Document | Document Title |
---|---|
US10362715B2 |
Automatically cooling computer system components for safe servicing
Automatically cooling computer system components for safe servicing includes: determining that a target component of a plurality of components is to be serviced; and reducing temperature of one or more components of said plurality of components if such one or more components exceeds a threshold temperature and such one or more components are within a predefined area of the target component. |
US10362707B2 |
Reduced depth data storage assembly and rack server
A method of making a reduced-depth rack server includes: forming a tray structure of a carrier having a service panel attached to two opposed side panels and a bottom panel; inserting a longest dimension of a data storage device in a sideways orientation with at least one electrical connector of the data storage device proximate to a selected lateral panel; electrically connecting a first electrical connector of an interposer cable to the at least one electrical connector of the data storage device; and attaching a second electrical connector attached to one of the tray structure and the data storage device directed towards an insertion end of the data storage assembly in an orientation opposite to the service panel and aligned to electrically connect with a backplane of a reduced-depth rack server in response to the tray structure being inserted in a rack server chassis. |
US10362706B2 |
Server systems with hinge mechanisms
Examples herein relate to server systems with hinge mechanisms. In one example, a server system includes a first enclosure and a second enclosure, the first and second enclosure each include a front end and a back end disposed opposite to each other, the front end having an opening. The server system further includes a hinge mechanism, the hinge mechanism connecting an upper edge of the back end of the first enclosure to an upper edge of the front end of the second enclosure. The first enclosure is adapted to rotate around the hinge mechanism. |
US10362703B2 |
Electric motor inverter
An electric motor inverter includes at least one DC-link capacitor that has contacting layers. The electric motor inverter also includes circuit breakers which are mounted on at least one substrate, and capacitor connecting plates which are attached with first sections to the contacting layers. Second sections of the capacitor connecting plates which are arranged opposite the first sections are attached to the at least one substrate. |
US10362698B2 |
Method and system for environmental sealing of electrical enclosures
As described herein, an electrical enclosure is sealed against environmental contamination. An enclosure cabinet has an interior space. The interior space is accessible through an opening. A door or cover selectively closes the opening. The enclosure cabinet is manufactured of numerous parts and has holes, joints, gaps, seams and/or fasteners. Electrical control devices are mounted in the cabinet. A thick-film elastomeric coating is on an outer surface of the cabinet. The coating has a thickness of at least 0.6 mm to provide a monolithic bridging layer over holes, joints, gaps, seams and/or fasteners to prevent environmental contamination from penetrating the cabinet. |
US10362697B2 |
Support for a mobile electronic device
A support for a mobile electronic device which includes a rigid elongated base strip approximately a length of a mobile electronic device. The base strip is longer than wide and has a first end, a second end, an upper surface, and a lower surface. An elongated layer of material, having upwardly projecting micro-suction cups, is secured to the upper surface of the base strip. According to a first aspect, a rigid support member is provided that, when in an operative position, extends substantially vertically from the upper surface at the second end of the base strip. According to a second aspect, an attachment band is provided that enables the base strip to be mounted to a human hand. |
US10362692B2 |
Encapsulated electrical device and method of fabrication
In one embodiment a device may include an electrical assembly having at least one electrical component; an inner shell comprising a first polymeric material conformally disposed around the electrical component, the inner shell comprising a first mechanical strength; and an outer shell comprising a second polymeric material conformally disposed around the inner shell, the outer shell comprising a second mechanical strength greater than the first mechanical strength, wherein the electrical component comprises a first coefficient of thermal expansion (CTE), the inner shell comprises a second CTE, and the outer shell comprises a third CTE, and wherein a difference between the first CTE and second CTE is less than a difference between the first CTE and third CTE. |
US10362683B2 |
Printing method using two lasers
The invention relates to a laser printing method that includes the following steps: (a) the provision of a receiver substrate (4); (b) the provision of a target substrate (5) comprising a transparent substrate (50) one surface of which has a coating has a coating (51) constituted of a solid metal film; (c) the localized irradiation of the said film (51) through the said transparent substrate (50) by means of a first laser (6) in order to reach the melting temperature of the metal in a target zone of the said film which is in liquid form; (d) the irradiation of the said liquid film through the said transparent substrate by means of a second laser on the said target zone defined in the step (c), in order to form a liquid jet in the said target zone and bring about the ejection thereof from the substrate in the form of molten metal; (e) the depositing on the receiver substrate of a molten metal drop over a defined receiving zone, with the said drop solidifying upon cooling. |
US10362681B2 |
Flexible circuit electrode array and method of manufacturing the same
A method for manufacturing a flexible circuit electrode array adapted to electrically communicate with organic tissue including the following steps: a) providing a flexible polymer base layer; b) curing the base layer; c) depositing a metal layer on base layer; d) patterning the metal layer and forming metal traces on the base layer; e) roughening the surface of the base layer; f) chemically reverting the cure of the surface of the base layer; g) depositing a flexible polymer top layer on the surface of the base layer and the metal traces; h) curing the top layer and the surface of the base layer forming one single flexible polymer layer; and i) creating openings through the single layer to the metal trace layer. |
US10362679B2 |
Lamp comprising a flexible printed circuit board
The present invention relates to a lamp (1) comprising at least two solid state light sources (9), a envelope (2) comprising a light transmittable surface (3) adapted to transmit light from the solid state light sources, a heat sink (4) extending from inside the envelope to the outer surface of the envelope such that it divides the envelope into at least two compartments (16), and a flexible printed circuit (7) at which the solid state light sources are mounted. The flexible printed circuit is attached to the heat sink such that the solid state light sources are distributed in both of the compartments. The present invention is advantageous in that manufacturing, and in particular assembly, of the lamp is facilitated since the number of components to assemble is reduced and the need of soldering (e.g. of wires to circuit boards) is reduced. |
US10362678B2 |
Crystal packaging with conductive pillars
A packaged module for use in a wireless communication device has a substrate supporting a crystal assembly and a first die that implements at least a portion of a radio frequency baseband subsystem. The crystal assembly, positioned between the first die and the substrate, includes a crystal, an input terminal configured to receive a first signal, an output terminal configured to output a second signal, a conductive pillar, and an enclosure configured to enclose the crystal, where the conductive pillar is formed at least partially within a side of the enclosure and extends from a top surface to a bottom surface of the enclosure. The conductive pillar conducts a third signal distinct from the first and second signals. |
US10362676B1 |
Substrate and electronic device
Provided is a substrate including a first wiring layer coupled to another wiring layer through a plurality of vias, wherein in the first wiring layer, an area of a first region except an aperture is greater than an area of a second region except an aperture, the first region being enclosed by a first line segment passing through a first connection part of a first via and being parallel to a first short side of the first wiring layer and a second line segment passing through a second connection part of a second via and being parallel to the first short side, the second region being enclosed by the second line segment and a third line segment passing through a third connection part of a third via and being parallel to the first short side, the first, second, and third connection parts connecting to the first wiring layer. |
US10362674B2 |
Electronic module power supply
Power may be supplied to an electronic module according to various techniques. In one general implementation, for example, a system for supplying power to an electronic module may include a printed circuit board, the electronic module, and a conductive foil. The board may include a number of contact locations on a first side, with at least one of the contact locations electrically coupled to a via to a second side of the board. The electronic module may be electrically coupled to the contact locations on the first side of the board and receive electrical power through the at least one contact location electrically coupled to a via. The foil may be adapted to convey electrical power for the electronic module and electrically coupled on the second side of circuit board to at least the via electrically coupled to a contact location that receives electrical power for the electronic module. |
US10362670B2 |
Fabric signal path structures for flexible devices
An electronic device such as a cover for a portable device may be provided with a body having hinge portions. The hinge portions may allow the body to bend about one or more bend axes. The cover may have electrical components such as a keyboard. A keyboard may be mounted at one end of the cover and a connector may be mounted at an opposing end of the cover. A flexible fabric signal path structure may be formed from metal traces on a flexible fabric substrate. At one end of the cover, the flexible fabric signal path structure may be coupled to a printed circuit in the keyboard using conductive adhesive. At the opposing end of the cover, the metal traces on the flexible fabric substrate may be coupled to the connector. |
US10362665B2 |
Methods and apparatus for optical metrology
Methods and apparatus for generation of radiation by high harmonic generation, HHG. The apparatus comprises: a chamber for holding a vacuum, the chamber comprising a radiation input, a radiation output and an interaction region at which, in use, a medium is present, the chamber being arranged such that, in use, when driving radiation propagates through the radiation input and is incident upon the medium, the medium emits radiation via HHG, the emitted radiation propagating through the radiation output; and at least one plasma generator at the radiation input and/or the radiation output for generating a plasma volume allowing the driving radiation and emitted radiation, respectively, to propagate through the plasma volume. |
US10362661B2 |
Load control adjustment from a wireless device
A wearable wireless device may be configured for control of a parameter of a load control device. The load control device may be responsive to a network device, for example, to provide fine tune adjustment of the parameter. The wearable wireless device may include a touch-responsive visual display for displaying feedback of the parameter of the load control device. The visual display may be configured to be actuated to receive a user input to adjust the parameter of the load control device. An actuation of the visual display of the wearable wireless device may adjust the parameter by a greater percentage than the fine tune adjustment provided by the network device. |
US10362660B2 |
Lighting control system and lighting control method
A lighting control system includes: a plurality of control devices each assigned with a unique identifier; a plurality of lighting devices controlled by one or more control devices among the control devices; and an operating device that collectively turns the lighting devices on or off. Each control device includes a transmitter that transmits the unique identifier or a control command including the unique identifier, to the lighting devices. Each lighting device includes: a receiver that receives the unique identifier or the control command from each of the one or more control devices; a storage that stores the unique identifier received by the receiver, in response to a predetermined operation on the operating device; and a controller that performs operation control according to the control command when the unique identifier included in the control command and the unique identifier stored in the storage are identical. |
US10362654B2 |
Lighting apparatus
A lighting apparatus includes first and second light emitting areas, a color temperature controller, and a balance circuit. The first light emitting area includes first light-emitting arrays connected in series and outputs light of a first color temperature. The second light emitting area includes second light-emitting arrays connected in series and connected to the first light emitting area in parallel. The second light-emitting arrays output light of a second color temperature different from the first color temperature. The color temperature controller is selectively connected to at least one of an input node of the first light emitting area and an input node of the second light emitting area. The color temperature controllers determines an on/off state of the first and second light emitting areas. The balance circuit is connected to at least one of the first and second light emitting areas in series. |
US10362644B1 |
Flyback converter with load condition control circuit
A driver circuit includes a load control circuit for supplementing a light emitting diode (LED) load in a low load condition. The low load condition corresponds to an output voltage across the LED load below a predetermined threshold voltage. The driver circuit includes an isolation transformer. A primary side circuit is coupled to a primary winding of the isolation transformer and includes a constant current control integrated circuit (IC) and a switch. The constant current control IC controls an output current to the LED load. A load control circuit is coupled to across the LED load and includes an auxiliary load which ensures that the isolation transformer operates in a continuous mode. The auxiliary load supplements the LED load with in a low load condition, but not in a high load condition. The auxiliary load may be configured to quickly discharge an output capacitor in a power off condition. |
US10362637B2 |
Integrated heater and sensor system
The present disclosure provides a thermal system that includes an array of heating resistor circuits having first termination ends and second termination ends, and a plurality of nodes connected to the heating resistor circuits at the first and second termination ends. The thermal system further includes power wires to provide power to the heating resistor circuits and signal wires to sense a temperature of each of the heating resistor circuits. Each node is connected to a power wire and to a signal wire, and a number of heating resistor circuits is greater than or equal to a number of power wires and to a number of the signal wires. |
US10362635B2 |
Method and apparatus for reporting dual mode capabilities in a long term evolution network
An apparatus for communicating with a Long-Term Evolution LTE network comprises a wireless communications module operable in a Frequency Division Duplexing FDD mode and a Time Division Duplexing TDD mode, the apparatus having different capabilities in the FDD and TDD modes. The apparatus sends capability information related to capabilities and/or feature groups supported by the apparatus to the network, the capability information including a legacy part and an extension part such that a legacy LTE node can comprehend the capability information from the legacy part and not from the extension part. The extension part is included in an existing User Equipment Evolved Universal Terrestrial Radio Access UE-EUTRA-Capability Information Element, or is separate to the UE-EUTRA-Capability Information Element. A Radio Access Network RAN node for use in the LTE network is also disclosed, the node being arranged to identify different capabilities and/or feature groups supported by the apparatus in the FDD and TDD modes based on the capability information. Methods for use in the apparatus and node are also provided. |
US10362634B2 |
Communication control method
In a communication control method according to a present embodiment, at least one radio terminal of a first radio terminal and a second radio terminal discoveries the other radio terminal by executing a discovery for discovering a proximal terminal. The at least one radio terminal reports, to a network apparatus that the other radio terminal is discovered. The network apparatus requests, while the first radio terminal is located within a coverage of a cell, at least one of the first radio terminal and the second radio terminal to make a preparation for executing a relay by the second radio terminal by utilizing a proximal service. |
US10362633B2 |
Method and system for communicating between private mesh network and public network
A wireless communication system includes a first wireless network having first nodes each assigned a unique first address, a second wireless network having second nodes each assigned a unique second address, a border router node constituting an interface between the second network and a third wireless network, and at least one access point constituting an interface between the first and third networks. At least one of the first nodes is a mesh router node in the first network and a border router node in the second network (MR/BR node). The MR/BR node has unique addresses respectively assigned in the first and second networks. The MR/BR node receives a communication in the first network and transmits it to at least one second node in the second network. The MR/BR node receives a communication in the second network and transmits it to at least one first node in the first network. |
US10362632B2 |
Architecture for radio access network and evolved packet core
As radio access network (RAN) architecture evolves and evolved packet core deployments get more distributed, there is an opportunity to provide significant optimizations of latency and processing. Certain embodiments can provide these and other benefits using vertical aggregation of radio access network and evolved packet core functionalities. A method can include operating a network element as a per-user-equipment control plane entity. The method can also include operating the network element as a first user plane entity (for example, a per-user-equipment user plane entity). The method can further include operating the network element as a second user plane entity. The method can additionally include operating the network element as a per-cell control plane entity. The method can also include operationally interconnecting the per-user-equipment control plane entity, the first user plane entity, the second user plane entity, and the per-cell control plane entity via interfaces. |
US10362623B2 |
Apparatus and method for paging overlap mitigation
An apparatus and a method. The apparatus includes a first subscriber identity module (SIM); a second SIM; a dual SIM resource controller (DSRC) connected to the first SIM and the second SIM; and a radio frequency (RF) communication entity connected to the DSRC, wherein the DSRC performs one of scheduling a first paging preparation period of the first SIM prior to a second paging preparation period of the second SIM and re-attempting by the first SIM an RF request for the RF communication entity after an initial RF request for the RF communication entity is not granted. |
US10362619B2 |
UE initiated service-driven end-to-end bearer data path modification
According to an aspect, an existing end-to-end bearer data path of communication between a wireless device and an endpoint in a core network is modified. The wireless device receives parametric information identifying respective service capabilities of network nodes in the core network that are available for forming alternate end-to-end bearer data paths of communication between the wireless device and the endpoint. The parametric information is used to determine that a more favorable end-to-end bearer data path of communication between the wireless device and the endpoint is available. The more favorable end-to-end bearer data path has a more favorable service capability in the core network as compared to the existing end-to-end bearer data path. The wireless device requests a path modification from the existing end-to-end bearer data path to the more favorable end-to-end bearer data path. |
US10362617B2 |
Method and system for a mobile communication device to access services
A method and a system for accessing through a second mobile telecommunication network to services offered by a first mobile telecommunication network comprising the steps of: establishing a first communication channel with the second network, based on a secondary SIM card; establishing a second communication channel with the first network using the first communication channel, wherein a user of the mobile communication device is authenticated using a primary SIM card; registering, through the second communication channel, the user of the mobile communication device into the first network using the information stored in the primary SIM card; and accessing from the mobile communication device to services offered by the first network through the second communication channel. |
US10362614B2 |
Authentication and pairing of devices using a machine readable code
An MR code is generated within a browser on a client device and is read by a mobile application on a mobile device. A communication channel is then established through a web-based service, between the browser and the mobile application on the mobile device. The mobile application generates a user interface display on the mobile device that allows user selection of content. The mobile application sends a link to that content to the browser, which accesses and renders the content on the client device. User input commands to control the rendered content are also received at the mobile device and sent to the browser through the communication channel. |
US10362612B2 |
Virtual private networking based on peer-to-peer communication
Methods and systems for enabling multiple mobile devices to access an access gateway when at least one of the multiple mobile devices is unable to establish a virtual private network connection with the access gateway are described herein. For example, in some embodiments, a mobile device may configure itself as a member of a mesh network. A virtual private network connection may be established between the mobile device and the access gateway. The mesh network may include one or more other member devices that are unable to establish a virtual private network with the access gateway. After completing its configuration, the mobile device may receive, over a peer-to-peer connection of the mesh network, data that is intended for the access gateway and that is from one of the other member devices. The mobile device may transmit the data to the access gateway via the virtual private network connection. |
US10362608B2 |
Managing wireless client connections via near field communication
Systems and methods for automatically obtaining WiFi profile data from an NFC device are provided. According to one embodiment, a client security application obtains a WiFi profile of a WiFi network via a near-field communication (NFC) device of the WiFi client device and establishes a WiFi connection with the WiFi network using the WiFi profile. |
US10362607B2 |
Wireless communication method, enode B and user equipment with coverage enhancement (CE) level selection
Provided are wireless communication methods, an eNB and a UE. A wireless communication method with coverage enhancement performed by an eNB comprises transmitting one or more MAC RARs to one or more UEs in response to receiving one or more random access preambles (RA-preambles) from the one or more UEs, wherein the transmitting is able to be performed by a first manner in which the MAC RAR(s) in response to the RA-preamble(s) belonging to one RA-preamble set corresponding to one CE level are carried by a PDSCH which is scheduled by a first PDCCH scrambled by a set-specific RNTI, and the set-specific RNTI is related to the set index of the one RA-preamble set. |
US10362606B2 |
Resource allocation for uplink multi-user transmission in WLAN
Improved uplink multi-user (UL MU) resource allocation is proposed. For the UL MU scheduling information of trigger frame, N (N>1) bits indicate allocated resource unit (RU) in unit of 26-tone RU, 52-tone RU, 106-tone RU, 242-tone RU, 484-tone RU and 996-tone RU in 80 MHz, and indicates the allocated RU in 80+80 MHz. The UL MU scheduling information of a multi-user request-to-send (MU-RTS) frame indicates an allocated channel corresponding to ‘242*M’-tone RU with a same bit pattern as the N bits of the first UL MU scheduling information, wherein ‘M’ is an integer greater than 0. |
US10362601B2 |
Information processing device
To efficiently use radio resources.An information processing device is an information processing device that receives a packet transmitted from another information processing device using wireless communication. The information processing device is an information processing device that includes a control unit. The control unit included in the information processing device performs control such that one packet detection condition is selected to be used from a plurality of packet detection conditions in regard to a plurality of packets transmitted from the other information processing device using wireless communication. The control unit included in the information processing device performs control such that one reception operation is selected to be performed from a plurality of reception operations in regard to a plurality of packets transmitted from the other information processing device using wireless communication. |
US10362597B2 |
Periodic uplink grant alignment in a cellular network
A node (100, 200) of a cellular network controls sending of first uplink grants to a communication device (10). The first uplink grants indicate first uplink radio resources allocated to the communication device (10) and are sent in response to receiving scheduling requests from the communication device (10). Further, the node (100, 200) controls sending of second uplink grants to the communication device (10). The second uplink grants indicate second uplink radio resources allocated to the communication device (10) and are sent according to a configured periodicity. Depending on a periodicity of opportunities for transmission of the scheduling requests by the communication device (10) and the configured periodicity of sending the second uplink grants, the node (100, 200) controls an alignment of the sending of the second uplink grants with respect to the opportunities for transmission of the scheduling requests. |
US10362595B2 |
Method for transmitting uplink control channel in wireless communication system and device therefor
A method for transmitting an uplink control channel for a terminal configured to support multiple transmission time interval (TTI) lengths in a wireless communication system according to an embodiment of the present invention is performed by the terminal and may comprises the steps of: receiving a first physical downlink shared channel (PDSCH) according to a first TTI length at a first time point; receiving a second PDSCH according to a second TTI length differing from the first TTI length at a second time point; and when TTIs for transmitting uplink control channels for the received first PDSCH and second PDSCH overlap, transmitting uplink control information for the first PDSCH and second PDSCH on a physical uplink control channel (PUCCH) having the shorter TTI length among the first TTI length and the second TTI length. |
US10362586B2 |
System and method for spatial reuse in directional random access
A method for channel reservation and communication using carrier sense multiple access (CSMA) with directional antennas in a wireless network. A source station (STA) may transmit a directional request to send (RTS) frame to a destination station before a data transmission. Upon receipt of the RTS frame, the destination STA may transmit a transmit network allocation vector (TNAV) frame instructing receiving stations not to perform transmissions toward the destination STA for a predefined period of time, which may include a channel quality measurement (CQM) period. The destination STA may transmit a directional clear-to-send (CTS) frame when channel quality estimated during the CQM meets a criterion. The source STA may then transmit a directional data transmission to the destination STA upon receipt of the CTS frame. |
US10362581B2 |
Communication system for alleviating interference arising due to coexistence
A communication apparatus is disclosed, which comprises a base station module and an access point module for providing wireless connectivity to a communication network to at least one mobile communication device; an interface for coupling the base station module and the access point module for performing at least one of: a channel restriction operation; a power restriction operation; an intelligent uplink scheduling operation; a carrier frequency reselection operation; and a traffic steering operation; whereby alleviating an interference arising due to coexistence of the base station module and the access point module. |
US10362575B2 |
Techniques for configuring uplink transmissions using shared radio frequency spectrum band
Techniques for wireless communications over a shared radio frequency spectrum band, may include techniques for transmitting uplink data transmissions using allocated uplink resources. Allocated uplink resources may include an uplink channel comprising a number of allocated interlaces of resource blocks (RBs) for use by a user equipment (UE). An incoming data stream may be processed and data separated into each of the allocated interlaces of RBs for the UE. Such separation may be through demultiplexing the data stream to obtain data for the allocated interlaces of RBs. The demultiplexed data may be mapped onto associated resource elements associated with the allocated interlaces of RBs, and transmitted. Different types of uplink channels, such as a physical uplink control channel (PUCCH), physical uplink shared channel (PUSCH) and/or a physical random access channel (PRACH) may be allocated to interlaces of RBs in one or more subframes of a transmitted radio frame. |
US10362574B2 |
Uplink resource allocation techniques for shared radio frequency spectrum
Disclosed techniques provide for different uplink resource allocation schemes in transmissions that use different shared radio frequency spectrum bands. In some cases, the different shared radio frequency spectrum bands may have different transmission characteristics or parameters, and associated resource allocation schemes may be selected to provide transmissions that are more likely to comply with the transmission characteristics or parameters associated with a particular band. In some cases, resource allocation types may be identified based on one band and mapped to identify uplink resources for an uplink transmission on a different shared radio frequency spectrum band. |
US10362573B2 |
Method and system for multi-protocol transmissions
Methods and systems for multi-protocol transmissions in shared spectrum are disclosed. According to principles described herein, a wireless transmitter is configured to generate subcarriers or symbol information from one OFDM technology using subcarriers of another OFDM technology. With this approach, a wireless transmitter configured to transmit OFDM symbols using subcarriers and a subcarrier frequency spacing associated with one OFDM protocol can also be configured to transmit OFDM symbols associated with another OFDM protocol which normally uses different subcarriers and a different subcarrier frequency spacing. In one application, an LTE transmitter uses LTE subcarriers to generate 802.11 (e.g. Wi-Fi) subcarrier or symbol information that can be understood by Wi-Fi receivers, for example to reserve the channel for a certain duration, to indicate a transmission time associated with an on-going and/or upcoming symbol transmission or to create a carrier sense indication, for example, to cause Wi-Fi receivers and other radio technologies to consider the channel as busy. |
US10362564B2 |
Communication system, mobile station, base station, response decision method, resource configuration decision method, and program
It is possible to solve the problem that a downstream control information amount is significantly increased if allocation information is periodically reported because no allocation method of a default E-DCH resource configuration is defined for a preamble signature. A base station and a mobile station decide a default resource configuration by using a total number of resource configurations or a value obtained from the total number. |
US10362560B2 |
Multimedia broadcast multicast communication method, apparatus, and system
The embodiments of the present invention relates to a multimedia broadcast multicast communication method, an apparatus, and a system. The method includes: receiving, by a base station, first indication information at a first time, where the first indication information instructs the base station to suspend transmitting service data in a multimedia broadcast multicast service MBSFN manner; and sending, by the base station, second indication information to user equipment UE according to the first indication information, so that the UE suspends, at a second time according to the second indication information, receiving the service data in the MBSFN manner. The first time is earlier than the second time, and duration between the first time and the second time is less than a multicast control channel MCCH modification period. The user equipment is notified in a more timely manner to suspend transmitting the service data in the MBSFN manner. |
US10362558B2 |
Paging for longer paging cycles
A radio network node receives a page request from a core network node. The page request indicates to page a wireless communication device. The radio network node determines a next occurrence of a monitoring window during which the wireless communication device will monitor a paging channel associated with the radio network node. If the amount of time until the next occurrence of the monitoring window exceeds an amount of time that the radio network node can store the page request, the radio network node discards the page request and sends a response to the core network node indicating that the page request was discarded; the response includes a paging timer value that indicates when the core network node should repeat the page request. |
US10362556B2 |
Messaging scheme for positioning
A method of providing position assistance to a UE, the method comprising providing, by a location server, at least one unsolicited message, each message comprising one of data selected from a list comprising GNSS ephemeris assistance data, GNSS acquisition assistance data, OTDOA assistance data and eNB position data for a predefined area. |
US10362555B2 |
Cellular telecommunications network
This disclosure provides a method of calculating a distance between a first and second base station in a cellular communications network, and a base station for performing said method, the method including a first base station periodically measuring a power of received signals from a second base station; the first base station identifying a first and second most frequent power of received signals in the periodic measurements; and the first base station determining a distance to a second base station based on the identified first and second most frequent power. |
US10362554B1 |
Location-based access point module control
Apparatus and method relating to wireless communication access points are described. In one embodiment an apparatus including one or more antennas to function as an access point for wireless communication is described. In some cases the apparatus or methods may include determining location information and/or one or more operating characteristics of one or more wireless communication access points. |
US10362553B2 |
Determining location of wireless-enabled device
An example method is provided in according with one implementation of the present disclosure. The method comprises generating a base image representing a location of a wireless-enabled device with data from a plurality of wireless beacons and generating an image fingerprint for the location of the wireless-enabled device by using the base image. The method further comprises comparing the image fingerprint for the location of the wireless-enabled device with a plurality of existing image fingerprints associated with the plurality of wireless beacons, and determining a location of the wireless-enabled device based on the comparison. |
US10362549B2 |
Method and apparatus for setting up interface between access points
Embodiments of the present invention provide a method and an apparatus for setting up an interface between access points, where a first AP receives measurement information reported by at least one station associated with the first AP, to learn an AP identifier of a second AP having a capability of supporting an AP2AP interface, determines an AP identifier of a candidate AP according to interface information in the measurement information, and sends, to the candidate AP by using an AC, a first request message requesting an IP address used for setting up a communications interface between APs, the candidate AP sends, by using the AC, a response message to the first AP according to the first request message, and the first AP determines, according to the response message, whether to set up an AP2AP communications interface with the candidate AP that sends the response message. |
US10362548B2 |
Synchronization signal transmission method and apparatus
The present disclosure relates to the mobile communications field, and in particular, to a synchronization signal sending method. A network device obtains a first signal after performing discrete Fourier transform (DFT) and orthogonal frequency division multiplexing (OFDM) modulation, or OFDM modulation on a Zadoff-Chu (ZC) sequence whose root index is 1. The network device obtains a second signal after performing DFT and OFDM modulation, or OFDM modulation on a conjugate sequence of the ZC sequence whose root index is 1. The network device generates a synchronization signal, where the synchronization signal includes the first signal and the second signal. The network device sends the synchronization signal to a terminal device. |
US10362546B2 |
Preamble synchronization signal in unlicensed frequency band
An eNB transmits a preamble signal including synchronization information before transmitting data in an unlicensed band where the synchronization information is in accordance with a licensed frequency band communication standard used in a primary cell (Pcell) provided by the eNB. The preamble signal is transmitted in accordance with a timing structure used in the Pcell using the licensed frequency band. The eNB provides a secondary cell (Scell) that has a service area that at least partially overlaps with a service area of the Pcell. The preamble signal provides synchronization information to a user equipment (UE) device for the Scell. |
US10362536B2 |
Dynamic connection path detection and selection for wireless controllers and accessories
Controllers can communicate with accessories using various paths, such as a wireless communication path. A controller can maintain reachability information for each accessory indicating the path(s) via which the accessory is currently reachable. Maintaining the reachability information can include scanning to detect broadcasts from the accessories and updating the reachability information based on the results of scanning. Scanning parameters such as scan interval and scan duration can be selected dynamically based on the current operating context of the controller (e.g., where the controller is located, what processes are active on the controller, what other devices have been detected within communication range of the controller). |
US10362535B2 |
System and method for push-to-talk (PTT) key one-touch calling
A system and method for push-to-talk (PTT) key one-touch calling is provided. In an embodiment, a client device accesses a discontinuous reception (DRX) mode policy. The DRX mode policy is in accordance with push-to-talk (PTT) usage patterns of at least the client device. The client device selects a DRX cycle time based on the DRX mode policy. The client device applies the DRX cycle time to a cellular network interface of the client device. |
US10362534B2 |
Access point handover method in wireless communications, network control node, and user equipment
Embodiments of the present invention relate to an access point handover method in wireless communications, a network control node, and user equipment. The method includes: when user equipment is handed over to a target base station, obtaining AP information of a target AP having an association relationship with the target base station; and sending a first indication message to the user equipment, where the first indication message includes the AP information, and the first indication message is used to instruct the user equipment to perform AP handover according to the AP information. |
US10362527B2 |
Selectively providing access to network services based on frequency band information
A device may receive a request to access a network service from a user equipment (UE) roaming on a visiting public mobile network (VPMN). The device may receive UE radio frequency (RF) band information that identifies a UE supported set of RF spectrum bands, and may receive VPMN RF band information that identifies a VPMN supported set of RF spectrum bands. The device may determine whether to permit or deny access to the network service based on the UE RF band information and the VPMN RF band information, and may provide an instruction to permit or deny access to the network service based on the UE RF band information and the VPMN RF band information. |
US10362525B2 |
Apparatus, system and method of relay backhauling with millimeter wave carrier aggregation
Some demonstrative embodiments include devices, systems and methods of relay backhauling with millimeter wave carrier aggregation. For example, a first Relay Node (RN) may include a cellular transceiver configured to communicate with a Donor evolved Node B (DeNB) over a cellular frequency band of a Primary cell (PCell); a millimeter-wave (mmWave) transceiver to communicate with a second RN via a backhaul link over a mmWave frequency band of a Secondary cell (SCell) within the PCell; and a controller to process a Relay-Physical-Downlink-Control-Channel (R-PDCCH) message received by the cellular transceiver over the cellular frequency band of the PCell, the R-PD-CCH message including cross-carrier scheduling information to schedule a downlink allocation over the backhaul link, the controller to trigger the mmWave transceiver to receive a downlink data packet from the second RN during the downlink allocation. |
US10362524B2 |
Network apparatus and user terminal
eNB 200 controls wireless connections established by UE 100-1 with other communication apparatuses. The eNB 200 performs control such that number of the wireless connections established by the UE 100-1 is equal to or less than a connection allowance number indicating an upper limit number of the wireless connections allowed to the UE 100-1. |
US10362517B2 |
Distributed handoff-related processing for wireless networks
Provided is a process, medium, or system including using block chain as a distributed routing environment for contract based handoff to route streaming data to edge-based data centers. |
US10362515B2 |
Information obtaining method and apparatus based on unlicensed cell
Embodiments of the present invention relate to the field of communications technologies and disclose an information obtaining method and apparatus based on an unlicensed cell (Uscell). On an unlicensed cell, precision of obtained Uscell information is significantly improved, so as to enable a base station to complete addition and deletion of a Uscell. A specific embodiment of the present invention includes: obtaining detection indication information, where the detection indication information is used to instruct to identify a Uscell and/or instruct to measure a reference signal corresponding to the Uscell, then, performing detection according to the detection indication information, and reporting a detection result to a base station. Technical solutions provided in the present invention are mainly applied to an information obtaining process of the Uscell. |
US10362512B2 |
Method and apparatus for setup of a circuit switched call during circuit switched fallback
A method, at a user equipment (‘UE’), the method: sending a request to a first network for Circuit Switched Fallback (‘CSFB’); receiving, responsive to the request, redirection information; acquiring a second network based on the redirection information; initiating establishment of Circuit Switched (‘CS’) voice radio bearers with the second network; waiting for a predetermined event to occur; after the predetermined event has occurred, establishing a Packet Switched (‘PS’) connection with the second network. Further, a method, at a network element, the method receiving a request for Circuit Switched Fallback (‘CSFB’) from a user equipment (‘UE’); sending, to the UE, redirection information; receiving a Routing Area Update (‘RAU’) message from the UE; waiting for a predetermined event to occur; upon the predetermined event occurring, responding to the RAU message. |
US10362511B2 |
Method and apparatus for determining PDU session identity in wireless communication system
Disclosed are a method and apparatus for determining a PDU session identity in a wireless communication system. A method for determining, by a session management function (SMF) node, a packet data network (PDU) session identity during handover of user equipment (UE) in a wireless communication system, may include receiving a request message for requesting the establishment of a PDU session for the UE from an access and mobility management function (AMF) node, wherein a handover for the UE from a first wireless communication system to a second wireless communication system has been determined, determining a PDU session identity for the PDU session established for the UE when the request message is received, and sending a response message including the determined PDU session identity to the AMF node in response to the request message. |
US10362510B2 |
Method and terminal for controlling network traffic in wireless communication system
Disclosed are a traffic control method and terminal, the traffic control method comprising the steps of; transmitting, to a base station, a first message including information of an installed application; receiving a second message including information of a barring parameter for the application; determining whether to bar a data transmission on the basis of the barring parameter according to the generation of data from the application, during an operation in a radio resource control (RRC) connection mode; and selectively transmitting the data to the base station according to a determination result. |
US10362509B2 |
Incident broadcast retransmission in a vehicular network
A system for transmission of incident information includes maintaining a table of RSSI values for a plurality of stations. When an incident is detected, the system first sends a broadcast packet with incident information, and next sends a unicast packet to any station below a particular RSSI threshold until the unicast packet is acknowledged or a retransmission interval passes. |
US10362508B2 |
Communication adaptation based on link-performance characteristics
Adapting communication of information based on link-performance characteristics is discussed herein. For the example, an apparatus can include an interface circuit and a processor. The interface circuit communicates with an electronic device via a link. And the processor is communicatively coupled to the interface circuit. The interface circuit provides one or more performance metrics characterizing the link to the processor. And the processor adapts a communication with the electronic device via the link based on the one or more performance metrics. |
US10362507B2 |
Systems and method for quality of service monitoring, policy enforcement, and charging in a communications network
Methods for quality of service monitoring, policy enforcement, and charging in a communications network, are disclosed. The methods include mapping quality of service parameters to measured parameters of a real-time video or packet data unit flow. The mapping may be used to monitor bursty traffic to adhere to quality of service requirements, perform traffic shaping, and for use in reporting certain network events. The measured parameters of real-time packet data unit flow include a first bit rate measured over a short-term measurement window and a second bit rate measured over a long-term measurement window. The short-term and long-term measurement windows are differently sized. |
US10362504B2 |
Periodic channel status information (CSI) reporting for enhanced interference management and traffic adaptation (EIMTA) systems with CSI subframe sets
Wireless device, method, and computer readable media are disclosed for determining which channel status information (CSI) report of a user equipment (UE) to drop from a physical uplink control channel (PUCCH) packet. The method may include determining that a first CSI report and a second CSI report are to be sent in the PUCCH, where the first CSI report has a first reporting type and a first CSI sub-frame set, and the second CSI report has a second reporting type and a second CSI sub-frame set. The method may include determining to drop the first CSI report if the first CSI sub-frame set has a second lower priority than the second CSI sub-frame set. The determination to drop may be further based on a CSI processor index, serving cell index, and the CSI report priority. |
US10362503B2 |
Communication network aggregation test payload
A first node (2) of a first network using a first radio access technology signals (SI) a second node (3) of a second network using a second radio access technology start and stop of a test data session and to send test data packets to a UE (1) in an aggregation mode via the second node (3) in the test data session. The UE (1) is associated with the second node (3). The test data packets comprise payload and an aggregation header including an indication that the payload comprises test data. The first node (2) determines (S4) a service level of the UE (1) with respect to the second node (3) based on a report on a throughput of the test data packets sent by the second node (3) in the test data session. |
US10362502B2 |
Method for analysing a wireless link of a Wi-Fi node, respective circuit performing the method, and application
A method for analyzing a wireless link (3) of a wireless node of a customer premises equipment (CPE) device (1) during operation of the CPE device comprises: performing an active test, during which a data transmission is forced through the wireless link, to obtain a first set of parameters, and performing before or after the active test a passive test, which is a monitoring mode during which a data transmission of the CPE device is monitored, to obtain a second set of parameters. In particular, based on the first set of parameters, it is determined whether and to which extent the wireless link is in an uncertainty zone, and based on the second set of parameters, the decision is made to assign an observed decrease in a measured data rate to physics effects or to interference effects. |
US10362501B2 |
Method and apparatus for monitoring a performance of an Ethernet data stream
An apparatus for monitoring a performance of an Ethernet data stream, EDS, said apparatus comprising: an evaluation unit adapted to evaluate sync headers and block type fields of line code vectors of the Ethernet data stream, EDS; and a counter unit adapted to increment at least one performance counter in response to the evaluated sync header and the evaluated block type field of each line code vector of the Ethernet data stream, EDS. |
US10362497B2 |
Methods and apparatuses for signaling with geometric constellations in a raleigh fading channel
Communication systems are described that use signal constellations which have unequally spaced (i.e. “geometrically spaced,” or “non-uniform”) points. In many embodiments, the transmitters and receivers use specific non-uniform quadrature amplitude modulation (NU-QAM) constellations. In a variety of embodiments, NU-QAM constellations are capacity optimized using a bit-interleaved coded modulation (BICM, also referred to as “parallel decode”) capacity measure. In a number of embodiments, the transmitters and receivers are described that use specific NU-QAM constellations that provide gains in BICM capacity relative to constellations that maximize the minimum distance between constellation points. |
US10362495B2 |
Communications system, service common apparatus, mobile network node apparatus, and data communication method
The present invention aims to provide a communication system capable of optimizing network processing. The communication system according to the present invention includes an application server (10) configured to detect a behavior of a communication terminal (50) and a service common apparatus (20) configured to receive an identifier of the communication terminal (50) and behavior information on the communication terminal (50) transmitted from the application server (10) via a first interface defined between the service common apparatus (20) and the application server (10) and to transmit the identifier of the communication terminal (50) and the behavior information on the communication terminal (50) to a mobile network node (40) via a second interface defined between the service common apparatus (20) and the mobile network node (40) to optimize a parameter regarding the communication terminal (50). |
US10362491B1 |
System and method for classifying a physical object
In one embodiment, a method includes receiving, by one or more interfaces, a location of a physical object and receiving, by the one or more interfaces and from a data platform, an image associated with the physical object and the location of the physical object. The method also includes extracting, by one or more processors and from the image, an attribute associated with a feature of the physical object and classifying, by one or more processors, the attribute, wherein classifying the attribute comprises associating the attribute with a characteristic of the feature of the physical object. The method further includes classifying, by the one or more processors, the physical object and determining, by the one or more processors, to identify the physical object as eligible for modification. |
US10362490B2 |
Method for determining cell coverage for device-to-device (D2D) operation performed by terminal in wireless communication system, and terminal using the method
Provided are a method for determining cell coverage for a device-to-device (D2D) operation performed by a terminal in a wireless communication system, and a terminal using the method. The method comprises: receiving a specific signal which is repeatedly transmitted from a cell; determining whether successful detection of the specific signal is maintained for at least a specific amount of time; and declaring that the specific signal is beyond the cell coverage, when the successful detection of the specific signal is not maintained for at least the specific amount of time. |
US10362482B2 |
Network operation and trusted execution environment
Example techniques described herein can provision network functional modules for execution in trusted execution environments of portable computing devices. A monitoring application of a portable computing device can validate a trusted execution environment of the portable computing device, determine a present operational capacity of the portable computing device, and transmit indications of the validation and the present operational capacity to a control node via an authenticated connection. The application can detect a remote computing device on one network and determine that the remote device has a trusted execution environment. The application can report the computing device to the control node on another network. A network functional module can receive a request and determine that the portable computing device cannot perform an operation of the request. The module can select another computing device and transmit an indication of the operation to the selected computing device via an authenticated connection. |
US10362481B2 |
Multi-tiered user authentication methods
Aspects of the present invention provide an approach for user authentication during a user session which potentially requires multiple user authentications. A library of authentication methods is provided for preforming the user authentications. For authentication, a threshold contribution value is set which needs to be exceeded for authentication to occur. To carry out the authentication, a chain of authentication methods is constructed at run time, selected from the library in order to provide an aggregate contribution value which exceeds the threshold. During run time, the contribution value of each authentication method is dynamically adjusted, so that construction of the chain uses current amounts for the contribution values of each authentication method. This allows the chain to be reconstructed at run time taking into account changing circumstances. Specifically, not yet executed authentication methods may be unlinked from the chain and replaced with one or more new ones. |
US10362476B2 |
Method for sending or receiving system information
It is presented a method, performed in a network node, for sending system information. The method comprises the steps of: broadcasting, using at least one message, a system information table and a version indicator of the system information table, wherein each entry of the system information table comprises an entry identifier and a set of system access parameters, such that a radio node broadcasting an entry identifier is accessible through system access by a wireless terminal having access to the system information table; and broadcasting, a version message comprising the version indicator of the system information table, the version message omitting the system information table. A corresponding network node and wireless terminal are also presented. |
US10362474B1 |
Method and apparatus for network procedures by mobile hotspot for client devices
A mobile Hotspot is a device that includes a modem for wide area mobile broadband access and a Hotspot Access Point to distribute the internet to local client devices over a local area network such as Wi-Fi. Some of the local client devices may have mobile broadband capability of their own but may use the internet service from the mobile Hotspot when connected to it. In that case the client device may still need to maintain the communication link with the wide area mobile broadband network even when not actively using its services. A method and apparatus are disclosed that enable a mobile Hotspot to maintain the communication link with the wide area mobile broadband network on behalf of the client device. This may enable the client device with mobile broadband connection capability to reduce its power consumption. |
US10362473B2 |
Device, system and method of HPLMN preferred EPDG selection in roaming scenarios
User equipment (UE), and access point (AP) of an unsecured network and method of providing a quasi-orthogonal multiple access (QOMA) resources are generally described. The UE may determine whether it is roaming and if not connect to a home public land mobile network (HPLMN) Enhanced Packet Data Gateway (ePDG). The UE, when roaming, may retrieve ePDG selection information indicating to which of the HePDG and a visited public land mobile network (VPLMN) ePDG (VePDG) to attempt to connect, and connect to whichever of the HePDG and the VePDG is indicated by the ePDG selection information. The UE, when roaming and cannot connect to any PLMN, may extract from the ePDG selection information a default fully qualified domain name (FQDN) corresponding to a particular PLMN and connect to the ePDG corresponding to the particular PLMN through the AP based on the default FQDN. |
US10362462B2 |
Ambient condition measurement and reporting system
The present invention relates to a system for measuring ambient and sensory conditions in venues using a number of real-time signals, including sound, temperature, light, motion, water usage, vibration, infrared signal and others. Ambient signal data is transmitted to a cloud-based application that stores the signal levels in a database, analyzes the data, and presents the information in a visual format for use by venues and by consumers. The system can, among other things, provide an overall measure of ambient conditions in a venue and allow those with environmental or sensory sensitivities or preferences to identify safe or suitable public venues. |
US10362460B2 |
Providing visualization data to a co-located plurality of mobile devices
A computer-implemented method according to one embodiment includes identifying a plurality of mobile devices, determining a relative location of each of the plurality of mobile devices, and assigning visualization data to each of the plurality of mobile devices, based on the relative location of each of the plurality of mobile devices. |
US10362458B1 |
Message analysis application and response system
Disclosed is an apparatus and method of communicating with a user of a wireless device and processing message delivery. One example method of operation may include identifying a group of participants to receive a broadcast message transmitted from a wireless device, transmitting at least one broadcast message from the wireless device to a plurality of computing devices corresponding to the group of participants, receiving a plurality of response messages responsive to the at least one transmitted broadcast message, examining the plurality of response messages and extracting content of the plurality of response messages, generating a summary message based on the extracted content of the plurality of response messages, the summary message comprising portions from all of the plurality of response messages and also comprising information unique to each of the plurality of response messages, and displaying the summary message on a display interface of the wireless device. |
US10362456B2 |
Method for processing received message and electronic device implementing the same
Disclosed herein are an electronic device and a method for processing messages. The electronic device includes a display unit, a communication unit configured to receive a message from an external device, a storage unit storing a message source list and an unregistered message box, and a control unit configured to determine whether source information of the received message is registered in the message source list, if the source information is not registered in the message source list, store the message in the unregistered message box, and if the source information is registered in the message source list, display by the display unit at least a part of the received message. |
US10362455B2 |
Message pushing and displaying method and apparatus
Embodiments of the present invention provide a displaying method and apparatus relate to the field of mobile applications, where the method includes: receiving a first notification message sent by a first server, wherein the first server is corresponding to a first application program associated with a universally unique identifier of a first signal transmitter device; determining strength of a received signal sent by the first signal transmitter device; and determining a display manner according to the strength of the signal sent by the first signal transmitter device, and displaying the first notification message in the display manner. |
US10362454B2 |
Cellular restaurant ticket printer system
A thermal ticket printer operable to receive restaurant orders via an API from a server communicating through a cellular network. According to embodiments of the present disclosure, an API existing on a networked server enables the server communicate with external clients, store print jobs according to requests by external clients, and respond to status requests. The API may authenticate requests from all clients; receive and store orders; listen to polling requests from the thermal ticket printer; communicate orders to the thermal ticket printer when present; store status of print jobs for clients; and, monitor the availability of the thermal ticket printer. |
US10362451B2 |
Methods, devices, and computer program products for facilitating device-to-device communication among wireless communication devices
A method, device, and computer program product for facilitating device-to-device, D2D, communication among wireless communication devices, WCDs, is provided. The device is a first WCD that receives a wireless packet broadcasted by a second WCD. The wireless packet has one or more of i) a group identifier that identifies a group to which the second WCD belongs and ii) an application identifier that identifies an application which generated at least part of the wireless packet. The first WCD extracts from the wireless packet one or more of the group identifier and the application identifier. The first WCD determines whether to discard the wireless packet based on the one or more of the group identifier and the application identifier extracted from the wireless packet. |
US10362450B2 |
Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
A method and apparatus for transmitting broadcast signals are discussed. The method can include generating an input stream having plural input packets, link processing the input packets in the input stream to generate link layer packets, physical processing the link layer packets into the broadcast signals, and transmitting the broadcast signals. The link processing can include generating a payload of a link layer packet by encapsulating either a segment of one input packet or concatenated input packets, generating a header of the link layer packet including a base part, the base part including a first field which indicates whether the payload includes either the segment or the concatenated input packets, and inserting the header in front of the payload. |
US10362445B2 |
Method for requesting transportation services
A method for safely and efficiently requesting transportation services through the use of mobile communications devices capable of geographic location is described. Individual and package transportation may be provided. New customers may be efficiently serviced, and the requester and transportation provider locations may be viewed in real time on the mobile devices. |
US10362443B2 |
System and method for automatically detecting exit and entry for interest region
A system for detecting exit and entry for an interest region for automatically detecting entry and exit for an object in an interest region that is disclosed includes a wireless position sensor attached to an object to set an identification number and for transmitting a beacon having the identification number at a certain period, a wireless terminal for receiving the beacon from the wireless position sensor, extracting the identification number included in the beacon, and detecting entry and exit for the object using the extracted number of times of the identification number during a predetermined certain time and a Received Signal Strength Indicator (RSSI) of the beacon, a server system for receiving entry and exit detection information for the object from the wireless terminal. |
US10362440B2 |
Determining a significant user location for providing location-based services
Systems, methods, and program products for providing services to a user by a mobile device based on the user's daily routine of movement. The mobile device determines whether a location cluster indicates a significant location for the user based on one or more hints that indicate an interest of the user in locations in the cluster. The mobile device can perform adaptive clustering to determine a size of area of the significant location based on how multiple locations converge in the location cluster. The mobile device can provide location-based services for calendar items, including predicting a time of arrival at an estimated location of a calendar item. The mobile device can provide various services related to a location of the mobile device or a significant location of the user through an application programming interface (API). |
US10362421B1 |
Switching binaural sound
A method provides binaural sound to a person through electronic earphones. The binaural sound localizes to a sound localization point (SLP) in empty space that is away from but proximate to the person. When an event occurs, the binaural sound switches or changes to stereo sound, to mono sound, or to altered binaural sound. |
US10362414B2 |
Hearing assistance system comprising an EEG-recording and analysis system
A hearing assistance system comprises an input unit for providing electric input sound signals ui, each representing sound signals Ui from a multitude nu of sound sources Si, an electroencephalography (EEG) system for recording activity of the auditory system of the user's brain and providing a multitude ny of EEG signals yj, and a source selection processing unit receiving said electric input sound signals ui and said EEG signals yj, and in dependence thereof configured to provide a source selection signal Ŝx indicative of the sound source Sx that the user currently pays attention to using a selective algorithm that determines a sparse model to select the most relevant EEG electrodes and time intervals based on minimizing a cost function measuring the correlation between the individual sound sources and the EEG signals, and to determine the source selection signal Ŝx based on the cost functions obtained for said multitude of sound sources. |
US10362408B2 |
Differential MEMS microphone
The present disclosure relates generally to microphones and related components. One example micro electro mechanical system (MEMS) motor includes a first diaphragm; a second diaphragm that is disposed in generally parallel relation to the first diaphragm, the first diaphragm and second diaphragm forming an air gap there between; and a back plate disposed in the air gap between and disposed in generally parallel relation to the first diaphragm and the second diaphragm. |
US10362407B2 |
Condenser microphone unit and condenser microphone
Provided is a condenser microphone unit that prevents eccentricity as much as possible and achieves improvement of assembly accuracy. A condenser microphone unit including a diaphragm that vibrates upon receiving a sound wave and made by a plurality of configuration components that are assembled, the condenser microphone unit includes a base member including an opening portion to which the plurality of configuration components is attached, and an adjustment member having an outer diameter corresponding to a diameter of the opening portion, and mounted to a side surface of one or more components accommodated in the opening portion, of the plurality of configuration components. The adjustment member is a frame body exhibiting an annular shape and including a notch portion notched to have a pair of end portions, and is fixed in the opening portion in a state of being mounted to the side surface of the one or more components. |
US10362400B2 |
Headset with external speakers
Disclosed herein is a headset, comprising a headband-like component, one or two external ear pieces, and one or more external speakers. The headband-like component comprises a first end and a second end. Each ear piece of the one or two external ear pieces covers one ear of a user and is connected to one of the first end and second end of the headband-like component. Each external speaker of the one or more external speakers has a predetermined design and each external speaker is mounted on the headband-like component. |
US10362395B2 |
Panel loudspeaker controller and a panel loudspeaker
A panel loudspeaker controller for controlling a panel loudspeaker including a plurality of actuators, the panel loudspeaker controller including a plurality of electrical signal inputs, each input being associated with each actuator of the panel loudspeaker to be controlled; a plurality of signal processors, each signal processor being associated with each input and having an output for an electrical signal to control an actuator of the panel loudspeaker, and each signal processor implementing a transfer function from its input to its output based on each actuator of the panel loudspeaker to a desired acoustic receiver; and a signal processor controller associated with all of the plurality of signal processors, wherein the signal processor controller is preconfigured to improve phase alignment between the signals as an ensemble output at the outputs of the signal processors. |
US10362394B2 |
Personalized audio experience management and architecture for use in group audio communication
A closed audio circuit is disclosed for personalized audio experience management and audio clarity enhancement. The closed audio circuit includes a plurality of user equipment (UEs) and an audio signal combiner for a group audio communication session. The UEs and the audio signal combiner form a closed audio circuit allowing a user to target another user to create a private conversation to prevent eavesdropping. The UEs receive user audio input signals and send the audio input signals to the audio signal combiner. The audio signal combiner receives the audio input signals from each UE and transfer desired mixed audio output signals to each of the UE. |
US10362389B2 |
Self-draining band-pass loudspeaker system
A loudspeaker system comprises a driver mounted within the interior of a single-reflex band-pass box which is self-draining to protect the driver from exposure to standing water. The band-pass box may be mounted at the stern of a boat to direct acoustic energy from the driver to an individual being towed behind it. |
US10362386B2 |
Loudspeaker enclosure with a sealed acoustic suspension chamber
The present invention relates to a loudspeaker enclosure housing a sealed acoustic suspension chamber. In the sealed acoustic suspension chamber are arranged a driver and a passive acoustic diaphragm on opposite sides of an inner surface of the sealed acoustic suspension chamber. The loudspeaker enclosure also houses a first band-pass chamber connected to the sealed acoustic suspension chamber by the passive acoustic diaphragm. |
US10362378B2 |
Microphone
A microphone has: a printed circuit board provided with a first sound hole; a microphone element mounted on a first surface of the printed circuit board so as to cover the first sound hole; a microphone casing provided with a second sound hole opposite to the first sound hole, and housing the printed circuit board so that the second sound hole; and a bush provided with a third sound hole, and having a first contact surface and a second contact surface. The third sound hole is disposed between the first and second sound holes to be communicated with the holes. The first contact surface is in contact with a second surface of the printed circuit board at a first end of the third sound hole. The second contact surface is in contact with an inner surface of the microphone casing at a second end of the third sound hole. |
US10362373B2 |
Network telemetry with byte distribution and cryptographic protocol data elements
In one embodiment, a method includes receiving a flow including a plurality of bytes, each byte having one of a plurality of byte values, determining a byte value distribution metric based on a number of instances of each of the plurality of byte values in the flow, and transmitting telemetry data regarding the flow, the telemetry data including the byte value distribution metric. |
US10362372B2 |
System and method of selecting wireless spectrum and protocol based on patient acuity
As the acuity level of a patient being monitored on a wireless system changes, the criticality of that patient's data arriving at its intended destination changes. For example, if a patient being monitored for potentially life threatening arrhythmias begins to decline in health while being monitored on a less reliable wireless system, the wireless monitor switches to a more reliable wireless system to ensure delivery of critical patient data. Allowing a patient monitor to switch between wireless infrastructures based on patient acuity limits the number of users operating on the higher cost wireless infrastructure. |
US10362371B2 |
Broadcasting signal transmitting apparatus, broadcasting signal receiving apparatus, broadcasting signal transmitting method, and broadcasting signal receiving method
The present invention proposes a method for transmitting a broadcasting signal. The method for transmitting a broadcasting signal according to the present invention proposes a system capable of supporting a next generation broadcasting service in an environment which supports next generation hybrid broadcasting that uses a terrestrial broadcasting network and an Internet network. Also, the present invention proposes an effective signaling scheme that can cover both the terrestrial broadcasting network and the Internet network in the environment that supports the next hybrid broadcasting. |
US10362364B2 |
Process and apparatus for advertising component placement
A method of digital advertising, comprising: receiving a plurality of video material sources; optionally converting video material from a format of said sources into one or more placement operating formats; placing a digital advertising component into video material; and outputting the video material with the digital advertising component integrated within it for distribution. Preferred embodiments of the invention involve generating a market for placement zones suitable for receiving digital advertising components, wherein a market is generated by for example a bidding process against one or more available placement zones or offering one or more available placement zones with an indication its value/price. Also disclosed are computer apparatus and systems for performing the above-mentioned methods and related methods, and a system and method for management and manipulation of digital assets. |
US10362363B2 |
Methods and apparatus for providing program channel status information and/or for controlling channel switching
Methods and apparatus for detecting whether a commercial is ongoing on a program channel and indicating commercial status of a program channel in a program guide are described. Also described are channel surfing methods and apparatus where a user is allowed to automatically skip channels with ongoing commercials and is provided with an indicator of the commercial status on one or more previous program channels while viewing content of program channel to which the user switched. |
US10362358B2 |
Electronic apparatus and signal transceiving method thereof
An electronic apparatus is disclosed. The electronic apparatus includes a communicator configured to receive a first signal from among a plurality of signals and a second from among the plurality of signals from a server through different communication methods and a processor configured to identify a first bandwidth of the first signal from among a plurality of bandwidths and a second bandwidth of the second signal from among the plurality of bandwidths, transmit information regarding a selected bandwidth from among the plurality of bandwidths, and control the communicator to receive one of the plurality of signals corresponding to the selected bandwidth. |
US10362354B2 |
Systems and methods for providing pause position recommendations
Systems and methods are provided herein for recommending a pause position. Media content is provided to the user device. In response to receiving a pause command, a measure of memorability of a current scene of the media content is determined. In response to receiving a pause command, a measure of memorability of a subsequent scene of the media content is determined. in response to determining that the subsequent scene is more memorable than the current scene, a recommendation is provided to a user to pause the media content after the subsequent scene. In response to determining that the subsequent scene is not more memorable than the current scene, providing of the media content is paused at the current scene. |
US10362353B2 |
Video advertisement overlay system and method
This disclosure relates system(s) and method(s) for overlaying functionalities, text, annotations, and/or features on video advertisements and content videos. |
US10362352B2 |
Systems and methods for displaying viewership and/or message data
Methods and systems for enhancing program-viewing experience with viewership, message, and supplemental data include receiving a program identifier for a media program to be viewed; receiving one or more of viewership, message, and/or supplemental data relating to the media program; compiling the viewership, message, and/or supplemental data with the program identifier; storing the viewership, message, and/or supplemental data in a memory in association with the program identifier; and providing display data representing the viewership, message, and/or supplemental data and the program identifier. |
US10362345B2 |
Apparatus for transmitting broadcast signal, apparatus for receiving broadcast signal, method for transmitting broadcast signal and method for receiving broadcast signal
A method for receiving a broadcast signal, performed by an apparatus for receiving the broadcast signal includes receiving the broadcast signal, wherein the broadcast signal includes one or more link layer packets, wherein the one or more link layer packets includes broadcast data for a broadcast service, service level signaling information describing characteristics of the broadcast service, and low level signaling information including information which is used to build a basic service listing, wherein the low level signaling information further includes service level signaling protocol information for indicating a type of delivery protocol of the service level signaling information, wherein the type of the delivery protocol corresponds to a Moving Picture Experts Group (MPEG) media transport (MMT) protocol or a real-time object delivery over unidirectional transport (ROUTE) protocol, and wherein the low level signaling information further includes destination Internet Protocol (IP) address for the service level signaling information, destination User Datagram Protocol (UDP) port number for the service level signaling information, and source IP address for the service level signaling information, parsing the low level signaling information, and parsing the service level signaling information. |
US10362344B1 |
Systems and methods for providing media content related to a viewer indicated ambiguous situation during a sporting event
A media guidance application may provide similar media content based on user utterances responsive to ambiguous determinations at sporting events. The media guidance application may detect a user utterance and may identify a situation within the sporting event that the user was referring to. The media guidance application may compare metadata of the identified situation/segment with metadata of a plurality of historical ambiguous events, and determine, based on the comparing, a historical ambiguous event that corresponds to the segment/situation. The media guidance application may generate for display video including the historical ambiguous event that corresponds to the segment. |
US10362341B2 |
Systems and methods for sharing video with advertisements over a network
A user can create a video segment or employ an existing video segment, upload the segment to a server, indicate an advertisement to be associated with the video, and then send it to a recipient over a computer network. The user provides an indication that one or more particular video segments and advertisements are to be shared over the network. An identifier for the video segment is automatically created and the segment and the identifier are automatically uploaded to a host computer over the network such as the Internet. The video segment, the identifier (optionally with other identifying material such as an identity of the sender, and an advertisement selected by the sender can be stored at the direction of the host computer. |
US10362336B2 |
Palette predictor signaling with run length code for video coding
Techniques for encoding a binary prediction vector for predicting a palette for palette-based video coding is described. In one example, a method of decoding video comprises receiving an encoded binary prediction vector for a current block of video data, decoding the encoded binary prediction vector using a run-length decoding technique, generating a palette for the current block of video data based on the binary prediction vector, the binary prediction vector comprising entries indicating whether or not previously-used palette entries are reused for the palette for the current block of video data, and decoding the current block of video data using the palette. |
US10362334B2 |
Coding and decoding of interleaved image data
Sampled data is packaged in checkerboard format for encoding and decoding. The sampled data may be quincunx sampled multi-image video data (e.g., 3D video or a multi-program stream), and the data may also be divided into sub-images of each image which are then multiplexed, or interleaved, in frames of a video stream to be encoded and then decoded using a standardized video encoder. A system for viewing may utilize a standard video decoder and a formatting device that de-interleaves the decoded sub-images of each frame reformats the images for a display device. A 3D video may be encoded using a most advantageous interleaving format such that a preferred quality and compression ratio is reached. In one embodiment, the invention includes a display device that accepts data in multiple formats. |
US10362332B2 |
Multi-level compound prediction
Coding a current block using multi-level compound predictor is disclosed. A method includes generating a first compound predictor by combining at least two predictor blocks for the current block, generating a second predictor for the current block, and combining the first compound predictor and the second predictor to obtain a prediction block for encoding or decoding the current block. An indicator may be sent from the encoder to the decoder to indicate when multi-level compound prediction is used to encode a block. |
US10362325B2 |
Techniques for compressing multiple-channel images
Disclosed are techniques for pre-processing an image for compression, e.g., one that includes a plurality of pixels, where each pixel is composed of sub-pixels that include at least an alpha sub-pixel. First, the alpha sub-pixels are separated into a first data stream. Next, invertible transformations are applied to the remaining sub-pixels to produce transformed sub-pixels. Next, for each row of the pixels: (i) identifying a predictive function that yields a smallest prediction differential total for the row, (ii) providing an identifier of the predictive function to a second data stream, and (iii) converting the transformed sub-pixels of the pixels in the row into prediction differentials based on the predictive function. Additionally, the prediction differentials for each of the pixels are encoded into first and second bytes that are provided to third and fourth data streams, respectively. In turn, the various data streams are compressed into a compressed image. |
US10362324B2 |
Image coding method including selecting a context for performing arithmetic coding on a parameter indicating a coding-target coefficient included in a sub-block
An image coding method for coding an image on a block-by-block basis, includes: selecting, for each of a plurality of sub-blocks included in a coding-target block and each including a plurality of coefficients, a context for performing arithmetic coding on a parameter indicating a coding-target coefficient included in the sub-block from a context set corresponding to the sub-block, based on at least one reference coefficient located around the coding-target coefficient, the coding-target block being a transform unit; and performing arithmetic coding on the parameter indicating the coding-target coefficient using probability information about the selected context, wherein, in the selecting, the context is selected from the context set, the context set corresponding to a sum of (i) a value indicating a position in a horizontal direction of the sub-block in the coding-target block and (ii) a value indicating a position in a vertical direction of the sub-block in the coding-target block. |
US10362316B2 |
Image processing device and method
The present disclosure relates to an image processing device and method whereby higher encoding efficiency can be achieved.A prediction motion vector generating unit 76 uses peripheral motion vector information supplied thereto to generate multiple types of prediction motion vector information, and supplies each prediction motion vector information and code numbers assigned to the prediction motion vector information by a code number assigning unit 77 to a motion prediction/compensation unit 75. The code number assigning unit 77 supplies code number assignation information indicating which code numbers have been assigned to which prediction motion vector information, to a lossless encoding unit 66. the present technology can be applied to an image encoding device which performs encoding based on the H.264/AVC format, for example. |
US10362314B2 |
Apparatus and method for video coding by intra-prediction
Aspects of the disclosure include a method for video coding. The method includes receiving input data associated with a current block in a current image frame of video data, where the current block is coded by intra-prediction or to be coded by intra-prediction. The method also includes determining an intra-prediction mode of the current block, selecting one of a plurality of filters including at least a default filter and an N-tap filter, and generating filtered neighboring samples by filtering neighboring samples adjacent to the current block using the selected filter, where N is a positive integer different from 3. Moreover, the method includes encoding or decoding the current block by predicting the current block based on the filtered neighboring samples and the intra-prediction mode. |
US10362312B2 |
Method of constructing merge list
An image encoding apparatus can include an inter prediction module for determining motion information of a current block, and generating a prediction block of the current block using the motion information; a transform module for transforming the residual block to generate a transformed block; a quantization module for quantizing the transformed block using a quantization parameter and a quantization matrix to generate a quantized block; a scanning module for scanning coefficient components of the quantized block using a diagonal scan; and an entropy coding module for entropy-coding the scanned coefficient components of the quantized block; in which the motion information is encoded by performing the sub-steps of: constructing a merge list using available spatial and temporal merge candidates; selecting a merge predictor among merge candidates of the merge list; and encoding a merge index specifying the merge predictor, in which if the current block is a second prediction unit partitioned by asymmetric partitioning, the spatial merge candidate corresponding to a first prediction unit partitioned by the asymmetric partitioning is set as unavailable. |
US10362308B2 |
Apparatus and method for processing image
An image processing apparatus includes an image processor and an encoder. The image processor enhances an edge of an input image, removes noise from the input image, synthesizes the edge-enhanced image and the noise-removed image, and removes a high frequency from the synthesized image. The encoder pre-encodes a downsized synthesized image, obtains a pre-bit rate of the pre-encoded image, sets a quantization parameter value based on a reference bit rate and the pre-bit rate, and compresses the high-frequency removed image based on the quantization parameter value. |
US10362307B2 |
Quantization parameter determination method and image capture apparatus
A method of determining a quantization parameter includes determining an adjustment range of a quantization parameter correction value based on a size of a motion area of an input image, calculating an average bitrate value of the input image, and adjusting the quantization parameter correction value by decreasing the quantization parameter correction value within the adjustment range in response to determining that the average bitrate value is greater than an upper limit value, and by increasing the quantization parameter correction value within the adjustment range in response to determining that the average bitrate value is equal to or less than a lower limit value. |
US10362306B2 |
Image communication apparatus, image transmission apparatus, and image reception apparatus
Included are an encoding section, a decoding section, and an image recognition section. The encoding section performs an encoding process for a video signal to be input based on a calculated encoding mode, and transmits an encoded stream. The decoding section performs a decoding process for the received encoded stream, and outputs a decoded image. The image recognition section performs an image recognition process for the decoded image. The encoding section adjusts the encoding mode based on recognition accuracy information representing the certainty of a recognition result in the image recognition section. |
US10362305B2 |
Image processing device, image processing method, and recording medium
Provided is an image processing device including: a search unit that searches for an intra-prediction mode for each prediction block included in an image to be encoded; and a control unit that determines whether a chroma format is 4:2:2 and to limit a search range of intra-prediction modes of the search unit to a predetermined range in which no upper reference pixels are referred to with respect to a prediction block of chrominance components in a case where the chroma format is determined to be 4:2:2. |
US10362304B2 |
Method and device for coding POC, method and device for decoding POC, and electronic equipment
Provided are a method and a device for decoding a Picture Order Count (POC), and a method and a device for coding a POC, and electronic equipment. The method for decoding the POC includes that: parameters for Most Significant Bit (MSB) and Least Significant Bit (LSB) used in an alignment operation on the POC are acquired; an MSB value and an LSB value of a POC value of a current picture are determined according to the parameters for MSB and LSB; and the POC value of the current picture is calculated according to the MSB value and the LSB value. By means of the technical solution, the problems in the related art that the accuracy in decoding and outputting a multilayer video bitstream cannot be ensured and an extra overhead of network resources is increased in multilayer video coding and decoding processes are solved. |
US10362297B2 |
Image generation apparatus, image generation method, and calibration method
A marker detection block 20 scans a taken image of a plurality of markers of a fixture worn on the head of a user so as to detect a two-dimensional coordinate on the taken image of the plurality of markers. A viewpoint position correction block 30 corrects a viewpoint position of the user without use of a coordinate in a Z direction of the markers but by use of the detected two-dimensional coordinate of the plurality of markers. A stereoscopic image generation block 40 generates a parallax image obtained when a three-dimensional object is viewed from the corrected viewpoint position. |
US10362296B2 |
Localized depth map generation
Techniques involving localized depth map generation, the techniques including receiving pixel data for a frame captured by an image sensor, the pixel data including at least one light intensity value, corresponding to an amount of light received by the image sensor during a frame period, for each of a plurality of pixels; identifying a subset of the pixels as being associated with a physical object detected based on at least the pixel data; selecting a region of the frame, the region corresponding to at least the subset of the pixels; and selectively generating a localized depth map for the frame period corresponding to the selected region. A portion of the frame outside of the selected region is not associated with a depth map generated for the frame period. |
US10362288B2 |
Method and system for improving detail information in digital images
Various aspects of a method and a system for image processing are disclosed herein. The method includes processing an input image, which comprises structure information and detail information, using image processing (IP) blocks in an image processing pipeline. One or more of the IP blocks, such as the “lossy” IP blocks, process the input image with at least a partial loss of the detail information. By replacing the “lossy” IP blocks with redesigned image processing (IP) modules, the image processing pipeline reduces or avoids such loss of the detail information. A more efficient implementation of the improved pipeline is realized by using a master IP module when the “lossy” IP blocks are reordered and grouped together in the image processing pipeline. The method is further extended to process 3-D images to reduce or avoid loss of detail information in a 3-D image processing pipeline. |
US10362287B2 |
Information processing apparatus, information processing method and program, and recording medium
The present disclosure relates to an information processing apparatus, an information processing method and a program, and a recording medium that can generate graphics in colors in a predetermined dynamic range from the data of graphics of colors in a plurality of dynamic ranges. A processor identifies an SDR PDS that is an information item of a color in the SDR available for the graphics, an HDR PDS that is an information item of a color in the HDR available for the graphics from a graphics stream including the SDR PDS, and the HDR PDS, and a segment_type used to identify the SDR PDS and the HDR PDS on the basis of the segment_type. A CLUT management unit generates the SDR graphics on the basis of the SDR PDS identified by the processor. The present disclosure can be applied, for example, to a reproducing device. |
US10362286B2 |
Method for converting luminance range of picture signal
In a converting method relating to picture luminance according to one aspect of the present disclosure, the picture luminance is formed by luminance values in a first luminance range. In this method, a first luminance signal that indicates code values obtained by quantizing the luminance value of the picture is obtained, code values, which are associated with the code values indicated by the obtained first luminance signal by quantization for a second luminance range different in a maximum value from the first luminance range are determined as converted code values, and the first luminance signal is converted into a second luminance signal indicating the converted code values. As a result, the converting method is further improved. |
US10362283B2 |
Virtual cinema and implementation method thereof
The present disclosure discloses a virtual cinema and an implementation method thereof. The implementation method of the virtual cinema comprises: arranging a virtual screen, and playing a video content thereon; and projecting ambient light varying with the video content around the virtual screen. By projecting ambient light varying with the video content around the virtual screen while displaying the video content to the user through the virtual screen, the sense of reality is enhanced, thereby solving the problem that the user experience is affected because the ambient light is not considered enough in the existed virtual cinema. |
US10362282B2 |
Drive circuit and image projection apparatus
A drive circuit for supplying a drive current to light emitting elements includes an output circuit that sets a magnitude of the drive current based on an assumed value of a threshold current being a threshold value of the drive current, an acquisition circuit that acquires an optical-output monitor value indicating a magnitude of an optical output of the light emitting elements, a first calculation circuit that calculates an average value of the drive current in a predetermined period in a frame period as an average drive current value for each of the predetermined period, a second calculation circuit that calculates an average value of the optical-output monitor values in the predetermined period as an average optical-output monitor value, and an adjustment circuit that adjusts the assumed value of the threshold current value based on the average drive current value and the average optical-output monitor value. |
US10362280B2 |
Image processing apparatus, image processing method, and image pickup element for separating or extracting reflection component
An imaging unit 20 has a configuration in which an identical polarization pixel block made up of a plurality of pixels with an identical polarization direction is provided for each of a plurality of polarization directions and pixels of respective predetermined colors are provided in the identical polarization pixel block. A correction processing unit 31 performs correction processing such as white balance correction on a polarized image generated by the imaging unit 20. A polarized image processing unit 32 separates or extracts a reflection component using the polarized image after the correction processing. By using a polarized image of the separated or extracted reflection component, for example, it is possible to generate normal line information with high accuracy. |
US10362277B2 |
Following apparatus and following system
A following apparatus which follows a target object while photographing the target object includes a driving apparatus configured to move a main body, a photographing portion configured to continuously photograph the target object, and a controller configured to obtain an area value of the target object in a live-view motion picture from the photographing portion, obtain a distance value according to the obtained area value, and control the driving apparatus to maintain a distance between the photographing portion and the target object at a reference distance value according to the obtained distance value. |
US10362271B2 |
Video-conference table and video-conference system
A video-conference table and a video-conference system. The video-conference table includes an imaging device disposed outside facing space that faces an object to be captured on a holding surface. The imaging device is configured to capture the object to be captured held on the holding surface, in a slanting direction with reference to a normal-line direction of the holding surface. The video-conference table further includes an image processing device configured to perform image processing including correcting image data obtained by capturing of the imaging device to image data obtained when the surface of the object to be captured is captured in a normal-line direction of the holding surface. The video-conference system includes the video-conference table coupled to an attachment having a surface approximately flush with the holding surface in a horizontal direction. |
US10362269B2 |
Systems and methods for determining one or more active speakers during an audio or video conference session
The present disclosure relates to systems and methods for automatically determining the active users in an audio or video conference session including a plurality of users. In one implementation, the system may include a memory storing instructions and a processor configured to execute the instructions to receive packets from a device associated with each of a plurality of users, update a loudest level associated with each user if the received packet from the user reflects a communication louder than all of the previously received packets from the user, calculate a loudness ratio associated with each user based on the loudest level associated with each user and a corresponding time-decaying average, sort the plurality of users by a loudness score associated with each user, and mute audio or hide video received from a subset of the plurality of users in the conference session. The loudness score may be based on the loudness ratio associated with each user, and the muted or hidden subset may include one or more users for which the associated loudness score is lowest according to the sorting. |
US10362267B2 |
Image processing apparatus and electronic device including the same
An image processing apparatus and electronic device including the same are provided. The image processing apparatus includes a synchronizer configured to receive first frame data and second frame data, which is different from the first frame data, from an image sensor, a memory configured to receive at least part of the first frame data and at least part of the second frame data from the synchronizer and storing to store the received first frame data and the received second frame data, a line interleaving controller configured to output first line data, which is included in the first frame data stored in the memory, and second line data, which is included in the second frame data stored in the memory, through time division multiplexing, and an image signal processor configured to perform image processing, in units of lines, on the first line data and the second line data output by the line interleaving controller. |
US10362266B2 |
Video processing apparatus, video processing system, and video processing method
This apparatus includes: a video input unit that inputs a first video signal captured at a first frame resolution by a camera, to which a time data item of each frame has been added; a video storage unit that stores the first video data item of each frame of the first video signal in association with the time data item; a position information input unit that receives a position information item of a particular moving object included in the first video signal as a part of a subject; a position information storage unit that stores the received position information item in association with a time; and a controller that reads, from the position information storage unit, the one or more position information items for each particular time interval, calculates a cut region including one or more positions respectively indicated by these information items, cuts the video data item of the cut region from the first video data item of the time interval, and generates the second video data item having the second frame resolution. |
US10362265B2 |
Systems and methods for presenting content
Systems, methods, and non-transitory computer-readable media can determine saliency information describing one or more salient points of interest that appear during presentation of a content item, wherein the salient points of interest are predicted to be of interest to one or more users accessing the content item and embed the saliency information describing the salient points of interest into the content item, wherein the saliency information is capable of being processed during presentation of the content item to enhance the presentation of the content item. |
US10362262B2 |
Data recording apparatus and method of controlling the same
A data recording apparatus stores, in a data file having a container structure, multiple pieces of image data that have different expression methods, such as moving image data and still image data, along with metadata regarding the pieces of image data, and records the data file. The data recording apparatus stores the pieces of image data having different expression methods in the data file in the same container format. Accordingly, it is possible to generate a data file that stores various formats of data and has versatility. |
US10362260B2 |
System and methods for device control and multiple input handling
The present disclosure relates to device control and multiple input event handling. In one embodiment, a process includes detecting a plurality of input commands for control of a display device, determining a multiple input event based on the plurality of input commands, and determining a multiple input control function for the display device based on the multiple input event. The multiple input control function is determined based on input type of the multiple input event and a function of the input type of the multiple input event. The process can also includes controlling operation of the display device based on the multiple input control function, wherein controlling includes modifying display device operation from a control function associated with the plurality of input commands to a multiple input event control function. |
US10362250B2 |
Back-illuminated global-shutter image sensor
A global shutter image sensor of a back-illuminated type includes a semiconductor substrate and pixels. Each pixel includes a photosensitive area, a storage area, a readout area and areas for transferring charges between these different areas. The image sensor includes, for each pixel, a protector extending at least partly into the substrate from the back of the substrate to ensure that the storage area is protected against back illumination. |
US10362248B2 |
Solid-state imaging device and camera system
A solid-state imaging device and a camera system are provided. The solid-state imaging device capable of performing an intermittent operation includes a pixel unit and a pixel signal readout unit for reading out a pixel signal from the pixel unit in units of a plurality of pixels for each column. The pixel signal readout circuit includes a plurality of comparators and a plurality of counters whose operations are controlled by outputs of the comparators. Each of the comparators includes an initializing switch for determining an operating point for each column at a start of row operation, and is configured so that an initialization signal to be applied to the initializing switch is controlled independently in parallel only a basic unit of the initialization signal used for a horizontal intermittent operation, and the initializing switch is held in an off-state at a start of non-operating row. |
US10362245B2 |
Imaging device that performs rolling readout of pixel rows to acquire an image of an object
An image acquisition system 1 includes: a light source 3 which outputs illumination light; an optical scanner 7 which scans a sample S with the illumination light; an optical scanner control unit 9; a detection optical system 15, 17 which focuses fluorescence from the sample S; an imaging device 19 which has a light receiving surface 19c in which a plurality of pixel rows 19d are arranged, and an imaging control section 19b, and which can perform signal readout of each of the plurality of pixel rows 19d from the light receiving surface 19c; and a calculation unit 21 which calculates an interval of signal readout between adjacent pixel rows 19d, based on a moving speed of an illuminated region on the light receiving surface 19c; the imaging control section 19b controls signal readout of each pixel row 19d, based on the interval of the signal readout thus calculated. |
US10362238B2 |
Method and system for capturing images of a liquid sample
A method and system for capturing images of a liquid sample flowing through a field of view of an imaging device that can include stepping a focus mechanism of the imaging device through a plurality of focus values and capturing a plurality of images of the sample at each of the plurality of focus values as the sample flows through the field of view of the imaging device. In this way, image capture can proceed before a focus value has been determined and capture images that are in focus can be used for further processing subsequently. |
US10362233B2 |
Digital image capture session and metadata association
Digital image capture session and metadata association techniques are described. In one example, a user input is received to initiate an image capture session. At least one digital image is captured using a digital camera during the image capture session. Audio input data is also collected using an audio input device during the image capture session and converted into text data, e.g., speech-to-text. Metadata is generated based on the text data and associated with the at least one digital image. The at least one digital image is output as having the associated metadata as completion of the image capture session. |
US10362230B2 |
In-vehicle display device
One embodiment of an in-vehicle display device includes: a display unit that includes a transparent display part and a low-transmissivity display part, and that changes an area ratio of an area of the low-transmissivity display part to an area of the transparent display part; an image capturing unit that captures a space around the vehicle as an image; and a first display control unit configured to control the display unit such that the area ratio is increased when a predetermined condition is satisfied as compared to when the predetermined condition is not satisfied, and the image captured by the image capturing unit is displayed in the low-transmissivity display part after the area ratio has been increased. |
US10362224B2 |
System and method for identifying comment clusters for panoramic content segments
Systems and methods for identifying comment clusters for panoramic content segments. A panoramic content segment of digital content may be hosted to client computing platforms. User comment information may be received. The user comment information may convey user comments, include time indications for a duration of a content segment, and/or include location indications for a panorama of the panoramic content segment. A comment distribution may be determined from the user comment information. A comment cluster may be identified based on the comment distribution. View information may be received from a client computing platform. Whether a view range associated with the comment cluster identified is located within or outside one or more visible ranges of viewing angles selected by the user may be determined. Alert information may be generated and/or transmitted for effectuating presentation of a notification on the client computing platform associated with the user. |
US10362223B2 |
Imaging device and electronic device
The present disclosure provides an imaging device including a wide-angle camera and a telephoto camera. A field of view of the telephoto camera is located in a field of view of the wide-angle camera, the telephoto camera includes a telephoto lens. The telephoto lens includes: at least one first lens element, a light reflecting element and at least one second lens element arranged sequentially from an object side to an image side along a light axis. The light reflecting element is configured to make the light axis to reflect from a first direction to a second direction. An electronic device including the imaging device is further provided. In the imaging device and the electronic device above, the light axis of the telephoto camera is reflected, lowering a height of the telephoto lens and a height of the telephoto camera. |
US10362219B2 |
Avatar creation and editing
The present disclosure generally relates to creating and editing user avatars. In some examples, guidance is provided to a user while capturing image data for use in generating a user-specific avatar. In some examples, a user interface allows a user to intuitively customize a user avatar. In some examples, avatars are generated for a messaging session based on an avatar model for a user of the messaging application. In some examples, an avatar editing interface updates a user avatar in response to gestures and based on the type of gesture and the avatar feature that is selected for editing. |
US10362206B2 |
Image capturing apparatus having a function which assists a panning shot with specific framing
There is provided an image capturing apparatus comprising an image capturing unit. A setting unit sets one of a plurality of focus modes including a manual focus mode (MF mode). A switching unit switches a panning shot assist function between active and inactive. A display control unit carries out control such that first position information indicating a predetermined position in a live view image captured by the image capturing unit is displayed over the live view image in the case where the MF mode is set and the assist function is active, and carries out control such that the first position information is not displayed in the case where the MF mode is set and the assist function is inactive. |
US10362203B2 |
Camera assembly method with adhesive shrink offset based on individual lens characteristic
A method of assembling a camera includes the steps of determining a focused-position of a lens relative to an imager where an image is focused on the imager, determining a first-factor indicative of focus quality at a central-portion of the imager, and determining a second-factor indicative of focus quality at an outer-portion of the imager. The outer-portion is characterized as displaced radially outward from the central-portion. The method also includes the steps of determining an actual-ratio of the first-factor and the second-factor, and determining an offset-position of the lens relative to the imager based on the focused-position, a ratio-difference between the actual-ratio and a desired-ratio, and an expansion-characteristic of an adhesive that is used to fixedly couple the lens to the imager. The method also includes the step of applying the adhesive to fixedly couple the lens to the imager while the lens is in the offset-position. |
US10362201B2 |
Imaging apparatus, vehicle and housing
An imaging apparatus comprises a housing which includes a resin containing a plurality of fillers, each filler having a longitudinal direction, an imaging optical system fixed to an opening provided in the housing, and an imaging device stored in the housing and configured to capture an object image formed through the imaging optical system. the longitudinal directions of first fillers in a first part of the housing facing an exterior of the housing are positioned along a direction from the inside to the outside of the housing, and the longitudinal directions of second fillers in a second part of housing facing an interior of the housing are positioned along an interior wall of the housing. |
US10362200B2 |
Dome-type camera and dome cover
A dome-type camera includes a dome cover (11) and a camera unit (12). The dome cover (11) has a front surface (21) and a back surface (22). The camera unit (12) includes an optical system (13) and an imaging element (14). The optical system (13) is disposed on the back surface (22) side of the dome cover (11), and the imaging element (14) outputs image data on the basis of imaging light received via the optical system (13). At least the back surface (22) out of the front surface (21) and the back surface (22) of the dome cover (11) has at least an aspheric shape in which optical properties are continuously changed at a location other than a top t of the dome cover (11). |
US10362198B2 |
Color processing device, color processing system and non-transitory computer readable medium storing program
A color processing device includes: a color data obtaining unit obtaining color data of a first image displayed on a display based on image data as first color data and color data of a second image formed on a recording medium by an image forming device based on the image data as second color data; and a conversion relationship creation unit creating a conversion relationship to correct the image data to be outputted to the image forming device based on the first color data and the second color data to integrate colors of the images displayed on the display and formed by the image forming device, wherein the conversion relationship creation unit creates the conversion relationship to increase a correction amount as a color to be corrected comes closer to gray and to reduce a correction amount as a color to be corrected comes closer to white. |
US10362193B2 |
Information conversion apparatus capable of changing attribution information of an image based on viewer information and non-transitory computer readable medium storing program
An information conversion apparatus includes an extraction unit that extracts attribute information added to an image, an acquisition unit that acquires viewer information indicating a viewer, a determination unit that uses a database indicating a relationship between a subject corresponding to the attribute information and the viewer corresponding to the viewer information, and determines the relationship between the subject and the viewer, and a conversion unit that converts the attribute information based on the determined relationship. |
US10362187B2 |
Image forming apparatus
This image forming device is provided with: an image reading unit; a control unit which generates distribution data indicating the distribution of an angle of inclination of documents (D) read during a pre-determined time period, performs a test to determine whether there is a significant difference between the distribution data and standard distribution data, and on the basis of the test result determines whether maintenance of the image forming device is required; and a communication unit which, if it has been determined that maintenance is required, transmits a maintenance request notification to a service system. |
US10362183B2 |
System and method for natural language operation of multifunction peripherals
A system and method for natural language-based multifunction peripheral control includes sensing when a portable data device is proximate to a MFP. A status of the MFP is monitored and user-specific configuration information is stored. The system receives activity data corresponding to performance of a preselected activity by a user and initiates a natural language exchange with a user of the portable data device in accordance with a monitored status of the multifunction peripheral and stored user-specific configuration settings. Document processing instructions received via the natural language exchange generate a natural language response. A second document processing instruction is then received via the natural language exchange responsive to the natural language response and a document processing operation is performed in accordance with the second document processing instruction. |
US10362181B2 |
Facsimile apparatus, control method thereof, and storage medium
A facsimile apparatus includes a memory device that stores a user name and a notification destination of a transmission result of facsimile transmission in association with each other. The facsimile apparatus receives, from an external apparatus, a facsimile transmission instruction that includes image data, a transmission destination of facsimile transmission, and a user name; executes, for the transmission destination included in the facsimile transmission instruction, facsimile transmission of the image data included in the facsimile transmission instruction; and transmits a transmission result of the executed facsimile transmission to the notification destination stored in the memory device in association with the user name included in the facsimile transmission instruction. |
US10362180B2 |
Diagnosing an image forming apparatus based on sound signal analysis
A diagnostic apparatus includes a first acquiring unit that acquires sound information, a second acquiring unit that acquires operation information indicating a component in operation among a plurality of components of an analysis target apparatus, and a display unit that, when the acquired sound information is reproduced, displays operating states of the plurality of components at the time point when the reproduced sound is acquired, using the operation information. |
US10362178B2 |
Method and system for least cost routing (LCR) of international mobile telephone calls with an integrated money transfer facility
A method and system for least cost routing for mobile telephone calls between the United States and Mexico in such a way so that the call is separated into several call legs and the international portion or call leg is routed via a low-cost or no-cost route independently of the local call legs, essentially achieving an international call with local call rates. This uses a SIM card that automatically identifies any incoming or outgoing call and provides the ability to convert the call from an expensive international and/or roaming call to a local (free) call. Several slight variations are disclosed, and all embodiments have an integrated money transfer service that can be used with a very simple low-cost basic mobile phone using IVR, SMS and voice recognition, or can be accessed via the web or via a smartphone app. |
US10362177B2 |
Enhanced congestion control by means of selective restart of credit control sessions
The present invention provides apparatuses, methods, computer programs, computer program products and computer-readable media regarding enhanced congestion control by means of selective restart of credit control sessions. The present invention comprises storing an identifier of each of a plurality of credit control sessions handled by the charging entity when a failure has occurred at the charging entity and the plurality of credit control sessions has been terminated and a bearer associated with each of the plurality of the credit control session is to be maintained; and sending a message for requesting restart of at least one of the plurality of credit control sessions to a gateway entity handling the plurality of credit control sessions, the message including an identifier of the at least one of the plurality of credit control sessions to be restarted. |
US10362172B2 |
Fraud detection in interactive voice response systems
Systems and methods for call detail record (CDR) analysis to determine a risk score for a call and identify fraudulent activity and for fraud detection in Interactive Voice Response (IVR) systems. An example method may store information extracted from received calls. Queries of the stored information may be performed to select data using keys, wherein each key relates to one of the received calls, and wherein the queries are parallelized. The selected data may be transformed into feature vectors, wherein each feature vector relates to one of the received calls and includes a velocity feature and at least one of a behavior feature or a reputation feature. A risk score for the call may be generated during the call based on the feature vectors. |
US10362166B2 |
Facilitating software downloads to internet of things devices via a constrained network
Software downloads to Internet of things (IoT) devices are facilitated over a constrained network. In one embodiment a method comprises monitoring, by a network device comprising a processor, data determined to have been sent to a device for transmission to the device via a radio access network device of a wireless communication network, and determining, by the network device, a type of traffic associated with the data. The method further includes based on a determination that the data comprises firmware and that the type of traffic is of a traffic priority that is lower than a defined traffic priority, applying, by the network device, a low priority transport protocol to the data, wherein the applying comprises associating protocol information with the data representative of the low priority transport protocol. |
US10362162B2 |
Sending smart alerts on a device at opportune moments using sensors
Measurements can be obtained from sensors to determine a state of a device. The state can be used to determine whether to provide an alert. For example, after a first alert is provided, it can be determined that the device is not accessible to the user based on the determined state, and a second alert can be suppressed at a specified time after providing the first alert. The sensor measurements can be monitored after suppressing the second alert, and a state engine can detect a change in a state based on subsequent sensor measurements. If the state change indicates that the device is accessible to the user the second alert can be provided to the user. Alerts can be dismissed based on a change in state. A first device can coordinate alerts sent to or to be provided by a second device by suppressing or dismissing such alerts. |
US10362161B2 |
Methods and systems for recalling second party interactions with mobile devices
Systems and methods are presented for identifying individuals through facial recognition, voice recognition, or the like, recalling past recorded conversations with the identified individuals, and recording and inventorying conversations with the individuals with mobile devices. In some embodiments, a method is presented. The method may include identifying, at a device, an individual through facial recognition, voice recognition, or a unique RFID. The method may also include recording a conversation with the identified individual, and recalling past relevant recorded conversations based on the identification of the individual, and transmitting the recording of the conversation to a display system configured to display the recording of the event. |
US10362159B1 |
Controlling devices using short message service
A server can disable lost or stolen devices using an SMS lost-mode command relayed via a relay mobile device. The SMS command is encrypted to prevent malicious attacks. The SMS command includes a universal device identifier unique to the target device, the phone number of the relaying device, and a time stamp memorializing command creation. The relaying device relays the encrypted lost-mode command to the target device. Successful decryption authenticates the server. Before executing the lost-mode command, however, the target device reviews the unique identifier to verify the target and compares the phone number of the relaying device with the number identified with the incoming SMS message to authenticate the relaying device. The target device also considers an embedded time stamp to determine whether the lost-device command is superseded by a subsequently issued though later received command from the server. |
US10362157B2 |
Mobile information processing apparatus
A mobile information communication apparatus includes a data processing device for sending plotting command/data to a display control device that controls the pixels of a display panel belonging to the mobile information communication apparatus. An interface device is provided which receives the plotting command/data generated by the data processing device and sends, based on plotting command/data, an external display signal to the external display device. The data processing device and the interface device are configured to send, from the interface device, a higher-resolution external display signal. |
US10362151B2 |
Coding in Galois fields with reduced complexity
Disclosed herein is a method of generating a coded data packet in dependence on a plurality of source data packets, the method comprising: determining a plurality of data packets, for generating a coded data packet, from a plurality of source data packets for encoding, wherein each of the plurality of source data packets for encoding comprises the same number of bits; generating a multiplied data packet in dependence on one or more multiplication operations between a multiplication value and bits of one of the determined data packets; and generating a coded data packet in dependence on a combination of the multiplied data packet and one or more of the other of said plurality of determined data packets that have not been multiplied; wherein the one or more multiplication operations are performed as operations in the finite field GF(p); p is greater than 2; the multiplication value is an element of the finite field GF(p); the multiplication value is not 0 or 1; and the combination of data packets is performed by bitwise XOR operations. Advantageously, the coding scheme can be almost as computationally efficient as GF(2) and the likelihood of obtained coded data packets being linearly independent is greatly increased. |
US10362147B2 |
Network system and communication control method using calculated communication intervals
Increasing the processing load on the server is suppressed in a network system in which response requests are intermittently transmitted from a client to a server. A network system has a client configured to transmit response requests at a specific time interval, and a server configured to send a response to the client according to a received response request. The server calculates a communication interval indicating an interval at which the client is to transmit its response request based on a factor affecting the processing load of the server, and sends communication interval information indicating the calculated communication interval to the client. The client transmits its response request at the time interval indicated by the communication interval information received from the server. |
US10362145B2 |
Server system for providing current data and past data to clients
A method and apparatus for handling a server request received at a data server. The data server comprises a policy request handler. The policy request handler is activated within the data server in response to the server request being received at the data server. The policy request handler is configured to receive a plurality of asynchronous data streams. The policy request handler is further configured to merge data points in the plurality of asynchronous data streams together to form time-ordered data points. The policy request handler is further configured to form policy-based data according to a server policy identified in the server request using the time-ordered data points. |
US10362144B2 |
Communication apparatus which establishes wireless connection with external apparatus
A communication apparatus may cause a display to display a first inquiry message in a case where an apparatus search signal is received from an external apparatus, the apparatus search signal being for searching a target apparatus which is to establish a wireless connection with the external apparatus, and the first inquiry message being for inquiring a user whether a particular wireless connection is to be established between the communication apparatus and the external apparatus. The communication apparatus may establish the particular wireless connection between the communication apparatus and the external apparatus in a case where it is selected by the user, in response to the first inquiry message, that the particular wireless connection is to be established. |
US10362143B2 |
Dynamically transitioning the file system role of compute nodes for provisioning a storlet
A system and method dynamically transitions the file system role of compute nodes in a distributed clustered file system for an object that includes an embedded compute engine (a storlet). Embodiments of the invention overcome prior art problems of a storlet in a distributed storage system with a storlet engine having a dynamic role module which dynamically assigns or changes a file system role served by the node to a role which is more optimally suited for a computation operation in the storlet. The role assignment is made based on a classification of the computation operation and the appropriate filesystem role that matches computation operation. For example, a role could be assigned which helps reduce storage needs, communication resources, etc. |
US10362142B2 |
Electronic device connected to another electronic device and method of controlling same
An electronic device and a control method of the electronic device are provided. The control method includes acquiring second device information on a second electronic device connected to the first electronic device, and determining a first application corresponding to a combination of the first electronic device and the second electronic device based on first device information on the first electronic device and the second device information. |
US10362139B2 |
Systems and methods for resource allocation for management systems
Methods and systems for servicing of machines by workers within a period of time. Acquiring for each service an available servicing time, a time duration for servicing, a location of the machine, and a number of workers having appropriate qualifications to be concurrently present for a service. Acquiring for each worker a worker availability, qualifications and location. Determining a cost function representing a service schedule for each worker, wherein an optimization of the cost function is subject to constraints. The constraints include a number of workers with qualifications concurrently present for a service, each worker starts and ends the period of time at the same location and travels independently from other workers. The cost function includes maximizing a number of services to be performed; minimizing a number of workers required to perform servicing for each service; or minimizing a total travel time for each worker to the location. |
US10362138B2 |
Systems and methods for managing communications across multiple identities
Electronic communications are managed across multiple identities. A user is able to create an account as well as any desired, required, or appropriate number of profiles under the account. Text messages are exchanged between users using specific profiles. For example, some text messages can be exchanged using a personal profile while other text messages need to be exchanged using a professional profile. In some instances, exchanged text messages are saved to a centralized archive. As such, one or both of the users involved in an exchange can request to retrieve some or all of the exchanged messages at a later time. |
US10362136B2 |
Device profile data usage for state management in mobile device authentication
Embodiments create and manage a device profile on a mobile device for continued authentication of the mobile device. The device profile includes a state assigned to a mobile device. The state of the device can be managed through the device profile. The mobile device is allowed to conduct payments based on the current state assigned to the mobile device. In response to a request to conduct a payment transaction using the mobile device, the state information in the mobile device profile is checked. The payment transaction using the mobile device is allowed when the state information indicates a trusted state. The payment transaction using the mobile device is limited when the state information indicates a suspended state. The payment transaction using the mobile device is prevented when the state information indicates an untrusted state. |
US10362130B2 |
Apparatus and method for providing streaming contents
A method and apparatus for an adaptive Hypertext Transfer Protocol (HTTP) streaming service using metadata of content are provided. The metadata may include a minBufferTime attribute indicating a minimum amount of initially buffered media content. A terminal may receive content from a server before playback of the content, and may buffer the content by at least the minimum amount. The metadata may include a range attribute that designates a range of a target indicated by a Uniform Resource Locator (URL). The terminal may receive bytes designated by the range attribute from the URL, and may play back the content using the received bytes. |
US10362129B2 |
Optimizing value of content items delivered for a content provider
An online system receives content items from content providers and delivers the content items to client devices of users. The online system receives a weight associated with an item described in the content item. The online system determines a rate at which a content item is delivered to users based on the received weight associated with the item and a rate at which users interact with the content item. The online system delivers the content item to users at the rate determined based on the received weight and the rate at which users interact with the content item. The online system may periodically adjust the rate of delivery of the content item based on the rate at which users interact with the content item. |
US10362127B2 |
Procuring feedback
A system for procuring feedback from user when displaying content. The system implements operations for selecting a feedback mechanism based on prior user interactions with the feedback mechanism and other feedback mechanisms. The system uses the user responses to the feedback mechanism to better target content to the user and better determine which feedback mechanisms will provide the most valuable information over time. |
US10362116B2 |
Systems and methods for smart device networking
A system for smart device networking includes an endpoint that enables communication with a connected device, a bridge that communicates with the endpoint over a PAN and relays PAN communications to a WAN, and a router that connects to the bridge through the WAN and routes communication to and from the endpoint. |
US10362110B1 |
Deployment of client data compute kernels in cloud
A data storage service includes a client data compute kernel manager that receives and registers a client data compute kernel in a client kernel repository. The client data compute kernel may be a custom data compute kernel that is received from a client. The data storage service includes a client request handler that receives data access requests to a client data store. The client request handler may determine that a data access request is associated with the client data compute kernel. The client request handler may then deploy the client data compute kernel to one or more selected storage servers, and then forward the data access request to the client data compute kernel. A storage server may execute a storage service engine of the data storage service in one execution container on the storage server and the client data compute kernel on a second execution container on the storage server. |
US10362095B2 |
Distributed network diagnostics of enterprise devices utilizing device management
In response to receiving an indication from a client device experiencing a network connectivity error, a grouping of target client devices is identified for purposes of executing a distributed network diagnostic, the grouping being identified based on one or more configuration settings associated with client devices. The client devices in the identified grouping retrieve and execute an instruction. Data generated upon executing the instruction is received from each client device over a device management channel. The data is aggregated and trend data is generated. An instruction is sent to the client device experiencing the network connectivity error, wherein the instruction mitigates the network connectivity error. |
US10362088B2 |
Method and apparatus for delivering media content utilizing segment and packaging information
Aspects of the subject disclosure may include, for example, receiving multicast multi-bitrate streams that include segment and packaging information for media content where the segment and packaging information includes fragment start and end boundary point markers for the media content, generating an adaptive bitrate stream for the media content according to the segment and packaging information, and providing the adaptive bitrate stream to an end user device via unicast. Other embodiments are disclosed. |
US10362087B2 |
Data processing method and apparatus in service-oriented architecture system, and the service-oriented architecture system
Data processing method and apparatus in a Service-Oriented architecture (SOA) system are disclosed. The method replaces a target parameter having a larger data length included in an original HTTP request with an intermediate parameter having a smaller data length. A data length of a HTTP request that is converted from an original HTTP request is reduced as compared to a data length of the original HTTP request, thus reducing an amount of data that is transmitted, i.e., sent or received, by a target component, which accordingly reduces an amount of data transmitted in the SOA system and decreases a network overhead of the SOA system. |
US10362086B2 |
Method and system for automating submission of issue reports
A method for automating the submission of issue reports includes automatically capturing information and images related to a software user, receiving a request from the user involving an issue experienced by the user, evaluating the request and the user information and images, generating a unique identifier that matches a response received by the user when making the request to associated server log information, generating an issue report based on the user information and images, server log information, and the generated unique identifier, and generating a ticket associated with the issue report that may be communicated to an external system. The user request information and images, server log information, and unique identifier may be stored in a database or data repository. The user information and images and server log information may be automatically encrypted. A system for automating the submission of issue reports is also described. |
US10362083B2 |
Policy-based payload delivery for transport protocols
Information describing a rule to be applied to a traffic stream is received at an edge network device. The traffic stream is received at the edge network device. A schema is applied to the traffic stream at the edge network device. It is determined that a rule triggering condition has been met. The rule is applied to the traffic stream, at the edge network device, in response to the rule triggering condition having been met. At least one of determining that the rule triggering event has taken place or applying the rule is performed based on the applied schema. |
US10362082B2 |
Method for streaming-based distributed media data processing
In one embodiment, a cluster manager partitions media data into multiple media data partitions, each of which is to be processed by a computing node of a computing system. A platform module in a computing node receives a number of media files included in a media data partition. The platform module encodes each media file from an original format into a predefined format. The platform module then combines or serializes each encoded media file into a single stream of serialized data, and transmits it to a user module in the computing node. The user module separates from each other the received encoded media files. The user module then decodes each separated, encoded media file from the predefined format into the original format, and performs a specific media processing operation on each decoded file. Examples of the media processing operation include classification, image transformation, and feature extraction. |
US10362077B2 |
Location-based music content identification
Example techniques disclosed herein relate to location-based music content identification. In an example implementation, a first computing device receives, over one or more networks, a location message comprising location information indicating a particular location of a second computing device at a given time. Based on the location information and the given time, the first computing device determines identification information indicating media content played by one or more playback devices at the particular location and availability information indicating availability of at least one media item of the media content from a media streaming service. The first computing device transmits, over the one or more networks to the second computing device, the identification information indicating the media content and an indication that the at least one media item of the media content is available for playback via the media streaming service. |
US10362070B1 |
Method, system, and apparatus for achieving user space intervention during connection-establishment handshakes
The disclosed method may include (1) receiving a synchronize message from a computing device to initiate synchronization between the computing device and a server with respect to a communication protocol, (2) notifying an application in user space on the server of the synchronize message such that the application in user space selects at least one attribute to be applied to a communication session resulting from the synchronization between the computing device and the server, (3) sending a synchronize acknowledgment that identifies the attribute selected by the application in user space to the computing device to further the synchronization between the computing device and the server, and then (4) establishing the communication session with the attribute selected by the application in user space upon receiving an acknowledgment message from the computing device to complete the synchronization. Various other methods, systems, and apparatuses are also disclosed. |
US10362067B2 |
Method of and system for privacy awareness
A privacy awareness method and system observes data collection by third parties on websites and applications and determines what privacy metadata is retrieved and/or sent and where the privacy metadata is sent. The privacy awareness method and system informs users about the privacy information collection, so that users are able to better understand what information is being retrieved and navigate the Internet accordingly. |
US10362066B2 |
Location based sharing of a network access credential
A network access credential can be shared among devices based on location information for a device. Location information can include timed fingerprint location information. In an aspect, location information can be associated with a location of user equipment. This location information can be correlated with network access credentials. Location information can be used to access a relevant network access credential. The relevant network access credential can be shared with other devices. In an embodiment, sharing a network access credential can be between mobile devices. In another embodiment, sharing a network access credential can be between a remote computing device and a mobile device. Sharing a credential can allow for access to a network without having to generate or input new credentials. |
US10362064B1 |
Network-based permissioning system
Aspects of the present disclosure include a system comprising a computer-readable storage medium storing at least one program and a method for managing access permissions associated with data resources. The method includes providing a user interface for registering a policy to a client device, and receiving a policy registration associated with a data resource stored in a first network database. The method further includes registering a policy associated with the data resource based on the policy registration. The registering of the policy includes creating a policy object that is linked to the data resource and storing the policy object in a second network database. |
US10362060B2 |
Curtailing search engines from obtaining and controlling information
A system and method for concealing searches for information stored on public networks, includes intercepting a sensitive query to a search engine prior to transmission of the sensitive query over a public network, transforming the sensitive query into one or more related queries, submitting the related queries over the public network to the search engine, aggregating search results from the search engine, and performing a search on the original query with a search engine privately against said search results. |
US10362059B2 |
Proxy servers within computer subnetworks
Embodiments of the invention include techniques for processing messages transmitted between computer networks. In some embodiments, messages such as requests and responses for various types of web services, applications, and other web content may be transmitted between multiple computer networks. One or more intermediary devices or applications, such as a proxy server implemented within a physical or logical subnetwork, may receive, process, and transmit the messages between the communication endpoints. In some embodiments, a proxy server may be configured to operate within a subnetwork of an internal computer network, exposing various web applications and/or services of the internal computer network to external computer networks. Such a proxy server may select specific policies for processing messages based on various message characteristics and the current point in a predetermined processing flow for the message. After selecting the specific policies to be applied to the message, the proxy server may process the message in accordance with the policies and forward the message to its intended destination. |
US10362051B2 |
Site independent methods for deriving contextually tailored security vulnerability corrections for hardening solution stacks
In auditing a target Web site for security exposures, site specific remediation reports are generated to provide instructional data tailored to components of the Web server solution stack as determined by the auditing computer system. Stack and component identification is performed in a site independent manner based on an analysis of Web page data retrieved by the auditing computer system. Informational aspects of the received data are recognized individually and by various patterns evident in the received data, enabling further identification of component implementation aspects, such as revision levels. Based on the informational and implementation aspects, site, solution stack, and component specific security audit tests are executed against the target Web site. Audit identified security exposures are recorded in correspondence with site, solution stack, and component implementation specific remediation instruction data. This audit data is then available for reporting. |
US10362049B2 |
Security-risk plugin to help targeted users interact with web pages and applications
The present disclosure relates to techniques for helping targeted users determine whether it is safe to supply personal information requested by a web site. In one embodiment, a method generally includes extracting textual content from a web page that requests information from a user and determining, based on the textual content, the type of information requested. A service type the web page provides is also determined based on the textual content. The service type and the information type are then compared to a set of predefined rules to determine a risk level associated with the web page. A visual indicator of the risk level is then displayed with the web page. |
US10362047B2 |
Systems and methods for providing user interfaces based on actions associated with untrusted emails
The present disclosure describes a system that notifies users regarding specific user decisions with respect to solution phishing emails. The system notifies users when users perform specific actions with respect to the untrusted phishing emails. The system pauses execution of these actions and prompts the user to confirm whether to take the actions or to revert back to review the actions. In contrast from anti-ransomware technologies which are entirely in control, the system gives the user autonomy in deciding actions relating to untrusted phishing emails. The system interrupts execution of actions related to untrusted phishing emails in order to give users a choice on whether to proceed with actions. |
US10362046B1 |
Runtime behavior of computing resources of a distributed environment
Customers of a computing resource service provider may operate one or more computing resource provided by the computing resource service provider. In addition, the customers may execute agent using the one or more computing resources provided by the computing resource service provider. Operational information from customer-operated computing resources may be obtained by the agents and evaluated for security threats. The operational information may be evaluated based at least in part on a set of security rules. The security rules may be generated at least in part on customer input to generate customer defined security rules. |
US10362041B2 |
Optimizing resource allocation for projects executing in a cloud-based environment
Embodiments are directed towards a system and method for a cloud-based front end that may abstract and enable access to the underlying cloud-hosted elements and objects that may be part of a multi-tenant application, such as a search application. Search objects may be employed to access indexed objects. An amount of indexed data accessible to a user may be based on an index storage limit selected by the user, such that data that exceeds the index storage limit may continue to be indexed. Also, one or more projects can be elastically scaled for a user to provide resources that may meet the specific needs of each project. |
US10362036B2 |
Electronic device, operation method thereof and recording medium
An electronic device, a method thereof, and a recording medium are disclosed. A main electronic device according to various embodiments of the present disclosure includes: an input interface; a communication module electrically connected to the input interface; and a processor electrically connected to the input interface and the communication module. The input interface receives an authentication request for transmitting data to sub-electronic devices of a second device group by sub-electronic devices of a first device group. The main electronic device is included in the first device group, and the processor is configured to control transmission of the authentication request to a main electronic device of the second device group when the authentication request has been received by the communication module. |
US10362026B2 |
Providing multi-factor authentication credentials via device notifications
Disclosed are various embodiments for providing multi-factor authentication credentials. In one embodiment, in response to a request from an application, a notification is generated in a notification area of a display. Entry of a user approval is facilitated via the notification. In response to receiving the approval, a security credential is transferred to the application. In another embodiment, the security credential may be shown in the notification area so that a user may enter it in a form field of the application. |
US10362023B2 |
Authentication information encryption server apparatuses, systems non-transitory computer readable mediums and methods for improving password security
There is provided an authentication server apparatus connected with a terminal device through a network including a storage device configured to store pattern descriptions, wherein characters used for an authentication password for authenticating a user are divided into groups, and the divided characters are associated with IDs of the respective groups in one of the pattern descriptions, a password processing unit configured to generate an authentication code composed of a string of the IDs of the groups and to store it, wherein the authentication code is generated on a pattern description—by —pattern description basis, a screen transmitting unit configured to transmit data of an authentication screen including one of the pattern descriptions to the terminal device, and an authentication unit configured to authenticate the user based on the string of the IDs corresponding to the authentication password and the authentication code corresponding to the pattern description. |
US10362022B2 |
System and method for facilitating multi-connection-based authentication
In certain embodiments, first and second challenge responses may be obtained at a computer system from a client device respectively via first and second connections between the computer system and the client device. The challenge responses may each be generated based on a same private key stored in a secure local storage at the client device. Confirmation of identification information associated with an entity, to which the private key corresponds, may be obtained based on information obtained from the client device via the first connection. Information obtained from the client device via the second connection may be authenticated based on (i) the obtained confirmation via the first connection and (ii) verification of the first and second challenge responses obtained respectively via the first and second connections. |
US10362020B2 |
Processing and verifying digital certificate
A digital certificate of a user is collected. A digest computation of a collecting result of the digital certificate is performed to generate a digital certificate digest of the user. The digital certificate digest is cached. In response to an operation of the user, a service request containing the cached digital certificate digest is transmitted to a service server such that when a service corresponding to the service request is a service for which the digital certificate needs to be verified, the service server executes the service when the verification passes through verification of the digital certificate digest. The techniques of the present disclosure execute the verification operation of the digital certificate along with specific service operations, which reduce the number of certificate verifications and the number of requests for executing the specific service. |
US10362019B2 |
Managing security credentials
Disclosed are various embodiments for managing security credentials. In one embodiment, network content for a network site is obtained in response to a user request. A connection with a remote computing device that stores and manages security credentials for accessing network sites is authenticated using a master security credential and answers to knowledge-based questions. A security credential associated with the network site is provided to the client from the remote computing device based at least in part on the answers. Access to the network site is authenticated according to the security credential. |
US10362011B2 |
Network security architecture
In an aspect, a network supporting client devices includes one or more network nodes implementing network functions. Such network functions enable a client device to apply a security context to communications with the network when the client device is not in a connected mode. The client device obtains a user plane key shared with a user plane network function implemented at a first network node and/or a control plane key shared with a control plane network function implemented at a second network node. The client device protects a data packet with the user plane key or a control packet with the control plane key. The data packet includes first destination information indicating the first network node and the control packet includes second destination information indicating the second network node. The client device transmits the data packet or control packet. |
US10362010B2 |
Management of credentials on an electronic device using an online resource
Systems, methods, and computer-readable media for using an online resource to manage credentials on an electronic device are provided. In one example embodiment, a method, at an electronic device, includes, inter alia, receiving account data via an online resource, accessing commerce credential status data from a secure element of the electronic device, providing initial credential management option data via the online resource based on the received account data and based on the accessed commerce credential status data, in response to the providing, receiving a selection of an initial credential management option via the online resource, and changing the status of a credential on the secure element based on the received selection. Additional embodiments are also provided. |
US10362000B2 |
Virtual Wi-Fi network and secure tunnel provisioning for reliable, persistent connection of energy devices at the customer's premises
A method for providing a virtual Wi-Fi network with secure tunnel provisioning is disclosed. The method provides a reliable, persistent connection between wireless communications enabled devices located at a user's premises and a service provider, and includes the steps of using a software code running on a computing device to pass instructions including a remote server address to an Application Programming Interface (API) running on a wireless router connected to the computing device through a Local Area Network (LAN); using the wireless router to establish a secure communication session with the remote server through a Wide Area Network (WAN); receiving at the wireless router through the WAN parameters required to set up a wireless Virtual Local Area Network (VLAN); and using the router, establishing a wireless VLAN at the user's premises and connecting the wireless VLAN to the remote server through the WAN using a secure tunnel connection. |
US10361998B2 |
Secure gateway communication systems and methods
A computer security architecture applies selected rules from among a set of rules defining one or more security policies to a given set of security context parameters to produce security verdicts, each representing whether a certain action requested by a subject entity is permissible. Each security policy is associated with a corresponding communication interface. A plurality of gateway engines are each associated with at least one of the subject entities and dedicated to interfacing with the security server. Each of the gateway engines carries out monitoring of requested actions by the associated subject entity and, for each requested action, identifies a security context. A security policy is determined for the requested action based on a corresponding security context, and a security verdict is obtained via a communication interface corresponding to the applicable security policy. |
US10361995B2 |
Management of clustered and replicated systems in dynamic computing environments
Embodiments of the present invention provide a means for managing portable Internet Protocol (IP) addresses and virtual machine persistent storage. The invention includes defining a set of available portable IP addresses. When a request for a portable IP address is received from a first virtual machine (VM), a first portable IP address is assigned to the first VM. The assignment of the first portable IP address to the first VM extends for a predetermined amount of time and requires a lease renewal to extend the assignment. |
US10361994B2 |
Mapping/translation techniques for generating associations between network addresses and attributes that were not directly observed
In one embodiment, a mapping/translation technique is provided for generating an association between an observed network address and one or more attributes that are not directly observed. A network address is observed that is associated with a source device. A first attribute is determined, the first attribute being a directly observed attribute. The first attribute is mapped to a second attribute based on at least a predefined spatial, temporal, or identity-related correspondence between the first attribute and the second attribute, wherein the second attribute was not directly observed in connection with the network address. An association is generated between the second attribute and the network address. A record that maintains the association between the second attribute and the network address is stored. |
US10361991B2 |
Information processing method, terminal, and computer storage medium
An information processing method is performed at a terminal that is communicatively connected to a remote server. The method includes: logging into a first user account of a social application; pulling, from the remote server, information associated with a social group including the first user account and at least one second user account; selecting, among the information associated with the social group, second multi-media information propagated by a third user account of the social application when the second multi-media information and interaction information by the at least one second user account in the social group on the second multi-media information satisfy preset policies of the remote server; and displaying, on the terminal, the second multi-media information propagated by the third user account of the social application and the interaction information by the at least one second user account in the social group on the second multi-media information. |
US10361989B2 |
Visibility management enhancement for messaging systems and online social networks
A method, a processing device, and a computer program product are provided. An initial state of a message is captured by at least one processing device. At least one external reference from the message is extracted by the least one processing device. The at least one external reference is analyzed to establish a baseline state of the message. A state of the message is monitored with respect to the baseline state of the message. A visibility of the message is changed based on detecting changes in relation to the baseline state of the message. |
US10361984B2 |
Method of response management
A method for managing a communication, through a communication network, from a second individual to a first individual, in which the first individual is associated in a first database with a plurality of second addresses. A second database lists, for each of said second addresses, information relating to communications between the first and second individuals. The method includes, for a first communication intended for the second individual and arising from a first address associated with the first individual: identifying the first address; initializing a second communication intended for the first individual; selecting, according to the second database, at least one address from among the plurality of second addresses associated with the first individual; comparing with the first address at least one second address included in the selection of addresses; validating at least the second address; and launching the second communication to at least the second address. |
US10361983B2 |
Message queue manager
Aspects provide message queue management as a function of processing time estimation, wherein a processor stores a message directed to a user from a messaging server in a distraction queue, and predicts a processing time required by the user to process the received message as a function of sender identity or of an identified message topic or type. The processor increments a processing time counter value for the distraction queue with the predicted processing time of the message, and notifies the user of the received message and all other messages currently saved to the distraction queue in response to determining that the incremented processing time counter value meets a threshold value. |
US10361974B1 |
Controlling base station buffering of data for a wireless communication device based on the extent to which the wireless communication device provides connectivity for other devices
Disclosed herein is a method and system for controlling base station buffering of data. In an example method, the base station serves a wireless communication device (WCD) over an air interface, where the air interface encompasses a quantity of channels on which the base station serves the WCD, where the base station is configured to buffer, in a data buffer, data awaiting transmission to the WCD, where the buffer has a fullness-threshold defining a maximum quantity of data that the base station will buffer for the WCD, and where the base station is configured to respond to the quantity of data in the buffer meeting the fullness-threshold by increasing the quantity of channels. Then, while serving the WCD, the base station determines an extent to which the WCD provides connectivity between at least one other device and the base station, and sets and applies the fullness-threshold based on the extent. |
US10361972B2 |
Systems and methods to support VXLAN in partition environment where a single system acts as multiple logical systems to support multitenancy
The present disclosure is directed towards systems and methods for supporting virtual extensible local area network (VXLAN) in a network environment in which a single system is partitioned to establish multiple logical systems to support multi-tenancy. |
US10361966B2 |
System and method for actor oriented architecture for digital service transactions based on common data structures
Aspects of the subject disclosure may include, for example, identifying a topic within a digital service ecosystem including several differentiated services, wherein transactions are based on the topic. Resources are determined within the digital domain, wherein the resources are associated with the topic. A manifest listing that lists the resources is generated. The manifest listing is associated with a digital entity capsule according to a standard taxonomic structure. The capsule includes a unique label, the manifest listing and identification of a transaction handler. The transaction handler accepts and interprets a request to access a resource, and facilitates a transaction based on the resources for a service of the group of differentiated services. Other embodiments are disclosed. |
US10361963B2 |
Controlling a congestion window size
A device may determine one or more round-trip time threshold values and may determine a round-trip time value associated with a flow. The device may determine a smoothed round-trip time value based on the one or more round-trip time threshold values and the round-trip time value. The device may determine a congestion window threshold value based on the smoothed round-trip time value and may determine a congestion window value based on the congestion window threshold value. The device may provide traffic associated with the flow based on the congestion window value. |
US10361962B2 |
Packet processing technique for a communication network
A method performed by a network element that transfers first and second packet flows of the same traffic handling class comprises the step of receiving, from a network controller, information defining a relative forwarding order between first and second packet flow packets. Upon receipt, at least one ingress port of the network element, of a first and a second packet, determining that the first packet belongs to the first packet flow and the second packet to the second packet flow. The first and second packets will then be forwarded towards at least one egress port of the network element in an order defined by the information received from the network controller. |
US10361946B2 |
Methods and systems for determining data transport paths through data transport
Methods and systems for determining data transport paths through data transport subnetworks include a method for receiving, by circuitry of a computer system, a service request message from an edge node coupled with the circuitry of the computer system, the service request message including information indicative of: a first unique identifier of an ingress port of a first core node, the first core node being within a transport subnetwork; a second unique identifier of an egress port of a second core node within the transport subnetwork; and a requested transport path bandwidth. The method further comprises determining, by the circuitry of the computer system, a transport path through the transport subnetwork between the first core node and the second core node based on the service request message; and forming the transport path between the ingress port of the first core node and the egress port of the second core node. |
US10361943B2 |
Methods providing performance management using a proxy baseline and related systems and computer program products
A method may provide performance management for a data communication network including a plurality of network elements. The method may include defining a cluster of the network elements for a performance metric, and defining one of the network elements of the cluster as a proxy network element for the cluster. A proxy baseline of the performance metric for the cluster may be calculated based on performance metric data for the proxy network element, and the performance metric for each of the network elements of the cluster may be monitored using the proxy baseline of the performance metric. Related systems and computer program products are also discussed. |
US10361941B2 |
Methods, systems, and media for detecting the presence of a digital media device on a network
Methods, systems, and media for detecting the presence of a digital media device on a network are provided. In some embodiments, methods for detecting a presence of a particular type of digital media device is provided, the methods comprising: identifying cached device details for devices previously associated with the network; performing a simple device discovery protocol (SSDP) on the network, and substantially concurrently sending a unicast message to an address associated with the identified cached digital media device using hypertext transfer protocol (HTTP); and indicating the presence of a digital media device on the network in response to either (i) receiving a response to the unicast message, or (ii) determining that a type of a device discovered using SSDP is the same as the particular device type. |
US10361938B2 |
Method for measuring transmission delay of optical transport network device and source OTN device
A method for measuring transmission delay of an optical transport network (OTN) device and a source OTN device. The method comprises: a source OTN device receives a delay measurement request transmitted by a user, generates a delay request frame, and transmits the delay request frame to a destination OTN device; the source OTN device receives a response frame returned from the destination OTN device, the response frame including a first time information; after receiving the response frame returned from the destination OTN device, the source OTN device obtains the system time T4 at when the response frame is received by the source OTN device; the source OTN device parses the response frame to obtain the first time information, and calculates the transmission delay between the source OTN device and the destination OTN device according to T4 and the first time information. |
US10361937B2 |
Method and apparatus for detecting operating status of node
A method and an apparatus for detecting an operating status of a node is provided. The method is as follows: selecting, from nodes of a transmission link established between a transmit end and a receive end, one node in the nodes as a to-be-detected node, and sending a detection instruction to the to-be-detected node; receiving a real-time control packet and a first quantity of IP data packets forwarded by the to-be-detected node, where the real-time control packet and the first quantity are returned by the to-be-detected node based on the detection instruction; determining, according to the real-time control packet, a second quantity of IP data packets that the to-be-detected node needs to bear; and obtaining a specified threshold and a quantity difference between the first quantity and the second quantity, and determining an operating status of the to-be-detected node according to the quantity difference and a value of the threshold. |
US10361935B2 |
Probabilistic and proactive alerting in streaming data environments
In one embodiment, a device in a network aggregates values for a set of key performance indicators (KPIs) for a system the network to form a plurality of KPI states. The device associates a plurality of observed performance metric values from the system with the KPI states. The device constructs a machine learning-based decision tree. Internal vertices of the decision tree represent conditions for the plurality of observed performance metric values and leaves of the tree represent the KPI states. The device predicts a KPI state by using the machine learning-based decision tree to analyze live performance metric values streamed from the system. The device generates a proactive alert based on the predicted KPI state. |
US10361927B2 |
Managing risk in multi-node automation of endpoint management
It is determined whether a user is authorized to carry out a management operation on a plurality of information technology assets in parallel, based on a role of the user and at least one characteristic of the management operation. A risk level of the management operation, and at least one characteristic of the plurality of information technology assets, are both determined. Based on the risk level and the at least one characteristic of the plurality of information technology assets, an execution pattern for the management operation is specified. In at least some cases, the management operation is carried out on the plurality of information technology assets in parallel, in accordance with the execution pattern. |
US10361923B2 |
Method and device for discovering network topology
In the method and device for discovering a network topology provided in embodiments of the present application, there is no need to collect multiple types of network characteristic data, which reduces consumption of network resources and can improve accuracy of discovering a network topology. The particular solution is: collecting state information of all ports of a network element of a to-be-analyzed network and deleting a port in a normally-closed state to obtain a required port set; acquiring a link set of each port in the port set and a similarity value of state information of two ports included in all links in the link set; setting a link with a maximum similarity value in the link set of each port as a candidate link of each port; and acquiring a network topology of the to-be-analyzed network according to the candidate link of each port. |
US10361922B2 |
Software defined network (SDN) proxy correlation index (PCI) data-plane control
A Software-Defined Network (SDN) distributes Proxy Correlation Index (PCI) control in an SDN data-plane. An SDN controller transfers SDN signaling that indicates a data-plane PCI configuration. An SDN data machine processes the SDN signaling and configures a PCI generator and a flow controller to implement the data-plane PCI configuration. The SDN data-plane machine processes user data flows per a Flow Description Table (FDT) and generates Key Performance Indicators (KPIs) for the user data flows. The PCI generator generates PCIs based on the KPIs and the data-plane PCI configuration. The flow controller updates the FDT based on the PCIs and the data-plane PCI configuration. The SDN data-plane machine processes the user data flows per the updated FDT. |
US10361921B2 |
Method and apparatus for managing connections in a communication network
Provided herein is a method of managing connections in a communication network. A first and second packet are received from a third entity intermediate to a first and second entity in the communication network. The first packet and the second packet are used to establish a third transport protocol socket and a fourth transport protocol socket at a fourth entity. Header field re-valuing information is established based at least in part on first header field value information obtained from the first packet and/or second header field value information obtained from the second packet. Header field values in a subsequent received packet are re-valued based on the header field re-valuing information, either prior to the subsequent packet being input to the third transport protocol socket or the fourth transport protocol socket or subsequent to the subsequent packet being output from the third transport protocol socket or the fourth transport protocol socket. |
US10361920B2 |
Domain name system based VPN management
VPN data for building and maintaining VPNs through a public network is gathered. The VPN data is maintained, at a DNS server, as part of a DNS table. A portion of the VPN data is provided as part of a DNS view of the DNS table to a client device. A VPN mode indicating a manner to establish a VPN node for the client device through the public network is determined using the portion of the VPN data. When the client device is coupled to the public network the VPN node is established and maintained according to the VPN mode using the portion of the VPN data. |
US10361918B2 |
Managing network forwarding configurations using algorithmic policies
Techniques for managing forwarding configurations in a data communications network include accessing, at least one controller, a packet-processing policy defined by a user in a general-purpose programming language other than a programming language of data forwarding element forwarding rules, the packet-processing policy specifying how data packets are to be processed through the data communications network via the at least one controller. A forwarding configuration for at least one data forwarding element in the data communications network may be derived from the user-defined packet-processing policy, and may be applied to the at least one data forwarding element. |
US10361917B1 |
State control in distributed computing systems
Systems and methods commence upon detecting certain computing system specification change events. Changes are recorded in resource usage intent specification records that characterize desired states associated with respective resources of the computing system. The change event causes generation of a data state snapshot of data stored in the computing system. A state tuple is constructed to associate the desired state with the data state. The state tuple is committed to a version control system. At any time, a user or process can select a selected system state tuple from committed tuples stored in the version control system. The tuple is analyzed to determine its associated desired state and its data state. Actions are taken to restore the data state of the tuple to the computing system, and then bringing the computing system to the state of the tuple so as to reproduce the desired system state in the computing system. |
US10361910B2 |
Systems and methods for configuring a managed device using an image
Systems and methods of the present disclosure can facilitate managing a computing device. The computing device can be a managed device that is managed by a device management server. In some embodiments, the system includes a generation module and an interface module. The generation module may be configured to receive a site location for the computing device, identify an address of the device management server, and generate an optical representation of a configuration based on the site location and the address. The interface module may be configured to provide the optical representation to the computing device and receive a communication from the computing device, the communication corresponding to the configuration. |
US10361906B2 |
Alert remediation automation
Technical solutions to automate alert remediation are described. One aspect includes a method that includes receiving a plurality of alerts from an application monitoring system, the plurality of alerts associated with a plurality of remediation procedures respectively. The method also includes selecting a subset of alerts from the plurality of alerts. The method also includes identifying a subset of remediation procedures corresponding to the subset of alerts and analyzing compliance, with a service level agreement, of an execution of the entire subset of remediation procedures. In response to the execution of the entire subset of remediation procedures being non-compliant, the latest alert that was added, is removed from the subset of alerts, and a remediation procedure corresponding to the latest alert is removed from the subset of remediation procedures. The method includes executing the entire subset of remediation procedures. |
US10361901B2 |
Registration of SIP-based communications in a hosted VoIP network
Aspects of the present disclosure involve systems, methods, computer program products, and the like, for implementing a registrar component or functionality in a telecommunications network. In one implementation, the registrar functionality is handled at a Session Border Controller (SBC) or Network Address Translation (NAT) Traversal Manager (NTM) device of the network to alleviate an application server of the network from performing the registration function. |
US10361900B2 |
Methods and systems for managing data
Computationally implemented methods and systems include identifying one or more services configured to be provided to a user of a device, said identifying at least partly based on data regarding one or more properties of the device, requesting access to data collected by one or more portions of the device, in exchange for providing at least a portion of one of the one or more identified services, and providing at least a portion of the one or more services after receiving access to the data collectable by one or more portions of the device. In addition to the foregoing, other aspects are described in the claims, drawings, and text. |
US10361896B2 |
Data communication method, related device, and communications system
Embodiments of the present invention provide a data communication method and a related device. The data communication method may include performing, by a first communications device, power adjustment on Q codebooks using Q power factors, to obtain power-adjusted Q codebooks, where Q is a positive integer, and the Q power factors and the Q codebooks are in a one-to-one correspondence and mapping, by the first communications device, Q to-be-transmitted bit sequences to Q codewords in the power-adjusted Q codebooks, where the Q bit sequences and the Q codewords are in a one-to-one correspondence. The method also includes obtaining, by the first communications device, a modulation symbol based on the Q codewords and sending, by the first communications device, the modulation symbol on a resource block. |
US10361895B1 |
Systems and methods for hybrid multi-layer signal decomposition
A hybrid multi-layer method for decomposing of a source signal to a plurality of decomposed signals that can be used to collectively represent the source signal or recover the source signal. An example embodiment is a method that includes multi-layer (or multi-stage) signal decomposition to generate constant envelope signals without impact on the original signal. In an example embodiment, the method includes signal decomposition to maintain constant envelope properties and limit bandwidth expansion from the signal decomposition. The method includes decomposing a source signal into two first-stage decomposed signals that each have a constant envelope amplitude value. The method further includes iteratively decomposing each of the constant envelope signals into further-stage decomposed signals based on a threshold amplitude value at each iteration. The further-stage decomposed signals have a constant envelope with an envelope amplitude value in dependence of the threshold amplitude value at each iteration. |
US10361893B2 |
Radio network node, wireless device and methods thereof using GMSK modulation applying negative modulation index
A radio network node comprised, and a wireless device configured to be operative, in a wireless communication system. The radio network node obtains downlink data and converts it to a baseband signal. The conversion comprises Gaussian Minimum Shift Keying (GMSK) modulation of the downlink data. The modulation applies a negative modulation index selected based on a type of wireless device that is a target for the downlink data. A radio signal is provided based on the baseband signal and sent to, and received by, the wireless device that provides user data based on the radio signal. |
US10361892B2 |
Selective power amplifier
A transmitter comprising a power amplifier, a phase modulator, a switched DC-DC converter, all operating in dual mode, and a controller is disclosed. The power amplifier is arranged to selectively operate either in a first mode or in a second mode, wherein the first mode is a linear mode and the second mode is a non-linear mode in order to save power with least increasing cost in hardware. The transmitter is adapted to operate at different allocated bandwidths, for different radio standards while keeping minimum power consumption governed by the controller. A transceiver, a communication device, a method and a computer program are also disclosed. |
US10361891B2 |
Fast least-mean-square (LMS) equalization
Apparatus and methods may provide improved equalizer performance, e.g., for optical-fiber-based communication systems. A least-mean-square (LMS) equalizer may include a decision feedback path containing feedback carrier recovery (FBCR), which may have low latency, and which may thus enable high-speed tap updating in the equalizer. Feed-forward carrier recovery (FFCR) may be applied, in parallel with the FBCR, to provide equalizer output by compensating, e.g., for phase noise, with improved carrier recovery/compensation, versus using FBCR to generate the output. |
US10361886B2 |
Apparatus and method for collective communication in a parallel computer system
A parallel computer system includes a plurality of network switches that are all connected to each other, and a plurality of nodes each connected to one of the plurality of network switches, where each network switch is connected to two or more nodes of the plurality of nodes. Each node determines a first destination node of data to be transmitted by the each node at a given time so that a first network switch connected to the first destination node is different from a second network switch connected to a second destination node of data transmitted by any node, other than the each node, which is connected to a network switch to which the each node is connected, and transmits data to the determined first destination node. |
US10361884B2 |
Virtual private network forwarding and nexthop to transport mapping scheme
A method is provided in one example embodiment and includes configuring on a network element a first tunnel from the network element to a first network, wherein the configuring comprises mapping a nexthop address of the local network element to a transport address of the tunnel on the network to create a first nexthop-to-transport mapping for the network element; and advertising the first nexthop-to-transport mapping along with routing information for the network element to remote network elements. |
US10361880B1 |
Controlling access to one or more rooms using a modular intelligent door and frame
A modular door and frame that can be manufactured and supplied to end users with various combinations of intelligent features. The intelligent features allow functions to be performed by the door and/or frame. Also, conditions or events to be detected and monitored at the intelligent door and/or remote locations. Data relating to the various functions, events, or conditions can be communicated across a network that is communicatively coupled to the door. |
US10361878B1 |
System, method, and computer program for initiating actions automatically on smart devices that are in a home
A system, method, and computer program product are provided for initiating actions automatically on smart devices that are in a home. In use, one or more smart devices connected to a common network are identified. Additionally, an alert trigger signal is sent to put the one or more smart devices on alert to be ready to perform one or more specific actions in response to an action trigger signal. Further, an event defined as an event for initiating the one or more smart devices to perform the one or more specific actions is detected. In addition, an action trigger signal is sent to the one or more smart devices to initiate the one or more specific actions associated with the one or more smart devices, the one or more specific actions including at least one of video recording or a transmission of measurements. Data resulting from the one or more specific actions is stored automatically on one or more cloud-based servers. Furthermore, a time of the detected event is logged. |
US10361877B2 |
System and method for providing network support services and premises gateway support infrastructure
A service management system communicates via wide area network with gateway devices located at respective user premises. The service management system remotely manages delivery of application services, which can be voice controlled, by a gateway, e.g. by selectively activating/deactivating service logic modules in the gateway. The service management system also may selectively provide secure communications and exchange of information among gateway devices and among associated endpoint devices. An exemplary service management system includes a router connected to the network and one or more computer platforms, for implementing management functions. Examples of the functions include a connection manager for controlling system communications with the gateway devices, an authentication manager for authenticating each gateway device and controlling the connection manager and a subscription manager for managing applications services and/or features offered by the gateway devices. A service manager, controlled by the subscription manager, distributes service specific configuration data to authenticated gateway devices. |
US10361876B2 |
Communication device and communication method
[Object] To provide a communication device and a communication method which are capable of achieving both an improvement in reliability of communication in which a frame is transmitted to a plurality of destinations and effective use of wireless communication resources.[Solution] The communication device includes: a communication unit configured to perform communication of a frame. The communication unit transmits a transmission acknowledgment request frame for a transmission acknowledgment response frame including frequency allocation information specifying a transmission frequency of the transmission acknowledgment response frame, and receives the transmission acknowledgment response frame which has undergone frequency division multiplexing, on the basis of the frequency allocation information. |
US10361875B2 |
Applying user-specified permissions to distribution of content items to social networking system users
A social networking system user identifies one or more social networking system users authorized to present content items to the user via the social networking system (“authorized users”). When an additional user requests presentation of a content item to the user, the social networking system determines if the additional user is an authorized user. If the additional user is an authorized user, the content item is presented to the user. However, if the additional user is not an authorized user, the social networking system identifies the additional user to the user along with a request to identify the additional user as an authorized user. If the user identifies the additional user as an authorized user in response to the request, the content item is presented to the user. |
US10361873B2 |
Test point-enhanced hardware security
Various aspects of the disclosed technology relate to techniques of using control test points to enhance hardware security. The design-for-security circuitry reuses control test points, a part of design-for-test circuitry. The design-for-security circuitry comprises: identity verification circuitry; scrambler circuitry coupled; and test point circuitry. The test point circuitry comprises scan cells and logic gates The identify verification circuitry outputs an identity verification result to the scrambler circuitry to enable/disable control test points of the test point circuitry through the logic gates, and the scrambler circuitry outputs logic bits for loading the scan cells to activate/inactivate the control test points through the logic gates. |
US10361872B2 |
Verifying validity of a certificate of a public key using both of a revocation list and querying a verification server
An image forming apparatus that performs an encrypted communication using a public key, and a method of controlling the same, determine the validity of a certificate in accordance with a certificate revocation list and/or the query to the certificate verification server. At a time of the determination of the validity of the certificate, it is selected whether to use any one of the certificate revocation list and the query to the certificate verification server, or both of the certificate revocation list and the query to the certificate verification server. |
US10361871B2 |
Electronic signature framework with enhanced security
Improved document processing workflows provide a secure electronic signature framework by reducing attack vectors that could be used to gain unauthorized access to digital assets. In one embodiment an electronically signed document is removed from an electronic signature server after signed copies of the document are distributed to all signatories. The electronic signature server optionally retains an encrypted copy of the signed document, but does not retain the decryption password. This limits the amount of data retained by the electronic signature server, making it a less attractive target for hackers. However, the electronic signature server still maintains audit data that can be used to identify a signed document and validate an electronic signature. For example, a hash of the document (or other document metadata) can be used to validate the authenticity of an electronically signed document based on a logical association between an electronic signature and the signed document. |
US10361870B2 |
Management of cryptographically secure exchanges of data using permissioned distributed ledgers
The disclosed embodiments include processes that manage a cryptographically secure generation and exchange of data between network-connected systems operating within a computing environment using a permissioned distributed ledger. For example, and based on secure interaction with a distributed smart contract maintained within ledger blocks of the permissioned distributed ledger, an apparatus and a counterparty system may generate local symmetric encryption keys that facilitate a secure communication session between the apparatus and the counterparty system. Using the symmetric encryption key, the apparatus may generate a cryptographically secure representation of generated or obtained data, which may be transmitted to the counterparty system across the secure communications channel. In response to a verification of an integrity of the cryptographically secure representation, the counterparty system may perform operations that, in conjunction with corresponding node systems, record the cryptographically secure representation within a portion of the permissioned distributed ledger. |
US10361865B2 |
Signature method and system
In one embodiment, a method, system, and apparatus are described, the method, system, and apparatus including generating metadata to be associated with each block of a series of blocks, the generating including, except for an initial block, receiving: a first block, including a signed block, and a second block to be signed, retrieving a first value including a square of a random number, R′2, multiplying R′2 by a nonce, r, and setting r·R′2 to be a square of a first random number, denoted R2, for the second block, retrieving a second value from the first block, the second value including K-bit vector, E′, determining a bit string value of the second block, M, computing E=hash(R2∥M∥E′), and determining a signature, Sig, for the second block by calculating Sig=r Sig′ SE-E′. Related methods, systems, and apparatuses are also described. |
US10361864B2 |
Enabling a secure OEM platform feature in a computing environment
A platform feature licensing module (e.g., a USB Smart Card Token) securely stores and communicates a platform feature enabling license, corresponding to a selectable platform feature, to an authenticated platform. The module includes a secure microcontroller, a secure communication port, and secure non-volatile memory in which is stored the platform feature enabling license. The module is configured to securely communicate with, and to authenticate the identity of the platform, via an integrated embedded controller embedded into the platform. The integrated embedded controller enables the selectable platform feature in response to a platform feature enabling license received from the platform feature licensing module. The integrated embedded controller and platform feature licensing module communicate securely using a predetermined public-key cryptography technique, with each having a PKI-based key pair to provide authentication and cryptographic services. |
US10361863B2 |
Access manager
An access manager determines whether access will be granted to a guarded species or space utilizing a controller including a digital processor with a memory for storing an ID library and a transducer block coupled with the processor for accessing a plurality of different ID types and an actuator block coupled with the processor for unblocking a normally locked portal to the guarded space. |
US10361858B2 |
Residence-based digital identity and strong authentication system
A system and associated methods provide digital identity and strong authentication management services for Internet users. The system includes a central, cloud-based, online service, referred to as a central service, which can manage user accounts. The system also includes dedicated, always-on, always-connected, cryptographically unique devices, referred to as beacons, located within the physical residences of its users. The central service associates each beacon with the residence address of its user by physically sending a unique address verification code by postal mail to the user's residence. The user presents the unique code to the beacon, and the beacon cryptographically confirms its identity and the unique code sent to the residence address back to the central service. The beacons can attest to users' identities and provide seamless strong authentication to third-party online service providers on behalf of those users. |
US10361856B2 |
Unique token authentication cryptogram
Embodiments of the invention are directed to systems and methods for validating transactions using a cryptogram. One embodiment of the invention is directed to a method of processing a remote transaction initiated by a communication device provisioned with a token. The method comprises receiving, by a service provider computer, from an application on the communication device, a request for a token authentication cryptogram, wherein the token authentication cryptogram includes encrypted user exclusive data. The service provider computer may generate the token authentication cryptogram to include the user exclusive data. The service provider computer may send the token authentication cryptogram to the application, where the token authentication cryptogram can be used to validate the transaction, and the user exclusive data is extracted from the token authentication cryptogram during validation. |
US10361855B2 |
Computing a secure elliptic curve scalar multiplication using an unsecured and secure environment
A system includes a secure processor and an unsecure processor. The secure processor is configured to: split a secure scalar K into m2 random values ki, where i is an integer index; randomly select m1-m2 values ki for the indices m2 |
US10361847B2 |
Quantum random pulse generator
Provided is a quantum random pulse generator having enhanced security using a phenomenon in which a radioactive isotope naturally collapses. The quantum random pulse generator includes a photodiode detection unit which has a photodiode disposed at the center of the photodiode detection unit on a top surface, a radioactive isotope emission unit which emits alpha particles discharged when an atomic nucleus naturally collapses toward a photodiode, and a plate which is disposed on a top surface of the radioactive isotope emission unit and supports the radioactive isotope emission unit. The alpha particles discharged by the emission unit come into contact with the photodiode to generate a random pulse. |
US10361841B2 |
Proxy computing system, computing apparatus, capability providing apparatus, proxy computing method, capability providing method, program, and recording medium
A computing apparatus outputs τ1 and τ2 corresponding to a ciphertext x, a capability providing apparatus uses τ1 to correctly compute f(τ1) with a probability greater than a certain probability and sets the result of the computation as z1, uses τ2 to correctly compute f(τ2) with a probability greater than a certain probability and sets the result of the computation as z2, the computing apparatus generates a computation result u=f(x)bx1 from z1, generates a computation result v=f(x)ax2 from z2, and outputs ub′va′ if the computation results u and v satisfy a particular relation, where G and H are groups, f(x) is a function for obtaining an element of the group G for x∈H, X1 and X2 are random variables having values in the group G, x1 is a realization of the random variable X1, and x2 is a realization of the random variable X2. |
US10361839B2 |
Encryption in wireless communication systems
A method for encryption in a wireless communication system includes encrypting, at a base station, data of a physical layer control channel using at least one of a control channel type, a radio resource aggregation level of the control channel, a radio resource index of the control channel, or a subcarrier frequency of the control channel; and transmitting the encrypted data to a user equipment (UE), where the UE is in a cell of the base station. |
US10361837B2 |
Selective proxy to alleviate adjacent channel interference in full duplex cable network environments
A method in an embodiment includes calculating a first packet error rate (PER) of a flow sent from a source to a cable modem over a first period of time in a full duplex cable network, tagging the flow based on determining the first PER satisfies a tag threshold associated with the flow, and intercepting, at a selective proxy, a packet of the tagged flow. The method further includes storing a backup of the packet, transmitting the packet to the cable modem, determining the cable modem did not receive the packet, and retransmitting the backup of the packet to the cable modem. Further embodiments include dynamically calculating a second PER of the tagged flow based on a second period of time, determining the second PER satisfies a de-tag threshold, and revoking the tagging of the flow based, at least in part, on determining the second PER satisfies the de-tag threshold. |
US10361835B2 |
System for coexistence of Wi-Fi HaLow network and low-rate wireless personal area network (LR-WPAN)
A network system for coexistence of a Wi-Fi HaLow network and a low-rate wireless personal area network (LR-WPAN) includes a receiver for receiving a wireless signal of a frequency band shared with the LR-WPAN using an LR-WPAN protocol, a sensor for detecting an energy level of the wireless signal, a memory storing a first program for performing an energy-detection (ED) clear channel assignment (CCA) control process, a processor, in connection with the sensor and the memory, for executing the first program to determine if a transmission of a packet is permitted based on the detected energy level of the wireless signal according to the ED CCA control process, and a transmitter for transmitting the packet over the frequency band according to the Wi-Fi HaLow protocol when the ED CCA control process has permitted the transmission. |
US10361834B2 |
Subcarrier allocations for operation in mixed bandwidth environments
Embodiments of the disclosure provide bandwidth allocation in wireless telecommunications including communication devices that can operate according to different operating bandwidth. The bandwidth allocation can include allocation of subcarrier blocks having specific sizes. The subcarriers blocks can be contiguous within a channel or can be non-contiguous or distributed. |
US10361829B2 |
Data transmission method and device
Embodiments relate to a data transmission method and device. A feedback request is sent by a first device to user equipment that instructs the user equipment to feed back channel indication data to a network device. The channel indication data indicates that a channel is occupied by the first device within a time that corresponds to the channel indication data. The network device includes the first device and one additional device. The first device receives the channel indication data sent by the UE. The first device performs data transmission with the UE using the channel within the time that corresponds to the channel indication data. |
US10361827B2 |
Aperiodic and periodic CSI feedback modes for coordinated multi-point transmission
Coordinate multi-point (CoMP) transmission is facilitated by resolving collisions between feedback reporting. Based upon the conditions within the network, collision resolution may be by dropping a channel report during a subframe, multiplexing channel reports from a plurality of user equipment, compressing channel reports from a plurality of user equipment, and combined reporting, either through joint reports or by using carrier aggregation, for conditions between a user equipment and a plurality of transmission points. New signaling and reporting formats facilitate selection of a collision resolution suitable for current network conditions. |
US10361825B2 |
Systems and methods of adaptive frame structure for time division duplex
A method for wireless communications includes receiving signaling for indicating a time division duplexing (TDD) frame structure configuration from a base station. The TDD frame structure configuration corresponds to a time duration of 0.1 ms, 0.125 ms, 0.2 ms, 0.25 ms, 0.5 ms, or 1.0 ms, the TDD frame structure configuration including two switching points between downlink transmissions and uplink transmissions. The method further includes communicating downlink and uplink transmissions according to the TDD frame structure configuration. The TDD frame structure configuration may further include a guard period for separating the first downlink transmission and the first uplink transmission in the time domain. |
US10361822B2 |
Method for processing feedback information, base station, and user equipment
Embodiments of the present invention provide a method for processing feedback information, abase station, and a user equipment. The method includes: determining, by abase station, a feedback manner of HARQ feedback information, where the feedback manner includes feeding back the HARQ feedback information or not feeding back the HARQ feedback information; and sending, by the base station, first signaling to a user equipment, where the first signaling carries the feedback manner of the HARQ feedback information. The embodiments of the present invention can improve an HARQ mechanism, so as to support new technologies in a small cell more effectively. |
US10361820B2 |
Methods for repetition design
Methods and apparatus are provided for repeated transmission. In one novel aspect, the RV sequence is selected from a predefined set of RV sequences for the repeated transmission. In one embodiment, the one or more RV values in the selected RV sequence are repeatedly used for the repeated transmission, by applying each RV value one by one to one block of repetitions cyclically, wherein the number of repetition in the block is determined by the repetition number and the length of the RV sequence. In another embodiment, the one or more RV values in the selected RV sequence are repeatedly used for the repeated transmission, by applying each RV value one by one to one repetition cyclically. In one embodiment, the RV value and the scrambling sequences are the same for the repetition blocks and a symbol level combination is applied. |
US10361815B2 |
Polar code rate matching method and apparatus
A polar code rate matching method and apparatus are provided. The method includes: performing bit reversal order interleaving on a polar code output by a polar code encoder, to obtain interleaved bits; and determining, based the interleaved bits, a rate-matched output sequence. By performing bit reversal order interleaving on a polar code, a rate-matched output sequence is obtained, which can reduce an FER, thereby improving HARQ performance and ensuring reliability of data transmission. |
US10361813B2 |
Using slice routers for improved storage placement determination
A method begins by a dispersed storage (DS) processing unit of a dispersed storage network (DSN) sending a set of data access requests regarding a set of encoded data slices to slice routers of the DSN. The method continues by a first slice router identifying a first storage unit from a first plurality of storage units of a first storage unit group based on a first slice name of a set of corresponding slice names. The method continues by the first slice router sending a first data access request of the set of data access requests to the first storage unit. The method continues by the first slice router receiving a first data access response from the first storage unit. The method continues by the first slice router forwarding the first data access response to the DS processing unit. |
US10361812B2 |
Transmission data signaling in a wireless communication network
There is disclosed a method for operating a wireless device in a wireless communication network. The method comprises receiving, by the wireless device, of transmission data signals from the wireless communication network, and performing blind detection, by the wireless device, on the transmission data signals. There are also disclosed further related methods and apparatuses. |
US10361810B2 |
Data packet transmission/reception apparatus and method
A method and apparatus are provided for recovering data efficiently even when data loss has occurred over a channel or network. The packet transmission method includes arranging a first transmission packet in a source symbol in a first region of a source block; arranging a second transmission packet in a space starting with an empty space of a last source symbol where the first transmission packet is arranged, remaining after arranging the first transmission packet; arranging information related to the second transmission packet in a second region of the source block; performing Forward Error Correction (FEC) encoding on the source block; and transmitting the encoded source block. |
US10361808B2 |
System, device, and method for multi-mode communications
A device includes circuitry configured to determine one or more signal processing capabilities of another device in communication with the device. The device configures a signal compression mode of the device to correspond to a first signal compression mode of a plurality signal compression modes based on the one or more signal processing capabilities of the other device. The device s configured to modify, in response to detecting variations in one or more network configuration properties or the one or more signal processing capabilities of the other device, the signal compression mode of the device. |
US10361806B2 |
System and method for providing single fiber 4K video
Aspects of the subject disclosure may include, for example, a device that encodes digital signals representing image data captured by a video camera and provided according to a 4K ultra-high definition (4K-UHD) standard. The digital signals are transmitted as serial digital interface (SDI) streams to a wavelength-division multiplexing (WDM) unit; the WDM unit performs electrical-to-optical conversion of the SDI streams and outputs a multiplexed signal to a single fiber-optic cable. The video camera, encoding unit, and WDM unit form a combined module within a housing; the device connects to a proximal end of a single fiber-optic cable, and a distal end of the single fiber-optic cable is configurable for connection to a demultiplexer of a 4K-UHD video presentation device. The multiplexed signal is transmitted on the single fiber-optic cable unidirectionally from the proximal end to the distal end. Other embodiments are disclosed. |
US10361803B2 |
Reception device, reception method, transmission device, and transmission method
The present technology relates to a reception device, a reception method, a transmission device, and a transmission method, which are capable of implementing a high transmission rate by effectively utilizing a frequency band in channel bonding. A reception device receives a plurality of divisional streams obtained by distributing baseband (BB) frames of a BB stream which is as a stream of BB frames to a plurality of data slices and reconstructs an original BB stream on the basis of reconfiguration information which is in included in transmission control information and used for reconstructing the original BB stream from the plurality of divisional streams transmitted through the non-neighboring frequency bands when the plurality of divisional streams are transmitted through non-neighboring frequency bands. The present technology can be applied to, for example, channel bonding such as PLP bundling. |
US10361801B2 |
Transmission method, transmission apparatus and system
A transmission method according to one aspect of the present disclosure is a transmission method for transmitting content through broadcasting, including: generating a plurality of frames for transfer, each of which includes a plurality of first transfer units in which the content is to be stored, each of the plurality of frames having a fixed length, each of the plurality of first transfer units having a variable length; and transmitting the plurality of frames generated. The generating includes sequentially placing the plurality of first transfer units into the plurality of frames, and in the placing, even when a data size of a current first transfer unit to be processed is smaller than a remaining capacity of a current frame to be processed, the current first transfer unit is placed into a next frame. |
US10361799B2 |
Apparatus for generating broadcast signal frame using enhanced layer dummy values and method using the same
An apparatus and method for generating a broadcast signal frame using enhanced layer dummy values are disclosed. An apparatus for generating broadcast signal frame according to an embodiment of the present invention includes a combiner configured to generate a multiplexed signal by combining a core layer signal and an enhanced layer signal; a power normalizer configured to reduce the power of the multiplexed signal to a power level corresponding to the core layer signal; a time interleaver configured to generate a time-interleaved signal by performing interleaving that is applied to both the core layer signal and the enhanced layer signal; and a frame builder configured to generate a broadcast signal frame including a preamble for signaling time interleaver information corresponding to the time interleaver, the time interleaver uses one of time interleaver groups, and enhanced layer data corresponding to the one of the time interleaver groups include dummy values. |
US10361797B1 |
Wireless testing device and method for timing error measurements using interface space marker information
A wireless radio tester for testing a device under test is provided. The wireless radio tester comprises a generation unit for transmitting a transmit waveform to the device under test, a measurement unit for receiving and analyzing a receive signal received from the device under test, a processing unit for triggering the measurement unit by interframe space marker information, and a IQ data memory configured to provide IQ data for the generation unit in order to form the transmit waveform. In this context, said IQ data comprises an interframe space marker according to the interframe space marker information. |
US10361796B2 |
Systems and methods for satellite noise and interference calibration using terminal measurements
Systems and methods are provided for satellite noise and interference calibration using satellite terminal measurements. In one implementation, a method includes partitioning a satellite network into a first partition including a plurality of terminals and a plurality of inroute frequency channels (IFCs); instructing the plurality of terminals of the partition to measure the SINR of the plurality of IFCs; processing the plurality of SINR measurements to compute normalized IFC measurements for each of the plurality of terminals; processing the normalized IFC measurements for each terminal to compute final calibrated IFC SINR offsets for each IFC of the partition; and normalizing the final calibrated IFC SINR offsets with respect to a lowest SINR offset IFC. The normalized final calibration offsets may be made available to each of the satellite terminals. During subsequent operation, the satellite terminals may consider the amount of interference present in an IFC before switching to the channel. |
US10361794B2 |
Apparatus and methods for measuring signals
Aspects of the subject disclosure may include, a system that obtains a group of signals that are each representative of a corresponding one of a group of electromagnetic waves, analyzes the group of signals to determine signal characteristics, and determines, according to the signal characteristics, predicted characteristics for a communication signal that is to be transmitted by a circuit. Other embodiments are disclosed. |
US10361787B2 |
Method and system for optical alignment to a silicon photonically-enabled integrated circuit
Methods and systems for optical alignment to a silicon photonically-enabled integrated circuit may include aligning an optical assembly to a photonics die comprising a transceiver by, at least, communicating optical signals from the optical assembly into a plurality of grating couplers in the photonics die, communicating the one or more optical signals from the plurality of grating couplers to optical taps, with each tap having a first output coupled to the transceiver and a second output coupled to a corresponding output grating coupler, and monitoring an output optical signal communicated out of said photonic chip via said output grating couplers. The monitored output optical signal may be maximized by adjusting a position of the optical assembly. The optical assembly may include an optical source assembly comprising one or more lasers or the optical assembly may comprise a fiber array. Such a fiber array may include single mode optical fibers. |
US10361783B2 |
Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
Embodiments of the disclosure relate to digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs). In this regard, in one aspect, a DIM is a multi-functional device capable of distributing the digital and/or analog communications signals to a local-area DASs in the wide-area DAS. The DIM comprises a digital communications interface for coupling with a digital signal source, an analog local distribution interface for coupling with an analog signal source, and at least one digital remote distribution interface for coupling with a head-end unit (HEU) of the local-area DAS. By employing the DIM in the wide-area DAS, it is possible to flexibly reconfigure the wide-area DAS for distributing digital and/or analog communications signals over the digital communications mediums. |
US10361769B2 |
Partial decode and forward (PDF) signal forwarding device with scheduler
A signal forwarding device forwards signals between a user equipment (UE) device and a base station using a partial decode and forward (PDF) signal forwarding scheme where an incoming signal is demodulated and forwarded to a destination as a forwarded signal without decoding the incoming signal. The signal forwarding device transmits, to the base station, channel information regarding the UE-SFD channel between the UE device and the signal forwarding device. A base station (BS) scheduler determines the coding rate to be used by the UE device at least partially based on the channel information. The base station transmits coding rate information indicative of the coding rate to the signal forwarding device. A signal forwarding device (SFD) scheduler schedules communication resources for use by the UE device at least partially based on the coding rate information. |
US10361768B2 |
Method and repeater for broadband distribution
Aspects of the subject disclosure may include, for example, a method that includes extracting first channel signals from first guided electromagnetic waves bound to an outer surface of a transmission medium of a guided wave communication system; amplifying the first channel signals to generate amplified first channel signals in accordance with a phase correction; selecting one or more of the amplified first channel signals to wirelessly transmit to at least one client device via an antenna; and guiding the amplified first channel signals to the transmission medium of the guided wave communication system to propagate as second guided electromagnetic waves, wherein the phase correction aligns a phase of the second guided electromagnetic waves to add in-phase with a residual portion of the first guided electromagnetic waves that continues propagation along the transmission medium. |
US10361767B2 |
Relay device, program for relay device, and information processing system
A relay device includes: a hardware processor that refers to association information associating an address of a device and a port number in a first network with a port number of a second network to relay communication between the device in the first network and a device in the second network, wherein the hardware processor dynamically changes the association information on the basis of a state of the device in the first network. |
US10361760B2 |
4Tx codebook enhancement in LTE
Channel state information (CSI) feedback in a wireless communication system is disclosed. A precoding matrix is generated for multi-antenna transmission based on precoding matrix indicator (PMI) feedback, wherein the PMI indicates a choice of precoding matrix derived from a matrix multiplication of two matrices from a first codebook and a second codebook. In one embodiment, the first codebook comprises at least a first precoding matrix constructed with a first group of adjacent Discrete-Fourier-Transform (DFT) vectors. In another embodiment, the first codebook comprises at least a second precoding matrix constructed with a second group of uniformly distributed non-adjacent DFT vectors. In yet another embodiment, the first codebook comprises at least a first precoding matrix and a second precoding matrix, where said first precoding matrix is constructed with a first group of adjacent DFT vectors, and said second precoding matrix is constructed with a second group of uniformly distributed non-adjacent DFT vectors. |
US10361758B2 |
Methods for selecting a codebook
A method (10) performed in a network node (2) for selecting a codebook is provided. The network node (2) supports a multiple antenna communication mode for communication with a communication device (3). The method (10) comprises measuring (11) received power of a signal from the communication device (3), and selecting (12), based at least on the received power, one of: a first codebook adapted for a coverage limited scenario and a second codebook adapted for an interference limited scenario, for use in codebook based precoding in uplink. A corresponding method (40) in a communication device (3), a network node (2), communication device (3), computer programs and computer program products are also provided. |
US10361757B2 |
Method for reporting channel state information in wireless communication system and device therefor
According to the present specification, a method for reporting channel state information (CSI) in a wireless communication system, which is performed by a UE includes: transmitting UE capability information including first control information indicating the total number of CSI-RS ports which are maximally supported in one CSI process to a base station.Therefore, there is an effect that implementation complexity of the UE can be reduced. |
US10361756B2 |
Radio-frequency identification transponder and method for data transmission by means of radio-frequency identification technology
An RFID transponder includes a coding and modulation unit that generates a transmission signal by modulating an oscillator signal with an encoded bit signal. During a first and a second time segment, the encoded bit signal assumes a first and a second logic level, respectively. The transmission signal includes a first signal pulse having a first phase within the first time segment and a second signal pulse having a second phase that is shifted with respect to the first phase by a predefined phase difference within the second time segment. The transmission signal is paused for a pause period between the first and the second signal pulse. The pause period is shorter than a mean value of a period of the first time segment and a period of the second time segment. |
US10361754B2 |
Enabling use of stay quiet requests in a near field communication device
Techniques for enabling a use of one or more signals in a Near Field Communication (NFC) device for NFC communication are described. In an aspect, the methods and apparatus include receiving, at a NFC controller, a stay quiet command from a device host, wherein the stay quiet command includes one or more unique identifiers (UIDs) corresponding to one or more remote NFC endpoints. Further, in an aspect, the methods and apparatus include transmitting, by the NFC controller, a stay quiet response to the device host based at least in part on the stay quiet command. |
US10361751B2 |
Modulation index setting circuits of near field communication (NFC) devices, NFC devices, and methods of operating NFC devices
A modulation index setting circuit of a near field communication (NFC) device, includes a current detector. The current detector generates a reference current based on detecting a transmitter current flowing in a transmitter of the NFC device respectively during a non-modulation interval, and generates a modulation current based on detecting the transmitter current flowing in the transmitter of the NFC device during a modulation interval. The modulation index setting circuit changes the transmitter current based on applying a driving strength control code to the transmitter, receives the reference current and the modulation current, calculates modulation indexes associated with separate, respective code values of the driving strength control code and generates a modulation index table that stores the modulation indexes. |
US10361750B2 |
Monitoring and mitigating conditions in a communication network
Aspects of the subject disclosure may include, for example, a system for receiving telemetry information from an apparatus that induces electromagnetic waves on a wire surface of a wire of a power grid for delivery of communication signals to a recipient communication device coupled to the power grid, and detecting a condition from the telemetry information that is adverse to a delivery of the communication signals to the recipient communication device. Other embodiments are disclosed. |
US10361749B2 |
Power line communication monitor
Various embodiments include a monitor terminal in a data center communicating with an access node in the data center via power line communication (PLC) protocol. The monitor terminal can track and manage power quality at a specific location in the data center. The monitor terminal can couple to a power line. The monitor terminal can power a measurement component and a PLC modem by electrical signals of the power line. The measurement component can measure a physical quantity of the electrical signals across the power line. The PLC modem can communicate a measurement message, indicating the measured physical quantity, across the power line to the access node. |
US10361748B2 |
Multi-stage echo cancelation scheme to run FDX in coax cable plant
Disclosed herein is a multi-stage echo cancellation scheme. The disclosed embodiments include an apparatus and method for monitoring and canceling echoes greater than 25 dB in a coaxial cable plant. The method includes obtaining echo channel estimate coefficients from a cable node. The method determines a location and strength of each partial echo in an impulse response using the echo channel estimate coefficients. Optionally, the method determines a frequency response of each partial echo in the impulse response. |
US10361747B2 |
Hopping synchronization signals
A method of synchronizing transmission of signals from a network node to a receiver includes generating a synchronization signal transmission pattern in which transmission resources used for transmission of the synchronization signals in regularly spaced time intervals are changed in successive ones of the time intervals, and transmitting synchronization signals from the network node in accordance with the synchronization signal transmission pattern. Related network nodes and user equipment nodes are disclosed. |
US10361746B2 |
Semiconductor device and semiconductor system
A semiconductor device includes an RF circuit and a microcontroller. The RF circuit has: a transmission unit generating a transmission signal; a reception unit generating a first generation signal and a second generation signal; and a transmission/reception loop-back switching unit switching between a first coupling state of coupling an output terminal of the transmission unit to a transmission antenna and coupling an input terminal of the reception unit to a reception antenna and a second coupling state of coupling an output terminal of the transmission unit to the input terminal of the reception unit. The microcontroller switches the transmission/reception loop-back switching unit to the second coupling state and executes a test of the RF circuit on the basis of the second generation signal when the transmission/reception loop-back switching unit is in the second coupling state and an output signal of a first sensor circuit. |
US10361740B2 |
Method and apparatus for holding electronic devices
A tiered electronic device holder supports electronic devices in a variety of shapes and sizes, in at least a portrait and landscape orientation. The tiered electronic device holder comprises a plurality of brackets positioned along a “V” shaped path. A first pair of brackets of the plurality of brackets receive an electronic device therebetween, while one or more or another pair of brackets below the first pair of brackets supports a bottom edge of the electronic device. The first pair of brackets are selected based on the size and orientation of the electronic device. The brackets extend from a body, one or more rails, or both. |
US10361733B2 |
Low complexity transmitter structure for active antenna systems
Various embodiments disclosed herein provide for a low complexity transmitter structure for active antenna arrays by reducing the number of digital predistortion extraction loops that need to be performed. Digital predistortion (DPD) corrects any non-linearities in a power amplifier. By determining which power amplifiers have similar characteristics in an array, and thus may use similar predistortion coefficients, once the DPD coefficients are determine for one of the grouped power amplifiers, DPD can be performed on each of the grouped power amplifiers based on the DPD coefficients. |
US10361732B1 |
Fault detection in a low voltage differential signaling (LVDS) system
An integrated circuit includes a transmitter having a data input coupled to receive a single-ended data signal, a reference input coupled to receive a bandgap reference, a first differential output, and a second differential output. The transmitter is configured to, during normal operation, convert the single-ended data signal at the data input into a first differential signal at the first differential output and a second differential signal at the second differential output in which the first differential signal and the second differential signal are complementary to each other. A fault detection circuit is coupled to the first and second differential outputs and is configured to detect a load short fault condition and a bandgap short condition based on the first and second differential signals at the first and second differential outputs while forcing the data input to zero. |
US10361731B2 |
Interleaved sigma delta modulator based SDR transmitter
A Delta-Sigma modulator architecture is disclosed that uses interleaving and dynamic matching algorithms to address the needs of multi-mode, multi-band high bandwidth transmitters. The proposed architecture also supports a novel software defined transmitter architecture based on an interleaved Delta-Sigma modulator to generate RF signals. The proposed architecture leverages interleaving concepts to relax subcomponent clock rates without changing the effective oversampling ratio, thus, making it easier to reach aggressive dynamic range goals across wider bandwidths at higher frequencies. The DEM algorithm helps to randomize mismatch errors across all interleaved paths and improves substantially the signal-to-noise ratio. Additionally, a tunable bandpass filter can be added to reject out-of-band emissions. |
US10361730B2 |
Amplifier device for high frequency signals
An amplifier device for high frequency signals, in particular a linear high frequency amplifier device, which comprises at least one input, an incoming line, a pre-distortion unit, in particular an adaptive pre-distortion unit, an amplifier unit, in particular a non-linear power amplifier unit, a transmission line, a feedback unit, and an output. The output is connected to the amplifier unit via the transmission line. In addition, the at least one input is connected to the pre-distortion unit such that two incoming branch lines are provided which are interconnected by a switching unit. A first incoming branch line of the incoming branch lines comprises a down-converter being arranged between the at least one input and the pre-distortion unit. |
US10361729B2 |
Dual-frequency antenna device and low-frequency antenna module
A low-frequency antenna module includes two switching units, a first matching circuit, a second matching circuit, and a low-frequency antenna. Each of the two switching units includes an electrical connection point, a first switching point, and a second switching point. The first matching circuit is electrically connected to the two first switching points, the second matching circuit is electrically connected to the two second switching points, and the low-frequency antenna is electrically connected to one of the two electrical connection points. The two switching units are synchronously operated to electrically connect the two electrical connection points to the two first switching points or to the two second switching points. Thus, the low-frequency antenna can be applied to match the first matching circuit in a first low-frequency band or the second matching circuit in a second low-frequency band different from the first low-frequency band. |
US10361725B2 |
Transmitting apparatus and interleaving method thereof
A transmitting apparatus is provided. The transmitting apparatus includes: an encoder configured to generate a Low Density Parity Check (LDPC) codeword by LDPC encoding based on a parity check matrix; an interleaver configured to interleave the LDPC codeword; and a modulator configured to map the interleaved LDPC codeword onto a plurality of modulation symbols, wherein the modulator is configured to map bits included in a predetermined bit group from among a plurality of bit groups constituting the LDPC codeword onto a predetermined bit of each of the modulation symbols. |
US10361721B1 |
Methods and network device for uncoded bit protection in 10GBASE-T Ethernet
A plurality of bits are received, and the plurality of bits are grouped and transcoded into a plurality of bit blocks, where the plurality of bit blocks includes a first set of bit blocks and a second set of bit blocks. A set of transcoded bit blocks is generated by transcoding the first set of bit blocks, where the set of transcoded bit blocks contains fewer bits than the first set of bit blocks. An aggregated bit block is generated at least by aggregating the set of transcoded bit blocks and the second set of bit blocks. All bits in the aggregated bit block are encoded, and the encoded bits in the aggregated bit block are modulated to generate a communication frame. |
US10361719B2 |
Method of managing data captured in an aerial camera system
A method of managing data captured in an aerial camera system is disclosed. The method comprises commencing an aerial survey so as to produce aerial survey data, storing the aerial survey data on the survey aircraft directly on at least one magnetic tape cartridge, completing the aerial survey, sending the at least one magnetic tape cartridge to a data processing facility, and retrieving the aerial survey data from the at least one magnetic tape cartridge at the data processing facility. A corresponding system is also disclosed. |
US10361717B2 |
Apparatus and methods for error detection coding
A first error-detecting code (EDC) is computed based on a first segment of a block of information that is to be encoded, and a second EDC is computed based on at least a second segment of the block of information. The first EDC is masked with a first masking segment and the second EDC with a second masking segment to generate a first masked EDC and a second masked EDC. The first masking segment and the second masking segment are associated with a target receiver of the block of information. A codeword is generated based on a code and an input vector that includes the first segment, the first masked EDC, the second segment, and the second masked EDC. This type of coding could be useful to support early termination of blind detection at a decoder, for example. |
US10361715B1 |
Decompression circuit
Provided are systems and methods, including an integrated circuit, for data decompression of data encoded using a fixed-length encoding technique. For a data set where some symbols appear more frequently than others, the frequent symbols can be encoded into a short encoded symbol, and the remaining symbols can be encoded into a long encoded symbol. A decompression circuit can include decoder circuits that, upon receiving a set of input bits, can determine whether the set of input bits include one long encoded symbol or one or more short encoded symbols. The decoder circuit can then decode the one long encoded symbol or the one or more short encoded symbol. The fixed length of the encoded symbols can enable the decompression circuit to output decoded symbols at a same rate at which the circuit receives encoded symbols. |
US10361714B2 |
Reading and writing compressed data using long-term storage
A storage system receives one or more records from a host system. The records are compressed in a first compression format that is native to the host system. The storage system identifies an incompatibility between the first compression format and a first operation of the storage system. In response to the identified incompatibility, the storage system decompresses the received records. The decompression is based on the first compression format. The storage system compresses the decompressed records in a second compression format. The storage system stores the secondarily compressed records onto a storage medium. |
US10361703B2 |
Superconducting logic circuits
The various embodiments described herein include methods, devices, and systems for implementing logic gates. In one aspect, a circuit includes: (1) superconducting components; (2) heat sources, each coupled to a corresponding superconducting component and configured to selectively provide heat to that component; and (3) a current source coupled to the superconducting components and configured to selectively provide: (a) a first current to bias the components such that combination of the first current and heat from any heat source causes the components to transition to a non-superconducting state; and (b) a second current to bias the components such that (i) combination of the second current and heat from each heat source causes the components to transition to the non-superconducting state, and (ii) a combination of the second current and heat from only a subset of the heat sources does not cause the components to transition to the non-superconducting state. |
US10361695B2 |
Current sensing and control for a transistor power switch
An apparatus includes: a first power transistor having a first current conduction path coupled between an input for receiving a supply voltage and a node and a first gate terminal coupled to a first gate control signal; a second power transistor having a second current conduction path coupled between the node and an output terminal for supplying a load current to a load; and a second gate terminal coupled to a second gate control signal; and a current sense transistor having a third gate terminal coupled to the first gate control signal, and outputting a sense current. The apparatus further includes: a differential amplifier having an output signal, and a feedback transistor having a gate terminal coupled to the output signal of the differential amplifier; and a resistor coupled between a monitor node and ground. |
US10361690B1 |
Duty cycle and skew correction for output signals generated in source synchronous systems
A first integrated circuit configured to send data to a second integrated circuit may perform a duty cycle correction process and/or a skew correction process. For duty cycle correction, a data-in input buffer is enabled to feedback an output clock signal from an output clock node to a duty cycle correction circuit that adjusts a delay of a clock signal received from a delay-locked loop circuit. For skew correction, data-in input buffers are enabled to feedback an output clock signal and an output data signal to adjust delay amounts of delay circuits that adjust delays of clock signals output to clock inputs of output path circuits. |
US10361687B2 |
Multi-rate clock buffer
A system may include a driver circuit configured to receive a clock signal. The system may also include a first tuned circuit and a second tuned circuit. The first tuned circuit and the driver circuit may be collectively tuned according to a first frequency range. The first tuned circuit may be configured to be active when a rate of the clock signal is within the first frequency range and to be inactive when the rate is outside of the first frequency range. Further, the second tuned circuit and the driver circuit may be collectively tuned according to a second frequency range that is different from the first frequency range. The second tuned circuit may be configured to be active when the rate is within the second frequency range and to be inactive when the rate is outside of the second frequency range. |
US10361686B2 |
Scan output flip-flops
A scan output flip-flop is provided. The scan output flip-flop outputs a scan-out signal at a first output terminal and includes a selection circuit, a control circuit, and a scan-out stage circuit. The selection circuit is controlled by a first test enable signal to transmit a data signal on a first input terminal or a test signal on a second input terminal to an output terminal of the selection circuit to serve as an input signal. The control circuit is coupled to the output terminal of the selection circuit and controlled by a first clock signal to generate a first control signal and a second control signal according to the input signal. The second control signal is the inverse of the first control signal. The scan-out stage circuit is controlled by the first control signal and the second control signal to generate the scan-out signal. |
US10361685B2 |
Semiconductor device
There is to provide a semiconductor device capable of predicting a wear-out failure based on the degradation stress cumulative amount of power supply voltage and environmental temperature imposed on the device, which includes a ring oscillator having a plurality of stages of inverters, and a control circuit that emphasizes the voltage dependency and temperature dependency of an oscillation frequency of the ring oscillator or a control circuit that emphasizes the temperature dependency not the voltage dependency. |
US10361682B2 |
Filter for a brushless DC motor
A filter for use with a brushless DC motor to filter a signal received from a floating terminal of the brushless DC motor, wherein the filter is configured such that a time delay introduced by the filter to the signal received from the floating terminal is equal to the time taken for a rotor of the motor to rotate through an angle equal to half of a commutation step of the motor. |
US10361676B2 |
Baw filter structure with internal electrostatic shielding
Embodiments of the disclosure are directed to a Bulk Acoustic Wave (BAW) filter structure with internal electrostatic shielding. In exemplary aspects disclosed herein, a shielded BAW filter structure includes a substrate, a plurality of transducers over the substrate, and a planar electrostatic shield between the substrate and a top electrode of the plurality of transducers. Each of the plurality of transducers forms a portion of a BAW resonator and resides in a filter including a parasitic capacitance. The planar electrostatic shield is coupled to a ground node and interrupts an electrical field associated with the parasitic capacitance of the filter to reduce the parasitic capacitance. Accordingly, the shielded BAW filter structure reduces the influence of parasitic capacitance providing improved filtering performance compared to an unshielded BAW filter structure. |
US10361671B2 |
Methods and apparatus for adjusting a level of an audio signal
The invention relates to methods and apparatus for adjusting a level of an audio signal. An audio signal is divided into a plurality of frequency bands. Modification parameters are obtained for at least one of the plurality of frequency band. Gain factors are derived for at least one of the plurality of frequency bands, the gain factors determined based on the amplitude scale factors. The gain factors are smoothed. A level of noise from noise compensation factors is determined. The gain factors are applied to at least one of the frequency bands to generate gain adjusted frequency bands. The level of noise is adjusted based on the gain adjusted frequency bands. At least one of the frequency bands is filtered with a filter generated with the filter coefficients. The plurality of frequency bands is synthesized to generate an output audio signal. |
US10361666B2 |
Semiconductor device and power amplifier module
A circuit element is formed on a substrate made of a compound semiconductor. A bonding pad is disposed on the circuit element so as to at least partially overlap the circuit element. The bonding pad includes a first metal film and a second metal film formed on the first metal film. A metal material of the second metal film has a higher Young's modulus than a metal material of the first metal film. |
US10361663B2 |
Low-noise amplifier and electronic device
Provided is a low-noise amplifier that can effectively suppress noise included in an input signal. A low-noise amplifier according to an embodiment of the present invention amplifies a reception signal in a predetermined frequency band from an antenna. The low-noise amplifier includes an input terminal, an output terminal, a field effect transistor, and a branch circuit. The branch circuit is branched from a circuit connecting the input terminal or the output terminal to the field effect transistor. The branch circuit is connected to the elastic wave resonator. |
US10361661B2 |
Power amplification apparatus and television signal transmission system
An amplification unit 1 has an output connector 3 for outputting an RF signal output by an amplification circuit 2 for each amplification circuit. The output connectors 3 are disposed so as to be arranged in the horizontal direction. A combining unit 5 has an input connector 6 into which the RF signal output from the output connector 3 of the amplification unit 1 is input for each output connector 3. The input connectors are disposed so as to be arranged in the horizontal direction. The amplification unit 1 and the combining unit 5 are attachable/detachable through the output connectors 3 and the input connectors 6. The surface on which the input connectors are provided of the combining unit 5 is set within the dimension of the surface on which the output connectors are provided of the amplification unit 1. |
US10361658B2 |
Oscillation module, electronic device, and moving object
An oscillation module includes an oscillation circuit which includes a first coil and a second coil and a filter circuit which is provided at a stage subsequent to the oscillation circuit and includes a third coil. The first coil, the second coil, and the third coil are a part of an integrated circuit. The third coil is arranged so as to intersect a virtual straight line equidistant from the center of the first coil and the center of the second coil, in a plan view of the integrated circuit. |
US10361657B2 |
Series of coupled synchronous oscillators
An integrated circuit includes at least two identical, synchronous and independent oscillator circuits that are coupled one to one in parallel with each other at homologous oscillating nodes of the respective oscillator circuits. The coupling in parallel is made using at least one coupling track that is configured so as to not introduce any phase shift or to introduce a very small phase shift. |
US10361655B2 |
Electrical inspection method for solar cells
The present invention discloses an electrical inspection method for solar cells, comprising steps of supplying a voltage and a current to a solar cell for stimulating the solar cell and giving a ray of light; filtering the light to give a ray of light having a predetermined wavelength; and measuring an optical power value of the light having a predetermined wavelength. The electrical inspection method adopts a low-cost apparatus to replace the solar simulators according to the prior art. In addition to saving costly equipment, filter adjustment, and the maintenance fee for replacing lamps, the defect inspection flow for solar cells can be further integrated and hence improving the efficiency. |
US10361654B2 |
Contacts for junction boxes on solar panels
A connection box with contacts for solar panels to enable the use of multiple types of passive and active covers for different functionalities in the junction box built into the panel. |
US10361652B2 |
Solar module mounting
Embodiments of the present disclosure are related to solar module mounting systems. A system may include an adhesion sheet configured to be secured to a roof of a structure via an adhesive. The system may further include at least one clamp configured for securing at least one solar module to the adhesion sheet. Other embodiments are related to methods of attaching one or more solar modules to a structure. |
US10361651B2 |
Cordless power tool system
A system comprising a multi-voltage battery pack for use with tools of different operating voltages, including a housing and a power tool interface shaped and configured to interchangeably (1) mechanically and electrically couple with a first battery pack interface of a first power tool that is configured to operate at a first operating voltage and that was on sale prior to May 18, 2014 and, and (2) mechanically and electrically couple with a second battery pack interface of a second power tool that is configured to operate at a second operating voltage and that was not on sale prior to May 18, 2014. |
US10361650B2 |
Half-bridge switching circuit system
One example includes a half-bridge switching circuit system. The system includes a first plurality of switches arranged between a first rail voltage and an output on which an output voltage is provided and a second plurality of switches arranged between a second rail voltage and the output, the first and second pluralities of switches being controlled via a plurality of switching signals. The system also includes a plurality of flying capacitors arranged to interconnect the first and second pluralities of switches, and further includes a plurality of snubber circuits that are each arranged in parallel with a respective one of the plurality of flying capacitors, the first plurality of switches, and the second plurality of switches. |
US10361648B2 |
System and method for starting synchronous motors
To avoid control failure resulting from startup of a PMSM that is windmilling, initial speed and position are determined before startup. A controller uses a FOC routine having a speed PI control loop, field-weaken control, a current PI control loop, and a speed observer. When the controller receives an instruction to start the PMSM, it delays startup and executes an “estimation” stage, in which the controller executes the FOC routine but with the speed PI control loop and the field-weaken control disabled. The estimation stage is repeated multiple times, with estimates converging to actual speed and position through successive iterations. When estimated speed and position values have stabilized, the motor is started using the estimates as initial speed and position for driving the PMSM. The FOC routine, with the speed PI control loop and the field-weaken control enabled, is used to drive the PMSM. |
US10361641B2 |
Power conversion device and photovoltaic module including the same
Disclosed are a power conversion device and a photovoltaic module including the same. The power conversion device includes a full-bridge switching unit including first to fourth switching elements, a first transformer having an input terminal connected between the first switching element and the second switching element in the full-bridge switching unit and an output terminal connected between the third switching element and the fourth switching element in the full-bridge switching unit, wherein the first switching element is serially connected to the second switching element, and the third switching element is serially connected to the fourth switching element, and a second transformer connected to the full-bridge switching unit as a half-bridge, wherein the full-bridge switching unit coverts a first DC power input to the first transformer into a first alternating current AC waveform, based on variable duty switching. |
US10361638B2 |
Apparatus for generating high pulse voltage
A device for generating a high pulse voltage comprises a source of high constant voltage, an inductive load, two controllable switching devices, a controllable switch, and also, connected in series, a capacitor, a diode and an additional controllable switch, and a controllable pulse duration converter for converting the duration of pulses from a control circuit. The result is a reduction in the level of interference emitted into the environment. |
US10361637B2 |
Universal input electronic transformer
An electronic transformer including an input receiving an input voltage. The input voltage being at least one selected from the group consisting of a first input voltage and a second input voltage. The electronic transformer further including a rectifier receiving the input voltage and outputting a rectified voltage; an inverter receiving the rectified voltage and selectively outputting an inverted voltage; a controller receiving the rectified voltage and controlling the inverter to output the inverted voltage; and an output transformer receiving the inverted voltage and outputting an output voltage. Wherein the output voltage is substantially the same regardless of the input voltage being the first input voltage or the second input voltage. |
US10361633B2 |
Control method and device for switching power supplies having more than one control mode
An integrated circuit includes an output terminal a first input terminal is configured to receive a signal proportional to a voltage between first and second terminals of the primary winding, and a second input terminal is configured to receive a signal proportional to a current flowing through the primary winding. A quasi-resonant (QR) circuit has a first input coupled to the first terminal, and a second input coupled to an output of an oscillator circuit. A selector circuit has a first input coupled to the output of the oscillator circuit, a second input coupled to an output of the QR circuit, and a select input. An output control circuit includes a first input coupled to the second input terminal, a second input coupled to an output of the selector circuit, and an output coupled to a control terminal of the switching transistor. |
US10361632B2 |
Magnetically coupled galvanically isolated communication using lead frame
An integrated circuit package includes an encapsulation and a lead frame. A portion of the lead frame is disposed within the encapsulation. The lead frame includes a first conductor having an inner conductive loop disposed substantially within the encapsulation and a second conductor galvanically isolated from the first conductor. The second conductor includes an outer conductive loop disposed substantially within the encapsulation proximate to and magnetically coupled to the inner conductive loop to provide a communication link between the first and second conductors. |
US10361630B1 |
Systems and methods for a reconfigurable switched capacitor DC-DC converter
Systems and methods for a reconfigurable DC-DC converter are disclosed. In one embodiment, a system includes: a capacitor; a first switch circuit electrically coupled in parallel to the capacitor; a second switch circuit electrically coupled in parallel to the capacitor; and a control circuit electrically coupled to the first switch circuit and the second switch circuit to switch the switch circuits at one of at least two different frequencies to convert an input voltage to an output voltage, wherein the control circuit controls the first switch circuit and second switch circuit to operate in a plurality of modes to output a desired current range. |
US10361628B2 |
Power converter
Provided is a power converter which is applied to a power converter equipped with a switching element provided on a line, and a radiator connected to a predetermined potential such as a ground potential. A noise eliminator in which a conductive member is covered with insulator is provided between the switching element (semiconductor switch) and the radiator (heatsink). A conductive member of the noise eliminator is connected to a stable potential. |
US10361625B2 |
Switching power converter and light load condition improvements thereof
The present invention is directed toward a switching power supply and improvements thereof. In accordance with an embodiment, a switching power supply is provided. The switching power supply comprises: a first power supply stage that forms an intermediate regulated voltage; and a second power supply stage configured to accept the intermediate regulated voltage and configured to form a regulated output voltage, wherein the first power supply stage monitors an error signal that is representative of a difference between the intermediate regulated voltage and a desired level for the intermediate regulated voltage to detect a light load condition and wherein the first power supply stage enters a first power-saving mode when the error signal falls below a first threshold, a switching frequency in the first power supply stage being reduced in the first power-saving mode, and wherein the first power supply stage enters a second power-saving mode when the error signal falls below a second threshold, switching in the first power supply stage being performed in bursts in the second power-saving mode. |
US10361620B2 |
Voltage converter and operating method of voltage converter
The voltage converter including an inductor connected between an output node and a switch node, a capacitor connected between the output node and a ground node, first transistor connected between the switch node and the ground node, a second transistor connected between the switch node and an input node, a boost capacitor connected between the switch node and a boost node, a first driver configured to drive a gate voltage of the first transistor based on a ground voltage of the ground node and a power supply voltage of a power node, a second driver configured to drive a gate voltage of the second transistor based on a switch voltage of the switch node and a boost voltage of the boost node and, and a regulator configured to control the boost voltage depending on a status of the voltage converter may be provided. |
US10361619B2 |
Realizing ZVS and ZCS in a CCM boost converter with BCM control with a single switch
Realizing ZVS and ZCS in a CCM Boost Converter with BCM control with a single switch. Embodiments disclosed herein relate to continuous conduction mode (CCM) boost converters and more particularly to continuous conduction mode (CCM) boost converters with boundary control mode. The embodiments herein achieve a scheme to achieve complete soft switching of all the switching elements of a boost converter, without incorporating any additional auxiliary switch, wherein total soft switching is achieved by inserting a fly back transformer in series with a normal boost converter operating in a continuous conduction mode, and adopting boundary control mode. |
US10361617B2 |
Magnetic coupling device for transmitting rotational motions without contact
A device for transmitting rotational motions without contact may include an inner rotor with at least one inner-rotor magnet and an outer rotor with at least one outer-rotor magnet. The inner rotor and the outer rotor are magnetically coupled to one another and rotatable along a rotation direction about a common axis of rotation. The at least one inner-rotor magnet and/or the at least one outer-rotor magnet may have a magnetization that is at least one of diametric, radial, and lateral. The at least one inner-rotor magnet may have a different type of magnetization than the at least one outer-rotor magnet. |
US10361616B2 |
Voice coil motor
A voice coil motor includes a holder, a metal yoke, a carrier, a plurality of magnets, a coil and at least two spring plates. The holder includes a first opening and a cylindrical sidewall disposed around the first opening. The metal yoke coupled to the holder includes a second opening and a front end portion. The cylindrical sidewall extends from the first opening towards the second opening. The carrier movably disposed in the metal yoke includes a covering portion disposed on one side of the carrier towards the holder and correspondingly to the cylindrical sidewall, wherein the covering portion surrounds the cylindrical sidewall and farther from the first opening than the cylindrical sidewall. The magnets are disposed in the metal yoke. The coil is wound around the carrier and adjacent to the magnets. Each of the spring plates is flat sheet and coupled to the carrier. |
US10361615B2 |
Electric motor and compressor having the same
An electric motor is provided. The electric motor includes a hollow-shaped stator configured to have a teeth part protruding on an inner surface thereof, and a rotor configured to be inserted into the hollow-shaped rotor, and including an outer surface facing the teeth part, and a plurality of poles therein. The rotor includes a bridge part disposed between poles and has a front rotor groove and a back rotor groove that are each dented at a front and a back of the bridge part with respect to a rotating direction of the rotor. |
US10361614B2 |
AC excitation synchronous rotating electric machine
An AC excitation synchronous rotating electric machine includes a multi-phase coil, an armature core, an outer yoke core, a field-winding-less rotor and a controller. The armature core has the multi-phase coil wound thereon. The rotor is rotatably disposed so as to face the armature core and includes magnetic poles each having a facing portion and a magnetic reluctance portion. The facing portion is provided at one axial end of the magnetic pole so as to face the outer yoke core and allow magnetic flux to flow therebetween. The magnetic reluctance portion is provided at the other axial end of the magnetic pole to impede the magnetic flux from flowing therethrough. The controller controls supply of multi-phase alternating current to the multi-phase coil so that magnetomotive force generated in the armature core is applied to the magnetic poles, thereby causing the magnetic poles to operate as a DC field. |
US10361612B2 |
Short-circuiting ring and rotor for an electric machine
The invention relates to a short-circuiting ring for an electric machine, comprising a single-piece serpentine ring member (7) made of a single-piece strip material. The invention also relates to a rotor for an electric machine. |
US10361611B2 |
Coil end bending jig
A coil end bending jig pushes down a plurality of coil ends of coil segments held by a toric stator core, the plurality of coil ends being arranged on a same circumference. The coil end bending jig includes a plurality of bending units each having a bending tooth that makes contact with a corresponding one of the coil ends, and a guide member having a plurality of guiding slits into which the plurality of bending units is inserted, respectively. The plurality of guiding slits extends from an inner peripheral side of the stator core to an outer peripheral side of the stator core so as not to intersect with each other when viewed from an axial direction of the stator core. |
US10361609B2 |
Electronic device
An electronic device is downsized while suppressing performance degradation of the electronic device. In the electronic device, a power module including a power transistor is arranged in a first region on a back surface of a through hole board having a plurality of through hole vias having different sizes while a pre-driver including a control circuit is arranged in a second region on a front surface of the board. In this case, in a plan view, the first region and the second region have an overlapping region. The power module and the pre-driver are electrically connected to each other via a through hole via. The plurality of through hole vias include a through hole via having a first size, a through hole via which is larger than the first size and in which a cable can be inserted, and a through hole via in which a conductive member is embedded. |
US10361608B2 |
Mechanically-electrically integrated electrical rotating apparatus with high cooling performance
It includes an electrical rotating device, an electric power conversion device connected with the electrical rotating device, a housing that integrally houses the electrical rotating device and the electric power conversion device, and an attachment member that is attached to the housing, the electric power conversion device being attached thereto on an opposite side to the electrical rotating device. An electrically conductive connecting member connected with an electronic component that configures the electric power conversion device is attached to the attachment member in an electrically insulated state from the attachment member on an opposite side of the attachment member to the electrical rotating device. A cooling portion that cools the electronic component and the electrically conductive connecting member is provided on the attachment member on a side of the electrical rotating device. |
US10361606B2 |
Hydraulic anti-vibration device provided with an electricity generator device and electricity generator device for such an anti-vibration device
Antivibration device comprising two frames and an elastomer body interconnecting said frames and delimiting a first hydraulic chamber linked to a second deformable hydraulic chamber via a throttle passage. A microturbine is rotatably mounted in the throttle passage and is coupled to a generator. The microturbine is configured to be always driven in the same rotational direction by the fluid when the fluid reciprocates along opposing first and second paths within the throttle passage. |
US10361599B2 |
Three-phase rotating electrical machine
A three-phase rotating electrical machine includes a stator including a stator core provided with a plurality of teeth and a plurality of slots, and winding, the three-phase rotating electrical machine including a rotor including a rotor core and a north magnetic pole and a south magnetic pole, the three-phase rotating electrical machine including a fractional slot configuration, the rotor core including a north magnetic pole acting portion, a south magnetic pole acting portion, a magnetic pole boundary dividing the north magnetic pole acting portion and the south magnetic pole acting portion in the circumferential direction, and a magnetic resistance portion, the magnetic resistance portion restricting the magnetic flux from passing through. |
US10361593B2 |
Dual frequency HF-UHF identification device
The Dual frequency HF-UHF identification device comprises a RFID integrated circuit with a power supply having a HF part, formed by a HF rectifier connected to a HF antenna, and a UHF part formed by a UHF rectifier connected to a UHF antenna. The RFID integrated circuit comprises a storage capacitor common to the HF and UHF parts of the power supply. The HF rectifier output and the UHF rectifier output are both continuously connected to the supply terminal of the common storage capacitor. Further, the supply terminal of the common storage capacitor is connected, on the one hand, to the output of the HF rectifier through a diode arranged so as to block a current from said supply terminal to the HF rectifier output and, on the other hand, directly to the output of the UHF rectifier formed by a charge pump. |
US10361591B2 |
Inductive power transfer coils with parasitic resonators
Techniques for wireless power charging of chargeable devices such as electric vehicles are provided. An example of a wireless power transmitting apparatus according to the disclosure includes a first coil structure, at least one second coil structure disposed adjacent to the first coil structure, and a transmitter operably and electrically connected to the first coil structure, such that the transmitter is configured to provide an electrical signal to the first coil structure and such that the at least one second coil structure is a parasitic coil structure and such that at least one of the first and the at least one second coil structure is a double-D coil structure. |
US10361588B2 |
Coupled resonator in a metal back cover
An electronic device is disclosed, having electronic components and a metal case configured to house the electronic components. A power receiving element may be disposed on the metal case near an edge thereof. The power receiving element may couple with a magnetic field that emanates from the edge of the metal case, when the metal case is exposed to an externally generated magnetic field, to wirelessly receive power from the externally generated magnetic field. |
US10361587B2 |
Wireless sensor
This application relates to a wireless sensor (10) suitable for non-destructive testing of a test object. The sensor comprises a transducer (12) and an electrically conductive transducer coil (16) configured to define an enclosure and being electrically coupled to the transducer to enable the transducer to be inductively operated by a remote device. The enclosure defined by the transducer coil has an internal width dimension that is wider than a corresponding width dimension of the transducer. |
US10361583B2 |
Power over ethernet emergency lighting system and method of detecting power loss of a link segment thereof
A method for providing power over Ethernet emergency lighting is disclosed. The method includes detecting a loss of power over a POE link segment connected to a lighting fixture, and in response to the detection of a loss of power over the POE link segment, causing a relaying device to connect a lamp of the fixture to a backup battery. |
US10361581B2 |
Battery charger power control
Certain aspects of the present disclosure relate to methods and apparatus for limiting the power drawn by a battery charger based on monitoring of the input voltage and input current supplied to the battery charger from a power supply. In certain aspects, a method generally includes sensing an output voltage of the power supply, wherein the output voltage of the power supply is variable. The method further includes sensing an output current of the power supply. The method further includes providing the output voltage and output current to a battery charger. The method further includes generating a control signal indicative of a scaling of the output current based on a scaling factor, wherein the scaling factor is based on the output voltage. The method further includes providing the control signal to the battery charger to control the output current supplied by the power supply to the battery charger. |
US10361579B2 |
Vehicle charger
A charger is provided to convert AC power to generate DC power capable of charging an energy storage device. The charger includes a switching circuit unit that applies or blocks AC power input from the outside and a power factor correction circuit unit that converts the AC power applied from the switching circuit unit into DC power. A DC-DC converter then converts a voltage level of the DC power converted by the power factor correction circuit and supplies the converted voltage level of the DC power to an energy storage device. A capacitor configured is shunt-connected between the power factor correction circuit unit and the DC-DC converter. A controller operates the switching circuit unit and the power factor correction circuit unit to charge the capacitor with a predetermined voltage at an initial charging operation of the energy storage device. |
US10361577B2 |
Battery charging and cooling apparatus
An apparatus is disclosed. The apparatus may include a cooling chamber. The apparatus may include a battery slot. The battery slot may be at least partially cooled by cooling chamber. The apparatus may include a cooler. The cooler may connect to the cooling chamber. The apparatus may include a power source. The power source may be in electrical communication with the cooler. A method and system are also disclosed. |
US10361574B2 |
Systems, devices, and methods for control of a power supply connection
A power supply control circuit for a portable electronic device is capable of connecting and disconnecting a power supply with respect to an electrical load of the device. The power supply control circuit offers a relatively quick transition time and low leakage current, making the control circuit particularly suitable for applications that require the power supply to remain connected to the electrical load at all times. |
US10361572B2 |
Power supply component and power supply method
The present application relates to a power supply device and a power supply method for providing electric energy to a target system. The power supply device includes: a first controller which is configured to receive an external signal or instruction, and to generate a power supply control signal; and a first option switch which is configured to receive the power supply control signal, and to establish a connection between at least one energy storage module and the target system in order to selectively output electric energy to the target system with one or more predetermined voltage; wherein when the electric energy to be output by the power supply device is a first predetermined voltage, a first energy storage module of the at least one energy storage module is connected with the target system. |
US10361570B2 |
Charging/discharging control circuit and battery apparatus including voltage or current detection for secondary batteries
To provide a charging/discharging control circuit and a battery apparatus which control charging/discharging of secondary batteries connected in parallel and are high in safety while being low in cost. A charging/discharging control circuit and a battery apparatus are each configured to be provided with a voltage detection portion which detects a difference in voltage between secondary batteries connected in parallel or detects that backward currents are made to flow through charging/discharging control switches which are respectively connected to the parallel-connected secondary batteries and control charging/discharging thereof. |
US10361568B2 |
Energy balancing method and apparatus
An energy balancing apparatus and method, and a terminal are provided in the battery field. The apparatus may include a controlled alternating current energy supply, an alternating current energy distribution circuit, filter circuits, rectifier circuits, and a balance control circuit. The controlled alternating current energy supply and an input port of the alternating current energy distribution circuit are connected in parallel, each output port of the alternating current energy distribution circuit and an input side of a corresponding filter circuit are connected in parallel, an output side of each filter circuit and an alternating current side of a corresponding rectifier circuit are connected in parallel, a direct current side of each rectifier circuit and a corresponding battery cell are connected in parallel, each battery cell is connected to the balance control circuit, and the balance control circuit is connected to the controlled alternating current energy supply. |
US10361566B2 |
Wireless power transmitter and method of error detection during use thereof
A wireless power transmitter is provided for power transmission to a wireless power receiver. The transmitter comprises a primary coil to transfer power to a secondary coil of the wireless power receiver, a power supply, a driver to provide an electric potential from the power supply to the primary coil, a monitoring system to measure electrical flow parameters of the primary coil, and to filter the measured electrical flow parameters thereby producing a response signal, and a controller to direct operation of the wireless power transmitter. The controller is configured to perform error checking by directing the driver to provide the electric potential as a superposition of a transmission signal and a sensing signal, the filter characteristics comprising electrical flow parameters of the and sensing signal, and detecting, based a difference between the response and sensing signals, an error condition indicative of a foreign object. |
US10361554B1 |
Techniques for determining inductances
A circuit system includes a current sensor circuit, a subtractor circuit, a multiplier circuit, and a divider circuit. The current sensor circuit generates a current sense signal that indicates a current through an inductor. The circuit system generates a current value based on the current sense signal. The subtractor circuit determines a voltage difference across the inductor. The multiplier circuit multiplies the voltage difference by a time period that the voltage difference is applied across the inductor to generate a product. The divider circuit divides the product by the current value to generate an estimated inductance of the inductor. |
US10361553B1 |
Battery interrupter
A battery interrupter system including an electrical motor for a machine, at least one battery which powers an electrical system of a machine, a programmable logic controller electrically connected to the electrical system and an ignition electrically connected to the programmable logic controller. The battery interrupter system also includes a button, which initiates the battery interrupter system, is connected to the programmable logic controller, at least one contactor electrically connected to the at least one battery and the programmable logic controller, wherein the programmable logic controller is configured to sends a signal to the at least one contactor to latch-in the contactor and enable an electrical connection between the at least one battery and the electrical system of the machine, and a detection sensor electrically connected to the programmable logic controller, wherein the detection sensor identifies operating conditions of the electrical system. |
US10361552B2 |
Solid state power controller having semi-analog overcurrent protection
The present disclosure relates to a solid state power controller, comprising: a power switch for interrupting a line; a current sensor for measuring a current flow on the line; and a control unit for controlling the power switch and that is configured to prevent a time-dependent overcurrent on the line on the basis of the current measured by the current sensor, wherein the control unit comprises a counter that is adapted to increment a count when the measured current is larger than a threshold value and to decrement the count when the measured current is smaller than the threshold value; and wherein the power switch is adapted to interrupt the line when the counter reaches or exceeds a predefined count. |
US10361549B2 |
Helical jumper connector
A helical jumper connector includes a helical support member configured to support a wire. The helical support member includes a first leg having a first helical winding and a second leg having a second helical winding that defines a second axial opening. The first axial opening and the second axial opening are coaxial with the wire when the first helical winding and the second helical winding are wrapped around the wire and cooperatively engage with one another to support the wire. A jumper casting is configured to receive the helical support member. The helical support member and the jumper casting are electrically conductive such that the helical jumper connector forms an electrically conductive pathway to carry electrical current from the wire. A method of making a helical jumper connector assembly includes applying a compression force to a helical jumper connector comprising a helical support member received in a jumper casting. |
US10361548B2 |
Divided junction box
The present disclosure relates to wiring systems and the teachings thereof may be embodied in a junction box and/or electrical wiring components. Some embodiments may include a divider for use with a junction box in circuit wiring. The divider may include: a wall extending from one corner of a container of the junction box diagonally to an opposite corner of the container and a fitting for a connecting module having terminals on both a first side and a second side of the connecting module. The first side of the connecting module may extend into a first section of the container and the second side of the connecting module into the second section of the container. The wall may separate two generally triangular sections of the container. |
US10361543B2 |
Method for manufacturing wire harness
A water blocking structure of a wire harness and a method for manufacturing the wire harness is provided. The water blocking structure includes a set of wires including a plurality of wires arranged in at least one row and side by side in a direction of a diameter of the wire, and an integrally molded stopper made of a hard resin that is injection-molded at a low-pressure so as to surround a portion of the set of wires in an extending direction of the wires and to have an outer circumferential shape defining portion that conforms to an inner circumferential shape of a wire passage portion into which the set of wires is to be inserted. |
US10361542B2 |
High-pressure feedthrough for feeding through a coaxial cable into a high-pressure zone
The present disclosure relates to a high-pressure feedthrough for feeding through a coaxial cable from a low-pressure zone into a high-pressure zone, wherein the high-pressure feedthrough has a support structure having at least one elongate bore that extends from a low-pressure side of the support structure up to a high-pressure side of the support structure; wherein the elongate bore is suitable for receiving at least the inner conductor of a coaxial cable that can be continuously fed through the elongate bore from the low-pressure side to the high-pressure side; and wherein the high-pressure feedthrough has one or more components that serve in the axial direction of the elongate bore as an outer conductor and/or dielectric of the inner conductor of the coaxial cable fed through the elongate bore. |
US10361540B2 |
Air-free cap end design for corona ignition system
A corona igniter assembly including an ignition coil assembly, a firing end assembly, and a dielectric compliant member is provided. The dielectric compliant member is compressed between a high voltage insulator of the ignition coil assembly and a ceramic insulator of the firing end assembly. During assembly of the corona igniter assembly, the dielectric compliant member pushes air outwards and forms a hermetic seal between the high voltage insulator and the ceramic insulation. The dielectric compliant member can have a rounded upper surface, which may improve the hermetic seal. Alternatively, or in addition to the rounded surface on the dielectric compliant member, the lower surface of the high voltage insulator can be rounded to push air outwards during assembly and provide a hermetic seal. |
US10361538B2 |
Movable diffraction grating, method of manufacturing the same, and external resonator type laser module
A movable diffraction grating includes: a support portion; a movable portion swingably connected to the support portion; a coil buried in the movable portion; a magnetic field generator configured to apply a magnetic field to the coil; an insulation layer provided on a surface of the movable portion; a resin layer provided on the insulation layer and provided with a diffraction grating pattern; and a reflection layer formed of a metal and provided on the resin layer to follow the diffraction grating pattern. |
US10361536B2 |
Power supply apparatus for driving laser diode provided with power supply for supplying power to laser oscillator
A power supply apparatus includes a power supply for supplying power to a laser oscillator. A reactor has one end serially connected to the laser oscillator and another end serially connected to the power supply, and a parallel diode configures a closed circuit for serial connection of the laser oscillator and the reactor. A current detector detects a current flowing in the reactor, and a first switching device is connected in parallel to the laser oscillator and drives the laser oscillator with pulses. An energy consumption circuit prefetches a current command value based on a control signal from a controller upon driving the laser oscillator with pulses, and when the current command value is smaller than a current command value of a previous pulse, the energy consumption circuit consumes energy until the current command value reaches a predetermined target current value. |
US10361535B2 |
Semiconductor laser driving circuit
The semiconductor laser driving circuit that controls an overshoot on modulation includes a semiconductor laser, of which anode is connected to a power source, that emits the laser light that is modulated by an external modulation input signal, an impedance element connected to a cathode of the laser device, an impedance element connected to the anode, and a collector of a transistor Q1, connected to the impedance element; a collector of a transistor Q2, connected to the other end of the impedance element, a differential pair circuit to which emitters of Q1, Q2 are connected; an electric current source iMOD connected to the emitters of Q1, Q2; and a differential driver that generates a differential voltage (vb1−vb2) that controls Q1, Q2 by driving Q1 by the external modulation input signal, wherein the differential driver controls the differential voltage so that the amplitude of the overshoot of the electric current, which flows in the laser when the output of the laser is at a high-level. |
US10361532B2 |
Semiconductor laser module and semiconductor laser module manufacturing method
Semiconductor lasers are arranged in a plurality of columns. The columns of the respective semiconductor lasers include semiconductor laser installed columns. Reflecting mirrors in the respective semiconductor laser installed columns reflect light in substantially the same axial direction as viewed from above, and constitute beam groups. The beam groups of the respective semiconductor laser installed columns are formed on both sides in a width direction of a housing. That is, the beam groups are configured for each of the semiconductor laser installed columns, and the respective beam groups are formed on mutually different axes as viewed from above. |
US10361530B2 |
Laser apparatus with dispersion control
A laser apparatus including a pulsed laser radiation source is disclosed, wherein the laser radiation has spectral components in at least two wavelength ranges W1, W2 that differ from one another, and a dispersion control element including at least one dielectric multilayer mirror, wherein the laser radiation is reflected one or more times at the multilayer mirror. The multilayer mirror is reflective in the two wavelength ranges W1, W2, and the reflection of the spectral component in the second wavelength range W2 has a time delay relative to the reflection of the spectral component in the first wavelength range W1 such that the spectral components of the laser radiation reflected at the multilayer mirror in the two wavelength ranges W1, W2 coincide in time in an interaction center of the laser apparatus, and a nonlinear optical element is situated in the interaction center. |
US10361523B2 |
USB connecting apparatus
A USB connecting apparatus includes a board member, a plurality of first conductive connection portions, a metal housing and an assembly structure. The board member is a printed circuit board complying with the USB-Type C specification and includes a main body portion and a tongue portion. The tongue portion includes two surfaces facing toward each other. Each first conductive connection portion is electrically disposed on at least one surface of the tongue portion in order to form a tongue plate. The metal housing is arranged on the board member and surrounds the tongue plate correspondingly. The assembly structure is arranged on the plate member and/or the metal housing. The plate member and the metal housing are positioned relative to each other via the assembly structure. Accordingly, the USB connecting apparatus can be used on an existing electronic product circuit board and can be directly used as USB Type-C. |
US10361522B2 |
Inner contact for coaxial cable
An inner contact for a coaxial connector includes: an elongate, generally cylindrical body having a longitudinal axis and first and second opposed ends; and a plurality of spring fingers extending from the first end of the body generally parallel to the longitudinal axis, each of the spring fingers having a projection extending radially inwardly from a free end thereof. Each spring finger is separated from each of its immediately adjacent spring fingers by a slot. Each of the projections has opposed side edge portions, and wherein the side edge portions incline with increasing distance from an adjacent slot. |
US10361519B2 |
Board to board connector assembly with sandwiching type shielding plate set
The receptacle connector includes an insulative housing, a plurality of contacts retained in the housing, and a metallic shielding shell covering the housing. The housing includes a base and an island extending upwardly from the base, and a peripheral wall surrounding the island and forming a tubular receiving cavity. The contacts includes two rows of contacts retained to the island. The shielding shell is retained to the peripheral wall. A pair of metallic shielding plates are retained in the island and between two rows of contacts. The plug connector includes an insulartive housing, a plurality of contacts retained to the housing, and a metallic shielding shell attached upon the housing. The housing includes a base and a circumferential wall forming a mating cavity. A metallic shielding plate is disposed in the mating cavity. |
US10361515B2 |
Modular jack connector with offset circuitry for controlled capacitance compensation
A modular jack connector compensates for plug characteristics via a controlled primary compensation in the immediate vicinity of the connector interface. A jack contact assembly is positioned within a jack housing and includes first and second sets of elongate contacts each having a plug contact portion and a signal output portion. Each elongate contact is configured such that their respective plug contact portions are coplanar and a signal path is defined between their plug contact portions and their signal output portions. A flexible circuit board is coupled proximate to the plug contact portions, and configured to provide capacitance compensation between respective contacts engaged thereby, wherein the capacitance compensation is offset from a signal path defined between the plug contact portions and the corresponding signal output portions. |
US10361509B1 |
Adaptive magnetic field adjustment for proper USB ejection
A method, system and computer program product for programmatically adapting a magnetic field in a USB port for controlling USB device drive ejection from an adaptor port. The magnetic field is adapted based on the criticality of the tasks being performed in USB/pen drive/external hard-disk so as to prevent data-corruption and improve user experience (easy pull-off during non-critical tasks). |
US10361504B2 |
Electrical power transmission and outlet system
An electrical power transmission and outlet system. The electrical power transmission and outlet system may include an electrical power transmission and outlet device and an external power storage unit (1110). The electrical power transmission and outlet device may include a housing (1060) having an opening for receiving an external plug (1220), a connector (1070) in the housing (1060) for connecting with the external power storage unit (1110); and a plurality of electrical conductors in the housing (1060) connected to the connector (1070). When the external plug (1220) is inserted into the opening, the conductors are electrically connected to the external plug (1220) and disconnected from the connector (1070), and when the external plug (1220) is pulled out of the opening, the conductors are electrically disconnected from the external plug (1220) and reconnected to the connector (1070). |
US10361501B2 |
Ni-plated copper or copper alloy material, connector terminal, connector and electronic component using the same
The present invention provides a Ni-plated copper or copper alloy material having both excellent hardness and excellent bendability.In the Ni-plated copper or copper alloy material having, an area ratio of a crystal having <001> plane orientation in a crystal plane parallel to a surface of a Ni plating, measured by an electron backscatter diffraction, is 15 to 35%. |
US10361499B2 |
Signal transferring device and adapter assembly
An adapter assembly includes a plurality of adapters arranged in one row. Each adapter has two electrical connection interfaces respectively arranged on two opposite sides thereof. Each adapter includes an insulating body and a plurality of conductive terminals. The insulating body includes an internal connecting portion and an external connecting portion respectively arranged on two opposite sides thereof. The conductive terminals are arranged in the internal connecting portion and the external connecting portion to respectively form the two electrical connection interfaces. One of the two electrical connection interfaces located at the internal connecting portion is electrically connected to the other electrical connection interface located at the external connecting portion. The internal connecting portions of the adapters are connected to each other to form a one-piece structure, and each external connecting portion and the corresponding electrical connection interface are configured for accommodating and electrically connecting to a cable connector. |
US10361498B2 |
Board-to-board connector
A board-to-board connector includes a first circuit board and a second circuit board. The first circuit board has at least one cut. The second circuit board includes a tongue assembly disposed corresponding to the cut, a plurality of connection portions disposed on two opposite surfaces of the tongue assembly, and a plurality of conductive portions electrically connected to the first circuit board. Therefore, the board-to-board connector can effectively reduce the distance between the first circuit board and the second circuit board, which is applicable to the increasingly lightweight and compact electronic devices. |
US10361495B2 |
Electrical connector for a multi-wire electrical cable
An electrical connector for a multi-wire electrical cable includes at least two cable-side electrical contact elements including associated electrical terminals to each of which is to be connected a wire of the electrical cable. At least two output-side electrical contact elements, from each of which projects an electrical connector element by which an electrical connection can be established to a mating connector. An electrically conductive carrier body is disposed between the cable-side contact elements and the output-side contact elements. The electrically conductive carrier body carries an electrical device by which the cable-side contact elements and the output-side contact elements are electrically connected to each other. The electrical device is supported by the carrier body without any of the cable-side contact elements or the output-side contact elements being in electrical contact with the carrier body through the electrical device. |
US10361492B1 |
Terminal-equipped covered electric wire and wire harness
A terminal-equipped covered electric wire and a wire harness in which an electrical connection portion where a terminal fitting and an electric wire conductor are electrically connected is covered with a resin cover portion. With the terminal-equipped covered electric wire and the wire harness, the terminal fitting is prevented from being damaged during insertion into a connector housing, and the resin cover portion has improved adhesiveness to the terminal fitting. Provided is a terminal-equipped covered electric wire in which a resin cover portion covering an electrical connection portion includes a first layer made of a thermoplastic elastomer having adhesiveness to the surface of a terminal fitting, and a second layer made of a polyester resin. The adhesive strength between the thermoplastic elastomer and the polyester resin is 1.3 MPa or more. A wire harness including such a terminal-equipped covered electric wire is configured. |
US10361489B2 |
Dielectric dish antenna system and methods for use therewith
In accordance with one or more embodiments, a method includes receiving a first wireless signal via a feed point on an antenna body, wherein the antenna body includes a dielectric core having a reflective surface configured as a dish reflector; reflecting the first wireless signal via the reflective surface to an aperture of the antenna body; and radiating the first wireless signal from the aperture. |
US10361488B1 |
Dielectric material as antenna
A dielectric material antenna is disclosed. The antenna includes a first material layer made up of a first material with a low dielectric constant. A surface pattern containing pits is carved out of the first material layer. The pits carved out are then filled up with a second material layer made up of a second material that has a high dielectric constant than the first material layer to form a first antenna layer. A wave launcher is provided near to the first antenna layer with a ground provided at its bottom. The wave launcher helps to couple the energy generated from an energy source to the first antenna layer in order to radiate and receive signals. |
US10361487B2 |
Polymer-based resonator antennas
Dielectric resonator antennas suitable for use in compact radiofrequency (RF) antennas and devices, and methods of fabrication thereof. Described are dielectric resonator antennas fabricated using polymer-based materials, such as those commonly used in lithographic fabrication of integrated circuits and microsystems. Accordingly, lithographic fabrication techniques can be employed in fabrication. The polymer-based dielectric resonator antennas can be excited using tall metal vertical structures, which are also fabricated using techniques adapted from integrated circuit and microsystems fabrication. |
US10361485B2 |
Tripole current loop radiating element with integrated circularly polarized feed
In accordance with the concepts, systems, methods and techniques described herein a tripole current loop radiating element is provided having three conductors disposed on a substrate with the three conductors being physically spaced apart from each other and arranged to be responsive to radio frequency (RF) signals at a desired frequency range. Each of the three conductors includes a ground via to couple the respective conductor to a ground plane and a signal via to receive RF signals from a single feed circuit. The feed circuit includes a signal port, and first, second and third antenna ports, with each of the antenna ports coupled to a respective one of the three conductors. The feed circuit can provide the RF signals to each of the three conductors having equal amplitudes and distributed with relative phases of 0°/120°/240° respectively (i.e., phase shifted by 120° from an adjacent conductor). |
US10361479B2 |
Portable electronic device housing having insert molding around antenna
Embodiments are described herein in the context of housings for electronic devices. In one embodiment, a housing can make use of an outer member, which can be formed of glass. The outer member can be secured with respect to other portions of the housing for the electronic device. The output member can also be protected at its edges by a protective side member. Still further, one or more antenna can be provided at least partially internal to the protective side member. The electronic devices can be portable and in some cases handheld. |
US10361476B2 |
Antenna structures for wireless communications
Methods, systems, and devices are described for wireless communication using the mmW spectrum. In particular, an antenna structure may be designed to integrate with an external housing of a wireless communication device. For example, the external housing may include a cavity that facilitates reception and/or transmission of radio frequency communication signals by an antenna element of the antenna structure. Such an antenna structure may be designed to be relatively compact to deal with the limited real estate available on modern wireless communication devices (e.g., cellular telephones). |
US10361474B2 |
Near field communication device
A near field communication (NFC) device capable of operating by being powered by the field includes an NFC module for generating an electromagnetic carrier signal and modulating the carrier signal, and an antenna circuit coupled to and driven by said NFC module with the modulated carrier signal. A differential power combiner circuit is coupled to said NFC module via output terminals of said NFC module. A powered by the field circuit of the NFC device is adapted to harvest energy from an external field to power said NFC device. The power by the field circuit has a first terminal coupled to an output of said differential power combiner circuit via a first impedance block and a second terminal coupled to an input of said antenna circuit via a second impedance block. The NFC device is adapted to be able to operate in a powered by the field card mode. |
US10361472B2 |
Antenna for cubeSat platforms
A Cubesat uses both rail rods, walls, or both as an antenna. Either the rail rods and/or walls may form a rectangular waveguide, and may have one or more slots that allow energy to leak and radiate in a predefined direction in space. |
US10361471B2 |
Structures and methods for interconnects and associated alignment and assembly mechanisms for and between chips, components, and 3D systems
Structures and methods for interconnects and associated alignment and assembly mechanisms for and between chips, components, and 3D systems. |
US10361468B2 |
Electrolyte level gauge
An electrolyte level gauge comprises a housing defining a condensation chamber having a plurality of condensing elements disposed therein. The condensation chamber is in fluid communication with an electrolyte through a first vent aperture and an ambient environment through a second vent aperture. The electrolyte level gauge further comprises a sight member having a hollow interior and an indicator having a first end slidingly disposed in the hollow interior of the sight member and a second end including a float. The float is configured to be buoyant on the electrolyte. |
US10361464B2 |
Electrolytic solution and secondary battery
The present invention relates to an electrolytic solution comprising a cyclic dicarboxylic acid ester represented by the specific formula, and the secondary battery comprising the same. According to the present invention, the electrolytic solution comprising an additive which can improve a characteristics in a secondary battery and a secondary battery comprising the same can be provided. |
US10361463B2 |
Battery module having improved fastening structure
A battery module according to an embodiment of the present disclosure includes a cell cartridge assembly including at least one battery cell and a plurality of stacking cartridges configured to respectively accommodate the at least one battery cell and arranged in layers in a height direction; and a sensing assembly mounted on at least one side of the cell cartridge assembly and configured to sense electrical characteristics of the at least one battery cell. Each of the stacking cartridges includes a bolt-assembling finger protruding from at least one corner area beyond other corner areas, and the bolt-assembling finger includes an assembly guide unit provided in a slot form. The sensing assembly includes a sensing assembly body provided in the form of a plate-shaped structure and having a plurality of sensing members mounted thereon, and an assembling plate integrally formed with the sensing assembly body and capable of being inserted into the assembly guide unit of the bolt-assembling finger. |
US10361461B2 |
Cable type secondary battery including an inner electrode having an internal separator between electrodes
A cable type secondary battery includes an inner electrode support; and a sheet-like inner electrode—separation layer—outer electrode complex which is spirally wound around the outer side of the inner electrode support. The inner electrode—separation layer—outer electrode complex is formed such that an inner electrode, a separation layer, and an outer electrode are compressed integrally. According to one embodiment, an electrode and a separation layer are bonded integrally so that the separation layer in close contact with the electrode absorbs electrolyte so as to induce a uniform supply of the electrolyte to an outer electrode active material layer, thereby increasing the stability and performance of a cable type secondary battery. In addition, the cable type secondary battery has a sheet-like electrode, whereby the resistance of the cable type secondary battery is reduced and the performance of the battery may be improved. |
US10361460B2 |
Process for producing lithium batteries having an ultra-high energy density
A process for producing a lithium battery, comprising: (A) Preparing a plurality of conductive porous layers, wet anode layers, and wet cathode layers; (B) Stacking a desired number of porous layers and wet anode layers in an alternating manner to form an anode electrode having a thickness no less than 100 μm; (C) Placing a porous separator layer in contact with the anode electrode; (D) Stacking a desired number of porous layers wet cathode layers in an alternating manner to form a cathode electrode in contact with the porous separator, wherein the cathode electrode has a thickness no less than 100 μm; and (F) Assembling and sealing the anode electrode, separator, and cathode electrode in a housing to produce the lithium battery. The consolidated anode or cathode layer is preferably thicker than 300 μm more preferably thicker than 400 μm, and further more preferably greater than 500 μm. |
US10361459B2 |
Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
A rechargeable lithium battery includes a positive electrode including a positive active material, a negative electrode including a negative active material and an electrolyte including a lithium salt and a non-aqueous organic solvent, wherein the positive active material includes a nickel-based composite oxide represented by the following Chemical Formula 1, the non-aqueous organic solvent includes ethylene carbonate, and the ethylene carbonate is included in an amount of 7.5 to 27.5 volume % based on the total amount of the non-aqueous organic solvent, LiNixCoyMnzO2 [Chemical Formula 1] wherein in Chemical Formula 1, 0.63≤x≤0.85, 0.05 |
US10361457B2 |
Polar polysiloxane electrolytes for lithium batteries
Synthesis and electrochemical properties of a new class of polymer electrolytes based on polar polysiloxane polymerrs is described. Unlike ethylene oxide-based polymers, these materials are oxidatively stable up to at least 4.2 V, the operating voltage of high energy cells that use cathode materials such as lithium nickel cobalt aluminum oxide (NCA) and lithium nickel cobalt manganese oxide (NCM). Use of these polymers electrolytes as an alternative to PEO in solid-state lithium batteries is described. |
US10361456B2 |
Electrolyte, method of preparing the electrolyte, and secondary battery including the electrolyte
An electrolyte including a block copolymer containing a co-continuous domain including an ion conductive phase and a structural phase, wherein the structural phase includes a polymer segment having a glass transition temperature that is equal to or lower than room temperature. |
US10361455B2 |
Annealed garnet electrolyte separators
Set forth herein are pellets, thin films, and monoliths of lithium-stuffed garnet electrolytes having engineered surfaces. These engineered surfaces have a list of advantageous properties including, but not limited to, low surface area resistance, high Li+ ion conductivity, low tendency for lithium dendrites to form within or thereupon when the electrolytes are used in an electrochemical cell. Other advantages include voltage stability and long cycle life when used in electrochemical cells as a separator or a membrane between the positive and negative electrodes. Also set forth herein are methods of making these electrolytes including, but not limited to, methods of annealing these electrolytes under controlled atmosphere conditions. Set forth herein, additionally, are methods of using these electrolytes in electrochemical cells and devices. The instant disclosure further includes electrochemical cells which incorporate the lithium-stuffed garnet electrolytes set forth herein. |
US10361450B2 |
Exfoliated carbon nanotubes, methods for production thereof and products obtained therefrom
In various embodiments, exfoliated carbon nanotubes are described in the present disclosure. The carbon nanotubes maintain their exfoliated state, even when not dispersed in a medium such as a polymer or a liquid solution. Methods for making the exfoliated carbon nanotubes include suspending carbon nanotubes in a solution containing a nanocrystalline material, precipitating exfoliated carbon nanotubes from the solution and isolating the exfoliated carbon nanotubes. In some embodiments, methods for making exfoliated carbon nanotubes include preparing a solution of carbon nanotubes in an acid and filtering the solution through a filter to collect exfoliated carbon nanotubes on the filter. In other various embodiments, energy storage devices and polymer composites containing exfoliated carbon nanotubes are described herein. |
US10361449B2 |
Semiconductor structures having a micro-battery and methods for making the same
The present disclosure provides an embodiment of an integrated structure that includes a first electrode of a first conductive material embedded in a first semiconductor substrate; a second electrode of a second conductive material embedded in a second semiconductor substrate; and a electrolyte disposed between the first and second electrodes. The first and second semiconductor substrates are bonded together through bonding pads such that the first and second electrodes are enclosed between the first and second semiconductor substrates. The second conductive material is different from the first conductive material. |
US10361440B2 |
Electrochemical reaction unit having a single cell including a current collector having a protrusion coated with an electrically conductive coat in contact with a cathode via a bonding layer and fuel cell stack
An electrochemical reaction unit containing a single cell including an electrolyte layer containing solid oxide, and a cathode and an anode which face each other in a first direction with the electrolyte layer intervening therebetween; a current collector disposed on a cathode side of the single cell and having a protrusion protruding toward the cathode; an electrically conductive coat covering a surface of the current collector; and an electrically conductive bonding layer bonding the cathode and the protrusion covered with the coat. In at least one section of the protrusion taken in parallel with the first direction, the protrusion covered with the coat has a covered portion covered with the bonding layer and an exposed portion exposed from the bonding layer and including a corner portion of the protrusion covered with the coat. |
US10361434B2 |
Binder resin for nonaqueous secondary battery electrode, binder resin composition for nonaqueous secondary battery electrode slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
A binder resin for a nonaqueous secondary battery electrode of the invention satisfies Is≥30 (Is indicates a sum of scattering intensities observed in a particle size range of from 1 to 100 nm) when a solution is formed by dissolving the binder resin in water at a concentration of 5% by mass and particle size distribution is measured by a dynamic light scattering method at 25° C. The binder resin contains a polymer (B) having a structural unit represented by the following Formula (11) and a specific structural unit. The binder resin also contains a polymer (α) having a specific structural unit and a structural unit represented by the following Formula (22), and/or a mixture of a polymer (β1) having a specific structural unit and a polymer (β2) having a structural unit represented by the following Formula (22). |
US10361433B2 |
Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery including the same
A positive electrode active material for a nonaqueous electrolyte secondary battery contains lithium nickel cobalt zinc composite oxide represented by general formula (1): LiwNi1-x-y-zCoxZnyMzO2 (0.95≤w≤1.10, 0.05≤x≤0.3, 0.005≤y≤0.08, and 0≤z≤0.3, where M is at least one metal element selected from the group consisting of Mg, Al, Ti, Mn, Fe, and Cu), wherein the lithium nickel cobalt zinc composite oxide has a form of secondary particles each corresponding to an aggregation of primary particles of hexagonal lithium-containing composite oxide with a layered structure, contains zinc oxide on at least a part of a surface of the primary particles and/or a surface of the secondary particles, and has a (003)-plane crystallite diameter of 100 nm or larger and 160 nm or smaller, the diameter being obtained by X-ray diffraction and the Scherrer equation. |
US10361432B2 |
Non-aqueous secondary battery
A positive electrode mixture layer of a non-aqueous secondary battery of the present invention contains a first positive electrode active material and a second positive electrode active material each composed of a lithium-containing composite oxide represented by General Composition Formula (1): Li1+yMO2 (1). The first positive electrode active material contains Co, and the second positive electrode active material contains Co, Ni and Mn. The ratio of the first positive electrode active material to all positive electrode active materials contained in the positive electrode mixture layer is 20 mass % or more. The positive electrode mixture layer has a density of 3.4 g/cm3 or less. Further, a negative electrode mixture layer contains carbon-coated SiOx and graphite, or a conductive layer is formed on a surface of a positive electrode current collector. |
US10361429B2 |
Active substance used for nonaqueous electrolyte battery
According to one embodiment, there is provided an active substance. The active substance contains active material particles. The active material particles comprise a compound represented by the formula: Ti1-xM1xNb2-yM2yO7. The active material particles has a peak A attributed to a (110) plane which appears at 2θ ranging from 23.74 to 24.14°, a peak B attributed to a (003) plane which appears at 2θ ranging from 25.81 to 26.21° and a peak C attributed to a (602) plane which appears at 2θ ranging from 26.14 to 26.54° in an X-ray diffraction pattern of the active material particles. An intensity IA of the peak A, an intensity IB of the peak B, and an intensity IC of the peak C satisfy the relation (1): 0.80≤IB/IA≤1.12; and the relation (2) IC/IB≤0.80. |
US10361422B2 |
Current interruption device and electricity storage device including the same
A current interruption device includes a conductive plate and a first deformable plate. The conductive plate includes a center portion and a peripheral portion surrounding the center portion. An upper surface of the center portion is formed in a planar shape spreading in a first direction and a second direction orthogonal thereto in a conductive state. The peripheral portion includes an inclined portion extending outward from a boundary between the center portion and the peripheral portion. An upper surface of the inclined portion is inclined so as to increase a distance to the first deformable plate as the upper surface of the inclined portion becomes farther away from the center portion when the conductive plate and the first deformable plate are viewed along the first direction or the second direction in the conductive state. |
US10361421B2 |
Rechargeable battery
A rechargeable battery includes: an electrode assembly having a first electrode and a second electrode; an electrode terminal electrically coupled to the electrode assembly; a case that receives the electrode assembly; a cap plate at an opening of the case that closes and seals the case, the cap plate having a vent hole to discharge an internal pressure of the case and having a vent plate that closes and seals the vent hole; and a short circuit member having one end electrically coupled to the electrode assembly and another end that extends along a direction toward the vent hole at the inside of the case. At least a portion of the short circuit member is modified to be drawn outside of the vent hole when the internal pressure is discharged. |
US10361420B2 |
Methods for making lead-carbon couplings, lead-carbon electrode sheets and lead-carbon batteries
Methods for making lead-carbon coupling, lead-carbon electrode sheets, and a lead-carbon battery are revealed. The coupling methods consist of steps of assembling the carbon material that contains oxygen functional groups or metal precursors and lead material in contact with each other and then heating the assembled lead-carbon pair to form lead oxides or metal carbides as a bridge to form coupled lead-carbon interface with high electrochemical and mechanical stability. This coupled lead-carbon structure is applied to form lead-carbon electrode sheets and is further used as electrode sheets of lead-carbon batteries by lead welding. |
US10361417B2 |
Composition for forming porous heat-resistant layer, separator including the porous heat-resistant layer, and electrochemical battery including the separator
A composition for forming a porous heat-resistant layer of a separator, a separator, and an electrochemical battery, the composition including a monomer including a cross-linkable functional group, an oligomer including a cross-linkable functional group, a polymer including a cross-linkable functional group, or a mixture thereof; a solvent; an initiator; first inorganic particles having an average particle diameter (D50) X of about 300 nm to about 700 nm; and second inorganics particle having an average particle diameter (D50) of 0.1X to 0.4X, wherein a weight ratio of the first inorganic particles to the second inorganic particles in the composition is about 7:3 to about 8.5:1.5. |
US10361416B2 |
Battery separator for extending the cycle life of a battery
A battery separator for extending the cycle life of a battery has a separator and a conductive layer. The conductive layer is disposed upon the separator. The conductive layer is adapted to be in contact with the positive electrode of the battery thereby providing a new route of current to and from the positive electrode. |
US10361415B2 |
Separator for electricity storage device
A separator for electricity storage devices which comprises: a base comprising a porous film; and a thermoplastic polymer arranged on at least one surface of the base. The thermoplastic polymer has a dispersion (σ2), defined by the following numerical equation using the areas (Si) of Voronoi polygons obtained by Voronoi tessellation, of 0.01-0.7. (In the equation, Si is the measured area of each Voronoi polygon, m is an average of the measured areas of the Voronoi polygons, and n is the total number of the Voronoi polygons). |
US10361410B2 |
Battery pack
Disclosed is a battery pack configured to prevent its components such as a cell assembly from being broken or damaged even though a physical force such as vibrations and impacts is applied to the battery pack. The battery pack includes a cell assembly having a plurality of secondary batteries; an electronic component plate having a plate shape and configured to allow at least one electronic component to be mounted thereon; a lower housing configured to have an inner space with an open top and to accommodate the cell assembly and the electronic component plate therein; and an upper housing configured to cover the open top of the lower housing, wherein coupling members are respectively provided between a lower portion of the cell assembly and the lower housing, between an upper portion of the cell assembly and the electronic component plate, between the electronic component plate and the upper housing, and between the lower housing and the upper housing to couple and fix each other. |
US10361406B1 |
Flexible battery device
A power source, designed to be bent or flexed during use, may include a layer of anode material having a length greater than a layer of cathode material to accommodate for movement of the cathode or anode layers during flexing of the power source. An enclosure containing the cathode and anode materials may include an inner protective layer proximate to the cathode and anode layers and a water-impermeable layer external to the inner protective layer. The water-impermeable layer may have a pleated or corrugated configuration that may be extended when the power source is bent under application of a flexure stress, preventing damage or deformation to the water-impermeable layer. |
US10361405B2 |
Biomedical energization elements with polymer electrolytes
Designs, strategies and methods to form energization elements comprising polymer electrolytes are described. In some examples, the biocompatible energization elements may be used in a biomedical device. In some further examples, the biocompatible energization elements may be used in a contact lens. |
US10361403B2 |
Flash light illumination method and organic electronic device elements obtainable this way
The present invention relates to a method comprising the steps: a) providing a layered structure applicable for preparing an organic electronic device, comprising: aa) a substrate comprising a first electrode structure and a non-electrode part; bb) a grid formed by a grid material, wherein open areas of the grid are arranged above at least a part of the first electrode structure and the grid material is arranged above at least a part of the non-electrode part; and cc) a layer stack comprising at least one redox-doped layer having a conductivity of at least 1E−7 S/cm, the layer stack being deposited on the grid; wherein the optical density measured by absorption spectroscopy of the grid material is higher than the optical density of the open areas; and b) irradiating light pulses having a duration of <10 ms and an energy of 0.1 to 20 J/cm2 per pulse, alternatively 1 to 10 J/cm2, onto the layered structure; an organic electronic device obtainable this way and a device comprising said organic electronic device. |
US10361401B2 |
Organic electroluminescent display device and display apparatus
The present invention discloses an organic electroluminescent display device and a display apparatus, wherein the organic electroluminescent display device employs an optical film lamination as a base substrate or a packaging cover plate, the optical film lamination includes a circular polarizer film, a water-oxygen resistant film and a color resistant film that are located on a supporting substrate, thus it has an antireflection function, a good water-oxygen resistance as well as a full-color display function, so that not only the problem of fussy process and high cost of an OLED display device caused by film application can be solved, but also the problem that the thickness of a flexible OLED display device is increased and thus the device is difficult to be rolled up due to film application is avoided; also, the OLED display device has the advantages of being lighter and thinner and having a better display effect, etc. |
US10361399B2 |
Top-emitting OLED and a manufacturing method thereof
The present invention provides a Top-Emitting Organic Light Emitting Diode (TEOLED) and a manufacturing method thereof. The TEOLED includes a substrate; a stack structure on the substrate; a cathode layer covering the stack structure; and a light-scattering layer composed of nano particles and including a concave and convex structure. The present invention can effectively improve cathode transmittance of the TEOLED and modulate the coupling output of lights with multiple wavelengths. |
US10361396B2 |
Optoelectronic component with multilayer encapsulant CTE matched to electrode
An optoelectronic component may include a carrier, a first electrode over the carrier, an organically functional layer structure over the first electrode, a second electrode over the organically functional layer structure, and an encapsulation layer structure over the second electrode, the encapsulation layer structure encapsulating the organically functional layer structure and including a first layer structure facing toward the second electrode and a second layer structure facing away from the second electrode, the first layer structure alternately including first layers having a first expansion coefficient and second layers having a second expansion coefficient, which is not equal to the first expansion coefficient, and the second layer structure alternately including third layers having a third expansion coefficient and fourth layers having a fourth expansion coefficient, which is not equal to the third expansion coefficient. |
US10361395B2 |
Display device
A display device in an embodiment according to the present invention includes a substrate including a first surface and a second surface opposing the first surface, a display area on the first surface of the substrate and including a plurality of pixels, a periphery area on an outer side of the display area of the first surface, and a sealing layer covering the display area and the periphery area. The periphery area includes a drive circuit outputting a signal to the display area, an input terminal part input with a signal for driving the drive circuit, and a plurality of wirings arranged between the drive circuit and the input terminal part, and the sealing layer includes at least one opening part exposing the first surface of the substrate in an area inside a corner part of the substrate in the periphery area. |
US10361394B2 |
OLED device encapsulating method and structure, OLED device, and display screen
An OLED device encapsulating structure used to encapsulate an OLED is disclosed. The OLED device encapsulating structure includes a substrate, a barrier layer formed on the substrate, a surface active layer disposed on the barrier layer, and a buffer layer stacked on the surface active layer. An orthogonal projection of the buffer layer onto the barrier layer may coincide with that of the surface active layer onto the barrier layer. A composite layer may further be stacked on the buffer layer. An OLED device and a display screen are also disclosed. |
US10361383B2 |
Plastic substrate and display device comprising the same
A plastic substrate includes: a transparent plastic support member; a first inorganic layer on a surface of the plastic support member; and a first organic-inorganic hybrid layer on the first inorganic layer. A display device includes a display panel and a window on the display panel, the window including the plastic substrate. |
US10361381B2 |
Organic electroluminescent materials and devices
A composition including a first compound capable of functioning as a phosphorescent emitter in an OLED is provided. The first compound has at least one aromatic ring and at least one substituent R directly bonded to one of the at least one aromatic rings. Each substituent R has the formula of where (a) G1 is selected from NR1, SiR1R2, GeR1R2, alkyl, cycloalkyl, and combinations thereof; and G2 is a non-aromatic polycyclic group; (b) G1 is a direct bond; and G2 is a non-aromatic spiro polycyclic group; or (c) G1 is selected from direct bond, NR1, SiR1R2, GeR1R2, alkyl, cycloalkyl, and combinations thereof; G2 is a non-aromatic polycyclic group; and R is directly bonded to a phenyl, pyridine, or triazine. R1, R2, and R3 are a variety of substituents. Formulations and devices, such as an OLEDs, that include the first compound are also described. |
US10361379B2 |
Photoelectric conversion element, photosensor, and imaging device
An object of the present invention is to provide a photoelectric conversion element which exhibits excellent heat resistance and responsiveness, and a photosensor and an imaging device which include the photoelectric conversion element. The photoelectric conversion element of the present invention includes: a transparent conductive film; a conductive film; and a photoelectric conversion film and an electron blocking layer which are disposed between the transparent conductive film and the conductive film, wherein the electron blocking layer contains a compound represented by the following Formula (1). |
US10361374B2 |
Amine compound and organic light emitting device including the same
An amine compound represented by Formula 1, and an organic light emitting device including the same: wherein X may be selected from the compounds represented by Formula 2: When the amine compound represented by Formula 1 is included in the hole transport region of an organic light emitting device, the organic light emitting device may achieve long lifespan and high efficiency. |
US10361369B2 |
Flexible organic light emitting diode and the manufacturing method thereof
A flexible OLED includes a substrate, an anode, a hole transport layer, a stopper chamber, an electron transport layer, a cathode, and a cover stacked in sequence. The stopper chamber is filled with a light emitting layer. Surfaces of the hole transport layer and the electron transport layer that face each other are provided with free H+ ions that exchange with H atoms contained in a material of the light emitting layer to connect the light emitting layer to the surfaces of the hole transport layer and the electron transport layer. |
US10361368B2 |
Confined lateral switching cell for high density scaling
A memory device including a via opening through a dielectric layer and an inert electrode having a conformal thickness present on sidewalls but recessed from the top of the via and a base surface of the via opening through the dielectric layer. A metal oxide layer provides a filament forming layer for the memory device and is present in direct contact with the inert electrode. The metal oxide layer also has a conformal thickness and has vertically orientated portions on the portion of the inert electrode overlying the sidewalls of the via opening, and horizontally orientated portions on the portion of the inert electrode overlying the base of the via opening. A reactive electrode is in direct contact with the metal oxide layer. Switching of the memory device includes a laterally orientated direction across the vertically orientated portion of the metal oxide layer in regions not modified by patterning of the conformal metal-oxide layer. |
US10361362B2 |
Magnetic random access memory with ultrathin reference layer
The present invention is directed to a magnetic memory element including a magnetic free layer and a first magnetic reference layer with an insulating tunnel junction layer interposed therebetween; a second magnetic reference layer made of a material comprising cobalt and formed adjacent to the first magnetic reference layer opposite the insulating tunnel junction layer; an iridium layer formed adjacent to the second magnetic reference layer opposite the first magnetic reference layer; and a magnetic fixed layer formed adjacent to the iridium layer. The magnetic free layer has a variable magnetization direction substantially perpendicular to the layer plane thereof. The first and second magnetic reference layers have a first fixed magnetization direction substantially perpendicular to the layer planes thereof. The magnetic fixed layer has a second fixed magnetization direction that is substantially perpendicular to the layer plane thereof and is substantially opposite to the first fixed magnetization direction. |
US10361358B2 |
Spin orbit torque (SOT) MRAM having a source line connected to a spin orbit conductive layer and arranged above a magnetoresistive element
A magnetic memory includes: first to fourth wirings; first and second terminals; a first conductive layer including first to third regions, the second region being between the first region and the third region, the first region being electrically connected to the first terminal, and the third region being electrically connected to the second terminal; a first magnetoresistive element including a first and a second magnetic layer, and a first nonmagnetic layer disposed between the first and the magnetic layer; a first transistor including a third terminal electrically connected to the first magnetic layer, a fourth terminal electrically connected to the third wiring, and a first control terminal electrically connected to the first wiring; and a second transistor including a fifth terminal electrically connected to the first terminal, a sixth terminal electrically connected to the second wiring, and a second control terminal electrically connected to the first wiring. |
US10361357B2 |
Piezoelectric oxide single crystal substrate
Disclosed is a piezoelectric oxide single crystal substrate used in a surface acoustic wave device and the like which undergoes scarce warpage and is not easy to break or get scratched and has good a temperature characteristic. A piezoelectric oxide single crystal substrate has a concentration profile such that the Li concentration differs between the substrate surface and a middle part of the substrate; in particular, the concentration profile is such that, in the direction of the thickness of the substrate, the closer the measuring point is to the substrate surface, the higher becomes the Li concentration, and the closer the measuring point is to the thickness-wisely middle part of the substrate, the lower becomes the Li concentration. |
US10361355B2 |
Power generation system
A power generation system includes a first power generation apparatus and a second power generation apparatus outputting alternating voltages by an input of vibrations; a first voltage-doubling rectifier circuit not only rectifying the alternating voltages output by the first power generation apparatus to store electricity, but also outputting enhanced voltages to the load instrument; a second rectifier circuit rectifying the alternating voltages output by the second power generation apparatus, and connected in series to the first voltage-doubling rectifier circuit, thereby outputting rectified voltages to the load instrument; a constant-current circuit connected in series to the load instrument, thereby limiting currents flowing to the load instrument to a predetermined current or less. |
US10361351B2 |
Semiconductor light emitting element package including solder bump
A semiconductor light-emitting diode (LED) package is provided and includes a semiconductor LED chip having a surface on which a first electrode and a second electrode are formed; a first solder bump formed on the first electrode and a second solder bump formed on the second electrode, the first solder bump and the second solder bump protruding from the surface of the semiconductor LED chip; and a resin layer having a bottom portion that surrounds a first side surface of the first solder bump and a second side surface of the second solder bump and covers the surface of the semiconductor LED chip. |
US10361345B2 |
Method of producing a plurality of optoelectronic semiconductor components and optoelectronic semiconductor component
A method of producing a plurality of optoelectronic semiconductor components includes a) preparing a composite with a semiconductor layer sequence, wherein the composite includes a plurality of component areas mechanically connected to one another; b) forming a plurality of connecting surfaces on the semiconductor layer sequence, wherein at least one connecting surface is formed on each component area; c) forming a molding compound on the semiconductor layer sequence, wherein the molding compound fills interstices between the connecting surfaces; and d) singulating the composite with the molding compound, wherein during singulation a plurality of molded bodies is formed from the molding compound, each of which is associated with a semiconductor body obtained from a component area of the composite. |
US10361343B2 |
Ultraviolet light emitting diodes
The invention provides ultraviolet (UV) light-emitting diodes (LEDs). The UV LEDs can comprise abase layer including p-type SiC or p-type AlGaN, an active layer, and an n-AlGaN layer, wherein the active layer is disposed between the base layer and the n-AlGaN layer. In some embodiments, the absorption losses in p-SiC can be decreased or prevented by incorporating a conductive AlGaN Distributed Bragg Reflector (DBR) between the p-type SiC layer and the active layer. In some embodiments, the n-AlGaN layer can be textured to increase the extraction efficiency (EE). In some embodiments, the external quantum efficiency of the LEDs can be 20-30% or more. |
US10361342B2 |
Light-emitting device
A light-emitting device comprises a semiconductor stack comprising a first semiconductor layer, a second semiconductor layer, and an active layer formed between the first semiconductor layer and the second semiconductor layer; a first pad electrically connected to the first semiconductor layer; a second pad comprising multiple sidewalls electrically connected to the second semiconductor layer; and a metal layer formed on the semiconductor stack, wherein the metal layer surrounds the multiple sidewalls of the second pad and the metal layer is separated from the second pad. |
US10361340B2 |
Light emitting element and light emitting device
A light emitting element includes an n-side semiconductor layer, a p-side semiconductor layer, a plurality of holes, a first p-electrode, a second p-electrode and an n-electrode. The n-side semiconductor layer has a hexagonal shape in plan view. The p-side semiconductor layer has a hexagonal shape in plan view and provided over the n-side semiconductor layer. The holes are arranged in the p-side semiconductor layer so that the n-side semiconductor layer is exposed through the plurality of holes. The first p-electrode is in contact with the p-side semiconductor layer. The second p-electrode is arranged on the first p-electrode adjacent to a corner corresponding to one of vertices of the hexagonal shape. The second p-electrode has sides that are respectively parallel to sides defining the corner in plan view. The n-electrode is arranged over the first p-electrode and is electrically connected to the n-side semiconductor layer through the plurality of holes. |
US10361336B2 |
Ultrafast light emitting diodes for optical wireless communications
In one aspect, there is provided an apparatus including a light emitting diode. The apparatus may include a plurality of layers including a substrate layer, a buffer layer disposed on the substrate layer, a charge transport layer, a light emission layer, another charge transport layer, and/or a metamaterial layer. The other charge transport layer may have at least one channel etched into the other charge transport layer leaving a residual thickness of the other charge transport layer between a bottom of the etched channel and the light emission layer. A metamaterial layer may be contained in the at least one channel that is proximate to the residual thickness of the charge transport layer. The metamaterial may include a structure including at least one of a dielectric or a metal. The metamaterial may cause the light emitting diode to operate at higher frequencies and with higher efficiency. |
US10361335B2 |
Light receiving element and method of manufacturing the same
A method includes: forming a first mask having a first opening and a second opening; performing etching by using the first mask, to allow the etching to progress at a higher rate in the second opening than in the first opening; forming a second mask having a third opening and a fourth opening; performing etching by using the second mask, to form a mesa in a region interposed by the third opening, and an n-type contact region in the fourth opening; and forming a first electrode on the mesa and a second electrode on the n-type contact region, the first electrode being electrically connected to the third layer, the second electrode being electrically connected to the first layer, wherein a region covered with the first mask and exposed through the fourth opening of the second mask turns into the n-type contact region after the etching using the second mask. |
US10361333B1 |
High performance or wavelength configurable detector
A detector. The detector includes a first collector, a first interface layer on the first collector, a first absorber on the first interface layer, a second interface layer on the first absorber, and a second collector on the second interface layer. The first absorber is configured to absorb photons to generate electron-hole pairs. The first interface layer may include a barrier configured to impede the flow of majority carriers from the first absorber to the first collector. The second barrier may include a barrier configured to impede the flow of majority carriers from the first absorber, or from a second absorber, to the second collector. |
US10361332B2 |
Reduced band gap absorber for solar cells
Methods and apparatuses for a dual heterojunction multijunction solar cell are disclosed. A method in accordance with the present invention comprises growing a base material for a solar cell, growing at least one dual heterojunction on the base material, and growing an emitter on the at least one dual heterojunction. An apparatus in accordance with the present invention comprises a substrate, and a first subcell, coupled to the substrate, wherein the first subcell comprises a base region, coupled to the substrate, an emitter region, and at least one dual heterojunction, coupled between the base region and the emitter region, wherein the at least one dual heterojunction has a lower bandgap than the emitter region. |
US10361328B2 |
Color changing apparatuses with solar cells
The present disclosure provides a color changing apparatus. The color changing apparatus includes a solar cell assembly to absorb solar energy and converse the solar energy to thermal energy or electromagnetic radiation. The color changing apparatus also includes a color changing element to be in contact with the solar cell and display different color features by absorbing the thermal energy or electromagnetic radiation provided by the solar cell assembly. |
US10361327B2 |
Photovoltaic modules incorporating lateral heat removal
In one embodiment, a photovoltaic module includes a stack of layers, the module having an active layer and a planar heat sink positioned within the stack of layers adjacent the active layer, the heat sink being adapted to laterally remove heat from the active layer and the module. |
US10361322B2 |
Solar cell module
A solar cell module includes a plurality of solar cells each including a semiconductor substrate and first electrodes and second electrodes extended on a back surface of the semiconductor substrate, first conductive lines connected to the first electrodes at crossings between the first electrodes and the first conductive lines through first conductive adhesive layers, second conductive lines connected to the second electrodes at crossings between the second electrodes and the second conductive lines through the first conductive adhesive layers, and an intercell connector extended between a first solar cell and a second solar cell that are adjacent to each other. The first conductive lines connected to the first solar cell and the second conductive lines connected to the second solar cell are commonly connected to the intercell connector. |
US10361317B2 |
Thin film transistor and method for manufacturing the same, array substrate and display device
A TFT and a method for manufacturing the same, an array substrate and a display device are provided. The TFT includes a first electrode pattern and a second electrode pattern arranged at an identical layer. The first electrode pattern includes a first strip-like portion extending in a first direction, and the second electrode pattern includes a bending portion surrounding a first end of the first strip-like portion. The second electrode pattern further includes a second strip-like portion extending from a first end of the bending portion in the first direction. A channel formation region of the TFT includes a region between the bending portion and the first strip-like portion, and a region between the second strip-like portion and the first strip-like portion. |
US10361315B1 |
Method and apparatus of fabricating source and drain epitaxy for vertical field effect transistor
Fabricating a semiconductor device includes receiving a semiconductor structure including a substrate, a fin formed on a portion of the substrate, and a first hard mask disposed on a top surface of the fin. A bottom spacer is formed on the substrate in contact with a bottom portion of the fin. A top spacer is formed in contact with a top portion of the fin. A lateral recess is formed in the substrate under the bottom spacer. A first epitaxy upon the bottom spacer within the lateral recess and a second epitaxy upon the top spacer are simultaneously grown. The first epitaxy forms a bottom source and drain and the second epitaxy forms a top source and drain. |
US10361313B2 |
Electronic device and methods of fabricating the same
Disclosed are an electronic device and a method of fabricating the same. The method of fabricating an electronic device comprises providing on a substrate a channel layer including a two-dimensional material, providing a metal fiber layer on a first surface of a conductive layer, providing the metal fiber layer on the channel layer, and performing a thermal treatment process to form a junction layer where a portion of the metal fiber layer is covalently bonded to a portion of the channel layer. |
US10361311B2 |
Semiconductor structure including low-k spacer material
A semiconductor structure includes a substrate, and a replacement metal gate (RMG) structure is attached to the substrate. The RMG structure includes a lower portion and an upper tapered portion. A source junction is disposed on the substrate and attached to a first low-k spacer portion. A drain junction is disposed on the substrate and attached to a second low-k spacer portion. A first oxide layer is disposed on the source junction, and attached to the first low-k spacer portion. A second oxide layer is disposed on the drain junction, and attached to the second low-k spacer portion. A cap layer is disposed on a top surface layer of the RMG structure and attached to the first oxide layer and the second oxide layer. |
US10361308B2 |
Self-aligned gate cut with polysilicon liner oxidation
A method of forming a semiconductor device that includes forming a gate structure over a plurality of fin structures, wherein the gate structure provides a first fill pinch off between the fin structures separated by a first pitch; and forming a material stack of a silicon containing layer, and a dielectric layer over the plurality of fin structures, wherein the dielectric provides a second fill pinch off between fin structures separated by a second pitch. The silicon containing layer is converted into an oxide material layer. The second dielectric that provides the second fill pinch off is removed, and an opening is etched in a remaining silicon containing layer exposed by removing the second fill pinch off. An underlying gate cut region is etched in the gate structure using the opening in the remaining portion of the silicon containing layer. |
US10361307B2 |
Contact structure and extension formation for III-V nFET
FinFET devices including III-V fin structures and silicon-based source/drain regions are formed on a semiconductor substrate. Silicon is diffused into the III-V fin structures to form n-type junctions. Leakage through the substrate is addressed by forming p-n junctions adjoining the source/drain regions and isolating the III-V fin structures under the channel regions. |
US10361305B2 |
Semiconductor structure and fabrication method thereof
Semiconductor structures and fabrication methods are provided. An exemplary fabrication method includes providing a base substrate having a semiconductor substrate and a plurality of fins on the semiconductor substrate; forming an isolation structure on the semiconductor substrate, between adjacent fins and with a top surface lower than the top surfaces of the fins; forming a gate structure across of the fins by covering portions of top and side surfaces of the fins; forming a sidewall material layer to cover the gate structure and the fins; etching the sidewall material layer to form gate sidewall spacers on side surfaces of the gate structure and shadowing sidewall spacers on portions of side surfaces of the fins adjacent to the isolation structure; and performing an ion implantation process on the fins using the gate sidewall spacers and the shadowing sidewall spacers as a mask to form lightly doped regions in the fins. |
US10361304B2 |
Fabrication of a strained region on a substrate
A method of forming a strained channel for a field effect transistor, including forming a sacrificial layer on a substrate, forming a channel layer on the sacrificial layer, forming a stressor layer on the channel layer, wherein the stressor layer applies a stress to the channel layer, forming at least one etching trench by removing at least a portion of the stressor layer, channel layer, and sacrificial layer, wherein the etching trench exposes at least a portion of a sidewall of the sacrificial layer, and separates the stressor layer, channel layer, and sacrificial layer into two or more stressor islands, channel blocks, and sacrificial slabs, and removing the sacrificial slabs to release the channel blocks from the substrate using a selective etch, wherein the channel blocks adhere to the substrate surface. |
US10361301B2 |
Fabrication of vertical fin transistor with multiple threshold voltages
A vertical fin field effect transistor including a doped region in a substrate, wherein the doped region has the same crystal orientation as the substrate, a first portion of a vertical fin on the doped region, wherein the first portion of the vertical fin has the same crystal orientation as the substrate and a first portion width, a second portion of the vertical fin on the first portion of the vertical fin, wherein the second portion of the vertical fin has the same crystal orientation as the first portion of the vertical fin, and the second portion of the vertical fin has a second portion width less than the first portion width, a gate structure on the second portion of the vertical fin, and a source/drain region on the top of the second portion of the vertical fin. |
US10361295B2 |
Nitride semiconductor epitaxial stack structure and power device thereof
A nitride semiconductor epitaxial stack structure including: a Silicon substrate; an aluminum-including nucleation layer disposed on the silicon substrate; a buffer structure disposed on the aluminum-including nucleation layer and sequentially including: a first superlattice epitaxial structure, a first GaN based thick layer disposed on the first superlattice epitaxial structure, a second superlattice epitaxial structure disposed on the first GaN based thick layer, and a second GaN based thick layer disposed on the second superlattice epitaxial structure; a channel layer disposed on the buffer structure; a barrier layer disposed on the channel layer; and a two dimensional electron gas layer disposed near an interface between the channel layer and the barrier layer, wherein the total thickness of the first GaN based thick layer and the second GaN based thick layer is more than 2 micrometers. |
US10361294B2 |
Semiconductor device
A semiconductor device includes a semiconductor element, a laminated substrate including an insulating board and a circuit board disposed on the insulating board, the semiconductor element being mounted on the circuit board, a surrounding case having an opening, and being disposed on the outer peripheral portion of the insulating board to surround the circuit board, a relay substrate having a through hole and being disposed on the surrounding case to cover the opening, and an external connection terminal including a first end portion bonded to the circuit board, a second end portion, opposite to the first end portion, inserted into the through hole of the relay substrate from the rear surface of the relay substrate so as to be in contact with the front surface of the relay substrate, and an elastically deformable elastic portion between the first end portion and the second end portion. |
US10361292B2 |
Magneto-electric logic devices using semiconductor channel with large spin-orbit coupling
Antiferromagnetic magneto-electric spin-orbit read (AFSOR) logic devices are presented. The devices include a voltage-controlled magnetoelectric (ME) layer that switches polarization in response to an electric field from the applied voltage and a narrow channel conductor of a spin-orbit coupling (SOC) material on the ME layer. One or more sources and one or more drains, each optionally formed of ferromagnetic material, are provided on the SOC material. |
US10361286B2 |
Method and structure for mandrel and spacer patterning
An IC manufacturing method includes forming first mandrels and second mandrels over a substrate; and forming first spacers on sidewalls of the first mandrels and second spacers on sidewalls of the second mandrels. Each of the first and second spacers has a loop structure with two curvy portions connected by two lines. The method further includes removing the first and second mandrels; and removing the curvy portions from each of the first spacers without removing the curvy portions from the second spacers. The second spacers are used for monitoring variations of the IC fabrication processes. |
US10361285B2 |
Forming vertical transport field effect transistors with uniform bottom spacer thickness
A method of forming a vertical transport field effect transistors with uniform bottom spacer thickness, including, forming a plurality of vertical fins on a substrate, forming a protective liner layer on the plurality of vertical fins, forming a sacrificial liner on the protective liner layer, forming a spacer liner on a portion of the sacrificial liner, wherein at least a top surface of the sacrificial liner on each of the vertical fins is exposed, converting the exposed portion of the sacrificial liner on each of the vertical fins to a conversion cap, and removing the conversion cap from each of the vertical fins to expose an upper portion of each vertical fin. |
US10361283B2 |
MOS transistor and fabrication method
MOS transistors and fabrication methods are provided. An exemplary MOS transistor includes a gate structure formed on a semiconductor substrate. A lightly doped region is formed by a light ion implantation in the semiconductor substrate on both sides of the gate structure. A first halo region is formed by a first halo implantation to substantially cover the lightly doped region in the semiconductor substrate. A groove is formed in the semiconductor substrate on the both sides of the gate structure. Prior to forming a source and a drain in the groove, a second halo region is formed in the semiconductor substrate by a second halo implantation performed into a groove sidewall that is adjacent to the gate structure. The second halo region substantially covers the lightly doped region in the semiconductor substrate and substantially covers the groove sidewall that is adjacent to the gate structure. |
US10361279B2 |
Method for manufacturing FinFET structure with doped region
Methods for forming semiconductor structures are provided. The method includes forming a fin structure over a substrate and forming a gate structure across the fin structure. The method further includes forming a fin spacer on a sidewall of the fin structure and partially removing the fin spacer. The method further includes recessing the fin structure to form a recess and implanting dopants from the recess to form a doped region. The method further includes diffusing the dopants in the doped region to form an expanded doped region and forming a source/drain structure over the expanded doped region. |
US10361277B2 |
Low resistivity wrap-around contacts
Low resistivity, wrap-around contact structures are provided in nanosheet devices, vertical FETs, and FinFETs. Such contact structures are obtained by delivering dopants to source/drain regions using a highly conformal, doped metal layer. The conformal, doped metal layer may be formed by ALD or CVD using a titanium tetraiodide precursor. Dopants within the conformal, doped metal layer are delivered during the formation of wrap-around metal silicide or metal germano-silicide regions. Dopant segregation at silicide/silicon interfaces or germano-silicide/silicon interfaces reduces contact resistance in the wrap-around contact structures. A contact metal layer electrically communicates with the wrap-around contact structures. |
US10361275B2 |
Multi-doped graphene and method for preparing the same
A graphene doped with different dopants and a method for preparing the same are disclosed. A method for preparing a multi-doped graphene includes: mixing a metal-based dopant and at least one organic-based dopant to prepare a doping solution; stacking a graphene layer on a substrate; and doping the graphene layer with the doping solution that includes the metal-based dopant and the at least one organic-based dopant. The method allows maintaining the transparency of the prepared graphene and minimizing the sheet resistance of the graphene while not damaging a substrate on which the graphene is stacked. |
US10361272B2 |
InGaAlP Schottky field effect transistor with AlGaAs carrier supply layer
An InGaAlP Schottky field effect transistor with AlGaAs carrier supply layer comprises a buffer layer, a channel layer, a carrier supply layer, a Schottky barrier layer and a cap layer sequentially formed on a compound semiconductor substrate; the cap layer has a gate recess, a bottom of the gate recess is defined by the Schottky barrier layer; a source electrode and a drain electrode are formed respectively on the cap layer at two sides with respect to the gate recess, the source electrode and the drain electrode form respectively an ohmic contact with the cap layer; a gate electrode is formed on the Schottky barrier layer within the gate recess, the gate electrode and the Schottky barrier layer form a Schottky contact; wherein the carrier supply layer is made of AlGaAs; the Schottky barrier layer is made of InGaAlP. |
US10361270B2 |
Nanowire MOSFET with different silicides on source and drain
A nanowire field effect transistor (FET) device and method for forming a nanowire FET device are provided. A nanowire FET including a source region and a drain region is formed. The nanowire FET further includes a nanowire that connects the source region and the drain region. A source silicide is formed on the source region, and a drain silicide is formed on the drain region. The source silicide is comprised of a first material that is different from a second material comprising the drain silicide. |
US10361265B2 |
Precision BEOL resistors
A semiconductor structure that includes a resistor that is located within an interconnect dielectric material layer of an interconnect level is provided. The resistor includes a diffusion barrier material that is present at a bottom of a feature that is located in the interconnect dielectric material layer. In some embodiments, the resistor has a topmost surface that is located entirely beneath a topmost surface of the interconnect dielectric material layer. In such an embodiment, the resistor is provided by removing sidewall portions of a diffusion barrier liner that surrounds a metal-containing structure. The removal of the sidewall portions of the diffusion barrier liner reduces the parasitic noise that is contributed to the sidewall portions of a resistor that includes such a diffusion barrier liner. Improved precision can also be obtained since sidewall portions may have a high thickness variation which may adversely affect the resistor's precision. |
US10361261B2 |
Manufacturing method of TFT substrate, TFT substrate, and OLED display panel
This disclosure discloses a manufacturing method of a TFT substrate, a TFT substrate, and an OLED display panel. The manufacturing method of the TFT substrate includes sequentially forming a gate electrode, a gate insulating layer, a polysilicon layer, and a barrier layer on the substrate, the polysilicon layer including a source region, a drain region, and a channel region; the barrier layer above the source and drain regions is etched by a photomask so that the thickness of the barrier layer allows ions to pass through and is not zero; and then the polysilicon layer is ion implanted; through the method, the polysilicon layer of the source and drain regions can be ion implanted without exposing the polysilicon layer, the damage of the polysilicon layer during the process can be avoided, and the stability of the TFT substrate can be improved, thereby improving the display quality. |
US10361259B2 |
Organic light emitting display device having a thin film encapsulation part having an organic film and an inorganic film
Provided is an organic light emitting display device including a base substrate, a pixel layer, a quantum dot layer, and a thin film encapsulation part. The pixel layer includes a plurality of organic light emitting diodes on the base substrate. The quantum dot layer includes quantum dots on the pixel layer. The thin film encapsulation part is between the quantum dot layer and the pixel layer, and seals the pixel layer. The thin film encapsulation part includes a first inorganic film and an organic film. The first inorganic film has a plurality of first auxiliary films, each having a first refractive index, and a plurality of second auxiliary films, each having a second refractive index that differs from the first refractive index, alternately stacked with the plurality of first auxiliary films along a thickness direction of the base substrate. |
US10361256B2 |
OLED back plate
The present invention provides an OLED back plate and a manufacture method thereof. In the manufacture method of the OLED back plate of the present invention, by forming the planarization layer on the interlayer dielectric layer, and the planarization layer can serve as the mask of the etching process of the interlayer dielectric layer, and also can make the surface of the second source made on the surface thereof be flattened, which is advantageous to increase the area of the OLED light emitting area and to increase the aperture ratio. In the OLED back plate of the present invention, by forming the planarization layer on the interlayer dielectric layer, the surface of the second source made on the surface of the planarization layer is flattened, of which the OLED light emitting area is larger and the aperture ratio is higher. |
US10361254B2 |
Display device including a touch sensing unit and method of manufacturing the same
A display device including a substrate having a display area and a peripheral area defined outside the display area, a circuit layer disposed on the substrate, a device layer disposed on the display area, an encapsulation layer covering the device layer, a touch sensing unit including at least one touch insulating layer disposed on the encapsulation layer, touch electrodes disposed on the encapsulation layer, and touch signal lines connected to the touch electrodes, a first section disposed in the peripheral area and including a first part having a first thickness, a second part having a second thickness less than the first thickness and overlapping the touch signal lines, and an intermediate part connecting the first part and the second part and being inclined, and a first thickening pattern overlapping at least the intermediate part. |
US10361253B2 |
Organic light-emitting diode (OLED) display and method of manufacturing the same
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a substrate, a plurality of sub-pixels over the substrate, wherein each of the plurality of sub-pixels includes an OLED layer comprising an OLED, wherein the OLED comprises a first electrode, a second electrode facing the first electrode, and an emitting layer therebetween, an encapsulation layer over the OLED layer and comprising at least one inorganic layer and at least one organic layer, a refractive layer comprising a first refractive index layer that is located over the encapsulation layer and has a recess and a second refractive index layer that is located over the first refractive index layer, wherein the second refractive index is greater than the first refractive index, and wherein an upper surface of the refractive layer is flat. |
US10361246B2 |
Ultra-small LED electrode assembly having improved luminance and method of manufacturing the same
An ultra-small light-emitting diode (LED) electrode assembly having an improved luminance is provided. More particularly, an ultra-small LED electrode assembly in which light, which is blocked by an electrode and cannot be extracted, is minimized, an ultra-small LED device is connected to an ultra-small electrode without a defect such as an electrical short-circuit, and a very excellent luminance is exhibited even at a direct current (DC) driving voltage, and a method of manufacturing the same are provided. |
US10361243B2 |
Method for making CMOS image sensor including superlattice to enhance infrared light absorption
A method for making a CMOS image sensor may include forming a plurality of laterally adjacent infrared (IR) photodiode structures on a semiconductor substrate having a first conductivity type. Forming each IR photodiode structure may include forming a superlattice on the semiconductor substrate including a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and a non-semiconductor monolayer(s) constrained within a crystal lattice of adjacent base semiconductor portions. The superlattice may have the first conductivity type. A semiconductor layer may be formed on the superlattice, along with a retrograde well extending downward into the semiconductor layer from a surface thereof and having a second conductivity type, a first well around a periphery of the retrograde well having the first conductivity type, and a second well above the retrograde well having the first conductivity type. |
US10361241B2 |
Dispersion material, photoelectric conversion device, and imaging unit
A dispersion material includes: a plurality of semiconductor nanoparticles; and an adsorption molecule configured to selectively absorb light having a predetermined wavelength and adsorbed to each of the plurality of semiconductor nanoparticles, the adsorption molecule having a plane aligned to be non-parallel to a direction from a center portion of each of the plurality of semiconductor nanoparticles toward an adsorption portion of each of the plurality of semiconductor nanoparticles. |
US10361239B2 |
Image sensor
An image sensor having active, peripheral and dummy regions is provided as follows. A dummy through electrode is disposed in the substrate. An active through electrode is disposed in the substrate. An insulation structure in which a color filter is embedded is disposed on the substrate. A dummy bottom electrode is disposed on the insulation structure and connected electrically to the dummy through electrode. An active bottom electrode is disposed on the insulation structure and connected electrically to the active through electrode. A photoelectric conversion layer is disposed on the insulation structure. A top electrode is disposed on the photoelectric conversion layer and the dummy bottom electrode. The top electrode is connected electrically to the dummy bottom electrode. The photoelectric conversion layer is interposed between the top electrode and the active bottom electrode which are separated from each other. |
US10361232B2 |
Photosensitive imaging devices and associated methods
Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and a passivation region positioned between the textured region and the at least one junction. The passivation region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region.Additionally, the device includes an electrical transfer element coupled to the semiconductor substrate to transfer an electrical signal from the at least one junction. |
US10361231B2 |
Image capturing apparatus, manufacturing method thereof, and camera
A back-side illumination image capturing apparatus includes a semiconductor substrate having a first surface for receiving incident light and a second surface located on the opposite side as the first surface, and including a photoelectric conversion portion, and a gate electrode disposed above the second surface. The apparatus further includes a first insulating layer disposed above the second surface of the semiconductor substrate, an interlayer insulation film disposed on the first insulating layer, a contact plug connected to the gate electrode, and a light-cutting portion for cutting light, of the incident light, that has passed through the photoelectric conversion portion. The light-cutting portion passes through at least part of the interlayer insulation film. The first insulating layer is located between the light-cutting portion and the semiconductor substrate. |
US10361230B2 |
Imaging element, method for manufacturing imaging element, pixel design method, and electronic apparatus with light collecting parts having plural projection and depression structures
An imaging element includes a plurality of pixels that are two-dimensionally arranged and each have a light receiving part including a photoelectric conversion element and a light collecting part that collects incident light toward the light receiving part. Each of the light collecting parts in the plurality of pixels includes an optical functional layer having, in a surface, a specific projection and depression structure depending on the pixel position. |
US10361228B2 |
Processing substrates using a temporary carrier
A technique comprising: securing a device substrate (8) to a carrier (1) using one or more adhesive elements (6); forming electronic elements (10) on the device substrate with the device substrate thus secured to the carrier; and thereafter reducing the adhesion strength of at least one of the one or more adhesive elements to facilitate the release of the substrate from the carrier. |
US10361224B2 |
Display device
A display device comprises: a display panel; a metallic wiring formed in the display panel; and a semiconductor integrated circuit element connected to the display panel through a UV curing anisotropy conductive film, wherein the semiconductor integrated circuit element includes a plurality of bumps, the metallic wiring is electrically connected to the bumps through the UV curing anisotropy conductive film, the metallic wiring includes a plurality of openings, and at least one of the bumps is disposed between two adjacent openings closest to each other in the plurality of openings. |
US10361213B2 |
Three dimensional memory device containing multilayer wordline barrier films and method of making thereof
Memory stack structures are formed through an alternating stack of insulating layers and sacrificial material layers. Backside recesses are formed by removal of the sacrificial material layers selective to the insulating layers and the memory stack structures. A barrier layer stack including a crystalline electrically conductive barrier layer and an amorphous barrier layer is formed in the backside recesses prior to formation of a metal fill material layer. |
US10361212B2 |
Semiconductor memory devices
A semiconductor memory device includes a semiconductor substrate having an active region of a first conductivity type defined by a device isolation layer, a first impurity region in the active region, an anti-fuse gate electrode on the semiconductor substrate and extending across the first impurity region, an anti-fuse gate dielectric layer between the anti-fuse gate electrode and the first impurity region, a selection gate electrode on the semiconductor substrate and extending across the active region, a selection gate dielectric layer between the selection gate electrode and the active region, and a second impurity region in the active region between the selection gate electrode and the anti-fuse gate electrode. The first and second impurity regions have impurities of a second conductivity type. The first impurity region has an impurity concentration less than the impurity concentration of the second impurity region. |
US10361207B2 |
Semiconductor structures with deep trench capacitor and methods of manufacture
An integrated FinFET and deep trench capacitor structure and methods of manufacture are disclosed. The method includes forming at least one deep trench capacitor in a silicon on insulator (SOI) substrate. The method further includes simultaneously forming polysilicon fins from material of the at least one deep trench capacitor and SOI fins from the SOI substrate. The method further includes forming an insulator layer on the polysilicon fins. The method further includes forming gate structures over the SOI fins and the insulator layer on the polysilicon fins. |
US10361204B2 |
Memory cells and memory arrays
Some embodiments include a memory cell having first, second and third transistors, with the second and third transistors being vertically displaced relative to one another. The memory cell has a semiconductor pillar extending along the second and third transistors, with the semiconductor pillar containing channel regions and source/drain regions of the second and third transistors. A capacitor may be electrically coupled between a source/drain region of the first transistor and a gate of the second transistor. |
US10361203B2 |
FET trench dipole formation
A semiconductor structure includes a first layered dipole structure formed within a gate trench within a first polarity region of the semiconductor structure. A second layered dipole structure is formed within a gate trench within a second polarity region of the semiconductor structure and formed upon the first layered dipole structure. The layered dipole structure nearest to the bottom of the gate trench includes a dipole layer of opposite polarity relative to the polarity region of the semiconductor structure where the gate trench is located and reduces source to drain leakage. |
US10361200B1 |
Vertical fin field effect transistor with integral U-shaped electrical gate connection
A method of forming a complementary metal-oxide-semiconductor (CMOS) device is provided. The method includes forming a bottom spacer layer on a substrate around two adjacent vertical fins, and forming a first work function layer on both of the two adjacent vertical fins. The method further includes removing a portion of the first work function layer from one of the two adjacent vertical fins, and forming a second work function layer on the remaining portion of the first work function layer and on the one of the two adjacent vertical fins, wherein the second work function layer forms part of a gate structure on the one of the two adjacent vertical fins and an electrical connection to the first work function layer on the other of the two adjacent vertical fins. |
US10361197B2 |
FinFETs with controllable and adjustable channel doping
A method of forming features of a finFET structure includes forming fins on a surface of a substrate. A first liner is formed around each fin and a shallow trench isolation region is formed around each fin. A dopant layer is implanted in each fin. A portion of the shallow trench isolation region is etched from each fin. A first portion of the structure is blocked and the first liner replaced with a second liner in a second portion of the structure. |
US10361194B2 |
Semiconductor devices and methods of fabricating the same
Semiconductor device having less defects in a gate insulating film and improved reliability and methods of forming the semiconductor devices are provided. The semiconductor devices may include a gate insulating film on a substrate and a gate electrode structure on the gate insulating film. The gate electrode structure may include a lower conductive film, a silicon oxide film, and an upper conductive film sequentially stacked on the gate insulating film. The lower conductive film may include a barrier metal layer. |
US10361187B1 |
Electrostatic discharge protection device
An electrostatic discharge (ESD) protection device including a silicon controlled rectifier and a diode string arranged along a first direction is provided. The silicon controlled rectifier includes an anode and a cathode disposed separately from each other. The anode and the cathode respectively include doped regions. The doped regions in the anode are arranged along a second direction. The doped regions in the cathode are arranged along the second direction. The first direction intersects the second direction. |
US10361186B1 |
Suppression of parasitic discharge path in an electrical circuit
In some examples, a device includes a first power supply node, an input-output node, and a second power supply node positioned between the first power supply node and the input-output node. The device also includes a protection element configured to block a parasitic flow of carriers between the first power supply node and the input-output node, wherein the parasitic flow of carriers is based on a voltage level of the second power supply node. |
US10361184B2 |
Semiconductor device
A semiconductor device according to an embodiment includes: an insulating film formed on a voltage supporting region B; an overvoltage protection diode that includes an n-type semiconductor layer and a p-type semiconductor layer; conductor portions that are formed on the insulating film and are electrically connected to the overvoltage protection diode; and a high-potential portion arranged above the overvoltage protection diode via an insulating film. The p-type impurity concentration of the p-type semiconductor layer is lower than the n-type impurity concentration of the n-type semiconductor layer. In the reverse bias application state, the high-potential portion has a higher potential than a potential of the potential of the p-type semiconductor layer disposed directly under the high-potential portion. |
US10361175B2 |
Voltage droop mitigation in 3D chip system
The present invention relates to a multichip system and a method for scheduling threads in 3D stacked chip. The multichip system comprises a plurality of dies stacked vertically and electrically coupled together; each of the plurality of dies comprising one or more cores, each of the plurality of dies further comprising: at least one voltage violation sensing unit, the at least one voltage violation sensing unit being connected with the one or more cores of each die, the at least one voltage sensing unit being configured to independently sense voltage violation in each core of each die; and at least one frequency tuning unit, the at least one frequency tuning unit being configured to tune the frequency of each core of each die, the at least one frequency tuning unit being connected with the at least one voltage violation sensing unit. The multichip system and method described in present invention have many advantages, such as reducing voltage violation, mitigating voltage droop and saving power. |
US10361169B2 |
Semiconductor wire bonding machine cleaning device and method
A methodology and medium for regular and predictable cleaning the support hardware such as capillary tube in semiconductor assembly equipment components, while it is still in manual, semi-automated, and automated assembly are disclosed. The cleaning material may include a cleaning pad layer and one or more intermediate layers that have predetermined characteristics. |
US10361166B2 |
Bonding device
Provided is a bonding apparatus including a table (52), a first reaction member (58A) and a second reaction member (58B), which are each provided movably in a Y axis direction with respect to a pedestal (41). The first and second reaction members are each configured to move in a direction opposite to the table in the Y axis direction when the table moves in the Y axis direction. As viewed in an X axis direction, the first and second reaction members are arranged on both sides of the table, respectively, with the table being interposed between the first and second reaction members, so that the centers of gravity of the first and second reaction members are positioned based on the center of gravity of the table. Consequently, the bonding apparatus can suppress an increase in space, and can improve a weight balance on the pedestal. |
US10361162B1 |
Magnetic shielding of STT-MRAM in multichip packaging and method of manufacturing the same
Methodologies and an apparatus for enabling magnetic shielding of stand alone MRAM are provided. Embodiments include placing MRAM dies and logic dies on a first surface of a mold frame; forming a top magnetic shield over top and side surfaces of the MRAM dies; forming a mold cover over the MRAM dies, FinFET dies and mold frame; removing the mold frame to expose a bottom surface of the MRAM dies and FinFET dies; and forming a bottom magnetic shield over the bottom surface of the MRAM dies. |
US10361158B2 |
Integrated assemblies having structures along a first pitch coupled with structures along a second pitch different from the first pitch
Some embodiments include methods of forming integrated assemblies. First conductive structures are formed within an insulative support material and are spaced along a first pitch. Upper regions of the first conductive structures are removed to form first openings extending through the insulative support material and over lower regions of the first conductive structures. Outer lateral peripheries of the first openings are lined with spacer material. The spacer material is configured as tubes having second openings extending therethrough to the lower regions of the first conductive structures. Conductive interconnects are formed within the tubes. Second conductive structures are formed over the spacer material and the conductive interconnects. The second conductive structures are spaced along a second pitch, with the second pitch being less than the first pitch. Some embodiments include integrated assemblies. |
US10361156B2 |
Semiconductor device and manufacturing method thereof
A semiconductor device includes a first interlayer dielectric layer disposed over a substrate, metal wirings, a second interlayer dielectric layer disposed over the first interlayer dielectric layer and the metal wirings, a first air gap and a second air gap. The metal wirings are embedded in the first interlayer dielectric layer, and arranged with a first space or a second space between the metal wirings. The second space has a greater length than the first space. The first air gap is formed by the second interlayer dielectric layer and formed in a first area sandwiched by adjacent two metal wirings arranged with the first space. The second air gap is formed by the second interlayer dielectric layer and formed in a second area sandwiched by adjacent two metal wirings arranged with the second space therebetween. No adjacent two metal wirings are arranged with a space smaller than the first space. |