher layer signaling, information on a Cell-specific Reference Signal (CRS) of the second cell including the MBSFN subframe configuration information of the second cell, wherein the information on the CRS of the second cell is used by the user equipment to mitigate the inter-cell interference from the CRS of the second cell.
US10652000B2 Multiuser transreceiving method in wireless communication system and device for same
A method for transmitting data from a station (STA) device in a wireless LAN (WLAN) system, according to one embodiment of the present invention, comprises the steps of: generating a physical protocol data unit (PPDU) including a physical preamble and a data field; and transmitting the PPDU, wherein when the data field is transmitted by using a 106-tone resource unit including first to fourth pilot tones, the positions of the first to the fourth pilot tones may be identical to the positions of four pilot tones from among eight pilot tones included in four 26-tone resource units, which are present at a position corresponding to the 106-tone resource unit, or identical to the positions of four pilot tones from among eight pilot tones included in two 52-tone resource units, which are present at a position corresponding to the 106-tone resource unit.
US10651998B2 Systems and methods for resource-specific reference signal configuration
Networks use channel state information reference signals (CSI-RSs) to measure channel conditions between a user equipment (UE) and a transmit/receive point (TRP) in a cell. The resources configured for the transmission of a CSI-RS may be indicated to the UE using higher layer signaling. Measurement results for a CSI-RS are transmitted by the UE in the form of a measurement report. A need exists for signaling designs that aim to provide more flexible and efficient signaling of CSI-RS resource configurations and measurement reports. In some embodiments, CSI-RS resource configurations and measurement reports are resource-specific. The CSI-RS resource configurations may be independent from an identifier of the cell that the CSI-RS is transmitted from, and the measurement reports do not necessarily include the identifier of the cell. Advantages may include allowing the network to freely allocate CSI-RS resources without the need for reconfiguration at the UE side.
US10651997B2 Pilot signal configuration method and device
The present disclosure provides in some embodiments pilot signal configuration methods and pilot signal configuration devices. The pilot signal configuration method includes steps of: determining configuration information about a pilot signal to be transmitted within a special downlink subframe for a UE; and transmitting the configuration information to the UE. According to some embodiments of the present disclosure, it is able to achieve the configuration of the pilot signal to be transmitted within the special downlink subframe.
US10651994B2 Mobile station and reception method
Provided is a radio communication device which can separate propagation paths of antenna ports and improve a channel estimation accuracy even when using virtual antennas. The device includes: a mapping unit which maps a data signal after modulation to a virtual antenna and a virtual antenna; a phase inversion unit which inverts the phase of S0 transmitted from an antenna port in synchronization with a phase inversion unit between the odd-number slot and the even-number slot; the phase inversion unit which inverts the phase of R0 transmitted from the antenna port; a phase inversion unit which inverts the phase of S1 transmitted from an antenna port in synchronization with a phase inversion unit; and the phase inversion unit which inverts the phase of R1 transmitted from an antenna port.
US10651992B2 Wireless communication method and wireless communication terminal for coexistence with legacy wireless communication terminal
A wireless communication terminal for wireless communication is disclosed. The wireless communication terminal includes: a transceiver; and a processor. The processor is configured to transmit a non-legacy physical layer frame including a legacy signaling field including information decodable by a legacy wireless communication terminal by using the transceiver.
US10651989B2 Method and apparatus for transmitting and receiving reference signal in communication system
Disclosed is a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system such as LTE. A method for receiving a reference signal, according to the present disclosure, comprises the steps of: receiving configuration information on a reference signal; determining whether the aperiodic transmission of the reference signal is instructed on the basis of the configuration information; receiving a signal for requesting a measurement of the reference signal; measuring the reference signal on the basis of the configuration information when the received reference signal measurement request is aperiodic; generating channel state information on the basis of the measured result of the reference signal; and transmitting the channel state information.
US10651988B2 Method and device for selecting multiple users and allocating resources for non-orthogonal multiple access in wireless communication system
The present application provides a method for allocating resources in a wireless communication system using multiple antennas. The method for allocating resources comprising: transmitting a reference signal to first-type terminals based on type information of a plurality of terminals; receiving channel estimation information from the first-type terminals that have received the reference signal; generating beams based on the received channel estimation information; and allocating resources for the generated beams. First-type beams for the first-type terminals are primarily generated and allocated, and on the basis of the generated first-type beams, second-type beams for second-type terminals may be non-orthogonally generated and allocated when the resources for the beams are allocated.
US10651986B2 Wireless communication device and method for controlling antenna array
A method for controlling an antenna array is provided, which includes following steps. Associations with a plurality of mobile devices are established, and at least one characteristic parameter table corresponding to the mobile devices is generated. When a plurality of transmission request signals are received simultaneously and the mobile devices are divided into a user group, a multi-user antenna index of the antenna array is generated based on the at least one characteristic parameter table, and a plurality of data streams corresponding to the mobile devices are transmitted simultaneously through the antenna array. When the transmission request signals are received simultaneously and the mobile devices are not divided into the user group, a single-user antenna index of the antenna array is generated based on the at least one characteristic parameter table, and the data streams corresponding to the mobile devices are transmitted one-by-one through the antenna array.
US10651984B2 Method for controlling access to an in-vehicle wireless network
Disclosed is a technique for managing access by a portable device to an in-vehicle router system (IVRS). The IVRS determines network access privilege of the portable device located within the vehicle. The portable device determines whether it is connected to a wireless access point (AP) of the IVRS or a rogue network. The portable device transmits a first token to the wireless AP, via a first communication link implementing a first protocol stack, to prompt the wireless AP to reply with a second token. The portable device receives the second token via a second communication link implementing a second protocol stack different than the first protocol stack between the portable device and the IVRS. The portable device determines whether the second token matches the first token. If the second token is determined to match the first token, the portable device authenticates the wireless AP.
US10651980B2 HARQ systems and methods for grant-free uplink transmissions
Systems and methods are disclosed for performing hybrid automatic repeat request (HARQ) for grant-free uplink transmissions. Some of the systems and methods disclosed herein may address problems such as how to perform acknowledgement (ACK) and/or negative acknowledgement (NACK), how to determine and signal retransmission timing, how to determine the transmission/retransmission attempt and the redundancy version (RV), and/or how to perform the HARQ combining.
US10651978B2 Apparatus, system and method of communicating a single carrier (SC) transmission
Some demonstrative embodiments include apparatus, system and method of communicating a Single Carrier (SC) transmission. For example, an apparatus of a SC Physical Layer (PHY) transmitter may include a spatial stream parser to distribute encoded bits of a Physical Layer Convergence Procedure (PLCP) Service Data Unit (PSDU) to a plurality of spatial streams; a plurality of constellation mappers to map encoded bits of the plurality of spatial streams into a respective plurality of streams of constellation symbols according to a constellation scheme; a Space Time Block Code (STBC) encoder to encode the plurality of streams of constellation symbols into SC symbol blocks over a plurality of space-time streams; and a transmit beamforming module to map the plurality of space-time streams to a plurality of transmit chains.
US10651977B2 Detecting format of data
A method for detecting a format of data in a wireless local area network and a device using the same are provided. The device receives a physical layer protocol data unit (PPDU) that includes a first field and a second field. The device determines a first format of the PPDU based on at least one of the first field and the second field and determines a second format of the PPDU based on a modulation phase of the PPDU.
US10651975B2 Forwarding data amongst cooperative DSTN processing units of a massive data ingestion system
A method begins with receiving data objects. As the data objects are received, the method continues by assigning a data type identifier to each data object based on the data object being a data type. The method continues with sending data objects having a first data type identifier to a first group of computing devices and sending data objects having a second data type identifier to a second group. The method continues with interpreting, by the first group, the data objects having the first data type identifier to sort, based on sorting criteria the data objects into a first processing category and a second processing category. The method continues with dispersed storage error encoding the data objects in the second processing category based on short term storage error encoding parameters to produce pluralities of sets of encoded data slices and sending the slices to storage and execution units.
US10651974B2 Method and apparatus for updating error detection information in packets
A network device receives a packet having i) a first field that is to be updated by the network device, and ii) a second field that includes current error detection information corresponding to content of the packet, the content including the first field. The network device determines an update value that is to be added to a current value of the first field to generate a new value of the first field. The network device generates new error detection information using the current error detection information and the update value, and without using the current value of the first field. The network device modifies the second field to include the new error detection information, and modifies the first field to include the new value.
US10651971B2 Mobile communication device, network node and communication system for coordinated multipoint transmission comprising self-containment information of a channel-dependent attribute
The present invention provides a mobile communication device including a sending and receiving unit, wherein the sending and receiving unit is adapted for the transmission of a signal pattern over a communication channel, wherein the signal pattern includes at least two logical data units, wherein the signal pattern includes information of information to be transmitted, wherein in a first logical data unit absolute information of information to be transmitted is provided, wherein in at least one second logical data unit relative information of information to be transmitted is provided, wherein the relative information of information to be transmitted is depending at least in part on the absolute information of information to be transmitted and/or a preceding relative information of information to be transmitted, wherein the at least one second logical data unit further includes self-containment information of information to be transmitted.
US10651967B1 Communication using multiple modulation coding schemes based on difference in time from demodulation reference signal communication
Aspects of the present disclosure provide a method performed at a user equipment (UE) that includes determining a first suggested modulation coding scheme (MCS) and a second suggested MCS for one or more first time periods and one or more second time periods, respectively, based on first/second time differences between the one or more first time periods/second time periods and one or more time periods allocated for a demodulation reference signal (DMRS). The method further includes receiving, from the BS, an indication of a first MCS and a second MCS determined by the BS based on the first suggested MCS and the second suggested MCS. The method further includes receiving, from the BS, data in the one or more first time periods using the first MCS and data in the one or more second time periods using the second MCS.
US10651965B2 Wireless serial links for communications between devices formed in a package
In various embodiments, a memory module houses memory devices and, in some embodiments, a memory controller. Each of the devices has a near-field interface coupled to loop antennas to communicate over-the-air data. A coil is formed on, for example, a memory device substrate or molded into a plastic mold to create near-field magnetic coupling between the stacked memory devices and, in certain embodiments, the memory controller. Other embodiments are disclosed.
US10651959B2 Mobile station and reception quality measurement method
Received Signal Strength Indicator (RSSI) is measured accurately even in a case where a discovery signal is transmitted. A receiver receives a plurality of subframes, at least one of which includes a discovery signal, and a measurer measures Reference Signal Reception Power (RSRP) using a first resource in which the discovery signal is mapped, measures RSSI using a second resource different from the first resource for which the discovery signal is mapped, and calculates Reference Signal Reception Quality (RSRQ) using RSRP and RSSI.
US10651957B2 Proximity detection using a hybrid transceiver
An apparatus is disclosed for proximity detection using a hybrid-transceiver. In an example aspect, the apparatus includes a hybrid transceiver coupled to a first antenna and a second antenna. The hybrid transceiver is configured to generate, in a digital domain, a digital baseband radar signal. The hybrid transceiver is also configured to transmit, via the first antenna, a radio-frequency transmit signal that is derived from the digital baseband radar signal. Via the second antenna, the hybrid transceiver is configured to receive a radio-frequency receive signal, which includes a portion of the radio-frequency transmit signal that is reflected by an object. In an analog domain, the hybrid transceiver is configured to generate an analog receive signal that includes a beat frequency, which is indicative of a frequency offset between the radio-frequency transmit signal and the radio-frequency receive signal. The analog receive signal is derived from the radio-frequency receive signal.
US10651956B2 Portable directional antenna, measurement arrangement and measurement method
The present invention relates to a portable directional antenna which is equipped with a camera which is integrated into the housing of the directional antenna. In addition to the conventional documentation of the position-finding information, this integrated, installed camera makes it possible, by means of the directional antenna function, to also optically document the surroundings of the interference source with a variable level of detail, for example by way long-range or short-range capture. By way of the optical additional information thus obtained, the present invention provides a simple, but nonetheless very effective, enhanced documentation option for interference sources and the surroundings thereof. Thus, during the search for radio-frequency interferences, no separate camera for capturing image information has to be brought along, and this increases the comfort for a user. The present invention further relates to a portable measurement arrangement and to a method for measuring an electromagnetic signal emitted by a source.
US10651955B2 Active sequential xampling receiver for spectrum sensing
An active sequential xampling receiver for spectrum sensing is disclosed. The receiver includes a dynamically adjustable analog front end to perform sub-Nyquist energy sensing across a broad radio frequency (RF) spectrum. In an exemplary aspect, the receiver includes a dynamic modulator which modulates the broad RF spectrum to dynamically select sub-bands (e.g., RF channels) and fold their spectral content into a narrower baseband signal for energy detection. A controller adjusts the dynamic modulator to maximize utility of the spectrum detection based on past energy observations.
US10651953B2 Low gain listen
A wireless communication device includes an antenna to receive a signal, a low noise amplifier, and circuitry that determines the power level of the signal. The circuitry also determines whether the signal includes a packet, and causes the low noise amplifier to amplify the signal when the signal includes a packet and the power level of the signal is below a threshold. The circuitry also causes the low noise amplifier to be bypassed when the signal does not include a packet, or the power level of the signal is above the predetermined threshold and the signal includes a packet.
US10651948B2 Coherent receiver module
The receiver including a package, first and second optical fibers, a capillary, and an array lens is disclosed. The first fiber has a first edge coupling to a MMI device by propagating a signal beam. The second fiber has a second edge coupling to the MMI device by propagating a local beam. The array lens has first and second lenses. The first lens converts the signal beam into a collimating beam, and the second lens converts the local beam into a collimating beam. The capillary has an edge opposite to the array lens, and the edge has a first region including the first edge and a second region including the second edge. The first edge is slanted to a first axis, and the second edge is slanted to a second axis, and a direction of the first edge and a direction of the second edge are different each other.
US10651942B2 Bias-based Mach-Zehnder modulation (MZM) systems
One example includes a bias-based Mach-Zehnder modulation (MZM) system. The system includes a Mach-Zehnder modulator to receive and split an optical input signal and to provide an intensity-modulated optical output signal based on a high-frequency data signal to modulate a relative phase of the split optical input signal to transmit data and based on a bias voltage to modulate the relative phase of the split optical input signal to tune the Mach-Zehnder modulator. The system also includes a bias feedback controller to compare a detection voltage associated with the intensity-modulated output signal with a reference voltage to measure an extinction ratio associated with an optical power of the intensity-modulated optical output signal and to adjust the bias voltage based on the comparison to substantially maximize the extinction ratio.
US10651941B2 Apparatus and methods for digital signal constellation transformation
Apparatus and method for digital signal constellation transformation are provided herein. In certain configurations, an integrated circuit includes an analog front-end that converts an analog signal vector representing an optical signal into a digital signal vector, and a digital signal processing circuit that processes the digital signal vector to recover data from the optical signal. The digital signal processing circuit generates signal data representing a signal constellation of the digital signal vector. The digital signal processing circuit includes an adaptive gain equalizer that compensates the signal data for distortion of the signal constellation arising from biasing errors of optical modulators used to transmit the optical signal.
US10651939B2 Optical transceiver and method of controlling the same
An optical transceiver includes an optical transmitter, an optical receiver, a first processing unit for controlling a section of the optical transmission circuit, a second processing unit for controlling a section of the optical reception circuit, and a signal line. First and second memory regions constitute a MDIO register space. The selection signal is set to a first level when the first memory region includes a MDIO register, and alternatively is set to a second level when the second memory region includes the MDIO register. The first processing unit responds to another MDIO frame having an OP code set to other than “00h” when the selection signal is at the first level, and the second processing unit alternatively responds to the another MDIO frame when the selection signal is at the second level.
US10651936B1 Communication to device through lighting control
Systems are provided to emit, into an environment of interest, information in the form of modulated optical signals. These optical signals can be provided as illumination from a lighting fixture, display, or other source of environmental illumination. The optical signals can include codes or other information to facilitate location-specific operations of a device that is able to receive the optical signals. This can include receiving information about the location of a light emitter, security credentials or encryption keys, information about services that are available from building automation and/or conferencing systems, or other location-related information. A cellphone or other device receiving such optical signals could then operate to request information related to the received information, to submit commands to control a presentation or conferencing system, to communicate in a secure manner using a received cryptographic key, or to operate in some other way related to location-related information received via optical signals.
US10651935B2 Signal adjustment apparatus and signal adjustment method
A signal adjustment apparatus includes a memory configured to store a first video obtained by imaging an object reflecting light that changes in time series in accordance with information embedded in the light, a processor coupled to the memory and configured to analyze the first video to specify an area in which the information is embedded in an image included in the first video, adjust a signal in the area, and output a second video including the adjusted signal.
US10651934B2 System and method of mitigating electromagnetic interference (EMI) in modulated light detection systems
A modulated light receiver includes a photo-sensitive element, an electromagnetic interference (EMI) detection circuit, and a decision-making controller. The photo-sensitive element is configured to generate an electrical signal in response to modulated light. The electromagnetic interference (EMI) detection circuit is configured to generate an electrical signal in response to EMI. The decision-making controller is electrically coupled to the photo-sensitive element and the EMI detection circuit, wherein the decision-making controller generates an output based on the inputs received from the photo-sensitive element and the EMI detection circuit.
US10651932B2 Management system for GPON based services
A computerized system and method for managing a passive optical network (PON) are disclosed. The system includes a detection and analysis module adapted for receiving uploaded measurement data from an optical line terminal (OLT) and at least one optical network terminal (ONT), and at least one of technical tools data, service failure data, and outside plant data. The detection and analysis module is adapted for determining a source of failure or potential failure in the PON by correlating the uploaded measurement data and the at least one of technical tools data and service failure data with information stored in a memory medium for the OLT and each ONT.
US10651931B2 Determining in-band optical signal-to-noise ratio in polarization-multiplexed optical signals using signal correlations
A method and apparatus for determining in-band OSNR in optical information signals, e.g. in polarization-multiplexed QPSK and higher-order M-ary QAM signals, are disclosed. A correlation measurement of the signal amplitude or power at two distinct optical frequencies of the signal may be used to determine the in-band optical noise in the signal. A measurement of the signal power may be used to determine the OSNR based on the determined in-band noise.
US10651924B2 System, decoder, and method for transmitting satellite signals
The invention relates to a system, a receiver and a method for satellite signal transmission, wherein the method includes the steps of grouping the signals into a data stream, splitting the data stream into at least a first and one or more second packets, transmitting the first packet via a first transmission channel (Ch #1), transmitting the one or more second packets via one or more second transmission channels (Ch #2), wherein the one or more second transmission channels (Ch #2) are distinct from the first transmission channel (Ch #1) and from one another.
US10651918B2 Method and apparatus for antenna selection
A system that incorporates teachings of the subject disclosure may include, for example, a system including an RF switch connected with an antenna system that includes a first antenna and a second antenna. The system can include, where the RF switch has a first position in which the first antenna operates as the primary antenna and the second antenna operates as the diversity antenna, and wherein the RF switch has a second position in which the second antenna operates as the primary antenna and the first antenna operates as the diversity antenna. The system can include a controller coupled with the matching network and with the RF switch, where the controller receives first measurements associated with the antenna system, and where the controller adjusts the RF switch to select between the first and second positions according to the first measurements.
US10651916B2 Uplink and downlink sounding for wireless networks
Apparatuses, computer readable media, and methods for uplink and downlink sounding for wireless networks are disclosed. An apparatus of a wireless device is disclosed. The apparatus comprising processing circuity configured to: encode a trigger frame for sounding (TF-S), the TF-S comprising an indication of whether a sounding is for uplink (UL) sounding or (DL) sounding, and the TF-S comprising an indication of stations to participate in the UL sounding or the DL sounding; and configure the wireless device to transmit the TF-S to the stations. The processing circuitry may be further configured to: if the sounding is for the DL sounding, encode a null data packet announcement (NDP-A), encode a null data packet (NDP), configure the wireless device to transmit the NDP-A, and configure the wireless device to transmit the NDP.
US10651913B2 Beam refinement during RACH
A base station transmits to a wireless device, a first request to measure synchronization signal(s) of a first cell. The base station receives from the wireless device, measurement report(s) of at least one synchronization signal of the synchronization signal(s). The base station transmits to the wireless device, a second request to measure CSI-RS(s) of the first cell. The base station receives from the wireless device, second measurement report(s) of the CSI-RS(s). The second measurement report(s) are generated in response to the second request. The base station selects first CSI-RS(s) of the CSI-RS(s) based on the second measurement report(s). The base station transmits a downlink control information to the wireless device via one or more control channels. The downlink control information initiates a random access procedure of the first cell. The downlink control information comprises an indication of the first CSI-RS(s).
US10651912B2 Reciprocity based channel state information acquisition for frequency division duplex system
Various embodiments disclosed herein provide for a reciprocity based channel state information acquisition scheme for frequency division duplex wireless communications systems. By converting channel state information from a traditional frequency-time domain to a Delay-Doppler domain, the channel state information feedback overhead can be reduced since the multi-path of radio propagation is reciprocal in terms of each ray and each cluster of antenna elements. Since the surrounding objects create the same multipath fading for both uplink and downlink transmissions, modeling the channel state information in the Delay-Doppler domain, and adjusting the sign of the Doppler value (negative/positive) can account for the multipath characteristics in both uplink and downlink.
US10651897B2 Near field communication package and portable device including the same
A near field communication (NFC) package in a portable device and method thereof are provided. The NFC package includes a secure storage device configured to store data, and an NFC controller configured to receive data from the secure storage device, provide the received data to a first external terminal by performing an NFC communication in an NFC mode, and provide the received data to a second external terminal by performing a magnetic secure transmission (MST) communication in an MST mode.
US10651896B2 Method and device for wirelessly transmitting power
Provided is a device for transmitting wireless power. The wireless power transmitting device includes a communication unit, a power receiving unit, and a processor. The processor is configured to obtain, through the communication unit, communication establishment information and location information associated with a wireless charging area from a tag device, establish, through the communication unit, communication with a wireless power transmitting device based on the communication establishment information, and control to transmit the location information to the wireless power transmitting device. The power receiving unit wirelessly receives the power from the wireless power transmitting device after the communication unit transmits the location information.
US10651889B2 Method and device for the detection of a pulse of a signal
A method for the detection of a pulse of a signal received by a receiver device, the received signal corresponding to data emitted with a predetermined period Tc, each piece of data being encoded by a presence or an absence of a pulse. The method includes: temporally offsetting of the received signal according to a predetermined number Ns of delays corresponding to different multiples of Tc, so as to generate Ns delayed signals; correlating, at a time that is a candidate for the detection of a pulse, the received signal with each of the delayed signals, in so as to obtain Ns correlation values associated with the candidate time; calculating a maximum correlation value among the Ns correlation values associated with the candidate time; anddetecting a pulse of the received signal according to the maximum correlation value.
US10651879B2 Handheld electronic touch screen communication device
A handheld electronic device may be provided that contains a conductive housing and other conductive elements. Transceiver circuitry, such as radio frequency (RF) transceiver circuitry configured to transmit and receive RF signals, may be connected to the resonating elements by transmission lines such as coaxial cables. The electronic device may have an integrated touch screen display in which a user can control the device by interacting directly with the display.
US10651878B2 Processing of a broadcast signal
A broadcast receiver for processing of a broadcast signal, and a method for processing a broadcast signal by a broadcast receiver. The broadcast receiver includes: a receiver unit that is set up to receive the broadcast signal and convert the received broadcast signal into a digital data signal; a bandwidth filter unit that is set up to filter the data signal with a variable filtering bandwidth; a demodulation unit that is set up to demodulate the filtered data signal; a signal content analysis unit that is set up to determine a signal content of the demodulated data signal; a signal quality analysis unit that is set up to determine a signal quality of the data signal; and a bandwidth regulation unit that is set up to regulate the filtering bandwidth depending on the signal content and the signal quality.
US10651876B1 System and method for dividing the carrier center frequency of an RF modulated signal by a non-integer divisor
An example method according to some embodiments includes receiving, from a modulator, a phase-modulated carrier output signal having a carrier center frequency that is a non-integer multiple of a desired carrier center frequency; generating, by an injection-locked ring oscillator (ILRO), a plurality of phases of the phase-modulated carrier output signal at a plurality of outputs of the ILRO; generating a decoupled fractional frequency output signal by sequentially selecting, using a multiplexer, successive outputs of the plurality of outputs corresponding to successive phases of the plurality of phases, the decoupled fractional frequency output signal having a center frequency equal to an integer multiple of the desired carrier center frequency; and generating, based on the decoupled fractional frequency output signal, a desired phase-modulated carrier output signal that is decoupled from the modulator, the desired phase-modulated carrier output signal having a generated carrier center frequency equal to the desired carrier center frequency.
US10651872B2 Stopping criterion for decoding Quasi-Cyclic LDPC codes
An in-between layer partial syndrome stopping (IBL-PS) criterion for a layered LDPC decoder. The IBL-PS syndrome is obtained by applying the parity checks (Hr,r+1) of a couple of a first layer (r) and a second layer (r+1) on the variables after the first layer has been processed and before the second layer is processed by the decoder, the decoding being stopped if said in-between layer syndrome (sr,r+1) is satisfied for at least a couple of consecutive layers.
US10651870B2 Input path matching in pipelined continuous-time analog-to-digital converters
System and methods for input path matching in pipelined continuous-time Analog-to Digital Converters (ADCs), including pipelined Continuous-Time Delta Sigma Modulator (CTDSM) based ADCs, includes an input delay circuit disposed in a continuous-time input path from an input of an analog input signal to a first summing circuit of the continuous-time ADC. At least one digital delay line is disposed between an output of an earlier stage sub-ADC (of a plurality of pipelined sub-ADCs) and a sub-digital-to-analog converter (DAC) that is coupled to the first summing circuit, and between the earlier stage sub-ADC and a digital noise cancellation filter. The digital delay line(s) is configured to enable calibration of delay of output of the earlier stage sub-ADC provided to the sub-DAC and the digital noise cancellation filter in accordance with process variations of the input delay match circuit to minimize residue output at first summing circuit.
US10651867B2 High-speed and high-precision photonic analog-to-digital conversion device and method for realizing intelligent signal processing using the same
A high-speed and high-precision photonic analog-to-digital conversion device capable of realizing intelligent signal processing. Learning ability of deep learning technology is utilized to learn the nonlinear response and channel mismatch effect of the system and configure optimal parameters of the deep network. Deterioration of photonic analog-to-digital conversion system performance caused by nonlinear distortion and channel mismatch distortion is eliminated in real time, and performance indicators thereof are improved. By using the induction and deduction ability of deep learning technology, intelligent signal processing of the input signal is realized, and users are provided with digital signals that meet the requirements. It's important for improving the performance of microwave photonic systems that require high sampling rate, high time precision, and high sampling accuracy, such as microwave photonic radar and optical communication systems, and also critical to improve the signal processing ability of such systems under complex conditions.
US10651864B2 Time-interleaved charge sampler receiver
A receiver may include a time-interleaved charge sampler comprising a charge sampler switch in series with a charge sampler capacitor. The receiver may also include a current buffer configured to drive the time-interleaved charge sampler.
US10651862B1 Locking a PLL to the nearest edge of the input clock when the input clock is divided down before use in the PLL
A phase-locked loop (PLL) has a first divider that receives a first reference clock signal and supplies a first divided reference clock signal. A second divider receives a second reference clock signal and supplies a second divided reference clock signal. On switching between use of reference clock signals, when the phase difference between the first divided signal and the second divided signal includes one or more clock periods of the second reference clock signal, the PLL performs a phase adjust to remove the one or more clock periods. The phase adjust can be performed in the feedback divider or as an offset in the loop if digital edges of the clock signals are available. The phase adjust ensures the phase adjust on the PLL output caused by switching reference clocks is the phase difference between the reference clock signals before division.
US10651860B2 Asynchronous positional feedback for asynchronous and isochronous communication
A method of generating asynchronous feedback information for asynchronous, isochronous audio communication may include determining a relative change of stored samples in a device and generating the asynchronous feedback information provided to a host from the device based on the relative change. A method of generating asynchronous feedback information for asynchronous, isochronous audio communication may include determining a relative phase of a host clock for a host and a device clock for a device and generating the asynchronous feedback information provided to the host from the device based on the relative phase.
US10651858B2 Synthesizer and phase frequency detector
A synthesizer comprises a two-point modulation phase locked tow, TPM PLL, circuit configured to receive a frequency tuning signal and to generate a stepped chirp signal in an intermediate frequency range by applying a two-point modulation PLL on the frequency tuning signal, and a subsampling PLL circuit configured to receive the stepped chirp signal in a mm-wave frequency range and to generate a smoothened chirp signal in a mm-wave frequency range by applying a subsampling PLL on the stepped chirp signal.
US10651855B2 Oscillator, electronic apparatus, and vehicle
An oscillator includes a container, an oscillation element housed in the container, a heating circuit housed in the container, and adapted to control a temperature of the oscillation element, a temperature detection circuit housed in the container, a temperature control circuit housed in the container, and adapted to control the heating circuit based on an output of the temperature detection circuit, at least one connecting wire housed in the container, and electrically connects a ground of the temperature detection circuit and a ground of the temperature control circuit to each other, and a ground external terminal disposed on an outer surface of the container, and electrically connected to the ground of the temperature detection circuit and the ground of the temperature control circuit.
US10651853B1 Timing insulation circuitry for partial reconfiguration of programmable integrated circuits
A device includes a platform implemented in programmable circuitry of the device. The platform is configured to communicate with a host data processing system. The device includes a first partial reconfiguration region implemented in the programmable circuitry and coupled to the platform. The first partial reconfiguration region is reserved for implementing user-specified circuitry. The device includes timing insulation circuitry implemented in the programmable circuitry and configured to isolate timing of signals passing between the platform and the first partial reconfiguration region.
US10651852B1 Reverse direction high-electron-mobility logic gate
A logic gate includes at least one reverse direction high-electron-mobility transistor. The reverse direction high-electron-mobility transistor includes at least one source connected to a first reference voltage, at least one gate connected to an output, and at least one drain connected to the output. Logic implementing circuitry is connected between the output an additional reference voltage. The logic implementing circuitry includes a first transistor that includes a gate connected to a first input, and a second transistor that includes a gate connected to a second input.
US10651847B2 Switching apparatus for a control system for a vehicle, and control system for a vehicle
The present disclosure relates to a shift device for a control system for a vehicle. The shift device may include at least one optical fiber for conducting a light signal, where the light signal has an input characteristic when entering the shift device, and where the light signal has an output characteristic when exiting the shift device. The shift device may further include a control element, where the control element can be moved between a home position, a first actuation position, and a second actuation position by an actuation force. The control element may have an adjustment device for adjusting the characteristic of the light signal, where the adjustment device is configured to set the output characteristic of the light signal to a first value when the control element is in the home position.
US10651844B2 Multiple chip synchronization via single pin monitoring of an external timing capacitor
An IC chip, a system and a method of operating the IC chip in response to an event trigger are provided. The method includes responsive to the event trigger, coupling a pin to a source of constant current to charge an external capacitor coupled to the pin and monitoring a capacitor voltage on the pin. If the magnitude of the capacitor voltage is greater than a rising threshold, detection of a falling threshold is enabled. If the magnitude of the capacitor voltage is greater than a voltage threshold, a first response is triggered and the pin is coupled to the lower rail to discharge the external capacitor. If detection of the falling threshold is enabled and the magnitude of the capacitor voltage is less than the falling threshold, the first response is also triggered.
US10651841B2 Ring amplitude measurement and mitigation
An apparatus includes a voltage divider circuit including a plurality of series-connected capacitors and including an input terminal of one of the capacitors configured to receive a first voltage from a switch, and a ring node comprising the connection between at least two of the series-connected capacitors. The apparatus further includes a negative clamp circuit coupled to the ring node of the voltage divider circuit and a bias voltage node. The bias voltage node is configured to receive a bias voltage and responsive to a ring voltage on the ring node being less than the bias voltage, the negative clamp circuit is configured to clamp the ring voltage at a first threshold voltage. The apparatus also includes a peak detector circuit coupled to the ring node of the voltage divider circuit and configured to detect a peak amplitude of the ring voltage. The apparatus further includes a switch driver coupled to the peak detector circuit and configured to adjust a control signal to the switch responsive to the detected peak amplitude.
US10651839B2 Power switching apparatus
A power switching apparatus includes a plurality of semiconductor switching devices connected in parallel with each other and a plurality of balance resistor units. The plurality of balance resistor units each have one end connected to a control electrode of an associated semiconductor switching device and the other end to which a common control signal is input. Each balance resistor unit is configured to have a resistance value switched between different values depending on whether the plurality of semiconductor switching devices are turned on or turned off in accordance with the control signal.
US10651836B1 Clock pulse generator
A clock generator circuit includes a clock divider circuit, a clock pulse control circuit, a phase shifter circuit, and a clock multiplexer circuit. The clock divider circuit is configured to generate a divided clock having a frequency that is a programmable fraction of a frequency of an input clock. The clock pulse control circuit is coupled to the clock divider circuit, and is configured to generate a pulse shaped clock that includes a clock burst comprising a programmable number of adjacent cycles of the divided clock. The phase shifter circuit is coupled to the clock control circuit, and is configured to generate a plurality of phase shifted clocks. Each of phase shifted clocks is a differently delayed version of the pulse shaped clock. The clock multiplexer circuit is coupled to the phase shifter circuit, and is configured to selectively route each of the phase shifted clocks to an output terminal.
US10651835B1 Light detection with logarithmic current-to-voltage converter
This disclosure provides systems, methods and apparatuses for processing analog signals with a wide dynamic range. In some implementations, the analog signal may be a current signal that is logarithmically scaled to decrease its dynamic range and converted to an output voltage using two or more diodes. A first diode may be used to scale a first range of the current signal and a second diode may be used to scale a second range of the current signal.
US10651832B2 Level shifter
A level shifter is configured to receive an input signal in a first voltage domain and output an output signal in a second voltage domain. An input terminal is configured to receive an input signal in a first voltage domain. A first sensing circuit is configured to shift the input signal from the first voltage domain to the second voltage domain, and a second sensing circuit is configured to shift the input signal from the first voltage domain to the second voltage domain. An enable circuit is configured to equalize a voltage level of first and second output signals at respective first and second output terminals in response to an enable signal. The first and second sensing circuits are configured output complementary output signals in the second voltage domain at the first and second output terminals in response to the enable signal and the input signal.
US10651829B2 Signal receiver circuit
A signal receiver circuit includes: a negative voltage applier suitable for applying a negative voltage to a common source node in response to a first clock is at a first logic level; a first sampling transistor coupled between the common source node and a first sampling node to sink a current from the first sampling node to the common source node in response to a first input signal; a second sampling transistor coupled between the common source node and a second sampling node to sink a current from the second sampling node to the common source node in response to a second input signal; an equalizer suitable for equalizing the first sampling node and the second sampling node in response to the first clock is at a second logic level; a precharger suitable for precharging a first output node and a second output node with a pull-up voltage in response to a second clock is at the first logic level, and electrically coupling the first output node and second output node to the second sampling node and the first sampling node, respectively, in response to the second clock is at the second logic level; and an amplifier suitable for amplifying a voltage difference between the first output node and the second output node in response to the second clock is at the second logic level.
US10651824B2 Tunable filter for RF circuits
A tunable filter is described where the frequency response as well as bandwidth and transmission loss characteristics can be dynamically altered, providing improved performance for transceiver front-end tuning applications. The rate of roll-off of the frequency response can be adjusted to improve performance when used in duplexer applications. The tunable filter topology is applicable for both transmit and receive circuits. A method is described where the filter characteristics are adjusted to account for and compensate for the frequency response of the antenna used in a communication system.
US10651823B2 Filter device and multiplexer
A filter device includes a terminal, a switch that includes a common terminal and selection terminals and switches a connection of the common terminal to one of the selection terminals, a series arm resonator, and filter circuits. The filter circuits are connected to one end of the series arm resonator. The common terminal is connected to the terminal. One of the selection terminals is connected between one end of the series arm resonator and the filter circuits. Another one of the selection terminals is connected to the other end of the series arm resonator.
US10651821B2 Multiplexer, high-frequency front-end circuit, and communication apparatus
A multiplexer includes a first filter on a first path connecting a common terminal and a first terminal and defined by a band pass filter, a low pass filter, or a high pass filter, and a second resonator on a second path connecting the common terminal and a second terminal and defined by a band elimination filter including at least one elastic wave resonator. A pass band of the first filter and an attenuation band of the second filter overlap with each other, and a ripple of a first resonator closest to the common terminal is generated only outside pass bands of the first filter and the second filter.
US10651818B2 Method of producing lithium niobate single crystal substrate
To provide a method of producing a lithium niobate (LN) substrate which allows treatment conditions regarding a temperature, a time, and the like to be easily managed and in which an in-plane distribution of a volume resistance value is very small, and also variations in volume resistivity are small among substrates machined from the same ingot.A method of producing an LN substrate by using an LN single crystal grown by the Czochralski process, in which a lithium niobate single crystal having a Fe concentration of 50 mass ppm or more and 2000 mass ppm or less in the single crystal and being in a form of an ingot is buried in an Al powder or a mixed powder of Al and Al2O3, and heat-treated at a temperature of 450° C. or more and less than 660° C., which is a melting point of aluminum, to produce a lithium niobate single crystal substrate having a volume resistivity controlled to be within a range of 1×108 Ω·cm or more to 2×1012 Ω·cm or less.
US10651812B2 Cascode amplifier having feedback circuits
Cascode amplifier having feedback circuits. In some embodiments, an amplifier can include a first transistor and a second transistor arranged in a cascode configuration, with each transistor having a gate. The amplifier can further include a first feedback circuit implemented between an output of the second transistor and the gate of the second transistor. The amplifier can further include a second feedback circuit implemented between the output of the second transistor and the gate of the first transistor.
US10651811B2 Mismatch and reference common-mode offset insensitive single-ended switched capacitor gain stage with reduced capacitor mismatch sensitivity
A switched-capacitor gain stage circuit and method include an amplifier connected to an input sampling circuit with sampling switched capacitors for coupling an input voltage and a first or second reference voltage to one or more central nodes during a sampling phase and for coupling the one or more central nodes to an amplifier input during a gain phase, wherein a reference loading circuit uses a plurality of sampling switched capacitors connected in a switching configuration to selectively couple a first reference voltage and/or a second reference voltage to the central node by pre-charging the plurality of sampling switched capacitors with the first and second reference voltages during the sampling phase, and by coupling each of the first and second reference voltages to at least one of the plurality of sampling switched capacitors when connected to the central node during the gain phase.
US10651809B2 Control system for a power amplifier
An apparatus for controlling the gain and phase of an input signal input to a power amplifier comprises a gain control loop configured to control the gain of the input signal based on power levels of the input signal and an amplified signal output by the power amplifier, to obtain a predetermined gain of the amplified signal, and a phase control loop configured to obtain an error signal related to a phase difference between a first signal derived from the input and a second signal derived from the amplified signal, and control the phase based on the error signal, to obtain a predetermined phase of the amplified signal. The phase control loop delays the first signal such that the delayed first signal and the second signal used to obtain the error signal correspond to the same part of the input signal. The apparatus may be included in a satellite.
US10651805B2 Compact dual diode RF power detector for integrated power amplifiers
An apparatus includes a first directional coupler, a second directional coupler, a first detector, and a second detector. A through port of the first directional coupler is coupled to a through port of the second directional coupler. An isolated port of the first directional coupler is coupled to an isolated port of the second directional coupler. A coupled port of the first directional coupler is coupled to the first detector. A coupled port of the second directional coupler is coupled to the second detector. A detected power signal is generated by combining an output of the first detector and an output of the second detector.
US10651803B2 Transconductance shifted differential difference amplifier
Reducing noise for an amplifier-based system circuit that comprises a first differential input pair and a second differential input pair, a first input stage circuit connected to the first differential input pair, wherein the first input stage is configured with a first transconductance value, a second input stage circuit connected to the second differential input pair, wherein the second input stage is configured with a second transconductance value that is less than the first transconductance value, a transimpedance circuit coupled to the first input stage circuit and the second input stage circuit, and a feedback loop circuit coupled to the transimpedance circuit and to the second differential input pair, wherein the feedback loop circuit is not connected to the first differential input pair.
US10651802B2 Envelope trackers providing compensation for power amplifier output load variation
Envelope trackers providing compensation for power amplifier output load variation are provided herein. In certain configurations, a radio frequency (RF) system includes an antenna, a power amplifier that receives a radio frequency signal and outputs an amplified radio frequency signal to the antenna, a plurality of detectors coupled to the power amplifier and operable to generate a plurality of detection signals, and an envelope tracker that controls a supply voltage of the power amplifier based on an envelope of the radio frequency signal. The envelope tracker processes the plurality of detection signals to generate a load variation detection signal indicating a change in an output load of the power amplifier arising from a change in a voltage standing wave ratio (VSWR) of the antenna. Additionally, the envelope tracker adjusts a gain of the power amplifier based on the load variation detection signal.
US10651801B2 Closed-loop digital compensation scheme
Resistor mismatch may be digitally compensated based on a known resistor mismatch, power supply information, and/or other operating parameters of the amplifier. The digital compensation may be applied to the digital input signal before conversion for processing and amplification in the analog domain. An amplifier with digital compensation for resistor mismatch may be used in a class-D amplifier with a closed loop and feedforward feedback. A class-D or other amplifier with digital compensation may be integrated with electronic devices such as mobile phones.
US10651799B2 Selecting between boosted supply and battery supply
Certain aspects of the present disclosure provide methods and apparatus for generating an envelope tracking power supply voltage. For example, certain aspects of the present disclosure provide an envelope tracking power supply having a linear amplifier having an output coupled to a power supply node of an amplifier, wherein a power supply node of the linear amplifier is coupled to a first voltage supply node. The envelope tracking power supply may also include a switch mode power supply having an output coupled to the power supply node of the amplifier. Certain aspects also include a circuit having a first switch coupled to the first voltage supply node and a second switch coupled to a second voltage supply node, wherein a power supply node of the switch mode power supply is coupled to the first switch and the second switch.
US10651798B2 Multi-mode stacked amplifier
Aspects of this disclosure relate to an amplification circuit that includes a stacked amplifier and a bias circuit. The stacked amplifier includes at least a first transistor and a second transistor in series with each other. The stacked amplifier is operable in at least a first mode and a second mode. The bias circuit is configured to bias the second transistor to a linear region of operation in the first mode and to bias the second transistor as a switch in the second mode. In certain embodiments, the amplification circuit can be a power amplifier stage configured to receive a supply voltage that has a different voltage level in the first mode than in the second mode.
US10651797B2 Amplifier offset and compensation
An apparatus includes a first amplifier, a second amplifier, and a compensation-setting generator to generate a first amplifier compensation setting and second amplifier compensation setting. A controller is operable to: i) apply the first amplifier compensation setting to the first amplifier and apply the second amplifier compensation setting to the second amplifier. The controller is further operable to switch between generating updates to the first amplifier compensation setting and the second amplifier compensation setting.
US10651796B2 Resistorless power amplifier
The present disclosure relates to a power amplifier circuit including a current source, a power control circuit, a current mirror and an output circuit. The current source circuit includes a first transistor and a second transistor. A source of the first transistor is connected to a drain of the second transistor and a gate of the first transistor is connected to a source with the second transistor. The power control circuit is connected to a gate of the second transistor. The current mirror circuit is connected to the gate of the first transistor and a source of the second transistor. The output circuit is connected to the current mirror circuit.
US10651794B1 Down-conversion mixer
A down-conversion mixer includes a converting-and-mixing module and a load module. The converting-and-mixing module performs voltage-to-current conversion and mixing with first and second differential oscillatory voltage signal pairs upon a differential input voltage signal pair to generate first and second differential mixed current signal pairs. The load module includes two RL circuits and a negative resistance providing circuit that cooperate to convert the first and second differential mixed current signal pairs into first and second differential mixed voltage signal pairs. Each RL circuit includes two variable resistors, and an inductor connected between the variable resistors.
US10651791B2 Method for determining characteristic parameters of an oscillator
A method for determining characteristic parameters of an electrostatic actuation oscillator, where the method includes generating a first excitation voltage defined as being the sum of a first sinusoidal voltage and a voltage pulse; applying the first excitation voltage at the input of the oscillator; acquiring in the time domain a first response voltage present at the output of the oscillator when the first excitation voltage is applied at the input of the oscillator; obtaining, by transformation in the frequency domain, a first amplitude spectral density of the first response voltage; determining the characteristic parameters of the oscillator from the first amplitude spectral density.
US10651786B2 Panel with magnetically-controlled connectors for attachment to a support member
Panels equipped with magnetically-controlled connectors that are movable between an open position and a closed position. When the connectors are in the open position, the panels can be moved relative to the support frame. In the closed position, the connectors engage with the support frame to secure the panel to the frame.
US10651785B2 Connector system for photovoltaic array
A photovoltaic assembly comprising; (a) at least two photovoltaic components that are adjacent to each other in a first direction, each photovoltaic component comprising (i) a partial recess in communication with the partial recess in an adjacent photovoltaic component and (ii) one or more connector receptors aligned in a second direction which is non-parallel to the first direction; (b) a connector located at feast partially in the partial recess of the photovoltaic component and at least partially in the partial recess of the adjacent photovoltaic component so that the connector connects the photovoltaic component to the adjacent photovoltaic component, the connector comprising: (i) a flexible housing having a first end and a second end; (ii) one or more connection ports at the first end; (iii) one or more connection ports at the second end; and (iv) one more flexible electrical conductors that extend from the one or more connection ports at the first end to the one or more connection ports at the second end; wherein the connector is flexible so that the first end and the second end are movable relative to each other in a plane, out of the plane, or both; wherein the one or more connection ports at the first end and the one or more connection ports at the second end form a connection with the one or more connector receptors of the photovoltaic component and the adjacent photovoltaic component so that the connector electrically connects the photovoltaic component to the adjacent photovoltaic component.
US10651782B2 Ballasted tracker drive assembly
PV modules and ballast arm assemblies are mounted onto a torque tube suspended from a support structure. The support structures allows torque tube, and mounted PV modules and ballast arm assemblies, to freely rotate. The ballast arm assembly includes a drive mechanism, an arm and a ballast. The drive mechanism allows the adjustment angle between the PV module and the arm and ballast to be changed. Changing the adjustment angle causes the torque tube, and mounted PV modules, to freely rotate to a different orientation angle in order to balance the moments of PV modules and ballast arm assemblies caused by gravity. The orientation angle can be changed throughout the day by changing the adjustment angle in order for the PV modules to track the sun.
US10651777B2 Drive apparatus and drive method for brushless motor
A drive apparatus and a drive method for a brushless motor, capable of reducing noise occurring due to pulse shift processing, is provided. The drive apparatus for the brushless motor comprises one shunt resistor and a controller. The shunt resistor measures a phase current of the three-phase brushless motor. The controller measures the phase current of the brushless motor in a one-shunt system by using the shunt resistor, and controls driving of the brushless motor based on the measured phase current. The controller performs pulse shift when a voltage pulse width in a drive wire of the brushless motor is greater than a predetermined value, whereas the controller does not perform the pulse shift when the voltage pulse width is less than the predetermined value.
US10651774B2 Inverter and motor drive device, freezing device
An inverter, motor drive device and freezing device, with which it is possible to effectively suppress current beats in the event of over-modulation without requiring additional circuits. This motor driving device includes: a rectifier circuit that converts the AC voltage from an AC power supply into a DC voltage; a smoothing capacitor that smoothes the DC voltage output from the rectifier circuit; an inverter circuit that converts the DC voltage output from the smoothing capacitor into an AC voltage; and a controller that reduces the current beat component by estimating, using a phase locked loop process, the frequency, phase and amplitude of the current beat component in the output current of the inverter circuit, and corrects the voltage command to the inverter circuit on the basis of the estimated frequency, phase and amplitude.
US10651771B2 Passive virtual synchronous machine with bounded frequency and virtual flux
This invention discloses a controller and method to operate a power electronic converter as a virtual synchronous machine with bounded frequency and virtual flux. The controller includes a real power-frequency channel to regulate the frequency, a reactive power-flux channel to regulate the virtual flux (equivalently, the voltage), an interconnection block that takes the frequency, the virtual flux, and an input current to generate a voltage, a signal {tilde over (T)}, and a signal {tilde over (Γ)} that are fed through a conversion block and two passive filters to generate the negative real power and reactive power feedback signals, a virtual damper to generate an output voltage as the control signal for the power electronic converter according to the voltage generated by the interconnection block and a first measured voltage, and a virtual impedance to generate a virtual current according to the difference of the output voltage and a second measured voltage. The controller also includes auxiliary blocks to achieve self-synchronization without measuring or estimating the grid frequency and the regulation of real power and reactive power to given reference values without static errors.
US10651767B2 Methods and apparatus for three-phase motor control with error compensation
Method and apparatus for providing error compensation for a magnetic field sensing element in a three-phase motor. In embodiments, a driving angle is determined from zero-crossings of the magnet pole-pairs and error compensation levels for the pole-pairs is determined to reduce distortions in the motor current waveform.
US10651763B2 Radio-frequency/direct-current converter
A radio-frequency/direct-current (RF/DC) converter is operable to receive a high-frequency and high-power RF signal and convert to a DC power. The RF/DC converter includes a first field-effect transistor (FET), a second FET, a third FET and a sixth FET that are cross-coupled. Sources of the first FET and the second FET are connected to an RF signal receiving end. Sources of the third FET and the fourth FET are connected to a potential reference end. The RF/DC converter further includes a fifth FET and a sixth FET connected subsequently to the first FET, the second FET, the third FET and the fourth.
US10651761B2 Power converters with segregated switch and drive modules
A phase leg for an inverter includes a switching module having a switch device, a power lead connected to the switching module and in electrical communication with the switch device, and a drive lead. The drive lead is connected to the switching module, is in electrical communication with the switch device, and is segregated from the power lead to limit heating of a drive module connected to the drive lead from current flowing through the power lead. Multilevel inverters and methods of making phase legs for inverters are also described.
US10651759B2 Switching power supply device and semiconductor device
A switching power supply device includes: a rectifier circuit to which an AC input voltage is input; an input smoothing circuit smoothing a DC input voltage output from the rectifier circuit; a power converter circuit converting the DC input voltage and outputs an output voltage; an overvoltage detection circuit generating an input overvoltage detection signal which is activated when the DC input voltage is higher than a first reference voltage level; and a discharge circuit discharging stored charge stored in the input smoothing circuit. The power converter circuit includes a switching element. Switching of the switching element is stopped and discharging of the stored charge is started, with activation of the input overvoltage detection signal serving as a trigger, and when the input overvoltage detection signal is subsequently inactivated, the discharging is stopped and the switching of the switching element is resumed.
US10651753B1 Accurate valley detection for secondary controlled flyback converter
A flyback converter with secondary side control and synchronous rectifier (SR) architecture and method for operating the same are provided. Generally, the secondary side controller includes an integrated circuit (IC) including a single SR-SNS pin coupled to a drain of a SR on a secondary side of the converter to sense a voltage on the drain, and a power switch (PS) drive pin coupled to a PS on a primary side to turn on the PS in response to a number of measurements based on the voltage sensed on the drain of the SR. The IC includes a calibration block to measure a loop turn-around delay, valley delays with respect to zero-crossing and set timing for a signal to turn on the PS in response to the voltage sensed on the drain of the SR at or very close the primary side valley improving efficiency and performance of the converter.
US10651749B2 Flyback converter with a passive clamp
A converter includes a transformer, a main switch, an active clamping circuit, a synchronous rectifying switch and a processing circuit. The transformer includes a primary winding and a secondary winding. The main switch is coupled to the primary winding. The active clamping circuit clamps the voltage across the main switch when it is OFF. The active clamping circuit includes an auxiliary switch. The synchronous rectifying switch is coupled to the secondary winding. The processing circuit determines whether the rectifying switch is in a main conducting period or a sub conducting period according to a first voltage signal across the rectifying switch and at least one detecting signal from the converter, and generates a driving signal to control the synchronous rectifying switch accordingly.
US10651747B2 Systems and methods with timing control for synchronization rectifier controllers
System controller and method for regulating a power converter. For example, the system controller includes a first controller terminal and a second controller terminal. The system controller is configured to: receive, at the first controller terminal, an input signal; generate a drive signal based at least in part on the input signal, the drive signal being associated with an on-time period and an off-time period, the on-time period including a first beginning and a first end; and output, at the second controller terminal, the drive signal to a switch to close the switch during the on-time period and open the switch during the off-time period to affect a current associated with a secondary winding of the power converter. The system controller is further configured to detect a demagnetization period associated with the secondary winding based at least in part on the input signal.
US10651744B1 Method and apparatus for delivering power to semiconductors
A semiconductor package includes a VLSI semiconductor die and one or more output circuits connected to supply power to the die mounted to a package substrate. The output circuit(s), which include a transformer and rectification circuitry, provide current multiplication at an essentially fixed conversion ratio, K, in the semiconductor package, receiving AC power at a relatively high voltage and delivering DC power at a relatively low voltage to the die. The output circuits may be connected in series or parallel as needed. A driver circuit may be provided outside the semiconductor package for receiving power from a source and driving the transformer in the output circuit(s), preferably with sinusoidal currents. The driver circuit may drive a plurality of output circuits. The semiconductor package may require far fewer interface connections for supplying power to the die.
US10651740B1 Buck-boost converter for an electric drive
An electric drive system for a vehicle may include positive and negative bus rails carrying a direct current (DC) bus voltage, an energy storage system (ESS), a power inverter having a plurality of semiconductor switches operable for inverting the DC bus voltage into an alternating current (AC) bus voltage, and an electric machine. A DC-DC converter may be connected to the bus rails between the capacitor and the power inverter and may include a converter semiconductor switch disposed in the positive bus rail, an inductor coil connected to the positive bus rail and receiving current flowing through the converter semiconductor switch, at least one diode, and a bypass switch connected to the positive bus rail and configured to allow current to bypass the converter. The DC-DC converter may be configured to output a DC bus voltage to the power inverter with a same polarity as the battery polarity.
US10651739B1 Power converters and methods of controlling same
A power converter converts a medium-voltage output from a solar module to an appropriate voltage to power a solar tracker system. The power converter includes a voltage divider having at least two legs, a first semiconductor switch subassembly coupled in parallel with a first leg of the voltage divider, and a second semiconductor switch subassembly coupled in parallel with a second leg of the voltage divider. In implementations, the signals for driving the semiconductor switches of the first and second semiconductor switch subassemblies may be shifted out of phase from each other. In implementations, if the bus voltages to the semiconductor switches are not balanced, the pulse width of the driving signal of the semiconductor switch supplied with the higher bus voltage is decreased for at least one cycle.
US10651737B2 Electronic converter
An electronic converter (1) comprises a pair of input terminals (IN+, IN−) particularly suitable to be connected to a power supply unit (10) with a constant electric current output, and a pair of output terminals (OUT+, OUT−) particularly suitable to be connected to an electrical load (5). The electronic converter (1) further comprises an electric current conversion stage (2) connected to said input terminals (IN+, IN−) and to said output terminals (OUT+, OUT−), and a controller (3) connected to the electric current conversion stage (2) and particularly suitable to control the electrical energy output from the electronic converter (1).
US10651736B1 Multi-level converter with continuous conduction mode (CCM) and discontinuous conduction mode (DCM)
A power converter device includes a set of switches configured to switch between at least three input-side voltage levels to provide output pulses. The power converter device also includes a control circuit for the set of switches, wherein the control circuit configured to selectively switch the power converter device between a continuous conduction mode of operation (CCM) having a first charge per pulse and a discontinuous conduction mode of operation (DCM) having a second charge per pulse, the second charge per pulse being greater than the first charge per pulse.
US10651734B2 System and method for robust body braking control to suppress transient voltage overshoot
A voltage regulator includes power stages and a controller. The power stages are configured to provide power to a load in response to a pulse-width modulated (PWM) signal and to provide a body braking to the load in response to a body braking signal. The body braking is provided via a body diode of the power stage. The controller is configured to provide the PWM signals to a first power stage and a second power stage based upon a power demand of the load, to provide body braking signals to the first power stage and the second power stage in response to an over-voltage condition on the load, and to suspend the first body braking signal to the first power stage and maintain the second body braking signal to the second power stage, in response to an over-temperature condition on the first power stage.
US10651733B2 Bridge driver for a switching voltage regulator which is operable to soft-switch and hard-switch
Described is an apparatus which comprises: a low-side switch coupled to an output node for providing regulated voltage supply; and a first driver operable to cause the low-side switch to turn off when the output node rises above a first transistor threshold voltage. Described is also a voltage regulator which comprises: a signal generator to generate a pulse-width modulated (PWM) signal; a bridge having a low-side switch coupled to an output node for providing regulated voltage supply according to the PWM signal; a first driver operable to cause the low-side switch to turn off when the output node rises above a first transistor threshold voltage; and a bridge controller to provide control signals to the first driver. The voltage regulator may operate without diode clamps and its operation is self-timed. The voltage regulator also provides tolerance against process variation.
US10651732B2 Charge pumps and methods of operating charge pumps
Methods of operating a charge pump, and charge pumps configured to perform similar methods, involve monitoring a level of a supply voltage of the charge pump, and turning off an oscillator of the charge pump responsive to the level of the supply voltage dropping below a certain level, wherein turning off the oscillator comprises setting an inverter in a ring oscillator loop of the oscillator to a steady state output.
US10651731B1 Zero voltage switching of interleaved switched-capacitor converters
A power supply system comprises: multiple switched-capacitor converters and a controller. The multiple switched-capacitor converters include at least a first switched-capacitor converter interleaved with a second switched-capacitor converter. During operation, the controller produces control signals. The control signals control the interleaved first switched-capacitor converter and the second switched-capacitor converter to produce an output voltage to power a load.
US10651730B2 Methods and apparatus for simultaneously generating multiple output voltage levels utilizing switched capacitor DC-DC converter
A switched capacitor DC-DC converter, which includes a pulse frequency modulation circuit, a multiplexing pulse-width modulation circuit, and a switched capacitive element, is disclosed. The switched capacitive element is coupled between the pulse frequency modulation circuit and the multiplexing pulse-width modulation circuit. The pulse frequency modulation circuit uses a DC source signal to charge the switched capacitive element. The pulse frequency modulation circuit provides a group of output signals by multiplexing the switched capacitive element and reduces reverse current to the switched capacitive element when updating each of the group of output signals.
US10651729B2 Apparatus for controlling solar light voltage
The present invention relates to an apparatus for controlling a solar light voltage, which is capable of decreasing an output stage voltage of an AC EMC filter by connecting a load to an output stage of the AC EMC filter. The apparatus includes: a DC filter configured to receive a DC voltage from a DC solar module and reduce a noise of the DC voltage; an inverter configured to convert the DC voltage with the reduced noise into an AC voltage; and an AC filter configured to reduce a noise of the AC voltage and output the AC voltage with the reduced noise to a power system through an output stage.
US10651728B2 Power supply device and control method thereof
A power supply device includes a PF correction circuit, a power switching circuit and a control circuit. The PF correction circuit converts an input voltage to a bus voltage according to a control signal to supply a later stage circuit. The power switching circuit selectively switches to conduct a first source or a second source to the PF correction circuit to provide the input voltage to the PF correction circuit. The control circuit outputs the control signal to the PF correction circuit. When the control circuit detects a first voltage of the first source connecting to the PF correction circuit is abnormal, the control circuit determines whether a second voltage of the second source is smaller than the bus voltage and controls the power switching circuit to switch when the second voltage is smaller than the bus voltage to conduct the second source to the PF correction circuit.
US10651722B2 Advanced constant off-time control for four-switch buck-boost converter
A buck-boost converter comprises a first high-side switch and a first low-side switch connected in series between an input voltage terminal and ground, a second high-side switch and a second low-side switch connected in series between an output voltage terminal and ground, an inductor connected to a common node of the first high-side switch and the first low-side switch, and a common node of the second high-side switch and the second low-side switch and a control apparatus configured to generate gate drive signals, wherein the control apparatus comprises a first timer for setting a turn-off time of the first low-side switch, a second timer for setting a turn-off time of the second high-side switch and a peak current mode control device for setting a turn-off time of the first high-side switch and a turn-off time of the second low-side switch.
US10651720B2 Intelligent power module
An object of the present invention is to synchronize PWM between individual phases of an IPM, so that the IPM has a simplified-scale circuit. An IPM according to the present invention includes a DC-DC converter including a multi-phase arm having a plurality of phase arms connected in parallel on a secondary side, a secondary-wire-voltage detection circuit configured to detect a secondary wire voltage in each phase arm of the DC-DC converter, and a synchronization-signal generation circuit configured to generate a synchronization signal in each phase arm on the basis of the behavior of the secondary wire voltage.
US10651718B2 Transverse flux linear motor
An Electrical Linear Motor having a number of electrical windings with long linear sections arranged parallel to the linear path of the motor. A row of equidistant magnets parallel to the linear path and having alternating magnetic field direction perpendicular to the linear path of the motor is provided. A number of magnetic circuits each enclose some of the long linear winding sections, further referred as “set of long linear sections”. Any two of these magnetic circuits enclose a different set of long linear sections. Each magnetic circuit is provided with an opening receiving the magnet row. The magnet row and the magnetic circuits slide along the linear path relatively to each other to vary working force. A required force value is obtained by controlling the current in the windings for each position of the moving row relative to the magnetic circuits.
US10651716B2 Magnetic actuators for haptic response
In an embodiment, an actuator or circuit includes elements moveably coupled via bearings positioned between curved grooves. The bearings and the curves may exert a restorative force to return the elements to an original position after movement and may be spherical, cubic, cylindrical, and/or include gears that interact with groove gears. In some embodiments, an electrical coil may be coplanar with a surface of an element and a hard magnet may be positioned in the center and be polarized to stabilize or destabilize the element with respect to another element. In various embodiments, a magnetic circuit includes an element with an electrical coil wrapped in multiple directions around the element. In some embodiments, an actuator includes attraction elements and exertion of force causes an element to approach, contact, and/or magnetically attach to one of the attraction elements.
US10651715B2 Linear vibration motor, and portable electronic device provided with said linear vibration motor
The object of the present invention is to shorten the dimension in the axial direction to achieve compactness. The present invention has a movable element integrally provided with a magnet portion, weight portions, and shafts; a frame accommodating the movable element and enabling reciprocating motion thereof along a axial direction; a coil secured to the frame and drives the magnet portion along the axial direction; and elastic members exerting, on the movable element, elastic forces repelling the driving forces that act on the magnet portion. The shafts each extend toward a side along the axial direction. Tip ends of the shafts are configured as free ends. Bearings slidably supporting the shafts are secured to the frame. The weight portions have recessed portions that are formed along the axial direction. The shafts and the bearings are disposed in the spaces within the recessed portions.
US10651714B2 Resolver rotor and rotating electrical machine including same
There is provided a resolver rotor in a resolver provided to a rotating electrical machine. The resolver rotor is formed from an annular body. A phase determination hole for setting a relative position to a shaft of a motor is provided at a near outer peripheral portion of the resolver rotor. A virtual circle is set which comes into contact with a section of the phase determination hole at a proximal end to an inside diameter of the resolver rotor, and has a center point coincident with the center of the resolver rotor. A pair of hole portions are arranged at portions extending from the virtual circle to an outside diameter side of the resolver rotor while taking in the virtual circle.
US10651713B2 Grouped tooth electric motor
An electric motor may comprise a rotor and a stator comprising rotor and stator teeth, respectively. A non-uniform angular spacing or grouping of rotor teeth may facilitate desired rotational speeds of the rotor. In an embodiment, such non-uniform angular spacing may be such that for at least a subset of the rotor teeth comprising a first, second, and third rotor tooth, an angular spacing between the first and the second rotor teeth is at least twice an angular spacing between the second and the third rotor teeth.
US10651711B2 Magnetless rotary electric machine
The magnetless rotary electric machine includes an annular rotor, an outer stator and an inner stator. The annular rotor includes an annular rotor yoke portion, outer salient poles, outer rotor coils, inner salient poles, inner rotor coils, first rectifying devices and second rectifying devices. The first salient pole is configured to be magnetized by an induction current induced by the first coil. Each of the first rectifying devices is configured to rectify current such that a direction of a magnetic pole of the first salient pole is a first direction. The second salient pole is configured to be magnetized by an induction current induced by the second coil. Each of the second rectifying devices is configured to rectify current such that an direction of a magnetic pole of the second salient pole is a second direction. The second direction is a reverse direction to the first direction.
US10651709B2 Fan arbor grounding
A blower comprising: (a) a stator including: (i) one or more magnets and (ii) an impeller having a cup that receives the magnet; (b) a stator including: (i) an arbor; and (ii) motor windings; (c) a printed circuit board; and (d) a contact spring that extends between the arbor and the printed circuit board to ground the arbor.
US10651707B2 Rotary electric machine having a turbine having increased negative pressure
A rotary electric machine that includes a rotor and a stator and is cooled by a stream of air generated by at least one fan. The fan is driven by a main shaft of the machine or by its own drive system. The fan includes main blades (33) for generating a stream of cooling air and, upstream of said main blades, tins which at least partially cover coil heads of the stator in the axial direction.
US10651706B2 Control unit for a power tool
A power tool is provided including a tool housing, an electric motor disposed inside the tool housing, a power interface facilitating a connection to a power source, a plurality of power components arranged to modulate a supply of power from the power interface to the electric motor, a user-actuated input unit providing an analog signal corresponding to a desired rotational speed of the electric motor, and a control unit is receiving the analog signal from the user-actuated input unit. The control unit includes a controller configured to control a switching operation of the power components based on the analog signal to regulate an amount of electric power being supplied to the electric motor, and an input detection unit configured to generate an ON/OFF signal to turn on the controller based on detection of a prescribed change in the analog signal indicative of an initial actuation of the user-actuation unit.
US10651702B2 Coreless rotating electrical machine with stator including cylindrical coil and cooling method therefor
A high performance rotating electrical machine which aims at downsizing, and challenges inevitable technical problems such as deterioration of efficiency η caused by copper loss and temperature rise inside the rotating electrical machine due to heat generation induced by eddy current generated in magnetic body.
US10651701B2 Motor, motor production method, and stator unit
A motor includes a rotor having a shaft disposed along a central axis extending in a vertical direction; and a stator opposed to the rotor in a radial direction with a gap therebetween. The stator includes: an annular core back extending in a circumferential direction; a plurality of teeth extending from the core back in the radial direction; a plurality of coils formed of a conductive wire wound around the teeth, the coils forming a plurality of connection systems; and an insulator, at least part of which is positioned between the teeth and the coils. The coils include: a first coil wound around the teeth via the insulator; and a second coil wound around the teeth via the first coil and the insulator.
US10651700B2 Rotating electrical machine
In this rotating electrical machine, each of coil centers of a first concentric coil and a third concentric coil is located on one side in a circumferential direction with respect to a center of a magnetic pole, and each of coil centers of a second concentric coil and a fourth concentric coil is located on the other side in the circumferential direction with respect to the center of the magnetic pole.
US10651697B2 Magnet for IPM rotor, IPM rotor, and method of manufacturing magnet for IPM rotor
A magnet for an IPM rotor is inserted into a rotor core in an inserting direction along an axial direction thereof and buried in the rotor core in a circumferential direction thereof. The magnet for an IPM rotor is formed such that a shape thereof is a parallelogram having opposing sides when seen in a plan view from the inserting direction.
US10651696B2 Motor rotor
A motor is provided. The motor includes a stator, a rotor rotatably disposed in the stator, and a motor shaft provided in the rotor to rotate integrally with the rotor. The rotor includes at least one permanent magnet fixing core, at least one injection fixing core alternately stacked with the at least one permanent magnet core in a direction of the motor shaft, a plurality of permanent magnets inserted at a predetermined interval in the at least one permanent magnet fixing core and the at least one injection fixing core, and an injection ring formed to cover the at least one permanent magnet fixing core, the at least one injection fixing core, and the plurality of permanent magnets. The at least one permanent magnet fixing core is formed to prevent the permanent magnets from becoming separated from the rotor by a centrifugal force, and the at least one injection fixing core is formed to prevent the injection ring from becoming separated from the rotor by the centrifugal force.
US10651694B2 Wireless power transmission method and device therefor
A wireless power transmission method executed by a power transmitter comprising multi-coils, according to one embodiment of the present invention, comprises the steps of: detecting a second power receiver while transmitting power to a first power receiver; determining at least one primary coil adequate for power transmission; by using the determined at least one primary coil, determining whether the second power receiver supports a shared mode protocol; and if the second power receiver supports the shared mode protocol, transmitting power to the first and second power receivers according to the shared mode protocol, wherein the shared mode protocol may be a protocol for simultaneously managing information exchanges between the power transmitter and multiple power receivers.
US10651688B2 Dynamic tuning in wireless energy transfer systems
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for dynamically tuning circuit elements. One aspect includes a variable capacitance device. The device includes a first capacitor, a first switch, a second capacitor, a second switch, and control circuitry. The control circuitry is configured to adjust respective capacitances of the first and second capacitors by causing a first control signal to be applied to the first-switch control terminal for a duration of time in response to detecting a zero voltage condition across the first switch, and by causing a second control signal to be applied to the second-switch control terminal for the duration of time in response to detecting a zero voltage condition across the second switch.
US10651686B2 Flux-enhanced energy harvesting from current-carrying conductors
An apparatus for harvesting power from a current carrying conductor without electrically contacting the conductor is provided. The apparatus employs a coil with core and flux concentrators of high magnetic permeability steel that redirect the time-varying magnetic flux of the conductor to interact more strongly with the coil, and increase the coil's output voltage and power. A voltage converter may be used with a DC voltage output that can continually charge batteries or supercapacitors as well as provide energy for sensors, accelerometers, long-range radios to transmit data on local powerline conditions, and LEDs and buzzers. The apparatus may also have powered environmental sensors for measuring the concentrations of airborne particulate matter such as diesel exhaust and smoke, as well as toxic gases, greenhouse gases, allergenic pollens etc. The apparatus has a housing that is oriented and coupled to the conductor with a coupling.
US10651685B1 Selective activation of a wireless transmitter device
A wireless transmitter device is configurable and operable to transfer energy to multiple receiver devices at the same time. The transmitter device includes at least one layer of discrete transmitter coils. The wireless transmitter device is configured to enable one or more sections of a charging surface to transfer energy by selectively choosing one or more discrete transmitter coils in the wireless transmitter device based on the position of the receiver device on the charging surface. The size and shape of each section of the charging surface that is used to transfer energy to a receiver device can change dynamically based on each receiver device. Additionally, the process of transferring energy to each receiver device may be adjusted during energy transfer based on conditions specific to each receiver device.
US10651680B2 Uninterruptible power supply apparatus and method
An uninterruptible power supply apparatus and method. The uninterruptible power supply apparatus includes a first generator, an energy storage, a first power converter connected to the energy storage, a second power converter connected to the energy storage, a first switch connected to the first power converter and a first load, a second switch connected to the second power converter, the first generator and a second load, and a third switch connected to a power grid, the first generator, the second power converter, the first switch and the second switch. In a normal state in which the first switch and the third switch are connected, the power grid supplies power to the first load or the second load. In an independent operating state in which the third switch is turned off, the first generator or the energy storage uninterruptibly supplies power to the first load or the second load.
US10651679B2 Wireless input device and power management method of the same
This invention provides a wireless input device, including a primary battery set, a backup battery, an electricity generating device, an energy-storage/charging device, and a switching device. The primary battery set provides electricity to the wireless input device. The backup battery provides electricity to the wireless input device when the primary battery set does not have sufficient electricity. The electricity generating device generates electricity in response to clicking/pressing operations to the wireless input device. The energy-storage/charging device is coupled to the backup battery and the electricity generating device. The energy-storage/charging device stores the electricity generated by the electricity generating device and charges the backup battery when the stored electricity has reached a predetermined volume. The switching device is coupled to the primary battery set and the backup battery. The switching device selects the primary battery set or the backup battery to provide electricity to the wireless input device.
US10651677B2 Charging system and charging method, and power adapter and switching-mode power supply
A charging system and charging method for a terminal (2), and a power adapter (1) and a switch power source. The switch power source comprises a first rectification unit (101), a switch unit (102), a transformer (103), a second rectification unit (104), a sampling unit (106) and a control unit (107), wherein the control unit (107) outputs a control signal to the switch unit (102) and adjusts a voltage of a first pulse waveform according to a voltage sampling value and/or a current sampling value sampled by the sampling unit (106) to obtain a primary sampling voltage, and adjusts a duty ratio of the control signal according to the primary sampling voltage, the voltage sampling value and/or the current sampling value, so that a voltage of a third pulse waveform satisfies a charging requirement. The switch power source can make an output voltage and current waveform change along with an input voltage and current waveform, so that a good power factor can be obtained. Moreover, when the switch power source is applied to the power adapter (1), a voltage of an output pulse waveform can be directly loaded to a battery of the terminal (2), so that miniaturization and low costs of the power adapter (1) can be realized.
US10651675B2 Packaged semiconductor devices with wireless charging means
A semiconductor device package is provided, including a semiconductor device, a magnetic flux generation unit, a molding material, and a conductive slot. The magnetic flux generation unit is surrounding an axis and configured to produce magnetic flux passes through the magnetic flux generation unit. The molding material is surrounding the semiconductor device and the magnetic flux generation unit. The conductive slot is positioned over the molding material, wherein an opening is formed on the conductive slot, and the axis passes through the opening.
US10651670B1 Electronic devices with wireless charging antenna arrays
An electronic device may transfer power wirelessly to an external device. The electronic device may include a housing having a cavity. A cover layer may be formed over the cavity. An array of antennas may be formed within the cavity. Antennas in the array may transfer wireless charging signals to the external device through the cover layer to charge the external device while the external device is in contact with the cover layer. Impedance detection circuitry may gather impedance matching information from each antenna in the array. Control circuitry may select an antenna having a best impedance match with the external device for transmitting the wireless charging signals. One or more antennas in the array may form a block filter for the selected antenna. Multiple near-field coupled antennas in the array may be selected for transmitting the charging signals to focus the charging signals on the external device.
US10651669B2 Phase shift control method for charging circuit
A phase shift control method for a charging circuit is disclosed. The charging circuit includes a primary conversion circuit, a first secondary conversion circuit, and a second secondary conversion circuit. The controller causes a phase angle difference Φ between an ON/OFF waveform of power switches in the primary conversion circuit and an ON/OFF waveform of power switches in the first secondary conversion circuit. The controller collects an output current (Io1) and an output voltage (Vo1) of the first secondary conversion circuit, collected by the first secondary current collector and the first secondary voltage collector, carries out comparison and calculation between the collected output current and output voltage and a preset output current and output voltage, and adjusts the magnitude and positive and negative of the phase angle difference Φ according to the comparison result.
US10651666B2 Electricity-storage system, monitoring device, and power control system
An electricity-storage system 110a is configured to be able to charge and discharge by connecting a plug to an electrical outlet 140a. Power discharged from the electricity-storage system 110a is monitored by a reverse-power monitoring device 100 and discharge from the electricity-storage system 110a is executed according to instruction from the reverse-power monitoring device 100, in order to avoid reverse power flow to an electrical grid 150.
US10651665B2 Current sense apparatus for battery charger systems
A current sense method comprises generating a voltage across a first current mirror of a current sense apparatus, the voltage being proportional to a current flowing through the current sense apparatus when the current is greater than a predetermined current value and applying a minimum drain-to-source voltage limiter to the first current mirror of the current sense apparatus when the current is less than the predetermined current value, wherein, as a result of applying the minimum drain-to-source voltage limiter to the first current mirror, the voltage across the first current mirror is clamped to a predetermined voltage value.
US10651661B2 Regulating charging port attach and detach
Methods and systems for regulating charging port attach and detach in an electronic device configured to receive a charging current from a charging port are provided. An example method includes automatically detecting a detach from the charging port. The method may further include automatically lowering a current limit associated with the charging current. The method may further include if during a predetermined wait time an attach to the charging port is detected, then ignoring the detach from the charging port and allowing the charging current to charge the electronic device at the lower current limit associated with the charging current. The method may further include if during the predetermined wait time the attach to the charging port is not detected, then initiating a charging port detach process.
US10651654B2 Model predictive controller for autonomous hybrid microgrids
A control system is disclosed with a control strategy for autonomous multi-bus hybrid microgrids based on Finite-Control-Set Model Predictive Control (FCS-MPC). The control loops are expedited by predicting the future states and determining the optimal control action before switching signals are sent to converters/inverters. The method eliminates PI and PWM components, and offers 1) accurate PV maximum power point tracking (MPPT) and battery charging/discharging control, 2) DC and AC bus voltage/frequency regulation, and 3) precise and flexible power sharing control among multiple DERs.
US10651653B2 Digital messages in a load control system
A load control system may comprise load control devices for controlling respective electrical loads, and a system controller operable to transmit digital messages including different commands to the load control devices in response to a selection of a preset. The different commands may include a preset command configured to identify preset data in a device database stored at the load control device and/or a multi-output command configured to define the preset data for being stored in the device database. The system controller may decide which of the commands to transmit to the load control devices in response to the selection of the preset.
US10651651B2 Device with built-in active filter
In a device with a built-in active filter, the device incorporating an active filter therein and being connected to an AC power source, the active filter operates based on a value detected by a load information detection unit detecting load information on an AC power source outside the device with a built-in active filter.
US10651647B2 Bypass mechanism
A bypass mechanism for a photovoltaic module which switches out the electronics and switches in a bypass mechanism.
US10651640B2 Grommet and wire harness using the same
A grommet (1) including a body portion (3) dividing an inside and an outside of a mounting member, an electric wire insertion portion (7) extending from the body portion (3) toward the outside of the mounting member and configured to insert an electric wire, a seal portion (9) provided at an end of the electric wire insertion portion (7) to be in close contact with an outer circumference of the electric wire, and a protective portion (11) disposed on the electric wire insertion portion (7) and configured to extend along the electric wire insertion portion (7) and to cover an outer circumference of the electric wire exposed from the seal portion (9).
US10651635B2 Panel for accommodating a draw-out device
A panel for accommodating a draw-out device, such as a vacuum circuit breaker or metering device, includes: a housing with an access opening for accommodating a draw-out device and with primary plugs and secondary plugs connectable to the draw-out device; a traveling system arranged in the housing and for positioning the draw-out device within the housing in a connected position, a service position, and a disconnected position; a door arranged on the housing and movable between a closed position to close the access opening and an open position for provide access to the housing; a primary blocking element for blocking movement of the traveling system from the disconnected position to the service position with the door in the open position or between the open position and the closed position; and a secondary blocking element for blocking the door to move into the closed position with the draw-out device being disconnected.
US10651631B2 Spark plug with polymer sealing ring
A spark plug is specified, having a metal shell with an axial bore and a threaded section, having an insulator with an axial bore that is located at least partially inside the axial bore of the metal shell; a center electrode that is accommodated at least partially inside the axial bore of the insulator; a ground electrode that is held by the metal shell, wherein an end region of the ground electrode forms, together with the center electrode, an ignition gap, and having a sealing ring that extends at least between an outside shoulder of the insulator and an inside shoulder of the metal shell, wherein the sealing ring has polyaryl ether ketone (PAEK), preferably polyether ether ketone (PEEK).
US10651629B1 Gallium nitride containing laser device configured on a patterned substrate
A gallium and nitrogen containing laser diode device. The device has a gallium and nitrogen containing substrate material comprising a surface region. The surface region is configured on either a non-polar crystal orientation or a semi-polar crystal orientation. The device has a recessed region formed within a second region of the substrate material, the second region being between a first region and a third region. The recessed region is configured to block a plurality of defects from migrating from the first region to the third region. The device has an epitaxially formed gallium and nitrogen containing region formed overlying the third region. The epitaxially formed gallium and nitrogen containing region is substantially free from defects migrating from the first region and an active region formed overlying the third region.
US10651628B2 Micropillar optoelectronic device
The invention discloses a semiconductor optoelectronic micro-device comprising at least one cavity and at least one multilayer interference reflector. The device represents a micrometer-scale pillar with an arbitrary shape of the cross section. The device includes a vertical optical cavity, a gain medium and means of injection of nonequilibrium carriers into the gain medium, most preferably, via current injection in a p-n-junction geometry. To allow high electric-to-optic power conversion at least one contact is placed on the sidewalls of the micropillar overlapping with at least one doped section of the device. Means for the current path towards the contacts and for the heat dissipation from the gain medium are provided. Arrays of micro-devices can be fabricated on single wafer or mounted on single carrier. Devices with different cross-section of the micropillar emit light at different wavelengths.
US10651627B2 Photonic integrated circuit
Methods, systems, and apparatus, including an optical receiver including an optical source, including a substrate; a laser provided on the substrate, the laser having first and second sides and outputting first light from the first side and second light from the second side, the first light output from the first side of the laser has a first power and the second light output from the second side has a second power; and a first modulator that receives the first light and a second modulator that receives the second light, such that the power of the first light at an input of the first modulator is substantially equal to the power of the second light at an input of the second modulator.
US10651625B2 Method of producing a plurality of laser diodes and laser diode
A method of producing a plurality of laser diodes includes providing a plurality of laser bars in a compound, wherein the laser bars each include a plurality of laser diode elements arranged side by side, the laser diode elements each have a common substrate and a semiconductor layer sequence arranged on the substrate, and a splitting of the compound at a longitudinal separation line running between two adjacent laser bars in each case leads to formation of laser facets of the laser diodes to be produced, and structuring the compound at at least one longitudinal separation line, wherein a strained compensation layer is applied to the semiconductor layer sequence at least at the longitudinal separation line or the semiconductor layer sequence is at least partially removed.
US10651624B2 Optoelectronic modules having features for improved alignment and reduced tilt
This disclosure describes an optoelectronic to provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The module includes spacers to establish precise separation distances between various parts of the module. One of the spacers serves as a support or mount for an optical element that comprises a mask.
US10651622B2 Modal instability control in fiber lasers
Fiber lasers and methods are provided, in which the modal instability threshold is raised to provide more laser power. Fiber lasers comprise an active optical fiber having at least one absorption peak wavelength (λpeak) and capable of supporting more than a fundamental mode during operation, and a plurality of pump diodes connected to deliver radiation emitted thereby into the optical fiber. At least one of the pump diodes is a wavelength-locked (WL) diode and at least one of the pump diodes is configured to deliver radiation at at least λ≠λ(not necessarily the same diode(s)). The pump diodes may comprise any of WL diode(s) at λ≠λpeak, WL diode(s) at λ=λpeak and non-WL diode(s). Pumping radiation off the fiber's absorption peak increases the modal instability threshold, most likely by reducing the temperature gradient in the active fiber at the fiber pump entrance point and along the fiber.
US10651619B2 Optical system and method for ultrashort laser pulse characterization
The optical system comprises: means for introducing a controlled negative or positive chirp to an incoming ultrashort laser pulse to be characterized; a nonlinear optical medium through which said chirped ultrashort laser pulse is propagated, wherein as a result of said propagation: different chirp values are introduced in the ultrashort laser pulse at different propagation distances along the nonlinear optical medium, and a transverse nonlinear signal is generated in a direction perpendicular to the propagation axis; analyzing means configured for recording a single-shot spectral image of said generated transverse nonlinear signal; and a processing module comprising one or more processors configured to execute a numerical iterative algorithm to said single-shot spectral image to retrieve the electric field, amplitude and phase, of the ultrashort laser pulse.
US10651615B2 Contact rail device for an at least partly electrically driven motor vehicle
A contact rail device for an at least partly electrically driven motor vehicle. The contact rail device comprises at least one busbar for electrical contact-connection of an electric machine to a supply device for the electric machine In this case, the busbar comprises at least one compensation bow for compensation of temperature-dependent changes in length.
US10651614B1 Plug connector
A plug connector includes a main body, a protecting assembly and an outer shell. The main body includes a connecting element for an electrical connection, a circuit board electrically connected with the connecting element, a soldering element fastened to a rear end of the circuit board, and an inner shell surrounding the circuit board. The protecting assembly is fastened to the main body. The protecting assembly includes a combination element surrounding the inner shell, and a protecting element fastened with the combination element. The outer shell surrounds the inner shell. The protecting element is fastened to a junction among the connecting element, the inner shell and the outer shell. The combination element has a first buckling assembly and a second buckling assembly. The first buckling assembly is buckled with the inner shell. The second buckling assembly is buckled with the outer shell.
US10651611B2 L-type coaxial connector and method for manufacturing L-type coaxial connector
An L-type coaxial connector is connected to a coaxial cable including a central conductor and an external conductor, and includes a housing, a bushing, and a socket. The housing includes a housing main body, a back-side section, and a crimp section. The housing main body has a first cut section. The back-side section includes a lid section and an extending section extending from the lid section and above which the external conductor is placed. The crimp section extends from the extending section, and its leading end section is bent so as to be opposed to the extending section such that the coaxial cable is interposed therebetween. The extending section has a second cut section, and a joining member joining the external conductor and the extending section is present inside the second cut section.
US10651609B2 Method of manufacturing physical quantity sensor device and physical quantity sensor device
A first connector pin to a third connector pin have a substantially L-shaped cross-sectional shape formed by a horizontal part embedded in the top of an inner housing part by resin molding and a vertical part continuous with and protruding upwardly orthogonal to the horizontal part. A fourth connector pin has a substantially I-shaped cross-sectional shape having only the vertical part. The horizontal part of the first connector pin is provided so as to surround the first end of the first connector pin, the horizontal part and the first end of the second connector pin, the horizontal part and the first end of the third connector pin, and is integrated and connected to the fourth connector pin. A chip capacitor is attached to the connector pins by a joining member. Thus, the connector pins are connected to each other via the chip capacitors.
US10651607B1 Stacked optical module cage with improved airflow to bottom ports
A housing with improved airflow is provided. The housing includes a cage dimensioned to hold two modules side-by-side in a lower compartment and a further two modules side-by-side in an upper compartment. The cage has a middle compartment between the lower compartment and the upper compartment, with a heatsink in the middle compartment in thermal contact with the two modules when the two modules are in the lower compartment. The middle compartment is ventilated through a first one or more apertures in each of two or more exterior walls of the cage, the middle compartment is further ventilated, when the upper compartment is unoccupied, through a second one or more apertures in an interior wall of the cage separating the middle compartment and the upper compartment, wherein the further two modules when occupying the upper compartment obstruct the second one or more apertures.
US10651606B2 Receptacle connector equipped with cable instead of mounting to PCB
A QSFP-DD receptacle connector received within a cage includes an insulative housing and a contact module assembly received within the housing. The contact module includes a plurality of horizontal wafers stacked with one another, and each wafer includes an insulator and a plurality of contacts integrally formed therein wherein each contact has a front contact sections extending forwardly into a mating cavity formed in the housing, and a rear connecting section connected to a cable rather than to the printed circuit board. The receptacle connector associated with a cable is attached to a chassis. The cage optionally forms therein two mating spaces respectively receiving two receptacle connectors with the associated cables extending rearwardly.
US10651601B1 Connecting cable device with lock device
A connecting cable device includes a cable having two connectors attached to two end portions of the cable, and a lock device includes an elongated member, a casing formed on one end portion of the elongated member and having a chamber formed in the casing for engaging with the cable, a blocking member is engaged into the chamber of the casing for enclosing the chamber of the casing and for engaging with the cable and for retaining the cable in the chamber of the casing, and a fastening element is engaged with the casing and the blocking member for locking the blocking member to the casing and for preventing the blocking member from being disengaged from the casing.
US10651599B2 Connector
A connector comprises a fixed housing, a movable housing and a plurality of contacts. The movable housing is accommodated in the fixed housing and is movable relative to the fixed housing. The movable housing has a catching portion. Each of the contacts has a resiliently deformable portion which is resiliently deformable. Each of the resiliently deformable portions is provided with a contact portion and a facing portion. Each of the facing portions is in contact with the catching portion or faces the catching portion at a distance apart therefrom in the width direction (X-direction). A movement of the movable housing relative to the fixed housing enables the facing portions to be pressed against the catching portion while allowing movements of the facing portions at least in the upper-lower direction (Z-direction).
US10651597B2 Card edge connector equipped with rotatable ejector
A card edge connector includes an insulative elongated housing, a plurality of contacts disposed in the housing, and a pair of rotatable ejectors at two ends of the housing. The housing includes a pair of side walls extending along the longitudinal direction with a receiving slot therebetween in a transverse direction perpendicular to the longitudinal direction, and a pair of towers at two opposite ends of the housing in the longitudinal direction. The receiving slot is configured to receive a card type memory module. The pair of ejectors are disposed in the corresponding towers, respectively. Each ejector includes a kicker at the bottom wherein a tip of the kicker will not invade into the space between the pair of outermost contacts so as not interfere with the corresponding outermost contacts when the ejector is rotated to be at an open/ejecting position.
US10651594B1 Detachable robotic system
A detachable robot system includes a mobile working machine and an intelligent device. The mobile working machine includes a transmission wheel device, a first fastening portion and a first conductive contact. The first fastening portion and the transmission wheel device are oppositely arranged on the first main body. The transmission wheel device loads and moves the first main body. The intelligent device is completely removable from the mobile working machine, and includes a second fastening portion and a second conductive contact. Thus, when the intelligent device is loaded on the mobile working machine, the intelligent device is fixedly coupled to the mobile working machine by the first fastening portion and the second fastening portion engaged with each other, so that the first conductive contact and the second conductive contact are aligned and connected to each other.
US10651586B2 Electrical connector with machine-readable graphic identifier
An electrical connector includes a housing and a presentation block. The presentation block is mounted to the housing along an outer surface of the housing. The presentation block has a three-dimensional shape with a display surface that is angled transverse to an area of the outer surface of the housing on which the presentation block is mounted. The presentation block includes a graphic identifier that is computer-readable and disposed on the display surface.
US10651585B2 Electrical connector with contact module assembled thereto by two steps
An electrical connector includes an insulative housing and a contact module essentially composed of a plurality of contacts integrally formed within an insulator via an insert-molding process wherein the contact module is assembled to the housing via two steps along different directions perpendicular to each other. The housing forms a plurality of protrusions engaged with the corresponding ribs of contact module in the vertical direction so as to retain the contact module to the housing reliably. All the insulator, the contacts and the housing are arranged in a staggered manner.
US10651584B2 Low profile electrical connector
An electrical connector includes an insulative housing, a plurality of conductive contacts retained in the insulative housing, each contact has a first body, a resilient arm extending upwardly and obliquely from an upper side of the first body, a soldering section extending downwardly from a lower side of the first body, and a second body extending from a lateral side of the first body in an oblique direction and having a retention section formed on an outer lateral side thereof opposite to the first body. The housing forms a receiving cavity for receiving both the first body and the second body, and a retention slot for receiving the retention section.
US10651582B2 Connector
In a specific embodiment, a connector 100 is disclosed. The connector 100 comprises an insulative housing 102 defining a rear opening 108 for receiving a plurality of electrical wires 110 and a front opening 106 and a circuit board 104 disposed in the housing 102 and comprising a mating section 112 for mating with a corresponding mating section of a mating connector. The mating section 112 protrudes outwardly from the front opening 106 and terminates at a front edge 118 disposed between opposing side edges 114,116 of the mating section 112. The connector 100 further comprises opposing side arms 128,130 extending forwardly from opposing lateral sides 124,126 of the front opening 106 along, adjacent and beyond corresponding side edges 114,116 of the mating section 112 with a maximum separation between each side edge 114,116 and the corresponding side arm 128,130 being sufficiently small so that when the connector 100 mates with a mating connector, no portion of the mating connector can be inserted between the side edge 114,116 and the corresponding side arm 128,130. Other exemplary embodiments are also disclosed.
US10651581B1 Connector
A connector body includes a recess, a middle island inside the recess, and a mating guide part formed on both sides in the longitudinal direction; a reinforcing metal bracket includes a main body part disposed on the end wall part of the mating guide part, and a central guide part which is connected to the main body part and has a tip which engages with the island end part of the middle island; and the central guide part includes an end wall inner cover part connected to the main body part, an island end cover part which is connected to the tip and covers at least a portion of the island end, and a bottom part which is connected to a lower end of the end wall inner cover part via a first curved part and is connected to a lower end of the island end cover part via a second curved part; wherein a lower surface of the first curved part is positioned above a lower surface of the second curved part.
US10651575B2 Card edge connector assembly with support structure
A card edge connector assembly includes a card edge connector having a housing defining a card slot receiving a paddle card of a pluggable module having a base mounted to a host circuit board holding contacts in the card slot to electrically connect to the paddle card. Support hardware is coupled to the housing having a base including a cavity receiving the card edge connector and a support beam extending from the base having a pocket receiving the pluggable module. The support beam has a support surface configured to support the pluggable module independent of the card edge connector. The support hardware has a latch coupled to the support beam latchably coupled to the pluggable module to secure the pluggable module in the support hardware electrically coupled to the card edge connector.
US10651569B2 Antenna with selectively enabled inverted-F antenna elements
A radio frequency (RF) antenna unit is described. The RF antenna unit includes a feed portion, at least first and second selective grounding portions each configured to selectively enable or disable an electrical coupling to a substrate, and at least first and second conductive arms. The first conductive arm provides electrical conduction between the feed portion and the first grounding portion, extending from the first grounding portion towards and beyond the feed portion. The second conductive arm provides electrical conduction between the feed portion and the second grounding portion, extending from the second grounding portion towards and beyond the feed portion. First and second inverted F antenna (IFA) elements are defined by the feed portion, the respective first or second grounding portion and the respective first or second conductive arm. The feed portion is common to both the first and second IFA elements.
US10651560B2 Waveguide radiator, array antenna radiator and synthetic aperture radar system
A waveguide radiator includes a slotted waveguide with a plurality of transverse or longitudinal slots provided in the waveguide and an additional inner conductor provided in the waveguide. The inner conductor is formed, depending on the alignment of the slots in such a manner that the result is a feed according to the traveling wave principle, wherein all slots of the waveguide can be excited with identical phase.
US10651559B2 Redirection of electromagnetic signals using substrate structures
A system for transmitting or receiving signals may include a dielectric substrate having a major face, a communication circuit, and an electromagnetic-energy directing assembly. The circuit may include a transducer configured to convert between RF electrical and RF electromagnetic signals and supported in a position spaced from the major face of the substrate operatively coupled to the transducer. The directing assembly may be supported by the substrate in spaced relationship from the transducer and configured to direct EM energy in a region including the transducer and along a line extending away from the transducer and transverse to a plane of the major face.
US10651556B2 Antenna unit and electronic device
An antenna unit includes a conductive ground plate, a first antenna element, and a second antenna element. The first antenna element includes a first end connected to a feedpoint and a second end containing an open end. A part of the first antenna element is disposed along the conductive ground plate. The second antenna element branches off the first antenna element at a branch point on the first antenna element. The second antenna element is disposed between the part of the first antenna element disposed along the conductive ground plate and the conductive ground plate. The first antenna element resonates at a first frequency. The second antenna element and a segment between the first end and the branch point of the first antenna element resonate at a second frequency that is higher than the first frequency.
US10651547B2 Electronic apparatus
An electronic apparatus includes a display; and an antenna including a first element without power feeding that is a structural component made of metal and is disposed on the display or above a display surface of the display in a display direction, a second element which is disposed below the first element and is connected to a power supply, and a GND plate that is disposed below the second element, wherein the first element and the second element are electromagnetically coupled.
US10651546B2 Multi-beam antennas having lenses formed of a lightweight dielectric material
A multi-beam antenna includes a plurality of radiating elements and a lens that is positioned to receive electro-magnetic radiation from at least one of the radiating elements, the lens comprising a composite dielectric material. The composite dielectric material comprises a foamed base dielectric material having particles of a high dielectric constant material embedded therein, the high dielectric constant material having a dielectric constant that is at least three times a dielectric constant of the foamed base dielectric material.
US10651545B2 Data communications case
A data communications apparatus including a case. A power supply is secured inside the case. A router device is secured inside the case, the router device selectively receiving power from the power supply. The router device includes at least one cellular gateway for wide area network communication as well as being configured to enable at least one wireless network for local area network communication. An antenna array is in electrical communication with the router device, the antenna array including at least two cellular antennas and at least one wireless networking antenna. The first pair of cellular antennas are configured to support multiple input multiple output applications for the at least one cellular gateway.
US10651544B2 Antenna system and mobile terminal
The present disclosure discloses an antenna system and a mobile terminal. The antenna system includes a first feeding point, a first millimeter-wave array antenna electrically connected to the first feeding point, a second feeding point, a second millimeter-wave array antenna electrically connected to the second feeding point, a third feeding point, a third millimeter-wave array antenna electrically connected to the third feeding point, a fourth feeding point, and a fourth millimeter-wave array antenna electrically connected to the fourth feeding point, which are all disposed on the circuit board. Beams of the first millimeter-wave array antenna cover a space of X>0. Beams of the second millimeter-wave array antenna cover a space of X<0. Beams of the third millimeter-wave array antenna cover a space of Y>0. Beams of the fourth millimeter-wave array antenna cover a space of Y<0.
US10651541B1 Package integrated waveguide
A method of manufacturing a packaged semiconductor device including forming an assembly by coupling a semiconductor die and an antenna by way of a substrate, contacting with a conformal structure at least a portion of a first surface of the antenna, and encapsulating the assembly with an encapsulant such that the at least a portion of the first surface of the antenna contacted by the conformal structure is not encapsulated with the encapsulant.
US10651540B2 Antenna unit and electronic device
An antenna unit includes a plate-shaped dielectric substrate, as well as an antenna element and a stub element. The dielectric substrate has a first edge extending along a longitudinal direction of the dielectric substrate and a second edge extending along the longitudinal direction of the dielectric substrate, and the second edge is opposite to the first edge. The antenna element is disposed along the longitudinal direction of the dielectric substrate. The Antenna element has a first end containing a feedpoint and a second end containing an open end. The stub element is disposed between a section of the antenna element having a predetermined length containing the first end of the antenna element and the first edge of the dielectric substrate along the longitudinal direction of the dielectric substrate. The stub element has a first end connected to a reference potential and a second end containing an open end.
US10651539B2 Mounting arrangement for wireless communication board for a portable generator
A portable generator is disclosed including a mounting arrangement for positioning a wireless communication device on a control panel of the portable generator. The mounting arrangement includes a mounting platform formed from a composite material where the mounting platform is secured to a rear surface of a front panel of the control panel assembly. The front panel includes a transmission cutout. The mounting platform includes a transmission window such that a wireless antenna of the wireless communication device can be aligned with the transmission cutout. The portable generator further includes a fuel sensing device that generates both a visual indication and an output signal indicative of the level of fuel in a fuel tank. The output signal can be transmitted by the wireless communication device to a remote location for remote fuel monitoring.
US10651538B1 Method for retractably shrouding antenna cables
A method is disclosed for alternately covering and exposing feed cables to a wireless telecommunications antenna from a pole-mounted RF source. The method deploys a resiliently stretchable tubular shroud, which has a proximal opening attached near the top of the pole and a distal opening alternately attachable to a section of the antenna proximate to the cable connections or to a section of the pole below the proximal shroud opening. In the former configuration, the shroud covers and protects the feed cables, while in the latter configuration, the retracted shroud exposes the cables for repair, maintenance, replacement and/or inspection operations.
US10651536B2 Window glass for vehicle
A vehicle window glass includes a glass including a transparent area and a shading area around the transparent area; a defogger including wires placed at equal first intervals extended in a direction, and a defogger element connected to the wires; and a glass antenna including a power feeding point in the shading area, and a first element connected to the power feeding point. The defogger element includes a first part in the transparent area and extended in the direction, and a second part in the shading area and connected to the first part. The first element includes a third part in the transparent area extended in the direction, and a fourth part in the shading area and connected to the third part and the power feeding point. A part of the second part and a part of the fourth part are placed to have a narrower interval.
US10651534B2 Antenna with sensors for accurate pointing
Determining movement for alignment of a satellite antenna using accelerometer data and gyroscope data of the satellite antenna. Described techniques include receiving accelerometer data for a first time period from an accelerometer mounted on the antenna and analyzing the accelerometer data to determine a movement time window for a movement event of the antenna. The techniques may include receiving gyroscope data for the first time period from a gyroscope mounted on the antenna and analyzing the gyroscope data during the movement time window to determine an amount of movement of the antenna due to the movement event.
US10651533B2 Sensed situation millimeter-wave communications beam control
The present disclosure relates to a system includes an antenna disposed on a pole and a beam control unit disposed on the pole and operably coupled to the antenna. The beam control unit includes one or more sensors configured to detect one or more parameters related to tilting or bending of the pole. In addition, the beam control unit is configured to determine a misalignment of an antenna boresight as compared to an initial antenna boresight direction and to re-align the antenna boresight to the initial antenna boresight direction.
US10651531B2 Compactable RF membrane antenna
Exemplary embodiments are described herein for compactable antennas. Exemplary compactable antennas include a support structure and a reflector surface. The support structure may directly or indirectly define the reflector shape. Exemplary embodiments comprise deployable support structures to permit the compactable antenna to have a smaller volume stowed configuration and a larger volume deployed configuration.
US10651521B2 Lithium ion battery with thermal runaway protection
Lithium ion batteries are provided that include materials that provide advantageous endothermic functionalities contributing to the safety and stability of the batteries. The endothermic materials may include a ceramic matrix incorporating an inorganic gas-generating endothermic material. If the temperature of the lithium ion battery rises above a predetermined level, the endothermic materials serve to provide one or more functions to prevent and/or minimize the potential for thermal runaway, e.g., thermal insulation (particularly at high temperatures); (ii) energy absorption; (iii) venting of gases produced, in whole or in part, from endothermic reaction(s) associated with the endothermic materials, (iv) raising total pressure within the battery structure; (v) removal of absorbed heat from the battery system via venting of gases produced during the endothermic reaction(s) associated with the endothermic materials, and/or (vi) dilution of toxic gases (if present) and their safe expulsion from the battery system.
US10651520B2 Battery
A battery apparatus may include a cell-stacked structure including a plurality of cells stacked in a horizontal direction, a first plate covering at least one of upper and lower end portions of the cell-stacked structure, and a thermal conductive adhesive interposed between the first plate and the upper or lower end portion of the cell-stacked structure covered by the first plate.
US10651517B2 Long cycle life prismatic battery cell for high power applications
A battery module is disclosed. The battery module comprises a housing, a heat-conducting fin disposed within the housing having a first fin surface and a second fin surface, the first fin surface and the second fin surface defining a respective first housing cavity and a second housing cavity within the housing. The battery module further comprises a first battery cell disposed within the first housing cavity and engaging the first fin surface and a second battery cell disposed with the second housing cavity and engaging the second fin surface. The heat-conducting fin is adapted to conduct heat from the first and second battery cells outwardly from the housing.
US10651515B2 Battery sensor data transmission unit and a method for transmitting battery sensor data
A battery sensor data transmission unit is described as including a data transmission unit, which is designed to output a sensor signal, which represents a physical variable in or at the battery cell to an evaluation device, using a battery housing wall and/or a wall of a battery cell as the transmission medium.
US10651512B2 Shape-conformable alkali metal-sulfur battery having a deformable and conductive quasi-solid electrode
Provided is an alkali metal-sulfur cell comprising: (a) a quasi-solid cathode containing about 30% to about 95% by volume of a cathode active material (a sulfur-containing material), about 5% to about 40% by volume of a first electrolyte containing an alkali salt dissolved in a solvent (but no ion-conducting polymer dissolved therein), and about 0.01% to about 30% by volume of a conductive additive wherein the conductive additive, containing conductive filaments, forms a 3D network of electron-conducting pathways such that the quasi-solid electrode has an electrical conductivity from about 10−6 S/cm to about 300 S/cm; (b) an anode; and (c) an ion-conducting membrane or porous separator disposed between the anode and the quasi-solid cathode; wherein the quasi-solid cathode has a thickness from 200 μm to 100 cm and a cathode active material having an active material mass loading greater than 10 mg/cm2.
US10651511B2 Wound cell having single-side coated areas
Provided is a wound cell, formed by winding of a first and second separator, a first and second electrode plate from start ends thereof, outermost circle of second electrode plate includes second single-side coated area, surface of which facing center of the wound cell is second blank current collector area not coated with second active material, portion of first electrode plate opposite to second blank current collector area includes first single-side coated area, surface of which away from the center of the wound cell is first blank current collector area not coated with first active material; tail end of first electrode plate contains first blank foil area, portion of second electrode plate opposite to first blank foil area contains second blank foil area; start ends of first and second single-side coated area are located at two opposite sides in thickness direction of the cell.
US10651505B2 Secondary battery and method of manufacturing secondary battery
A secondary battery may include a plurality of cathode layers which have a porous structure including a plurality of pores, have a flat plate-shape, and are arranged to be spaced apart from each other in a direction. The secondary battery further includes an electrolyte layer including a first electrolyte film and a second electrolyte film, where the first electrolyte film surrounds external surfaces of the cathode layers, and the second electrolyte film is disposed in the pores of the cathode layers. The secondary battery further includes an anode layer surrounding the first electrolyte film.
US10651502B2 Garnet materials for Li secondary batteries and methods of making and using garnet materials
Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device. Also, the methods set forth herein disclose novel sintering techniques, e.g., for heating and/or field assisted (FAST) sintering, for solid state energy storage devices and the components thereof.
US10651498B2 Secondary battery and vehicle
The present disclosure relates to technical field of energy storage devices, and in particular, to a secondary battery and a vehicle. The secondary battery includes a top cover plate, electrode terminals disposed on the top cover plate, at least one electrode assembly including a main body and a plurality of conductive portions extending from the main body. The plurality of conductive portions is stacked and forms a tab, and the main body is formed by winding a first electrode plate, a second electrode plate and a separator disposed between the first electrode plate and the second electrode plate. The secondary battery also includes connecting pieces for connecting the tab to the electrode terminal. The tabs extend from one side of the main body viewed in thickness direction and are bent with respect to height direction and is connected to the connecting piece.
US10651497B2 Apparatus and method for preparing slurry for secondary battery
Disclosed are an apparatus and method for preparing slurry for a secondary battery.According to the present invention, a solvent is intermittently injected into a mixer for preparing the slurry to measure a torque value applied to the mixer and thereby to obtain a maximum value of the torque value applied to the mixer. Then, a kneading point that is a mixing ratio of the powder and the solvent, which are used for preparing the slurry, is calculated to determine an optimized kneading point without error and through an automatic process.
US10651496B2 Modular pad for a fuel cell system
A pad for a fuel cell system includes a base having an upper surface, a separator disposed on the upper surface of the base, frames disposed on the separator and configured to support modules of the fuel cell system, and plumbing disposed between the upper surface of the base and the frames, and connected to the fuel cell modules. The separator is configured to space apart the frames and the upper surface of the base. The base may include modular sections that may be arranged in a linear configuration, a rectangular configuration, an orthogonal configuration, or a stepped configuration.
US10651495B2 Fuel cell stack
A fuel cell includes a first separator and a second separator. A second protrusion is formed on a first sealing portion of the first separator. A concave portion is formed in a second sealing portion of the second separator. When fuel cells are stacked together sequentially in the vertical direction without displacing relative to one another, the center of the second protrusion and the center of the concave portion are aligned with each other. Even if the fuel cells are displaced while being stacked together, the upper fuel cell in the vertical direction is moved to decrease the distance between the center of the second protrusion and the center of the corresponding concave portion.
US10651494B2 Stack module for fuel battery and high temperature electrolysis including individually changeable cell battery module during operation
Disclosed is a stack module for a fuel cell and high temperature electrolysis including an individually changeable cell battery module during operation, the stack module being designed to be able to individually separate, couple, or replace a plurality of cell battery modules by a one-touch manner during operation so that maintenance costs are low, and, even when one or more cell battery modules are separated from a fuel transfer panel, other cell battery modules can operate normally such that superior power generation efficiency can be achieved.
US10651488B2 Body structure element for a vehicle with integrated humidifier
The disclosure relates to a body structure element for increasing the stiffness and/or the crash performance of a body structure of a vehicle, comprising a first channel for a first gas flow with a first gas feed line and a first gas discharge line and comprising means for introducing moisture into the first gas stream. The disclosure relates, in other words, to the functional integration of a humidifier for a fuel cell system into a body structure element and preferably the functional integration of a humidifier for a fuel cell system into crash performance increasing element, in particular, an extrusion profile, and a body structural element. The disclosure also relates to a fuel cell system with a humidifier integrated into a body structure element and a vehicle with such a fuel cell system and/or such a body structure element.
US10651485B2 Fuel cell system
To suppress increase of a pressure loss in a channel and blocking of the channel due to water adhering to a rectification mesh provided downstream of a butterfly valve. A fuel cell system includes: a butterfly valve provided on a pipe between a fuel cell and another component; and a rectification mesh provided on a downstream side of gas flowing in the pipe relative to the butterfly valve, a mesh that rectifies a flow of the gas being formed in the rectification mesh. The rectification mesh has, in its lower end part in a vertical direction, a first opening part in which the mesh is not formed.
US10651478B2 Electrodes having Pt nanoparticles on RuO2 nanoskins
An article having a titanium, titanium carbide, titanium nitride, tantalum, aluminum, silicon, or stainless steel substrate, a RuO2 coating on a portion of the substrate; and a plurality of platinum nanoparticles on the RuO2 coating. The RuO2 coating contains nanoparticles of RuO2. A method of: immersing the substrate in a solution of RuO4 and a nonpolar solvent at a temperature that is below the temperature at which RuO4 decomposes to RuO2 in the nonpolar solvent in the presence of the article; warming the article and solution to ambient temperature under ambient conditions to cause the formation of a RuO2 coating on a portion of the article; and electrodepositing platinum nanoparticles on the RuO2 coating.
US10651470B2 High energy cathodes for lithium ion batteries
An electrode formed from a material represented by Li1-xMxCo1-yM′yO2-d where 0
US10651467B2 High tap density lithium positive electrode active material, intermediate and process of preparation
A lithium positive electrode active material intermediate comprising less than 80 wt % spinel phase and a net chemical composition of LixNiyMn2-yO4-δ wherein 0.9≤x≤1.1; 0.4≤y≤0.5; and 0.1≤δ; where the lithium positive electrode active material intermediate has been heat treated in a reducing atmosphere at a temperature of from 300° C. to 1200° C. A process for the preparation of a lithium positive electrode active material with high tap density for a high voltage secondary battery where the cathode is fully or partially operated above 4.4 V vs. Li/Li+, comprising the steps of a) heating a precursor in a reducing atmosphere at a temperature of from 300° C. to 1200° C. to obtain a lithium positive electrode active material intermediate; b) heating the product of step a. in a non-reducing atmosphere at a temperature of from 300° C. to 1200° C.
US10651465B2 Negative electrode active material for electrical device, and electrical device including the same
A negative electrode active material including a silicon-containing alloy having a ternary alloy composition expressed by Si—Sn—Ti and including a structure in which an a-Si phase containing amorphous or low-crystalline silicon formed by dissolving tin in a crystal structure of silicon is dispersed in a parent phase of a silicide phase including TiSi2, wherein when a peak intensity of a Si—O bond peak that is observed at a position where an interatomic distance in a radial wave function observed by XAFS is 0.13 nm is S(1) and a peak intensity of a Si—Si bond peak that is observed at a position where the interatomic distance is 0.2 nm is S(2), a relation of S(2)>S(1) is satisfied is used for an electrical device. When used, the negative electrode active material achieves both cycle durability and charging-discharging efficiency for an electrical device such as a lithium ion secondary battery.
US10651458B2 Negative electrode for lithium secondary battery and lithium secondary battery
A negative electrode for a lithium secondary battery includes a layer of a mixture containing graphite powder and an organic binder on a current collector, wherein a diffraction intensity ratio (002)/(110) measured by X-ray diffractometry of the layer of a mixture is 500 or less. A lithium secondary battery includes the negative electrode for a lithium secondary battery, and a positive electrode that includes a lithium compound. This results in less deterioration in the rapid charge and discharge characteristics and the cycle characteristics when the density of the negative electrode is made higher, thereby providing a high capacity lithium secondary battery having the improved energy density per unit volume of the secondary battery.
US10651455B2 Rechargeable battery
A rechargeable battery includes: a case accommodating an electrode assembly; a cap plate closing and sealing an opening of the case; an electrode terminal including a rivet terminal being coupled to the electrode assembly and extending through a terminal opening in the cap plate, and a plate terminal being at an outer surface of the cap plate and coupled to the rivet terminal; and an insulating member electrically insulating the electrode terminal from the cap plate, the insulating member including a first insulator and a second insulator. The first insulator being between the cap plate and the plate terminal at an outer periphery of the rivet terminal, and the second insulator being coupled to the first insulator at an outer periphery of the first insulator and between the cap plate and the plate terminal.
US10651451B2 Battery module
A battery module for energy storage is provided, comprising at least one battery unit, including: first and second battery cells comprising first and second electrode tabs as well as third and fourth electrode tabs respectively; first and second connection structures comprising first support/connection portions as well as second support/connection portions respectively, regarding material, first and second support portions being different from materials of first and second connection portions, regarding polarity, the first and second electrode tabs being the same as the third and fourth electrode tabs, both first and fourth electrode tabs being lap-jointed with the first support portion and connected by welding via the first connection portion; and the second electrode tab is lap-jointed with the second support portion and connected by welding with the second connection portion, so as to achieve the welding between electrode tabs with different polarities and expedite the manufacturing schedule for battery module.
US10651444B2 Lithium batteries utilizing nanoporous separator layers
Provided are methods of preparing lithium batteries comprising a separator/electrode assembly having one or more current collector layers interposed between first and second electrode layers of the same polarity, wherein the first electrode layer is coated or laminated overlying a separator layer and the separator/electrode assembly is interleaved with an electrode comprising a current collector layer interposed between two electrode layers of opposite polarity to said first and second electrodes.
US10651437B2 Battery pack and method for assembling a battery pack
In order to specify a battery pack that can be simply produced, that provides sufficient heat dissipation during the assembly and during the operation of the battery pack (10) and a reliable electrical connection between the connection structures (14) and the connection contacts (33, 34) of the battery cells (11), and that copes with the failure of an individual battery cell (11), a battery pack (10) is specified, comprising: at least two battery cells (11), wherein each battery cell (11) has a positive and a negative electrical connection contact (33, 34), wherein a connection structure (14) is associated with at least the electrically positive connection contacts (33) or the electrically negative connection contacts (34) of the battery cells (11), wherein each battery cell (11) is connected to the connection structure (14) by means of at least one connection element (15, 51), wherein a cross-section of each connection element (15, 51) is matched to a predetermined maximum current of a battery cell (11), wherein the connection element (15, 51) is fastened to a side of the connection structure (14) facing the battery cells (11). Each connection structure (14) has a current strength that corresponds to the sum of the individual currents of each connected battery cell (11).
US10651432B2 Systems and methods for a reinforcement column within a module body
The present disclosure relates to a battery module having a housing with a first cover and a second cover. The battery module includes a plurality of lithium-ion (Li-ion) electrochemical cells disposed in the housing adjacent to the second cover. The battery module also includes a reinforcement column disposed within the housing that extends along a direction from the second cover to the first cover. The reinforcement column is positioned against the first cover and is coupled to a feature between the first and second covers, and the reinforcement column is configured to enhance a load bearing capacity of the battery module.
US10651431B2 Manufacturing method for electronic device and electronic device
A manufacturing method for an electronic device is provided. The method includes: providing an inner shell, the inner shell defining a battery compartment for a battery, and the battery compartment including a bottom surface and a side wall; adhering a first adhesive to the bottom surface of the battery compartment; providing an adhesive film covering the first adhesive, the bottom surface and the side wall of the battery compartment; fixing the battery in the battery compartment by the adhesive film; and coating a second adhesive into spaces between a side surface of the battery and the adhesive film, a bonding force of the adhesive film and a bonding force of the second adhesive each being less than a tensile resistance of a surface of the battery.
US10651429B2 Organic light-emitting diode (OLED) illuminating lamp sheet and manufacturing method thereof
An organic light-emitting diode (OLED) illuminating lamp sheet and a manufacturing method thereof are provided. The method for manufacturing an OLED illuminating lamp sheet includes: manufacturing an array substrate, the array substrate includes a first base and a first electrode formed on the first base; bonding an electrostatic film to a surface of the array substrate provided with the first electrode, forming a patterned electrostatic film by patterning the electrostatic film, and forming an organic film layer by taking the patterned electrostatic film as a mask; forming a second electrode and obtaining an OLED element; and encapsulating the OLED element and obtaining an OLED illuminating lamp sheet.
US10651422B2 White-light-emitting apparatus including plurality of organic electroluminescent elements
The present disclosure provides a light-emitting apparatus including a plurality of types of light-emitting pixels, each of the light-emitting pixels including a reflective electrode, an electrode-protective layer, an organic compound layer containing a light-emitting layer, and a light-output electrode in this order and having a resonator structure, wherein at least one type of the plurality of types of light-emitting pixels is a light-emitting pixel having a greater interference order than other types of light-emitting pixels, and the electrode-protective layer of the light-emitting pixel having the greater interference order has a greater layer thickness than the electrode-protective layers of the other types of light-emitting pixels.
US10651421B2 Display panel and encapsulation component
The present disclosure provides a display panel and an encapsulation component. The display panel comprises a substrate component, a display assembly, and an encapsulation component. The encapsulation component comprises a first encapsulation layer, a second encapsulation layer, and a third encapsulation layer. The second encapsulation layer is sandwiched between the first encapsulation layer and the third encapsulation layer. The first encapsulation layer and the third encapsulation layer are made of an inorganic material. The second encapsulation layer is made of an organic material, and the second encapsulation layer comprises a plurality of organic nanoparticles in the second encapsulation layer. According to the present disclosure, water and oxygen outside of display panels are prevented from entering display panels.
US10651419B2 Display device
According to some example embodiments of the present invention, a display device includes: a display panel, the display panel being flexible and including an active region for displaying an image, and a peripheral region outside the active region when viewed in a plan view; a window structure on the display panel; a printed circuit board electrically connected to the display panel; a flexible circuit board connecting the display panel to the printed circuit board; and a cover structure adjacent to the window structure, when viewed in the plan view, wherein the cover structure includes: a cover portion overlapped with the flexible circuit board, when viewed in the plan view; and a sidewall portion extending downwardly from the cover portion, and the cover portion has a bottom surface that is coplanar with a bottom surface of the window structure.
US10651417B2 Display substrate
A display substrate including a base substrate including a plurality of pixel areas, each of the plurality of pixel areas including an emission area and a transmission area, a pixel circuit layer disposed in the emission area and including at least one transistor, a pixel electrode disposed on the pixel circuit layer and connected to the pixel circuit layer, a hole injection layer selectively disposed on the pixel electrode in the emission area, an emission layer disposed on the hole injection layer of the emission area, an electron injection layer disposed on the base substrate on which the emission layer is disposed; and a common electrode disposed on the base substrate on which the electron injection layer is disposed.
US10651416B2 Display device
A display device including a substrate including a light emission area and a non-light emission area, a pixel defining layer disposed in the non-light emission area, the pixel defining layer defining the light emission area, a first electrode disposed in the light emission area, a light emitting layer disposed on the first electrode, and a second electrode disposed on the light emitting layer, in which the second electrode includes a first metal layer and a second metal layer disposed on the first metal layer, and the second metal layer has an aperture disposed at an edge portion of the light emission area.
US10651415B2 Organic EL (electroluminescent) device
An organic EL (electroluminescent) device includes a translucent substrate, a transparent electrode, a luminescent layer, and a cathode placed over one surface of the translucent substrate, and a light extraction film having unevenness placed on the other surface. The surface of the cathode facing the luminescent layer has a plurality of recesses or protrusions. The Fourier transform image of the surface of the cathode facing the luminescent layer has a surface plasmon absorption suppression area including a spatial frequency v obtained from Eq. (I) and a light scattering area not including spatial frequencies equal to or greater than the spatial frequency v.
US10651407B2 Vertical field-effect transistor
A vertical field-effect transistor is provided, comprising a first electrode, a porous conductor layer formed from a layer of conductive material with a plurality of holes extending through the conductive material disposed therein, a dielectric layer between the first electrode and the porous conductor layer, a charge transport layer in contact with the porous conductor layer, and a second electrode electrically connected to the charge transport layer. A photoactive layer may be provided between the dielectric layer and the first electrode. A method of manufacturing a vertical field-effect transistor may also be provided, comprising forming a dielectric layer and depositing a conductor layer in contact with the dielectric layer, wherein one or more regions of the dielectric layer are masked during deposition such that the conductor layer includes a plurality of pores that extend through the conductor layer.
US10651403B2 Organic electroluminescent materials and devices
The present invention includes a new series of benzofused heterocyclic ligands for metal complexes. These complexes show promising photophysical performance when incorporated into OLEDs.
US10651401B2 Method for preparing light absorber of solar cell
The present invention relates to a method for preparing a perovskite compound usable as a light absorber of a solar cell, and provides a method for preparing a light absorber of a solar cell in which the crystallinity of a perovskite compound is increased, resulting in an increase in the stability and efficiency of the solar cell.
US10651400B2 Organic semiconductor element, manufacturing method thereof, composition for forming organic semiconductor film, and method of manufacturing organic semiconductor film
Objects of the present invention is to provide an organic semiconductor element having high mobility and to provide a composition for forming an organic semiconductor film with which an organic semiconductor film having high mobility can be formed, a method of manufacturing an organic semiconductor element formed from the composition for forming an organic semiconductor film, and a method of manufacturing an organic semiconductor film.The organic semiconductor element according to the present invention has a semiconductor active layer including a compound that is represented by Formula 1 and has a molecular weight of 3,000 or less. The composition for forming an organic semiconductor film according to the present invention contains a compound that is represented by Formula 1 and has a molecular weight of 3,000 or less, and a solvent.
US10651398B2 Organic electroluminescence element and electronic device
An organic electroluminescence device includes an anode, a cathode, a first organic layer interposed between the anode and the cathode, a second organic layer interposed between the first organic layer and the cathode, and a bipolar layer interposed between the first organic layer and the second organic layer and having bipolar characteristics, in which at least one of the first organic layer and the second organic layer includes the first compound and the second compound, the first compound exhibits delayed fluorescence, and an energy gap T77K(M2) at 77[K] of the second compound is larger than an energy gap T77K(M1) at 77[K] of the first compound.
US10651396B2 Organic compound, and organic light emitting diode and organic light emitting display device including the same
The present invention provides an organic compound for an organic light emitting diode. An example of the organic compound is represented by:
US10651386B2 Method for producing vapor deposition mask, vapor deposition mask preparation body, method for producing organic semiconductor element, method for producing organic EL display, and vapor deposition mask
A vapor deposition mask preparation body in which a metal mask is provided on one surface of a resin plate for obtaining a resin mask, and a protective sheet with peel strength not less than about 0.0004 N/10 mm and less than about 0.2 N/10 mm in conformity with JIS Z-0237:2009 is provided on the other surface of the resin plate is prepared, with respect to the vapor deposition mask preparation body, the resin plate is irradiated with laser light from the metal mask side to form a resin mask opening corresponding to a pattern to be produced by vapor deposition in the resin plate, and the protective sheet is peeled off from the resin mask in which the resin mask opening corresponding to the pattern to be produced by vapor deposition is formed.
US10651385B2 Deposition mask and method of manufacturing display device using the same
A deposition mask includes: a plurality of sub-masks through which deposition material passes to a base layer to form a deposition layer defining a hole therein, each of the sub-masks including: an aperture through which the deposition material passes to the base layer, a total planar area of the aperture corresponding to less than a total planar area of the deposition layer, and a masking surface at which the deposition material does not pass through the sub-mask, the masking surface including a hole-forming portion of which a total planar area thereof corresponds to a total planar area of the hole defined in the deposition layer. The hole-forming portions of the sub-masks have a same shape and planar area as each other, and within each sub-mask, the shape of the hole-forming portion is nested within a shape of the aperture.
US10651382B2 Formulation of an organic functional material comprising a siloxane solvent
The present invention relates to a formulation containing at least one organic functional material and at least a first and a second solvent, characterized in that the first solvent is a siloxane.
US10651380B1 Memory devices and methods of forming the same
In a non-limiting embodiment, a device may be formed having a substrate that has at least a first region. A base dielectric layer is arranged over the substrate. The base dielectric layer includes an interconnect in the first region. A first electrode is arranged over the interconnect in the first region. A mask structure is arranged over the first electrode. At least one spacer stack is arranged at least partially around the mask structure and the first electrode. The spacer stack(s) includes a resistive switching element at least partially lining sidewalls of the mask structure and the first electrode, and a second electrode arranged over the resistive switching element.
US10651377B2 Storage element, storage device, method for manufacturing the same and driving method
The present disclosure provides a storage element, a storage device, a method for manufacturing the same and a driving method. The method for manufacturing the storage element includes: providing a substrate; preparing a thin film transistor on the substrate; and preparing a storage functional pattern by using a phase change material, in which the storage functional pattern is connected to a drain electrode of the thin film transistor.
US10651375B2 Memory cells, semiconductor devices including the memory cells, and methods of operation
Memory cells are disclosed, which cells include a cell material and an ion-source material over the cell material. A discontinuous interfacial material is included between the cell material and the ion-source material. Also disclosed are fabrication methods and semiconductor devices including the disclosed memory cells.
US10651374B2 Semiconductor device, and method for manufacturing the same
A semiconductor device includes a substrate having a front surface and a mounting surface that are separate from each other in a thickness direction. The substrate is formed with a through-hole that penetrates through in the thickness direction. A semiconductor element is mounted on the front surface of the substrate, and a front-surface wire line is formed on the front surface of the substrate to be electrically connected to the semiconductor element. A column is provided inside the through-hole, and is electrically connected to the front-surface wiring line. An electrode pad is provided on the mounting surface of the substrate, and is electrically connected to the column. A resin-layer through portion is also provided inside the through-hole. The semiconductor element is covered with a sealing resin. The resin-layer through portion has an orthogonal surface in contact with the column. The orthogonal surface is orthogonal to the mounting surface.
US10651370B2 Perpendicular magnetic tunnel junction retention and endurance improvement
A magnetic data recording element for magnetic random access memory data recording. The magnetic data recording element includes a magnetic tunnel junction element that includes a magnetic reference layer, a magnetic free layer and a non-magnetic barrier layer located between the non-magnetic reference layer and the magnetic free layer. The magnetic free layer includes a layer of Hf that causes the magnetic free layer to have an increased perpendicular magnetic anisotropy. This increased perpendicular magnetic anisotropy improves data retention and increases thermal stability, by preventing the magnetization of the magnetic free layer from inadvertently losing its magnetic orientation.
US10651367B2 Electronic devices and related electronic systems
Magnetic memory cells, methods of fabrication, semiconductor device structures, and memory systems are disclosed. A magnetic cell core includes at least one magnetic region (e.g., a free region or a fixed region) configured to exhibit a vertical magnetic orientation, at least one oxide-based region, which may be a tunnel junction region or an oxide capping region, and at least one magnetic interface region, which may comprise or consist of iron (Fe). In some embodiments, the magnetic interface region is spaced from at least one oxide-based region by a magnetic region. The presence of the magnetic interface region enhances the perpendicular magnetic anisotropy (PMA) strength of the magnetic cell core. In some embodiments, the PMA strength may be enhanced more than 50% compared to that of the same magnetic cell core structure lacking the magnetic interface region.
US10651364B2 Servo valve with asymmetrical redundant piezoelectric actuator
A driving stage of a servo valve, including a hydraulic ejector and a hydraulic receiver able to be moved relative to each other, one of the two hydraulic units being integral with a mobile unit, movable relative to a body of the servo valve through actuation means, characterized in that the actuation means comprise two piezoelectric actuators connected in series. Control device comprising a servo valve comprising such a driving stage.
US10651363B2 Power generating device
A power generating device is provided. The power generating device includes an element having flexibility and a support to support at least one portion of the element. The element is capable of undergoing a deformation when receiving a vibration and capable of generating power when undergoing the deformation. The deformation includes at least one of a bending deformation, a torsional deformation, and a bending-torsional complex deformation.
US10651360B2 Thermoelectric material, thermoelectric module and thermoelectric device including the same
A method of preparing the thermoelectric materials includes coating a thin film of a material having a Seebeck coefficient of ±μV/K or greater on one surface of a substrate, coating a polymer precursor solution for forming a polymer having a glass transition temperature (Tg) of about 50° C. or greater on a top surface of the material thin film, forming a polymer layer on the top surface of the material thin film by curing the polymer precursor solution, and preparing the self-standing flexible thermoelectric composite structure by separating the polymer layer formed on the top surface of the material thin film from the substrate.
US10651358B2 Light emitting device package structure with circuit redistribution structure and manufacturing method thereof
A light emitting device package structure includes a substrate, a circuit layer structure, a light emitting device, a first redistribution layer, a conductive connector, a second redistribution layer, and a chip. The circuit layer structure is disposed over the substrate, and the circuit layer structure includes a first circuit layer. The light emitting device is disposed over the circuit layer structure and is electrically connected with the first circuit layer. The first redistribution layer is disposed over the light emitting device and includes a second circuit layer and a conductive contact contacting the second circuit layer. The conductive connector connects the first circuit layer and the second circuit layer. The second redistribution layer is disposed over the first redistribution layer and includes a third circuit layer contacting the conductive contact. The chip is disposed over the second redistribution layer and is electrically connected with the third circuit layer.
US10651357B2 High density pixelated-led chips and chip array devices
Pixelated-LED chips and related methods are disclosed. A pixelated-LED chip includes an active layer with independently electrically accessible active layer portions arranged on or over a light-transmissive substrate. The active layer portions are configured to illuminate different light-transmissive substrate portions to form pixels. Various enhancements may beneficially provide increased contrast (i.e., reduced cross-talk between pixels) and/or promote inter-pixel illumination homogeneity, without unduly restricting light utilization efficiency. In some aspects, a light extraction surface of each substrate portion includes protruding features and light extraction surface recesses. Lateral borders between different pixels are aligned with selected light extraction surface recesses. In some aspects, selected light extraction surface recesses extend through an entire thickness of the substrate. Other technical benefits may additionally or alternatively be achieved.
US10651353B2 Light-emitting device including a reflective element
A light-emitting device includes a light-emitting element disposed on a mount substrate, a reflective member disposed around the light-emitting element to cover the light-emitting element, and a dam disposed on opposite sides of the reflective member. The dam includes a resin dam, and a surface layer covering at least part of a surface of the resin dam. The inner lateral surface of the resin dam facing the light-emitting element is covered with the surface layer, and at least part of the outer lateral surface of the resin dam not facing the light-emitting element is an exposed surface.
US10651351B1 Light emitting diode packages
Solid-state lighting devices including light-emitting diodes (LEDs) and more particularly LED packages are disclosed. A light-altering material may be provided in particular configurations within an LED package to redirect light toward a primary emission direction. The light-altering material may be arranged on any of a first face, a second face, or a plurality of sidewalls of an LED chip in the LED package. In certain embodiments, a lumiphoric material may be arranged on one or more of the sidewalls. A superstrate may be arranged to mechanically support the LED chip from the first face. The light-altering material may be arranged on or dispersed within the superstrate. In certain embodiments, the primary emission direction of the LED package is substantially parallel to the second face of the LED chip in the LED package. An overall thickness or height of the LED package may be less than or equal to 0.25 mm.
US10651350B2 Method of manufacturing light emitting device with light-transmissive members
A light emitting device includes a light emitting element; a light-transmissive member that has a lower surface positioned inside a peripheral edge of an upper surface of the light emitting element in plan view, a first lateral surface extending from the lower surface and having at least one inclined surface that is inclined with respect to the upper surface of the light emitting element, and a second lateral surface positioned above and outside the first lateral surface; a light-transmissive adhesive member positioned inside the second lateral surface in plan view, wherein the adhesive member adheres the upper surface of the light emitting element and the lower surface of the light-transmissive member to each other and covers the first lateral surface; and a light-reflective member covering the second lateral surface.
US10651347B2 Encapsulating package for white light LED
A light-transmissive encapsulating package is configured to encapsulate an LED die. The encapsulating package includes a light-transmissive bulk encapsulating material. One or more phosphors are blended into the bulk encapsulating material for white light emission. A notch-filtering filter material is blended into the bulk encapsulating material and includes Nd(III) bonded to a non-fluoride halide and is present at a concentration in the range 0.5-3.0% by volume of the bulk encapsulating material.
US10651345B2 Light emitting device, light emitting device package including the device, and lighting apparatus including the package
A light emitting device includes a substrate; a light emitting structure disposed on the substrate; a first insulation layer disposed on the light emitting structure; a second insulation layer disposed on the first insulation layer; a first electrode and a second electrode electrically connected to the light emitting structure; a first pad electrically connected to the first electrode; and a second pad electrically connected to the second electrode.
US10651342B2 Optoelectronic semiconductor chip
An optoelectronic semiconductor chip is disclosed. In an embodiment an optoelectronic semiconductor chip includes a semiconductor body comprising a first semiconductor structure, a second semiconductor structure and an active region between the first and the second semiconductor structure and a plurality of recesses, each penetrating at least one of the semiconductor structures and the active region, wherein a cover surface of the active region is a continuous surface, and wherein at least in some of the recesses, surfaces of the recesses are completely covered with an electrically insulating material.
US10651340B2 Reducing or eliminating nanopipe defects in III-nitride structures
Embodiments of the invention include a III-nitride light emitting layer disposed between an n-type region and a p-type region, a III-nitride layer including a nanopipe defect, and a nanopipe terminating layer disposed between the III-nitride light emitting layer and the III-nitride layer comprising a nanopipe defect. The nanopipe terminates in the nanopipe terminating layer.
US10651338B2 Method for producing an optoelectronic semiconductor component and optoelectronic semiconductor component
A method for fabricating an optoelectronic semiconductor component is disclosed. A semiconductor chip is produced by singularizing a wafer. The semiconductor chip comprises a substrate and a semiconductor layer sequence with an active layer applied to a main side of the substrate. The semiconductor layer sequence has an active region for emission or absorption of radiation and a sacrificial region arranged next to the active region. The sacrificial region in the finished semiconductor component is not intended to emit or absorb radiation. A trench, introduced into the semiconductor layer sequence, penetrates the active layer and separates the active region from the sacrificial region. The semiconductor chip with the semiconductor layer sequence is applied on a carrier. The substrate is detached from the active region of the semiconductor layer sequence. In the sacrificial region, the semiconductor layer sequence remains mechanically connected to the substrate.
US10651336B2 Light-emitting device
A light-emitting device includes: a mounting base; a plurality of light-emitting elements mounted on or above the mounting base; a plurality of light-transmissive members respectively disposed on upper surfaces of the plurality of light-emitting elements; a plurality of light guide members respectively covering lateral surfaces of the plurality of light-emitting elements; a plurality of antireflective films respectively disposed on upper surfaces of the plurality of the light-transmissive members; and a covering member covering lateral surfaces of the plurality of antireflective films.
US10651329B1 Large-scale production of photovoltaic cells and resulting power
The present application discloses systems and methods for manufacturing large PV sheets and conveying large PV sheets away from the PV manufacturing site while routing power from the PV sheet to the grid.
US10651325B2 Complementary metal-oxide semiconductor compatible patterning of superconducting nanowire single-photon detectors
A device includes a first semiconductor layer; a portion of a second semiconductor layer disposed on the first semiconductor layer; and a third semiconductor layer including a first region disposed on the portion of the second semiconductor layer and a second region disposed on the first semiconductor layer. A thickness of the first region is less than a predefined thickness. The device also includes an etch stop layer disposed on the third semiconductor layer; a plurality of distinct portions of a fourth semiconductor layer disposed on the etch stop layer and exposing one or more distinct portions of the etch stop layer over the portion of the second semiconductor layer; and a plurality of distinct portions of a superconducting layer disposed on the plurality of distinct portions of the fourth semiconductor layer and the exposed one or more distinct portions of the etch stop layer.
US10651322B2 Solar cell element and solar cell module
A solar cell element comprises a semiconductor substrate, a passivation layer, and first to third electrodes. The passivation layer with first holes is located on the semiconductor substrate. The first electrode is located in each of the first holes and electrically connected to the semiconductor substrate. The second electrode is electrically connected to the first electrode and located on the passivation layer. The third electrodes is electrically connected to the first electrode via the second electrode. The passivation layer includes a part where a ratio of an area occupied by the first holes in a first region adjacent to the third electrodes is smaller than a ratio of an area occupied by the first holes in a second region located farther away from the third electrodes in relation to the first region and having an area equal to an area of the first region in a perspective plan view.
US10651321B2 Solar module having a plurality of strings configured from a five strip cell
In an example, the present invention provides a method of manufacturing a solar module. The method includes providing a substrate member having a surface region, the surface region comprising a spatial region, a first end strip comprising a first edge region and a first interior region, the first interior region comprising a first bus bar, a plurality of strips, a second end strip comprising a second edge region and a second interior region, the second edge region comprising a second bus bar, the first end strip, the plurality of strips, and the second end strip arranged in parallel to each other and occupying the spatial region such that the first end strip, the second end strip, and the plurality of strips consists of a total number of five (5) strips. The method includes separating each of the plurality of strips, arranging the plurality of strips in a string configuration, and using the string in the solar module.
US10651319B2 Wide bandgap semiconductor switching device with wide area Schottky junction, and manufacturing process thereof
A switching device including: a body of semiconductor material, which has a first conductivity type and is delimited by a front surface; a contact layer of a first conductive material, which extends in contact with the front surface; and a plurality of buried regions, which have a second conductivity type and are arranged within the semiconductor body, at a distance from the contact layer.
US10651315B2 Three dimensional memory
A method to fabricate a three dimensional memory structure may include creating a stack of layers including a conductive source layer, a first insulating layer, a select gate source layer, and a second insulating layer, and an array stack. A hole through the stack of layers may then be created using the conductive source layer as a stop-etch layer. The source material may have an etch rate no faster than 33% as fast as an etch rate of the insulating material for the etch process used to create the hole. A pillar of semiconductor material may then fill the hole, so that the pillar of semiconductor material is in electrical contact with the conductive source layer.
US10651314B2 Nanowire stack GAA device with inner spacer and methods for producing the same
A nanowire FET device includes a vertical stack of nanowire strips configured as the semiconductor body. One or more of the top nanowire strips are receded and are shorter than the rest of the nanowire strips stacked lower. Inner spacers are uniformly formed adjacent to the receded nanowire strips and the rest of the nanowire strips. Source/drain structures are formed outside the inner spacers and a gate structure is formed inside the inner spacers, which wraps around the nanowire strips.
US10651311B2 Metal gate with silicon sidewall spacers
A method includes forming an opening in a dielectric to reveal a protruding semiconductor fin, forming a gate dielectric on sidewalls and a top surface of the protruding semiconductor fin, and forming a conductive diffusion barrier layer over the gate dielectric. The conductive diffusion barrier layer extends into the opening. The method further includes forming a silicon layer over the conductive diffusion barrier layer and extending into the opening, and performing a dry etch on the silicon layer to remove horizontal portions and vertical portions of the silicon layer. After the dry etch, a conductive layer is formed over the conductive diffusion barrier layer and extending into the opening.
US10651303B2 High-electron-mobility transistor devices
A device includes a first high electronic mobility transistor (HEMT) and a second HEMT. The first HEMT includes a first gate, a source coupled to the first gate, and a drain coupled to the first gate. The second HEMT includes a second gate coupled to the source and to the drain. The second HEMT has a lower threshold voltage than the first HEMT.
US10651301B2 Semiconductor device and method of manufacturing the same
In one embodiment, a semiconductor device includes a semiconductor substrate having an upper surface, a trench electrode placed inside a trench formed on the upper surface, and a trench insulating film placed between the trench electrode and the semiconductor substrate, and the semiconductor substrate includes a drift layer, a floating layer for electric field reduction, a hole barrier layer, a body layer and an emitter layer, and the emitter layer, the body layer and the hole barrier layer are separated from the drift layer by the floating layer for electric field reduction, and a path of a carrier passing through an inverted layer formed in the body layer includes the body layer, the hole barrier layer, a non-inverted region of the floating layer for electric field reduction, and the drift layer.
US10651300B2 Charge storage and sensing devices and methods
Charge storage and sensing devices having a tunnel diode operable to sense charges stored in a charge storage structure are provided. In some embodiments, a device includes a substrate, a charge storage device on the substrate, and tunnel diode on the substrate adjacent to the charge storage device. The tunnel diode includes a tunnel diode dielectric layer on the substrate, and a tunnel diode electrode on the tunnel diode dielectric layer. A substrate electrode is disposed on the doped region of the substrate, and the tunnel diode electrode is positioned between the charge storage device and the substrate electrode.
US10651296B2 Methods of fabricating Fin Field Effect Transistor (FinFET) devices with uniform tension using implantations on top and sidewall of Fin
Methods of fabricating FinFET devices are provided. The method includes forming a fin over a substrate. The method also includes implanting a first dopant on a top surface of the fin and implanting a second dopant on a sidewall surface of the fin. The first dopant is different from the second dopant. The method further includes forming an oxide layer on the top surface and the sidewall surface of the fin, and forming a gate electrode layer over the oxide layer.
US10651292B2 Dual metal via for contact resistance reduction
A semiconductor device includes an active region over a substrate; a first cobalt-containing feature disposed over the active region; a conductive cap disposed over and in physical contact with the first cobalt-containing feature; and a second cobalt-containing feature disposed over and in physical contact with the conductive cap.
US10651289B2 Semiconductor device and a method for fabricating the same
A semiconductor device includes a first field effect transistor (FET) including a first gate dielectric layer and a first gate electrode. The first gate electrode includes a first lower metal layer and a first upper metal layer. The first lower metal layer includes a first underlying metal layer in contact with the first gate dielectric layer and a first bulk metal layer. A bottom of the first upper metal layer is in contact with an upper surface of the first underlying metal layer and an upper surface of the first bulk metal layer.
US10651288B2 Pseudomorphic InGaAs on GaAs for gate-all-around transistors
A non-planar gate all-around device and method of fabrication thereby are described. In one embodiment, a multi-layer stack is formed by selectively depositing the entire epi-stack in an STI trench. The channel layer is grown pseudomorphically over a buffer layer. A cap layer is grown on top of the channel layer. In an embodiment, the height of the STI layer remains higher than the channel layer until the formation of the gate. A gate dielectric layer is formed on and all-around each channel nanowire. A gate electrode is formed on the gate dielectric layer and surrounding the channel nanowire.
US10651279B2 Semiconductor interconnect structure having graphene-capped metal interconnects
The present disclosure relates to a semiconductor device and a manufacturing method, and more particularly to a semiconductor interconnect structure incorporating a graphed barrier layer. The present disclosure provides a method of forming a graphed barrier layer by thermally annealing amorphous carbon layers on metal catalyst surfaces. The thickness of the graphed barrier layers can be selected by varying the thickness of the amorphous carbon layer.
US10651274B2 High-voltage drain extended MOS transistor
A semiconductor device includes a MOS transistor located within a semiconductor substrate of a first conductivity type. The transistor includes a body well located between a drain well and a substrate contact well. A buried voltage blocking region of a second conductivity type is located within the substrate and is connected to the body well. The buried voltage blocking region extends toward the substrate contact well, with an unmodified portion of the substrate remaining between the voltage blocking region and the substrate contact well.
US10651268B2 Metal-oxide-metal capacitor with improved alignment and reduced capacitance variance
A capacitor has reduced misalignment in the interconnect layers and lower capacitance variance. The capacitor includes a first endcap having a first section and a second section orthogonal to the first section. The capacitor includes a first set of conductive fingers orthogonally coupled to the first section. The capacitor includes a third set of conductive fingers orthogonally coupled to the second section of the endcap and a second endcap parallel to the first section of the endcap. The capacitor includes a second set of conductive fingers orthogonally coupled to a second endcap and interdigitated with the first set of conductive fingers at a first interconnect layer. The capacitor includes a third endcap parallel to the second section of the first endcap and a fourth set of conductive fingers orthogonally coupled to the third endcap and interdigitated with the third set of conductive fingers at the first interconnect layer.
US10651261B2 Display device
A display device can include a substrate including an active area having a plurality of pixels and a non-active area adjacent to the active area; a plurality of power lines in the active area, configured to transmit a power voltage to the plurality of pixels, and including a plurality of first power lines and a plurality of second power lines; and a power link line disposed in the non-active area and including a lower power link line connected to the plurality of power lines, a first lower connecting line extending from the lower power link line, and a second lower connecting line extending from the lower power link line, in which the first and second lower connecting lines extend in a different direction than the lower power link line, the plurality of first power lines includes at least two sets of first power lines spaced apart from each other, and the plurality of second power lines includes at least two sets of second power lines spaced apart from each other.
US10651258B2 Organic light emitting display device with improved aperture ratio
Disclosed are an organic light emitting display device to improve an aperture ratio, and a method of manufacturing the same. The organic light emitting display device includes a plurality of contact holes overlapping an anode of an organic light emitting element in each sub-pixel region, wherein conductive films connected through at least one of the contact holes are transparent, thus allowing regions, where the contact holes are formed, to be used as light emitting regions, thereby improving an aperture ratio.
US10651252B2 Vertically integrated active matrix backplane
A method of forming an active matrix pixel that includes forming a driver device including contact regions deposited using a low temperature deposition process on a first portion of an insulating substrate. An electrode of an organic light emitting diode is formed on a second portion of the insulating substrate. The electrode is in electrical communication to receive an output from the driver device. At least one passivation layer is formed over the driver device. A switching device comprising at least one amorphous semiconductor layer is formed on the at least one passivation layer over the driver device.
US10651245B2 Display device
The display device may include a first substrate including a plurality of pixel areas; a plurality of display elements arranged in the plurality of pixel areas on the first substrate; a second substrate facing the first substrate; a plurality of spacers arranged between the plurality of pixel areas and maintaining a constant space between the first substrate and the second substrate; and a plurality of touch sensing electrodes arranged on a surface of the second substrate which faces the first substrate. Here, each touch sensing electrode may include at least one first area and at least one second area that is electrically separated from the first area. The plurality of spacers may be arranged to correspond to the first area.
US10651235B1 2-transistor 2-magnetic tunnel junction (2T2MTJ) MRAM structure
A first MRAM set includes a first transistor and a second transistor. The first transistor includes a first gate structure, a first source/drain doping region and a first common source/drain doping region. The second transistor includes a second gate structure, a second source/drain doping region and the first common source/drain doping region. A second MTJ is disposed on the second transistor. The first common source/drain doping region electrically connects to the second MTJ. A first MTJ is disposed on the first transistor. The sizes of the first MTJ and the second MTJ are different. The second MTJ connects to the first MTJ in series. A bit line electrically connects the first MTJ. A source line electrically connects to the first source/drain doping region and the second source/drain doping region.
US10651229B2 Solid-state image device and method for manufacturing solid-state image device, and electronic device
The present disclosure relates to a solid-state image device, a method for manufacturing the solid-state image device, and an electronic device that are capable of reducing uneven application of a color filter. A color filter and a plurality of connection unit areas are formed on a sensor board. At least one of the connection unit areas is placed a predetermined interval away from the other connection unit areas. The present disclosure can be applied, for example, to a backside illumination CMOS image sensor with a layer structure, a front-side illumination CMOS image sensor with a layer structure, or a CCD image sensor.
US10651223B2 Solid state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
The present technique aims to provide a solid-state imaging device that reduces shading and color mixing between pixels. The present invention also provides a method of manufacturing the solid-state imaging device. The present technique further relates to a solid-state imaging device that enables provision of an electronic apparatus that uses the solid-state imaging device, a method of manufacturing the solid-state imaging device, and an electronic apparatus.The solid-state imaging device includes a substrate, pixels each including a photoelectric conversion unit formed in the substrate, and a color filter layer formed on the light incidence surface side of the substrate. The solid-state imaging device also includes a device isolating portion that is formed to divide the color filter layer and the substrate for the respective pixels, and has a lower refractive index than the refractive indexes of the color filter layer and the substrate.
US10651221B2 Image sensor for obtaining information relating to the phase of a light wave
An object of the invention is an image sensor comprising a matrix of pixels, extending along a detection plane, and configured to form an image of an incident light wave propagating in a spectral band along a propagation axis, the image sensor being characterized in that it comprises a mask, formed by opaque elementary masks, extending parallel to the detection plane, between which there extend openings through which the incident light wave can propagate toward the detection plane, the matrix of pixels being divided into: open pixels extending facing the openings; masked pixels, each masked pixel being defined by a projection of an elementary mask along the axis of propagation on the matrix of pixels, each masked pixel being associated with the elementary mask facing it; the image sensor comprising, between the open pixels and the openings: a waveguide, extending facing masked pixels and open pixels; a first diffraction grating, extending facing at least one open pixel, and configured to couple part of the incident light wave into the waveguide; a second diffraction grating, extending facing a masked pixel, and configured to extract part of a guided wave propagating in the waveguide.
US10651220B2 Narrow band filter with high transmission
Various embodiments of the present application are directed to a narrow band filter with high transmission and an image sensor comprising the narrow band filter. In some embodiments, the filter comprises a first distributed Bragg reflector (DBR), a second DBR, a defect layer between the first and second DBRs, and a plurality of columnar structures. The columnar structures extend through the defect layer and have a refractive index different than a refractive index of the defect layer. The first and second DBRs define a low transmission band, and the defect layer defines a high transmission band dividing the low transmission band. The columnar structures shift the high transmission band towards lower or higher wavelengths depending upon a refractive index of the columnar structures and a fill factor of the columnar structures.
US10651216B2 Metal mirror based multispectral filter array
A device may include a multispectral filter array disposed on the substrate. The multi spectral filter array may include a first metal mirror disposed on the substrate. The multi spectral filter may include a spacer disposed on the first metal mirror. The spacer may include a set of layers. The spacer may include a second metal mirror disposed on the spacer. The second metal mirror may be aligned with two or more sensor elements of a set of sensor elements.
US10651215B2 Sensor system
The present invention relates to a sensor system. The sensor system comprises a component carrier and a sensor having a control unit and a sensor unit. At least a part of the sensor unit is located within the component carrier.
US10651214B2 Imaging apparatus and control method therefor
An imaging apparatus includes an imaging unit configured to acquire a first image and a second image which is generated by performing accumulation of signal charges a plurality of times in one image capturing period, and a control unit configured to control accumulation of signal charges which is performed by the imaging unit. The control unit determines a number of times of accumulation of signal charges for generating the second image according to an accumulation time of signal charges for generating the first image.
US10651208B2 Display device with different circuit groups
A display device that includes a substrate having a display region and an adjacent peripheral region is provided, including; a plurality of sub-pixels provided within the display region; a plurality of data lines electrically connected to the sub-pixels; and a first electronic circuit group and a second electronic circuit group provided in the peripheral region, connected to the corresponding data lines. The first electronic circuit group includes a plurality of first electronic circuits, and the second electronic circuit group includes a plurality of second electronic circuits. Two adjacent first electronic circuits are arranged with a first interval therebetween, and the first interval has a first width. Two adjacent second electronic circuits are arranged with a second interval therebetween, and the second interval has a second width. The first width and the second width are different.
US10651205B2 Array substrate, display panel and display device
An array substrate and a display device are provided. The array substrate includes a base substrate; a first active layer, located on the base substrate; a first insulating layer, located on the first active layer and the base substrate; a gate electrode, located at a side of the first insulating layer away from the first active layer; a second insulating layer, located on the gate electrode and the first insulating layer; a second active layer, located on the second insulating layer away from the gate electrode; a first drain electrode and a first source electrode, being in partial contact with the first active layer, respectively; a second drain electrode and a second source electrode, being in partial contact with the second active layer, respectively; and a pixel electrode, the first drain electrode and the second drain electrode are electrically connected, the first source electrode and the second source electrode are electrically connected, and the pixel electrode is electrically connected with at least one of the first drain electrode and the second drain electrode. The array substrate can improve the responding speed and charging efficiency, and avoid increasing the aperture opening ratio at the same time.
US10651203B2 Semiconductor device comprising a sensing unit
To provide an input device and an input/output device with high detection sensitivity. The input device includes a first transistor, a second transistor, a capacitor, a node, a first wiring, a second wiring, a third wiring, and a fourth wiring. The first transistor includes a first gate and a second gate. The first and second gates of the first transistor overlap with each other with a semiconductor film therebetween. The second gate of the first transistor is electrically connected to the node. The first wiring is electrically connected to the second wiring through the first transistor. The third wiring is electrically connected to the node through the second transistor. A first terminal of the capacitor is electrically connected to the node, and a second terminal of the capacitor is electrically connected to the fourth wiring.
US10651202B2 3D circuit transistors with flipped gate
An integrated circuit is provided with several superimposed levels of transistors, the circuit including an upper level provided with transistors having a rear gate electrode laid out on a first semiconducting layer, and a second semiconducting layer, a first transistor among the transistors of the upper level being provided with a contact pad traversing the second semiconducting layer, the contact pad being connected to a connection zone disposed between the first semiconducting layer and the second semiconducting layer, the first transistor being polarised by and connected to at least one power supply line disposed on a side of a front face of the second semiconducting layer that is opposite to the rear face.
US10651201B2 Integrated circuit including interconnection and method of fabricating the same, the interconnection including a pattern shaped and/or a via disposed for mitigating electromigration
An integrated circuit includes a first conductive pattern in a first conductive layer, a second conductive pattern in a second conductive layer over the first conductive layer, and a via electrically connected with the first conductive pattern and the second conductive pattern to allow a first current flowing from the first conductive pattern to the second conductive pattern and a second current flowing from the second conductive pattern to the first conductive pattern to pass through at different times. The via is placed on the first conductive pattern so that a path of the first current does not overlap with a path of the second current in the first conductive pattern.
US10651200B2 Cross-coupled transistor circuit defined on three gate electrode tracks
A first PMOS transistor is defined by a gate electrode extending along a first gate electrode track. A second PMOS transistor is defined by a gate electrode extending along a second gate electrode track. A first NMOS transistor is defined by a gate electrode extending along the second gate electrode track. A second NMOS transistor is defined by a gate electrode extending along a third gate electrode track. The gate electrodes of the first PMOS transistor and the first NMOS transistor are electrically connected to a first gate node. The gate electrodes of the second PMOS transistor and the second NMOS transistor are electrically connected to a second gate node. Each of the first PMOS transistor, the first NMOS transistor, the second PMOS transistor, and the second NMOS transistor has a respective diffusion terminal electrically connected to a common output node.
US10651199B2 Semiconductor device and method for manufacturing same
According to one embodiment, a source layer includes a semiconductor layer including an impurity. A stacked body includes a plurality of electrode layers stacked with an insulator interposed. A gate layer is provided between the source layer and the stacked body. The gate layer is thicker than a thickness of one layer of the electrode layers. A semiconductor body extends in a stacking direction of the stacked body through the stacked body and the gate layer. The semiconductor body further extends in the semiconductor layer where a side wall portion of the semiconductor body contacts the semiconductor layer. The semiconductor body does not contact the electrode layers and the gate layer.
US10651197B2 3D semiconductor devices including a supporter and methods of forming the same
A semiconductor device comprises a lower conductive layer on a substrate. A conductive line is on the lower conductive layer. A buried trench in the conductive line is provided. A supporter which is on the conductive line and extends in the buried trench is provided. A stack structure including a plurality of insulating layers and a plurality of conductive layers that are alternately stacked is on the supporter. A channel structure passing through the stack structure, the supporter, and the conductive line is provided. An isolation trench passing through the stack structure, the supporter, and the conductive line is provided.
US10651195B2 Three-dimensional semiconductor memory device
A three-dimensional semiconductor memory device includes an electrode structure including gate electrodes and insulating layers, which are alternately stacked on a substrate, a semiconductor pattern extending in a first direction substantially perpendicular to a top surface of the substrate and penetrating the electrode structure, a tunnel insulating layer disposed between the semiconductor pattern and the electrode structure, a blocking insulating layer disposed between the tunnel insulating layer and the electrode structure, and a charge storing layer disposed between the blocking insulating layer and the tunnel insulating layer. The charge storing layer includes a plurality of first charge trap layers having a first energy band gap, and a second charge trap layer having a second energy band gap larger than the first energy band gap. The first charge trap layers are embedded in the second charge trap layer between the gate electrodes and the semiconductor pattern.
US10651193B2 Memory device and forming method thereof
Methods and structures of a three-dimensional memory device are disclosed. In an example, the memory device includes a first alternating conductor/dielectric stack disposed on the substrate and a layer of silicon carbide disposed over the first alternating conductor/dielectric stack. A second alternating conductor/dielectric stack is disposed on the silicon carbide layer. The memory device includes one or more first structures extending orthogonally with respect to the surface of the substrate through the first alternating conductor/dielectric stack and over the epitaxially-grown material disposed in the plurality of recesses, and one or more second structures extending orthogonally with respect to the surface of the substrate through the second alternating conductor/dielectric stack. The one or more second structures are substantially aligned over corresponding ones of the one or more first structures.
US10651192B2 Word line structure of three-dimensional memory device
Methods and structures of a three-dimensional memory device are disclosed. In an example, the memory device includes a substrate, a first tier of conductor layers of a first length comprising a first plurality of conductor layers extending along a first direction over the substrate. The first direction is substantially parallel to a top surface of the substrate. In some embodiments, the memory device also includes at least one connection portion conductively connecting two or more conductor layers of the first tier, and a first metal contact via conductively shared by connected conductor layers of the first tier and connected to a first metal interconnect.
US10651190B2 Semiconductor memory device
According to one embodiment, a semiconductor memory device includes a stacked body, memory pillars, first and second insulation layers and an isolation region. The stacked body above a substrate includes conductive layers isolated from each other and stacked along a first direction crossing the substrate surface. The memory pillars extend through the stacked body along the first direction. The first insulation layer is provided above the memory pillars. The isolation region is provided higher than upper surfaces of the memory pillars in the stacked body along the first direction, and isolates the stacked body in a second direction crossing the first direction. The second insulation layer is provided on the first insulation layer and a side wall of the isolation region.
US10651189B2 Method for producing pillar-shaped semiconductor memory device
A method for producing a pillar-shaped semiconductor memory device includes forming a mask on a semiconductor substrate and etching to form a semiconductor pillar on the semiconductor substrate. A tunnel insulating layer is formed and a data charge storage insulating layer is formed so as to surround the tunnel insulating layer, and a first conductor layer and a second interlayer insulating layer are formed on the semiconductor pillar. A stacked material layer is formed in a direction perpendicular to an upper surface of the semiconductor substrate, the stacked material layer including the first conductor layer and the second interlayer insulating layer. Data writing and erasing due to charge transfer between the semiconductor pillar and the data charge storage insulating layer through the tunnel insulating layer is performed by application of a voltage to the first conductor layer.
US10651186B2 Semiconductor memory device
A semiconductor memory device includes a substrate, a first electrode, a second electrode, a signal line, a first charge storage film and a second charge storage film. The first and second electrodes extend in a first direction parallel to the substrate. The first electrode has first and second surfaces. The second electrode has third and fourth surfaces. The spacing between the second and fourth surfaces is larger than the spacing between the first and third surfaces. The signal line is provided between the second surface and the fourth surface and extends in a second direction perpendicular to the substrate. The first charge storage film is provided between the signal line and the second surface. The second charge storage film is provided between the signal line and the fourth surface. In a cross section parallel to the substrate, the signal line has a contour having different curvatures.
US10651180B2 Method for producing pillar-shaped semiconductor device
A method for producing a pillar-shaped semiconductor device includes steps of forming, on the side surface of an N+ layer (38b) of the top portion of a Si pillar (6b) and the side surface of the top portion of a W layer (43a), ring-shaped SiO2 layers and an AlO layer (51) in outer peripheral portions surrounding the ring-shaped SiO2 layers; etching the ring-shaped SiO2 layers through the AlO layer serving as a mask, to form ring-shaped contact holes; and filling the contact holes with W layers (52a, 52b), to form ring-shaped W layers (52a, 52d) being in contact with the side surface of the N+ layer (38b) and the side surface of the top portion of the W layer (43a), and having constant widths in plan view.
US10651179B2 Integrated circuit device and method of manufacturing the same
A method includes providing a plurality of active regions on a substrate, and at least a first device isolation layer between two of the plurality of active regions, wherein the plurality of active regions extend in a first direction; providing a gate layer extending in a second direction, the gate layer forming a plurality of gate lines including a first gate line and a second gate line extending in a straight line with respect to each other and having a space therebetween, each of the first gate line and second gate line crossing at least one of the active regions, providing an insulation layer covering the first device isolation layer and covering the active region around each of the first and second gate lines; and providing an inter-gate insulation region in the space between the first gate line and the second gate line.
US10651175B2 Semiconductor device comprising a standard cell including a non-active fin area
Disclosed herein is a semiconductor device including two standard cells which are arranged adjacent to each other in an X direction. One of the two standard cells includes a plurality of first fins which extend in the X direction, and which are arranged along a boundary between the two standard cells in a Y direction. The other standard cell includes a plurality of second fins which extend in the X direction, and which are arranged along the boundary between the two standard cells in the Y direction. The plurality of second fins includes a dummy fin.
US10651174B2 FinFET structure and fabricating method of gate structure
A method of forming a gate structure on a fin structure includes the steps of providing a fin structure covered by a first silicon oxide layer, a silicon nitride layer, a gate material and a cap material in sequence, wherein the silicon nitride layer contacts the first silicon oxide layer. Later, the cap material is patterned to form a first cap layer and the gate material is patterned to form a first gate electrode by taking the silicon nitride layer as an etching stop layer. Then, the silicon nitride layer not covered by the first gate electrode is removed to expose part of the first silicon oxide layer. Finally, a first dielectric layer is formed to conformally cover the first silicon oxide layer, the first gate electrode and the first cap layer.
US10651173B1 Single diffusion cut for gate structures
The present disclosure relates to semiconductor structures and, more particularly, to a single diffusion cut for gate structures and methods of manufacture. The structure includes: a plurality of fin structures composed of semiconductor material; a plurality of replacement gate structures extending over the plurality of fin structures; a plurality of diffusion regions adjacent to the each of the plurality of replacement gate structures; and a single diffusion break between the diffusion regions of the adjacent replacement gate structures, the single diffusion break being filled with an insulator material. In a first cross-sectional view, the single diffusion break extends into the semiconductor material and in a second cross-sectional view, the single diffusion break is devoid of semiconductor material of the plurality of fin structures.
US10651170B2 Isolated wells for resistor devices
A semiconductor device includes a substrate, a dielectric layer over the substrate, a first resistor element embedded within the dielectric layer, a second resistor element embedded within the dielectric layer, a first doped well within the substrate, the first doped well being aligned with the first resistor element, and a second doped well within the substrate, the second doped well being aligned with the second resistor element, the second doped well being non-contiguous with the first doped well.
US10651169B2 Semiconductor device and diode
A semiconductor device has a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type, a first conductive layer disposed on a main surface of the first semiconductor region, and a second conductive layer disposed on a main surface of the second semiconductor region. The first conductive layer has a first diffusion layer of the first conductivity type, a plurality of second diffusion layers of the first conductivity type, the second diffusion layers having higher impurity concentration than the first diffusion layer, and a plurality of third diffusion layers of the first conductivity type that are included in the first semiconductor region, or are arranged apart from one another to contact the first and second semiconductor regions, the third diffusion layers being arranged apart from the plurality of second diffusion layers and having higher impurity concentration than the first diffusion layer.
US10651166B2 E-fuse cells
E-fuse cells and methods for protecting e-fuses are provided. An exemplary e-fuse cell includes an e-fuse having a first end coupled to a source node and a second end selectively coupled to a ground. Further, the exemplary e-fuse includes a selectively activated shunt path from the source node to the ground. Also, the exemplary e-fuse includes a device for activating the shunt path in response to an electrical overstress event.