Document | Document Title |
---|---|
US10430148B2 |
Synchronization system comprising display device and wearable device, and controlling method
Disclosed are a synchronization system comprising a display device and a wearable device, and a controlling method. The synchronization system comprises: a display device for receiving a preset touch gesture, converting a displayed background image to a preset image, displaying the preset image, and transmitting a synchronization signal to a wearable device; and the wearable device for, when receiving the synchronization signal from the display device, displaying an image which is identical to the preset image of the display device, and synchronizing data with the display device. |
US10430142B2 |
Display apparatus and control method thereof
A display apparatus is provided. The display apparatus includes: a display configured to include a plurality of display modules, a storage configured to store a first luminance correction coefficient corresponding to light-emitting pixels constituting each of the plurality of display modules and a second luminance correction coefficient corresponding to at least one target pixels adjacent to a seam region from among the light-emitting pixels, and a processor configured to apply the second luminance correction coefficient to the target pixel, apply the first luminance correction coefficient to remaining pixels, and drive the display, wherein the second luminance correction coefficient may be a luminance correction coefficient which is calculated based on a target luminance value to compensate the seam region. |
US10430139B2 |
Systems and methods for managing multiple independent datalink displays
A system for managing multiple independent cockpit displays, comprising: first and second displays configured to receive input and display pages, the pages defined by parameters in a database; and a control system comprising a processor coupled to a memory storing the database, the processor configured to: receive a request to display a first page on the first display; retrieve a flag associated with the first page, the flag being a parameter in the database and indicating whether a page is safe or unsafe for simultaneous display and editing; retrieve group designators associated with the first page and a second page, the group designator being a parameter in the database, the group designator identifying related pages; and control display and editing of pages on the first display based on at least one of: the flag associated with the first page, and the group designators associated with the first and second pages. |
US10430126B2 |
Method for printing multi-layer print jobs
In a method for printing a plurality of print jobs on a flat bed printer, each print job specifies an image receiving area with a given shape and given dimensions where an image is to be printed on a recording medium. Each of the print jobs includes a number of sub-jobs specifying image layers to be printed in a predetermined print order, with print settings being individually assigned to each sub-job. The method includes grouping the sub-jobs by their print settings; nesting the image receiving areas of the print jobs on a flat bed of the printer; and printing the sub jobs group by group, with sub-jobs of the same group and from different print jobs being printed in common steps of scanning the flat bed. The scanning steps are performed in a scan order which preserves the print order in each print job. |
US10430122B2 |
Using partial rebuilding to change information dispersal algorithm (IDA)
A storage unit (SU) includes an interface configured to interface and communicate with a dispersed storage network (DSN), a memory that stores operational instructions, and processing circuitry operably coupled to the interface and to the memory. The processing circuitry is configured to execute the operational instructions to perform various operations and functions. The SU, of a first SU set, receives a partially encoded slice request to restore a set of encoded data slices (EDSs) that are based on first dispersed storage error coding function parameters. The SU generates a decode threshold number of partially EDSs based on the first and second dispersed storage error coding function parameters. The SU then outputs the decode threshold number of partially EDSs to a second SU set to undergo selective combination respectively to generate new EDSs for storage within the SUs of the second decode threshold number of SUs of the second SU set. |
US10430121B2 |
Efficient asynchronous mirror copy of fully provisioned volumes to thin-provisioned volumes
A method for copying data from a primary fully provisioned volume to a secondary thin-provisioned volume is disclosed. In one embodiment, such a method includes hosting, on a primary storage system, a fully provisioned volume comprising a plurality of storage elements. A volume table of contents (VTOC) associated with the fully provisioned volume is analyzed to determine which storage elements in the fully provisioned volume have been allocated to data sets. In certain embodiments, the VTOC is copied into memory of a secondary host system and the secondary host system analyzes the copy to determine which storage elements in the fully provisioned volume have been allocated to data sets. The method then copies, from the fully provisioned volume to a secondary thin-provisioned volume, data in only those storage elements that have been allocated to data sets. A corresponding system and computer program product are also disclosed. |
US10430120B2 |
Data object management method and data object management system
A data object management method and a data object management system are provided. The data object management method includes the following steps. Generate a space allocation list according to an operation parameter of a space consuming device. The space allocation list records information about a plurality of storage spaces. Update the space allocation list and a target storage space. The target storage space is one of the storage spaces. Send a playlist corresponding to the space allocation list when a reading request corresponding to the space consuming device is received. |
US10430116B2 |
Correcting power loss in NAND memory devices
Devices and techniques for correcting for power loss in NAND memory devices are disclosed herein. The NAND memory devices may comprise a number of physical pages. For example, a memory controller may detect a power loss indicator at the NAND flash memory. The memory controller may identify a last-written physical page and determine whether the last-written physical page comprises more than a threshold number of low-read-margin cells. If the last-written physical page comprises more than the threshold number of low-read-margin cells, the memory controller may provide a programming voltage to at least the low-read-margin cells. |
US10430110B2 |
Implementing a hybrid storage node in a distributed storage system
A new snapshot of a storage volume is created by instructing computing nodes to suppress write requests. Once pending write requests from the computing nodes are completed, storage nodes create a new snapshot for the storage volume by allocating a new segment to the new snapshot and finalizes and performs garbage collection with respect to segments allocated to the previous snapshot. The snapshots may be represented by a storage manager in a hierarchy. Deleted snapshots may be flagged as such in the hierarchy and deletion may be implemented only in memory on a storage node, which is then restored from the hierarchy in the event of a crash. A hybrid storage node may perform both computing and storage services. An IO module determines whether IOPs reference a locally-mounted storage device or a remote storage device. The IO module issues a library call for local IOPs using a shared memory in kernel space. |
US10430102B2 |
Storage device, program, and information processing method
A storage device has: a data storage part storing deduplicated block data; a temporary data storage part temporarily storing block data acquired from the data storage part; a data retrieval control part retrieving the block data stored by the data storage part, storing the block data into the temporary data storage part, and retrieving the block data from the temporary data storage part; and a temporary data control part controlling the storage state of the block data stored by the temporary data storage part. The storage device also has a retrieval turn information storage part storing retrieval turn information which is information about a turn to be retrieved of the block data. The data retrieval control part causes the temporary data storage part to store the block data acquired from the data storage part on the basis of the retrieval turn information acquired from the retrieval turn information storage part, and the temporary data control part controls the storage state of the block data in the temporary data storage part on the basis of the retrieval turn information. |
US10430100B2 |
Transactional operations in multi-master distributed data management systems
One embodiment provides for a method for grooming transactional operations in a multi-master distributed data management system including maintaining transactional operations in at least one transaction-local side-log. A table log scan is performed for a table including recording identification for each record in a log. Each column in the table is loaded with column values based on the identifications. Records based on the column values are written to the groomed transaction blocks that are table based, and the tuple sequence numbers for each record on groomed blocks are generated. The table is shared/sharded across nodes handling transactional operations in the multi-master distributed data management system to increase processing handling of the transactional operations. |
US10430099B2 |
Data processing systems
A data array to be stored is first divided into a plurality of blocks. Each block is further sub-divided into a set of sub-blocks.Data representing sub-blocks of the data array is stored, together with a header data block for each block that the data array has been divided into.For each block, it is determined whether all the data positions for the block have the same data value associated with them, and, if so, an indication that all of the data positions within the block have the same data value associated with them, and an indication of the same data value that is associated with each of the data positions in the block, is stored in the header data block for that block of the data array. |
US10430095B1 |
Dynamic memory reallocation for match-action packet processing
A pool of unit memories is provided in order to flexibly allocate memory capacity to implement various tables and/or logical memories such as those for implementing an OpenFlow switch. The pool is structured with routing resources for allowing flexible allocation and reallocation of memory capacity to the various tables. The unit memories and logical units in the pool are interconnected by a set of horizontal routing resources and a set of vertical routing resources. |
US10430094B2 |
Resource allocation in computers
A method and tangible medium embodying code for allocating resource units of an allocatable resource among a plurality of clients in a computer is described. In the method, resource units are initially distributed among the clients by assigning to each of the clients a nominal share of the allocatable resource. For each client, a current allocation of resource units is determined. A metric is evaluated for each client, the metric being a function both of the nominal share and a usage-based factor, the usage-based factor being a function of a measure of resource units that the client is actively using and a measure of resource units that the client is not actively using. A resource unit can be reclaimed from a client when the metric for that client meets a predetermined criterion. |
US10430092B1 |
Memory controller systems with nonvolatile memory for storing operating parameters
The present invention is directed to computer storage systems and methods thereof. In an embodiment, a memory system comprises a controller module, a nonvolatile memory, and a volatile memory. The controller module operates according to a command and operation table. The command and operation table can be updated to change the way controller module operates. When the command and operation table is updated, the updated table is stored at a predefined location of the nonvolatile memory. There are other embodiments as well. |
US10430091B2 |
Electronic device and method for storing security information thereof
An apparatus and method for storing security information are provided. The apparatus is generally an electronic device that includes a memory configured to include a secured region to store security information and a processor configured to electrically connect with the memory. The processor is further configured to execute an application program configured to store the security information in a first secured region, to receive a request to store the security information from the application program, and to store the security information in a second secured region different from the first secured region in response to the request. |
US10430087B1 |
Shared layered physical space
A method for managing write requests in a storage system, the method may include receiving, by a receiving control node out of a group of control nodes of the storage system, a write request for writing a data unit to the storage system; storing the data unit in a first layer storage that is shared among the control nodes of the group, by the receiving control node; retrieving the data unit from the first layer storage and destaging the data unit to a second layer storage by a destaging control node that belongs to the group and is responsible for destaging the data unit; wherein at a time of the destaging of the data unit to the second layer storage another control node of the group is responsible for destaging another data unit to the second layer storage; wherein the storing of the data unit in the first layer storage is faster than the destaging of the data unit to the second layer storage; and when the destaging control node differs from the receiving control node then each one of the receiving and the storing is not preceded by notifying the destaging control node about the receiving and the storing, respectively. |
US10430086B2 |
Stacked memory devices, systems, and methods
Memory requests for information from a processor are received in an interface device, and the interface device is coupled to a stack including two or more memory devices. The interface device is operated to select a memory device from a number of memory devices including the stack, and to retrieve some or all of the information from the selected memory device for the processor. Additional apparatus, systems and methods are disclosed. |
US10430084B2 |
Multi-tiered memory with different metadata levels
Method and apparatus for managing data in a memory. In accordance with some embodiments, a data object is stored in a first non-volatile tier of a multi-tier memory structure. A metadata unit is generated to describe the data object, the metadata unit having a selected granularity. The metadata unit is stored in a different, second non-volatile tier of the multi-tier memory structure responsive to the selected granularity. |
US10430082B2 |
Server management method and server for backup of a baseband management controller
A server management method and a server, where the server is divided into two parts, a computing component and a storage component, according to a part maintenance cycle. The computing component and the storage component are connected in a detachable manner. The computing component includes a part with a short maintenance cycle, and the storage component includes a part with a long maintenance cycle. Therefore, the computing component or the storage component can be flexibly replaced during server maintenance, and maintenance efficiency is high. |
US10430081B2 |
Methods for minimizing fragmentation in SSD within a storage system and devices thereof
A method, non-transitory computer readable medium, and device that assists with reducing memory fragmentation in solid state devices includes identifying an allocation area within an address range to write data from a cache. Next, the identified allocation area is determined for including previously stored data. The previously stored data is read from the identified allocation area when it is determined that the identified allocation area comprises previously stored data. Next, both the write data from the cache and the read previously stored data are written back into the identified allocation area sequentially through the address range. |
US10430077B2 |
Cover device and electronic device including cover device
An electronic device according to various embodiments of the present disclosure may include: a first cover including one or more first sensing regions, and a processor configured to determine whether the first cover is in an open position, detect a first gesture on the one or more first sensing regions, and execute a function corresponding to the first gesture when the first cover is in the open position. |
US10430075B2 |
Image processing for introducing blurring effects to an image
Image processing includes: applying shader code to an original image to generate a blurred image version (BIV); obtaining a composite image that is generated based at least in part on the original image and the BIV, wherein the composite image is generated by: obtaining a mask that includes an unblurred region and a blurred region; applying the mask to combine the original image and the BIV to render a composite image that includes an unblurred portion comprising a portion of the original image corresponding to the unblurred region of the mask, and a blurred portion comprising a portion of the BIV corresponding to the blurred region of the mask; and outputting the composite image to be displayed. |
US10430073B2 |
Processing device having a graphical user interface for industrial vehicle
A processing device having a graphical user interface includes a housing having a touch screen display that receives touch gesture commands from a vehicle operator. Still further, a set of controls is arranged on a front face of the housing. The set of controls include hardware control equivalents to the gesture commands recognized by the touch screen of the display. This allows industrial vehicle operators to wear gloves or other attire fitting for the task at hand, without undue interference interacting with the graphical user interface. Also, redundant control, e.g., via gesture commands recognized by the touch screen of the display and corresponding controls in the user control section, allow the vehicle operator to use which ever data input option is most convenient for speed, convenience, workflow, etc. |
US10430070B2 |
Providing defined icons on a graphical user interface of a navigation system
Various embodiments of systems and methods to provide pre-defined navigation locations in a navigation system are described herein. In one aspect, a list of pre-defined location icons is provided on a graphical user interface. Further, the GUI enables to select at least two pre-defined location icons from the list of pre-defined location icons and driving information between locations is rendered corresponding to the selected at least two pre-defined location icons. |
US10430067B2 |
Methods and systems for presenting scrollable displays
Methods and systems are discussed herein for navigating media content using scrollable displays. For example, scrollable displays may provide an efficient user interface in order to increase the amount and type of content that can be presented to a user, particularly with regard to small displays. For example, instead of transitioning to new displays, which may require larger display screens or the removal of already presented content, the methods and systems disclosed nest scrollable displays within each other in order to enable a user to efficiently access and navigate content options without large display screen requirements. |
US10430066B2 |
Gesteme (gesture primitive) recognition for advanced touch user interfaces
This invention relates to signal space architectures for generalized gesture capture. Embodiments of the invention includes a gesture-primitive approach involving families of “gesteme” from which gestures can be constructed, recognized, and modulated via prosody operations. Gestemes can be associated with signals in a signal space. Prosody operations can include temporal execution modulation, shape modulation, and modulations of other aspects of gestures and gestemes. The approaches can be used for advanced touch user interfaces such as High-Dimensional Touch Pad (HDTP) in touchpad and touchscreen forms, video camera hand-gesture user interfaces, eye-tracking user interfaces, etc. |
US10430062B2 |
Systems and methods for geo-fenced dynamic dissemination
Systems and methods are provided for sharing maps in a collaborative environment using classification-based access control. The generation of and dissemination of maps and/or data within such maps can be governed by classification-based access control, where a user's classification level can determine whether or not maps and/or data within those maps can be seen. In some scenarios, a user may wish to reveal the existence of data and/or additional details within a limited geographical area or subset of a map. The systems and methods further provide a geo-fenced view that can dynamically declassify data (to a specified degree). For example, declassified details can be revealed for moving data sets or objects upon entry into the geo-fenced view, and upon existing the geo-fenced view, the moving data sets or objects are reclassified. |
US10430060B2 |
Graphical user interface and related method
A graphical user interface that is embodied in a computer-readable medium for execution on a computer, and configured for processing of an image that is displayed on a screen. The graphical user interface includes an original version of a control element, and a blurred version of the control element. The blurred version of the control element is superimposed over the image on the screen, and the original version of the control element is superimposed over the blurred version of the control element on the screen. |
US10430056B2 |
Quick edit system for programming a thermostat
The invention includes a control for adjusting a thermostat comprising a controller including a microprocessor and memory for storing a user interface, a display screen including a touch sensitive screen, the display screen coupled to the microprocessor and memory; the user interface including a main screen having a temperature icon, a time icon, an adjustment icon, and temperature and time set points for at least two days of the week and the microprocessor programmed to highlight one of the time or temperature icons upon selection of said one of the time or temperature icons and thereafter, without navigating away from the main screen, upon selection of the adjustment touch pad icon, the microprocessor programmed to adjust the time or temperature set point. |
US10430055B2 |
Multi-touch interface and method for data visualization
A system and method for facilitating adjusting a displayed representation of a visualization. An example method includes employing a touch-sensitive display to present a user interface display screen depicting a first visualization; and providing a first user option to apply touch input to a region of the user interface display screen coinciding with a portion of the first visualization to facilitate affecting an arrangement of data displayed via the first visualization, wherein the touch input includes a multi-touch gesture. In a more specific embodiment, the touch gesture includes a rotation gesture, and the method further includes displaying a visual indication of a change, e.g., a pivot operation, to be applied to a second visualization as a user performs the rotation gesture, and updating the second visualization as a user continues perform the rotation gesture. The first visualization is updated based on the second visualization upon completion of the rotation gesture. |
US10430053B1 |
Edge navigation mechanism that mimics the use of a flipchart
An apparatus having an interactive display configured to display a first navigation user interface (UI) element in a first predetermined area of the interactive display, the first navigation UI element being an indicator for navigating forward one or more pages of the e-presentation, and memory configured to store an e-presentation including a plurality of pages, is disclosed. The apparatus displays a current page of the e-presentation, detects a first input from a user, makes a first determination that the first input initiated in the first predetermined area, in response to the first determination, display a second UI element on the interactive display, wherein the second UI element indicates a page immediately after the current page of the e-presentation, and make a second determination as to whether the first input exceeds a predetermined navigation threshold. When the first input exceeds the predetermined navigation threshold, the second UI element is updated. |
US10430052B2 |
Method and system for processing composited images
The disclosure is related to a method and a system for processing composited images. The method is operated in a computer. A software-enabled user interface is provided for a user to create a composited image using a touch screen. In the beginning, in response to the user's manipulation, at least two images are retrieved from a database. A background image and a foreground image are selected from the images. The user interface allows the user using a gesture over the background image displayed on the touch screen for generating a series of touch signals covering a specific area. The touch signals render a mask image. The mask is applied to the foreground image. The mask image of the background image covers the foreground image so as to create a new foreground image. The composited image is created when the new foreground image is composited with the background image. |
US10430050B2 |
Apparatus and associated methods for editing images
An apparatus comprising: at least one processor; and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus to perform at least the following: based on a received user selection of one or more of a plurality of displayed user selectable markers (1505a-f), the user selectable markers each corresponding to one or more of the plurality of time adjacent images in a sequence of images, causing an editing function associated with the one or more images that correspond to the selected marker. |
US10430048B2 |
Airport availability and suitability information display
A system and method for an improved aircraft information display is provided. The provided embodiments integrate and analyze relevant data from on-board and external sources to render airport availability and suitability information on the aircraft information display. The airport availability and suitability information displayed on the aircraft information display incorporates links between related information, is intuitively arranged on the aircraft information display, and dynamically updates responsive to changes in data and to user interaction. |
US10430043B2 |
Preventing inadvertent changes in ambulatory medical devices
A portable medical device is operated in an active mode in which the device receives a user input at an input interface and provides the received user input to a processor of the device. The active mode is terminated and the device is operated in a safe mode, in which the received user input is not provided to the processor and/or one or more device function is disabled, in response to determining that the received user input was received in an out of bounds region of the input interface. The safe mode is terminated in response to receiving a predetermined user input comprising an activation input. |
US10430042B2 |
Interaction context-based virtual reality
Conversation-based context rules for altering virtual reality (VR) gaming and for switching between input languages based on heuristics related to past conversations between users. |
US10430039B2 |
Methods and systems for providing user feedback
A first story is displayed at a client device. The first story includes a second story and an indication of a previous user interaction with the second story that resulted in creation of the first story. First and second user-feedback interfaces corresponding to the first story and second story, respectively, are concurrently displayed. The first and second user-feedback interfaces include affordances for providing user feedback regarding their respective stories. User feedback is received for the first story through the first user-feedback interface or for the second story through the second user-feedback interface. When the user feedback is received through the first user-feedback interface, notification is sent to a server to associate the user feedback with the first story, and when the user feedback is received through the second user-feedback interface, notification is sent to the server to associate the user feedback with the second story. |
US10430038B2 |
Automated data overlay in industrial monitoring systems
Systems and methods include receiving an indication of a selection of a first piece of equipment in an industrial monitoring system. The systems and methods also include determining a first feature of interest in a plot corresponding to a first sensor. Additionally, the systems and methods include matching the first feature of interest with corresponding second features of interest in a second plot. Furthermore, the systems and methods include overlaying the first plot with the second plot based at least in part on the first feature of interest and the corresponding second feature of interest. |
US10430025B2 |
Active selection configuration system with suggested actions
Systems, computer program products, and methods are described herein for active selection management system with suggested actions. The present invention is configured to determine one or more additional devices and/or one or more additional applications associated with the user based on at least determining that the one or more additional devices when combined with the one or more devices aids the user to accomplish the target; initiate a presentation of the one or more additional devices and/or the one or more additional applications on a user interface for display on the user device; receive a user selection of at least one of the one or more additional devices and/or one or more additional applications; and establish a communication link with the at least one of the one or more additional devices and/or the one or more additional applications selected by the user. |
US10430021B2 |
System and method for providing an interactive vehicle diagnostic display
A client computing system (CCS) receives a download including (i) an image representative of at least one circuit in a vehicle, the at least one circuit including a first circuit configured for carrying a first signal within the vehicle, and (ii) symbol data associated with at least one symbol, the at least one symbol including a first symbol. After receiving the download, the CCS displays the image and the at least one symbol. The CCS then receives a first input corresponding to selection of the first symbol. The CCS then responsively receives, from the vehicle, data representing value(s) of the first signal. The CCS then determines a first display-location at which to display the data representing the value(s) of the first signal. While the image and the at least one symbol are displayed, the CCS then displays, at the first display-location, the data representing the value(s) of the first signal. |
US10430020B2 |
Method for opening file in folder and terminal
The present invention provides a method for opening a file in a folder, including: obtaining an operation performed on an icon area of a folder; determining whether the operation is performed on a preset area in the icon area of the folder, where the preset area displays information about a preset file in the folder; and if the operation is performed on the preset area in the icon area of the folder, opening the preset file. The present invention further provides a corresponding terminal. In embodiments of the present invention, an icon of a file in the folder is displayed on an icon of the folder. When the folder is not opened, a user may directly view, from the icon of the folder, an icon of a file that needs to be opened, so as to directly implement a trigger operation of opening the file, which is simple and convenient. |
US10430017B2 |
Target pointing system making use of velocity dependent cursor
There is disclosed a target pointing system for use in graphical user interface. The system provides a fan-shaped area cursor with a variable spanning angle, a variable range for capturing target items on the user interface and/or a variable orientation. The spanning angle of the area cursor ranges from >0° but <360°. The spanning angle, the range of the area cursor for acquiring target items and/or the orientation of the area cursor is dependent on velocity of movement of the area cursor. |
US10430015B2 |
Image analysis
Mechanisms for displaying an ordered sequence of images are provided. The mechanisms receive a search query as input from a user. The search query includes a start point and an end point of a virtual tour. The start point and the end point determine a boundary of the virtual tour. Based on the search query, images that are within the boundary of the virtual tour defined in the search query are collected. At least a subset of the collected images are displayed in an ordered sequence in accordance with the boundary of the virtual tour. |
US10430014B2 |
Conductive component and conductive component for touch panel
A conductive component including two or more conductive first and second large lattices composed of a thin metal wire, wherein the first and second large lattices each contain a combination of two or more small lattices, a first unconnected pattern composed of a thin metal wire separated from the first and second large lattices is formed around a side of the first large lattices, a second unconnected pattern composed of a thin metal wire separated from the first and second large lattices is formed around a side of the second large lattices, the first large lattices are arranged adjacent to the second large lattices as viewed from above, the first and second unconnected patterns overlap with each other to form a combined pattern between the first and second large lattices as viewed from above, and the combined pattern contains a combination of two or more of the small lattices. |
US10430013B2 |
Touch substrate and manufacturing method thereof, display device, fingerprint determination device and method for determining fingerprint
A touch substrate and its manufacturing method thereof, a display device, a fingerprint determination device and a method for determining a fingerprint are provided. The touch substrate touch driving electrodes, touch sensing electrodes and signal lines on a base substrate which at least includes a first region and a second region. The plurality of touch driving electrodes include a plurality of first touch driving electrodes in the first region and a plurality of second touch driving electrodes in the second region, and each first touch driving electrode and one second touch driving electrode are connected with a same signal line; and/or the plurality of touch sensing electrodes include a plurality of first touch sensing electrodes in the first region and a plurality of second touch sensing electrodes in the second region, and each first touch sensing electrode and one second touch sensing electrode are connected with a same signal line. |
US10430011B2 |
Method and apparatus for tracking input positions via electric field communication
A method and apparatus for tracking input positions via Electric Field Communication (EFC) are provided. The apparatus includes a plurality of receiving electrodes for EFC and a receiver unit. The receiving electrodes detect strengths of input electric fields. The receiver unit compares the strengths of the input electric fields with each other and generates position information regarding the input electric fields. |
US10430010B2 |
Display device and method of fabricating the same
A input sensing layer, including: a base layer; sensing electrodes disposed on the base layer, the sensing electrodes arranged in a first direction and in a second direction intersecting the first direction; and sensing wires electrically connected to the sensing electrodes, wherein each of the sensing electrodes includes a first sub sensing electrode and a second sub sensing electrode electrically connected to the first sub sensing electrode, the second sub sensing electrode overlapping the first sub sensing electrode on a plane, and wherein an area of the first sub sensing electrode is different from an area of the second sub sensing electrode. |
US10430007B2 |
Stretchable display
A stretchable display includes: a stretchable substrate including first areas and second areas; main pixels disposed on the first areas of the stretchable substrate, the main pixels configured to display different colors; and at least one sub-pixel disposed on the second areas of the stretchable substrate, the at least one sub-pixel being configured to display one color that is the same as any one of the main pixels, wherein the sub-pixel is configured to turn on in response to the stretchable substrate being stretched. |
US10430006B2 |
Input device and method for driving input device
An input device includes a voltage divider circuit that includes a resistive sensor whose resistance changes in accordance with a change in pressure of a pressing operation and at least one resistor device and that, upon receiving driving voltage, generates a divider voltage according to the resistance of the resistive sensor device, a first driving circuit that alternately supplies, to the voltage divider circuit at certain time intervals, a first driving voltage and a second driving voltage for generating different divider voltages, a capacitor whose charge changes in accordance with a change in the divider voltage, and a first charge detection circuit that detects an amount of change in the charge of the capacitor at a time when the driving voltage changes from the first driving voltage to the second driving voltage and when the driving voltage changes from the second driving voltage to the first driving voltage. |
US10429999B2 |
Display panel, input/output device, data processing device, and method for manufacturing display panel
To provide a novel display panel that is highly convenient or reliable. To provide a novel input and output device that is highly convenient or reliable. To provide a novel data processing device that is highly convenient or reliable. To provide a method for manufacturing a novel display panel that is highly convenient or reliable. The display panel includes a pixel, a third conductive film electrically connected to the pixel, an insulating film including an opening portion overlapping with the third conductive film, and an electrode including a first region in contact with the third conductive film and a second region functioning as a contact point. |
US10429998B2 |
Generating a baseline compensation signal based on a capacitive circuit
A capacitance-sensing circuit may include a plurality of channel inputs associated with measuring a capacitance of a unit cell of a capacitive sense array. The capacitance-sensing circuit may also include a baseliner component that is coupled to the plurality of channel inputs. The baseliner component may generate a baseline compensation signal using a capacitive circuit and may provide the baseline compensation signal to each of the plurality of channel inputs of the capacitive sense array. |
US10429993B2 |
Touch display driving integrated circuit and operation method thereof
A touch display driving integrated circuit (TDDIC) is configured to control a touch display panel. The TDDIC includes a touch driving circuit that performs a touch scan operation on the touch display panel, and a display driving circuit that performs a display operation on the touch display panel. The touch driving circuit operates in a first operation mode having a first touch scan frequency, and operates in a second operation mode having a second touch scan frequency different from the first touch scan frequency when a touch is detected from the touch display panel in the first operation mode. |
US10429992B2 |
Display device with reduced noise effect on touch screen
A display device may include the following elements: a touch screen unit (or touch-sensing unit) operating with a preset touch driving frequency; a display unit operating with a display driving frequency corresponding to a driving control signal; a noise analyzer determining a frequency band of a panel noise based on a feedback signal provided from the display unit, wherein the panel noise is caused by operation of the display unit; and a driving frequency controller controlling the display driving frequency such that the frequency band of the panel noise avoids the touch driving frequency. |
US10429990B2 |
Touch circuit, touch display driver circuit, touch display device, and method of driving the same
A touch circuit, a display driver circuit, a touch display device, and a method of driving the same. After display driving is ended and before touch driving begins to be performed, touch driving and touch sensing are accurately performed through pre-setting driving without the influence of display driving that was ended already. An accurate touch sensing result without touch sensing noise is obtained. |
US10429988B2 |
Touch screen support by emulating a legacy device
An information handling system with a touchscreen is disclosed. When the operating system has not been loaded or a driver of the touchscreen is absent, an embedded controller of the information handling system receives and presents touch input information from the touchscreen to a host processor by emulating the touchscreen as a legacy PS2 device. After the operating system is loaded and a driver for the touchscreen is running, the legacy PS2 device emulation is terminated and touch input information from the touchscreen is presented through an I/O interface to the host processor and processed by the operating system. |
US10429986B2 |
Touch screen panel and display device comprising the same
A touch screen panel according to an embodiment includes a base film having a display region and a bent non-display region located on the outside of the display region, touch electrodes provided in the display region, touch pads provided on one edge of the non-display region, and routing wires that extend along the front or back of the bent non-display region and electrically connect the touch electrodes and the touch pads. |
US10429985B2 |
Touch terminal, a near-field communication method and system of the touch terminal
The disclosure provides a touch terminal, a near-field communication method and system of the touch terminal. The method includes: a second touch terminal receiving a wireless communication request of establishment of the near-field sent by first touch terminal through the near-field electric field; the second touch terminal sending a interference source peripherals closing signal to a main control chip, and informing the main control chip to close interference source peripherals; the first touch terminal and the second terminal establishing a wireless connection by touching near-field electric field, and exchange data. The disclosure enables to make the communication environment purified and guarantee the quality of communication. |
US10429983B2 |
Method for launching application and terminal device
A method for launching an application and a mobile terminal are provided. The method includes the following operations. Whether a touch operation of a user received on a touch display screen of a mobile terminal belongs to a touch operation set in a mapping relationship with an application set of the mobile terminal is judged, in response to the touch operation being detected when the touch display screen is in a screen-off mode. A proximity sensor in an off-state or a dormant-state is started based on a judgment that the touch operation belongs to the touch operation set. Existence of an occlusion within a preset distance in front of the touch display screen is detected with the proximity sensor. An application corresponding to the touch operation is launched when no occlusion exists. |
US10429982B2 |
Method and apparatus for detecting force
The present disclosure provide a method for detecting a force, including: acquiring a plurality of sample data of a first electronic device, where each of the plurality of sample data comprises a preset force and raw data of the first electronic device, the raw data of the first electronic device is obtained by detecting a deformation signal which is generated by applying the preset force on an input medium of the first electronic device; and determining a fitting function according to the plurality of sample data, where the fitting function denotes a corresponding relationship between a force applied to the first electronic device and detected raw data, and the fitting function is for allowing a second electronic device to determine a force corresponding to detected raw data when an input medium of the second electronic device is subjected to an acting force. |
US10429977B2 |
Array substrate, display panel, display device and method for driving array substrate
The present disclosure relates to an array substrate, a display panel, a display device and a method for driving the array substrate, which avoid the common electrode block from providing pulse signals of a same polarity for a long time, thereby reducing probability of polarization of the liquid crystal and improving display performance. The array substrate, includes a common electrode layer, the common electrode layer including at least one common electrode block, at least one touch signal line, and a driving signal module; the common electrode layer including at least one common electrode block; wherein each touch signal line is connected with a corresponding common electrode block and the driving signal module, and the driving signal module outputs at least two types of touch driving signals with opposite polarities to at least one of the at least one common electrode block at each touch stage. |
US10429976B2 |
Panel and manufacturing method thereof
A method for manufacturing a panel is provided, including forming a first conductive pattern including a first portion and a second portion, forming a second conductive pattern connecting between the first portion and the second portion, and thermally treating a mask pattern of an insulation material to form an insulation pattern substantially covering a side surface of the second conductive pattern. A panel manufactured by using the foregoing method is also provided. A horizontal distance between an outer side surface of the insulation pattern and an inner side surface adjacent to the second conductive pattern is less than 3 micrometers. |
US10429973B2 |
Input detection device
The input detection device includes: a line having an end to which a driving signal is supplied and extending in a first direction; a plurality of drive electrodes extending in a second direction intersecting the first direction and arranged in parallel in the first direction; a selecting drive circuit selecting the drive electrode from the plurality of drive electrodes and connecting an end of the selected drive electrode to the line; a driving signal circuit supplying the driving signal to the end of the line; and a plurality of line patterns connected to each drive electrode. A line density of line patterns connected to a drive electrode connected to be close to the end of the line is smaller than a line density of line patterns connected to another drive electrode connected to be far from the end of the line. |
US10429968B2 |
Reconfigurable messaging assembly
A reconfigurable messaging assembly for a vehicle includes a low power bi-stable display attached to the vehicle for displaying an image, text, or video. A processor and a storage device are coupled with the display. A communicator including transceivers for WiFi, Bluetooth, and NFC is connected to the display for communicating with a portable electronic device. An interface device including a camera and a touchscreen both disposed on the vehicle is also coupled with the display and the processor for interacting with a primary user and a secondary user and for acquiring the images, text, and videos. The interface device is operatively connected to the communicator for interacting with a primary user and a secondary user. The assembly enables a primary user and a secondary user to show an image, text, or video using the display and to provide interaction with the primary user and the secondary user. |
US10429965B2 |
Flexible polarizer and flexible touch display
The disclosure provides a flexible polarizer, including a polarizing layer, a first protective layer, and a second protective layer. The polarizing layer has a first surface and a second surface opposite to each other. The first protective layer is disposed on the first surface and comprises polyvinylidene difluoride (PVDF) or a kind of high phase retardation plastics. The second protective layer is disposed on the second surface and comprises PVDF or a kind of the high phase retardation plastics. The first protective layer, the second protective layer, and the polarizing layer are configured to be bent along a bend line. |
US10429964B2 |
Touch panel, method of manufacturing touch panel, and optical thin film
A touch panel of the present invention includes a touch panel substrate, a cover substrate provided to overlap the touch panel, and a connection part including a scattering layer laminated from the cover substrate side toward the touch panel substrate side and is provided between the touch panel substrate and the cover substrate in an area other than a display area. |
US10429962B2 |
Position indicator
A position indicator has a first electrode, an inverting amplifier and electrical isolation circuitry. The first electrode, in operation, receives an input signal from a capacitive touch panel and transmits a reference signal. The inverting amplifier has an input coupled to the first electrode, and, in operation, inverts and amplifies the input signal. The electrical isolation circuitry has an input coupled to an output of the inverting amplifier, and, in operation, generates the reference signal based on the inverted and amplified input signal. |
US10429961B2 |
Controller device, information processing system, and information processing method
A controller device is used for more information processes. The controller device is capable of wirelessly communicating with an information processing device. The controller device includes a communication unit, a display unit, and a program executing unit. The communication unit transmits, to the information processing device, operation data obtained based on an operation performed on the controller device, and receives, from the information processing device, image data generated in the information processing device through a process performed based on operation data. A display unit displays an image represented by the image data received from the information processing device. When a predetermined operation on the controller device is performed, the program executing unit executes a predetermined program and displays at least the image resulting from the execution of the program on the display unit. The communication unit transmits, to the information processing device, data indicating that the predetermined program is being executed. |
US10429956B2 |
Capacitive stylus with detachable eraser
This invention discloses a capacitive stylus including a pen housing and a detachable eraser. The pen housing comprises a rear end section and a thinning section with a thinner wall thickness than that of the rear end section. A compressible latch is disposed at the outer surface of the eraser. The rear end section includes an axial groove. By pushing the latch to pass through the axial groove into the thinning section and rotating the latch within the thinning section, the pen housing is combined with the eraser. |
US10429950B2 |
Diffusive emissive display
A display includes a display stack to generate a digital display image. A media layer includes a plurality of diffusive emissive elements disposed in a predetermined pattern. The diffusive emissive elements on the media layer emit a scattered signal in response to light incident to the media layer. |
US10429948B2 |
Electronic apparatus and method
According to one embodiment, an electronic apparatus including a first body and a second body is provided. The second body is mechanically attachable to the first body in a first style and a second style. The electronic apparatus includes a memory and a hardware processor connected to the memory. The hardware processor is configured to detect whether the electronic apparatus is in the first or second style, and validate an operation of changing an orientation of a screen image displayed on the display and limit the validation of the operation to a certain time period during from a time of the second style being detected to a predetermined time passed. |
US10429944B2 |
System and method for deep learning based hand gesture recognition in first person view
This disclosure relates generally to hand-gesture recognition, and more particularly to system and method for detecting interaction of 3D dynamic hand gestures with frugal AR devices. In one embodiment, a method for hand-gesture recognition includes receiving frames of a media stream of a scene captured from a FPV of a user using RGB sensor communicably coupled to a wearable AR device. The media stream includes RGB image data associated with the frames of the scene. The scene comprises a dynamic hand gesture performed by the user. Temporal information associated with the dynamic hand gesture is estimated from the RGB image data by using a deep learning model. The estimated temporal information is associated with hand poses of the user and comprises key-points identified on user's hand in the frames. Based on said temporal information, the dynamic hand gesture is classified into predefined gesture classes by using multi-layered LSTM classification network. |
US10429943B2 |
Systems and methods of tracking moving hands and recognizing gestural interactions
The technology disclosed relates to relates to providing command input to a machine under control. It further relates to gesturally interacting with the machine. The technology disclosed also relates to providing monitoring information about a process under control. The technology disclosed further relates to providing biometric information about an individual. The technology disclosed yet further relates to providing abstract features information (pose, grab strength, pinch strength, confidence, and so forth) about an individual. |
US10429941B2 |
Control device of head mounted display, operation method and operation program thereof, and image display system
A selection processing unit performs selection processing of selecting one of a plurality of options relating to a 3D image, in a case where a double tap operation is recognized by an operation recognition unit, and of cyclically switching the option to be selected every time the double tap operation is recognized. A change processing unit performs change processing of changing a display form of a 3D image, which accompanies the one option selected in the selection processing unit in a case where a tap-and-hold operation is recognized by an operation recognition unit. |
US10429940B2 |
Device and method for recognizing hand gestures using time-of-flight sensing
An electronic device includes at least one laser source configured to direct laser radiation toward a user's hand. Laser detectors are configured to receive reflected laser radiation from the user's hand. A controller is coupled to the at least one laser source and laser detectors and configured to determine a set of distance values to the user's hand for each respective laser detector and based upon a time-of-flight of the laser radiation. The controller also determines a hand gesture from among a plurality of possible hand gestures based upon the sets of distance values using Bayesian probabilities. |
US10429939B2 |
Apparatus for projecting image and method for operating same
An apparatus for projecting an image, according to one embodiment of the present invention, projects an image, detects a user gesture operation in an area between an image screen area, where an image screen corresponding to the projected image is displayed, and the apparatus for projecting an image, and carries out a control operation corresponding to the detected gesture operation. The operation of detecting the user gesture operation includes distinguishing, into a plurality of areas, the area between the image screen area and the apparatus for projecting an image, and detecting the user gesture operation with respect to the plurality of distinguished plurality of areas. |
US10429933B2 |
Audio enhanced simulation of high bandwidth haptic effects
A system generates haptic effects using at least one actuator and at least one speaker. The system receives a high definition (“HD”) haptic effect signal and a corresponding audio signal if audio is to be played. The system generates a standard definition (“SD”) haptic effect signal based at least on the HD haptic effect signal, and generates an audio based haptic effect signal based at least on the HD haptic effect signal. The system mixes the audio signal and the audio based haptic effect signal, and then substantially simultaneously plays the SD haptic effect signal on the actuator and plays the mixed signal on the speaker. |
US10429931B2 |
Systems and methods for multimedia tactile augmentation
The present disclosure described methods and systems for multimedia tactile augmentation. At least one method includes identifying media content loaded on a first computer, locating instructions stored on a second computer (said instructions corresponding to the content), initiating playback of the content, and synchronizing the instructions with the content. Said method further includes parsing and converting the instructions into one or more electrical signals, driving one or more haptic feedback devices with the electrical signals in synchronization with the playback of the content, and presenting the content to the user. The haptic feedback devices provide physical stimulation to a user accessing the content. |
US10429929B2 |
Piezoelectric actuator apparatus and methods
Piezoelectric actuator apparatus and methods for providing tactile feedback are described herein. An example piezoelectric actuator assembly includes a support plate having a recessed well and conductive contact disposed within the recessed well of the support plate. A piezoelectric element has a first layer composed of an electrically conductive material and a second layer adjacent the first layer composed of a piezoelectric material. The piezoelectric element is disposed within the recessed well so that the first layer directly engages the conductive contact and the second layer is to be electrically coupled to a ground via a flexible conductive lead. |
US10429928B2 |
Systems, articles, and methods for capacitive electromyography sensors
Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity εr of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described. |
US10429922B2 |
Power domain having an implementation of an on-chip voltage regulator device
Implementations of on-chip electrical regulation devices may include: a positive power domain electrically coupled with a negative power domain through a power mesh including two or more loads. The positive power domain, negative power domain, or both the positive power domain and negative power domain may each include a power domain rail. The power domain rail may include a resistance distributed along a length of the power domain rail. The distributed resistance may be electrically coupled with one or more transistors also distributed along the power domain rail. Each of the one or more transistors, in combination with the distributed resistance, may be configured to dissipate electrical power along the length of the power domain rail to reduce a voltage across the positive power domain, negative power domain, or both the positive power domain and the negative power domain to a desired operating voltage at the power mesh. |
US10429920B2 |
Display apparatus and driving method therefor
A driving method includes: allocating multiple pieces of channel data to multiple first channel groups and multiple second channel groups; determining, based on the multiple pieces of channel data, a largest gray scale value difference of two adjacent pieces of channel data of each of the first channel groups, to determine multiple drive currents; or determining, based on a first piece of data and a second piece of data that correspond to each of the multiple second channel groups in the multiple pieces of channel data, a first transient value and a second transient value that correspond to each of the multiple second channel groups, where the multiple drive currents are used to drive the first channel groups; and determining, based on the first transient value and the second transient value, whether at least one of the second channel groups performs a power saving operation. |
US10429916B2 |
Control apparatus that controls a memory and power saving control method for the memory
A control apparatus that controls a memory, where the memory is capable of being shifted in accordance with a control signal to a power saving state. According to one embodiment, the control apparatus shifts the memory to the power saving state using the control signal on a basis of stopping of a clock signal input to the memory. |
US10429907B2 |
Cooling structure for portable electronic device
A cooling structure for a portable electronic device is provided, configured to accommodate, within a case having a sealing structure, a substrate on which a heat-generating component that generates heat during operation is mounted, and provided with a heat sink that diffuses the heat from the heat-generating component to a place away from the heat-generating component. The heat sink is integrated into an inner surface of an area corresponding to a front cover of the case or an inner surface of an area corresponding to a rear cover of the case, and a flat heat pipe flattened by being compressed in a thickness direction of the case is disposed such that one end is attached by being sandwiched between the heat-generating component and the heat sink while another end is arranged in close contact with the heat sink. |
US10429902B2 |
Connecting mechanism and electronic device
An electronic device includes a first body and a second body. The first body includes a connecting mechanism having a base, at least one locking member, a limiting member, and a driving member connected to the limiting member. The locking member includes at least one locking portion. The second body has a through hole. At least one of a plurality of inner sidewalls of the through hole has at least one locking hole. When the connecting mechanism is located in the through hole and the driving member is in a locked state, the locking portion is protruded from at least one opening of the base and extended into the locking hole. When the driving member is actuated to an unlocked state, the driving member drives the limiting member to move and the locking member moves relative to the base such that the locking portion is retracted into the base. |
US10429900B1 |
Coupled structure and electronic device
A coupled structure capable of keeping the coupled state between coupled members without degrading the appearance, and an electronic device including such a coupled structure are disclosed. A coupled structure includes a keyboard unit coupled with a main body chassis. The coupled structure includes a hook mechanism which engages the keyboard unit with the main body chassis when the keyboard unit moves in one direction relative to the main body chassis, a locking part formed at the main body chassis, and an elastic part formed at the keyboard unit, and the elastic part biases the keyboard unit engaged with main body chassis in the one direction relative to the main body chassis when the locking part locks the elastic part. |
US10429897B2 |
Foldable terminal
The present disclosure provides a foldable terminal with a flexible screen. The foldable terminal includes a housing, two main bodies, a flexible screen, a first air bag and a second air bag. The housing includes two casings and a bendable portion, the bendable portion is capable of being bent and deformed and connected between the two casings. The two main bodies are fixed to the two casings correspondingly. The flexible screen includes two fixed regions and a bendable region, the two fixed regions are fixed to the two main bodies correspondingly, and the bendable region is connected between the two fixed regions. When the foldable terminal is in a folded state, the sealed gas is in the second air bag, and when the foldable terminal is in an unfolded state, the sealed gas is moved from the second air bag into the first air bag. |
US10429894B2 |
Bendable mobile terminal
A bendable mobile terminal includes two bendable mechanisms. The bendable mobile terminal is capable of being bent at the locations of the two bendable mechanisms. One of the bendable mechanisms is located at a middle portion between two opposite ends of the bendable mobile terminal, and the other bendable mechanism is located at a middle portion between the one bendable mechanism and one end of the bendable mobile terminal. By employing the two bendable mechanisms, the bendable mobile terminal is able to stay in arbitrary position after being bent, and provide support by its own bending, thereby reducing unnecessary components, and improving the portability of the mobile terminal. |
US10429893B2 |
Flexible display device, foldable electronic device including the same, and method of manufacturing flexible display device
A flexible display device that may fold so that a neutral surface has a radius of curvature is provided. The flexible display device includes a plurality of panel layers that are sequentially stacked on one another and comprise a display panel layer configured to display an image and a transparent protective panel layer; and adhesive layers that sequentially adhere the plurality of panel layers to one another. An elastic modulus and a thickness of each of the adhesive layers and the plurality of panel layers are determined so that a neutral surface is located on a layer other than the display panel layer. |
US10429891B2 |
Pivotable vehicle mounting system for mobile computing devices
A mounting device includes a cradle including a first recess and configured to be mounted in a vehicle, a pivotable hinge member coupled to the cradle, and a docking tray coupled to the pivotable hinge member. The docking tray is configured to lock in a first position within the first recess in the cradle, and lock in a second position extending outward from the first recess in the cradle. The docking tray includes a second recess shaped and dimensioned to receive an electronic computing device. |
US10429890B2 |
Location-based power saving solution for wireless docking products
Described herein are techniques related to one or more systems, apparatuses, methods, etc. for implementing a location-based power saving solution for docking station products. A wireless docking station communicates with a docking wireless device. The docking station is activated when the docking wireless device is within a pre-configured coverage area of the docking station. The docking station is deactivated when the docking wireless device is outside the pre-configured coverage area. |
US10429889B2 |
Information handling system docking with coordinated power and data communication
A docking station connects through a docking port and docking cable with an information handling system to support communication between the information handling system and docking station peripherals. On initial interface, one data lane of the docking port establishes a temporary management interface, such as an I2C management bus, to configure the docking station. After configuration, a docking manager, virtual wireless access point and power block cooperate to assign data lanes of the docking port and wireless communication resources to information transfer and power transfer functions based upon processing and communication tasks performed at the information handling system. |
US10429884B1 |
Adjustable monitor frame for retaining and displaying a book and thin planar objects
An adjustable frame which attaches to the bezel of a computer monitor, which comprises a first frame part and a second frame part joined in an extensible connection such that the second frame part telescopically extends or contracts in relation to the first frame part to alter the width of the adjustable frame to match the width of any computer monitor. The adjustable frame further comprises horizontal and vertical holders positioned at the top and sides of the monitor which are adapted to retain and display thin planar objects. The adjustable frame also comprises a fold-down shelf assembly adapted to display a book, and pivots between a vertical raised position and a horizontal lowered position. |
US10429877B1 |
Low-voltage reference current circuit
A current reference circuit includes a current source, a first p-channel metal oxide semiconductor (PMOS) transistor having a source coupled to a first supply voltage, a gate, and a drain coupled to the current source, and an n-channel MOS (NMOS) transistor having a drain coupled to a second supply voltage, a gate coupled to the drain of the first PMOS transistor. The current reference circuit also includes a first resistive element having a first terminal coupled to a source of the NMOS transistor and a gate of the first PMOS transistor and a second terminal coupled to a ground potential, a second PMOS transistor having a drain coupled to the first supply voltage, and a second resistive element having a first terminal coupled to the first terminal of the first resistive element and a second terminal coupled to the gate of the second PMOS transistor. |
US10429873B2 |
Power supply circuit, power supply circuit generation method, and power supply circuit control method
The present disclosure relates to the field of intelligent wearable technologies, and provides a power supply circuit, a power supply circuit generation method, and a power supply circuit control method. The present disclosure provides a power supply circuit, including: a bandgap voltage reference Bandgap, a real-time detection and control module, and an alternate voltage source module, where the real-time detection and control module adjusts an output point voltage of the alternate voltage source module according to an output voltage of the Bandgap; and when the output point voltage of the alternate voltage source module reaches a target voltage, the real-time detection and control module closes the Bandgap and supplies power by using the alternate voltage source module. In such a power supply circuit, after adjustment of an output point voltage of an alternate voltage source module is completed, a Bandgap does not need to keep a power-supply state, and therefore power consumed by the Bandgap is reduced based on stable voltage supply. |
US10429871B2 |
Method and apparatus for actively managing electric power supply for an electric power grid
Systems and methods for managing power supplied over an electric power grid by an electric utility and/or other market participants to multiplicity of grid elements and devices for supply and/or load curtailment as supply, each of which having a Power Supply Value (PSV) associated with its energy consumption and/or reduction in consumption and/or supply, and wherein messaging is managed through a network by a Coordinator using IP messaging for communication with the grid elements and devices, with the energy management system (EMS), and with the utilities, market participants, and/or grid operators. |
US10429870B2 |
Startup control for multi-drop transmitters powered by current limited power supplies
A method of operating process variable transmitters configured for sensing within an industrial processing facility connected in parallel to a current loop that receives power from a common power supply. The transmitters include a power accumulator module including an energy storage device including at least one capacitor or a rechargeable battery and a sensor module including a transceiver coupled to a processor having an associated memory that stores a startup sequencing algorithm. After a fixed period of time following a startup, an initial node voltage is measured across the energy storage device. The initial node voltage is compared to a predetermined voltage, and the transmitter is placed in a low power mode when the initial node voltage is |
US10429868B2 |
Flip voltage follower low dropout regulator
A wide-tuning range low output impedance flip voltage follower (FVF) low dropout regulator (LDO) for large capacitor switching loads is disclosed. In some implementations, a touch sensing controller driver includes the LDO, which has an operational amplifier and a FVF. The FVF can have a gain device, a source follower device, and an adaptive level shifter coupled between a drain of the source follower device and a gate of the gain device. |
US10429867B1 |
Low drop-out voltage regular circuit with combined compensation elements and method thereof
The disclosure provides an LDO voltage regulator circuit and a related method. The circuit includes an error amplifier having a localized common-mode feedback circuit, receiving a reference voltage, a feedback voltage, and an input voltage, and generating an amplified error voltage; a pass element having a power transistor, receiving the amplified error voltage, and generating an output voltage; a feedback circuit receiving the output voltage and having a voltage divider which scales down the output voltage; a first compensation element having a first terminal which connects to an output of the input differential transistor pair and a second terminal which receives the output voltage; and a second compensation element having a third terminal which receives the output voltage and connects to the second terminal and a fourth terminal which connects to an input of a first transistor pair of the localized common-mode feedback circuit. |
US10429863B2 |
Systems and methods for refrigerator control
Systems and methods for controlling refrigerator temperatures are provided. In one example embodiment a control system for adjusting the temperature of a refrigerator, wherein the refrigerator includes a fresh food compartment, a freezer compartment and a cooling system, the control system includes a printed circuit board, one or more thermistors, one or more processors and one or more memory devices, the one or more memory devices storing instructions that when executed by the one or more processors cause the one or more processors to perform operations, the operations can include monitoring one or more characteristics of the one or more thermistors, determining the temperature of the fresh food compartment based, at least in part, on the characteristics of a first thermistor, comparing the determined temperature of the fresh food compartment to a first predetermined threshold value, and determining, by the one or more processors, whether to operate the cooling system. |
US10429862B2 |
Interactive navigation environment for building performance visualization
A tool for providing a visualization of a system may reveal an interactive navigation environment for building performance observation and assessment. The tool may be associated with a processor. The environment may incorporate a treemap, a graph pane, a treemap filter, a graph pane selector, a selected units box and a date/time control mechanism. A visualization of the environment, among other things, may be presented on a display. The treemap may exhibit a building geometry and/or equipment units hierarchically, along with some data information. Units may be interactively selected from the treemap and placed in the box for analysis. The graph pane may show a configuration and display of unit analysis. Selection of detailed views for units in the box may be provided by the graph pane selector. Date and time intervals for analysis may be selected by the control mechanism. |
US10429857B2 |
Aircraft refueling with sun glare prevention
Systems and methods for aircraft refueling with sun glare prevention. One embodiment is a method that includes calculating a future time to position a receiver aircraft via an optical sensor with respect to a supply aircraft for an aerial fuel transfer, and calculating a sun position relative to the position of the receiver aircraft for the future time. The method also includes determining that the optical sensor of the receiver aircraft is susceptible to solar interference for the future time based on the sun position relative to the position of the receiver aircraft. The method further includes generating a request for the supply aircraft to move to an alternate position for the future time, and positioning the receiver aircraft via the optical sensor at the future time with respect to the alternate position of the supply aircraft for the aerial fuel transfer. |
US10429856B2 |
Safe takeoff system
An aircraft includes a safe takeoff system that automatically and autonomously rejects a takeoff if actual measured acceleration deviates from calculations based on pre-flight parameters and the speed of the aircraft traveling down the runway is within a safe speed range to guarantee a successful low inertia rejected takeoff. |
US10429854B2 |
Method and system for automatically controlling a following vehicle with a scout vehicle
A method and system for automatically controlling at least one following vehicle, where a scout trajectory is produced for a scout vehicle and the scout vehicle is guided along the scout trajectory. Scout environmental data are captured by scout sensors and a desired trajectory is produced for the following vehicle. Following vehicle environmental data are captured by following vehicle sensors. Reference trajectory data are produced based on the scout trajectory and reference environmental data are produced based on the scout environmental data. The reference trajectory data and the reference environmental data are transmitted to the following vehicle. A trajectory similarity is determined by a trajectory comparison of the desired trajectory produced and the transmitted reference trajectory data, an environment similarity is determined by an environmental data comparison of the captured following vehicle environmental data and the transmitted reference environmental data. |
US10429850B2 |
Automatic parking apparatus, parking guidance apparatus, automatic parking method, and parking guidance method
Provided are an automatic parking apparatus and the like, which are capable of easily setting a target parking area and moving or guiding a vehicle to the target parking area. The automatic parking apparatus includes: a monitor device configured to photograph surroundings of an own vehicle; an image display device including: a display screen configured to display an image obtained through the photographing by the monitor device; an image generation unit configured to generate an image to be displayed on the display screen from the image obtained through the photographing, and to display the image; and an input device; and a vehicle control device configured to control the own vehicle to move to a parking area, which is designated through the input device with respect to the displayed image. |
US10429848B2 |
Automatic driving system
An automatic driving system includes an electronic control unit. The electronic control unit is configured to create a traveling plan including a control target value of automatic driving control of a vehicle based on a position of the vehicle of a map, a vehicle state, and an external environment, to calculate an abnormality value, to determine, based on the abnormality value, whether the vehicle is an a normal state, an abnormal state, or an intermediate state, and to create an abnormal traveling plan as the traveling plan when it has been determined that the vehicle is in the abnormal state. |
US10429845B2 |
System and method for controlling a position of a marine vessel near an object
A marine vessel is powered by a marine propulsion system and movable with respect to first, second, and third axes that are perpendicular to one another and define at least six degrees of freedom of potential vessel movement. A method for controlling a position of the marine vessel near a target location includes measuring a present location of the marine vessel, and based on the vessel's present location, determining if the marine vessel is within a predetermined range of the target location. The method includes determining marine vessel movements that are required to translate the marine vessel from the present location to the target location. In response to the marine vessel being within the predetermined range of the target location, the method includes automatically controlling the propulsion system to produce components of the required marine vessel movements one degree of freedom at a time during a given iteration of control. |
US10429844B2 |
Systems and methods for providing a vertical profile for an in-trail procedure
Various methods can, for example, depict information for use by a pilot or other individual in an aircraft. In an exemplary embodiment, the method may include providing, in a hardware display, a graphical vertical profile displaying an aircraft to the pilot of the aircraft. This method may further include providing, in the vertical profile, an indication of the relative speed of at least one other aircraft and a graphical indication of a clearance window for vertical maneuvers for the aircraft of the pilot. Further embodiments of the present invention concern systems and software for implementing the related method embodiments of the present invention. |
US10429842B2 |
Providing user assistance in a vehicle based on traffic behavior models
Autonomous driving includes evaluating information about an environment surrounding a vehicle, generating, based on the evaluation of the information about the environment surrounding the vehicle, a driving plan for performing a driving maneuver, and operating vehicle systems in the vehicle to perform the driving maneuver according to the driving plan. The autonomous driving further includes receiving a traffic behavior model that describes a predominating driving behavior of a like population of reference vehicles. Under the driving plan, a driving behavior of the vehicle matches the predominating driving behavior of the like population of reference vehicles. |
US10429841B2 |
Vehicle control method and apparatus and method and apparatus for acquiring decision-making model
The present invention discloses a vehicle control method and apparatus and a method and apparatus for acquiring a decision-making model. The vehicle control method, comprising: during travel of an unmanned vehicle, acquiring current external environment information and map information in real time; determining vehicle state information corresponding to the external environment information and map information acquired each time according to a decision-making model obtained by pre-training and reflecting correspondence relationship between the external environment information, map information and vehicle state information, and controlling a travel state of the unmanned vehicle according to the determined vehicle state information. Application of the solution of the present invention can improve security and reduce the workload. |
US10429838B2 |
Unmanned aerial vehicle (UAV) landing systems and methods
A system for landing an unmanned aerial vehicle (UAV) at a destination includes a landing coordination control unit that is configured to switch the UAV from a normal operating mode to a landing mode in response to the UAV entering a regulated airspace in relation to the destination. The normal operating mode includes normal instructions for flying and navigating to the destination. The landing mode includes landing instructions for a landing sequence into a landing zone at the destination. |
US10429835B2 |
Surface treatment robotic system
A surface treatment robotic system configured to determine direction references by providing different direction sensors in different surface treatment robots, the surface treatment robotic system comprising a surface treatment robot and a remote control; the surface treatment robot comprises a control unit and a drive unit; the control unit receives remote control instructions of the remote control and controls the drive unit to execute corresponding actions; the surface treatment robot is provided with a direction sensor for determining a reference direction; the direction sensor is coupled to the control unit; and the direction sensor transmits the determined reference direction to the control unit, and the control unit determines a walking direction of the robot by referring to the reference direction and according to the remote control instructions inputted by the input terminal of the remote control. |
US10429832B2 |
Method for the remote control of a function of a motor vehicle using an electronic unit outside the vehicle, and a motor vehicle
The invention relates to a method for the remote control of a function of a motor vehicle by means of a vehicle-external electronic unit, in which the vehicle-external electronic unit (7) is checked during the driving event of the motor vehicle (1) in that the vehicle-external electronic unit (7) triggers an operation, the result of which is checked for correctness by a control device (3) of the motor vehicle (1). In the method, in which the computing power of the control device as well as the bandwidth of the communication between the vehicle-external electronic unit and the control device are reduced, an index list is stored in the control device (3), wherein, for triggering an operation, an index is transmitted from the control device (3) to the vehicle-external electronic unit (7) and the vehicle-external electronic unit (7) determines by means of the index input variables which are stored in dependence on the index in the vehicle-external electronic unit (7), by means of which the operation is carried out. |
US10429831B2 |
Adjusting industrial vehicle performance
A computer-executed process and system for evaluating industrial vehicle performance comprises identifying kinematic functions of an industrial vehicle, receiving constraints of an environment in which the industrial vehicle operates, and computing a cutback curve for a parameter of a select kinematic function of the industrial vehicle. A kinematic model of the industrial vehicle is generated based on the kinematic functions, the constraints of the environment, and the cutback curves. A workflow model is defined by defining tasks of the industrial vehicle within the environment, wherein the tasks are based upon the kinematic model. The kinematic model and workflow model is used to simulate a job specification, and the results of the simulation are used to evaluate an industrial vehicle. |
US10429830B2 |
Systems and methods for optimizing water utility operation
This disclosure provides systems and methods for improving the performance of a water pumping station. A server can be configured to receive data from a plurality of sensors included within the water utility plant. The server can cleanse the data received from the water utility plant to generate cleansed data. The server can prepare the cleansed data for use by the water utility plant to generate plant-specific data. The server also can generate real-time analytic data based on the plant-specific data. |
US10429828B2 |
Plant simulation device and plant simulation method with first parameter adjustable at start and second parameter adjustable during operation of the plant
A plant simulation device includes a first storage that stores a model that models a state of a facility in a plant, a first parameter that is fixed at a start operation of the plant, and a second parameter that is varied during an operation of the plant, the first parameter and the second parameter being set in the model, and a simulator that compares a process value of the facility with a simulated value calculated using the model and that adjusts the first parameter and the second parameter. |
US10429821B2 |
Method for printing colored object of 3D printer
A method for printing colored 3D object adopted by a 3D printer (1) comprising a 3D nozzle (3) and a 2D nozzle (4) is disclosed. The method comprises following steps of: inputting a 3D file corresponding to a 3D colored model (5); reading coordinate information and color information of the 3D colored model (5); executing a 3D route slicing process and a 2D image slicing process for respectively generating a route file (6) and an image file (7) for each of a plurality of printing layers; controlling the 3D nozzle (3) to print each slicing object according to each route file (6) of each printing layer; and, controlling the 2D nozzle (4) to color each printed slicing object according to each image file (7) of same printing layer. |
US10429808B2 |
System that automatically infers equipment details from controller configuration details
A program for light commercial building system (LCBS) solutions. Solutions and other systems may incorporate lightweight alerting service, auto-adjustment of gateway poll rates based on the needs of various consuming applications, detecting loss of space comfort control in a heating, ventilation and air conditioning (HVAC) system, HVAC capacity loss alerting using relative degree days and accumulated stage run time with operational equivalency checks, and HVAC alerting for loss of heat or cool capacity using delta temperature and dependent system properties. Also, incorporated may be triggering s subset of analytics by automatically inferring HVAC equipment details from controller configuration details, ensuring reliability of analytics by retaining logical continuity of HVAC equipment operational data even when controllers and other parts of the system are replaced, and an LCBS gateway with workflow and mechanisms to associate to a contractor account. |
US10429801B2 |
Adaptive control methods for buildings
A method is provided for controlling a first switch terminal or equivalent of a building occupied by one or more building occupants. A plurality of switch terminal or equivalent parameters are provided relative to the building. A first computer system is coupled to the first switch terminal or equivalent of the building at a first location of the building. The first computer system runs on at least one platform. A first plurality of sensors is coupled to the first switch terminal or equivalent and the first computer system. At least a portion of the sensors are used to provide signal data to the first computer system. From the first computer system a command or data output is produced that relates to at least one of: a command output for a local control system, a command output for a different system, a data output for a different system, a command output for a non-local device or a data output that is a non-local device. Each of an output includes learned data from that is based on a machine intelligence from previous data collected about patterns of a building occupant. |
US10429800B2 |
Layered approach to economic optimization and model-based control of paper machines and other systems
A method includes executing a control algorithm for an industrial process using a controller objective function, where the industrial process is associated with at least one controlled variable. The method also includes executing an optimization algorithm for the industrial process using an extended version of the controller objective function. The extended version of the controller objective function includes one or more additional terms added to the controller objective function, and one or more results of the optimization algorithm are provided to the control algorithm. The method further includes, based on tracking errors associated with the at least one controlled variable, adjusting at least one adaptive weight parameter in the extended version of the controller objective function. The at least one adaptive weight parameter is associated with at least one of the one or more additional terms. |
US10429798B2 |
Generating timer data
For generating timer data, a processor identifies a timer command from a command signal from an input device. The processor further identifies a timer interval and timer characteristics from the timer command. In addition, the processor generates timer data comprising a timer tag from the timer characteristics and the timer interval. |
US10429797B2 |
Module and timepiece
A module including a hand driving mechanism section which drives a hand shaft to which hands are attached so as to move the hands, and a display section which is arranged in parallel with the hand driving mechanism section and displays information. |
US10429796B2 |
Timepiece component with a part having an improved welding surface
The invention relates to a timepiece component with a part including at least one face with a geometry capable of ensuring that the part is fitted in an isostatic configuration onto a member to improve the welding thereof. |
US10429791B2 |
Image forming apparatus having optical print head
The length of an abutting pin of an optical print head is decided such that the upper end of the abutting pin when at a cleaning position is on the opposite side of a movement path of a cleaning member, from the upper end of another abutting pin of the optical print head when in an exposure position. |
US10429787B2 |
Image forming apparatus with detection of surface potential of photosensitive member and adjustment of slope of charge potential
An image forming apparatus includes a movable photosensitive member, first and second corona chargers, an adjusting mechanism, a developing device, a detecting member configured to detect a surface potential of the photosensitive member at a plurality of positions with respect to the widthwise direction of the photosensitive member, an input portion, and a display portion. In accordance with input of an instruction to the input portion, the detecting portion detects at least two surface potentials of three surface potentials including the surface potential of the photosensitive member after being charged by the first and second corona chargers, the surface potential of the photosensitive member after being charged by the first corona charger, and the surface potential of the photosensitive member after being charged by the second corona charger. A detection result of the detecting member is displayed at the display portion. |
US10429785B2 |
Fixing belt having high separability, fixing device, and image forming apparatus
A fixing belt having high separability is provided. The fixing belt includes a base layer made of a heat-resistant resin, an intermediate layer made of a heat-resistant elastic material disposed on the base layer, and a surface layer made of a fluororesin disposed on the intermediate layer. The surface layer contains 5 to 15 mass % of carbon black having a primary average particle diameter of 10 to 50 μm. |
US10429777B2 |
Image heating device and image forming apparatus that regulate a lubricant
A fixing apparatus includes a tubular film, an elongate heater, a roller, and a lubricant interposed between the heater and the film. A temperature detecting member detects a temperature of the heater, a controller controls electrical power supplied to the heater so that a temperature detected by the temperature detecting member reaches a target temperature, and a guide member guides the film. The guide member has a plurality of protrusions protruding toward the inner surface of the film. In a longitudinal direction of the guide member, a first region of the guide member corresponds to the temperature detecting member, and a second region of the guide member does not correspond to the temperature detecting member. In addition, a width of one protrusion located at the first region is greater than a width of some of the plurality protrusions located at the second region. |
US10429775B1 |
Thermal control of fuser assembly in an imaging device
An imaging device includes a controller and fuser assembly. The fuser assembly has a heat transfer and backup member defining a nip and process direction of media travel. The heat transfer member includes a resistive trace with a length twice extending transverse to the process direction. The controller selectively applies AC power to the resistive trace. The controller calculates a power level from zero power to full power to heat the trace to a predetermined set-point temperature from a measured current temperature. The controller maps the calculated power level to one of only eight actual heating power levels that become applied or not to the resistive trace to achieve a desired power flicker and harmonics response otherwise unattainable by merely applying the calculated power level. The actual heating power levels include differing numbers of consecutive half-cycles of AC power and are applied at zero-crossings thereof. |
US10429770B2 |
Powder-amount detection device and image forming apparatus incorporating same
A powder-amount detection device includes an outer electrode, an inner electrode, and a detector. The outer electrode is disposed outside a powder container to be replaceably installed to an image forming apparatus. The inner electrode is disposed inside a powder supply port of the powder container. The detector is configured to apply an electric field between the outer electrode and the inner electrode to detect a capacitance between the outer electrode and the inner electrode. |
US10429765B1 |
Toner container for an image forming device having magnets of varying angular offset for toner level sensing
A toner container according to one example embodiment includes a housing having a reservoir for storing toner. A rotatable shaft is positioned within the reservoir and has an axis of rotation. A first magnet is rotatable with the shaft around the axis of rotation. An arm connected to the shaft leads the first magnet around the axis of rotation in an operative rotational direction of the shaft. A second magnet connected to the shaft trails the first magnet around the axis of rotation in the operative rotational direction. The arm is operatively connected to the second magnet such that an angular offset between the first magnet and the second magnet increases as an angular offset between the first magnet and the arm increases and the angular offset between the first magnet and the second magnet decreases as the angular offset between the first magnet and the arm decreases. |
US10429762B2 |
Method and device of image forming to reduce waste developer
An image forming method includes when an image forming device is in a non-image-forming stage, applying voltages to a surface of a photosensitive element and a surface of a developer element of the image forming device to form an electric field. Applying the voltages includes: forming a first potential difference between the photosensitive element and the developer element in a first stage, and forming a second potential difference between the photosensitive element and the developer element in a second stage. When a developer used by the developer element is a negatively charged developer, a direction of the first potential difference and a direction of the second potential difference are in a direction from the developer element to the photosensitive element. When positively charged, the direction of the first potential difference and the direction of the second potential difference are in a direction from the photosensitive element to the developer element. |
US10429760B2 |
Image forming apparatus
An image forming apparatus, including a photosensitive drum, an exposure head, a base frame, and a spring, is provided. The exposure head includes light emitters, a lens array, and a head frame, and is movable between an exposable position and a retracted position. The base frame supports the photosensitive drum and includes a reference face. The reference face is configured to define a position of the exposure head with regard to a sub-scanning direction, which is orthogonal to a direction of an optical axis of the light from the light emitters and to a direction of a rotation axis of the photosensitive drum, by being contacted by the head frame of the exposure head when the exposure head is at the exposable position. The spring is arranged in the head frame and presses the head frame toward the reference face. |
US10429751B2 |
Alignment mark searching method, display substrate and display apparatus
An alignment mark searching method is for searching an alignment mark on a base substrate, a first positioning line segment is formed in a dummy region of the base substrate, and a straight line where the first positioning line segment is positioned running through the alignment mark. The method includes: acquiring theoretical coordinates of the alignment mark; moving a detection system view field to a target position with the theoretical coordinates as a target; moving the detection system view field from the target position in a direction perpendicular to the first positioning line segment until the first positioning line segment appears in the detection system view field; and moving the detection system view field from the position of the first positioning line segment in a length direction of the first positioning line segment until the alignment mark appears in the detection system view field. The method achieves an effect that the alignment mark can be simply, conveniently and rapidly searched. A display substrate and a display apparatus are further disclosed. |
US10429749B2 |
Method of reducing effects of reticle heating and/or cooling in a lithographic process
A method of reducing effects of reticle heating and/or cooling in a lithographic process, the method including calibrating a linear time invariant reticle heating model using a system identification method; predicting distortions of the reticle using the reticle heating model and inputs in the lithographic process; and calculating and applying a correction in the lithographic process on the basis of the predicted distortions of the reticle. |
US10429748B2 |
Apparatus including a gas gauge and method of operating the same
An apparatus, such as a lithographic apparatus, has a metrology frame that has a reference frame mounted thereon that includes a reference surface. A gas gauge is movable relative to the reference frame, metrology frame, and a measured surface. A reference nozzle in the gas gauge provides gas to the reference surface and a measurement nozzle provides gas to the measured surface. A microelectromechanical (MEM) sensor may be used with the gas gauge to sense a difference in backpressure from each of the reference nozzle and the measurement nozzle. Optionally, multiple gas gauges are positioned in an array, which may extend in a direction that is substantially parallel to a plane of the measured surface. The gauges may be fluidly connected to a reference nozzle of the gas gauge. A channel may distribute gas across the array. |
US10429747B2 |
Hybrid laser and implant treatment for overlay error correction
Embodiments disclosed herein relate to methods and systems for correcting overlay errors on a surface of a substrate. A processor performs a measurement process on a substrate to obtain an overlay error map. The processor determines an order of treatment for the substrate based on the overlay error map. The order of treatment includes one or more treatment processes. The processor generates a process recipe for a treatment process of the one or more treatment processes in the order of treatment. The processor provides the process recipe to a substrate treatment apparatus. |
US10429744B2 |
Image improvement for alignment through incoherent illumination blending
Methods and apparatuses are provided that determine an offset between actual feature/mark locations and the designed feature/mark locations in a maskless lithography system. For example, in one embodiment, a method is provided that includes opening a camera shutter in a maskless lithography system. Light is directed from a configuration of non-adjacent mirrors in a mirror array towards a first substrate layer. An image of the first substrate layer on a camera is captured and accumulated. Light is directed and images are captured repeatedly using different configurations of non-adjacent mirrors to cover an entire field-of-view (FOV) of the camera on the first substrate layer. Thereafter, the camera shutter is closed and the accumulated image is stored in memory. |
US10429741B2 |
Lithographic apparatus and a method of operating the apparatus
A lithographic apparatus is disclosed that includes a projection system, and a liquid confinement structure configured to at least partly confine immersion liquid to an immersion space defined by the projection system, the liquid confinement structure and a substrate and/or substrate table. Measures are taken in the lithographic apparatus, for example, to reduce the effect of droplets on the final element of the projection system or to substantially avoid such droplet formation. |
US10429734B2 |
Permanent dielectric compositions containing photoacid generator and base
Embodiments encompassing a series of compositions containing photoacid generator (PAG) and a base are disclosed and claimed. The compositions are useful as permanent dielectric materials. More specifically, embodiments encompassing compositions containing a series of copolymers of a variety of norbornene-type cycloolefinic monomers and maleic anhydride in which maleic anhydride is fully or partially hydrolyzed (i.e., ring opened and fully or partially esterified), PAG and a base, which are useful in forming permanent dielectric materials having utility in a variety of electronic material applications, among various other uses, are disclosed. |
US10429731B2 |
Method and device for generating a reference image in the characterization of a mask for microlithography
The invention relates to a method and a device for generating a reference image in the characterization of a mask for microlithography, wherein the mask comprises a plurality of structures and wherein the reference image is generated by simulation of the imaging of said mask, said imaging being effected by a given optical system, both using a rigorous simulation and using a Kirchhoff simulation, wherein the method comprises the following steps: assigning each structure of said plurality of structures either to a first category or to a second category, calculating a plurality of first partial spectra for structures of the first category with implementation of rigorous simulations, calculating a second partial spectrum for structures of the second category with implementation of a Kirchhoff simulation, generating a hybrid spectrum on the basis of the first partial spectra and the second partial spectrum, and generating the reference image with implementation of an optical forward propagation of said hybrid spectrum in the optical system. |
US10429722B2 |
Camera lens assembly
A dual lens assembly is disclosed herein, including a plurality of lens group units disposed as to face a same direction, a plurality of driving modules provided respectively on first side surfaces of each of the plurality of lens group units to move each of the plurality of lens group units along a direction of a respective optical axis of each of the plurality of lens group units, or move each of the plurality of lens group units along a direction perpendicular to the respective optical axis of each of the plurality of lens group units, and a housing at least partially enclosing at least some of the plurality of lens group units and the plurality of driving modules. |
US10429713B2 |
Selectively-transparent electrochromic display
An electro-optic (EO) display includes one or more adjustable-intensity color filters; a transparent backlight; and a transflective layer positioned between the adjustable-intensity color filter(s) and the transparent backlight, wherein the transflective layer reflects light off of one surface of the transflective layer and allows light through another surface of the transflective layer. |
US10429711B2 |
Electro-optic infrared filter
An imaging system is provided that includes an imager, an optical lens stack, and an electro-optic element positioned between the imager and the lens stack. The electro-optic element includes a first substantially transparent substrate defining first and second surfaces. The second surface includes a first electrically conductive layer. A second substantially transparent substrate defines third and fourth surfaces. The third surface has a second electrically conductive layer. A primary seal is disposed between the first and second substrates. The seal and the first and second substrates define a cavity therebetween. An electro-optic medium is disposed within the cavity. The electro-optic medium is operable between substantially clear and substantially opaque states. |
US10429708B2 |
Array substrate, display panel and display device
An array substrate includes a first base substrate, and gate lines and data lines arranged on the first base substrate. The gate lines and the data lines crosswise define pixel regions, wherein the pixel regions include light transmission areas one-to-one. The array substrate further includes a first raised structure arranged between a main spacer initial contact area and one of the light transmission areas, wherein the first raised structure is configured to provide a blocking function to a movement of a main spacer. |
US10429706B2 |
Electro-optical device for detecting local change in an electric field
The invention relates to an electro-optical device for detecting an electric field emitted locally by a sample (100), comprising an upper (20) and a lower (21) polarizer, an active layer of liquid crystals (30) of variable polarization included between an upper (50) and a lower (51) alignment layer, having two perpendicular directions of alignment, and an upper (60) and lower (61) electrode liable to be connected to an AC voltage source (70) such that when a voltage difference (Vext) is applied, the layer of liquid crystals is immersed in the electric field formed between the two electrodes. It is essentially characterized in that it comprises a layer of anisotropic electrical conductors (40) in contact with the upper alignment layer or separated therefrom by the upper polarizer, the conductors being configured to transmit said electric field in only one direction secant to the alignment layers. |
US10429704B2 |
Display device, display module including the display device, and electronic device including the display device or the display module
A display device with low power consumption and high display quality is provided. The display device includes first and second electrodes. One pixel includes a region in which the distance between the first electrode and the second electrode is constant and a region in which the distance varies; this structure allows the switching operation of liquid crystal to start in a predetermined region, thereby improving the stability of the operation of the liquid crystal. A pixel region is divided into two regions in which the liquid crystals are aligned in the two respective directions when switching is performed, whereby viewing angle characteristics are improved. Furthermore, the supply of a potential to a third electrode suppresses alignment disorder of the liquid crystal and improves the display quality. |
US10429701B2 |
Display panel and LCD panel and LCD apparatus using the same
This application provides a display panel and an LCD panel and an LCD apparatus using the same. The display panel comprises a first substrate; a plurality of pixel units, formed on the first substrate; a protective layer, formed on the first substrate, and a transparent electrode layer formed on the protective layer, wherein the protective layer has different thicknesses in each of the pixel units so that a plurality of transparent regions are formed in each of the pixel units. |
US10429696B2 |
Liquid crystal display
A liquid crystal display according to an exemplary embodiment of the present disclosure includes: a first substrate including a plurality of unit regions positioned at a display area in a plan view; a liquid crystal layer opposing the first substrate; a unit electrode portion positioned on a first surface of the first substrate at one unit region; a lower dam positioned at a peripheral area positioned around the display area in the plan view; and a protrusion positioned corresponding to the unit region in the plan view. The lower dam and protrusion are positioned between the first substrate and the liquid crystal layer and protruded toward the liquid crystal layer. The protrusion enclosing a portion around the unit region with respect to a center of the unit region in the plan view. The lower dam and the protrusion are positioned at a same layer and include the same material. |
US10429695B2 |
Alignment method of FFS liquid crystal display panel
The present invention provides an alignment method of an FFS liquid crystal display panel. The method includes adding a light-sensitive small-molecule compound in a rubbing alignment material, carrying out rubbing alignment after formation of an alignment film, and afterwards, conducting boxing of the FFS liquid crystal display panel, and then applying an electrical voltage to cause liquid crystal molecules to rotate to a position substantially parallel to a substrate, and carrying out UV irradiation to cause polymerization of the light-sensitive small-molecule compound to form polymer bumps so as to keep the liquid crystal molecules in parallel to the substrate. The liquid crystal molecules, after the alignment, show a pre-tilt angle having a zero angle value and can, under the condition of providing a strong anchoring force of the alignment film, reduce the pre-tilt angle of the liquid crystal molecules and improve quality of displaying of the FFS liquid crystal display panel. |
US10429687B2 |
Directional backlight unit and three-dimensional image display apparatus having the same
A three-dimensional (3D) image display apparatus includes a directional backlight unit and a display panel. The 3D image display apparatus may include an absorptive wire grid polarizer in the directional backlight unit or the display panel, for minimizing a distance between a diffraction device of the directional backlight unit and a pixel of the display panel. |
US10429686B2 |
Heat dissipation module and liquid crystal display
A heat dissipation module includes a plurality of airflow ducts that are arranged in an interior space of a heat dissipation chamber with two ends of the plurality of airflow ducts respectively connected to two end surfaces of the heat dissipation chamber and internal spaces of the plurality of airflow ducts in communication with the outside of the heat dissipation chamber. A plurality of pairs of fans are provided on the heat dissipation chamber to respectively correspond to the two ends of the plurality of airflow ducts. A coolant liquid is filled between outer walls of the airflow ducts and an inner wall of the heat dissipation chamber. The heat dissipation module is attachable to a lightbar of a liquid crystal display to effectively dissipate heat generated by the lightbar. |
US10429685B2 |
Embedded touch panel having high resistance film and display device
An embedded touch panel (100) having a high resistance film (70) comprises a sequentially stacked first substrate (10), thin-film transistor substrate (20), liquid crystal layer (30), color filter (40), touch sensing layer (50), second substrate (60), and the high resistance film (70). A plurality of mutually insulated sensing wires are disposed on a surface of the thin-film transistor substrate (20) facing toward the liquid crystal layer (30). The thin-film transistor substrate (20) and the touch sensing layer (50) work together to embed a functionality of a touch panel into liquid crystal pixels, reducing a thickness of the touch panel (100). The high resistance film (70) is disposed on a surface of the second substrate (60) facing away from the touch sensing layer (50), and is electrically connected to the thin-film transistor substrate (20). |
US10429684B2 |
Display tile with increased display area
A display tile having a frame whose compliance is increased in a well determined region to accommodate the different thermal expansions of the frame and one or more substrates to which the frame is fastened. The display tile has also regions of increased compliance that will deform to allow different parts of the frame to be brought into contact and glued to the lateral sides of two superimposed substrates when at least one lateral side of one of the substrates is not coplanar with the corresponding lateral side of the other substrate. |
US10429682B2 |
Support for panel devices in an electronic display device
An electronic display device including two or more panel devices and a support structure for supporting the two or more panel devices. The support structure includes a support member for each panel device and the support members being stacked in a thickness direction. The support members are separate pieces. Each support member has a support surface being configured to contact an edge of a corresponding panel device. |
US10429680B2 |
Optical glare protection filter
An optical glare protection filter for a glare protection device includes at least one liquid-crystal cell with at least one liquid-crystal layer and at least one first electrode layer for orienting crystal molecules of the at least one liquid-crystal layer, and with at least one first contact element for electrically contacting the at least one first electrode layer. The optical glare protection filter may also include at least one second contact element for electrically contacting the at least one first electrode layer, which is substantially spaced apart from the first contact element. |
US10429671B2 |
Ophthalmic lens and manufacturing method thereof
The invention is to provide an ophthalmic lens and a manufacturing method thereof. The ophthalmic lens comprises a lens body and an antimicrobial hydrophilic layer thereon, wherein the antimicrobial hydrophilic layer comprises tannic acid and a zwittericionic polymer. The zwittericionic polymer can be selected from one of the group consisting of a phosphorylcholine polymer, a sulfobetaine polymer, a carboxybetaine polymer and a mixed-charge polymer or combinations thereof. |
US10429670B2 |
Apparatus and methods for controlling axial growth with an ocular lens
One embodiment of an ocular lens includes a lens body configured to contact an eye where the lens body has an optic zone shaped to direct central light towards a central focal point of a central region of a retina of the eye. At least one optic feature of the lens body has a characteristic that directs peripheral light off axis into the eye away from the central region of the retina. Another embodiment of an ocular lens has at least one isolated feature of the lens body that has a characteristic of directing peripheral light off axis into the eye away from the central region of the retina. Methods of making contact lenses include forming the features during the manufacturing process. |
US10429667B2 |
Glasses frame with closed position protecting lenses from impacts or friction
A glasses frame includes a front-frame and two temples (4, 5) connected to the front-frame through hinges which allow the rotation of the temples (4, 5) from a work position substantially perpendicular to the front-frame, to wear the glasses, as far as a home position substantially parallel to the front-frame, to put away the glasses. The front-frame includes two rims (2, 3) for lens support and possibly a bridge (1) connecting the rims and at least a pivoting element (C) apt to allow the mutual rotation by at least 180° of the rims (2, 3) around a rotation axis (X-X) substantially lying in a plane containing the two centers of the rims (2, 3) and perpendicular to the rims. The temples (4, 5) are directly hinged onto the rims (2, 3). |
US10429666B1 |
Camera actuator with magnet holder having magnetic field
In some embodiments, a camera includes a lens assembly in a lens carrier, an image sensor for capturing a digital representation of light transiting the lens, and a voice coil motor. In some embodiments, the voice coil motor includes a spring suspension assembly for moveably mounting the lens carrier to an actuator base, a plurality of permanent magnets mounted to the actuator base through a magnet holder assembly and a focusing coil fixedly mounted to the lens carrier and mounted to the actuator base through the suspension assembly. In some embodiments, the permanent magnets each generate a magnetic field of a respective permanent magnet field strength, and the magnet holder assembly generates a holder magnetic field of a holder magnetic field strength. |
US10429662B2 |
Polarizing beam splitter plates providing high resolution images and systems utilizing such polarizing beam splitter plates
Polarizing beam splitter plates and systems incorporating such beam splitter plates are described. The polarizing beam splitter plate includes a first substrate and a multilayer optical film reflective polarizer that is disposed on the first substrate. The polarizing beam splitter plate includes a first outermost major surface and an opposing second outermost major surface that makes an angle of less than about 20 degrees with the first outermost major surface. The polarizing beam splitter plate is adapted to reflect an imaged light received from an imager towards a viewer or screen with the reflected imaged light having an effective pixel resolution of less than 12 microns. |
US10429655B2 |
Systems, devices, and methods that integrate eye tracking and scanning laser projection in wearable heads-up displays
Systems, devices, and methods that integrate eye tracking capability into scanning laser projector (“SLP”)-based wearable heads-up displays are described. At least one narrow waveband laser diode is used in an SLP to define one or more portion(s) of a visible image. At least one corresponding narrow waveband photodetector is aligned to detect reflections of the portion(s) of the image from features of the eye. A holographic optical element (“HOE”) may be used to combine the image and environmental light into the user's “field of view.” Three narrow waveband photodetectors each responsive to a respective one of three narrow wavebands output by the RGB laser diodes of an RGB SLP are aligned to detect reflections of a projected RGB image from features of the eye. |
US10429653B2 |
Determination of environmental augmentation allocation data
A method including receiving augmentation allocation property data that includes data that correlates a virtual information region with at least one surface property, receiving information indicative of at least one physical object that is in a physical environment proximate to the head mounted display, determining that the physical object has a surface that conforms with the surface property, determining environmental augmentation allocation data that includes data that correlates the virtual information region with the surface of the physical object such that the environmental augmentation allocation data designates the surface of the physical object for display of a representation of information allocated to the virtual information region, determining that at least part of the surface of the physical object is at least partially within a field of view of the head mounted display, and causing display of at least part of information that is allocated to the virtual information region. |
US10429650B2 |
Head-mounted display
A head-mounted display including a transparent display, a liquid crystal lens and a first Fresnel lens is provided. The transparent display is configured to emit an image light beam. The liquid crystal lens is disposed near the transparent display. The transparent display is disposed between the liquid crystal lens and the first Fresnel lens. The first Fresnel lens is configured to receive an ambient light beam. The head-mounted display allows at least a part of the image light beam emitted from the transparent display passing through a pupil by phase modulating of at least a part of the liquid crystal lens. |
US10429649B2 |
Augmented and virtual reality display systems and methods for diagnosing using occluder
Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects. |
US10429645B2 |
Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
In an optical near eye display system, a monolithic three-dimensional optical microstructure is formed by a waveguide substrate with at least one DOE having grating regions that integrate the functions of in-coupling of incident light into the waveguide, exit pupil expansion in one or two directions, and out-coupling of light from the waveguide within a single optical element. An in-coupling region of the DOE couples the incident light into the waveguide and to a beam steering and out-coupling region. The beam steering and out-coupling region provides exit pupil expansion and couples light out of the waveguide. The beam steering and out-coupling region of the DOE can be configured with a two-dimensional (2D) grating that is periodic in two directions. |
US10429641B2 |
Light-enhanced self-cleaning film system and method of forming same
A self-cleaning film system includes a substrate and a film. The film includes a monolayer formed from a fluorinated material, and a first plurality of regions disposed within the monolayer and spaced apart from one another such that each of the regions abuts, is surrounded by, and is not covered by the fluorinated material. Each of the regions includes a photocatalytic material. The system also includes a wave guide disposed adjacent the substrate. The wave guide includes a first light source configured for emitting a first portion of electromagnetic radiation towards the film having an ultraviolet wavelength of from 10 nm to 400 nm, and a second light source configured for emitting a second portion of electromagnetic radiation towards the film having an infrared wavelength of from 700 nm to 1 mm. A method of forming a self-cleaning film system configured for reducing a visibility of a contaminant is disclosed. |
US10429640B2 |
Image forming apparatus performing processing in accordance with reflective surface of rotating polygonal mirror for scanning photosensitive member
An image forming apparatus includes: a specification unit configured to perform surface specification processing for specifying a reflective surface that deflects light; a correction unit configured to perform correction processing for correcting image data in accordance with which reflective surface deflects light; and a control unit configured to control so as to cause scanning of a first photosensitive member to start before the surface specification processing completes, and control so as to, after the surface specification processing completes, cause the correction processing to be performed, with respect to image data for causing light to be emitted from a second light source and in accordance with a specification result of the surface specification processing, and cause scanning of the second photosensitive member to start. |
US10429638B2 |
Control unit, optical deflection system, image projection apparatus, and control method
A control unit to control a movement of a reflector includes a drive signal output unit to apply a drive voltage having a minimum value and a maximum value in one cycle to a piezoelectric element to deform the piezoelectric element, the deformation of the piezoelectric element causing the reflector to move, and circuitry to control the drive voltage to have the minimum value greater than a zero voltage by a given difference value. |
US10429636B2 |
Illumination device and image display apparatus
An illumination device includes: an excitation light source that emits excitation light having a first wavelength; a fluorescent substance that, when irradiated with the excitation light, emits light having a second wavelength longer than the first wavelength and transmits a part of the excitation light, and thereby multiplexes and emits the transmitted excitation light having the first wavelength and the emitted excitation light having the second wavelength; and a driving unit that moves an irradiation position of the excitation light in the fluorescent substance with the passage of time. |
US10429633B2 |
Imaging module and endoscope
An imaging module of the invention includes: a connector including: a first implanted conductor; a second implanted conductor longer than the first implanted conductor; a first groove that includes a second mounting terminal constituting part of the first implanted conductor; a second groove that includes a third mounting terminal constituting part of the second implanted conductor; and a third groove that is located between the first groove and the second groove; and a coaxial cable including: an internal conductor that is provided in the first groove and is electrically connected to the second mounting terminal; a sheath conductor that is provided in the second groove and is electrically connected to the third mounting terminal; and a coated portion that is provided in the third groove. |
US10429631B2 |
Image-aquisition system
An image-acquisition system includes a microscope apparatus that acquires an image of a specimen; a map-image-acquisition portion that controls the microscope apparatus so as to acquire, at a low magnification, a map image including a plurality of anatomical regions in the specimen; an interface portion that allows a user to specify a desired anatomical region as a target region by means of unique IDs assigned to the individual anatomical regions; a processing portion that calculates a spatial position of the target region on the basis of the map image and atlas data having positional information of the individual anatomical regions; and a high-resolution image-acquisition portion that controls, on the basis of the spatial position of the target region, the microscope apparatus so as to acquire a high-resolution image of the target region in the specimen at a magnification that is greater than that of the map image. |
US10429629B1 |
Imaging and side-scatter photon detection using a single immersion objective
Methods and systems are provided to facilitate simultaneous high-resolution microscopic imaging of cells and detection of side-scattered light from such cells using an immersion objective. A container maintains a volume of an immersion oil or other immersion fluid in contact with the immersion objective and with a stage that contains a sample of the cells. The container also includes a window through which the cells can be illuminated off-axis to generate side-scattered light. The side-scattered light can then be detected through the immersion objective. The container maintains the immersion fluid in contact with an internal surface of the window to control the geometry of the optical interface between the off-axis illumination source and the immersion fluid. These systems permit high-throughput identification and imaging of cells for biological research, improvement of side-scatter cell classifiers, improved high-throughput cell sorting, and other applications. |
US10429628B2 |
Multifocal method and apparatus for stabilization of optical systems
Methods and apparatus for deep microscopic super resolution imaging use two independent and variable focal planes. Movements of fiducial markers imaged using one focal plane are monitored and used to provide real-time or near real-time correction for sample drift. A second focal plane may be used to collect light for super-resolution imaging of a sample. A prototype embodiment has produced low drift when imaging many microns deeper than the fiducial markers. |
US10429627B2 |
Computational microscopy through a cannula
An imaging system can include an optical fiber and a light source for providing optical stimulation to a region of interest along the optical fiber. A camera can capture emission such as fluorescence resulting from the optical stimulation. A cannula configured for implantation into a subject can be configured to direct the emission from the subject. A mating sleeve coupling the cannula to the optical fiber, and configured to support the camera, can include a dichroic mirror to allow the optical stimulation to pass from the optical fiber to the cannula and to redirect the emission from the cannula to the camera. |
US10429626B2 |
Method for desiging off-axial three-mirror optical system with freeform surfaces
A method for designing off-axial three-mirror optical system with freeform surfaces is provided. A first initial surface, a second initial surface, and a third initial surface are established. A plurality of feature rays are selected, while the first initial surface and the third initial surface remain unchanged; a plurality of first feature data points are calculated to obtain a third freeform surface equation by surface fitting the plurality of first feature data points. A third freeform surface and the second initial surface are remained unchanged; a plurality of second feature data points are calculated to obtain a first freeform surface equation by surface fitting the plurality of second feature data points. The third freeform surface and a first freeform surface are remained unchanged; a plurality of third feature data points are calculated to obtain a second freeform surface equation by surface fitting the plurality of third feature data points. |
US10429622B2 |
Mobile device and optical imaging lens thereof
An optical imaging lens includes a first lens element, a second lens element, a third lens element, a fourth lens element, and a fifth lens element sequentially arranged along an optical axis from an object side to an image side. Each of the first lens element to the fifth lens element has an object-side surface facing toward the object side and an image-side surface facing toward the image side. A distance between the image-side surface of the fifth lens element and an image plane along the optical axis is BFL, an air gap between the first lens element and the second lens element along the optical axis is G12, an air gap between the fourth lens element and the fifth lens element along the optical axis is G45, a central thickness of the fifth lens element along the optical axis is T5, satisfying the equation: 1.861≤(BFL+G12)/(G45+T5)≤3.055. |
US10429621B2 |
Optical imaging lens
An optical imaging lens including a first lens element to an eighth lens element arranged in sequence from an object side to an image side along an optical axis is provided. The first lens element has positive refracting power. At least one of the object-side surface and the image-side of the second lens element is an aspheric surface. At least one of the object-side surface and the image-side of the third lens element is an aspheric surface. At least one of the object-side surface and the image-side of the fourth lens element is an aspheric surface. The object-side surface and the image-side of the fifth lens element are both aspheric surfaces. The object-side surface and the image-side of the sixth lens element are both aspheric surfaces. An optical axis region of the image-side surface of the seventh lens element is concave. An optical axis region of the object-side surface of the eighth lens element is concave. |
US10429617B2 |
Optical image capturing system
An optical image capturing system includes, along the optical axis in order from an object side to an image side, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens. At least one lens among the first to the sixth lenses has positive refractive force. The seventh lens can have negative refractive force, and both surfaces thereof are aspheric. At least a surface of the seventh lens has an inflection point. The lenses in the optical image capturing system which have refractive power include the first to the seventh lenses. The optical image capturing system can increase aperture value and improve the imaging quality for use in compact cameras. |
US10429614B2 |
Folded telephoto camera lens system
A folded telephoto lens system may include multiple lenses with refractive power and a light path folding element. Light entering the camera through lens(es) on a first path is refracted to the folding element, which changes direction of the light on to a second path with lens(es) that refract the light to form an image plane at a photosensor. At least one of the object side and image side surfaces of at least one of the lens elements may be aspheric. Total track length (TTL) of the lens system may be 14.0 mm or less. The lens system may be configured so that the telephoto ration (TTL/f) is less than or equal to 1.0. Materials, radii of curvature, shapes, sizes, spacing, and aspheric coefficients of the optical elements may be selected to achieve quality optical performance and high image resolution in a small form factor camera. |
US10429613B2 |
Ocular optical system
An ocular optical system includes a first lens element, a second lens element and a third lens element from an eye-side to a display-side in order along an optical axis. The first lens element, the second lens element and the third lens element each include an eye-side surface and a display-side surface. The eye-side surface of the first lens element has a concave portion in a vicinity of the optical axis. The display-side surface of the third lens element has a concave portion in a vicinity of a periphery of the third lens element. The ocular optical system satisfies 1≤TTL/ER≤10, wherein TTL is a distance from the eye-side surface of the first lens element to the display screen along the optical axis, and ER is a distance from a pupil of the observer to the eye-side surface of the first lens element along the optical axis. |
US10429612B2 |
Optical image capturing system
The invention discloses a three-piece optical lens for capturing image and a three-piece optical module for capturing image. In order from an object side to an image side, the optical lens along the optical axis comprises a first lens with positive refractive power; a second lens with refractive power; and a third lens with refractive power; and at least one of the image-side surface and object-side surface of each of the three lens elements are aspheric. The optical lens can increase aperture value and improve the imaging quality for use in compact cameras. |
US10429611B2 |
Optical photographing lens assembly, imaging apparatus and electronic device
An optical photographing lens assembly includes seven lens elements, which are, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element and a seventh lens element. The first lens element with positive refractive power has an object-side surface being convex in a paraxial region thereof. The third lens element has positive refractive power. The seventh lens element has an image-side surface being concave in a paraxial region thereof and including at least one convex shape in an off-axis region thereof. An object-side surface and the image-side surface of the seventh lens element are aspheric. |
US10429608B1 |
Primary-subordinate camera focus based on lens position sensing
Various embodiments disclosed herein include techniques for maintaining multiple cameras in focus on same objects and/or at same distances. In some examples, a subordinate camera may be configured to focus based on the focus of a primary camera. For instance, a focus relationship between the primary camera and the subordinate camera may be determined. The focus relationship may characterize the trajectory of the lens position of the subordinate camera with respect to the lens position of the primary camera. In various examples, the focus relationship may be updated. |
US10429596B1 |
Optical cable fixture
A support assembly including a handle on a top surface of an optical connector, side clips removably coupled to opposite sides of the handle, such that a clamping force is applied to opposite sides of the optical connector to prevent movement between the handle and the optical connector, and a bottom clip removably coupled to a bottom of the handle, the bottom clip including a flange to capture a pull table extending from a rear of the optical connector. An Active Optical Cable (AOC) connector support assembly including a handle, side clips secured to opposite sides of the handle, such that a clamping force is applied to the opposite sides of the AOC connector to prevent movement between the handle and the AOC connector; and a bottom clip secured to a bottom of the handle, the bottom clip including a flange to secure the AOC connector. |
US10429591B2 |
Integrated optical components with variable attenuation or switching, and tap detector functions
Integrated optical component combine the functions of a Variable Optical Attenuator (VOA), a tap coupler, and a photo-detector, reducing the size, cost, and complexity of these functions. In other embodiments, the integrated optical component combines the functions of an optical switch, a tap coupler, and a photo-detector. A rotatable mirror is used to adjust the coupling of light from an input port or ports to one or more output ports. A pin hole with a surrounding reflective surface is used at the core end face of one or more output fibers, such that a portion of the output optical signal is reflected to a photodiode chip. The photo-detector provides an indication of the optical power that is being coupled to the output fiber. With appropriate electronic control circuitry, the integrated optical component can be used to set the output optical power at a desired or required level. |
US10429590B1 |
Damping mechanism for micro-electro-mechanical systems (MEMS) structures, including tilting mirror devices used in optical components
A rotating or tilting MEMS structure, such as a tilt mirror for an optical device, includes a damping mechanism, provided by locating an inlay block structure underneath the MEMS rotating surface. Damping is created by the temporary squeezing or compression of the air, atmosphere, or gas(es) surrounding the MEMS structure, between the underside of the MEMS tilting surface and the top surface of the block. Movement of the MEMS surface away from the top surface of the block will also be damped by the temporary reduction in pressure. The block structure is fabricated separately from the MEMS tilt-mirror structure and located under the MEMS tilt-mirror structure, either before or during the die-attach or die-bonding process. The damping effect serves to minimize and limit the amplitude and duration of oscillatory motion of the MEMS tilt-mirror, following intentional movement of the mirror, or, in response to external shock and vibrational forces. |
US10429579B2 |
High chlorine content low attenuation optical fiber
An optical fiber having a core comprising silica and greater than 1.5 wt % chlorine and less than 0.5 wt % F, said core having a refractive index Δ1MAX, and a inner cladding region having refractive index Δ2MIN surrounding the core, where Δ1MAX>Δ2MIN. |
US10429575B2 |
Backlight module and liquid crystal display device
A backlight module and a liquid crystal display device are provided. An outer wall located on the light incident side of the plastic frame is arc-shaped, so a graphite sheet attached to a flexible printed circuit board can be attached to a backside of a reflector plate along the arc-shaped outer wall, thereby increasing the size of the graphite and enhancing heat dissipation efficiency of the backlight module. |
US10429571B1 |
Backlight module and display device
The present disclosure relates to a backlight module. The backlight module includes a back plate, a circuit layer, a light source and a plurality of connecting leads. The back plate has a first surface and a second surface which are opposite to each other, wherein the back plate is provided with a plurality of through holes penetrating the first surface and the second surface. The circuit layer is disposed on the first surface to form a driving circuit for a light source. The light source is disposed on a surface of the circuit layer away from the back plate and formed integrally with the back plate. The plurality of connecting leads pass through the plurality of through holes one-to-one for connecting the circuit layer and a main circuit board. |
US10429570B2 |
Light guide plate, backlight module and display device
A light guide plate, a backlight module and a display device are provided. A first bottom surface of the light guide plate is provided with a first recess, and the first recess is configured to dispose a first optical film unit. A side surface of the light guide plate is provided with a second recess, and the second recess is configured to dispose a second optical film unit. The backlight module can be applied in multi-screen and multi-surface display devices. |
US10429569B2 |
Display device
A display device is disclosed, which includes a display panel and a backlight module. The backlight module is disposed corresponding to the display panel, and includes a light guide plate, at least one light emitting unit, a reflector and a first pattern. The light guide plate has a central region and an outer region, and the outer region is disposed around the central region. The at least one light emitting unit is disposed adjacent to the light guide plate. At least a part of the reflector is disposed corresponding to a bottom surface of the light guide plate. The first pattern is disposed corresponding to the outer region, and the reflector and the light guide plate are adhered via the first pattern. |
US10429564B2 |
Fiberoptic lightguide and method of manufacture
A flexible lightguide having at least one fused fiberoptic end secured within an end fitting with a layer of cushioning material sandwiched between the fused fiberoptic end and end fitting. The layer of cushioning material accommodates the differences in thermal expansion and contraction of the fused fiberoptic end and end fitting to prevent damage to the fused fiberoptic end such as during multiple cycling in an autoclave. As one example, the layer of cushioning material may be provided by wrapping the fused fiberoptic end with PTFE tape, thread seal tape, or the like. |
US10429559B2 |
Polarizing plate for minimizing reflecting properties in an organic light emitting device
Provided are a polarizing plate and a display. The illustrative polarizing plate may exhibit desired characteristics in a wide range of wavelengths, and have excellent reflection and visibility at an inclined angle. For example, the polarizing plate may be used in a reflective or transflective liquid crystal display or an organic light emitting device. |
US10429557B2 |
Optical filter and electronic device including the same
A multi-band pass filter may include a filter layer including a plurality of different epsilon-near-zero (ENZ) material layers that are sequentially arranged; and an aperture-defining layer that is disposed on the filter layer and comprises at least one aperture. The filter layer may be exposed to incident light through the at least one aperture, and may be configured to pass a plurality of wavelength regions of the incident light. |
US10429554B2 |
Half mirror, method for manufacturing the same and lighting unit using the same
A half mirror, a method for manufacturing the half mirror and a lighting unit using the half mirror can include a base material and a half mirror layer formed on the base material. The half mirror layer can include a chrome oxide layer, which is made by only a sputtering method, and can be configured to perform a high thermal resistance. Accordingly, the half mirror cannot crack even under various circumstances such that repeat low/high temperatures. Thus, the disclosed subject matter can provide half mirrors having a high durability such as a thermal resistance and methods for manufacturing such the half mirrors in simple manufacturing processes, and also can provide lighting units using the half mirror having a high durability, which can maintain a stable reflectivity for a long term and which can also maintain a good appearance for a long-term use because the half mirror can prevent cracking therein. |
US10429553B2 |
Optical assembly having microlouvers
An optical assembly includes a transparent substrate having a first major surface and a second major surface. The transparent substrate includes one or more damage layers disposed between a first non-damage layer and a second non-damage layer. Elongated laser-induced damage tracks are disposed within the damaged layer(s) to form at least one area pattern so that light directed toward the transparent substrate at an angle that exceeds a predetermined viewing angle (θ) is scattered by the plurality of laser-induced damage tracks. Alternatively, if light is directed toward the transparent substrate at an angle that is less than the predetermined viewing angle (θ), it is transmitted by the transparent substrate. |
US10429552B2 |
Optical sheet having a composite structure thereon and method to make the same
The present invention discloses a method of forming an optical sheet. The method comprises: providing a mold having a first surface; forming a plurality of first concave shapes on the first surface of the mold such that the first surface of the mold is changed to a second surface of the mold; forming a plurality of second shapes on the plurality of first concave shapes such that the second surface of the mold is changed to a third surface of the mold; and using the third surface of the mold to emboss a film on a substrate to form a composite structure corresponding to the combination of the plurality of first concave shapes and the plurality of second shapes. |
US10429547B2 |
Systems and methods of remote weather detection for construction management
The present invention is directed to systems and methods for managing and regulating construction sites, particularly in light of inclement weather or hazardous conditions. In many jurisdictions, extreme weather conditions, including excessive precipitation, render a construction site closed, or unworkable, thereby wasting time and resources. This invention provides a system and processes to monitor, detect and measure precipitation on a construction site, and even several sub-sites on the construction site, from a remote location. The system and processes of the present invention also provide features to further investigate precipitation levels in a more efficient manner than conventionally available and to communicate the construction site conditions, e.g., precipitation levels, and whether the site has met the required regulatory thresholds for inspection. Moreover, the present invention may be used to determine the magnitude of rain events, and potential liabilities associated therewith. |
US10429544B2 |
Gain stabilization of a natural gamma ray tool
In some embodiments, an apparatus and a system, as well as a method and an article, may operate to receive gamma ray measurements from a gamma ray detector; to generate a spectrum based on the gamma ray measurements, the spectrum including a plurality of channels and count rates for the plurality of channels, wherein a channel number of a channel corresponds to energy values of the received gamma rays; to fit a curve to a portion of the spectrum; to determine a location of the maximum of the first derivative of the curve; and to adjust a gain of the gamma ray detector based on the location of the maximum of the first derivative of the curve. Additional apparatus, systems, and methods are disclosed. |
US10429543B2 |
Substrate detection apparatus, substrate detection method and substrate processing system
There is provided a substrate detection apparatus of detecting whether or not a substrate is normally supported by a support part at a predetermined position, in a transfer device including the support part configured to support a plurality of disc-like substrates in multi-stage processing at vertical intervals. The substrate detection apparatus includes: a plurality of optical sensors, each of the plurality of optical sensors including a light transmitting part configured to irradiate a light and a light receiving part configured to receive the light from the light transmitting part, wherein at least one pair of the plurality of optical sensors are disposed such that the light from the light transmitting part is sequentially blocked at each of the plurality of disc-like substrates, during the plurality of disc-like substrates is collectively transferred while being normally supported by the support part at the predetermined positions. |
US10429541B2 |
Reconstructing optical spectra using integrated computational element structures
Two or more Integrated Computational Element (“ICE”) structures are designed and utilized in an optical computing device to combinatorily reconstruct spectral patterns of a sample. To design the ICE structures, principal component analysis (“PCA”) loading vectors are derived from training spectra. Thereafter, two or more ICE structures having spectral patterns that match the PCA loading vectors are selected. The selected ICE structures may then be fabricated and integrated into an optical computing device. During operation, the ICE structures are used to reconstruct high resolution spectral data of the samples which is utilized to determine a variety of sample characteristics. |
US10429540B2 |
Combining inelastic and capture gamma ray spectroscopy for determining formation elemental
A method for determining weight fractions of a plurality of elements in a subsurface formation penetrated by a wellbore includes determining weight fractions of a first plurality of elements using measurements of capture gamma rays made in the wellbore. The capture gamma rays result from bombardment of the formations with high energy neutrons. A weight fraction of a second plurality of elements is determined using measurements of inelastic gamma rays made in the wellbore resulting from bombardment of the formations with high energy neutrons. The weight fraction for the second plurality is determined by setting a transformation factor for those elements common to both the first and second plurality to result in a statistically equivalent weight fraction for the common elements as determined for the first plurality of elements. Weight fractions of elements in the second plurality not common to the first plurality of elements is determined using the set transformation factor. |
US10429536B2 |
T2 inversions with reduced motion artifacts
A method for processing nuclear magnetic resonance (NMR) measurement data includes receiving, with a processor, NMR measurement data obtained from an NMR tool, the NMR measurement data having an echo train affected by a motion artifact, wherein the motion artifact is related to a magnetic field magnitude that varies in a volume of interest due to a motion of the NMR tool. The method further includes reducing, with the processor, an effect on the NMR measurement data of the motion artifact by using a correcting inversion method that models the motion artifact to provide a corrected transverse relaxation time constant (T2) distribution, the correcting inversion method having a multiplicative term having a term that includes at least one local maximum and an optional decay term. |
US10429535B2 |
Statistical analysis of combined log data
A method for determining at least one characteristic of a geological formation having a borehole therein may include collecting nuclear magnetic resonance (NMR) data of the geological formation adjacent the borehole, and collecting non-NMR data for the geological formation adjacent the wellbore. The method may further include performing a Monte Carlo analysis based upon a combination of the collected NMR and non-NMR data to determine the at least one characteristic of the geological formation having a bounded uncertainty associated therewith. |
US10429532B2 |
System and methodology for estimating formation elastic properties using decomposed and undecomposed signal
A technique facilitates estimating elastic properties of formations by exciting a wavefield and acquiring the signal with and without azimuthal decompositions. For example, the elastic properties may be estimated by exciting a multipole wavefield and acquiring the signal with and without the azimuthal decomposition. The technique is effective for estimating elastic properties of azimuthally homogeneous and heterogeneous formations including isotropic and anisotropic formations. |
US10429531B2 |
Advanced noise reduction in acoustic well logging
A method and product for reducing or eliminating noise in waveforms for the purpose of improving the subsequent acoustic log processing products. The present disclosure identifies the noise signature and removes the noise signature from the formation signal through a process of deconvolution. This product and method is particularly effective where the noise signal overlaps in the time domain and in the frequency domain with the formation signal. |
US10429529B2 |
Adaptive fault tracking
A method for adaptively determining one or more faults from geological survey data includes: (a) generating at least one attribute volume comprising a plurality of attributes from said geological survey data; (b) identifying at least one region of interest on a predetermined cross-section of said at least one attribute volume; (c) adding at least one seed to said at least one region of interest; (d) defining at least one representative area in accordance with said region of interest; (e) starting an initial generation of at least one basic geological object by adapting said at least one seed and/or representative area; (f) selectively determining growth confidence levels for any of said at least one basic geological object based on a realistic geological principles, and mapping said at least one basic geological object with colour-coded data of said growth confidence levels; (g) monitoring a visual representation of said at least one basic geological object during said initial generation; (h) selectively stopping said initial generation of said at least one basic geological object; (i) generating at least one optimized geological object through manipulation of at least part of said at least one basic geological object, wherein said at least one basic geological object is generated by applying a mesh propagation algorithm adapted to generate a surface mesh from said at least one seed, and which includes at least on predetermined constraint, including at least one external force, obtained from empirical geological data, and at least one internal force adapted to maintain the surface shape of said surface mesh. |
US10429528B2 |
Reducing microseismic monitoring uncertainty
Uncertainty of microseismic monitoring results can be reduced to improve hydraulic fracture modeling. A computing device can use a fracture model to determine a predicted geometry of a hydraulic fracture in a subterranean formation based on properties of a fracturing fluid that is introduced into the subterranean formation. An uncertainty index of the predicted geometry of the hydraulic fracture can be determined based on an uncertainty value of the predicted geometry and a trend of uncertainty values. When the injection flow rate of the fracturing fluid is less than a maximum flow rate, it can be increased from an initial injection flow rate to an increased injection flow rate in response to determining the uncertainty index exceeds a pre-set maximum. |
US10429524B2 |
X-ray detector with non-transparent intermediate layer
An X-ray detector includes a direct-converting converter element, an evaluation unit, and an intermediate layer arranged flat between the direct-converting converter element and the evaluation unit. In an embodiment, the intermediate layer is non-transparent for visible, infrared, or ultraviolet light. |
US10429521B1 |
Low power charged particle counter
A small, low power, solid state particle counter may be configured to detect radiation. A scintillator may be doped to emit light in a predetermined energy range when impacted by radiation particles. A photodiode attached to or held against the scintillator may be configured to detect the emitted light in the predetermined energy range and output a current proportional to an amount of the emitted light. |
US10429518B2 |
System and method for the determination of a dose in radiotherapy
An image generating apparatus for image generation and dose calculation is provided. The image generating apparatus includes a movable detector for detecting nuclear radiation during a detection period and an evaluation system. The evaluation system includes an interface system for transmitting detector data to the evaluation system. The detector data include information about the detected radiation for image generation. The evaluation system further includes a data memory portion for storing the detector data. The evaluation system further includes a program memory portion with a program for repeatedly determining at least one quality value with respect to image generation during the detection period. The image generating apparatus includes an output system including at least one output unit. The at least one output unit includes one output unit for outputting an instruction to a user for further moving the detector in dependence of the detector data. The instruction relates to at least a part of the remaining detection period. |
US10429516B2 |
Positioning control apparatus for switching whether predictive ephemeris data is used for positioning calculation
A positioning control apparatus is provided, which includes: an acquisition unit that acquires predictive ephemeris data from outside of the positioning control apparatus; a setup unit that sets up, based on a predetermined condition different from an expiration date that has been set up in the predictive ephemeris data, a switching condition as to whether the predictive ephemeris data acquired by way of the acquisition unit should be used for positioning calculation to calculate location information that indicates a current location of the positioning control apparatus; and a control unit that switches, based on the switching condition that has been set up by way of the setup unit, whether the predictive ephemeris data should be used for the positioning calculation. |
US10429508B2 |
Distance measuring device, moving system, and distance measurement method
A distance measuring device includes a first measurer, a second distance measurer, and circuitry. The first distance measurer measures a distance to a target object; and outputs first distance information indicating a measured distance when the distance measurement is performed under a condition that satisfies a distance measurement condition, but outputs the first distance information indicating a predetermined value when the distance measurement is performed under a condition that does not satisfy the distance measurement condition. The second distance measurer measures a distance to the target object and outputs second distance information indicating the measured distance. When the first distance information indicates the predetermined value and the second distance information satisfies a predetermined condition, the circuitry makes alteration such that the distance measurement condition is relaxed. When the distance measurement condition is altered, the first distance measurer measures a distance to the target object again. |
US10429504B2 |
Device for preventing vehicle accident and method for operating same
A vehicle including a radar module configured to receive emergency situation notification information indicating a deteriorating weather condition and an accident occurrence state from a front vehicle positioned ahead, and to transmit the emergency situation notification information to a rear vehicle positioned behind. |
US10429501B2 |
Motorcycle blind spot detection system and rear collision alert using mechanically aligned radar
A blind spot detection system for a motorcycle, which includes an accelerometer, a gyroscope, and a detection device for detecting the presence of a vehicle in at least one blind spot. The accelerometer detects a gravity force vector, and the gyroscope detects the position of the motorcycle relative to the gravity force vector such that a lean angle of the motorcycle is calculated. The detection device is then configured to maintain the same position of the motorcycle relative to the gravity force vector and compensate for the position of the motorcycle if the lean angle is greater or less than 90°, such that the detection device is able to detect the presence of the vehicle in the at least one blind spot, independent of the lean angle of the motorcycle. |
US10429498B2 |
Vehicle position detecting method and vehicle position detecting system
A vehicle position detecting method comprises: continuously detecting a detection region and generating a sensing signal by a sensor (S100); continuously determining whether a sudden change exists in the sensing signal, and starting timing when the sensing signal suddenly changes (S200); terminating timing after a preset time, if the sensing signal received at an end of timing does not restore to the sensing signal prior to the sudden change, confirming a vehicle is or is not in the detection region (S300); the sudden change is defined as a variation of the sensing signal per unit time exceeding a preset range. A vehicle position detecting system is also provided. |
US10429497B2 |
Ultrasonic device, ultrasonic probe, electronic apparatus, and ultrasonic imaging apparatus
An ultrasonic device that transmits and receives ultrasonic waves includes: ultrasonic elements having first and second surfaces from which the ultrasonic waves are emitted; and a backing unit that supports the second surfaces of the ultrasonic elements and attenuates the ultrasonic waves emitted to the second surface side. The backing unit includes microlenses, which are arranged on the second surface side of the ultrasonic elements so as to be located corresponding to the ultrasonic elements, and a backing member having slits through which the ultrasonic waves transmitted through the microlenses pass. The ultrasonic elements are arranged in the shape of an array, and the microlenses are arranged in the shape of an array corresponding to the ultrasonic elements. |
US10429496B2 |
Hybrid flash LIDAR system
Improved flash light detection and ranging (also referred to herein as “flash LIDAR”) systems and methods for determining the distance to a target object disposed in a field-of-view. A flash LIDAR system can include an array of illuminators, an array of light detectors, and a signal processor/controller, as well as have a field-of-view in which a target object may be disposed. The flash LIDAR system can effectively divide the field-of-view into a plurality of segments, and each illuminator in the illuminator array can be made to correspond to a specific segment of the field-of-view. The flash LIDAR system can also effectively divide the light detector array into a plurality of subsets of light detectors. Like the respective illuminators in the illuminator array, each subset of light detectors in the light detector array can be made to correspond to a specific segment of the field-of-view. |
US10429492B2 |
Apparatus for calculating misalignment quantity of beam sensor
The misalignment quantity calculating apparatus determines whether a first object detected by a beam sensor is identical to a second object detected by an image sensor. Upon determining that the first object is identical to the second object, the misalignment quantity calculating apparatus calculates, as a misalignment quantity of the beam sensor, an angle between a first line segment and a second line segment; the first line segment connects a predetermined reference point of the misalignment quantity calculating apparatus and a first feature point of the first object, and the second line segment connects the predetermined reference point and a second feature point of the second object. |
US10429491B2 |
Systems and methods for pulse descriptor word generation using blind source separation
A method for generating pulse descriptor words (PDWs) including frequency and/or bandwidth data from time-varying signals received by a sensor includes filtering, at a plurality of blind source separation (BSS) modules, signals derived from the time-varying signals, each BSS module including a filtering subsystem having a plurality of filter modules. Each filter module has a frequency filter coefficient (α) and is parameterized by a center frequency (f). The method also includes transmitting at least one blind source separated signal from the BSS modules to a PDW generation module communicatively coupled to the filtering subsystem. The method further includes generating, using the PDW generation module and based on the blind source separated signal, at least one PDW parameter vector signal containing the frequency data. The method also includes updating, upon generating and based on the PDW parameter vector signal, values of α and/or f for each filter module. |
US10429490B2 |
Unmanned aerial vehicle with deployable transmit/receive module apparatus with ramjet
A system for bistatic radar target detection employs an unmanned aerial vehicle (UAV) having a ramjet providing supersonic cruise of the UAV. Deployable antenna arms support a passive radar receiver for bistatic reception of reflected radar pulses. The UAV operates with a UAV flight profile in airspace beyond a radar range limit. The deployable antenna arms have a first retracted position for supersonic cruise and are adapted for deployment to a second extended position acting as an airbrake and providing boresight alignment of the radar receiver. A mothership aircraft has a radar transmitter for transmitting radar pulses and operates with an aircraft flight profile outside the radar range limit. A communications data link operably interconnects the UAV and the tactical mothership aircraft, transmitting data produced by the bistatic reception of reflected radar pulses in the UAV radar antenna to the mothership aircraft. |
US10429488B1 |
System and method for geo-locating and detecting source of electromagnetic emissions
A system for identifying a real-world geographic location of an emission source emitting electromagnetic energy includes a platform configured for movement and an apparatus disposed on the platform and configured to collect and process, in a passive manner and during movement of the platform, at least a pair of successive samples of the electromagnetic energy emission and define angular and spatial coordinates of the emission source. The apparatus includes at least a pair of antennas, a receiver coupled to antennas and a processor executing a predetermined logic. |
US10429486B1 |
Method and system for learned communications signal shaping
Methods and systems including computer programs encoded on computer storage media, for training and deploying machine-learned communication over radio frequency (RF) channels. One of the methods includes: determining first information; generating a first RF signal by processing using an encoder machine-learning network; determining a second RF signal that represents the first RF signal altered by transmission through a communication channel; determining a first property of the first signal or the second RF signal; calculating a first measure of distance between a target value of the first property and an actual value of the first or second RF signal; generating second information as a reconstruction of the first information using a decoder machine-learning network; calculating a second measure of distance between the first information and the second information; and updating at least one of the encoder machine-learning network or the decoder machine-learning network based on the first and second measures. |
US10429485B1 |
Systems, devices and methods for location identification and reporting using radio frequency
Provided are systems, devices and methods for determining a spatial location of a target radio frequency node/nodes of a first type, located in a defined space. The system includes a plurality of radio frequency nodes of a second type also located within the defined space and communicate with the target radio frequency node. A radio frequency node of a third type located within/outside the defined space communicates with the plurality of radio frequency nodes of the second type to determine the spatial location of the target radio frequency node. |
US10429478B2 |
Push-button vessel wall MRI with 3D scout scan
A medical system (10) and method (100) image a vessel wall automatically. A scout scan of a patient for localizing a target vessel of the patient is automatically performed (102) using magnetic resonance (MR). The scout scan is three-dimensional (3D) and isotropic. An MR data set of the scout scan is automatically reconstructed (104) into foot-to-head (FH), left-to-right (LR) and posterior-to-anterior (PA) projections. A3D imaging volume (16) encompassing the target vessel is automatically determined (106) from the projections, and a diagnostic scan of the 3D imaging volume (16) is performed (108) using MR. |
US10429475B2 |
Method for increasing signal-to-noise ratio in magnetic resonance imaging using per-voxel noise covariance regularization
A method for maximizing the signal-to-noise ratio (“SNR”) in a combined image produced using a parallel magnetic resonance imaging (“MRI”) technique is provided. The image combination used in such techniques require an accurate estimate of the noise covariance. Typically, the thermal noise covariance matrix is used as this estimate; however, in several applications, including accelerated parallel imaging and functional MRI, the noise covariance across the coil channels differs substantially from the thermal noise covariance. By combining the individual channels with more accurate estimates of the channel noise covariance, SNR in the combined data is significantly increased. This improved combination employs a regularization of noise covariance on a per-voxel basis. |
US10429470B2 |
Generation of pixel-time series of an examination object by magnetic resonance
In a method and apparatus the generation of a pixel-time series of an examination object by magnetic resonance measurement data for a undersampled measurement data set are recorded along a k-space trajectory in a repetition of a pulse sequence. The pulse sequence is repeated at least once again in each case with the radiation of other RF pulses and/or with activation in each case of other gradients such that, on each repetition, after the one RF excitation pulse, measurement data are measured along a further k-space trajectory, and are stored in respective measurement data sets. The repetitions are performed such that measurement data are measured along an optimized selection of k-space trajectories in successive repetitions. From each of the measurement data sets obtained, an image data set is reconstructed, from which at least one pixel-time series is compiled for at least one pixel from the reconstructed image data sets. |
US10429469B2 |
System and method for magnetic resonance imaging using three-dimensional, distributed, non-Cartesian sampling trajectories
A system and method for sampling k-space is provided that substantially simplifies the demands placed on the clinician to select and balance the tradeoffs of a particular selected sampling methodology. In particular, the present invention provides particularly advantageous sampling methodologies that simplify the selection of a particular k-space sampling methodology and, furthermore, the tradeoffs within a particular sampling methodology. |
US10429468B2 |
Simultaneous dynamic contrast enhanced and dynamic susceptibility magnetic resonance imaging using magnetic resonance fingerprinting
Quantitative perfusion parameter maps can be generated based on multiple different relaxation parameter maps that are simultaneously produced from images acquired using contrast-enhanced magnetic resonance imaging (“MRI”) techniques. |
US10429461B2 |
Magnetic resonance imaging device and timing misalignment detection method thereof
A magnetic resonance imaging device produces a magnetic field gradient with parallel driving of positive-side subcoils and negative-side subcoils with different power sources in the magnetic field gradient direction, to detect a misalignment in drive timing of the positive side and the negative side. Pulse sequences for timing misalignment detection having a slice magnetic field gradient pulse and a read-out magnetic field gradient pulse in the same direction as a magnetic field gradient of interest are executed. A positive-side slice echo and a negative-side slice echo of the magnetic field gradient are acquired. A phase difference between a positive-side projection image and a negative-side projection image is derived by computation with phase error from other factors being removed. From the slope of the phase difference with respect to a location, the drive timing misalignment between the positive-side subcoil and the negative-side subcoil of the magnetic field gradient production is detected. |
US10429458B2 |
Radiofrequency coil structure
An RF coil structure used for a magnetic resonance imaging (MRI) system includes an RF shield, an RF coil provided inside the RF shield, and a high dielectric material arranged between the RF shield and the RF coil, in which an interval between the RF shield and the RF coil is changed or a thickness of the high dielectric material is changed. |
US10429456B2 |
Modules and methods including magnetic sensing structures
A magnetic device may include a magnetic structure, a device structure, and an associated circuit. The magnetic structure may include a patterned layer of material having a predetermined magnetic property. The patterned layer may be configured to, e.g., provide a magnetic field, sense a magnetic field, channel or concentrate magnetic flux, shield a component from a magnetic field, or provide magnetically actuated motion, etc. The device structure may be another structure of the device that is physically connected to or arranged relative to the magnetic structure to, e.g., structurally support, enable operation of, or otherwise incorporate the magnetic structure into the magnetic device, etc. The associated circuit may be electrically connected to the magnetic structure to receive, provide, condition or process of signals of the magnetic device. |
US10429453B2 |
Magnetic sensor and method of manufacturing the same
The magnetic sensor includes a semiconductor substrate having Hall elements on a front surface of the semiconductor substrate, an adhesive layer formed on a back surface of the semiconductor substrate, and a magnetic flux converging plate formed on the adhesive layer. The magnetic flux converging plate is formed on the back surface of the semiconductor substrate through formation of the magnetic flux converging plate by electroplating on a base conductive layer formed on a plating substrate prepared separately from the semiconductor substrate, application of an adhesive for forming the adhesive layer onto a surface of the magnetic flux converging plate so that the magnetic flux converging plate adheres to the back surface of the semiconductor substrate, and peeling off of the plating substrate afterward from the base conductive layer formed on the magnetic flux converging plate. |
US10429451B2 |
Apparatus for testing luminaire based on USB and method using the same
Disclosed are an apparatus and method for testing a luminaire based on USB. The apparatus for testing a luminaire based on USB includes a power measurement unit for measuring power consumption by measuring power input from a host system to a luminaire based on USB; a message interpretation unit for generating a result of interpretation of a message based on a USB-based control message sent and received between the host system and the luminaire; an illuminance reception unit for receiving a result of measurement of illuminance of the luminaire, measured by a light reception device; and an information generation unit for generating test result information based on a result of the measurement of the power consumption, the result of the interpretation of the message, and the result of the measurement of the illuminance. |
US10429445B2 |
Method and system for providing charging information to a user of a wearable device
A method and system for providing charging information to a user of wearable device by predicting when a health sensor is needed most during the course of the day and cross-referencing that information with a user's personal calendar in order to determine the optimal time to charge the wearable device. Battery life of the wearable device may be monitored. Information may be stored in memory regarding sensor data detected by one or more sensors and associated with a time. One or more time slots may be identified during which the sensor data was lacking. The identified time slots may be compared against a calendar of available time to identify matching time slots. A next matching time slot may be determined, and a notification may be displayed on a display screen of the wearable device to recommend that the user charge the wearable device at the determined next matching time slot. |
US10429443B2 |
Scan flip-flop and scan test circuit including the same
A scan flip-flop includes an input unit and a flip-flop. The input unit is configured to select one signal from among a data input signal and a scan input signal to supply the selected one signal as an internal signal according to an operation mode. The flip-flop is configured to latch the internal signal according to a clock signal. The flip-flop includes a cross coupled structure that includes first and second tri-state inverters which share a first output node and face each other. |
US10429442B2 |
Testing SOC with portable scenario models and at different levels
A method for testing a system-on-a-chip (SoC) is described. The method includes parsing a file to determine functions to be performed components of the SoC. The method further includes receiving a desired output of the SoC and generating a test scenario model based on the desired output of the SoC. The test scenario model includes a plurality of module representations of the functions and includes one or more connections between two of the module representations. The desired output acts as a performance constraint for the test scenario model. The test scenario model further includes an input of the SoC that is generated based on the desired output, the module representations, and the one or more connections. The test scenario model includes a path from the input via the module representations and the connections to the desired output. |
US10429440B2 |
Design-for-test for asynchronous circuit elements
Various examples of a circuit and a technique for testing the circuit are disclosed herein. In an example, the circuit includes a data input coupled to a scan multiplexer and a path select multiplexer. The circuit further includes a scan-in input coupled to the scan multiplexer and to receive a value of a scan pattern. The circuit further includes a scan latch to store the value that has an input coupled to the scan multiplexer and an output coupled to the path select multiplexer. The scan multiplexer selects a first signal from the data input and the scan-in input and provides the first signal to the input of the scan latch. The path select multiplexer selects a second signal from the data input and the output of the scan latch and provides the second signal to a data output of the circuit. |
US10429439B2 |
In die stepping sort
An apparatus for testing a die can comprise a first printed circuit board (PCB), a space transformer, and a plurality of probes. The first PCB can be configured to connect to a second PCB. The space transformer can be attached to the PCB. The space transformer can include a plurality of traces. Each of the plurality of probes can be connected to one of the plurality of traces. |
US10429438B1 |
Integrated circuit authentication from a die material measurement
The various technologies presented herein relate to measuring a signal generated by a die-based test circuit incorporated into an IC, and utilizing the measured signal to authenticate the IC. The signal can be based upon a sensor response generated by the test circuit fabricated into the die, wherein the sensor response is based upon a property of the die material. The signal can be compared with a reference value obtained from one or more test circuit(s) respectively located on one or more reference dies, wherein the reference dies are respectively cut from different wafers, and the location at which the reference dies were cut is known. If the measured signal matches the reference value, the die is deemed to be from the same cut location as the dies from which the reference value was obtained. If the measured signal does not match the reference value, the die is not authenticated. |
US10429433B2 |
Method for the characterization and monitoring of integrated circuits
A method for characterizing an integrated circuit that includes ramping the supply voltage to an integrated circuit as a function of time for each of the transistors in the integrated circuit, and measuring a power supply current for the integrated circuit during the ramping of the power supply voltage. The measured peaks in the power supply current are a current pulse that identifies an operation state in which each of the transistors are in an on state. The peaks in the power supply current are compared to the reference peaks for the power supply current for a reference circuit having a same functionality as the integrated circuit to determine the integrated circuit's fitness. |
US10429429B2 |
Differential protection method, differential protection device and differential protection system
In a differential protection method for monitoring a line of a power grid, current indicator measured values are measured at the ends of the line and are transmitted to an evaluation device. A differential current value is formed with current indicator measured values temporally allocated to one another. The time delay between local timers of the measuring devices is used for the temporal allocation of the current indicator measured values measured at different ends. A fault signal indicating a fault affecting the line is generated if the differential current value exceeds a predefined threshold value. A check is carried out using electrical measured quantities temporally allocated to one another and a line-specific parameter to determine whether the time delay information indicates the actual time delay between the respective local timers. A time error signal is generated if erroneous time delay information is detected. |
US10429428B2 |
ECU ground fault isolation for a delay system
A method of detecting a ground fault in a faulty electronic control unit. A ground fault detection technique executed by a processor is enabled. The processor determines a message count for each respective electronic control unit transmitted during a ground offset condition over a predetermined time period. The message count includes messages communicated within a communication bus having a measured voltage at least a predetermined voltage value above an expected voltage value. The message counts for each respective electronic control unit are normalized. The faulty electronic control unit is identified as a function of the normalized message counts. A fault signal is output to identify the fault electronic control unit. |
US10429424B2 |
Wireless terminal measurement apparatus
A distance H from a standard point O to one surface of a bottom plate of a terminal holding section 31 is set so that with respect to a direct wave that is output from one of a measurement antenna 25 and a wireless terminal that is a measurement target and is directly input to the other one thereof, a reflectivity of a reflection wave that is output from the one thereof, is reflected on one surface 32a of the bottom plate of the terminal holding section 31, and is input to the other one thereof is equal to or smaller than an incidence angle (for example, 80° or 70°) for assigning a predetermined allowable limit in view of a characteristic of incidence angle-to-reflectivity determined by a specific dielectric constant of the terminal holding section 31, to thereby reduce an influence of the reflection wave on measurement. |
US10429420B1 |
System for measuring and mapping the sheet resistivity of the film on flat-panel
A system for measuring and mapping sheet resistivity of the film on flat-panel has a frame, a collection of leveling chucks, a probe-mounting assembly, and a collection of four-point probes. The probe-mounting assembly is a frame that holds the four-point probes in place. The leveling chucks and the probe-mounting assembly are mounted onto the frame, within the probe chamber. The flat panel is positioned in between the probe-mounting assembly and the leveling chucks. The sheet resistivity measurement by each of the collection of four-point probes can be done by electrical switching instead of mechanical repositioning and the flat panel transportation to and from the measurement position only needs to be done in one round trip instead of two, thus much time is saved. Also, the leveling chuck's speed in pressing the flat panel against the collection of four-point probes can be well controlled to avoid damaging of the flat panel. |
US10429417B2 |
Brown-out detectors
Brown-out detector and method thereof. For example, the brown-out detector includes a variable resistor and a P-type current mirror including a P-type transistor associated with a threshold on-voltage. The P-type current mirror is configured to generate a characteristic voltage of a supply voltage and generate a characteristic current flowing through the variable resistor to generate a reference voltage based at least in part on the characteristic current. Additionally, the brown-out detector includes a voltage comparator configured to compare the characteristic voltage and the reference voltage and output a signal indicating a comparison result, and a controller. The threshold on-voltage is associated with a first rate of thermal change, and the characteristic current is associated with a second rate of thermal change. |
US10429416B1 |
Power switching device with integrated current sensing transformer
A power switching device is provided with an integrated current sensor. The device includes component housing and multiple terminal legs extending therefrom. A current sensor assembly includes an interior cavity having a galvanically insulating tubular sleeve extending therethrough. A toroidal inductive winding resides within the first cavity and is circumferentially disposed about the sleeve, with one leg of the device defining a (single-turn) primary winding and the winding defining a secondary winding magnetically coupled to the device leg. Current sensing terminals are associated with respective locations along the inductive winding, wherein a current through the encapsulated terminal leg is detectable via respective current sensing leads extending from the assembly housing. A damping inductive element such as a ferrite bead may be provided within a second interior cavity defined by the assembly housing to suppress high frequency oscillations associated with a second (e.g., gate) terminal leg of the switching device. |
US10429415B2 |
Method for improving common mode rejection in a rogowski coil-based circuit
A sensor includes a non-magnetic core having a first winding wrapped thereon. The first winding has a center tap dividing the first winding into a first winding portion and a second winding portion. The center tap is coupled to a reference voltage. The first winding portion and the second winding portion are configured to sense first AC signals, and have a balanced susceptibility to second AC signals. The differential integrating circuit is configured to provide common mode rejection of the second AC signals. The differential integrator circuit is operably coupled to the first winding portion and the second winding portion. |
US10429413B2 |
Coaxial probe structure
A coaxial probe structure, comprising: a support member, comprising a first connecting member; a connector, comprising a second connecting member; a coaxial probe, connecting with a connecting end of the coaxial probe to a bottom of the connector, and extending downwards from the bottom of the connector to a probe tip, and an included angle formed at a junction of the probe tip and the connecting end; and an elastic body connecting the support member with the junction of the connecting end and the probe tip of the coaxial probe. |
US10429410B2 |
Wheel sensor interface apparatus
A wheel sensor interface apparatus may include: a wheel sensor interface unit configured to supply power to a wheel sensor of a vehicle, or sense an output current of the wheel sensor and transmit the sensed current to a microprocessor unit of the vehicle; and an over-current detection unit including: a reference current generation unit configured to generate a reference current using a voltage across a resistor through which the output current flows; and a voltage level decision unit configured to decide a voltage level according to the reference current. The over-current detection unit may determine whether the output current is an over-current, according to the voltage level. |
US10429409B2 |
Systems and methods for thermally regulating sensor operation
Systems and methods are provided for calibrating and regulating the temperature of a sensor. One or more temperature adjusting devices can be provided to regulate the temperature of the sensor. One or more of the temperature adjusting devices can be provided to perform a calibration to determine a relationship between sensor bias and sensor temperature. The one or more temperature adjusting devices can be built into the sensor. |
US10429407B2 |
Three-axis inertial sensor for detecting linear acceleration forces
An inertial sensor includes a proof mass spaced apart from a surface of a substrate. The proof mass has a first section and a second section, where the first section has a first mass that is greater than a second mass of the second section. An anchor is coupled to the surface of the substrate and a spring system is interconnected between the anchor and the first and second sections of the proof mass. The spring system enables translational motion of the first and second sections of the proof mass in response to linear acceleration forces imposed on the inertial sensor in any of three orthogonal directions. |
US10429406B2 |
Microelectromechanical structure with frames
A robust microelectromechanical structure that is less prone to internal or external electrical disturbances. The structure includes a mobile element with a rotor suspended to a support, a first frame anchored to the support and circumscribing the mobile element, and a second frame anchored to the support and circumscribing the mobile element between the mobile element and the first frame, electrically isolated from the first frame. The rotor and the second frame are galvanically coupled to have a same electric potential. |
US10429402B2 |
Washing/drying apparatus, screening apparatus, washing/drying method, and screening method
There is a possibility that an arrangement of a cleaning device and a drying device may result in an inefficient usage of a space for an installation. A cleaning and drying apparatus 30 for a plate including a biochip is provided with: a cleaning device 310 that is configured to clean the plate 60; and a drying device 320 that is configured to dry the plate 60, the drying device 320 is arranged above the cleaning device 310. |
US10429395B2 |
Glucose sensor signal stability analysis
Disclosed are methods, apparatuses, etc. for glucose sensor signal stability analysis. In certain example embodiments, a series of samples of at least one sensor signal that is responsive to a blood glucose level of a patient may be obtained. Based at least partly on the series of samples, at least one metric may be determined to assess an underlying trend of a change in responsiveness of the at least one sensor signal to the blood glucose level of the patient over time. A reliability of the at least one sensor signal to respond to the blood glucose level of the patient may be assessed based at least partly on the at least one metric assessing the underlying trend. Other example embodiments are disclosed herein. |
US10429393B2 |
Tumor deconstruction platform for the analysis of intra-tumor heterogeneity
The present invention provides a method for concurrent resolution of the cancer stem cell (CSC) derived hierarchy, genetic instability, differentially cycling cells and host cells recruited for performing tumor growth supporting functions; and (ii) quantification, monitoring and analysis of these populations. The first level of analysis can be carried out using either CSC- and progenitor-specific markers or a marker-free approach based on label-chase to resolve the tumor regenerative hierarchy. The next level involves combinatorial quantification of differential DNA-RNA contents to identify recruited host and tumor cell variants resulted from genetic instability and differential cycling within the tumor. |
US10429392B2 |
Methods and compositions for diagnosis and treatment of cancer
The present invention relates to the identification of nucleic acid and amino acid sequences that are characteristic of tumor tissues, in particular tumors of the central nervous system (CNS) such as glioma, in particular glioblastoma and which represent targets for therapy or diagnosis of tumor diseases in a subject. |
US10429391B2 |
Biomarkers for cholangiocellular carcinoma (CCC)
The invention relates to a method for identifying specific marker proteins (biomarkers) for cholangiocellular carcinoma (CCC), the biomarkers for CCC identified by the method and the use thereof, in particular for diagnosis, surveillance and treatment. The invention further relates to a diagnostic device comprising the biomarkers for CCC and a screening assay wherein these biomarkers for CCC are used to identify novel pharmaceutical compounds for treatment of CCC. |
US10429390B2 |
Antibody cocktail systems and methods for classification of histologic subtypes in lung cancer
The present invention relates to compositions and detection systems of antibodies or fragments thereof, wherein at least two antibodies or fragments thereof binds specifically to squamous cell carcinoma (SCC) and/or adenocarcinoma (ADC). Methods for using the antibodies in diagnosis, prognosis, and assessing efficacy of treatment is further included as well as kits including such compositions and detection systems. |
US10429387B2 |
Simple and affordable method for immuophenotyping using a microfluidic chip sample preparation with image cytometry
The system includes a simple system for CD4 and CD8 counting in point-of-care HIV staging within resource poor countries. Unlike previous approaches, no sample preparation is required with the sample added directly to a chip containing dried reagents by capillary flow. A large area image cytometer consisting of an LED module is used to excite the fluorochromes PerCP and APC labeled targets and a monochrome CCD camera with a combination of two macro lenses captures images of 40 mm2 of blood (approximately 1 microliter). CD4 and CD8-T-lymphocyte counts correlate well with those obtained by flow cytometry. The cytometer system described in the present invention provides an affordable and easy-to-use technique for use in remote locations. |
US10429381B2 |
Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
This invention concerns Chemically-sensitive Field Effect Transistors (ChemFETs) that are preferably fabricated using semiconductor fabrication methods on a semiconductor wafer, and in preferred embodiments, on top of an integrated circuit structure made using semiconductor fabrication methods. The instant ChemFETs typically comprise a conductive source, a conductive drain, and a channel composed of a one-dimensional (1D) or two-dimensional (2D) transistor nanomaterial, which channel extends from the source to the drain and is fabricated using semiconductor fabrication techniques on top of a wafer. The ChemFET also includes a gate, often the gate voltage is provided through a fluid or solution proximate the ChemFET. Such ChemFETs, preferably configured in independently addressable arrays, may be employed to detect a presence and/or concentration changes of various analyte types in chemical and/or biological samples, including nucleic acid hybridization and/or sequencing reactions. |
US10429380B2 |
Device comprising a hydrogel having a glucose-binding protein and a ligand of the glucose-binding protein incorporated therein
The present invention relates to measures for determining glucose and for diagnosing diseases based on impaired glucose metabolism. In particular the present invention relates to a device comprising a hydrogel having a glucose-binding protein and a ligand of the glucose-binding protein incorporated therein, wherein the hydrogel comprises a first hydrogel matrix made of alginate and a second hydrogel matrix which forms an interpenetrating network within the first hydrogel matrix. The invention further relates to the use of such a device for determining the glucose content in a sample and to the use of the device for diagnosing impaired glucose metabolism in a test subject. |
US10429379B2 |
Autoantigens for diagnosis of rheumatoid arthritis
Disclosed herein are methods of diagnosing Rheumatoid arthritis in a subject comprising determining whether the subject is immunologically reactive with N-acetylglucosamine-6-sulfatase and/or filamin-A, wherein immunological reactivity of the subject to one or more of N-acetylglucosamine-6-sulfatase or filamin-A, as compared to an appropriate control, indicates the subject has rheumatoid arthritis. Examples of specific assays and kits for use with the methods are also disclosed. |
US10429375B2 |
Exporting measurements of nanopore arrays
A method of exporting measurements of a nanopore sensor on a nanopore based sequencing chip is disclosed. An electrical characteristic associated with the nanopore sensor is measured. The electrical characteristic associated with the nanopore sensor is processed. A summary for the electrical characteristic and one or more previous electrical characteristics is determined. The summary for the electrical characteristic and the one or more previous electrical characteristics are exported. Determining the summary includes determining that the electrical characteristic and at least a portion of the one or more previous electrical characteristics correspond to a base call event at the nanopore sensor. The summary represents the electrical characteristic and the at least a portion of the one or more previous electrical characteristics. |
US10429371B2 |
Method and system for extracting gas or gas mixtures from a liquid for performing dissolved gas or gas mixture analysis
The present invention concerns a system (1) for extracting gas or gas mixtures from a liquid for performing dissolved gas or gas mixture analysis, the system (1) comprising a container (2) for storing a liquid and/or a gas or gas mixture, a liquid pump (3) which is connected to the container (2), a means for feeding the system (1) with a liquid and emptying the system (1) of the liquid, a gas analyzer which is connected to the container (2), and a piping (14) which is connected to the container (2), and wherein the piping (14), the liquid pump (3) and the container (2) are configured to circulate the liquid. The invention also concerns a method for extracting gas or gas mixtures from a liquid for performing dissolved gas or gas mixture analysis. |
US10429370B2 |
Dynamoelectric machine sealing oil monitoring system, computer program product and related methods
Various embodiments of the disclosure include a system having: a computing device configured to monitor a sealing oil from a dynamoelectric machine by performing actions including: establish a baseline flow rate for the sealing oil through the dynamoelectric machine for designed operating conditions; calculate a plurality of average flow rates for the sealing oil through the dynamoelectric machine from a set of measured flow rates in each of a plurality of successive designated periods; provide an alert suggesting action in response to at least one of the average flow rates deviating from a threshold flow rate, the threshold flow rate derived from the baseline flow rate to indicate a fault in the sealing oil; and calculate an expected sealing life for the sealing oil based upon a pattern in the plurality of average flow rates for the plurality of successive designated periods. |
US10429367B2 |
Multi-parametric environmental diagnostics and monitoring sensor node
The multi-parametric environmental diagnostics and monitoring sensor node (10) provides monitoring and diagnostics of a variety of different ambient environmental factors and is powered by multiple sources of renewable energy. The multi-parametric environmental diagnostics and monitoring sensor node (10) includes a base (38) and a plurality of environmental condition sensors (36a, 36b, 36c, 36d, 36e, 36f) mounted thereon. A controller (47) is also mounted on the base (38), the plurality of environmental condition sensors (36a, 36b, 36c, 36d, 36e, 36f) being in communication therewith. An external photovoltaic cell (18) is mounted to the base and an internal photovoltaic cell (34) is mounted in an opposed orientation on a cover (32). The external photovoltaic cell (18) and the internal photovoltaic cell (34) charge a power storage module (52), which powers the plurality of environmental condition sensors (36a, 36b, 36c, 36d, 36e, 36f) and the controller (47). |
US10429365B2 |
Chromatogram data processing system
For vector A which expresses an absorption spectrum of a target component, vector F orthogonal to vector A is designated as a filter for extracting an impurity superposed on the target component on a chromatogram. For vector I which expresses a measured spectrum obtained by a chromatographic analysis performed on a sample, the inner product of vectors I and F is defined as an index value u of the amount of impurity. If an impurity is present, a peak-like waveform appears on a graph which shows a temporal change in the index value u for the measured spectrum obtained at each point in time of the measurement. By detecting this waveform, the presence or absence of the impurity can be correctly determined. The direction of vector F may be determined so that, when vector B which expresses a spectrum of the impurity is decomposed into vector Ba parallel to vector A and vector Bo orthogonal to vector A, vector F becomes nearly parallel to vector Bo (i.e. the cosine similarity index is maximized). |
US10429362B2 |
System and method for desorbing and detecting an analyte sorbed on a solid phase microextraction device
Disclosed herein is a system for desorbing and detecting an analyte sorbed on a solid phase microextraction (SPME) device. The system includes a desorption chamber sized to accept the SPME device while defining a void volume of less than about 50 μL; a flow injector in fluid connection with the desorption chamber, the desorption chamber and the flow injector being fluidly connected by at least a flow-insulating fluid connector; a solvent source in fluid connection with the flow injector; and a fluid switch that: in a desorption position, allows the solvent to be sprayed from the flow injector while flow-insulating any desorption solution in the desorption chamber, and in an detecting position, turns off the solvent source while maintaining the fluid connection between the flow injector and the desorption chamber, transferring the desorption solution through the flow-insulating fluid connector to the flow injector as a substantially undiluted plug of liquid. |
US10429361B2 |
Valve and splitting system for multi-dimensional liquid analysis
A multi-dimensional liquid analysis system includes a flow splitter for separating mobile phase outflow from a first dimension liquid analysis system into first and second liquid split outlet flows. Volumetric flow rate control of the split outlet flows is provided by a flow control pump which withdraws one of the split outlet flows from the flow splitter at a controlled withdrawal flow rate to define the other split outlet flow rate as the difference between the outflow rate from the first dimension system and the withdrawal flow rate. In this manner, accurate and consistent flow division can be accomplished, which is particularly useful for multi-dimensional liquid analysis. |
US10429359B2 |
Automated multi-step purification system
Automated two step chromatography purification system comprising a, system controller, a capture flow path comprising at least one pump, an elution flow path comprising at least one pump, and a valve arrangement for selective connection of two capture columns to the capture flow path and the elution flow path respectively such that both flow paths may be operated simultaneously and in parallel. |
US10429345B2 |
Electrophoresis device, method for manufacturing electrophoresis device, and device for separating extracellular vesicles
Electrophoresis device including: a first flow passage extending in a first direction and through which a sample and a buffer solution flow; a sample collecting part provided at an end portion of the first flow passage and configured to collect the sample; electrodes disposed at both sides of the first flow passage in a second direction perpendicular to the first direction and configured to apply a voltage to the first flow passage in the second direction; second flow passages communicating with both sides of the first flow passage in the second direction, configured to accommodate the electrodes, and through which a second buffer solution flows; and partition walls fixed to communicating portions between the first and second flow passages with a predetermined bonding strength and configured to block movement of substances between the first and second flow passages. The partition walls are formed of a gel material having ion permeability. |
US10429344B2 |
Method and device for detecting at least a portion of the measuring gas component containing bound oxygen in a gas mixture
A method and a device are described for detecting at least a portion of a measuring gas component containing bound oxygen in a gas mixture, in particular in an exhaust gas of an internal combustion engine, in a measuring gas chamber by detecting a portion of oxygen that is generated by a reduction of the measuring gas component containing the bound oxygen, in the presence of molecular oxygen, in the device, which includes at least one first pump cell, one reference cell, and one second pump cell. The method includes the following steps: a) generating a first pump current in the first pump cell in such a way that transport of a first portion of oxygen ions takes place between the measuring gas chamber and the surroundings of the device; b) applying a reference pump current to the reference cell in such a way that a second portion of the oxygen ions is transported into a reference gas chamber; c) decomposing the measuring gas component containing the bound oxygen by catalysis at an electrode of the second pump cell, as the result of which additional molecular oxygen is generated from the measuring gas component; d) applying a second pump current to the second pump cell in such a way that a portion of further oxygen ions that are formed from the additional molecular oxygen is transported into the reference gas chamber; and e) holding a sum of currents, formed from the reference pump current and from the second pump current, constant. |
US10429342B2 |
Chemically-sensitive field effect transistor
A chemically-sensitive field effect transistor is disclosed herein. The chemically-sensitive field effect transistor comprises a CMOS structure comprising a conductive source and a conductive drain, a channel and an analyte-sensitive dielectric layer. The channel extends from the conductive source to the conductive drain. The channel is composed of a one-dimensional transistor material or a two-dimensional transistor material. The analyte-sensitive dielectric layer is disposed over the channel. An I-V curve or an I-Vg curve is shifted in response to a chemical reaction occurring on or near the chemically-sensitive field effect transistor. |
US10429341B2 |
Method of using integrated electro-microfluidic probe card
A method for testing a partially fabricated bio-sensor device wafer includes aligning the partially fabricated bio-sensor device wafer on a wafer stage of a wafer-level bio-sensor processing tool. The method further includes mounting an integrated electro-microfluidic probe card to a device area on the partially fabricated bio-sensor device wafer, wherein the electro-microfluidic probe card has a first major surface. The method further includes electrically connecting one or more electronic probe tips disposed on the first major surface of the integrated electro-microfluidic probe card to conductive areas of the device area. The method further includes flowing a test fluid from a fluid supply to the integrated electro-microfluidic probe card. The method further includes electrically measuring via the one or more electronic probe tips a first electrical property of one or more bio-FETs of the device area based on the test fluid flow. |
US10429340B2 |
Gas sensor
A sensor element includes a sensor FET provided in a main surface of a semiconductor substrate, a cavity provided in the sensor FET and into which a detection target gas is introduced, and an ion pump provided over the cavity. By laminating the ion pump over the sensor FET via the cavity, a part of a front surface of a gate layer is exposed to the cavity, and a part of a lower surface of an ion pump electrode is exposed to the cavity. When the gate layer comes into contact with the detection target gas, a work function changes, so that gas concentration can be detected. |
US10429337B2 |
Analyte measurement method and system
Described and illustrated herein are systems and exemplary methods of operating an analyte measurement system having a meter and a test strip. In one embodiment, the method may be achieved by applying a first test voltage between a reference electrode and a second working electrode and applying a second test voltage between the reference electrode and a first working electrode; measuring a first test current, a second test current, a third test current and a fourth test current at the second working electrode after a blood sample containing an analyte is applied to the test strip; measuring a fifth test current at the first working electrode; estimating a hematocrit-corrected analyte concentration from the first, second, third, fourth and fifth test currents; and annunciating the hematocrit-corrected analyte concentration. |
US10429335B2 |
Integrated gas sensor device, in particular for detecting carbon monoxide (CO)
It is described an integrated gas sensor device comprising a silicon substrate and an oxide layer on the silicon substrate, as well as a working electrode, a counter electrode and a reference electrode, on the oxide layer, the working electrode and the counter electrode having respective active area exposed to an environmental air through at least a plurality of first openings and a plurality of second openings in the oxide layer in correspondence of the working electrode and of the counter electrode, further comprising an electrolyte layer portion and a hydrogel layer portion on the electrolyte layer portion, the electrolyte and hydrogel layer portions having a same size, suitable to cover at least the working, counter and reference electrodes, the hydrogel layer portion acting as a “quasi solid state” water reservoir. |
US10429333B2 |
Relative humidity sensor and method
A relative humidity sensor is disclosed. The relative humidity sensor includes a first electrode and a second electrode disposed above a dielectric substrate. A sensitive layer is disposed above at least one of the first electrode and the second electrode, where the sensitive layer is formed from a composition including a polyimide and a hydrophobic filler. A dust protection layer is disposed above the sensitive layer. |
US10429330B2 |
Gas analyzer that detects gases, humidity, and temperature
A miniature gas analyzer capable of detecting VOC gases in ambient air as well as sensing relative humidity and ambient temperature can be used to monitor indoor air quality. The VOC gas sensor is thermally controlled and can be tuned to detect a certain gas by programming an adjacent heater. An insulating air pocket formed below the sensor helps to maintain the VOC gas sensor at a desired temperature. A local temperature sensor may be integrated with each gas sensor to provide feedback control. The heater, local temperature sensor, gas sensor(s), relative humidity sensor, and ambient temperature sensor are in the form of patternable thin films integrated on a single microchip, e.g., an ASIC. The device can be incorporated into computer workstations, smart phones, clothing, or other wearable accessories to function as a personal air quality monitor that is smaller, more accurate, and less expensive than existing air quality sensors. |
US10429329B2 |
Environmental sensor test methodology
We disclose herein a method for testing a batch of environmental sensors to determine the fitness for purpose of the batch of environmental sensors, the method comprising: performing a plurality of electrical test sequences to the sensor inputs of the batch of environmental sensors to measure electrical responses of the sensor outputs of the batch of environmental sensors; correlating the measured electrical responses from the batch of environmental sensors to predetermined environmental parametric ranges of at least one environmental sensor so as to define correlated electrical test limits; and determining the fitness for purpose of the batch of environmental sensors if the measured electrical responses are within the correlated electrical test limits. |
US10429328B2 |
MEMS-based isothermal titration calorimetry
A microelectromechanical systems-based calorimetric device includes first and second micromixers and first and second thermally-isolated microchambers. A first solution including a sample and a reagent is introduced to the first microchamber via the first micromixer, and a second solution including a sample and a buffer is introduced to the second microchamber via the second micromixer. A thermopile measures the differential temperature between the first microchamber and the second microchamber and outputs a voltage representative of the difference. The output voltage can be used to calculate reaction parameters. |
US10429323B2 |
Method and apparatus for performing multi-energy (including dual energy) computed tomography (CT) imaging
An improved dual energy CT imaging system for providing improved imaging and improved material identification. |
US10429322B2 |
Sensor for non-destructive characterization of objects
The present invention relates to a millimeter or terahertz wave sensor for providing inline inspection, preferably including but not limited to continuous monitoring of objects, for example thin sheet dielectric material. |
US10429321B2 |
Apparatus for high-speed imaging sensor data transfer
An imaging sensor assembly includes at least one substrate including a plurality of substrate signal lines. The imaging sensor assembly also includes at least one imaging sensor package disposed on the at least one substrate, the at least one imaging sensor package including at least one imaging sensor disposed on at least one imaging sensor package substrate. The imaging sensor assembly also includes at least one receiver package disposed on the at least one substrate, the receiver package including at least one receiver integrated circuit disposed on at least one receiver package substrate. The imaging sensor assembly also includes at least one electrical interconnect operably coupled to the at least one imaging sensor package and the at least one receiver package. A plurality of data signals are transmitted between the at least one imaging sensor package and the at least one receiver package via the at least one electrical interconnect. |
US10429320B2 |
Method for auto-learning tool matching
The present disclosure is directed to a method of tool matching that employs an auto-learning feedback loop to update a library of key parameters. According to the method, measurements are performed on a control wafer to collect a set of parameters associated with the process/analysis tool that is being matched. When deviated parameters correlate to a correctable tool condition (i.e. a tool matching event), the parameters are added to the library of key parameters. These key or critical parameters may be monitored on a more frequent basis to identify deviations that have a strong likelihood of matching with a correctable tool condition. The tool matching methodology advantageously allows for monitoring of an automatically updated list of key parameters instead of needing to look at the full set of parameters collected from a control wafer each time. As such, tool matching can be performed on a more frequent basis. |
US10429315B2 |
Imaging apparatus and imaging method
An imaging apparatus includes an illumination light source to output an illumination light, an illumination optical system to transmit the illumination light toward a sample, an imaging optical system to transmit light reflected from the sample, a stage to move the sample in a predetermined transfer direction, and a photographing unit to receive the reflected light. The imaging apparatus may include one or more diffraction grids located at conjugate focal planes of the sample. The operation of the photographing unit may be synchronized with a movement of the sample by the stage to obtain an image in accordance with a time delay integration method. |
US10429311B2 |
Methods and systems for analyzing a liquid medium
Methods and systems for colorimetrically analyzing a liquid medium by analyzing chemical test strip images are provided. The liquid medium can be industrial water in an industrial water system. Image analyzing software carries out the analysis. The results of the analysis can be used to diagnosing a chemical treatment regimen of the industrial water system. A chemical test strip holder can be used to enhance reliability and repeatability of the imaging process and/or subsequent analysis. |
US10429310B2 |
Apparatus and method for sensing a parameter
An apparatus and method comprising: a plurality of sensor elements wherein the sensor elements are configured to be actuated in response to exposure to a parameter and the apparatus is configured to record when each of the sensor elements are actuated wherein: the plurality of sensor elements comprises at least a first subset of sensor elements and at least a second subset of sensor elements where the first subset of sensor elements are actuated in response to a first level of exposure to a parameter and the second subset of sensor elements are actuated in response to a second level of exposure to a parameter. |
US10429302B2 |
Optical analyses of particles and vesicles
This technology relates in part to optical methods for analyzing particles, including nanoparticles, thereby determining their presence, identity, origin, size and/or number in a sample of interest. |
US10429300B2 |
Surface plasmon resonance approach to monitor protein-ligand interactions
The present invention provides assays utilizing SPR to detect protein-ligand interactions as well as compositions utilized is such assays. |
US10429297B2 |
Monitoring opacity of smoke exhausted by wood stove and controlling wood stove based on same
A wood stove monitoring and control device can include a mounting flange mountable to a chimney exhaust pipe of a wood stove. The device can include a ring removably mountable on top of the mounting flange, where the flange is suitably positioned vertically along the exhaust pipe so that the ring is positioned at least partially above an end of the exhaust pipe. The device includes an optical beam source disposed on the ring, and which generates and outputs an optical beam. The device includes an optical sensor positioned on the ring opposite the optical beam source to detect the optical beam output by the optical beam source as the optical beam passes through smoke exhausted by the wood stove through the exhaust pipe. The device can include a temperature probe disposed on the ring to measure a temperature of heat exhausted by the wood stove through the exhaust pipe. |
US10429295B2 |
Method and apparatus for the detection of the presence of mycotoxins in cereals
A method and apparatus for detecting the presence of mycotoxins in cereals, the method including: capturing at least one diffuse-light absorption spectrum of a collection of cereal grains; capturing at least one diffuse-light absorption spectrum of at least one individual cereal grain from the collection of cereal grains; and classifying the level of mycotoxin contamination in at least one cereal grain by performing multivariate data analysis on the at least one diffuse-light absorption spectrum of the collection of cereal grains and the at least one diffuse-light absorption spectrum of the at least one individual cereal grain. |
US10429279B2 |
Devices and cartridges for extracting bio-sample regions and molecules of interest
Methods, devices, and systems for integrating extraction and purification of bio-sample regions and materials with patient analysis, diagnosis, follow up, and treatment. The invention provides a means to insert disclosed substrates, cartridges, and cartridge-processing instrument or instruments into a standard clinic or pathology laboratory workflow. Specifically, we disclose methods, devices, and systems for inserting standard pathology slides into disclosed cartridges and cartridge-processing instruments, either manually, semi-automatically, automatically, or by robotic means. |
US10429277B2 |
Magnetic needle separation and optical monitoring
Apparatuses and methods for removing magnetic particles from suspensions are described. One embodiment of the apparatus is called a magnetic needle. |
US10429276B2 |
Motorized tracking of sample cell within specimen chamber and methods of using the same
A sampling apparatus (100) employs a cell-positioning system to move a sample capture cell (138) relative to a specimen positioning system (124). The cell-positioning system may be controlled to move sample capture cell (138) opposite to movement of the specimen positioning system (124) to maintain alignment of the sample capture cell (138) with an optical path of a laser beam of a sample generator (108). Alternatively or additionally, the cell-positioning system may be controlled to move sample capture cell (138) in response to alignment deviation of a reference beam on a quadrant detector (404). |
US10429275B2 |
Trace analyte collection swab
A trace analyte collection swab having a collection surface at least partially coated with a microscopically tacky substance to enhance pick-up efficiency is described. In embodiments, the trace analyte collection swab comprises a substrate including a surface having a trace analyte collection area and a coating disposed on the surface of the substrate in the trace analyte collection area. The coating is configured to be microscopically adhesive to collect particles of the trace analyte from a surface when the trace analyte collection area is placed against the surface. In one embodiment, the coating comprises Polyisobutylene. |
US10429274B2 |
Vertical high speed testing device for spiral seal of cone bit bearing
A vertical high-speed testing device for a spiral seal of a cone bit bearing is provided. The device includes an upper fixed plate, a liquid cylinder, a cone, a spiral sleeve, a shaft and a lower fixed plate. The spiral sleeve is in threaded connection to the cone. Both the cone and the spiral sleeve are sheathed on the shaft. Sealing threads are provided on an inner surface of the spiral sleeve, and there is a clearance between the sealing threads and the shaft. By the testing device, a spiral seal structure for a cone bit bearing is simulated, and the cone drives the spiral sleeve to rotate; and the sand draining performance of the spiral seal is tested by measuring the time required to drain sand-containing medium. |
US10429268B2 |
Leakage monitoring system for geomembranes
A leakage monitoring system for geomembranes comprises a power supply unit having two supply electrodes made from a nonmetallic conductive material and respectively connected to a membrane top and a membrane bottom of a primary geomembrane; a plurality of monitoring sensor electrodes made from the nonmetallic conductive material, uniformly arranged below the primary geomembrane and used for acquiring potentials at corresponding positions below the primary geomembrane; a data acquisition unit used for acquiring potential data of each monitoring sensing electrode; and a control and analysis unit used for analyzing the potential data of each monitoring sensor electrode acquired by the data acquisition unit, determining an abnormal potential area below the primary geomembrane to determine a leakage position of the primary geomembrane and giving an alarm. The abnormal potential area below the geomembrane can be determined to determine the specific leakage position of the geomembrane and give the alarm. |
US10429267B2 |
Pipe assembly
Disclosed herein is a pipe assembly containing a pipe, an insulating jacket coupled to the pipe via an attachment base; and a tracer wire within the insulating jacket. The width of the attachment base is greater than width of the insulating jacket. Also disclosed herein are methods of locating a pipe concealed below a ground surface, and detecting the presence and the position of a leak in a pipe concealed below a ground surface. |
US10429265B2 |
Component device and method for detecting a damage in a bonding of a component device
The disclosure relates to a component device, in particular for a primary supporting component of an aircraft, the component device having a first component element, a second component element, a bonding providing a connection between the first component element and the second component element, and a detector device having at least one interior space sensor device configured to measure a change in a pressure and/or a concentration of a gas surrounding the interior space sensor device. The first component element, the second component element, and the bonding confine an interior space. The interior space sensor device is arranged in the interior space. |
US10429263B2 |
Pressure measuring device and exhaust system using the same, and substrate processing apparatus
There is provided a pressure measuring device including: a first pressure gauge connected to a processing chamber configured to process a process target and configured to measure an internal pressure of the processing chamber when the process target is being processed; a second pressure gauge connected to the processing chamber; and a first switching valve configured to disconnect the second pressure gauge from the processing chamber when the process target is being processed inside the processing chamber. |
US10429258B1 |
Blast attenuation mount
A test fixture is provided for evaluating structural response of a sample to blast pressure from a muzzle of a gas gun. The fixture includes an adapter, an annular flange, a gauge assembly and a target assembly. The adapter has a proximal rim and an expansion tube. The rim attaches to the muzzle to direct the blast pressure into the tube towards an exit opposite the rim. The annular flange has a ring and a shim that attaches to the tube at the exit. The gauge assembly contains the sample between upstream and downstream stress gauges. The target assembly contains the gauge assembly. The target assembly includes front and rear annular plates connecting coaxially in parallel. The rear annular plate connects to the ring. The tube carries the blast pressure through the exit to strike the gauge assembly for the stress gauges to measure stress from the blast pressure. The ring includes first circumferentially distributed through-holes substantially parallel to the flange's symmetry axis and second circumferentially distributed mutually parallel through-holes angularly offset from the symmetry axis for mounting the rear plate to the ring either coaxially or at an oblique angle. |
US10429254B2 |
Piezo force sensor with solid-state bonding spacer
A fast response force sensor is disclosed. The fast response force sensor comprises a solid-state bonding (SSB) spacer and piezo material therein. The SSB spacer is sandwiched between a top stack and a bottom stack of the force sensor. The SSB spacer maintains a fixed relative position between a top stack and a bottom stack of the force sensor when a fixed force is applied or removed. The SSB spacer is in solid state and shall not be significantly deformed while being depressed by a user, and therefore the response time of an output signal is vastly determined by the properties of the piezo material of the force sensor when a force is applied against the force sensor. Therefore, a fast response force sensor can respond quickly to a force applied against it. |
US10429252B1 |
Flexible capacitive pressure sensor
A flexible passive capacitance pressure sensor includes a first polymeric substrate and a second polymeric substrate. An elastic dielectric sensing material is positioned between the inner-facing surface of the first polymeric substrate and the inner-facing surface of the second polymeric substrate. A first plurality of wires are positioned on the outer-facing surface of said first polymeric substrate, and a second plurality of wires positioned on the outer-facing surface of said second polymeric substrate. The plurality of wires form a flexible capacitor. With the reduced profile enabled by such a capacitor, the flexible passive capacitance pressure sensor can have a thickness of less than 200 microns. |
US10429251B2 |
Wireless temperature sensor for sous vide cooking
Wireless temperature sensor for sous vide cooking. Wireless sensor penetrates food and is sealed with the food in a bag for sous vide cooking. The wireless sensor communicates with the base sous vide system to read core food temperature to ensure pasteurization temperature and time is reached and to eliminate estimations with fat content, size of food in relation to cooking time by taking a direct read. The temperature sensor contains a battery, powered passible via peltier, or through induction. |
US10429246B2 |
Panoramic reconstruction of temporal imaging
The panoramic-reconstruction temporal imaging (PARTI) system is a single-shot optical waveform measurement apparatus that achieves scalable record length and sub-picosecond resolution simultaneously for ultrafast non-repetitive waveform characterization, in analogy with the wisdom of stitching multiple mosaic images to achieve larger-field-of-view in the spatial domain. It consists of a high-fidelity optical buffer, a low-aberration time magnifier and synchronization-control electronics. For specific measurement circumstances, the PARTI system can also be carried out based on a passive optical buffer, which reduces the system complexity. The PARTI system is configured for real-time single-shot characterization of non-repetitive optical dynamic waveform that evolves over a time scale much larger than that of its ultrafast temporal details, i.e., optical dynamics with large time-bandwidth product. |
US10429240B2 |
Transfer of a calibration model using a sparse transfer set
A device may obtain a master calibration set, associated with a master calibration model of a master instrument, that includes spectra, associated with a set of samples, generated by the master instrument. The device may identify a selected set of master calibrants based on the master calibration set. The device may obtain a selected set of target calibrants that includes spectra, associated with the subset of the set of samples, generated by the target instrument. The device may create a transfer set based on the selected set of master calibrants and the selected set of target calibrants. The device may create a target calibration set, corresponding to the master calibration set, based on the transfer set. The device may generate, using an optimization technique associated with the transfer set and a support vector regression modeling technique, a transferred calibration model, for the target instrument, based on the target calibration set. |
US10429239B2 |
Color capture arrangement and correction method using the color capture arrangement
A color capture arrangement and a method for correcting a captured brightness of an object are disclosed. In an embodiment the color capture arrangement includes a directed light source configured to direct light towards the object to be identified, evaluation electronics and a color capture device including at least three color identification sensors configured to receiving radiation reflected by the object and funnels as light-guiding elements, wherein each funnel is disposed upstream of a color identification sensor, and wherein at least one of the color identification sensors is a distance sensor. |
US10429238B2 |
Optical measurement method and optical measurement apparatus
There is provided an optical measurement method using a detector having a detection sensitivity to at least a near-infrared region. The optical measurement method including: obtaining an output value by measuring a light sample at any exposure time with the detector; and correcting the output value with an amount of correction corresponding to the output value, when the exposure time at which the output value is obtained is within a second range. The amount of correction includes a product of a coefficient and a square of the exposure time, the coefficient indicating a degree to which an output value obtained when the light sample is measured with the detector at an exposure time within the second range deviates from output linearity obtained when the light sample is measured with the detector at an exposure time within a first range. |
US10429237B2 |
MSM photoelectric detection device, method of driving the MSM photoelectric detection device, and X-Ray detector
This disclosure relates to a Metal-Semiconductor-Metal (MSM) photoelectric detection device, a method of driving the MSM photoelectric detection device, and an X-Ray detector. The device comprises: a plurality of detection units each including: at least one first MSM structure, at least one second MSM structure, a first control unit, a second control unit, a third control unit, a threshold comparison unit, and an energy storage unit, wherein the first control unit is used for controlling the output/reset signal terminal to be connected to or disconnected from the first node; the second control unit is used for controlling the first node to be connected to or disconnected from the second MSM structure; the threshold comparison unit is used for outputting an ON control signal or an OFF control signal; the third control signal is used for connecting or disconnecting the first node to or from the second MSM structure under the control of the control signal outputted by the threshold comparison unit; the energy storage unit is used for storing charges. This disclosure is used for manufacturing the MSM photoelectric detection device. |
US10429235B2 |
Optical fiber sensor system for strain detection
An optical fiber sensor system includes a light source, a modulation unit, an optical coupler, a polarization separator, a first polarization controller optically coupled to the polarization separator, and a first detection unit that includes a first optical detector that receives the first component, converts the first component into a first electrical signal, and detects stress. The first polarization controller controls a polarization state of light input to the polarization separator so that the first electrical signal exhibits a first-order response to the stress. |
US10429231B2 |
Flowmeter test system and flowmeter test method
A flowmeter test system that tests a test target flowmeter by flowing fluid through the test target flowmeter and measuring the fluid having flowed through the test target flowmeter by a measurement part different from the test target flowmeter is disclosed. The flowmeter test system includes, a storage part to store the fluid, a distribution flow path to distribute the fluid between the storage part and the test target flowmeter, a measurement part introduction path to be connected to the distribution flow path and introduce the fluid into the measurement part, and a flow path switching part to switch between the distribution flow path and the measurement part introduction path. A pressure loss in a flow path from the flow path switching part to the storage part and a pressure loss in a flow path from the flow path switching part to the measurement part are same. |
US10429220B2 |
Magneto-inductive flow measuring device
A magneto-inductive flow measuring device comprising a measuring tube on which a magnet system and two or more measuring electrodes are arranged and/or secured. The measuring tube has in- and outlet regions with a first cross section and the measuring tube has between the in- and outlet regions a middle segment, which has a second cross section. The measuring electrodes are arranged in the middle segment of the measuring tube and the middle segment at least in the region of the measuring electrodes is surrounded by a tube holder, which guards against cross-sectional deformation of the second cross section. |
US10429218B2 |
Measuring system for measuring at least one measured variable of a fluid as well as method for operating such a measuring system
A measuring system for measuring at least one measured variable of a flowing fluid, comprises a fluid supply line, a transducer apparatus, which has a tube and at least one other tube and is adapted to deliver at least one measurement signal corresponding to the at least one measured variable, a fluid return line, and a fluid withdrawal line. To open a first flow path, which leads from the lumen of the fluid supply line to the lumen of the tube, further to the lumen of the tube and further to the lumen of the fluid return line, equally as well not to the lumen of the fluid withdrawal line, and thereafter to allow fluid to flow along the flow path for the maintaining the temperature and/or for cleaning of parts of the measuring system and/or for conditioning fluid. It is, additionally, provided (instead of the first flow path) thereafter to open a second flow path, which leads from the lumen of the fluid supply line to the lumen of the first tube and, in parallel, to the lumen of the second tube and further from the lumen of the first tube, and from the lumen of the second tube, in each case, to the lumen of the fluid withdrawal line, as well as to allow fluid to flow along the second flow path. Moreover, it is provided, while allowing fluid to flow along the second flow path, in given cases, also while allowing fluid to flow along the first flow path, to generate at least one measurement signal, as well as to use the measurement signal for ascertaining measured values of the at least one measured variable. |
US10429214B2 |
Modular elongated wall-mounted sensor system and method
Sensor-mounting devices are disclosed. A sensor mounting device has a tubular body having a front end, a rear end, and a through hole that extends between the front and rear ends. The tubular body front end includes a flange with a perimeter that is larger than a perimeter of the tubular body. The flange may be positioned at a front face of a mounting structure. A sensor-attachment structure is located on at least one of the tubular body and the front flange. Further locking structure extends from the tubular body to couple the tubular body to the mounting structure. The locking structure is at least one item from the group consisting of: a rear flange, a barb, and threading. |
US10429204B2 |
GPS features and functionality in an athletic watch system
Athletic performance monitoring systems include GPS data to enhance various features of the workout as well as the post-workout data analysis. Such features include using output from multiple sensors to determine the most accurate data available for providing distance measurements for individual segments of a route. The most accurate data for each route segment, from whatever source, then is used to provide the overall route distance and as the basis for making other calculations, such as pace, calorie burn, etc. Another feature relates to the ability to both input and output geographically tagged messages while moving along a route during an athletic performance. |
US10429200B1 |
Determining adjusted trip duration using route features
A system adjusts an estimated travel time from an origin to a destination to better predict an actual trip duration. The system receives a route from a specified origin and destination. The system receives an estimated trip duration corresponding to the generated route. A machine learned model improves the estimated trip duration by applying data about past trips facilitated by the system and data about traffic-control features associated with a route. For example, the system may use counts of a number of road signs and a number of traffic signals located along the generated route to predict an actual trip duration. In some cases, the system may additionally use data about synchronized traffic lights to predict actual trip duration. |
US10429198B2 |
Intelligent fuel prompt device and method
The disclosure provides an intelligent fuel prompt device and method, wherein the device comprises a fuel quantity sensor configured to obtain fuel consumption information of a vehicle; a GPS module configured to obtain position information of the vehicle; a central processing unit configured to obtain reachable range information of the vehicle according to the position information and fuel consumption information of the vehicle; and a prompt module configured to prompt with respect to the reachable range information of the vehicle. As such, a user can be fully aware of the distance that the vehicle can travel with the remaining fuel quantity, and effective prompt of the fuel quantity is realized. |
US10429192B2 |
Generating trail network maps
Generating trail network maps, including: receiving a plurality of GPS recorded activities; identifying a subset of the plurality of GPS recorded activities that is associated with a trail network region; and generating a trail network map corresponding to the trail network region based at least in part on the subset of the plurality of GPS recorded activities. |
US10429190B2 |
Vehicle localization based on wireless local area network nodes
Method and apparatus are disclosed for vehicle localization based on wireless local area network nodes. An example disclosed vehicle includes a wireless network controller and a location tracker. In response to losing reception of GPS signals, the location tracker scans for wireless network nodes via the wireless network controller, and when second locations of the wireless network nodes are stored in memory, determines a current location of the vehicle based on a particle filtering technique and received signal strength measurements from the wireless network nodes. |
US10429188B2 |
Warehouse mapping tools
Warehouse mapping tools according to the present disclosure comprise a mobile mapping interface and a mobile computing device in communication with the mobile mapping interface. The mobile computing device can be configured to access waypoint data comprising location coordinates of a set of mapping waypoints, present graphical representations of the set of mapping waypoints at discrete locations in a representation of a warehouse environment, access mobile mapping data representing an elapsed travel path, access error metric data, present a graphical representation of the error metric data, and indicate a validation state of the elapsed travel path segment. In other embodiments, a warehouse mapping tool comprises a remote computer that is configured to communicate with a mapping vehicle and that can be used to facilitate navigation, localization, or odometry correction with respect to an industrial vehicle in the warehouse. In still other embodiments, mapping vehicles comprising warehouse mapping tools are provided. |
US10429186B2 |
Microelectromechanical device with motion limiters
A microelectromechanical device that comprises a first structural layer, and a movable mass suspended to a primary out-of plane motion relative the first structural layer. A cantilever motion limiter structure is etched into the movable mass, and a first stopper element is arranged on the first structural layer, opposite to the cantilever motion limiter structure. Improved mechanical robustness is achieved with optimal use of element space. |
US10429185B2 |
Indoor rotation sensor and directional sensor for determining the heading angle of portable device
A method and system are provided for determining a heading angle of a user of a portable electronic device in an indoor environment. In an embodiment, the device collects rotational movement information indicative of rotational movement of the device and determines a first heading angle of the device. The first heading angle is determined by using the downward direction of the device to determine the vertical angular rate in the horizontal plane, and integrating the vertical angular rate to form the first heading angle. The device collects first direction information from a first direction sensor and second direction information from a second direction sensor and uses it determine which of the first and second direction information is an outlier, e.g., inaccurate due to an occurrence of a disturbance. The device then corrects the heading angle by comparing the heading angle to the first and second direction information. |
US10429184B2 |
Environmental monitoring system including an underwater sensor assembly
An underwater sensor assembly includes a frame configured to sit on a bottom of a body of water and at least one first sensor connected to the frame. The at least one first sensor is configured to measure at least one parameter related to the body of water. A system for environmental monitoring includes the underwater sensor assembly, at least one buoy at a surface of the body of water, and at least one cable attached at a first end to the frame and attached at a second end opposite the first end to the at least one buoy. The at least one buoy comprises at least one second sensor configured to measure at least one parameter above the surface of the body of water. |
US10429175B2 |
Frequency-based detection of chemical expansion dynamics in thin films
Current techniques for measuring chemical expansion in thin film structures are too slow, too imprecise, or require synchrotrons. In contrast, nanoscale electrochemomechanical spectroscopy (NECS) can be used to make nanoscale measurements at time scales of seconds with simple contact or non-contact sensors. In a NECS measurement, a sample, such as thin-film oxide structure, is subjected to a temporally modulated stimulus, such as a sinusoidally alternating voltage. The stimulus causes the sample to expand, contract, deflect, or otherwise deform. A sensor, such as a contact probe or optical sensor, produces an electrical signal in response to this deformation that is correlated with the temporal modulation of the stimulus. Because the stimulus and deformation are correlated, the temporal modulation of the stimulus can be used to filter the deformation signal produced by the sensor, producing a precise, sensitive measurement of the deformation. |
US10429174B2 |
Single wavelength reflection for leadframe brightness measurement
A method for evaluating a leadframe surface includes positioning a leadframe on a measurement apparatus at a first predetermined distance relative to an end portion of a light source of an optical sensor; irradiating a predetermined area on a surface of the leadframe with light having a single predetermined wavelength from the light source; receiving, with a light receiver of the optical sensor, reflected light from the predetermined area on the surface of the leadframe, and converting the reflected light into an electric signal; determining a reflection intensity value of the predetermined area on the surface of the leadframe based on the electric signal; and calculating a reflection ratio of the predetermined area on the surface of the leadframe based on the reflection intensity value and a predetermined reference reflection intensity value associated with the light source. |
US10429170B2 |
High-sensitive swept-source optical coherence tomography system and methods of use thereof
An exemplary system can be provided which can include, for example, a plurality of source arrangements configured to provide a plurality of electro-magnetic radiations to at least one of at least one sample or at least one reference structure, a first arrangement configured to receive a first radiation(s) from the reference structure(s), a second arrangement configured to receive a second radiation(s) from the sample(s), where a portion(s) of the second radiation(s) can be in an invisible spectrum, a third arrangement configured to combine the first radiation(s) and the second radiation(s) into a third radiation(s), and a fourth arrangement configured to convert the third radiation(s) into a further radiation in a visible spectrum based on the at least one portion. |
US10429167B2 |
Coordinate correction method and coordinate measuring machine
As a former correction step, a coordinate correction method includes: a step of setting a measuring probe in a drive mechanism; a step of restraining a measurement tip; a step of acquiring a moving amount and a probe output; and a step of generating a former correction matrix including linear correction elements and non-linear correction elements. As a latter correction step, the coordinate correction method includes: a step of setting a measuring probe in a drive mechanism; a step of restraining a measurement tip; a step of acquiring a moving amount and a probe output; a step of generating an intermediate correction matrix including linear correction elements for correcting the probe output; and a step of correcting the probe output with a latter correction matrix. Consequently, correction can be simplified while allowing for correction of a non-linear error of the probe output supplied from the measuring probe. |
US10429165B2 |
Tared caliper
A tared caliper having a measuring bar with a fixed jaw, a moving frame with a measuring indicator and with a moving jaw, an accurate feed mechanism, a measurement effort device with a calibrated flexible member. The calibrated flexible member in form the non-fixed replaced cylindrical compression spring with effort from 0.5 . . . 3 N to 25 . . . 60 N. The non-fixed replaced cylindrical compression spring coaxial into the rod inside the body by the measurement effort device. The body is connected to a moving frame. The force indicator includes from the marking window on the body and from the force scale on the rod. The rod is connected to an accurate feed mechanism. The rod is pressed to the flexible member. |
US10429162B2 |
Method and apparatus for wireless blasting with first and second firing messages
Systems, methods, blasting machines and wireless bridge units are presented for wireless blasting for safe firing of detonators under control of a remote wireless master controller in which the blasting machine is connected by cabling to the wireless bridge unit and power to a firing circuit of the blasting machine is remotely controlled via the bridge unit. The bridge unit selectively provides first and second firing messages to the blasting machine contingent upon acknowledgment of safe receipt of the first firing message by the blasting machine, and the blasting machine fires the connected detonators only if the first and second firing messages are correctly received from the bridge unit. A wireless slave blasting machine is disclosed, including a wireless transceiver for communicating with a remote wireless master controller, which fires the connected detonators only if first and second firing messages are wirelessly received from the master controller. |
US10429161B2 |
Perforation gun components and systems
Components for a perforation gun system are provided including combinations of components including a self-centralizing charge holder system and a bottom connector that can double as a spacer. Any number of spacers can be used with any number of holders for any desired specific metric or imperial shot density, phase and length gun system. |
US10429160B2 |
Fire-retarding artillery shell
An artillery shell is fired out of a gun towards a fire. A trigger releases a fire-retarding material from the artillery shell to retard the fire. |
US10429158B2 |
Folding wing for a missile and a missile having at least one folding wing arranged thereon
A folding wing for a missile comprises a wing root, an upper wing part foldably supported at the wing root around a swiveling axis, at least one first elastically pre-stressed force element and a latching device. The at least one first elastically pre-stressed force element is coupled with the wing root and the upper wing part and is designed for permanently urging the upper wing part into a working position relative to the wing root through introducing a torque. The latching device is designed for arresting the upper wing part on reaching the working position automatically. |
US10429150B1 |
Compact optical sight
An improvement to an optical assembly that is adapted to accept light from a field of view in front of the optical assembly and create a first inverted image on a first image plane. Further the assembly includes an objective lens, a first prism adapted to receive light from the objective lens and a second prism, adapted to receive light from the first prism and emit light. The improvement is the addition of a negative lens interposed between the first prism and the second prism, thereby reducing the total optical pathway of the optical assembly, relative to a device performing the same optical function and lacking the negative lens. |
US10429147B2 |
Portable shooting stabilization assist clamp
A portable, quick-release shooting stabilization assist clamp designed for quick and easy, single-handed attachment and detachment on to a shooting rail or similar solid object. Once attached to an object, the clamp supports a firearm fore-stock, forend, frame, stock, or barrel allowing the user a steadier aim for more accurate shot placement. The clamp provides the capacity of a rapid attachment and detachment by using a spring clamp design. In its preferred embodiment, the clamp provides a rest with two angled prongs, above the pivot of the spring clamp, to help to easily place and retain the gun on the clamp. In alternative embodiments, multiple rests are provided as well as movable, pivoting rests. In addition to assisting shooters and hunters, the clamp could also be used to stabilize a camera, telescope, small video camera, or other device that is enhanced by stabilization. |
US10429140B2 |
Method and device for supplying an inert gas in a beverage filling plant
A method and device for supplying an inert gas in a beverage filling plant are provided. The method includes feeding surplus process heat from the beverage filling plant to a heat exchanger, feeding an inert gas from an inert gas source to the heat exchanger, heating the inert gas in the heat exchanger, and supplying the heated inert gas for use in the beverage filling plant. |
US10429132B2 |
Stacked plate heat exchanger with top and bottom manifolds
A heat exchanger has a core comprised of at least one core section defined by a plate stack comprising a plurality of core plates, each core plate having a plurality of spaced apart, raised openings surrounded by a flat area. The raised openings of adjacent plates are sealed together to define a plurality of tubular structures. Top and bottom manifolds are sealed to the top and bottom of the core, with continuous top and bottom end plates providing structurally rigid connections between multiple core sections of the heat exchanger. The heat exchanger may have numerous configurations, including stepped core, curved core, angled core, and/or a core having multiple sections of the same or different length, while minimizing the number of unique parts and/or parts of complex shape. |
US10429130B2 |
Refractory kiln car resistant to high temperature shock and creep
A refractory kiln car formed using a refractory composition has excellent resistance to high-temperature thermal shock and creep. The refractory composition is based primarily on chamotte having controlled particle sizes, and may also include mullite, fused silica, calcined alumina and microsilica, having controlled particle sizes. The refractory composition includes an aqueous colloidal silica binder that provides excellent castability and binding between the ingredients following drying. |
US10429129B2 |
Method of microwave vacuum drying spherical-shaped pellets of biological materials
Methods for preparing dried pellets of biological materials are described. The pellets can have a substantially spherical shape and are prepared by freezing droplets of a liquid composition of a desired biological material on a solid surface followed by microwave vacuum drying the frozen droplets. These methods are useful for preparing dried pellets having a high concentration of a desired biological material, in particular a therapeutic protein or vaccine, and which have a faster reconstitution time than lyophilized powder cakes prepared in vials. |
US10429128B2 |
Heat-treatment of water-absorbing polymeric particles in a fluidized bed at a fast heat-up rate
The present invention relates to a method for heat-treating water-absorbing polymeric particles at a temperature equal to or above 150° C. in a fluidized bed dryer at a fast heat-up rate, the use of a fluidized bed dryer for heat-treating water-absorbing polymeric particles in continuous or batch mode as well as to the heat-treated polymeric particles obtained by the method of the present invention. |
US10429127B2 |
Home appliance device
For the purpose of improving a stability a home appliance device, in particular a home appliance chiller device, at least one elongate frame element which has at least one first fixing feature and at least one deposit element for depositing of victuals are provided. The deposit element has at least one second fixing feature in an end region and is connected to the frame element. The first fixing feature and the second fixing feature being fixed to each other in a form-fit manner in order to prevent a movement of the deposit element with respect to the frame element in a direction which is at least substantially parallel to a main extension direction of the frame element. |
US10429126B2 |
Touch sensor assembly
In a sensor assembly, a hole-shaped sensor support portion is formed at a sensor printed circuit board (PCB), a touch sensor is disposed at the sensor support portion, and an elastic member is installed at a rear surface of the sensor PCB. In addition, a sensor assembly according to an embodiment of the present invention may include a sensor PCB on which a copper coating film which constitutes a circuit is printed on a top surface of a plastic material, a touch sensor seated on a sensor support portion formed at the sensor PCB, and a cover member which is attached onto a rear surface of the sensor PCB and covers the sensor support portion. |
US10429122B2 |
Method and apparatus for enhanced off-cycle defrost
A refrigeration system includes a first circulation fan electrically coupled to a power source via a first load wire. A relay is electrically coupled to the first circulation fan via a second load wire and to the power source. In an open position, the relay interrupts electrical voltage from the relay to the first circulation fan via the second load wire causing the first circulation fan to operate in a low-speed mode. In a closed position, the relay supplies electrical voltage to the first circulation fan via the second load wire causing the first circulation fan to operate in a high-speed mode. Operation of the first circulation fan in the high-speed mode reduces a defrost cycle time associated with the refrigeration system relative to operation of the first circulation fan in low-speed mode. |
US10429110B2 |
System and method for recovering refrigerant
An air conditioning service system includes a plurality of conduits and voids defining a total refrigerant receiving volume of the air conditioning service system, a pressure transducer configured to sense a pressure at a first location in the plurality of conduits and voids, a compressor operably connected to the plurality of conduits and voids, and a controller. The controller determines a quantity of refrigerant recovered from a refrigeration system by obtaining a first pressure signal from the pressure transducer corresponding to a first pressure at the first location, operating the compressor to recover the refrigerant from the refrigeration system after the first pressure is sensed, obtaining a second pressure signal from the pressure transducer corresponding to a second pressure at the first location after operating the compressor, and determining an amount of refrigerant recovered from the refrigeration system based on the first pressure signal an the second pressure signal. |
US10429108B2 |
Method of maintaining the flow rate of a refrigerant while maintaining superheat
A method of maintaining a fluid flow rate in a heating, ventilating, air conditioning, and refrigeration (HVAC-R) system while maintaining superheat in the HVAC-R system at a desired level includes: continuously measuring an operating fluid temperature of the HVAC-R system and calculating superheat at a pre-determined rate, determining if the calculated superheat is stable, measuring and recording an operating fluid pressure of the system each time the calculated superheat is stable, recording an average operating fluid pressure each subsequent time the superheat is stable, calculating an output PWM and reducing fluid flow through a metering valve when an actual PWM is greater than the calculated output PWM by adjusting a PWM signal to a microvalve in the metering valve, and increasing fluid flow through the metering valve when the actual PWM is less than the calculated output PWM by adjusting the PWM signal to the microvalve. |
US10429106B2 |
Asymmetric evaporator
A falling film evaporator includes an evaporator housing and a plurality of evaporator tubes disposed in the evaporator housing and arranged into one or more tube bundles, through which a volume of thermal energy transfer medium is flowed. A plurality of tube sheets support the plurality of evaporator tubes. A first wall member and a second wall member extend vertically at opposite lateral sides of the plurality of evaporator tubes. The first wall member and the second wall member define an inner vapor passage therebetween, define a first outer vapor passage between the first wall member and the evaporator housing, and define a second outer vapor passage between the second wall member and the evaporator housing. A first gap between a first wall member lower edge and the plurality of tube sheets is greater than second gap between a second wall member lower edge and the plurality of tube sheets. |
US10429101B2 |
Modular two phase loop distributed HVACandR system
An HVAC&R system that includes a first pumping device configured to circulate a first volume of a first two-phase medium, a second pumping device configured to circulate a second volume of the first two-phase medium, a first plurality of secondary HVAC&R units, a second plurality of secondary HVAC&R units, a first primary HVAC&R unit, and a second primary HVAC&R unit. At least one of the first plurality of secondary HVAC&R units is operably coupled to the first pumping device. At least one of the second plurality of secondary HVAC&R units is operably coupled to the second pumping device. The first primary HVAC&R unit is operably coupled to at least one of the first plurality of secondary HVAC&R units and the first pumping device. The second primary HVAC&R unit is operably coupled to at least one of the second plurality of secondary HVAC&R units and the second pumping device. |
US10429100B2 |
Clamping device and method for mounting a solar module
A clamping device for a solar module has or forms at least a first receiving portion for receiving an edge portion of the solar module. The first receiving portion has at least a first side wall portion and an additional side wall portion for constructing a receiving region. The first receiving portion is constructed in an integral manner. The elasticity modulus of the first receiving portion is greater than the elasticity modulus of rubber. There is also disclosed a method for assembling a solar module. |
US10429099B2 |
Electric heating device and PTC heating element for such
An electric heating device has several PTC heating elements that are arranged in a circulation chamber. The electric heating device includes a heating element casing which fits as a structural unit at least one PTC element and contact plates that energize said PTC element and form contact strips for an electrical plug connection. A partition wall separates the circulation chamber from a connection chamber in which the contact strips of the PTC heating element penetrating the partition wall are exposed and are electrically connected. A plug connection is formed between the partition wall and the PTC heating element and via which the PTC heating element is held in a frictionally engaged and/or in positive fit manner on the partition wall in the direction of insertion. |
US10429097B1 |
Expansion tank wall mount bracket apparatus and method of use
An expansion tank wall mount bracket apparatus capable of being mounted in multiple assembly configurations and supporting multiple expansion tanks. |
US10429081B2 |
Cooking apparatus
A cooking apparatus includes a frame configured to form a cooking chamber; a burner cover provided inside the frame and configured to form a combustion chamber; a burner accommodated in the combustion chamber; a fan provided at an outside of the burner cover in the frame; and a fan cover configured to cover the fan and the burner cover. |
US10429080B2 |
Electric stovetop heater unit with integrated temperature control
An apparatus includes a heater with a heating element having a region that does not contain a surface heating portion of the heating element and a thermostat positioned in the region. The thermostat includes a contact surface disposed to make physical contact with an object placed on the surface heating portion and a switch configured to prevent a current from conducting through the heating element when the contact surface experiences a temperature equal to or greater than a temperature limit. |
US10429079B2 |
Electric stovetop heater unit with integrated temperature control
An apparatus includes a heater with a heating element having a region that does not contain a surface heating portion of the heating element and a thermostat positioned in the region. The thermostat includes a contact surface disposed to make physical contact with an object placed on the surface heating portion and a switch configured to prevent a current from conducting through the heating element when the contact surface experiences a temperature equal to or greater than a temperature limit. |
US10429073B2 |
Combustor cap module and retention system therefor
A combustor cap module is provided with a retention system to facilitate assembly and disassembly. The combustor cap module further includes a cap face assembly having a cooling plate; a cylindrical sleeve including a connecting surface for attaching the cap face assembly to the retention assembly; and a coupling member mounted in a downstream fuel nozzle opening in the cooling plate. The retention system includes a support plate having an inner panel that defines an upstream fuel nozzle opening. The coupling member extends through the upstream fuel nozzle opening, such that its upstream end extends upstream of the support plate. A retaining ring at least partially encircles the upstream end of the coupling member and is engaged by a spring plate that is removably secured to the support plate at multiple locations. A method for assembling a combustor cap module is also provided. |
US10429072B2 |
Regenerative burner for non-symmetrical combustion
Regenerative burner for non-symmetrical combustion and a method of firing the burner. The burner includes a burner housing enclosing a burner plenum; a fuel conduit extending longitudinally within the housing and positioned coaxial with a line spaced from a central axis of the burner, with the fuel conduit defining a fuel exit opening; and a baffle positioned at least partially around the fuel conduit and defining an air conduit extending into the housing and defining an air opening on an opposite side of the burner central axis from the fuel exit opening. The baffle also defines a cavity adjacent the fuel exit opening and in communication with the fuel conduit through the fuel exit opening. The sidewall of the cavity converges from a central axis of the fuel conduit to provide further jet penetration into the furnace and achieve greater levels of products of combustion entrainment prior to combustion. |
US10429068B2 |
Method and system for starting an intermittent flame-powered pilot combustion system
A flame powered intermittent pilot combustion controller may include a first power source and a second power source separate from the first power source, a thermal electric and/or photoelectric device, an igniter and a controller. The thermal electric and/or photoelectric device may charge the first power source when exposed to a flame. The controller and the igniter may receive power from the first power source when the first power source has sufficient available power, and may receive power from the second power source when the first power source does not have sufficient available power. |
US10429067B2 |
Dynamic multi-legs ejector for use in emergency flare gas recovery system
A system and method for recycling flare gas back to a processing facility that selectively employs different numbers of ejector legs depending on the flare gas flowrate. The ejector legs include ejectors piped in parallel, each ejector has a flare gas inlet and a motive fluid inlet. Valves are disposed in piping upstream of the flare gas and motive fluid inlets on the ejectors, and that are selectively opened or closed to allow flow through the ejectors. The flowrate of the flare gas is monitored and distributed to a controller, which is programmed to calculate the required number of ejector legs to accommodate the amount of flare gas. The controller is also programmed to direct signals to actuators attached to the valves, that open or close the valves, to change the capacity of the ejector legs so they can handle changing flowrates of the flare gas. |
US10429065B2 |
Low NOx gas burners with carryover ignition
A burner assembly is provided including a plurality of burners. Each burner includes a burner tube having an inlet, an outlet, and a burner axis. A partition plate is arranged generally perpendicular to a horizontal plane defined by the plurality of burner axes. The partition plate includes a plurality of partition openings complementary to and arranged coaxially with the plurality of burners. An igniter is located near the plurality of burners and is configured to ignite a fuel and air mixture provided at the outlet of the burners. An ignited carryover includes a substantially identical first opening and second opening formed in the partition plate adjacent the igniter. The first opening and second openings are sized such that a sufficient amount of the fuel and air mixture reaches the igniter without cooling the igniter. |
US10429061B2 |
Material handling system for fluids
Material handling systems for fluids are disclosed herein. The fluid may be a liquid, solution, slurry, or emulsion. The systems receive as inputs the fluid, steam, and water. These feed into a surge tank where additives can be introduced. The steam and water are used to control some physical properties and enable the distribution of the fluid as desired. In particular embodiments, the system is useful for handling materials to be sent to a dual-phase fuel feeder for combustion in a fluidized-bed boiler, the energy being used to generate electricity or in various production processes. |
US10429059B1 |
Cooling fan
A cooling fan includes a fan base, an impeller part, a driving part, an illumination circuit board and plural light-emitting elements. The driving part includes a shaft seat, a driving circuit board and plural coils. The driving circuit board is disposed on the fan base. The plural coils are arranged between the driving circuit board and the illumination circuit board and arranged around the shaft seat. The rotating shaft of the impeller part is inserted into the shaft seat. When an electric current flows through the plural coils, the rotating shaft is rotated. The plural light-emitting elements are disposed on the illumination circuit board. When the electric current flows through the plural light-emitting elements, the plural light-emitting elements emit light beams. |
US10429058B2 |
High visibility tool handle with active illumination
The present invention is a durable illuminated shaft affixed to a tool portion. The shaft being configured to provide a level of illumination that may be seen by others in an area adjacent to the shaft order to increase the visibility of a worker to prevent accidents and injury. |
US10429057B1 |
Light-up beard
A light-up facial covering which simulates the appearance of a beard including a facial covering member which simulates the appearance of a beard and is configured and dimensioned to overlie at least a portion of a lower half of a face of a wearer. The facial covering also including a member for securing the facial covering to the wearer's head and a plurality of electrically powered lights affixed to the facial covering. |
US10429051B1 |
Lifi communication system
A communication system includes a light source to generate light; a broadband light transmitter control electronics to modulate a light signal and provide broadband optical data transmission network using the light source; a broadband light receiver control electronics to demodulate a received light signal from the broadband optical data transmission network; and a wired network transceiver coupled to the light transmitter/receiver to receive and transmit data between the optical data transmission network and a wired circuit. |
US10429048B2 |
LED socket for receiving a CoB-LED and base for such LED socket
An LED socket comprises an LED package having an LED mounted on an LED printed circuit board, a contact having a receiving section adapted to be connected to a terminal end of an electrical cable and a contact lug having a T-shaped contact section, and a base defining a receptacle for receiving the LED printed circuit board. The receptacle is open to an opening in the base adapted to expose the LED at a front face of the base. The base holds the contact and the T-shaped contact section is exposed in the receptacle and electrically contacts a pad of the LED printed circuit board. |
US10429044B2 |
Lighting fixture mounting systems
Example embodiments provide lighting fixture mounting kits for mounting a flat panel lighting fixture to a mounting surface. One mounting kit comprises a mounting frame and a lighting fixture. When the mounting frame is secured to the mounting surface, a junction box is accessible therethrough. The mounting frame and lighting fixture are shaped for engagement and attachment to one another. Another mounting kit comprises a mounting plate and a lighting fixture. The mounting plate may comprise indexing tabs for alignment with corresponding indexing slots of the lighting fixture and extending outwardly from a plate portion of the mounting plate. The lighting fixture may comprise a back portion having therein one or more indexing slots for receiving an indexing tab therein. Insertion of the indexing tab into the indexing slot guides the engagement of the lighting fixture with the mounting plate. |
US10429043B2 |
Stand for elongated lighting apparatus
In various embodiments, a portable support stand for supporting an elongated luminaire, a luminaire structure for supporting a luminaire on a support surface, and associated methods are provided. In an example embodiment, a portable support stand comprises a base portion configured to be positioned on a support surface and a luminaire holster detachably coupled to the base portion. The luminaire holster is configured to receive an elongated luminaire therein and to support the elongated luminaire in a fixed orientation relative to the support surface. |
US10429041B2 |
Ceiling light retrofit kit having a light panel and two profiles to surround preexisting base of a light fixture
A ceiling light LED retrofit kit is provided. The kit is configured for attachment to an existing, installed linear fluorescent tube lighting fixture. The kit includes a light panel, a first profile extending along a first longitudinal side of the existing fluorescent light fixture, and a second profile extending along a second longitudinal side of an existing light fixture. The retrofit kit light panel includes light emitting diodes. A raceway may be defined between the retrofit kit and the previously-installed fixture, in which wiring and other components may reside away from you. |
US10429040B2 |
Interchangeable adapter for changing LED light bulbs
An interchangeable adapter for changing a light bulb that includes a head piece that has a base plate with opposite first and second sides and that defines a platform at the first side. A primary gripping member extends from the platform of the first side of the base plate away from the second side. The primary gripping member is positioned substantially centrally with respect to the platform to engage the light bulb. A secondary gripping member extends from the platform of the first side of the base plate away from the second side. The secondary gripping member surrounds the primary gripping member and is configured to grip the light bulb. An engagement member extends from the second side of the base plate away from the first side for engaging a holder of the adapter. |
US10429039B1 |
Mounting system for magnetic installation of varying finishing sections
A mounting system includes an upper collar, a first lower collar that is configured to magnetically couple a rimmed finishing section to a luminaire, and a second lower collar that is configured to magnetically couple a rimless finishing section to the recessed luminaire. The first lower collar is removably coupled to the upper collar when the rimmed finishing section is to be coupled to the recessed luminaire, and the second lower collar is removably coupled to the upper collar when the rimless finishing section is to be coupled to the recessed luminaire. |
US10429034B2 |
Light-emitting device with light guide for two way illumination
A variety of light-emitting devices are disclosed that are configured to manipulate light provided by one or more light-emitting elements (LEEs). In general, a light-emitting device includes one or more light-emitting elements (LEEs) disposed on a base surface that are configured to emit light, a first optical element having a first surface spaced apart from the LEEs and positioned to receive light from the LEEs, a transparent second optical coupled to the first optical element, and a reflector element adjacent the second optical element arranged to reflect a portion of light output from the second optical element. |
US10429033B2 |
Quantum dot, resin, quantum dot sheet and back light unit using the same
A quantum dot sheet includes quantum dots, light scattering agents and a resin, where the resin includes repeated units represented by the chemical formula using an aryl group of C6-C30, and a substituted or unsubstituted alkyl group of C1-C1000. |
US10429027B2 |
Lamp unit, and lighting device and vehicle lamp using same
The present invention relates to a lamp unit employing a high-efficiency heat radiation solution for an LED light source, and a lighting device and a vehicle lamp using the same, and the lamp unit comprises an LED light source, a support part for supporting the LED light source, a transfer part facing the LED light source, and a connection part for connecting the support part and the transfer part, wherein the support part, the connection part and the transfer part are provided as thermal conductive members and emit heat of the LED light source to the outside in the form of conduction energy and radiation energy. |
US10429026B2 |
Lamp assembly with anisotropic heat spreader and vehicle having the same
A lamp assembly includes an outer lens, a lamp housing connected to the outer lens, a projector assembly having a projector lens, a lighting source, and an anisotropic heat spreader. The lighting source is adjacent to and partially within the projector assembly, and has a printed circuit board (PCB) connected to one or more light-emitting diodes, each emitting the light. The heat spreader, for instance a sheet of polycrystalline graphite, is connected to the PCB and extends beyond a surface area of the PCB into a lamp cavity. The heat spreader is configured to direct heat away from an LED junction toward a predetermined lower temperature zone of the lamp cavity. A vehicle includes a body and the lamp assembly. |
US10429023B2 |
Illumination device for vehicle
An illumination device for a vehicle may include: a light source part; a heat dissipation part mounted on the light source part, and configured to dissipate heat generated from the light source part; a reflector covering the top of the light source part, and configured to reflect the light irradiated from the light source part; a first additional reflector protruding forward from an upper end of the reflector, and configured to reflect the light irradiated from the light source part; a second additional reflector mounted on the heat dissipation part, and configured to reflect the light reflected by the first additional reflector; a shield part configured to pass or block the light reflected by the second additional reflector; and a lens part through which the light reflected by the reflector and the second additional reflector passes. |
US10429021B2 |
Vehicle lamp fitting
A vehicle lamp fitting comprises a lens and a semiconductor light source. The lens is composed of an incident surface and exit surfaces divided into upper region, middle region, and lower region. The exit surface in the upper region and the exit surface in the lower region emit a first light distribution pattern and a fifth light distribution pattern, respectively, which are symmetrical or substantially symmetrical with respect to a vertical line extending from the top to bottom of a screen. |
US10429017B2 |
Electrical cover
The electrical cover is a flexible, friction-held electrical cover that guards outlets from finish materials such as paint, spackling, and other foreign materials. The frictionally-held finish material electrical covers utilize specifically shaped features on the surfaces, such as negative draft, that contact the electrical components to increase the hold on the electrical device. Some of the shaped features of the frictionally-held covers also help minimize stress in the cover. The electrical covers are shaped with an arched rear surface that assists in minimizing edge warping when the electrical cover is positioned against the wall surface. Features are also molded into the parts to assist and strengthen the cover flatness once installed, and thus protect against the intrusion of finish material behind the cover. |
US10429015B2 |
LED energy-saving lamp, manufacturing method thereof and corn lamp
This invention provides an integrated LED energy-saving lamp, a manufacturing method thereof and a corn lamp. The LED energy-saving lamp comprises at least one tube, at least one baseplate, a plurality of LED lamp beads and a heat conductive adhesive. Each tube comprises two parallel first parts and a second part for connecting the two first parts. Each baseplate comprises two parallel branch parts, located on the same plane, and a connecting part for connecting with the two branches; the two branches are respectively located in the two first parts of the tube. The LED lamp beads are respectively arranged on the two branches. The heat conductive adhesive is pasted between the two branches and the internal wall of the tube. |
US10429012B2 |
Method of fabricating a light emitting device with optical element
A solution for packaging an optoelectronic device by aligning an optical element with respect to the package is provided. After initial placement of the optical element on the device package, an emitted light pattern can be measured and compared to a target light pattern. Subsequently, the position of the optical element can be adjusted. The emitted light pattern can be repeatedly compared to the target light pattern until the emitted light pattern is within an acceptable range of error and the optical element can be secured to the device package. |
US10429011B2 |
Method of manufacturing light emitting device
A method of manufacturing a light emitting device includes: mounting a plurality of light emitting elements on a base material; joining a plurality of translucent members respectively on upper surfaces of the light emitting elements; covering side surfaces of the light emitting elements and side surfaces of the translucent members with a light reflecting member at once; and forming a groove in the light reflecting member between adjacent ones of the light emitting elements. |
US10429005B2 |
Mount for lubricant dispenser
These objects are attained in a mount for a lubricant dispenser and that has a protective casing forming a cavity adapted to hold the dispenser and having a lower edge and a bracket having a lower generally horizontal leg on which the lower edge of the casing sits. An outlet fitting is provided on the lower leg positioned to received lubricant from the dispenser in the cavity of the casing sitting on the lower leg. |
US10429004B2 |
Accessory for electronic device
An accessory for a handheld electronic device generally including attachment portion for attaching the accessory to the device and a stand and gripping portion for holding the portable electronic device on a support surface or for gripping by a user. The attachment portion can take the form of a suction cup or other removable fastening mechanism, and the stand and gripping portion can be shaped to resemble a character or object such as a balloon dog. |
US10429003B2 |
Magnetic object suspension apparatus and associated methods and systems
Apparatuses for magnetically suspending an object within a space are provided with associated methods and systems. One example apparatus includes a carrier including a chamber and a focusing member coupled to the carrier. The apparatus may further include a magnet disposed in contact with the focusing member such that an attraction surface of the magnet is exposed by the chamber to permit direct contact between the magnet and the item. The focusing member may be formed to focus a magnetic field of the magnet towards the attraction surface. Additional example apparatuses, as well as systems and methods are also provided. |
US10428999B2 |
Lift mechanism and thin-type supporting device utilizing the same
A lift mechanism, comprising: a post, two sliding elements, and a constant force spring. One sliding element supports a display and has a rolling member for rolling contacting a post side of the post. Another sliding element is provided at another post side and fixed with the other sliding element across the post body by a connecting structure, so that the two sliding elements pulling each other slide coherently along the two post sides. The constant force spring is provided at one post end of the post and extends an end fixed to the connecting structure to stop the two sliding elements. A thin-type supporting device comprises the lift mechanism and a flat-shaped support. A post is fixed with two post ends to inner walls of the flat-shaped support, so that the sliding element connected with the display slides along a longitudinal long hole on the flat-shaped support. |
US10428997B2 |
Mounting member
A mounting member for mounting a mobile device and a mobile device accessory of being fixed to one face of the mobile device and having a ring on an object, the mounting member includes a body, a slot portion being formed in a part of the body and having a receiving groove for receiving the ring and a pressing portion disposed inside the receiving groove and configured to elastically press the ring to be located in the receiving groove. |
US10428996B2 |
Thermal insulating system for high temperature industrial tanks and equipment
Thermal insulating system for high temperature industrial tanks and equipment, comprising thermal insulating material, a covering system and a support system. The covering system has covering sheets fixed only to the support system. Adjacent covering sheets overlap longitudinally giving rise to overlapped sections comprising an upper part from one of the adjacent covering sheets and a lower part from the other adjacent covering sheet. At least a substantially omega-shaped longitudinal assembly clip is placed at each overlapped section, on the interior sides of the covering sheets, which has a first end attached to the upper part, a central portion separated from the covering sheets, and a second end contacting the lower part of the overlapped section and pressing said lower part. |
US10428994B2 |
Auto-fill two-layer two-half wear resistant elbow of concrete pump truck and manufacturing method thereof
An auto-fill two-layer two-half wear resistant elbow of a concrete pump truck consists of an outer-layer protection elbow, an inner-layer heterogeneous wear resistant combined elbow and a wear resistant connecting flange. A filling space is provided between the outer-layer protection elbow and the inner-layer heterogeneous wear resistant combined elbow. The wear resistant elbow is designed as a two-layer two-half unique structure including a protection layer and a wear resistant layer. Upon using the wear resistant elbow for the first time, the concrete grout fills the reserved slit via the heterogenous combined elbow and enters the reserved filling space, allowing the outer-layer protection elbow and the inner-layer heterogeneous wear resistant combined elbow to be fixed as a whole. |
US10428988B2 |
Cam and groove coupling with locking wire clip
A cam and groove coupling joint has a male coupling having a substantially tubular body that includes a pair of grooves in the body and a female coupling having a substantially tubular body that includes two pairs of lugs on the body and further includes pins that are supported by each pair of lugs. A pair of cam arms are pivotally mounted to the pins between the lugs. The cam arms are movable between an open position in which the male coupling is free to move relative to the female coupling and a closed position in which a cam of each cam arm engages the groove to lock the male coupling inside the female coupling. A wire clip secures the cam arms in the closed position, the wire clip being movable between a secured position in which the wire clip secures the cam arm to prevent opening of the cam arm and an unsecured position in which the cam arm is free to be opened, wherein the wire clip has a first segment of wire extending through holes in the lugs such that the wire clip is able to slide orthogonally with respect to the cam arm while being permanently mounted to the female coupling and wherein the wire clip has a second segment substantially parallel to the first segment that is extendable over the cam arm to secure the cam arm. |
US10428986B2 |
Gimbal expansion joint
A gimbal expansion joint includes a first clevis adapted to be secured to one end of a first piece of ducting, a second clevis adapted to be secured to an end of a second piece of ducting, and a gimbal arrangement to which the first and second clevises are pivotably connected to form a universal joint between the ends of the pieces of ducting. A flexible duct extends between the first and second clevises to form a passage for fluid communication between the ends of the first and second pieces of ducting. The flexible duct has a respective flange at each end, each flange providing an axially-directed face across which a clamping load is applied to affix the flange to a corresponding axially-directed face of the respective clevis. |
US10428985B2 |
Swivel joint
A fluid system swivel joint includes a body and a tail rotatably connected together and which partially define a fluid passageway. The tail has an integrally formed flange for connecting to other fluid conduits. A counterbalancing mechanism is disposed within the fluid passageway. The counterbalancing mechanism has a selectively adjustable level of tension that adjusts the amount of force required to rotate the tail relative to the body. At least a portion of the counterbalancing mechanism can be selectively inserted into or removed from the fluid passageway through an opening in the body. The opening in the body can be closed off with an end plate. A swivel assembly rotatably connects the body to a fluid conduit so that the body can rotate relative to the fluid conduit. The swivel assembly includes a collar fixedly and selectively connectable to the body, and a flange body rotatably connected to the collar. |
US10428983B2 |
Exhaust collar and method for flexibly attaching an exhaust funnel for an exhaust hood to a vent pipe and exhaust funnel device
An exhaust funnel device includes an exhaust collar; a clamping element; and an exhaust funnel for an exhaust hood. The exhaust funnel is flexibly attached by the clamping element to the exhaust collar and to a vent pipe. The exhaust collar includes a tubular fixing unit for fixing the exhaust collar to the vent pipe as well as an annular holding unit, the annular holding unit and the clamping element being able to clamp at least a portion of an exhaust funnel wall of the exhaust funnel between the holding unit and the clamping element. |
US10428982B2 |
Grip and fitting assemblies and kits utilizing the same
A grip and fitting assembly for coupling an air hose to a gladhand coupler. The grip is flexible and tapered with a tubular interior through which may pass a length of hose shielded and protected by the grip. The grip is affixed to a fitting attachable to the gladhand coupler on a first threaded end thereof and attachable to the air hose on a second barbed end thereof. The grip is configured with one or more internal keyway boss which aligns and interlocks with one or more corresponding keyway recess on a retaining shoulder formed between the ends of the fitting. |
US10428980B2 |
Sanitary line attachment
A sanitary line attachment (1) is provided which is of sleeve-shaped design in at least one front end region (6) and, in the sleeve interior of the sleeve-shaped front end region (6), bears an internal thread (7) for attachment to an adjacent line portion, wherein at least one sealing ring (9) is clamped in a sealing manner between the adjacent line portion and the line attachment. On the ring outer circumference of the sealing ring at least one holding projection (10) protrudes, which holding projection (10) engages in the internal thread (7) in the sleeve interior of the sleeve-shaped front end region (6). The sealing ring (9) is produced from a dimensionally stable and/or inelastic material, and the sealing ring (9) has at least one and preferably at least two indentations (11) which are arranged at a distance from one another on the ring inner circumference and are designed as tool engagement surfaces. |
US10428979B2 |
Method of producing a composite pipe and such a composite pipe
A composite pipe comprises a polyetheretherketone innermost pipe around which a reinforcing overwrap is arranged. A protective sheath surrounds the overwrap. Such a composite pipe may be made by selecting a polyetheretherketone pipe having an outer region having a crystallinity of less than 25%; overlaying the selected pipe with overwrap; and subjecting the combination to heat, thereby causing the crystallinity of the outer region of the polyetheretherketone pipe to increase. The method reduces the risk of pipe failure. |
US10428978B2 |
Webless corrugated dual wall foundation drain and related method
A webless corrugated dual wall foundation drain which is constructed as a hollow rectangular tubular member with an inner corrugated wall formed of HDPE and an integral outer smooth wall formed of the same material. The outer smooth wall of the foundation drain is attached to and integrally formed with the corrugations of the inner corrugated wall through a coextrusion process, thereby significantly enhancing the vertical beam stiffness of the foundation drain and eliminating the need for an internal supporting web. |
US10428973B2 |
Poppet valve
A poppet valve configured comprising a valve housing with line connections and a valve seat formed therebetween in the valve housing, and a closing element, which is axially displaceable in the valve housing and which cooperates with the valve seat, and a membrane extending around the closing element and from the latter up to a fixing site on the housing side. Due to the fact that a spring-elastic and in particular annular element is additionally provided for fixing the membrane under preload on the housing side, and due to the fact that the spring-elastic element is subdivided towards the sealing fixing site into partially circumferential segments having formed thereon extensions, which press the membrane against the cylindrical fixing site and, in so doing, deform the membrane. |
US10428972B2 |
Water heater gas valve
A gas valve assembly configured to operate without a pilot assembly is disclosed. In an illustrative embodiment, a servo valve actuates a diaphragm valve to selectively allow for fluid coupling of a gas inlet and gas outlet. The diaphragm valve may be a normally closed valve that opens in response to a pneumatic force resulting from the opening of the servo valve. |
US10428971B1 |
Inline air valve nose cap for reduced contamination
A valve assembly includes a flow duct with an inlet and an outlet downstream from the inlet. A piston housing is inside the flow duct and is axially aligned with a center axis of the flow duct. A piston is inside the piston housing and is configured to extend downstream of the piston housing in a closed position. A control chamber is between the piston and an upstream end of the piston housing. A control opening extends through the upstream end of the piston housing and fluidically communicates with the flow duct and the control chamber. A cap extends through the control opening. A cap passage extends through the cap and has an inlet outside of the piston housing and an outlet inside the piston housing, and includes two ninety-degree turns between the inlet and the outlet of the cap passage. |
US10428970B2 |
Method of operating a digital inlet valve
A circuit and a method for a digital inlet valve having a shutter moveable between a closed and an open position and actuated by a linear electromagnetic actuator including a movable needle located inside a coil winding connected to a power source by a first electronic switch. An electric current is supplied to the coil winding. A parameter indicative of a movement of the needle is monitored. The electric current supply is adjusted when the monitored parameter exceeds a predetermined value. |
US10428962B2 |
Valve device
A valve device for a gas tank, includes a body and a check valve provided in an injection passage to inject gas into the gas tank. The check valve includes a valve seat, a case fixed in the injection passage while a space is provided between an inner peripheral surface of the injection passage and the case to enable gas to flow through the space, and a valve element accommodated in the case. The case includes a cylindrical portion, and is configured such that the bottom of the cylindrical portion, provided at an opposite side to the valve seat, defines a range where the valve element is axially movable. The valve element includes a head portion that can block a valve hole of the valve seat, and a sliding portion formed to be axially movable with respect to the cylindrical portion. |
US10428960B2 |
Valve with a load varying mechanism, and method of operating the same
A valve is provided. The valve includes a body provided with fluid passages for circulating fluid therein. The body has a body interface with ports connected to the fluid passages. The valve also includes a valve element having a valve element interface facing the body interface. The valve element can move between different positions so as to permit or obstruct communication between the fluid passages. A biasing element biases the valve element interface against the body interface. A load varying mechanism is provided to load the biasing element with different sealing load forces according to the different positions of the valve element. The sealing load force applied on the rotor is thus decreased during rotation, reducing friction between the valve body and the valve element. |
US10428953B2 |
C-seal backed brush seal with a compressible core
Aspects of the disclosure are directed to a brush seal assembly, comprising a compressible core, at least one wire wound around the core, and a backing plate that is substantially ‘c’ shaped or ‘u’ shaped that at least partially encases the at least one wire. Aspects of the disclosure are directed to a method comprising separating compressible cores with a spacer, winding wires around the cores and the spacer, and forming substantially ‘c’ shaped or ‘u’ shaped backings about the wires to obtain a package of brush seal assemblies. |
US10428950B2 |
Valve packing assembly having shape-memory member
A packing assembly for a valve includes a first segment having at least one first guiding surface, and a second segment having at least one second guiding surface in engagement with at least a portion of the at least one first guiding surface. A shape-memory member couples the first and second segments. The shape-memory member may be formed of a material that is responsive to changes in temperature, so that, in response to a change in temperature, the shape-memory member may cause relative movement of the first and second segments in a first direction. In response to the movement, the first and second guiding surfaces may cause relative displacement of the first and second segments in a second direction. |
US10428947B2 |
Sealing device
A sealing device includes a metal ring, a main lip, an annular elastic body, a sliding ring, and biasing means. The metal ring is hermetically fixed to a housing. The main lip is bonded to the metal ring and is slidably in close contact with an outer periphery surface of a rotating body inserted through an inner circumference of the housing. The annular elastic body is bonded to the metal ring on an outer side of the main lip, and stretchable in an axial direction. The sliding ring is provided at an end portion of the annular elastic body on a side opposite the metal ring, and is slidably in close contact with a seal flange attached to an outer periphery of the rotating body. The biasing means is configured to elastically press the sliding ring against the seal flange, thereby maintaining stable sealability over an extended period of time. |
US10428943B2 |
Side rail
A side rail (1) is formed in a sprit ring shape with an opening (10) and to be mounted on a space expander (2) in an annular shape to constitute, together with the space expander (2), a multi-piece oil ring (3) used in an internal combustion engine. The side rail (1) includes an outer peripheral surface (14) facing radially outward, an inner peripheral surface (13) facing radially inward, a first axial surface (11) facing a crankcase, a second axial surface (12) facing a combustion chamber and parallel to the first axial surface (11), and a protrusion (20) formed on the outer peripheral surface (14) in a position offset from an intermediate position between the first axial surface (11) and the second axial surface (12) toward the first axial surface (11) and protruding radially outward from the outer peripheral surface (14). |
US10428942B2 |
Fluted piston components for pumps
A piston rod and piston head are the driven components within a pump. An upstream end of the piston rod is attached within an aperture of the piston head. At least one flute extends between the upstream end of the piston rod and the aperture, and the at least one flute is configured to provide a flowpath for a fluid, such as paint, to flow downstream of the piston head and piston rod. The flutes facilitate a smooth downstream flow of the fluid, thereby reducing hydraulic resistance and reducing wear caused by the fluid. |
US10428937B2 |
Cruise control device and cruise control method
A road information acquisition unit (12a) acquires information about the road in a prescribed segment in front, a vehicle information acquisition unit (12b) acquires information about the vehicle (1), a velocity prediction unit (12c) predicts, on the basis of the road information and the information about the vehicle (1), the changes in the vehicle velocity that would be brought about in the prescribed segment in the case of travelling the prescribed segment in a first gear, and a shift control unit (12d) which maintains the first gear if the condition is satisfied that the predicted vehicle velocity exhibits a minimum value other than at the ends of the prescribed segment and the minimum value is greater than the delay speed, which is set to a value less than a predetermined velocity set as the velocity that would result from downshifting. |
US10428936B2 |
Hydraulic control device for automatic transmission
A hydraulic control device that includes a source pressure generating valve that generates a source pressure; a solenoid valve that can supply the engagement pressure based on the source pressure; and a supply pressure switching valve that can be switched between a first state where the supply pressure switching valve can supply the engagement pressure to the second engagement element and a second state where the supply pressure switching valve can supply the source pressure to the second engagement element, the supply pressure switching valve being in the first state when the solenoid valve is operating normally, and being switched to the second state in case of abnormality in the solenoid valve. |
US10428930B2 |
Ball screw with a cooling passage
A ball screw with a cooling passage includes a ball screw, a nut and a sealing unit. The nut is provided with the input and output cooling holes parallel to the axis, and the flat surface is provided with the guide groove. A first hole and a second hole are disposed between the guide groove and the input cooling hole and the output cooling hole, respectively, and then a sealing unit seals the guide groove, so as to form the cooling passage. The guide groove, the first hole and the second hole all extend along the axial direction of the nut, and the cooling passage can be formed simply by sealing the guide groove with the sealing unit, which effectively reduces the assembling steps and time, consequently decreasing the assembling cost. |
US10428926B2 |
Hydrokinetic torque coupling device with turbine made of lightweight material and torsional vibration damper
A hydrokinetic torque-coupling device comprises an impeller wheel, a turbine wheel drivable by the impeller wheel, a torsional vibration damper, and a turbine hub non-rotatably connected to the turbine wheel. The turbine wheel includes a turbine shell and at least one coupling pin formed integrally with the turbine shell and extending radially outwardly from the turbine shell. The torsional vibration damper comprises a first damper, a driven member rotatable relative to the first damper retainer, and damper elastic members interposed between the first damper retainer and the driven member. The turbine hub is non-rotatably coupled to the driven member of the torsional vibration damper. The first damper retainer has at least one angularly extending bayonet slot configured to receive the at least one coupling pin therein such that the at least one coupling pin being angularly moveable in the at least one bayonet slot relative to the first damper retainer. |
US10428924B2 |
Turbine assembly for hydrokinetic torque converter, and method for making the same
A turbine assembly for a hydrokinetic torque converter. The turbine assembly is rotatable about a rotational axis and comprises a first turbine component coaxial with the rotational axis, a second turbine component formed separately from and non-moveably secured to the first turbine component coaxially therewith, and a plurality of grommets. The first turbine component has a plurality of first turbine blade members integrally formed therewith. One of the first and second turbine components has a substantially annular mounting portion provided with a plurality of mounting holes. Each of the grommets is mounted in one of the mounting holes through the mounting portion. |
US10428923B2 |
Torque converter oil cooling system and method of use
A torque converter oil cooling system includes an air-oil cooler system that is adapted to be disposed between a torque converter charging oil outlet and charging oil inlet. The torque converter oil cooling system has a controller that directs oil when at a predetermined temperature to pass through an air oil cooler for cooling and then directs the cooled oil back to the inlet of the torque converter for torque converter operation. The torque converter oil cooling system normally operates in the non-lockup mode operation of the torque converter. Using the torque converter oil cooling system permits a vehicle to continuously operate in a torque converter mode for an extended period of time, which becomes extremely helpful when the vehicle is called upon to haul heavy loads over steep grades. |
US10428918B2 |
Positioning device
A positioning device, comprising a base element, a carrier element to be positioned relative to the base element along a z-axis as well as at least one first and one second slide element, wherein the first or second slide element on the one hand is disposed displaceably by means of a first or second base guide device along a first or second base line on the base element and on the other hand by means of a first or second ascent guide device along a first or second ascent line on the carrier element, wherein the first or second ascent line and the first or second base line run in a projection along the z-axis parallel to one another and with respectively constant different angles of inclination relative to the z-axis, and wherein the first and the second ascent guide device are arranged with respect to one another in such a manner that in at least one projection perpendicular to the z-axis, the first and the second ascent line are inclined opposite to one another relative to the z-axis. It is provided that for the synchronous displacement of the first and second slide element the positioning device comprises at least one drive device which comprises a rotary drive having an axis of rotation parallel to the z-axis and a coupling element, wherein the coupling element couples the rotary drive to the first and/or second slide element in such a manner that a rotational movement of the rotary drive causes a synchronous displacement of the first and second displacement element along the respective base lines. |
US10428912B2 |
Transmission for vehicle
A transmission for a vehicle capable is provided to improve fuel efficiency through multiple gear shift stages and enhance power performance of an engine. By combining first and second planetary gear sets, a compound planetary gear set, and multiple frictional elements selectively connecting rotary components of the three planetary gear sets via a corresponding shaft, the transmission provides eleven forward gear stages and three reverse gear stages. In particular, a first rotary element of the first planetary gear is fixedly connected to a transmission case, a second rotary element of the first planetary gear is fixedly connected to a second rotary element of the second planetary gear, and a third rotary element of the first planetary gear device is selectively connected to a first rotary element of the compound planetary gear set and a fourth rotary element of the compound planetary gear set. |
US10428910B2 |
Planetary gear train of automatic transmission for vehicle
A planetary gear train of an automatic transmission for a vehicle may include a first planetary gear set, a second planetary gear set, a third planetary gear set, a fourth planetary gear set, an input shaft mounted with the first, second, and third planetary gear sets, an output shaft mounted with the fourth planetary gear set, a first shaft, a second shaft directly connected with the input shaft, a third shaft, a fourth shaft, a fifth shaft, a sixth shaft selectively connectable with the fourth shaft, a seventh shaft selectively connectable with the input shaft, an eighth shaft gear-meshed with one shaft among the fourth and seventh shafts, a ninth shaft directly connected with the output shaft, a tenth shaft gear-meshed with a remaining shaft among the fourth and seventh shafts that is not gear-meshed with the eighth shaft, and transfer gears. |
US10428905B2 |
Powershift multispeed reversing transmission
A powershifting multispeed reversing transmission includes a converter lockup clutch (31) arranged in a space (13) provided by arranging the forward-driving clutch (8) between the fixed gear (5) and the loose gear (7) on a forward-driving shaft, and the reverse-driving clutch (12) between the fixed gear (9) and the loose gear (11) a reverse-driving shaft. |
US10428899B2 |
Window covering system and window covering control apparatus thereof
In a window covering system and a window covering control apparatus thereof, the window covering control apparatus comprises a driving module, a damping output module, and a damping control module. The damping output module and the driving module are configured to operate simultaneously. The driving module may drive the damping output module to provide damping to the driving module. The damping control module comprises a control detecting unit and a fitting unit. The control detecting unit comprises a detecting portion and a stopper portion, which are detachably engaged. During an expansion of a covering material, the driving module drives the damping output module to provide damping to the driving module; when the stopper portion is driven apart by the detecting portion from the fitting unit, the driving module operates independently of the damping output module to stop the damping output module from providing damping. |
US10428897B2 |
Compressible fluid device comprising safety device and method of protecting a compressible fluid device
The present disclosure provides a compressible fluid device (1), such as a gas spring. The device comprises a casing (11) defining a compression chamber (12), a piston (15), which is movable in the chamber (12), and a safety member (2) placed in such a manner as to be struck by the piston (15) in the event of the piston overstriking, whereby at least some of the compressible fluid is evacuated from the compression chamber (12). The device further comprises a pre-strike member (25), that is arranged to be struck before the safety member (2) is struck, such that the safety member (2) is only struck once a predetermined overstroke force has been achieved. |
US10428896B2 |
Cylinder-piston unit with a compensating sealing element
In a hydraulic cylinder piston unit comprising a cylinder with an interior space delimited by opposite end walls in which a piston and a compensation seal element are movably arranged supported by a piston rod and engaged by a compensation spring disposed between the compensation seal element and an adjacent cylinder end wall, the compensation seal element has two spaced seal rings via which it is guided along the inner cylinder wall and the compensation spring is supported directly on the compensation seal element for an improved sealing effect of the compensation seal element in the extended state of the hydraulic cylinder piston unit and a simplified design. |
US10428895B2 |
Valve mechanism, damping force generating device, and shock absorber
A valve mechanism includes a housing, a plate-shaped valve body, a valve positioning member, and a drive valve moving mechanism. The valve positioning member causes the valve body to face the valve seat via a predetermined gap with respect to the valve seat. The drive valve moving mechanism causes the gap between an inner circumference of the valve body and the valve seat to be variable by moving the drive valve in a direction of approaching the valve seat and elastically deforming the valve body in a direction that the inner circumference of the valve body approaches the valve seat. |
US10428888B2 |
Brake system
A brake system that includes a brake piston, a rotary to linear stage mechanism, and a clutch. The brake piston extends along a longitudinal axis. The brake piston includes a piston pocket. The rotary to linear stage mechanism includes a spindle and a nut. The nut is received in the piston pocket. The brake system is operable in a first braking application and in a second braking application. During the first braking application, the clutch is adapted to provide for the nut to rotate about the longitudinal axis. During the second braking application, the clutch is adapted to restrict or prevent the nut from rotating about the longitudinal axis. |
US10428874B2 |
Sliding component and method of forming the same
A sliding component including a sliding layer, and an intermediate component including at least one undercut portion, the intermediate component coupled to the sliding layer, wherein the intermediate component has a thickness, T, and wherein an exposed thickness, TE, of the intermediate component is less than T. A method of forming a sliding component including providing an intermediate component including at least one undercut portion, the intermediate component having a thickness, T, and coupling a sliding layer to the intermediate component, wherein the intermediate component is partially embedded into the sliding layer, and wherein an exposed thickness, TE, of the intermediate component is less than T. |
US10428873B2 |
Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same
A sintered bearing exhibits less of a hard iron alloy phase, and has an excellent wear resistance and cost performance under low-revolution and high-load use conditions; and a method for producing such a sintered bearing. The sintered bearing contains Cu: 10 to 55% by mass, Sn: 0.5 to 7% by mass, Zn: 0 to 4% by mass, P: 0 to 0.6% by mass, C: 0.5 to 4.5% by mass and a remainder composed of Fe and inevitable impurities. An area ratio of a free graphite dispersed in a metal matrix of the bearing is 5 to 35%; a porosity thereof is 16 to 25%; a hardness of an iron alloy phase in the matrix is Hv 65 to 200; and raw material powders employ at least one of a crystalline graphite powder and a flake graphite powder each having an average particle size of 10 to 100 μm. |
US10428870B2 |
Roller bearing with enhanced roller-end and flange contact
A roller bearing (10) defines a bearing axis (34) and a radial plane (52) oriented parallel with the bearing axis. The roller bearing (10) includes an inner ring (42) having an inner raceway (44) and an inner flange (46) extending from the inner raceway. The inner flange (46) includes an inner guide surface (48). The roller bearing (10) also includes a plurality of rollers (22) in rolling engagement with the inner raceway (44) about the bearing axis (34). Each roller (22) includes a first end surface (24a) in engagement with the inner guide surface (48) of the inner flange (46) as the plurality of rollers (22) move relative to the inner ring (42). The first end surfaces (24a) of each roller (22) define a curvature such that a ratio of a first principal effective curvature (Rx) radius in a plane perpendicular to the radial plane (52) and a second principal curvature radius (Ry) in the radial plane (52) is no less than 3.0. |
US10428869B2 |
Suspension thrust bearing device
A suspension thrust bearing device for use with a suspension spring in an automotive suspension strut, and having a bearing with an upper annular part and a lower annular part. The lower annular part includes an axial hub and an outwardly projected radial flange extending from the axial hub, and the lower part has an exterior support surface that axially supports an upper end of a suspension spring by the intermediate of a damping device. The damping device provides an axial portion secured to an axial hub, and a radial portion secured to a radial flange. The axial hub of the lower annular part has a plurality of radially through recesses that are axially open on an axial lower end of the axial hub. The axial portion of the damping device includes a plurality of pins that radially inwardly protrude from the axial portion. |
US10428865B2 |
Foil bearing, production method therefor, and intermediate product of foil bearing
A foil bearing (40) includes foils (42) at a plurality of portions in a rotation direction of a shaft member (11). A top foil portion (Tf) including a bearing surface (S2) is formed in a region including a front end (421) of each of the foils (42), and a back foil portion (Bf) is formed in a region including a rear end (422) of each of the foils (42). A gap (C1) is secured between, of two of the foils adjacent to the foil (42) in a rotation direction (R) and a direction opposite to the rotation direction, the rear end (422) of the foil on the rotation direction side and the front end (421) of the foil on the side opposite to the rotation direction side. A width of the gap (C1) is set to be non-uniform in a direction (N) orthogonal to the rotation direction. |
US10428862B2 |
Cable linking device
In this cable linking device, when a lock member (16) is located in a restricting position for restricting the movement of a joint piece (13), an interposing member (17) can move to an interposing position between the lock member (16) and a holding member (11) and the interposing member (17) can be shifted between the interposing position and a movement-permitting position, and when the interposing member (17) has moved to the interposing position, the lock member (16) is restricted from moving to a restriction release position for releasing the restriction on the movement of the joint piece (13), therefore preventing a linking member from accidentally moving farther into the holding member. |
US10428861B2 |
Loose wheel nut indicator and restrainer
An apparatus (10) for visually indicating a loose wheel nut (57) on a wheel of a motor vehicle has a plurality of wheel nut engaging members (12, 14, 16, 18, 20). Each wheel nut engaging member is rotatable with a respective wheel nut to which it is engaged and has a pointer (26) for indicating a start position of the wheel nut engaging member. Any two adjacent wheel nut engaging members of the plurality are interconnected by an elongate member (28) which is resiliently flexible so as to define an endless configuration of spaced apart but interconnected wheel nut engaging members. In use, any loosening rotation of a first wheel nut (57) will cause the engaging member (12) which engages that wheel nut and its pointer (26) to rotate therewith, thereby providing a visual indication of a loosening of that wheel nut. |
US10428859B2 |
Combination recess for driven fastener
A threaded fastener includes a head end, a shank and an entry end, the head end located at one end of the shank and the entry end located at an opposite end of the shank. The head end includes an end face with a drive recess configured for being driven by multiple drive bit shapes, including a star or six lobe drive, a Phillips drive, a square drive and a flat blade drive. |
US10428858B1 |
Heavy machinery pin with a pawl
A pin is used in a working surface of an element of heavy machinery. The heavy machinery element includes a first side, a second side, a bore formed though the working surface from the first side to the second side, and a helical groove extending from the first side to the second side and terminating with a lateral cavity extending into the working surface from the groove. The pin has a shank, a head on the shank, a blade projecting laterally from the head, and a pawl carried in the blade. The pawl allows rotation of the pin in the bore in a first direction and prevents rotation of the pin in the bore in an opposite second direction. |
US10428855B2 |
Bolt arrangement, coupling arrangement and method to dismount a coupling arrangement
A bolt arrangement that includes a bolt having an outer circumferential peripheral surface extending in a longitudinal direction of the bolt, and a sleeve providing an outer circumferential peripheral surface and an inner circumferential peripheral surface extending in a longitudinal direction of the sleeve. The inner peripheral surface has a tapering profile in its longitudinal direction. A portion of the outer peripheral surface of the bolt provides a corresponding tapering profile matching the tapering profile of the inner peripheral surface of the sleeve. Furthermore, the inner peripheral surface of the sleeve further includes a groove. A coupling arrangement and a method of dismounting a coupling arrangement is also provided. |
US10428854B2 |
Fastening system for a machine element
Fastening system for a machine element (41), in particular for an elongate machine element (41), in particular for a toothed rack or a linear guide, for fastening in an abutment (45), in particular a machine bed or a flange, comprising: an eccentric bolt (1) which comprises a pin section (5) to be received in a receiving opening (55) of an abutment (45) and comprises a joining section (7), wherein the joining section is arranged in an eccentric manner in relation to the pin section (5), and an eccentric sleeve (3) to be slid onto the joining section (7). |
US10428841B2 |
Electrohydraulic system for use under water, and process valve having an electrohydraulic system of said type
An electrohydraulic system for use at great water depths includes a vessel, a hydrostatic machine, and an electric machine. The vessel has an interior space configured to form a volume that is closed off with respect to the surroundings and that accommodates a hydraulic pressure fluid. The vessel includes a compensation piston configured to subject the hydraulic pressure fluid in the interior space to at least approximately the pressure prevailing in the surroundings. The hydrostatic machine is configured to be operated as a pump. The electric machine is mechanically coupled to the hydrostatic machine and operates as an electric motor in order to operate the hydrostatic machine as a pump. The hydrostatic machine and the electric machine are arranged in the interior space of the vessel. The compact electrohydraulic system fits on existing installations and on new installations. The electrohydraulic system also includes a compact process valve. |
US10428839B2 |
Vibration damper structure and series fan thereof
A vibration damper structure and a series fan thereof. The vibration damper structure includes a first support body, a second support body and an elastic member. The first support body has a first upper end and a first lower end. The second support body has a second upper end and a second lower end. The elastic member is disposed between the first and second support bodies. The elastic member has a first support end in contact with the first lower end and a second support end in contact with the second lower end. The vibration damper structure is applied to the series fan to greatly reduce the vibration of the series fan in operation. |
US10428838B2 |
Centrifugal fan
A centrifugal fan includes: a housing; an impeller which is mounted in the housing; a hub which is provided in the impeller and is rotated by a driving force of a motor; and a plurality of blades which radially extend at the hub. Each of the plurality of blades is formed to have a shape curved from a leading edge to a trailing edge in a rotational direction of the impeller in each of the plurality of blades. A farthest point from a plane connecting the leading edge and the trailing edge is defined as a peak portion. The peak portion is placed closer to the leading edge than the trailing edge. |
US10428835B2 |
Fan and air-conditioning apparatus
A fan of the invention includes an impeller having a plurality of blades and rotating around a rotation axis, and at least one balance weight having at least one claw portion and attached to the impeller to correct the center of gravity of the impeller. The impeller has a circumferential convex portion formed along the circumferential direction, and on which the claw portion is hooked to restrict a range of movement of the balance weight in the radial direction of the impeller, and at least one radial concave-convex portion formed along the radial direction, and on which the claw portion is hooked to restrict the range of movement of the balance weight in the circumferential direction of the impeller. |
US10428832B2 |
Stator anti-rotation lug
A compressor assembly of a gas turbine engine includes a case including at least one opening and a stator assembly supported within the case. A lug assembly is secured to the case and sets a position of the stator assembly relative to the case. The lug assembly includes a lug engaging the stator assembly and a boss extending from the lug through the opening in the case. The boss including a threaded hole receiving a threaded member holding the lug assembly to the case and defines a seat for the threaded member that is spaced apart from an outer surface of the case. |
US10428831B2 |
Stepped leading edge fan blade
A fan blade apparatus for use in a high-volume, low-speed fan wherein the fan blade includes a body portion, a leading edge portion and a trailing portion. The fan blade coupled to an electric motor configured to rotate in an intended direction wherein the leading portion of the fan blade is at the forefront of the rotation of the blade. The leading edge portion of the fan blade includes a series of steps extending along the length of the leading edge. The stepped configuration creates turbulent air flow when the electric motor rotates in the intended direction. |
US10428830B2 |
Fan and impeller thereof
An impeller includes a hub and a plurality of blades. The blades are connected with the hub. Each blade includes a base part connected with the hub and a tip part opposed to the base part. The thickness of the tip part of the blade is greater than that of the base part of the blade. In addition, an airflow-guiding part is disposed at the tip part of the blade. |
US10428827B2 |
Centrifugal fan with a casing including structure for engaging with an object to which the centrifugal fan is installed
The present invention provides a centrifugal fan that can be easily positioned when it is installed in a device or apparatus, which can further improve positioning accuracy, and which can decrease noise, even if it is made thin. In the centrifugal fan in which an impeller is received inside a casing and air drawn in from a suction port formed on the casing by rotating the impeller is discharged from the casing to the outside of a blowing port, a circular protruded portion is formed on a peripheral edge of the suction port, and protrudes upwardly in a shaft direction from an upper surface of the casing. |
US10428826B2 |
Method and system to reduce to wear on a bearing
A motor vehicle system device having a drive assembly, to which a charging device is assigned, has a compressor having at least one compressor runner supported using at least one bearing, the bearing having a stationary first bearing part and a second bearing part that is operatively connected to the compressor runner. An overpressure source is connected to the bearing, using which an overpressure is able to be produced in a bearing gap that is present between the first bearing part and the second bearing part. The overpressure source is the compressor and/or a part of a tandem pump, which besides the overpressure also makes available low air pressure for a user of the motor vehicle system device. The invention also relates to a method for operating a motor vehicle system device. |
US10428822B1 |
Between-bearing magnetic coupling
An outer barrel is configured to rotate. A first central shaft passes through the outer barrel. The first central shaft is configured to rotate with the outer barrel. A first bearing assembly is attached to the first shaft on a first side of the outer barrel. A second bearing assembly is attached to the first shaft on a second side of the barrel. The second bearing assembly supports the first shaft to an isolation can. An inner barrel is magnetically coupled to and is configured to rotate with the outer barrel. A second central shaft passes through the inner barrel. The second central shaft is configured to rotate with the inner barrel. A third bearing assembly is attached to the second shaft. The isolation can fluidically isolates the inner barrel assembly from the outer barrel assembly. The isolation can supports the second bearing assembly to the housing. |
US10428819B2 |
Scroll compressor that includes a non-orbiting scroll having a bypass hole
A scroll compressor according to the present invention includes a casing, an orbiting member provided within the casing and performing an orbiting motion, a non-orbiting member forming a compression chamber together with the orbiting member, the compression chamber having a suction chamber, an intermediate pressure chamber and a discharge chamber, a communication passage configured to bypass a refrigerant of the compression chamber into the casing, an opening/closing valve assembly configured to open and close the communication passage, and a switching valve assembly configured to operate the opening/closing valve assembly, the switching valve assembly being provided outside the casing and connected to the opening/closing valve assembly, whereby an installation of the bypass hole can result in prevention of over-compression and an installation of a control valve for varying a capacity outside the casing can result in reduction of costs for the control valve. |
US10428814B2 |
Piston fuel pump for an internal combustion engine
A piston fuel pump for an internal combustion engine includes: a pump cylinder; and a pump piston which is movably accommodated in the pump cylinder. The pump piston is guided radially with the aid of at least a first and at least a second guide section which are spaced axially apart from each other, the first guide section being situated in a pump cylinder of the piston fuel pump, and the second guide section being situated radially outwardly in the area of the end section facing the drive. The piston fuel pump has a supporting and sealing unit for the pump piston on the first guide section, which includes a guidance area for the radial guidance of the pump piston in the pump cylinder and a sealing area having a sealing lip. |
US10428812B2 |
Disc pump with advanced actuator
A two-cavity pump having a single valve in one cavity and a bidirectional valve in another cavity is disclosed. The pump has a side wall closed by two end walls for containing a fluid. An actuator is disposed between the two end walls and functions as a portion of a common end wall of the two cavities. The actuator causes an oscillatory motion of the common end walls to generate radial pressure oscillations of the fluid within both cavities. An isolator flexibly supports the actuator. The first cavity includes the single valve disposed in one of a first and second aperture in the end wall to enable fluid flow in one direction. The second cavity includes the bidirectional valve disposed in one of a third and fourth aperture in the end wall to enable fluid flow in both directions. |
US10428810B2 |
Linear compressor having radial stoppers
A linear compressor is provided that may include a compressor casing including a cylindrical shell and a pair of shell that covers both ends of the shell; a frame fixed to an inside of the shell; a cylinder accommodated in the shell and defining a compression space for a refrigerant; a piston inserted into the cylinder to linearly reciprocate in an axial direction of the cylinder and compress the refrigerant provided to the compression space; a motor assembly including a motor that provides power for a linear reciprocating motion to the piston, and a motor support that supports the motor; a spring that allows a resonant motion of the piston; a back cover that supports the spring; and a stopper provided in one of the pair of shell covers and contacting the back cover when the motor assembly vibrates in a radial direction of the cylinder, thereby preventing the motor assembly from colliding with the shell. |
US10428800B2 |
Modular system for transporting wind turbine blades
A modular system for transporting wind turbine blades in at least two different spatial arrangements comprising two or more root end transport frames having a height H for supporting the root end, wherein H |
US10428799B2 |
Wind power generation system using jet stream
Provided is a wind power generation system using a jet stream. The wind power generation system is implemented to include a flight vehicle configured to produce power through wind power generation while floating in the air and autonomously flying without a winch and configured to transmit the produced power to the ground, and a ground reception unit configured to receive a power signal transmitted from the flight vehicle and convert the power signal to electricity, wherein the flight vehicle enters a power generation location or escapes from the power generation location through buoyancy adjustment, the flight vehicle produces power through wind power generation while staying at the top of the troposphere or in the vicinity of the stratosphere where the jet stream is generated, and the flight vehicle includes a propeller configured to rotate in one direction due to the jet stream, a power generator configured to produce power by converting mechanical energy due to a rotational force of the propeller to electrical energy, a power generation control unit configured to control entry or escape into or from the power generation location, a buoyancy adjustment unit configured to increase or decrease buoyancy according to control of the power generation control unit, a laser conversion unit configured to convert power produced by the power generator to a laser, and a laser shooting unit configured to transmit the laser converted by the laser conversion unit to the ground. |
US10428798B2 |
Wind turbine power storage and regeneration
Methods, systems and apparatuses including systems and methods that can be used for operating a wind turbine including in power generation and regeneration modes are disclosed. According to one example, a method is disclosed that can include adjusting a power split transmission coupling to transfer substantially all torque from a turbine rotor to a generator by working a hydraulic fluid, wherein the generator converts mechanical power to electrical power, diverting the hydraulic fluid at high pressure from the power split transmission coupling in response to the electrical power produced by the generator exceeding a threshold to maintain the electrical power produced by the generator at or below the threshold; storing the hydraulic fluid diverted from the power split transmission coupling under high pressure in a storage vessel; and introducing the hydraulic fluid stored at high pressure to a hydraulic motor in response to the generator producing below threshold electrical power, the hydraulic motor operatively coupled to the generator and configured to transmit mechanical power to the generator for electrical power generation. |
US10428795B2 |
Method and control device for a wind turbine, and computer program product, digital storage medium and wind turbine
The invention concerns a method of operating a wind power installation in which the rotor is brought to a halt and fixed, comprising the steps: braking the rotor, positioning the rotor at a stopped position, and fixing the rotor in the stopped position. According to the invention it is provided that an end position is predetermined, the rotor is braked in regulated fashion to a stopped position associated with the end position, and for positioning for the predetermined end position the rotor is braked in an automated procedure until stopped at the stopped position, and for fixing in the stopped position a mechanical fixing device is applied, in particular automatically. |
US10428793B2 |
Rotor and method of adjusting an angle of a rotor blade on a rotor
The present disclosure refers to a rotor (1) comprising a rotor blade (3), a hub (2), on which the rotor blade (3) is held by means of a bearing, and an adjustment device (7, 8, 10), in which a coupling component (7) arranged at the foot (5) of the rotor blade (3) is mounted in a guide (10) arranged on an adjustment component (8), such that by means of a displacement of the adjustment component (8) axially with respect to the axis of rotation (11) of the rotor of the hub (2) a pitch angle of the rotor blade can be altered, wherein the guide (10) runs at an inclination to the axis of rotation (11) of the rotor, at least during the axial displacement of the adjustment component (8). Also disclosed is a method for adjusting a pitch angle of a rotor blade. |
US10428791B2 |
Wind turbine rotor blade
A rotor blade of a wind turbine. The rotor blade comprises at least one rotor-blade inner portion, having a region connecting to the rotor-blade hub, and at least one rotor-blade outer portion, having a rotor-blade tip, the rotor-blade inner portion and the rotor-blade outer portion each being made substantially of a fibre-reinforced plastic, and the rotor-blade inner portion and the rotor-blade outer portion being connected to each other by a connecting device. The connecting device in this case comprises an inner insert that is at least partially wrapped in the fibre-reinforced plastic of the rotor-blade inner portion, an outer insert that is at least partially incorporated in the fibre-reinforced plastic of the rotor-blade outer portion, the inner insert and the outer insert being connected to each other via a connecting element. |
US10428789B2 |
Cable routing for wind turbine system having multiple rotors
The present invention relates to a wind turbine system comprising a plurality of wind turbines mounted to a common support structure (4) by a support arm arrangement (10) comprising a mount portion (12) and at least one arm (13) extending from said mount portion and carrying a respective wind turbine (6). Said support arm arrangement (10) is capable of yawing around said support structure (4); and said wind turbine system comprises an improved arrangement for cable guiding in this connection. |
US10428787B2 |
Free floating wave energy converter having variable buoyancy flexible pipe and enhanced capture width
A free floating wave energy converter includes at least one flexible pipe, adapted to float at a surface of a body of water, having an inlet end for receiving alternating slugs of water and air when the pipe is moored facing at an angle to a wave direction in the body of water and having an outlet end in fluid communication with a power takeoff and other devices, a plurality of supports attached to the pipe at spaced apart locations, each of the supports extending traverse to a longitudinal axis of the pipe and outwardly in opposite directions and at least two inflatable tubes attached to the supports on opposite sides of the pipe extending longitudinally substantially parallel to the longitudinal axis of the pipe, wherein the pipe is raised and lowered relative to the surface of the water by respectively inflating and deflating the tubes with a gas. |
US10428782B2 |
Starting a motor vehicle drive unit
The present disclosure pertains to remote starting of a drive unit in a stationary motor vehicle. The drive unit includes one or more driving wheels, a clutch and a gearbox for coupling and decoupling the drive unit and the driving wheels. A starting signal is received by a control unit. The control unit only starts the drive unit in response to the received starting signal when it is detected that the drive unit and the driving wheel arrangement are decoupled and/or that the motor vehicle is at a standstill. |
US10428780B2 |
Fuel injector mounting system for mounting an injector to an engine cylinder liner
Technology is provided for a fuel injector mounting system for mounting an injector to an engine cylinder liner. The system includes an injector adapter having an adapter body including a first end portion threaded for engagement with a cylinder liner and an injector port formed in the adapter body opposite the first end portion. The injector port includes a plurality of concentric bores configured to receive the proximal end portion of an injector. A flange extends transversely from the adapter body and a collar engages a portion of the injector and connects to the flange to retain the injector in the adapter. A transverse passageway extends through a sidewall of the adapter body and intersects the injector port and an annular fitting is disposed on the injector adapter for fluid communication with the transverse passageway. An injector support bracket attaches a distal end portion of the injector to the engine. |
US10428779B2 |
Fuel injector
A fuel injector for direct injection of fuel into a combustion chamber includes: a housing having at least one combustion chamber-side injection aperture; a linearly movable valve needle for opening and closing the injection aperture; a solenoid; an armature which is linearly movable by the solenoid; and a first sleeve attached to the armature. A first stop surface facing away from the combustion chamber is formed on the first sleeve, and a second stop surface facing the combustion chamber is formed on the valve needle, the first and second stop surfaces striking one another when the valve needle and/or the armature is/are moved linearly. |
US10428777B2 |
Fuel injection device
A fuel injection device that injects a liquefied gas fuel from an injection port to a combustion chamber of the internal combustion engine includes a passage forming member configured to define a fuel passage through which the liquefied gas fuel flows to the injection port, a temperature regulating unit configured to adjust a temperature of the liquefied gas fuel flowing through the fuel passage according to an operation state of the internal combustion engine, and a pressure regulating unit configured to adjust a pressure of the liquefied gas fuel flowing through the fuel passage according to the operation state of the internal combustion engine. |
US10428776B2 |
Fluid filter cartridge, fluid filter arrangement, and method for servicing a fluid filter arrangement
A fluid filter cartridge has a first filter element and a second filter element. The first and second filter elements are arranged consecutively along a longitudinal extension of the fluid filter cartridge. The first filter element has two opposite end faces, one of the end faces being covered by a connection end cap and the other end face being covered by a first end cap. The second filter element has an end face being covered by the connection end cap and another end face covered by a second end cap. At least one port is at the connection end cap in fluid communication with at least one of the first filter element and second filter element. A central axis of the connection end cap orthogonal to a main extension plane of the connection end cap is offset in relation to a central axis of the first end cap orthogonal to a main extension plane of the first end cap and/or a central axis of the second end cap orthogonal to a main extension plane of the second end cap. |
US10428775B2 |
No filter no run fluid filter with integration of low pressure fluid system
A no filter no run (NFNR) fluid filter and fluid filter assembly are provided. The NFNR fluid filter assembly includes a fluid filter, a filter head or filter housing, and a bypass flow path. The by-pass flow path may be sealed off when a compliant filter is installed (a filter without a bypass seal), fluid may flow to the bypass flow path. |
US10428773B1 |
Snorkel system
A snorkel system comprising: (a) a vehicle adapter configured to connect to a vehicle; (b) one or more air tubes configured to extend along an interior of an engine compartment of the vehicle; and (c) one or more angle adapters adapted to be located within the engine compartment of the vehicle, the one or more angle adapters fluidly connecting the vehicle adapter and the one or more air tubes together; wherein the one or more angle adapters include: an inlet opening located within a first plane, the inlet opening being located proximate to and in fluid communication with the vehicle adapter, and an outlet opening being in communication with a first end of the one or more air tubes, the outlet opening being located within a second plane that is spaced apart from and extends substantially parallel to the first angle adapter. |
US10428771B2 |
Vaporized-fuel processing apparatus
A vaporized-fuel processing apparatus includes an intake passage, a chamber, a first purge guide hole, and a second purge guide hole. The intake passage is defined by an intake manifold and a throttle body. The chamber communicates with the intake passage. The first purge guide hole is to guide vaporized fuel adsorbed in a canister toward the chamber. The second purge guide hole is to guide the vaporized fuel adsorbed in the canister toward the chamber. |
US10428770B2 |
Solenoid valve and method of controlling the same
The present disclosure provides a solenoid valve including: a valve body having an inlet through which a fluid is introduced, and a plurality of outlets through which the introduced fluid is discharged, and a variable switching device for discharging the fluid introduced from the inlet through a selected one of the outlets by a control unit. |
US10428766B2 |
Apparatus and method for filling LPG vehicle with LPG
An apparatus for filling a liquefied petroleum gas (LPG) vehicle with LPG may include an auxiliary chamber disposed in an LPG bombe of the LPG vehicle, an auxiliary injection line branched from a fuelling line extending to the LPG bombe from a fuel inlet port for connection to the auxiliary chamber, a solenoid valve mounted in the auxiliary injection line to selectively allow or block a flow of LPG to the auxiliary chamber, a temperature sensor to detect a temperature in the bombe, and a controller to control the solenoid valve to be opened when the temperature detected by the temperature sensor is equal to or higher than a critical temperature. |
US10428764B2 |
Deflection limiter for a cascade assembly of a thrust reverser
A cascade assembly of a nacelle for a turbofan engine includes a cascade concentrically disposed about an centerline, and a translating sleeve constructed and arranged to move between a forward position and an aft position along the centerline. A deflection limiter of the cascade assembly includes a first surface facing at least in-part in a radial direction and a second surface facing at least in-part in an opposite radial direction. The first surface is carried by one of the cascade and the translating sleeve and the second surface is carried by the other of the cascade and the translating sleeve. The first and second surfaces oppose one-another for limiting deflection when the translating sleeve is in the aft position and are spaced axially apart when the translating sleeve is in the forward position. |
US10428763B2 |
Controlling a relative position at an interface between translating structures of an aircraft nacelle
A nacelle is provided for an aircraft propulsion system. This nacelle includes a stationary support, a fanlet, a thrust reverser sleeve and an interface assembly providing an interface between the stationary support, the fanlet and the thrust reverser sleeve where the fanlet and the thrust reverser sleeve are respectively in stowed positions. The stationary support extends circumferentially about an axial centerline. The fanlet includes an inlet structure and a fan cowl. The fanlet is configured to translate axially along the centerline. The thrust reverser sleeve is configured to translate axially along the centerline. The interface assembly includes a pair of interlocking components, wherein a first of the interlocking components is mounted to the fanlet at the aft end of the fanlet. |
US10428760B2 |
Piston with thermally insulating insert and method of construction thereof
A piston for an internal combustion engine and method of construction thereof are provided. The piston includes an upper crown formed at least in part by a first metal material and a thermally insulating insert. The upper crown has an upper wall forming an upper combustion surface and a ring belt region. The upper combustion surface is formed at least in part by the thermally insulating insert. The thermally insulating insert has a base surface with pores extending upwardly therein. The first metal material is infused and solidified in the pores, with the first metal material forming a first bonding surface. The piston further includes a body portion formed from a second metal material. The body portion provides pin bosses having coaxially aligned pin bores and diametrically opposite skirt portions. The body portion has a second bonding surface bonded to the first bonding surface of the first metal material. |
US10428757B2 |
Fuel injection control device for internal combustion engine
A fuel injection control device for an internal combustion engine includes an electronic control unit configured to execute division processing for learning for dividing a requested injection amount into an injection amount of partial lift injection of an in-cylinder injection valve and a port injection amount of injection of a port injection valve, detect, on the basis of at least one of a terminal electric potential of a coil and a current flowing through the coil, an inflection point of a change in induced electromotive force of the coil in time attributable to a decline in a relative speed of a mover with respect to the coil, and correct the energization processing at a time when the partial lift injection is executed based on a timing of the detection of the inflection point. |
US10428756B2 |
Power-economy mode control system for a vehicle
The present invention is related to a vehicle provided with operation selection mode. In particular, the present invention is related to a common rail electronically controlled vehicle provided with operation selection mode wherein the user can select either of the power mode and the economy mode of vehicle operation depending on the road conditions. The system of the present invention provides a system to enable selection of power mode operation for power conscious driving requirement or economy mode operation for fuel conscious driving option obviating the use of additional interface devices between engine and engine control unit. |
US10428755B2 |
Control device for internal combustion engine
An ECU calculates peak-current arrival time (time elapsed before a detected current arrives at a target peak current), and calculates predetermined-current arrival difference time (time elapsed before the detected current becomes lower than a predetermined current after exceeding the predetermined current). The ECU uses a beforehand stored relationship between the predetermined-current arrival difference time and defined peak-current arrival time to calculate the defined peak-current arrival time corresponding to the latest predetermined-current arrival difference time. The ECU uses such defined peak-current arrival time to compare the latest peak-current arrival time with the defined peak-current arrival time (for example, calculates a difference between the peak-current arrival time and the defined peak-current arrival time), and thus determines a shift in detected current of a current detection circuit. |
US10428754B2 |
Inline sticky turbocharger component diagnostic device and system and method of using the same
A number of variations may include a product including an inline diagnostic device connected to a control status line at a position between an electronic control unit (ECU) and a turbocharger component actuator, the inline diagnostic device being constructed and arranged to intercept data being transmitted from the actuator to the ECU, and to process the data intercepted from the actuator to determine whether the components are binding or sticking, and to transmit a signal indicating that the components are binding or sticking. |
US10428753B2 |
Control device for internal combustion engine
An ECU avoids engine stall by putting a compressor into a stationary state in a case where the rotation speed of a crankshaft is equal to or less than a predetermined speed during an idle operation of an internal combustion engine. During the idle operation, the ECU calculates a total load torque applied to the crankshaft by the compressor and an alternator. The ECU calculates the maximum torque of the internal combustion engine during the idle operation based on a target speed during the idle operation. Then, the ECU raises the predetermined speed in a case where the value obtained by subtracting the load torque from the maximum torque is equal to or less than a predetermined value. |
US10428752B2 |
Method for determining the angular position of an engine
A method for determining the angular position of an engine by a crankshaft sensor, having the following steps: production by the crankshaft sensor of a signal exhibiting a “revolution” event, determination of the revolution out of two revolutions, since a crankshaft makes two revolutions per engine cycle for a four-stroke engine, for each “no tooth” event potentially produced, a change in the direction of rotation of the engine is suspected, and an analysis step is performed which comprises: if, during an inverse window, a further “no tooth” event is produced, the change in direction of rotation is confirmed. |
US10428750B2 |
Turbocharged internal combustion engine system
A control device estimates a leakage gas amount with respect to gas that leaks to an upstream side from a downstream side of a fresh air introduction valve when the fresh air introduction valve is closed. If the leakage gas amount is equal to or greater than a predetermined value when there is a request to open the fresh air introduction valve, a target opening degree of the fresh air introduction valve is determined based on the engine speed and intake pressure, and also a correction opening degree with respect to the target opening degree is calculated based on the leakage gas amount. The fresh air introduction valve is opened to an opening degree greater than the target opening degree by an amount corresponding to the correction opening degree, to thereby cause leakage gas that is accumulated in a fresh air introduction passage to flow into an intake passage together with a required amount of fresh air. |
US10428746B2 |
Method of controlling an operation of an inlet valve system and an inlet valve control system
A method of controlling an operation of an inlet valve system arranged in connection with each cylinder of an internal combustion piston engine, includes monitoring at least one parameter relating to engine load conditions, controlling using a primary control procedure an opening and closing timing of an inlet valve in response to the at least one parameter, and feeding charge air into the cylinder when the inlet valve is open. In a secondary control procedure a parameter relating to engine load conditions is measured and the closing timing of the inlet valve of the inlet valve system is controlled in response to the at least parameter independently from and with higher priority than the primary control procedure. |
US10428745B2 |
Charge motion control valve and intake runner system
A plural port intake manifold with outlets aligned along a common cylinder head plane and each intake port containing, a valve unit including a valve plate that is rotatable by a shaft along an axis of rotation recessed within an inner wall as well as a welded connection encircling each intake port upstream of the axis. The system may allow the use of a plate CMCV that can fully retract into the intake runner when not in use. |
US10428740B2 |
Twin shafts driving adjacent fans for aircraft propulsion
A propulsion system for an aircraft has at least two fans with each fan having a fan drive shaft. A turboshaft gas turbine engine drives each of the at least two fans. The turboshaft engine drives an output shaft which drives a gear to, in turn, engage to drive a gear on a first intermediate shaft extending from the turboshaft gas turbine engine in a rearward direction toward an intermediate fan drive shaft. The intermediate fan drive shaft drives the fan drive shaft, and the at least two first intermediate drive shafts extending over a distance that is greater in an axial dimension defined between the turboshaft gas turbine engine and the fan than it is in a width dimension defined between the at least two fans. |
US10428733B2 |
Turboprop air intake
A turboprop includes a rotary propeller upstream from an engine and an air intake that is not coaxial to the propeller, said air intake defining a conduit for supplying air to the engine and further defining a bypass to said conduit, the bypass having an outlet oriented substantially axially towards the downstream of the engine. The turboprop further includes a nacelle surrounding the engine and the air intake, wherein the air intake is secured to a housing of the engine and is not rigidly connected to the nacelle, so as to allow, during operation, relative movements between the air intake and the nacelle. The outlet is connected by a flexible link to an intake of an air circuit carried by the nacelle. |
US10428732B2 |
Rotor assembly for an open cycle engine, and an open cycle engine
A rotor assembly for an engine, comprising: a rotor, supported on bearings for axial rotation, a rotor portion forming a compression passage extending outwards from the axis, gases entering the rotor through inlets at the axis and flowing outwards through the compression passage; a combustion chamber supported within the compression passage near the maximum radius of the rotor having a closed outer end and combustion chamber gases inlets through which gases enter the combustion chamber, each combustion chamber having a fuel inlet, and; one or more expansion passages in fluidic connection with and extending radially inwards from the combustion chamber within a compression passage and fluidically connecting at or near the rotor axis to a combustion gas outlet tube that extends along the rotor axis, combustion gases created by combustion of fuel with inlet gases within the combustion chamber expanding as they flow inwards through the expansion passage. |
US10428726B2 |
Control apparatus for internal combustion engine
A control apparatus 1 for the engine includes an ECU. When the operating region of the engine is in the EGR execution region B, the ECU performs the EGR control (step 2), and performs first coolant temperature control for controlling an IC coolant temperature TWic such that the temperature of intake air passing through an intercooler exceeds a dew-point temperature (step 14). Further, in a case where the operating region of the engine is in the EGR stop region C, the ECU performs second coolant temperature control for controlling the IC coolant temperature TWic such that the temperature of intake air having passed through the intercooler exceeds the dew-point temperature, assuming that the operating region of the engine has shifted to the EGR execution region B (step 17). |
US10428722B2 |
Temperature management method for hybrid vehicle
A temperature management method for a hybrid vehicle which includes: a flow rate control valve controlling flow of coolant to an engine, a heater, a heat exchanger, and a radiator; and an exhaust heat recovery device coupled to the flow rate control valve via the heater, the exhaust heat recovery device performing heat exchange between the coolant received from the heater and exhaust gas received from the engine, and supplying the heat-exchanged coolant to the engine, includes: identifying whether the heater is on or off; and identifying at least one of an outside air temperature, a coolant temperature, or an oil temperature and operating the flow rate control valve in a flow stop mode to prevent the coolant of the engine from discharging. |
US10428719B2 |
Exhaust side block insert, cylinder block assembly including the same, and heat management system of engine including the same
A cylinder block assembly may include a cylinder block, a cylinder body disposed in the cylinder block, with a plurality of cylinder bores formed in the cylinder body, a fluid jacket, which is formed between an inner circumferential surface of the cylinder block and an outer circumferential surface of the cylinder body, and through which coolant flows, and a block insert disposed in the water jacket and configured to guide a flow of coolant, wherein the cylinder block may include a second block coolant outlet, which is formed at a second side in a surface of an exhaust side of the cylinder block, and through which the coolant in the water jacket is discharged, and wherein the exhaust side may include a side at which combustion gas is exhausted out of the cylinder body. |
US10428714B2 |
Control device and method for internal combustion engine
According to one aspect of the present invention, there is provided a control device for an internal combustion engine, in which an electric heating catalyst (EHC) having a catalyst support generating heat by energizing is provided to an exhaust passage. The control device includes a control unit configured to energize the support in the case where a rapid change in intake air flow is detected based on an intake air flow of the internal combustion engine or a correlation value of the intake air flow, so as to suppress any occurrence of a crack caused by an increase in difference in temperature between predetermined portions at the support during the rapid change in intake air flow. |
US10428713B2 |
Systems and methods for exhaust heat recovery and heat storage
An exhaust heat recovery system. The system includes a heat exchanger configured to transfer heat from engine exhaust to a heat transfer fluid. A reservoir is in fluid communication with the heat exchanger. A pump is configured to pump the heat transfer fluid out of the heat exchanger and into the reservoir, and in doing so displace air out of the reservoir to the heat exchanger, when temperature of the heat transfer fluid exceeds a predetermined temperature. |
US10428710B2 |
Injector having a reinforced spray disc
An injector for adding a liquid additive into an exhaust gas treatment apparatus includes at least one nozzle having a spray disc configured to inject the liquid additive into the exhaust gas treatment apparatus. The spray disc has: at least one spray duct, through which flow of the liquid additive can pass, the spray duct having an outlet opening configured to shape a spray jet of the liquid additive. The spray disc has a reinforcing structure arranged downstream of the outlet opening, the reinforcing structure being configured such that it is not wetted by the spray jet. |
US10428709B2 |
Method for heating an operating agent, as well as reservoir heating system and an operating agent heating system
A method for heating an operating agent for a rail vehicle, particularly for heating a reducing agent for the after-treatment of exhaust gas. A coolant liquid is pumped through a cooling circuit of the internal combustion engine by a pump when the operating agent heating system is in an operating mode and, also in the operating mode, the coolant liquid can be pumped through a main heating circuit by the pump in order to heat the operating agent in a reservoir. In a preheating mode, the main heating circuit for the operating agent is uncoupled in a substantially fluid-mechanical manner from the cooling circuit of the internal combustion engine. The cooling circuit functions as a first sub-circuit of a preheating circuit and the uncoupled main heating circuit functions as a section of a second sub-circuit of the preheating circuit. |
US10428707B2 |
Partial-flow diesel particulate filter using pressure regulated bypass
A system and method for particulate matter reduction. A diesel particulate filtration system includes an inlet, an outlet, an exhaust path between the inlet and the outlet, a diesel particulate filter positioned in the exhaust path between the inlet and the outlet, and a bypass valve, wherein the diesel particulate filtration system is configured to have a diesel engine operatively coupled to the inlet. The bypass valve being configured to open when a maximum allowable engine backpressure is exceeded. When the bypass valve is closed, exhaust gas including particulate matter passes through the diesel particulate filter. When the bypass valve is open, a portion of the exhaust gas passes through the diesel particulate filter and the remainder of the exhaust gas passes through the bypass valve and at least 40 percent of said particulate matter is removed from said exhaust gas. |
US10428704B2 |
Oil filter anti-rotation lock for an engine
An anti-rotation oil filter system to prevent inadvertent release of the oil filter from a lubrication system is provided. The system includes a ratchet gear attached to one of either the oil filter or the engine's oil filter attachment base. In both embodiments, a spring-loaded ratchet release pawl is provided to engage the ratchet and to thereby hold the filter in place against the attachment base until such time as the filter needs to be changed. Where the ratchet gear is fitted to the filter, a ratchet release pawl is associated with the engine's oil filter attachment base. The teeth of the ratchet ring gear extend outwardly from the filter. Alternatively, where the ratchet gear is fitted to the engine's filter attachment base, a ratchet release pawl is associated with the filter. Regardless of the embodiment, the ratchet gear and pawl arrangement restricts filter rotation to maintain clamp load. |
US10428700B2 |
Highly wear-resistant valve seat for use in internal combustion engine
A highly wear-resistant valve seat insert for an internal combustion engine, having a material composition in which hard-particles are uniformly and finely dispersed in the matrix phase, and which is excellent in wear-resistance and radial crushing strength, based on a blended fine powder and a matrix forming powder with a particle size approximately equal to that of the hard-particles so as to prevent the hard-particles from aggregating and thus coarsely dispersing as a hard-particle phase. |
US10428699B2 |
Pivot bearing of a hydraulic clearance compensation element
A pivot bearing (1) for a hydraulic clearance compensation element (2), especially of a valve train of an internal combustion engine, is provided in which the pivot bearing (1) has a first part (3) projecting in an axial direction (a) with a surface (4) that is convex at least in some sections and also a second part (5) with a surface (6) that is concave at least in some sections for at least partially holding the first part (3). To optimize the production of such a pivot bearing and to minimize the associated costs, the invention provides that the first part (3) is constructed at least partially as a ball, wherein the second part (5) surrounds the ball (3) with undercut in the axial direction (a). |
US10428697B2 |
Fluid diverter
A fluid diverter including a cylindrical body and an extension arm is provided. The cylindrical body defines a first fluid passage extending from a first axial end of the cylindrical body and a second fluid passage circumferentially offset from the first fluid passage and extending from a second axial end of the cylindrical body. A seepage orifice is defined in the cylindrical body providing a fluid communication path between the first axial end and the second axial end. The extension arm extends from the cylindrical body and includes a locating receptacle dimensioned to receive a fixing element to rotationally and axially fix the fluid diverter. |
US10428695B2 |
Combined cycle plant, device for controlling said plant, and method for starting up said plant
In a combined cycle plant, a device for controlling a combined cycle plant, and a method for starting up a combined cycle plant, the time for starting up the combined cycle plant can be shortened by providing: a gas turbine having a compressor, a combustor, and a turbine; a heat recovery steam generator for generating steam by means of the exhaust heat of exhaust gas from the gas turbine. A steam turbine is driven by the steam generated by the heat recovery steam generator; and a control device is configured to set a standby load for the gas turbine during a start-up continuously to change in accordance with a change in metal temperature of the steam turbine. |
US10428692B2 |
Turbine center frame fairing assembly
A fairing assembly is provided which is located between a frame hub and an engine casing. The assembly provides for use of a metallic structure in combination with a light weight low alpha material in order to improve engine efficiency and performance. Relative growth between the dissimilar materials is compensated for by a flexible bracket which provides biasing force on one of the assembly components in a cold engine condition as well as allowing for growth at the high temperature operating conditions of the engine. |
US10428690B2 |
Variable positioner
A variable positioner includes a body portion with a cylindrical component, and an axially aligned through hole in the body position. A threading protrudes radially inward from an inner surface of the axially aligned through hole. A first axial end of the variable positioner defines an interface surface for interfacing with a rotor arm. |
US10428689B2 |
Heat shield for a gas turbine engine
A subassembly of a gas turbine engine includes a heat shield and carrier subassembly for a turbine section are disclosed. The carrier includes support features to couple to an engine casing. The upstream end of the carrier includes a radially inward arm extending toward to an engine axis. The outer end of the radially floating heat shield is coupled to the radially inward arm via a pin-and-slot joint configured to allow movement of the heat shield relative to the radially inward arm of the carrier. In response to thermal expansion and contraction of the vane, the heat shield is configured to move radially outward and inward, respectively, relative to the radially inward arm to maintain contact with the outer platform of the vane. |
US10428687B2 |
Heat pipe in turbine engine rotor
The present disclosure is directed to a rotating component for a turbine engine. The rotating component defines a surface and includes a heat pipe positioned on the surface of the rotating component or within the rotating component. The heat pipe includes a working fluid and an outer perimeter wall. |
US10428686B2 |
Airfoil cooling with internal cavity displacement features
A turbine airfoil including a central cavity defined by an outer wall including pressure and suction sides extending between and joined at leading and trailing edges, and a chordal axis extends generally centrally between the pressure and suction sides. Rib structures located in the central cavity define radial central channels extending across the chordal axis. Radial near wall passages are defined between the rib structures and each of the pressure and suction sides of the outer wall. The radial near wall passages are each open to an adjacent central channel along a radial extent of both the near wall passages and the adjacent central channel to define a radial flow pass associated with each central channel. The flow passes are connected in series to form a serpentine cooling path extending in the direction of the chordal axis. |
US10428680B2 |
Magnetic sensor system for detecting abnormal movement in a gas turbine shaft
The present invention relates to a system (100, 300, 400) for detecting abnormal movement of a gas turbine shaft. The system comprises: a magnetic circuit (104, 302, 402) comprising a first magnetic portion (110, 304) and a second portion (112, 404), and including at least one air gap between the first portion and the second portion; and a detection coil (106) wound around the first magnetic portion. The second portion is coupled to or moveable with the shaft to reduce the air gap, on axial movement of the shaft to change the reluctance of the magnetic circuit and thereby induce a voltage in the coil. The system may comprise a controller (108) for shutting off power to the gas turbine when the induced voltage exceeds a threshold voltage. |
US10428679B2 |
Aero-actuated vanes
A turbomachinery vane includes a vane body defining a longitudinal axis, a trunnion extending from the vane body and defining a pivot point for pivoting the vane body about the longitudinal axis, and a lock system operatively connected to the trunnion and configured to lock the vane body in a plurality of locked positions. A gas turbine engine includes a turbomachinery component including a row of actuated stators, wherein the actuated stator row includes a plurality of the turbomachinery vanes. A method of actuating a vane by aerodynamic loads includes moving the vane about a pivot point from a first position to a second position by a first set of by aerodynamic loads. |
US10428678B2 |
Device of a turbomachine for actuating a setting device and turbomachine with such a device
A device of a turbomachine actuates a setting device to vary a flow cross-section of a flow channel of the turbomachine passable by a fluid flow. The device includes a displacement mechanism having an adjustable actuation appliance and couplable with the setting device, and a drive device for displacing the actuation appliance. The displacement mechanism has a centrifugal force appliance displaceable between a basic position and a maximally displaced working position depending on a number of revolutions of the drive device, wherein the actuation appliance is displaceable depending on the position of the centrifugal force appliance with respect to the drive device. A reset device applies a force to the centrifugal force appliance by which the centrifugal force appliance is pressed in the direction of its basic position. |