Document | Document Title |
---|---|
US10063465B2 |
Network system and relay device
An object of the present invention is to provide a network system or the like in which the construction cost of a network for a plurality of control systems is suppressed which is excellent in resistance to a network failure. In order to solve the problems, according to the present invention, there is provided a network system including a plurality of communication devices that are disposed in a plurality of bases, and are grouped into predetermined control systems for each of the devices which transmit and receive packets to and from each other so as to monitor or control target equipment, and a plurality of relay devices each of which includes a plurality of communication ports and transmits a packet transmitted by the communication device to another communication device, in which a plurality of communication devices disposed in each base are connected in parallel between the two relay devices, the relay devices disposed in different bases are connected to each other in a ring shape via a network, and a plurality of communication devices disposed in at least one base include communication devices belonging to different control systems. |
US10063456B2 |
Data processing
Measures for processing data in a packet-switched network. A first device is configured to snoop control packets of a predetermined control plane protocol in the network. The predetermined control plane protocol is operated by a plurality of other devices in the network to obtain Layer 2 information on the basis of known Layer 3 information. The first device does not operate the predetermined control plane protocol in the network. At the first device, in response to identifying that a given snooped packet was generated according to the predetermined control plane protocol. Layer 3 information associated with a second device in the plurality is extracted from the given snooped control plane protocol packet on the basis of known Layer 2 information associated with the second device. The second device is connected to the first device. |
US10063452B1 |
Routing loop for testing a communication link
A method and apparatus for testing a communication link are disclosed. In the method and apparatus, a routing loop is established between two devices connected by the communication link, and data is routed between the two devices over the communication link. One or more performance measures of the communication link are obtained based at least in part on the data routing. The one or more performance measures are then used to determine whether the communication link is defective. |
US10063451B2 |
Providing application metadata using export protocols in computer networks
In general, techniques for are described for providing application metadata using an Internet Protocol Flow Information eXport (IPFIX) protocol in computer networks. In one example, a first network device including a processor and a memory may perform the techniques. The processor may be configured to determine types of the application metadata that the first network device has a capability to detect through analysis of network packets. The application metadata may comprise data representative of network protocols used by networking processes that exchange packets. The memory may be configured to store the application metadata. The processor may further be configured to execute the IPFIX protocol to advertise the types of the application metadata to a second network device configured to collect a subset of the application metadata. |
US10063450B2 |
Measuring response trends in a digital television network
Techniques and systems for providing a trend server outside a content provider network to communicate with the content provider network to build a trend record based on responses received from the content provider network for monitoring certain activity trend or tendency in the content provider network and provide an alert when the content provider network behaves abnormally. |
US10063448B2 |
Method and system for heartbeat adaptation
A Method and a system for performing a heartbeat adaptation process are disclosed herein. A computing device detects a condition for initiating the heartbeat adaptation process in accordance with one or more predetermined criteria. In response to detecting the condition, the computing device performs the heartbeat adaptation process by sending, to a server, one or more first heartbeat test packets according to a predefined time interval. If the one or more first heartbeat test packets satisfy one or more test continuation criteria, the computing device: increases the predefined time interval according to a predetermined interval step; and repeats the heartbeat adaptation process using the increased predefined time interval. If the one or more first heart test packages satisfy one or more test termination criteria, the computing device: identifies a stable heartbeat interval according to the predefined time interval; and terminates the heartbeat adaptation process. |
US10063445B1 |
Detecting misconfiguration during software deployment
A method of detecting misconfiguration of a hardware resource during a software deployment in a service provider may include receiving configuration data for the hardware resource, the configuration data being associated with a hardware layer, an operating system layer and an application layer of the hardware resource. At least a first fingerprint may be generated using the configuration data associated with the hardware resource. Software may be deployed to the hardware resource. Updated configuration data for the hardware resource may be received, the updated configuration data being associated with the hardware layer, the operating system layer and the application layer of the hardware resource after the deployment. A second fingerprint associated with the hardware resource that is based on the updated configuration data may be generated. The first fingerprint may be compared to the second fingerprint to determine whether the software deployment was successful. |
US10063437B2 |
Network monitoring system and method
A network monitoring system includes first to third information processing apparatuses. The first information processing apparatus provides a first virtual machine monitoring a monitoring target apparatus with resource for processing predetermined load received from the monitoring target apparatus. The second information processing apparatus provides a second virtual machine monitoring the monitoring target apparatus with resource less than the resource for processing the predetermined load. When an abnormality occurs in the monitoring of the monitoring target apparatus by the first virtual machine, the second information processing apparatus migrates the second virtual machine to a third information processing apparatus capable of providing the second virtual machine with resource for processing the predetermined load. |
US10063436B2 |
Method and apparatus for spectrum monitoring
A receiver is configured to be coupled to a television and data service provider headend via a hybrid fiber coaxial (HFC) network. The receiver comprises front-end circuitry operable to receive a signal that carries a plurality of television and/or data channels, and digitize the received signal to generate a digitized signal. The receiver comprises channelizer circuitry operable to select a first portion of the digitized signal, and select a second portion of the digitized signal. The receiver comprises processing circuitry operable to process the selected second portion of the digitized signal to recover information carried in the plurality of channels. The receiver comprises monitoring circuitry operable to analyze the selected first portion of the digitized signal to measure a characteristic of the received signal; and control the transmission of network management messages back to the headend based on the measured characteristic of the received signal. |
US10063433B2 |
Remotely monitoring network diagnostics
Devices, methods, and systems for remotely monitoring network diagnostics are described herein. One method includes monitoring a control system network of a site for a plurality of diagnostic messages, wherein the diagnostic messages include a set of parameters, collecting diagnostic data associated with the diagnostic messages, correcting a parameter within the set of parameters to conform to a parameter threshold limit, and alerting a user upon the collected diagnostic data having an abnormal parameter within the set of parameters. |
US10063429B2 |
Systems and methods for optimizing computer network operations
Disclosed herein are systems and methods to integrate and manage a computer network operations (CNO) infrastructure. A framework may include CNO applications that are used to find a target computer system, breach the target, extract data therefrom and analyze the data. A CNO organization in a secure network can use the framework to maintain, manage and monitor CNO applications in an unsecured network without compromising security from counter-attacks. The framework remains engaged with targeted computer systems during routine maintenance, management and monitoring processes to mitigate loss of mission opportunities. The framework utilizes virtual instances to provision CNO capabilities for missions operations that couple the secure and unsecured networks in an asynchronous manner while allowing bidirectional communications between the framework and computers on their respective network. Consequently, the framework secures a CNO infrastructure while mitigating loss mission opportunities and vulnerabilities from adversaries. |
US10063428B1 |
Selectable declarative requirement levels
A network is configured. Constraints are stored. A plurality of processing stages is processed. For at least one of the plurality of processing stages, an application agent utilizes an input declarative requirement with at least some of the constraints to determine an output declarative requirement that is at a lower level than a level of the input declarative requirement. Each processing stage corresponds to an interaction agent that is able to specify the input declarative requirement for that stage. |
US10063426B2 |
Network node connection configuration
A system and method for connectivity configuration of a network node permits an optical signal to be passed through the node and shifted from a first connector position to a second connector position that is offset from the first connector position. The shifted optical signal permits a number of distant nodes in the network to be reached with a direct optical connection, which can be configured to be bidirectional. The disclosed connectivity configuration reduces the cabling requirements for the network and simplifies the interconnections. |
US10063425B1 |
Event-based in-band host registration
Techniques are presented for event-based host registration. Continuously performed standard path testing operations are able to cause an event signal upon detection of a newly-available path, and upon receiving such an event signal, a host is able to perform host registration along the newly-available path, obviating the need to periodically send out registration commands while simultaneously minimizing latency. |
US10063423B2 |
Access network related information provisioning system, control apparatus, method of controlling the same, communications terminal, method of controlling the same, program, and storage medium
A control apparatus initiates, in response to a predetermined condition being satisfied, a provisioning, to a communications terminal, of information of a portion of a management object. The control apparatus generates, and transmits to the communications terminal, one or more commands comprising information of the portion including information of a reference node which is a leaf node of the management object and which contains reference information specifying a sub-tree comprising specific access network related information. The communications terminal receives the one or more commands, stores the information of the portion comprised in the one or more commands in accordance with the one or more commands, and acquires the specific access network related information of the sub-tree using the reference information of the reference node included in the information of the portion. |
US10063421B2 |
System and method for identifying imaging devices
Embodiments described herein facilitate receipt of image data, by providing apparatus and methods for constructing and/or utilizing a database of networked imaging devices. Communication transmitted over a network is identified as being from an imaging device. One or more identifiers, under which the communication is transmitted, are then extracted from the communication. For example, one or more Internet Protocol (IP) addresses may be extracted. The identifiers are associated in a database with respective physical locations. When a particular area is defined as an area of interest, at least one of the identifiers is selected from the database, the selected identifier being associated with a physical location that is within, or near, the area of interest. Image data transmitted under the selected identifier is then received by the interested parties. |
US10063419B2 |
Establishing nodes for global routing manager
Embodiments of the present disclosure include an Orchestrator to commission a point of presence (PoP) node based on receiving an internet protocol (IP) address, the IP address associated with a geographic location; and a global routing manager for assigning a client device to a PoP node based on the received IP address. Embodiments also include a performance manager to acquire performance information about each PoP node. |
US10063418B2 |
Method and system for virtual server dormancy
A method for providing a dormant state for content management servers. Client devices are allowed to conduct transactions with servers when the servers are active. However, in a dormant state, the servers are not allowed to accept new transactions. Thus, by utilizing the dormant state, software upgrades can be made to one server at a time. Alternatively, all servers can be taken down for major upgrades, with the servers still operated in a read-only mode based on a file image from a point in time just prior to the shutdown. When the upgrade is completed, the servers can be returned to the active state. |
US10063415B1 |
Network services using pools of pre-configured virtualized network functions and service chains
Techniques are disclosed for reducing the time required to instantiate network services in a service provider network to service requests by subscriber devices. In one example, an orchestration engine pre-creates pools of different virtual network functions (VNFs). Upon receiving a request to service network traffic from a subscriber device, the orchestration engine dynamically creates a service chain using the appropriate VNFs from the pools of different VNFs. In another example, the orchestration engine pre-creates pools of common service chains. Upon receiving a request to service network traffic from a subscriber device, the orchestration engine selects the appropriate service chain from the pools of service chains. After configuring the service chain, the orchestration engine issues instructions to a Software-Defined Networking (SDN) controller causing the SDN controller to update forwarding information in the service provider network to enable the service chain to service the subscriber traffic. |
US10063410B2 |
Ad hoc local area network creation
A system and method for managing an ad hoc network are disclosed. A boundary for an area to be monitored is defined for the ad hoc network. A number of devices connect with each other to form the ad hoc network. Devices can enter and leave the network as they come into proximity with one of the members of the network. Data is transmitted between the members of the network. This data can include a carrier rating and a data rating about each member of the network as well as data about other devices that the transmitting device had previously come into contact with. The data held by one member about other members is stored and can later be retrieved. |
US10063409B2 |
Management of computing machines with dynamic update of applicability rules
A method for managing a plurality of computing machines comprises deploying an indication of a management activity having an applicability rule to selected one or more of the computing machines to cause each of the selected computing machines fulfilling the applicability rule to execute the management activity on the selected computing machine, receiving an error message for each failure computing machine of the selected computing machines wherein the execution of the management activity has failed, determining at least one relevant property of each failure computing machine among a plurality of selected properties of the computing machines according to the corresponding error message, collecting a value of at least part of the selected properties for at least part of the computing machines, the values of the selected properties comprising a failure value of each relevant property for each failure computing machine, and updating the applicability rule according to the failure values. |
US10063408B2 |
System and methods for alerting a user consuming media to the progress of others consuming media
Systems and methods are provided herein for enabling a first user to set up an alert that will notify the first user when the first user has caught up to a second user's progress in consuming media. These systems and methods are used to ensure that the first user is informed, while they are consuming media, that they have caught up to the progress of a second user. By providing an alert while the first user is viewing media, the first user does not have to remember the progress of the second user while viewing the media, alleviating the first user from worrying they will pass the progress made by the second user without realizing they have done so. |
US10063407B1 |
Identifying and marking failed egress links in data plane
A method of identifying a failed egress path of a hardware forwarding element. The method detects an egress link failure in a data plane of the forwarding element. The method generates a link failure signal in the data plane identifying the failed egress link. The method generates a packet that includes the identification of the egress link based on the link failure signal. The method sets the status of the egress link to failed in the data plane based on the identification of the egress link in the generated packet. |
US10063403B2 |
Method of adjusting modulation and coding scheme
A method includes determining statics indicators of a first communication device when communicating with a plurality of communication groups comprising the first communication device and at least one second communication device; generating a plurality of multi-user level statics of a plurality of multi-user levels according to the static indicators corresponding to each multi-user level, wherein each multi-user level comprises communication groups with a given number of communication devices; adjusting a plurality of group offsets of the plurality of communication groups according to the plurality of multi-user level statics and current modulation and coding scheme of the first communication device in the plurality of communication groups; and adjusting initial MCSs of the first communication device and the second communication device in each communication group by the group offset of each communication group, to acquire the current MCSs of the first communication device and the second communication device of each communication group. |
US10063402B1 |
Sub-carrier adaptation in multi-carrier communication systems
A communication device determines an estimate of a communication channel, and determines, based on the estimate of the communication channel, a plurality of bit rates to be used for a data unit, including: determining a first bit rate for a first set of one or more orthogonal frequency division multiplexing (OFDM) subcarriers, and determining a second bit rate for a second set of one or more OFDM subcarriers, the second bit rate being different than the first bit rate. The communication device generates the data unit for transmission, wherein i) all data modulated on the first set of one or more OFDM subcarriers corresponds to the first bit rate and ii) all data modulated on the second set of one or more OFDM subcarriers corresponds to the second bit rate. |
US10063398B2 |
Overlay modulation technique of COFDM signals based on amplitude offsets
Systems and methods are presented for transmitting additional data over preexisting differential COFDM signals by changing the amplitude of the legacy data symbols. In exemplary embodiments of the present invention, additional data capacity can be achieved for a COFDM signal which is completely backwards compatible with existing legacy satellite broadcast communications systems. In exemplary embodiments of the present invention, additional information can be overlaid on a legacy COFDM signal by applying an amplitude offset to the legacy symbols. In exemplary embodiments of the present invention, special receiver processing can be implemented to extract this additional information, which can include performing channel equalization across frequency bins to isolate the amplitude modulated overlay signal. For example, at each FFT symbol time, average power across neighboring active data bins can be used to determine the localized power at the corresponding FFT bins, and a channel inversion can then, for example, be performed on the data bins to restore, as best as possible, the original transmitted symbol amplitude. |
US10063394B2 |
Method for estimating a channel, and network node
The disclosure relates to a method (60) performed in a network node (2) for estimating a channel. The network node (2) controls an antenna array (3) comprising a number N of antennas (51, . . . , 5N) in one or more spatial dimensions. The network node (2) comprises a receiver (72) receiving signals from the antenna array (3). The method (60) comprises: obtaining (61) matched filter channel estimates for each sub-carrier and antenna of a signal received by the antennas (51, . . . , 5N), the signal comprising a number K of frequency sub-carriers; arranging (62) the obtained matched filter channel estimates in a first multi-dimensional array, wherein time or frequency domain samples of the matched filter channel estimates are arranged along a first dimension and wherein a second dimension is a first spatial dimension of the number N of antennas, wherein the matched filter channel estimates are ordered in the first multi-dimensional array such as to reflect the physical location in space of the antennas (51, . . . , 5N); applying (63) an orthogonal transform to the first multi-dimensional array, providing a second multi-dimensional array; de-noising (64) the second multi-dimensional array, providing a third multi-dimensional array; applying (65) the inverse of the orthogonal transform to the third multi-dimensional array, providing channel estimates for all branches of the receiver (72). The disclosure also relates to corresponding network node, computer program and computer program products. |
US10063393B2 |
Distributed network interfaces for application cloaking and spoofing
Systems and methods associated with distributing an application's network interface over nodes of a networking fabric are presented. Nodes of the fabric can operate as interface modules, each taking on a role or responsibility for a portion of the application's network address including IP address, port assignments, or other portions of the network address. Interface modules of the networking nodes can then spoof or cloak the application to provide security against internal or external threats. |
US10063392B2 |
Methods and apparatus to select a voice over internet protocol (VOIP) border element
Methods and apparatus to select a voice over Internet protocol (VoIP) border element are disclosed. An example method comprises sending a first session initiation protocol (SIP) protocol message from a first voice over Internet protocol (VoIP) device, the first SIP message comprising an Internet protocol (IP) address shared by at least two VoIP border elements, and receiving a second SIP message at the first VoIP device from a second VoIP device, the second SIP message comprising a unique address for the second VoIP device, the second VoIP device to be selected based on the shared IP address. |
US10063387B2 |
Method for controlling an HVAC system using a proximity aware mobile device
A mobile wireless device (e.g. smart phone) may be used to remotely control an HVAC system. A program code stored in the memory of the mobile wireless device may cause the mobile wireless device to store geographic information in the memory of the mobile wireless device, monitor a location of the mobile wireless device, and compare the stored geographic information to the location of the mobile wireless device. If the comparison meets predetermined criteria, the program code may cause the mobile wireless device to transmit a command either directly or indirectly to an HVAC controller, causing the HVAC controller to transition from a first operating state having a first temperature setpoint to a second operating state having a second temperature setpoint. |
US10063386B2 |
Control method, controller, and recording medium
A control method includes executing a first application for operating a first appliance in order to provide a first service to a user. As a result, a first command is transmitted to the appliance corresponding to the first application. A second application is then executed for operating the first equipment in order to provide a second service to the user. As a result, a second command is transmitted to the appliance corresponding to the second application. Execution of at least the first application is terminated when the first application and the second application are alternately executed on the first appliance at least a predetermined number of times to stop the transmission of the first command to the first appliance. |
US10063385B2 |
Method and device for processing interruption of group communication service
Disclosed are a method and device for processing the interruption of a group communication service, which are used for adjusting a continuity parameter of a group communication service after the interruption of the group communication service occurs, so as to ensure the continuity of a subsequent group communication service. The method for processing the interruption of a group communication service provided in the embodiments of the present application comprises: receiving, by a network side, recording information about the continuity of a group communication service which is reported by at least one user equipment (UE), wherein the recording information about the continuity of the group communication service comprises recording information about the continuity of the group communication service during the interruption of the group communication service in the case where the UE is switched between a unicast transmission manner and a multicast transmission manner or the UE is switched between cells; and according to the recording information about the continuity of the group communication service which is reported by at least one UE, judging, by the network side, whether a continuity parameter of the group communication service is adjusted. |
US10063383B1 |
Apparatus, system, and method for improving the energy efficiency of link aggregation groups
The disclosed apparatus may include a set of communication ports that facilitate communication with a network device via a set of communication links that collectively operate as a LAG bundle. The disclosed apparatus may also include a link-management unit communicatively coupled to the set of communication ports that facilitate communication with the network device. The link-management unit may detect an amount of communication activity on one or more active communication links included in the set of communication links that are collectively operating as the LAG bundle. The link-management unit may then determine that the amount of communication activity detected on the active communication links has reached a certain threshold. In response to this determination, the link-management unit may modify the active communication links included in the set of communication links to account for the amount of communication activity. Various other apparatuses, systems, and methods are also disclosed. |
US10063377B2 |
Network-based authentication for third party content
A system may be configured to allow for network-based authentication of a user device, which may reduce or eliminate the need for a user to provide credentials. The authentication may be performed when the user device attempts to access content provided by a third party content provider. The network-based authentication may be performed by, or in conjunction with, a device that (a) is associated with the same telecommunications network as the user device, and (b) can authenticate the identity of the user device. |
US10063376B2 |
Access control and security for synchronous input/output links
Aspects include providing automatic access control and security for a synchronous input/output (I/O) link. Providing automatic access control and security includes initializing devices of a storage environment over a first link to verify that the devices are available within the storage environment; building a table of identifiers, where each of the identifiers is assigned one of the devices that have been initialized; and verifying a first device attempting to perform synchronous I/O commands across the synchronization I/O link by confirming that an identifier assigned to the first device is within the table of identifiers. |
US10063374B2 |
System and method for continuous authentication in internet of things
A system for continuous authentication of internet of things (IoT) devices in a communication network utilizes lightweight authentication for a sequence of message transmissions in a specific time-frame. A claimer device and a verifier device are in communication with the network. The claimer is configured to define a time frame and a time flag for an authentication session for a predetermined maximum number of messages, generate a time-bound share from a secret key, calculate a share authenticator for the share, combine a claimer identity (ID), a verifier ID, a message payload, the share, the share authenticator, a time flag, a timestamp, and message authenticator into a message, and send the message to the verifier within the time period. The verifier is configured to receive the message from the claimer, verify the message freshness, verify authenticity of the time flag and timestamp, and reveal and check the authenticity of the share. |
US10063369B1 |
Time synchronization of multi-modality measurements
The present disclosure is directed to waveform synchronization in multi-modal sensor networks. An example method includes providing a reference signal to a translation circuit. The method also includes generating, by the translation circuit, (i) a first synchronization signal capable of exciting a first emitter to produce a first wave in a first modality and (ii) a second synchronization signal capable of exciting a second emitter to produce a second wave in a second modality, wherein a modality is a domain within a form of energy. The method further includes producing, by the first emitter, first wave in the first modality and, by the second emitter, the second wave in the second modality, wherein the first wave is substantially directed toward a first sensor capable of interacting with the first wave, and wherein the second wave substantially directed toward a second sensor capable of interacting with the second wave. |
US10063365B1 |
Re-timer network insertion
Methods, systems, and apparatus for inserting a re-timer signal between a transmitter and a receiver, including receiving, from the transmitter, an input data signal having encoded words, where each encoded word of the encoded words has a word length of a predetermined number of bits; generating, by a re-timer and based on the input data signal, a regenerated clock signal and an output data signal; determining, based on the regenerated clock signal, a timing difference between the input data signal and the output data signal of the re-timer; and applying, by the re-timer and based on the timing difference between the input data signal and the output data signal, a delay to the input data signal to generate a delayed output data signal, such that a timing difference between the input data signal and the delayed output data signal corresponds to N word lengths. |
US10063360B2 |
Method for transmitting control information in wireless communication system and apparatus therefor
A method is provided for generating Acknowledgement/Negative Acknowledgement (ACK/NACK) information by a user equipment (UE) in a wireless communication system supporting carrier aggregation. The UE receives, from a base station (BS), a plurality of codewords through a plurality of downlink carriers. Each of the plurality of downlink carriers support one or more codewords according to a transmission mode. The transmission mode is independently configured per each of the plurality of downlink carriers. The UE determines a total number of ACK/NACK bits, and generates a sequence of the ACK/NACK bits according to the total number of the ACK/NACK bits. The UE determines the total number of ACK/NACK bits based on a total number of the plurality of downlink carriers and a type of each transmission mode independently configured per each of the plurality of downlink carriers. |
US10063358B2 |
Pilot signal sending and receiving method and apparatus
Embodiments of this application disclose a pilot signal sending and receiving method and apparatus, wherein the pilot signal sending method includes: establishing a first correspondence between a carrier identifier and a pilot pattern of a first type of pilot signal; establishing a second correspondence between a carrier identifier and a resource block set; acquiring a target carrier identifier of a target carrier; determining a location of a target resource block set corresponding to the target carrier identifier; determining a target pilot pattern that is of a first type of pilot signal and that corresponds to the target carrier identifier; mapping, according to the target pilot pattern, the first type of pilot signal to each resource block in the target resource block set on the target carrier. In this method, mapping is performed on a pilot signal only in a resource block set, which may reduce pilot redundancy and overheads. |
US10063357B2 |
Method for supporting reference signal transmission in multiple antenna-supporting wireless communication system, and apparatus therefor
The present invention relates to a method and an apparatus for transmitting a reference signal in a multiple antenna-supporting wireless communication system and, more specifically, to a method for a serving cell to support reference signal transmission of a neighbor cell in a multiple antenna-supporting wireless communication system, the method comprising: transmitting a sounding reference signal (SRS) configuration to a terminal; transmitting, to the neighbor cell, the SRS configuration and a terminal-related position information; and receiving, from the neighbor cell, an SRS-based first channel quality value which is estimated according to the SRS configuration, wherein the first channel quality value is estimated by applying a receiving vector according to the terminal-related position information. |
US10063355B2 |
Data processing method, apparatus, and system
The present disclosure provides a data processing method, apparatus, and system. The method includes: receiving N data streams sent by a network-side device, and determining a demodulation reference signal DMRS corresponding to each of the N data streams. The method also includes grouping DMRSs corresponding to the N data streams into M groups; mapping each group of DMRSs in the M groups to corresponding resource element (RE) positions, and acquiring port-related information corresponding to each group of DMRSs. The method further includes sending the port-related information corresponding to each group of DMRSs to a terminal device; adding each group of DMRSs in the M groups to data streams; and sending the data streams to which the DMRSs are added to the terminal device. |
US10063351B2 |
Enhanced common downlink control channels
A method is provided for communication in a wireless telecommunication system. The method comprises designating, by a network element, a first set of time-frequency resources for transmitting a first set of downlink control channels for a plurality of UEs, wherein the first set of time-frequency resources is known to the plurality of UEs, and wherein the first set of time-frequency resources varies from a first time interval to a second time interval. The method further comprises mapping, by the network element, a first downlink control channel to the first set of time-frequency resources. The method further comprises transmitting, by the network element, the first downlink control channel together with a downlink data channel in a frequency-division multiplexing manner. |
US10063340B2 |
Dynamic resource adaptation
In a cell where messages having a message type are sent without knowledge of radio frequency conditions for individual ones of user equipment within the cell, measured radio frequency conditions are accessed of multiple user equipment within the cell. Based on the measured radio frequency conditions, a minimum control channel coding rate is determined for a control channel for messages having the message type. Subsequent to a determination of the minimum control channel coding rate, transmission is caused toward all user equipment in the cell of the messages having the message type using the determined minimum control channel coding rate for the control channel. Methods, apparatus, computer programs, and program products are disclosed. The methods may be performed by a base station, self-organizing network server, or other apparatus. |
US10063339B2 |
Sleep control method and dynamic wavelength allocation control method
Information about usage bandwidths of the ONUs and information about cover areas of the RRHs are acquired. A maximum cover area of each RRH is set. The remaining RRH included in the currently-set cover areas within the maximum cover area of each RRH is identified. The plurality of ONUs, a total usage bandwidth of which is smaller than or equal to an amount of traffic accommodatable by a single ONU, are identified as a sleep candidate ONU group. The ONU and the RRH to be switched to the sleep state are selected. If the maximum cover area of the RRH connected to one of the ONUs included in the sleep candidate ONU group includes a current cover area of the RRH connected to the remaining ONU, the remaining ONU and the RRH connected to them are selected as the ONU and the RRH to be switched to the sleep state. |
US10063338B2 |
Optical add/drop multiplexer and optical network signal transmission method
The present disclosure relates to the field of communications technologies, and in particular, to an optical add/drop multiplexer, such that the optical add/drop multiplexer can ensure proper processing of light in two directions. The optical add/drop multiplexer can complete an extraction of a signal in one direction using one microring resonant cavity and two optical circulators, and if a wavelength of a signal in the other direction is the same as a resonant wavelength of the microring resonant cavity, the signal may reenter an optical network after passing through two microring resonant cavities and one optical circulator, and is not affected. Therefore, proper processing of optical signals in the two directions is ensured, and the optical signals in the two directions do not interfere with each other. |
US10063337B1 |
Arrayed waveguide grating based multi-core and multi-wavelength short-range interconnection network
An arrayed waveguide grating (AWG) based multi-core and multi-wavelength interconnection network, comprising N upper-level switches, N lower-level switches, and a network intermediate stage, with each upper- and lower-level switches has N CWDM optical transceiving modules. The N optical transceiving modules of each upper-level switch is connected with n m×1 multi-core optical multiplexing modules, the N optical transceiving modules of each lower-level switch is connected with n 1×m multi-core demultiplexing modules, the network intermediate stage is comprised of n2 r×r multi-core and multi-wavelength wiring modules. The upper-level multi-core optical multiplexing modules, the lower-level multi-core demultiplexing modules, and the n2 r×r multi-core and multi-wavelength wiring modules of the network intermediate stage are connected via an m-core MPO-MPO optical fiber jumper. The wiring complexity of the interconnection network is O(N2/r), with employment of a wavelength set of Λ={λ0, . . . , λk-1}. The present invention conserves wavelength resources of communication windows, enhances scalability of the AWG based interconnection network, while reduces network wiring complexity. |
US10063336B1 |
Protected transponded services integrated with control plane switched services
A line module configured to provide a protected transponded service includes a plurality of ports; switch interface circuitry communicatively coupled to a switch module; and interface circuitry communicatively coupled to the plurality of ports and the switch interface circuitry, wherein the interface circuitry includes a cross-point switch between the plurality of ports and the switch interface circuitry; wherein bandwidth of the plurality of ports is greater than bandwidth of the switch interface circuitry to the switch module; and wherein the protected transponded service is configured between the plurality of ports directly via the interface circuitry and is selectively routed to the switch module via the switch interface circuitry for restoration thereof, responsive to a failure. |
US10063335B2 |
Method, apparatus and system for remotely configuring PTP service of optical network unit
The present disclosure discloses a method for remotely configuring a Precision Time Protocol PTP service of an Optical Network Unit ONU. The method includes: after an ONU performs an initialization, the ONU creates a PTP management entity; the ONU receives a PTP management entity attribute sent by an OLT and set by the OLT; and the ONU parses the PTP management entity attribute sent by the OLT and sets a corresponding PTP service according to the PTP management entity attribute. The present disclosure further discloses an ONU, an OLT and a system corresponding to the method. |
US10063334B2 |
Method and a device for generating a timing signal
A device and a method for generating a secondary timing signal that is synchronous with a primary timing signal are presented. The method comprises deriving (401) an auxiliary timing signal from an auxiliary signal received at a first site and correcting (402, 403) the timing phase of the auxiliary timing signal so as to obtain the timing phase for the secondary timing signal. The timing phase is corrected with the aid of the following a) a constant phase shift between the auxiliary timing signal and another auxiliary timing signal derived in a second site where both the primary timing signal and the auxiliary signal are available and b) a dynamic phase shift between the other auxiliary timing signal and the primary timing signal at the second site. |
US10063327B2 |
System and method for array antenna failure detection and antenna self-correction
System and method for array antenna failure detection and antenna self-correction are introduced. In the array antenna failure detection and antenna self-correction system, a signal analyzer is employed to perform gain analysis so as to perform gain attenuation/compensation, and a DC offset generator is employed to generate a set of known offset amounts which are added to signals, so that, at the receiving end, a phase offset amount can be derived based on comparisons with the original signal, and antenna correction can then be performed accordingly. In this way, computational complexity of the system can be reduced, and the speed of antenna correction can be increased. |
US10063326B1 |
High frequency line flattener impedance matching network
An impedance matching network between a transmitter and an antenna. The impedance matching network comprises of a watt meter coupled to the transmitter for measuring a standing wave ratio (“SWR”). A first unbalanced to unbalanced transformer (“first unun”) with an impedance ratio of N:1 is selectively coupled in series with the watt meter. A microprocessor is coupled to the watt meter for determining iteratively whether the first unun lowers the standing wave ratio (“SWR”) in response to switching the first unun in and out of a series connection with the antenna. |
US10063325B2 |
Transceiver for communication and method for controlling communication
An example embodiment provides a transceiver for communication includes a timing determiner that detects a fall from high level to low level of a bus signal generated by pulse width modulation of a clock signal and input from a communication bus; a transmission data signal delay adjuster that determines a second timing having a predetermined time difference from a first timing, the bus signal rising from the low level to the high level at the first timing; an encoder that extends a low level of the bus signal by changing a data signal to be output to the communication bus from high level to low level; and a timing adjustment circuit that changes the data signal to the low level at the second timing. |
US10063323B2 |
Fiber-based communication
In accordance with an example embodiment of the present invention, there is provided an apparatus comprising a dual-rail encoder (120) configured to receive light from a light source and to output dual-rail encoded light, a combiner (130) configured to convert the dual-rail encoded light into polarization encoded light, and at least one processing core configured to obtain compensation adjustment information concerning a fiber (145) and to control the dual-rail encoder (120) based at least in part on the compensation adjustment information. |
US10063322B2 |
Optical transmitter and control method of optical transmitter
A signal shifted from a carrier frequency in a frequency domain by using digital signal processing is generated, and the optical modulator is driven with a drive signal based on the signal. A monitor monitors whether or not a component of a modulated signal light output from the optical modulator appears in a specific frequency depending on a frequency shift performed by the digital signal processing, and the controller controls a relation between a sign of the drive signal and an operating point of the optical modulator according to a monitored result. |
US10063317B2 |
Network management with per-node cross-phase-modulation (XPM) compensation
A method and system for selective and per-node XPM compensation may separate wavelengths into short traveling wavelengths (STW) and long traveling wavelengths (LTW) based on transmission distance over their respective optical paths. XPM compensation at ROADM nodes may be selectively performed for the LTW, while the STW may be passed through without XPM compensation, among other functionality at the ROADM nodes. |
US10063315B2 |
Method and system for high-precision two-way fiber-optic time transfer
A method and system for high-precision two-way fiber-optic time transfer comprising pre-adjusting, including calculating a local timing signal adjustment amount for a first fiber-optic time synchronization unit and a second fiber-optic time synchronization unit, and the corresponding adjusting. and following steps including the two fiber-optic time synchronization units conducting two-way time transfer based on a time division multiplexing transmission over an optical fiber link. The present invention realizes high-precision fiber-optic time transfer by combining two-way time transfer and bidirectional time division multiplexing technique. |
US10063313B1 |
Synchronization of optical protection switching and loading of path specific characteristics
Systems and methods describe synchronizing optical protection switching with an Optical Protection Switch (OPS) including a splitter on a transmit side to both a first fiber path and a second fiber path and a receive switch and monitoring port on a receive side with the receive switch set to only one of the first fiber path and the second fiber path. A method includes, responsive to detection of a fault on the first fiber path, generating a link Forward Defect Indication (FDI) and transmitting the link FDI over a messaging channel downstream; and utilizing the link FDI to generate an Optical Protection Switch Indicator (OPSI) status used by the OPS to cause a switch of the receive switch to the second fiber path. |
US10063305B2 |
Communications link performance analyzer that accommodates forward error correction
Illustrative communications link performance analyzer methods and modules that accommodate FEC. In at least some embodiments, a method for characterizing communications link performance includes: (A) transmitting a predetermined bit stream across a physical communications link to produce a receive signal; (B) deriving a received bit stream from the receive signal with a receiver, the receiver including an embedded debug module having: (1) a bit counter dividing the received bit stream into symbols and frames; (2) an error counter determining a symbol error count for each frame; and (3) an aggregator obtaining at least one performance-related statistic from the symbol error counts; (C) generating a performance measure based on the at least one performance-related statistic; and (D) displaying a visual representation of the performance measure. |
US10063300B2 |
Computing PMIs, particularly in wireless communications systems having three-dimensional communications channels, using a reference antenna or a reference antenna subset
A system includes an eNB which is operable to communicate with one or UEs and a set of multiple transmit antennas associated with the eNB. The antennas are partitioned into multiple antenna subsets. In a first form of the method, one of the antennas is designated as a reference antenna and the reference antenna forms part of each antenna subset. In a second form of the method, one of the subsets is designated as a reference subset. The UE(s) are operable to compute multiple PMIs for the respective multiple subsets and to report the multiple PMIs to the eNB for the eNB to use in precoding. The first form involves computing a PMI for a given antenna subset independently of the PMIs of any of the other antenna subsets. The second form involves computing a PMI for a given subset based on or using the PMI for the reference subset. |
US10063288B2 |
Communication device and signal detection method
Provided are a communication device and a signal detection method capable of improving the detection accuracy for transmission signals transmitted from one or two or more transmission devices. The communication device includes a phased-array antenna, in which a plurality of antenna elements are arranged on a plane, for receiving a signal transmitted from one or two or more transmission devices; a signal converter that includes a plurality of beamformers, each of which synthesizes a received signal received at each antenna element, for each sub-array formed by grouping the plurality of antenna elements, and converts the signal synthesized for each sub-array into a baseband signal; and a signal processor for detecting a transmission signal transmitted from each of the one or two or more transmission devices, based on a baseband signal for each sub-array, which is received from each of the plurality of beamformers, for each resource block. |
US10063283B2 |
Method and apparatus for selecting an application of a device having an NFC interface
The present invention describes a method to select an application on a first device having an NFC interface and comprising a plurality of applications using the NFC interface, said method comprising the steps of detecting a second device having a NFC interface via the NFC interface of the first device, obtaining via the NFC interface a message comprising a message type and a service identification, determining an application type based on the message type and the service identification, selecting at least one application among the plurality of applications matching the message type and the service identification, prompting a user of the first device to accept a communication between the second device and the selected application, in case of positive answer, notifying the selected application of the message type, establishing the communication between the selected application and the second device via the NFC interface. |
US10063278B2 |
Reducing the feedback overhead during crosstalk precoder initialization
An apparatus comprising a receiver coupled to a digital subscriber line (DSL) between an exchange site and a customer premise equipment (CPE) and configured to send a feedback error message to train a precoder coupled to the exchange site, wherein the feedback error message comprises a plurality of error components and an indication of a quantity of bits per error component, a quantization accuracy per error component, or both. Included is a method comprising sending an error feedback message to a DSL crosstalk precoder to train the crosstalk precoder, wherein the error feedback message comprises an error vector and a quantization scaling factor of the error vector. |
US10063277B2 |
Clock control circuit, demodulation device and spread spectrum method
A clock control circuit includes a clock controller which disperses a harmonic of a clock signal in a used frequency band of a reception signal and controls an amplitude of a harmonic remaining in the used frequency band after the dispersion on a basis of a spread frequency used for the dispersion and a spread width of the harmonic. |
US10063276B2 |
Base-station device, terminal device, transmission method, and reception method
Provided is a base-station device, a terminal device, a transmission method, and a reception method that realize efficient transmission in a radio communication system that performs large-scale MU-MIMO transmission. The base-station device having a plurality of antennas and performing communication with a plurality of terminal devices simultaneously, includes a channel state information acquisition unit for acquiring channel state information with respect to the plurality of terminal devices; a signal spreading unit for performing spreading and multiplexing for a plurality of signals addressed to each of the terminal devices by using a spread code in a spatial direction of each of the terminal devices; and a precoding unit for applying precoding to the signals, which have been spread and multiplexed, based on the channel state information. |
US10063275B2 |
Method, computer program and network node for handling interference caused by inter-modulation
A method of handling interference caused by inter-modulation in a network node site comprising a set of network nodes for wireless communication capable of communication with a set of stations for wireless communication is disclosed. The stations are wireless transceiver devices and communication from the network node to any of the stations is considered to be downlink communication and communication from any of the stations is considered to be uplink communication. The method comprises detecting an interference level on the uplink carrier frequency band for a subset of stations of the set of stations, and determining whether the interference level indicates probable inter-modulation interference. If the interference level indicates probable inter-modulation interference, the method proceeds with modifying a power control scheme for the subset of stations, and sending a parameter set based on the modified power control scheme to the subset of stations. A computer program and network node are also disclosed. |
US10063271B1 |
Wearable cell phone cover
A wearable cell phone case having a first layer with at least one rear lower magnet disposed proximal to a lower end thereof and at least one rear upper magnet disposed proximal to the upper end thereof and a second layer defining an upper end aperture and having at least one front lower magnet disposed proximal to a lower end thereof and at least one front upper magnet disposed proximal to an upper end thereof, wherein the magnets have opposing polarity. The second layer also defines an enclosed internal cavity spatially coupled to the upper end aperture, wherein the enclosed internal cavity is shaped and sized to house a cellular phone. The case also includes a layer coupling configuration with the first layer removably coupled to the second layer through the magnets disposed in overlapping configurations and with an article of clothing interposed in between said first and second layers. |
US10063270B2 |
Case for cooling an electronic device via an endothermic reaction
A case for cooling a portable electronic device, the case including a housing and a removable cartridge. The housing holds the electronic device and has a cartridge compartment for retaining the removable cartridge. The removable cartridge includes a set or sets of compartments for retaining substances configured to generate an endothermic reaction when mixed or combined. Pairs of compartments are separated by a divider configured to be selectively breached. The duration of the cooling effect may be extended by periodically breaching dividers of additional compartment pairs. The magnitude of the cooling effect may be increased by breaching multiple compartment pairs at once. The case may also include electronic components for monitoring the temperature of the electronic device and automatically initiating an endothermic reaction when the temperature reaches a predetermined threshold. |
US10063263B2 |
Extended error correction coding data storage
A memory management system and a method of managing a memory device are described. The system includes a memory device with a memory array to store data and associated error correction coding (ECC) bits and an extended correction table. The extended correction table stores error information additional to the ECC bits for one or more of the data in the memory array. The system also includes a controller to control the memory device to write and read the data. |
US10063260B2 |
Apparatus and method for permutation of block code in wireless communication system
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-generation (4G) communication system such as long term evolution (LTE). Disclosed are an apparatus and a method for a permutation of a block code in a wireless communication system. A method of operating a transmitting node in a wireless communication system includes: determining a permutation matrix according to a block code scheme; generating symbols corresponding to a plurality of antennas based on the block code scheme and the permutation matrix; and transmitting the symbols to a receiving node through the plurality of antennas. The permutation matrix is determined based on a number of blocks and an arrangement structure of the plurality of antennas, and the number of blocks comprises a number of sub-blocks within a code block corresponding to the permutation matrix. |
US10063259B2 |
Interleaving method and apparatus for adaptively determining interleaving depth
An interleaving method and apparatus for adaptively determining an interleaving depth of each of one or more interleaving blocks based on a maximum interleaving depth and a number of codewords of a packet, and interleaving the interleaving blocks based on the interleaving depth. The adaptively determining the interleaving depth includes: calculating a number of remaining codewords by performing a modulo operation on a basic interleaving depth and the number of the codewords; and determining the interleaving depth by adjusting the basic interleaving depth based on the number of the remaining codewords. |
US10063258B2 |
Method and data storage device to estimate a number of errors using convolutional low-density parity-check coding
In an illustrative example, a method includes sensing at least a portion of a representation of a convolutional low-density parity-check (CLDPC) codeword stored at a memory of a data storage device. The method further includes receiving the portion of the representation of the CLDPC codeword at a controller of the data storage device. The method further includes performing one or more management operations associated with the memory based on an estimated number of errors of the portion of the representation of the CLDPC codeword. |
US10063252B2 |
Continuous delta-sigma modulator for supporting multi-mode
A delta-sigma modulator may comprise a loop filter for integrating and outputting a difference between an input signal and an analog signal; a quantizer for quantizing and outputting a signal output from the loop filter; and a digital-to-analog converter (DAC) for outputting the analog signal by digital-to-analog converting a signal output from the quantizer. Also, the loop filter may comprise an operational amplifier; and a circuit including at least one capacitor, at least one resistor, and at least one switch which are connected to the operational amplifier. Also, signal transfer characteristics of the loop filter satisfy a third-order transfer function or a second-order transfer function by turning on or off the at least one switch. |
US10063250B1 |
Apparatus and method for processing an input voltage
A method of processing an input voltage. The method includes, during a sampling phase, using a digital-to-analog converter (DAC) capacitor to sample a reference voltage. The method includes, during a charge redistribution phase, using an input voltage to charge the DAC capacitor. |
US10063245B2 |
Reference signal generator
In a reference signal generator including a synchronization circuit configured to convert a digital signal into an analog signal, supply this signal to a voltage controlled oscillator, and control the voltage controlled oscillator to obtain a signal synchronized with the reference signal, without an accumulation of quantization error in a holdover control in which an acquisition of a reference signal is not available. The reference signal generator includes a phase synchronization circuit and a controller. The phase synchronization circuit controls the reference signal outputted from the oscillator, according to a control signal obtained based on the reference signal. The controller generates a free-running control signal and controls the oscillator when the reference signal becomes unavailable. The oscillator receives discrete values and oscillates accordingly. A digital delta-sigma modulator configured to modulate the free-running control signal of the controller is disposed in a subsequent stage of the controller. |
US10063240B2 |
Apparatuses with an embedded combination logic circuit for high speed operations
Apparatuses for performing combination logic operations with an combination logic circuit are disclosed. According to one embodiment, the apparatus comprises a first-in-first-out stage comprising an combination logic circuit, a input ring counter circuit coupled to the first-in-first-out stage and configured to selectively provide a push signal to the first-in-first-out stage, and a output ring counter circuit coupled to the first-in-first-out stage and configured to selectively provide a pop signal to the first-in-first-out stage, wherein the first-in-first-out stage is configured to perform calculations on input data with the combination logic circuit to generate output data responsive to receiving the push signal and to provide the output data based on the calculations responsive to receiving the pop signal. |
US10063233B2 |
Method of operating a pull-up circuit
A method of operating a pull-up circuit includes turning off a first transistor of the pull-up circuit during a failsafe period by a feedback signal, the feedback signal being received by way of a feedback circuit; isolating the first transistor from the feedback circuit during a pull-up period; and coupling or isolating a control terminal of the first transistor and a control terminal of a second transistor of the pull-up circuit during the pull-up period by a first switch. |
US10063232B1 |
Digitally controlled impedance calibration for a driver using an on-die reference resistor
A transmitter includes: a driver circuit having a pull-up circuit, and a pull-down circuit, coupled to an output pad; a digitally controlled impedance (DCI) calibration circuit having a first reference driver, a second reference driver, and a reference resistor, the DCI calibration circuit configured to: generate a value for a first code by calibrating a first impedance in the first reference driver against the reference resistor; generate a value for a second code by calibrating a second impedance in the second reference driver against the first impedance; and adjust the value of the first code to match the first impedance with the second impedance; and a pre-driver circuit configured to supply the first code and the second code to the driver circuit for adjusting output impedance of the pull-up circuit and the pull-down circuit. |
US10063228B2 |
Qubit circuit state change control system
A qubit system is provided wherein successive sets of M RF pulses are generated simultaneously, for application to qubit circuits in a plurality of N groups of M qubit circuits. M switching multiplexer circuits are used, each to pass a respective one of the M RF pulses in the set to a selected one of a plurality of N M to one RF combiners in a multiplexing mode. Combined RF pulses at M different RF frequencies are transmitted from each of the N combiners to a transmission structure for a respective one of the groups. Individual ones of the combined RF pulses are coupled from the transmission structure for the group to respective ones of the qubit circuits of the groups via respective frequency selective filters. In a broadcast mode the M switching multiplexer circuits are used to transmit the simultaneous pulses to all of RF combiners. |
US10063221B1 |
Equivalent time sampling
Equivalent time sampling of a signal may be performed by using an embedded system to create trigger pulses for data acquisition (DAQ) system to record the response. The trigger pulse to the DAQ system may be propagated through digital delay chips controlled by the embedded system. The exemplary embodiments allow the DAQ system to be triggered from locally generated trigger pulses or from external or remote sources. |
US10063219B1 |
Augmented intermediate voltage generator based core to pad level shifter
Aspects of the disclosure are directed to a voltage level shifter architecture, including a voltage level shifter with circuitry residing within a footprint; and an internal augmented voltage generator residing within the footprint, wherein the internal augmented voltage generator is coupled to the voltage level shifter to augment a voltage level shift. |
US10063212B2 |
High-frequency module
A high-frequency module includes a propagation path that has a simple structure and improves filter characteristics by causing an inductor and a matching network to electromagnetic field couple with each other such that attenuation characteristics outside of a frequency band of a transmission signal are improved without increasing the size of the high-frequency module. In addition, unintended electromagnetic field coupling between a first filter and the inductor is significantly reduced or prevented by a shield electrode. Therefore, unintended propagation of a high-frequency signal is significantly reduced or prevented. Therefore, the attenuation characteristics outside of the frequency band of transmission signal input to the transmission terminal are improved more effectively. |
US10063210B2 |
Methods for producing piezoelectric bulk and crystalline seed layers of different C-axis orientation distributions
Systems and methods for growing hexagonal crystal structure piezoelectric material with a c-axis that is tilted (e.g., 25 to 50 degrees) relative to normal of a face of a substrate are provided. A deposition system includes a linear sputtering apparatus, a translatable multi-aperture collimator, and a translatable substrate table arranged to hold multiple substrates, with the substrate table and/or the collimator being electrically biased to a nonzero potential. An enclosure includes first and second deposition stations each including a linear sputtering apparatus, a collimator, and a deposition aperture. |
US10063208B2 |
Speaker device and method for reducing distortion degree of speaker
The present invention discloses a speaker device and electronic equipment. The speaker device comprises a speaker body, an audio signal input terminal connected with the speaker body, and a DC voltage signal input terminal connected with the speaker body. The electronic equipment comprises the speaker device and a DC voltage signal output circuit. The present invention further discloses a method for reducing a low frequency distortion degree of the speaker of the electronic equipment, and the method is realized by additionally providing a DC voltage signal to the input end of the speaker. In the present invention, a distortion degree of the speaker device at a low-frequency working condition can be reduced, and inconsistency of low frequency distortion of the speaker device, caused by mass production, can be reduced. |
US10063207B2 |
Object-based audio loudness management
A method and apparatus for processing object-based audio signals is provided. The apparatus receives a plurality of object-based audio signals. Each object-based audio signal of the object-based audio signals includes audio waveform data and object metadata associated with the audio waveform data. The object metadata includes at least one of a loudness parameter or a power parameter associated with the audio waveform data. The apparatus determines a loudness metric based on the received object-based audio signals and based on the at least one of the loudness parameter or the power parameter for each object-based audio signal of the received object-based audio signals. In one configuration, the apparatus renders the received object-based audio signals to a set of output signals based on the determined loudness metric. In another configuration, the apparatus transmits (e.g., broadcast, file delivery, or streaming) the received object-based audio signals based on the determined loudness metric. |
US10063204B2 |
Loudness level control for audio reception and decoding equipment
The application discusses a computer implemented method and apparatus for performing audio equalisation in an audio receiver device, such as an integrated receiver/decoder or set top box, or integrated TV, connected to one or more audio playback devices, such as a television unit, computer screen and speakers, amplifier or home theatre equipment. The method and apparatus use an equalisation process which compares audio signals received in different audio formats (e.g. MPEG-1 Layer II, AC-3 2.0, AC-3 5.1 and HE-AAC) with one another, allowing a correction gain factor to be determined for equalising the perceived loudness of the signals when played-back at a connected playback device. The correction gain factor is then applied in the audio receiver device before output. |
US10063203B1 |
Accurate, low-power power detector circuits and related methods
Embodiments of power detector circuits and related methods to compensate for undesired DC offsets generated within power detector circuits are disclosed. Input signals having input frequencies are received and converted to a magnitude signal, and reference signals are also generated. The magnitude signal may include a DC component proportional to a power of the input signal along with undesired DC offsets. The reference signal may include a DC component proportional to a power of at least one input reference signal along with undesired DC offsets. To compensate for errors introduced by the DC offsets, a DC offset calibration signal or a gain are determined in a calibration mode and then applied in a normal mode to compensate for the DC offsets. For the calibration mode, a difference between the magnitude signal and the reference signal is compared to a threshold value to generate a power detection output signal. |
US10063200B2 |
Feedback circuit for power amplifier
Feedback circuit for power amplifier. In some embodiments, a radio-frequency amplifier can include a bipolar junction transistor configured to amplify a signal, and having an input and an output. The radio-frequency amplifier can further include a feedback circuit implemented between the output and input of the bipolar junction transistor. The feedback circuit can include a parallel assembly of a field-effect transistor and a resistive element such that the resistive element is bypassed when the field-effect transistor is ON and an overall resistance of the feedback circuit includes the resistive element when the field-effect transistor is OFF. Such a feedback circuit can be configured to be capable of providing a plurality of resistance values between the output and input of the bipolar junction transistor to facilitate different gains of the bipolar junction transistor. |
US10063198B2 |
Terminal device, and signal sending method and apparatus
A terminal device includes: an access unit, connected between a headset or an audio speaker and a digital-to-analog converter, and configured for insertion of a detachable second power amplifier; a processor, configured to: detect whether the second power amplifier is inserted into the access unit, output a first digital signal when detecting that the second power amplifier is inserted, and output a second digital signal when detecting that the second power amplifier is not inserted; the digital-to-analog converter, connected to the processor, and configured to: when receiving the first digital signal, convert the first digital signal to a first analog signal, and send the first analog signal to the second power amplifier; and when receiving the second digital signal, convert the second digital signal to a second analog signal, and send the second analog signal to a first power amplifier. |
US10063191B2 |
Frequency and back-off reconfigurability in mm-wave power amplifiers
A power amplifier system for amplifying an input having a carrier frequency having an amplitude. The system includes a plurality of n amplifiers coupled to an asymmetrical combiner formed of a passive network, each amplifier has an input and an output, the asymmetrical combiner has a plurality of inputs and an output, the output of each amplifier is coupled to an input of the asymmetrical combiner, an impedance viewed at the output of each of the n amplifiers is a function of the amplitude and phase at each of the other n−1 amplifiers. An amplitude/phase controller is coupled to the plurality of n amplifiers or the asymmetrical combiner to control the amplitude/phase at the asymmetrical combiner input. The amplitude/phase controller is configured to present an amplitude/phase at each input of the asymmetrical combiner to target an optimal impedance at the carrier frequency for each of the plurality of n amplifiers. |
US10063185B2 |
Retractable wiring system for a photovoltaic module
Systems and methods for assembling and wiring photovoltaic arrays are provided. The wiring systems can include retractable wires included in photovoltaic modules that may be extended during installation of photovoltaic modules in the array to connect to wires of adjacent photovoltaic modules, which can retract into a tightened position under the array as the installation is completed. The wires may be made retractable by wire retraction mechanisms mounted to a frame of the photovoltaic module, which maintain a desired tension on the wires of the photovoltaic module. The wire retraction mechanism may include springs that urge components connected to the wire to rotate a particular direction so as to maintain tension on the wire. The wiring systems may also have wire guides to keep the wires accessible for installation and adjustment. |
US10063184B2 |
Dual-stage parabolic concentrator
An improvised Solar Concentrator and Absorber/Receiver Subsystem using a Dual-Stage Parabolic Concentrator for Concentrating Solar Power (CSP) (Thermal) system comprises of two parabolic mirrored reflectors wherein their apertures face each other with their focal point/line and axes coincides with each other, a plurality of absorber tubes/cavities placed on the non-reflecting side of the primary and/or secondary reflectors to carry heat transfer fluid, combined with relevant mechanisms to prevent/minimize thermal loss, mounted on a Sun tracking mechanism. For Concentrating Photovoltaic (CPV) and Concentrating Hybrid Thermo-Photovoltaic (CHTPV) Systems, all or a portion of the reflectors' reflecting and/or exterior surfaces would be covered or substituted with suitable photovoltaic panels. |
US10063182B2 |
Hybrid power generating device
Provided is a hybrid power generating device. The hybrid power generating device includes a solar cell configured to generate an electric energy using sunlight; an electrostatic generating device configured to generate an electric energy using static electricity; and a rectifier configured to electrically connect the electric energy generated by the solar cell to the electric energy generated by the electrostatic generating device. |
US10063181B2 |
System and method for detecting loss of input phase by sensing after power rectifier
A system for detecting a decrease in or loss of an input phase to a motor. A power rectifier rectifies and combines three input voltages to produce an output voltage to power the motor. A PFC circuit manages the power flowing to the motor. A sensing circuit located between the power rectifier and the PFC senses a voltage level of the power rectifier's output voltage. Alternatively, a sensing rectifier is connected before the power rectifier, and the sensing circuit senses the voltage level of the sensing rectifier's output voltage. A microprocessor compares the sensed voltage level to a threshold voltage level which is indicative of the decrease in or loss of one of the three input voltages, and if the former drops below the latter, then the microprocessor sends a signal to either shut off the motor or cause the PFC circuit to reduce the power flowing to the motor. |
US10063178B2 |
Method and apparatus for synchronizing MDPS motor and motor position sensor
A method for synchronizing an MDPS motor and a motor position sensor may include: sequentially aligning, by a controller, a rotor of the MDPS motor by sequentially applying preset three-phase current pulses to the MDPS motor, the three-phase current pulses corresponding to one electrical-angle cycle of the rotor of the MDPS motor, and detecting an actual rotational position of the aligned rotor through the motor position sensor; determining a zero point rotational position of the rotor based on the actual rotational position; determining a reference rotational position of the rotor based on the actual rotational position and the number of pole pairs in the MDPS motor, and determining an offset rotational position of the rotor based on the actual rotational position and the reference rotational position; and correcting the zero point rotational position by adding the offset rotational position to the zero point rotational position. |
US10063170B2 |
Methods and apparatus for robust and efficient stepper motor BEMF measurement
In a described example an apparatus includes: an FET driver circuit configured to supply current to a coil in a stepper motor, the FET driver circuit configured to regulate the current to the coil using a fixed delta current; a current chopper pulse width modulated circuit coupled to the FET driver circuit configured to supply pulses corresponding to a step control signal and a direction control signal; a back electromotive force (BEMF) monitor coupled to the current chopper circuit configured to measure an off time pulse and to output a BEMF monitor signal; and a controller coupled to the current chopper pulse width modulated circuit to supply the step and direction control signals and coupled to receive the BEMF monitor signal. |
US10063169B2 |
Method of controlling rotational speed of motor of electric bed
A method of controlling a rotational speed of a motor of an electric bed includes the following steps. (A) Use a sensor to detect rotation of the motor, set a predetermined rotational speed of the motor in a microcontroller, and use the microcontroller to calculate actual rotational speeds of the motor. (B) Use the microcontroller to calculate an average actual rotational speed of the motor at each of sampling time points in a predetermined period. (C) Use the microcontroller to compare the average actual rotational speed of the motor with the predetermined rotational speed to obtain a difference signal. (D) Input the difference signal to a driver circuit to adjust the rotational speed of the motor until the average actual rotational speed of the motor is equal to the predetermined rotational speed. In this way, the motor of the electric bed can approximately rotate in the predetermined rotational speed. |
US10063167B2 |
Motor drive controller and method for controlling motor
A motor drive controller includes: an advance-angle reference voltage generator that generates an advance-angle reference voltage; a back electromotive voltage comparator that generates phase signals of phases at a cross timing of the advance-angle reference voltage and back electromotive voltages of phases of a motor; and a controller that operates to perform a process including: detecting a rotation speed of the motor based on the phase signals of the phases; increasing the advance-angle reference voltage when the rotation speed moves from a high speed to a low speed; and decreasing the advance-angle reference voltage when the rotation speed moves from a low speed to a high speed. |
US10063163B2 |
Actuator for an ultrasonic motor and ultrasonic motor comprising at least one such actuator
An ultrasonic motor comprising a rotor (18) having an at least partly spherical shape and two actuators (2, 2′) each comprising an element of plate-shaped piezoelectric material comprising at least one contact edge (4, 4′) in contact with the rotor (18), said actuators (2, 2′) also comprising on one of their faces electrodes intended to bias piezoelectric materials in a bending mode and in a longitudinal mode. The contact edges (4, 4′) are concave and are formed by an arc of circle the radius of which substantially corresponds to the radius of the surface of the rotor (18), said arcs of circle angularly extending at a determined angle such that the bending mode and the longitudinal mode in which the piezoelectric material is biased are at the same frequency. |
US10063162B2 |
Multi level inverter
Multi-level inverter introducing a new topology wherein standard IGBTs can be employed in place of common emitter IGBTs, wherein switching and conduction losses are minimized and wherein the number of implemented levels can be easily increased with the addition of a minimum number of components. |
US10063160B2 |
Power adapter, cable, and charger
A power adapter, a cable, and a charger, where the power adapter includes an output port, a comparator circuit, and a voltage control and shaping circuit. The output port includes a voltage output terminal, a signal feedback terminal, a first ground terminal, and a second ground terminal. The comparator circuit is electrically connected to the signal feedback terminal, and is configured to compare a reference voltage with a charging input voltage of a to-be-charged device that is fed back by the signal feedback terminal to obtain a comparison voltage and output the comparison voltage to the voltage control and shaping circuit. |
US10063159B1 |
Adaptive synchronous rectifier sensing deglitch
A synchronous rectifier controller for controlling the on and off periods of a synchronous rectifier switch transistor in a switching power converter. In particular, the synchronous rectifier controller is configured to adaptively enable and disable a deglitch filter for filtering a turn-on signal for the synchronous rectifier switch transistor. In this fashion, the synchronous rectifier switch transistor may be switched on more rapidly during periods when the deglitch filter is disabled for greater efficiency yet the switching power converter is protected by the deglitch filter when it is not disabled. |
US10063154B2 |
Current sense detection for synchronous rectification
A power conversion circuit including an SR MOSFET is provided. A minimum off-time timer for the SR MOSFET is started. A voltage potential at a first terminal of the SR MOSFET is measured. The SR MOSFET is turned on after a rate of change over time of the voltage potential exceeds a first threshold and before the minimum off-time timer expires. |
US10063151B2 |
Surge tolerant power supply system for providing operating power to appliances
An apparatus for providing surge-tolerant power to an appliance is provided. The apparatus includes an input circuit for receiving a source of DC voltage. The apparatus also includes a pass device having a first terminal, a control terminal and a second terminal. Further, the apparatus includes a first means for providing an output voltage based on an input of the pass device. The apparatus also includes a second means for applying a voltage to a control terminal of the pass device based on the output voltage. The voltage is sufficient to put the pass device into a low impedance state between the first terminal and the second terminal thereof. |
US10063148B2 |
Switching power supply device having pulse-by-pulse type overcurrent protection function
A switching power supply device includes: a switching output circuit configured to generate an output voltage from an input voltage; an oscillation circuit configured to generate a clock signal; a control circuit configured to control driving of the switching output circuit in synchronization with the clock signal; a pulse-by-pulse type overcurrent protection circuit configured to detect an overcurrent flowing through the switching output circuit to generate an overcurrent protection signal for forcibly stopping a switching operation of the switching output circuit; and a pulse skip circuit configured to perform a pulse skip operation of the clock signal in response to the overcurrent protection signal. |
US10063147B2 |
Multiple output boost DC-DC power converter
The present invention relates to a multiple output boost DC-DC power converter generating two, three or more separate DC output voltages, and to a multi-level power inverter and an alternating current generator both employing the multiple output boost DC-DC power converter. |
US10063145B1 |
On-time modulation for phase locking in a buck converter using coupled inductors
A regulator circuit that employs coupled inductors with on-time modulation is disclosed. The regulator circuit includes a driver circuit coupled via first and second inductors to a power supply node of a load circuit, and may charge the power supply node via the first inductor for a first charging period, and charge the power supply node via the second inductor for a second charging period. A control circuit may determine durations of the first and second charging periods using respective pluralities of currents. |
US10063141B2 |
System and method of correcting output voltage sensing error of low voltage DC-DC converter
A method of adjusting an output voltage sensing error of a low voltage DC-DC converter to adjust a difference between a value obtained by sensing an output voltage of a low voltage DC-DC converter and a reference value controlling the low voltage DC-DC converter, thereby improving control accuracy is provided. The method of correcting an output voltage sensing error of a low voltage DC-DC converter includes applying a test voltage to an output of the LDC by voltage application equipment, sensing a voltage of the output of the LDC by a voltage sensing circuit and adjusting by a controller a voltage reference map included in an LDC controller that outputs a voltage reference value of the LDC, based on an error between the test voltage and a voltage sensing value sensed by the voltage sensing circuit. |
US10063137B2 |
Reactive power compensation system and method thereof
The present disclosure relates a reactive power compensation system including a detection unit for acquiring loading state information of a plurality of loads, a reactive power compensation unit for compensating reactive power, and a controller for controlling the reactive power compensation unit to perform flicker compensation or power factor compensation based on a control signal according to the loading state information. |
US10063136B2 |
Control circuits of switching power supply
The present disclosure relates to a control circuit of the switching power supply including a soft-booting voltage generation circuit, a first comparator, a voltage selection circuit, a switching circuit, a second comparator, an error amplification circuit, and a pulse signal control circuit. During the soft-booting phase and during the operational phase, different superposition voltages are superposed with the control voltage by the voltage selection circuit to obtain the clamping voltage. Thus, different clamping voltages are configured during the soft-booting phase and the operational phase, which contributes to the system stability. In addition, when the output voltage of the switching circuit is greater than the reference voltage, the second comparator outputs the first high level signals to the clock signal generator. The clock signal generator then stops operations, that is, and the control circuit of the switching power supply is in the sleep mode, which enhances the efficiency of the power. |
US10063134B2 |
Voltage source converter with improved operation
A voltage source converter has director valve phase legs in parallel with waveshaper phase legs between two DC terminals. The director valve and waveshaper phase legs include upper and lower phase arms alternately operated to form waveshapes on AC terminals of the converter, thereby allowing a number of waveshaper phase arms to be available for use for other purposes. At least one of the available phase arms is controlled to contribute to other aspects of converter operation than waveshaping. |
US10063131B2 |
Secondary-side control circuit, control method and flyback converter thereof
A method of controlling a secondary-side rectifier switch of a flyback converter, can include: detecting a slope parameter of a secondary-side detection voltage along a predetermined direction, where the secondary-side detection voltage is configured to represent a voltage across a secondary winding of the flyback converter; and controlling the secondary-side rectifier switch to turn on when the slope parameter is greater than a slope parameter threshold, and a relationship between the secondary-side detection voltage and the ON threshold meets a predetermined requirement. |
US10063129B2 |
Flat linear vibration motor
A flat linear vibration motor is disclosed. The flat linear vibration motor includes a housing having an accommodation space, a first magnet received in the accommodation space and fixed in the housing, a vibrator unit suspended in the housing, the vibrator unit including a third magnet, a driving magnet, and a fourth magnet, the third magnet being such configured that a magnetic pole thereof is similar to an adjacent magnetic pole of the first magnet, a second magnet fixed in the housing, the first magnet, the vibrator unit and the second magnet arranged one by one along a vibration direction of the vibrator unit; the second magnet being such configured that a magnetic pole thereof is similar to an adjacent magnetic pole of the fourth magnet, a guiding member provided for enabling the vibrator unit being suspended within the housing, and guiding the vibrator unit moving along the vibration direction, the guiding member having an inner magnet fixed on the vibrator unit and an outer magnet surrounding the inner magnet, separated from the inner magnet and attached on the housing, a magnetic pole of the inner magnet is similar to an adjacent magnetic pole of the outer magnet, and a driving coil received in the accommodation space and opposed to the driving magnet. |
US10063126B2 |
Method and apparatus for manufacturing laminated iron core
There is provided a method for manufacturing a laminated iron core. The method includes receiving a plurality of block iron cores which are temporarily laminated and ejected from a die, each block iron core being formed by laminating a plurality of iron core pieces that are blanked from a thin plate workpiece using the die, individually separating the temporarily laminated block iron cores by a block iron core separating unit, and rotating and laminating each of the separated block iron cores by a rotating and laminating unit in order different from order of lamination of the temporarily laminated block iron cores before separation in a place different from a location of the die. |
US10063125B2 |
Method of wiring coil in parallel using bus-bar wiring structure
Disclosed is a method of wiring a coil in parallel around a stator having a plurality of teeth, which includes the steps of: winding the coil around a tooth starting from a top or a bottom of the stator; continuously winding the coil around an adjacent tooth when winding on the tooth is completed; cutting an end portion of the coil positioned at either the top or the bottom of the stator; wiring the cut end portion of the coil using a bus-bar; and wiring a neutral point to the other end of either the top or the bottom of the stator. |
US10063123B2 |
Electric power converting apparatus
In the electric power converting apparatus, a frame unit is configured by mounting an inner frame into an outer frame, brackets are disposed on two axial ends of the frame unit, an annular liquid cooling jacket is configured between the inner frame and the outer frame, the inner frame is configured into a tubular shape by bending a plurality of base members that are linked consecutively at thin linking portions between the base members, and butting together the base members that are positioned at two ends in a direction of linking, the power modules are mounted to respective side wall surfaces of the inner frame that face radially inward, and sealing members that seal the liquid cooling jacket are respectively disposed in the butted portion of the base members, and between the frame unit and the bracket. |
US10063119B2 |
Electromagnetic device
The motors/generators of the preferred embodiments include a rotating part (rotor) and a stationary part (stator). In the devices disclosed, the primary function of the stator is to provide a high strength background magnetic field in which the rotor rotates. The rotor can be powered with a current that changes direction in concert with the relative change in magnetic field direction of the background field (that is, as the rotor moves from one magnetic pole to the next) in the case of a motor. In the case of a generator, the movement of the rotor generally results in the generation of an alternating voltage and current. |
US10063117B2 |
Dynamo-electric machine with stator having trapezoid shape segmented coil
There is provided a dynamo-electric machine that can provide excellent insulating properties by downsizing coil ends. A dynamo-electric machine includes a stator and a rotator. The stator has a stator iron core formed with a plurality of slots arranged in a circumferential direction, and a stator coil inserted into the slots of the stator iron core. The rotator is rotatably disposed on the stator iron core with a predetermined gap. The stator coil is provided with an insulating film. The stator coil includes a main coil and a lead wire with an alternating current terminal. The main coil has a plurality of segment coils connected to one another. The segment coil is a conductor in a rectangular cross section formed in advance in a nearly U-shape. The lead wire is led from the slot. The tip end of the segment coil is formed in a trapezoid cross section. |
US10063110B2 |
Foreign object detection in wireless energy transfer systems
The disclosure features wireless energy transfer systems that include a plurality of sensors coupled to a controller, wherein the controller is configured to: obtain a system calibration state including a set of basis vectors derived from a first set of electrical signals generated by the plurality of sensors with no foreign object debris in proximity to the system; measure a second set of electrical signals from the sensors; calculate a projection of the second set of electrical signals onto the set of basis vectors; calculate a detection signal based on the projection; determine whether foreign object debris is present in proximity to the system by comparing the calculated detection signal to a detection threshold value; and adjust the system calibration state based on the presence or absence of foreign object debris in proximity to the system to generate an updated system calibration state. |
US10063108B1 |
Stamped three-dimensional antenna
The embodiments described herein include a wireless-power-transmitting antenna formed from a stamped piece of metal. One such antenna includes: (i) a signal feed, defined by a single stamped piece of metal, that conducts a signal that controls wireless power transmission and (ii) resonators, each of which is defined by the single stamped piece of metal, that transmits power transmission waves in response to receiving the signal, where each resonator: (a) is planar with respect to a first plane and vertically aligned with each resonator, (b) is coupled to another resonator via curved sections of the stamped piece of metal that are in contact with the signal feed, each curved section extending along a second plane that is orthogonal to the first plane such that respective gaps are formed between each resonator, and (c) receives the signal via a respective curved section of the single stamped piece of metal. |
US10063104B2 |
PWM capacitor control
Methods, systems, and devices for controlling a variable capacitor. One aspect features a variable capacitance device that includes a capacitor, a first transistor, a second transistor, and control circuitry. The control circuitry is configured to adjust an effective capacitance of the capacitor by performing operations including detecting a zero-crossing of an input current at a first time. Switching off the first transistor. Estimating a first delay period for switching the first transistor on when a voltage across the capacitor is zero. Switching on the first transistor after the first delay period from the first time. Detecting a zero-crossing of the input current at a second time. Switching off the second transistor. Estimating a second delay period for switching the second transistor on when a voltage across the capacitor is zero. Switching on the second transistor after the second delay period from the second time. |
US10063103B2 |
Contactless power transmission device and power transmission method thereof
A contactless power transmission device and a power transmission method are disclosed herein. When a rectifier filter circuit receives high-frequency AC output from receiving coil and after a full-bridge rectifying and filtering process, DC voltage signal is obtained. When the DC voltage after rectifying and filtering is detected to exceed the preset value, a current loop is formed using a switch protection circuit, an impedance matching circuit and a receiving coil, to transfer the energy of receiving coil until the voltage drop to no higher than the preset value. Of which, the switch protection circuit is connected between the impedance matching network and ground, when the power transmission device is in normal working, the switch protection circuit does not work; when an overvoltage occurs, the switch protection circuit can switch on/off, to reduce the value of DC voltage. |
US10063102B2 |
Wireless power transmitting apparatus and method
A wireless power transmitting method performed in a wireless power transmitting apparatus wirelessly transmitting power includes determining reception strength of a short-range wireless communication channel, adjusting an interval of a short beacon signal in response to a change in reception strength; and transmitting the short beacon signal at the interval. |
US10063101B2 |
Wireless power transfer using tunable metamaterial systems and methods
The present disclosure provides system and methods for optimizing the tuning of impedance elements associate with sub-wavelength antenna elements to attain target radiation and/or field patterns. A scattering matrix (S-Matrix) of field amplitudes for each of a plurality of modeled lumped ports, N, may be determined that includes a plurality of lumped antenna ports, Na, with impedance values corresponding to the impedance values of associated impedance elements and at least one modeled external port, Ne, located external to the antenna system at a specified radius vector. Impedance values may be identified through an optimization process, and the impedance elements may be tuned (dynamically or statically) to attain a specific target radiation pattern. |
US10063100B2 |
Electrical system incorporating a single structure multimode antenna for wireless power transmission using magnetic field coupling
An electrical system incorporating a single structure multiple mode antenna is described. The antenna is preferably constructed having a first inductor coil that is electrically connected in series with a second inductor coil. The antenna is constructed having a plurality of electrical connections positioned along the first and second inductor coils. A plurality of terminals is connected to the electrical connections that facilitate numerous electrical connections and enables the antenna to be selectively tuned to various frequencies and frequency bands. |
US10063098B2 |
Electronic module and method for forming package
An electronic module is provided. The electronic module comprises an inductor having a magnetic body with a coil encapsulated in the magnetic body and a substrate having electronic devices thereon, wherein a first electrode is disposed on a top surface of the magnetic body and a second electrode is disposed on a lateral surface of the magnetic body, wherein the top surface of the inductor and the bottom surface of the substrate are configured side by side and electrically connected to each other, wherein a plurality of third electrodes are disposed on a lateral surface of the substrate, for electrically connecting the electronic module to an external circuit board. |
US10063096B2 |
System having a hand tool case, latent heat storage unit, and a hand tool battery provided for inductive charging
A system having a hand tool battery, a hand tool case which has at least one inductive charge receiving area which is provided for storing a hand tool battery which is inserted into the inductive charge receiving area at least partially in close proximity to at least one wall of the hand tool case, and having at least one latent heat storage unit which is provided for influencing at least a temperature of the at least one hand tool battery. |
US10063093B2 |
Method for the control of a wind turbine with no mains support available
The invention relates to a method for controlling a wind turbine that comprises a generator, is provided to feed electrical power into an electricity supply grid but has not yet been connected to the electricity supply grid, comprising the steps: generating electrical power using the generator and supplying electrical elements of the wind turbine with the power generated, and to a wind turbine for generating electrical power from the wind and for feeding the electrical power generated into an electricity supply grid, wherein a method according to one of the preceding claims is carried out. |
US10063092B2 |
Data center power network with multiple redundancies
Several embodiments include a power network system for a data center. The power network system can provide high voltage direct current (HVDC) power to server racks or any IT load racks type. For example, a HVDC converter circuit can provide the HVDC power by converting AC power. The power network system can also include multiple redundant power systems (e.g., a genset, a capacitive backup power system, a turbine-based generator system, or any combination thereof). The capacitive backup power system can provide HVDC power when the AC power fails and/or when the HVDC converter circuit can no longer provide sufficient power. The genset can be turned ON after the AC power fails. However, the genset may not provide stable power until sometime thereafter. Hence, the air turbine-based generator system can provide nearly-instant backup power once turned ON and provide supplemental energy in combination with the capacitive backup power system to smooth out transitions of power sources. |
US10063090B2 |
Solar power generation device and control method of solar power generation device
A solar power generation device is provided which includes a first DC-DC converter to which an output of a solar battery is input, a storage battery to which an output of the first DC-DC converter is input, a second DC-DC converter that converts a voltage of the storage battery, and a control unit. The control unit changes a duty ratio of the first DC-DC converter so as not to charge the storage battery and changes a duty ratio of the second DC-DC converter so as to set an operating point of the solar battery to a maximum power point, when a value indicating a state of charge of the storage battery is equal to or greater than a predetermined value. |
US10063089B2 |
Wind power charging circuit with three-phase, single-stage and bridgeless framework
The present invention provides a novel wind power charging circuit with three-phase, single-stage and bridgeless framework. This novel wind power charging circuit is developed based on an isolated single-ended primary-inductance converter (SEPIC) having buck-boost converting function, and can be applied in a wind turbine system for increasing the operation scope of the input voltage provided by a wind turbine of the wind turbine system, so as to facilitate the wind turbine system include wide-range operation scope under different wind speeds, such that the electric energy production and the electromechanical conversion efficiency of the wind turbine system are able to be effectively enhanced. In addition, because this novel wind power charging circuit does not include any bridgeless PFC circuits and bridge-type diode rectifiers, the low conducting loss as well as the whole circuit volume and assembly cost of the wind turbine system can be simultaneously reduced. |
US10063088B2 |
Computing device inductive charging cases and methods of use
Electrical inductive charging device chassis and cases are provided herein. An example charging case includes a device receiving tray, a sliding tray having a charging interface and an inductive charging base, a stabilizer tray, and a gear having teeth that cooperate with a grooved track of the sliding tray such that when the gear is rotated, the teeth of the gear translate the sliding tray backwards and forwards to retract and extend the sliding tray and charging interface. Another example charging case includes a device receiving tray that protectingly surrounds a computing device, an inductive charging base, a charging interface selectively extendable from the charging case, and an extendable stabilizer that is translatable between a stored configuration and a deployed configuration. |
US10063084B2 |
Apparatus for digital battery charger and associated methods
An apparatus includes a digital battery charger. The digital battery charger includes an analog-to-digital converter (ADC) to convert a terminal voltage of a battery to a first digital signal. The digital battery charger further includes a digital controller coupled to the ADC to receive the first digital signal and provide a set of control signals. The digital battery charger further includes a current digital-to-analog converter (IDAC) coupled to the digital controller to receive the set of control signals and to provide a battery charging current signal. |
US10063082B2 |
Battery with cell balancing
A battery includes at least one battery module line, a sensor means for determining a charging stage of a battery cell, and a control unit. The battery module line includes a plurality of battery modules mounted in series, each module having at least one battery cell and a coupling unit. The at least one battery cell is mounted between a first input and a second input of the coupling unit, and the coupling unit is configured (i) to switch the at least one battery cell between a first terminal of the battery module and a second terminal of the battery module, on a first control signal, and (ii) to connect the first terminal to the second terminal on a second control signal. The sensor means is connectable to the at least one battery cell of each battery module. |
US10063081B2 |
Maximum power point tracking in energy harvesting DC-to-DC converter
An energy harvesting direct current to direct current ‘DC-to-DC’ converter circuit is presented. It is comprised of an energy storage element, an input configured to receive an input voltage, an output; switching means configured to perform cycles. Each cycle is marked when the input voltage reaches a reference voltage, switching the circuit such that the energy storage element enters into an energy charging state in which the energy storage element stores energy provided by the input voltage. Control means is configured to determine the reference voltage based on the number of cycles per time period performed by the circuit. |
US10063075B2 |
Electronic device capable of performing data communication and method for charging the same
An electronic device capable of performing data communication and method of charging the same are provided. The electronic device comprises a device body, a band that couples the device body to a target object, a fastening part that adjusts a fit of the band to the target object, a fixing strap movably coupled to the band, and an interface terminal installed in the fixing strap, wherein a charging state is determined according to the position of the fixing strap relative to the band. |
US10063068B1 |
Battery system
A battery system includes a battery module having first and second battery cells. The battery system further includes first and second cell balancing circuits and a microcontroller. The microcontroller determines a first cell balancing current value indicating an amount of electrical current flowing through a first resistor of the first cell balancing circuit based on the first, second, third, and fourth voltage values and a first resistance value. The microcontroller generates a first fault condition code indicating an operational failure of the first transistor in the first balancing circuit if the first cell balancing current value is less than a minimum desired current value. |
US10063064B1 |
System and method for generating a power receiver identifier in a wireless power network
The embodiments described herein include a transmitter that transmits a power transmission signal (e.g., radio frequency (RF) signal waves) to create a three-dimensional pocket of energy. At least one receiver can be connected to or integrated into electronic devices and receive power from the pocket of energy. A wireless power network may include a plurality of wireless power transmitters each with an embedded wireless power transmitter manager, including a wireless power manager application. The wireless power network may include a plurality of client devices with wireless power receivers. Wireless power receivers may include a power receiver application configured to communicate with the wireless power manager application. The wireless power manager application may include a device database where information about the wireless power network may be stored. |
US10063058B2 |
Power converter
A power converter includes a plurality of converters which are connected in parallel to a DC power supply in which an operating point is changed in accordance with an output current or an output voltage. The plurality of converters include maximum power point tracking units for performing maximum power point tracking calculations of the DC power supply. Results of the maximum power point tracking calculations of the plurality of converters are unified between the plurality of converters and the plurality of converters are controlled based on the unified calculation result. |
US10063056B2 |
Systems and methods for remote or local shut-off of a photovoltaic system
Systems and methods for shut-down of a photovoltaic system. In one embodiment, a method implemented in a computer system includes: communicating, via a central controller, with a plurality of local management units (LMUs), each of the LMUs coupled to control a respective solar module; receiving, via the central controller, a shut-down signal from a user device (e.g., a hand-held device, a computer, or a wireless switch unit); and in response to receiving the shut-down signal, shutting down operation of the respective solar module for each of the LMUs. |
US10063055B2 |
Distributed power grid control with local VAR control
A distributed control node enables local control of reactive power. A metering device of the control node measures energy delivered by a grid network at a point of common coupling (PCC) to which a load is coupled. The metering device determines that the load draws reactive power from the grid network. The control node draws real power from the grid and converts the real power from the grid into reactive power. The conversion of real to reactive power occurs on the consumer side of the PCC. The conversion of real to reactive power enables delivery of reactive power to a local load from real power drawn from the grid. |
US10063054B2 |
Power management in an energy distribution system
An arrangement for power management in an energy distribution system, a method for power management in an energy distribution system and an arrangement for implementing the method for power management in the energy distribution system, wherein a feed/return unit and a control unit are provided, where the control unit is configured to sense a present actual system state and to take the sensed actual system state as a basis for prompting energy output or energy intake (energy out/intake, energy feed/return) by the feed/return unit in order to allow continuous correction and dynamic support of an energy distribution system or in an energy distribution system. |
US10063052B2 |
Method and system for distributing and/or controlling an energy flow taking into account constraints relating to the electricity network
Method and system for distributing and/or controlling an energy flow to a cluster of a plurality of nodes in an electricity network, wherein each node has an associated status, taking into account constraints relating to the energy delivered to the nodes and constraints relating to the electricity network, comprised of: allocating a local agent to each node of the cluster of a plurality of nodes, wherein the local agent receives a priority for energy to be delivered; allocating a regional concentrator agent to the regional network, comprising at least a part of the cluster, wherein a total of the at least one regional network forms the electricity network; receiving by the at least one regional concentrator agent, the priority for energy to be delivered among the nodes and determining an aggregate priority for energy to be delivered to the at least one regional network, depending on voltage limitations. |
US10063046B2 |
Direct current circuit breaker and method using the same
Some embodiments of the present disclosure relate to a direct current circuit breaker capable of shortening a cut-off operation time and reducing a magnitude of a required reverse current. The direct current circuit breaker includes: a main circuit line which is connected between a power supply and a load, the main circuit line includes a main breaker and a first diode connected in parallel; a charging circuit line which is disposed in the rear stage of the main breaker and is connected in parallel to the load, the charging circuit line includes a first capacitor, a reactor and a second diode connected in series; and a switch line including one end connected in parallel to the front stage of the main breaker and the other end connected between the reactor and the second diode, the switch line includes a third diode and a current switch connected in series. |
US10063032B2 |
Distributed reflector laser
A distributed reflector (DR) laser may include a distributed feedback (DFB) region and a distributed Bragg reflector (DBR). The DFB region may have a length in a range from 30 micrometers (μm) to 100 μm and may include a DFB grating with a first kappa in a range from 100 cm−1 to 150 cm−1. The DBR region may be coupled end to end with the DFB region and may have a length in a range from 30-300 μm. The DBR region may include a DBR grating with a second kappa in a range from 150 cm−1 to 200 cm−1. The DR laser may additionally include a lasing mode and a p-p resonance frequency. The lasing mode may be at a long wavelength side of a peak of a DBR reflection profile of the DBR region. The p-p resonance frequency may be less than or equal to 70 GHz. |
US10063031B2 |
Method for manufacturing optical device
A diffraction grating pattern is formed in the first insulating film on the active layer by electron beam lithography, and at the same time an end facet formation pattern whose end portion corresponds to a position of an emission end facet of the optical modulator is formed in the first insulating film on the optical absorption layer by electron beam lithography. A second insulating film is formed on the end facet formation pattern. The diffraction grating formation layer is etched using the first and second insulating films as masks to form a diffraction grating, and is embedded with an embedded layer. The second insulating film is removed. A third insulating film is formed on the diffraction grating and the embedded layer not to cover the end facet formation pattern. The optical absorption layer is etched using the first and third insulating films as masks to form the emission end facet. |
US10063028B2 |
High SMSR unidirectional etched lasers and low back-reflection photonic device
Unidirectionality of lasers is enhanced by forming one or more etched gaps in the laser cavity. The gaps may be provided in any segment of a laser, such as any leg of a ring laser, or in one leg of a V-shaped laser. A Brewster angle facet at the distal end of a photonic device coupled to the laser reduces back-reflection into the laser cavity. A distributed Bragg reflector is used at the output of a laser to enhance the side-mode suppression ratio of the laser. |
US10063027B2 |
Semiconductor laser device and method of making the same
The present invention provides a semiconductor laser device for improving temperature characteristics of waveguide structures and realizing stable light emitting patterns and high output, and a method for making the same. The semiconductor laser device (1) comprises: an n-type clad layer (5) laminated on a substrate (2); an active layer (6) laminated on the n-type clad layer (5); a p-type clad layer (7) laminated on the active layer (6); and a plurality of waveguide structures (8) formed on the p-type clad layer (7) and having a ridge of a horn shape in top view. In this configuration, a divider (29) is formed between adjacent waveguide structures (8), and the divider (29) comprises: a groove (30) dividing the active layer (6); and a heat dissipation material (34) filled in the groove (30) and having a thermal conductivity higher than a thermal conductivity of a semiconductor layer (4). |
US10063026B2 |
Laser beam amplification device
A laser medium unit 10 in a laser beam amplification device includes a plurality of laser media 14. A cooling medium flow path F1 is provided around the laser medium unit 10 to cool the laser medium unit 10 from outside. A sealed space between the laser media 14 is filled with gas or liquid, and a laser beam for passing through the sealed space is not interfered by a cooling medium flowing outside. Therefore, a fluctuation of an amplified laser beam is prevented, and a quality such as stability and focusing characteristics of the laser beam is improved. |
US10063024B2 |
Electrical connector having improved insulative housing
An electrical connector includes an insulative housing, a number of terminals carried by the insulative housing, a metallic shielding plate retained in the insulative housing, and a shielding shell attached to the insulative housing. The insulative housing has a number of receiving slots located at a back-end thereof. The terminals have a number of soldering portions exposed from the insulative housing. Each receiving slot is located between every two neighboring soldering portions to receive soldering material. |
US10063023B2 |
PDA terminal and operation control method therefor
A PDA terminal is provided. The PDA terminal includes: a main body; a processor disposed in the main body; a memory accessible by the processor; and a display unit disposed on a front surface of the main body to display information processed by the processor. A rear cover detachable from the main body is disposed on a rear surface of the main body. After the rear cover is removed, a gun handle is usable in a state of being connected to a coupling part formed under the rear cover. Since the gun handle with a switch is usable in a state of being connected to the main body of the PDA terminal, the operation of the PDA operation can be more conveniently used in an industrial site or the like. |
US10063017B2 |
Connector
A connector that is to be connected to another connector and includes a connection terminal, a fixed contact, a movable contact provided at an end of a movable plate, a card comprised of an insulator and configured to move the movable plate, and a button configured to move the card. The connector is configured such that while another connection terminal of the another connector is in contact with the connection terminal of the connector, the button is moved by the another connector, and the movable plate is moved by the card to cause the movable contact to contact the fixed contact. |
US10063016B2 |
Fuse protected socket having additional attachment points
An electric connector includes a socket connector, a bar-like plug connector to be inserted/withdrawn to/from the socket connector and a fuse. When the plug connector is inserted to the socket connector, electric conduction is established in the electric circuit via the fuse. The fuse is attached to the socket connector. |
US10063009B2 |
Methods and apparatus for magnetically connecting electronic devices at a plurality of surfaces
There is disclosed magnetic connectors and electronic devices including such connectors. A connector may include a magnet rotatable about at least one axis of the magnet; wherein the magnet rotates to magnetically engage a magnet of another connector to form an electrical connection between the two magnets. A connector may also include a cylindrical magnet to magnetically engage a magnet of another connector; and a sleeve wrapped around at least part of the magnet, the sleeve comprising a contact for forming an electrical connection with a contact on the other connector. A connector may be adapted for selective connection with other connectors. A connector may be adapted such that a moveable magnet may move between an engaged position proximate a contacting surface of the connector and a disengaged position recessed from a contacting surface, wherein the moveable magnet is biased to the disengaged position. |
US10063007B2 |
Wire cover
A wire cover (10) is mounted on a rear surface of a housing (30) so that a bundle of wires can be (31) pulled out in a predetermined direction from a rear surface of the housing (30). The wire cove (10) includes a band inserting portion (15) having a curved shape to extend along a part of an outer surface of the bundle of the wires (31) in a circumferential direction and defines a route for a binding member (40) for binding the bundle of the wires (30). A lock fixing portion (47) is provided on an end of the band inserting portion (15) in the circumferential direction and is configured to position a lock (42) of the binding member (40) for locking a band (41) wound around the bundle of wires (31) at a predetermined position, and a reinforcing portion (18) is provided on the lock fixing portion (17). |
US10063001B2 |
Gated connector receptacles
Connector receptacles that are arranged to avoid inadvertent connections. One example may provide contacts for a first connector receptacle that may be located behind a movable gate. The first connector receptacle may be combined with a second connector receptacle that is user accessible to save space and simplify device assembly. Combining the first connector receptacle and a second connector receptacle may also remove the movable gate from a surface of an electronic device, thereby further preventing inadvertent connections. |
US10063000B2 |
Split connector
A split connector includes a housing (10) with an accommodating portion (12) and sub-connectors (20) are inserted into the accommodating portion (12). Terminal fittings (23) and retainers (30) are inserted into the sub-connectors (20). Guide recesses (14L, 14R) are formed on an inner surface of the accommodating portion (12) and extend along an inserting direction of the sub-connectors (20) into the accommodating portion (12). Guide projections (29L, 29R) are formed on outer surfaces of the sub-connectors (20) and fit into the guide recesses (14L, 14R) in an inserting process into the accommodating portion (12). Detecting projections (34L, 34R) on outer surfaces of the retainer (30) are configured not to fit into the guide recesses (14L, 14R) when the retainers (30) are at a partial locking position but fit into the guide recesses (14L, 14R) when the retainers (30) are at a full locking position. |
US10062998B2 |
Connector having a short circuit terminal
A connector includes: a short circuit terminal housed in a first housing and having contact pieces contacting with adjacent first terminals of a plurality of first terminals respectively with the first housing and a second housing not being engaged with each other; and a releaser provided in the second housing and configured to displace the contact pieces and release contact between the adjacent first terminals and the contact pieces upon engaging of the first housing and the second housing. The contact pieces include: contact portions contactable with the adjacent first terminals respectively; and slide portions slidable on the releaser and respectively arranged in positions anterior to the contact portions in an engaging direction of the first housing and the second housing. The contact portions are apart from the releaser with the contact pieces being displaced due to slide of the slide portions on the releaser. |
US10062997B2 |
Electrical connector having improved contacts
An electrical connector includes an insulative housing and a number of contacts over-molded in the insulative housing, each of the contacts including: a conductive member comprising a base portion and a contact portion projected from the base portion and exposed out of the insulative housing for being electrically connected with a mating connector contact; and a connecting member electrically connected with the conductive member. The connecting member includes a soldering portion soldered with the base portion, an elastic portion for connecting to a printed circuit board, and a connecting portion connected between the soldering portion and the elastic portion. |
US10062996B2 |
Methods and apparatus for preventing oxidation of an electrical connection
A malleable wax-based antioxidant is provided for use between two electrical connectors. To form the example antioxidant, a wax-base is melted and particles, such as, for example, zinc particles, are provided in suspension with the melted wax. The suspension is then cooled and formed into a shape by, for example, molding, extrusion, die cutting, or other suitable forming method. The antioxidant remains viscose under normal operating temperatures of the electrical connector to avoid oozing and/or running out of the antioxidant, thus better preventing oxidation of the connector. The particles keep the connections running cool, particularly with aluminum to aluminum connections. |
US10062994B2 |
Electrical connector
An electrical connector used for bearing a chip module includes an insulating body, terminals arranged in the insulating body, a carrying member, for carrying the chip module to the insulating body, disposed at one side of the insulating body and contacting with the terminals, a pressing plate for pressing the carrying member or the chip module, and an elastic member having at least two limiting portions. The pressing plate and the carrying member are separately disposed at two adjacent sides on the periphery of the insulating body. The two limiting portions define a pivoting space, and the carrying member is pivotally connected to the pivoting space. The elastic member and the carrying member are disposed at the same side of the insulating body, the elastic member has a buffer portion, and the buffer portion abuts against the carrying member and is disposed between the insulating body and the carrying member. |
US10062990B1 |
Connector with locking teeth
Described herein is a connector, an electric circuit and a lighting apparatus. The connector includes a connector body having a top edge, a bottom edge and a wall connecting the top edge and the bottom edge, the wall providing flexibility to move the top edge relative to the bottom edge, a plurality of metal contacts embedded within the top edge and the bottom edge, locking teeth projecting from the top edge and the bottom edge, wherein the top edge and the bottom edge move away from each other upon application of a force on the locking teeth. Furthermore, the connector can be connector to a printed circuit board. The printed circuit board includes a plurality of pockets configured to receive the locking teeth of the connector and a plurality of metal strips configured to contact with the plurality of the metal contacts of the connector. |
US10062987B2 |
Card connector contact having a frame portion and a curved portion anchored to opposite front and rear of the frame portion
A card connector includes: an insulative housing (2) for receiving a card tray inserted in a front-to-back direction; and plural contacts (31) secured to the insulative housing, each contact including a frame portion (311), a curved portion connected inside the frame portion, and a tail portion (312) connected outside the frame portion, the curved portion including a first anchoring portion (315) and a second anchoring portion (315) respectively connected to the frame portion, a first arm (313) and a second arm (314) respectively continuing the first and second anchoring portions, a front connecting portion (317) and a rear connecting portion (318) respectively connected to the first and second arms, and a contacting portion (316) connected between the front and rear connecting portions. |
US10062985B2 |
Connector module and portable electronic device
A connector module is mounted at a portable electronic device. The portable electronic device includes a housing and a circuit board. The circuit board is disposed in the housing, and the housing has an opening. The connector module includes a switch component, a connector and a button assembly. The switch component is disposed at the housing and is electrically connected with the circuit board. The connector is movably disposed between the opening and the switch component, and the connector is electrically connected with the circuit. The connector is for accommodating an IC card, so that the IC card is capable of being electrically connected with the circuit board via the connector. The button assembly is inserted at the opening and abuts against the connector, and drives the connector to touch the switch component when being pressed. |
US10062979B2 |
Terminal block marker
A terminal block marker designed to identify a terminal block. The terminal block marker includes a rigid base and a flexible film insert. The rigid base includes a top with a first arm having a first inwardly extending projection and a second arm having a second inwardly extending projection. The rigid base also includes a bottom with legs extending in a direction opposite the arms to hold the terminal block marker in the terminal block. A flexible film insert with identification markings is installed on the rigid base. The flexible film insert is positioned under a first projection of the first arm and rotated downward until the flexible film insert snaps under the second projection of the second arm. The first and second projections retain the flexible film insert on the rigid base to form the terminal block marker. |
US10062978B2 |
Electrical connector assembly
The invention relates to a terminal assembly and in particular a series terminal assembly for medium-voltage switchgears. The assembly includes at least two input-side connectors and at least two output-side connectors in addition to a configuration location. The input-side connectors and the output-side connectors are not interconnected in a fixed pre-configured manner. Each of the configuration locations for each input-side connector location and for each output-side connector location has a configuration connector location. |
US10062976B2 |
Electrical terminal block
An electrical terminal block arrangement includes a terminal block with at least one housing having a first insertion opening and a second insertion opening, and a clamping body including a contact metal, a first spring, and a second spring arranged inside the housing; a discharge resistor that includes a plug-in contact, the plug-in contact being plugged in through the first insertion opening of the housing; and a capacitor that includes at least one capacitor wire, the capacitor wire being inserted through the second insertion opening of the housing and being clamped and electrically contacted to the contact metal by the second spring. The plug-in contact of the discharge resistor is clamped and electrically contacted to the contact metal by the first spring. |
US10062974B2 |
Connector
A connector 10 disclosed by this specification is a connector 10 to be mounted on a casing 1 of a device by being inserted into a mounting hole 2 provided in the casing 1 and includes a terminal 40 connected to a wire W, a housing 20 having the terminal 40 mounted therein, and an intermediate terminal 30 made of metal, mounted in the housing 20 and disposed between the terminal 40 and a mating terminal 4 in the casing 1. A fastened component (nut 5) disposed in the casing 1 and to be fastened to a fastening component (bolt B), the mating terminal 4, the intermediate terminal 30 and the terminal 40 are arranged side by side in a fastening direction, and the terminal 40 and the mating terminal 4 are connected via the intermediate terminal 30 by being collectively fastened by the fastening component and the fastened component. |
US10062973B2 |
Scattered virtual antenna technology for wireless devices
A wireless device includes at least one radiating system having a redundancy system and a combining system. The redundancy system includes two or more radiation boosters. The radiating system is characterized by its simplicity that facilitates its integration within the wireless device and achieves enhanced radio-electric performance in at least one frequency region of the electromagnetic spectrum, which may include multiple wireless services. The combining system enables a substantially balanced power distribution among the radiation boosters of the redundancy system, and the radiating system provides an increased robustness to human loading effects in at least one frequency region of operation. |
US10062968B2 |
Surface scattering antennas
Surface scattering antennas provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the scattering elements are complementary metamaterial elements. In some approaches, the scattering elements are made adjustable by disposing an electrically adjustable material, such as a liquid crystal, in proximity to the scattering elements. Methods and systems provide control and adjustment of surface scattering antennas for various applications. |
US10062966B2 |
Array antenna having a radiation pattern with a controlled envelope, and method of manufacturing it
A method for manufacturing an array antenna having a design phase, including synthesizing an array layout of the array antenna and choosing or designing radiating elements to be arranged according to the array layout; and a phase of physically making the array antenna, including arranging the radiating elements according to the array layout; the design phase having the steps of: a) synthesizing an array layout complying with a required minimum beamwidth, a required field of view, a required side lobe level and a target angular dependence of the maximum directivity of the array antenna over the required field of view; b) determining shaped radiation patterns of the radiating elements in order to approximate said target angular dependence of the maximum directivity of the array antenna over the required field of view; and c) choosing or designing radiating elements having the shaped radiation patterns determined at step b). |
US10062963B2 |
Vertical electronic device with solid antenna bracket
An antenna bracket for electronic devices includes a solid bracket having an aperture formed therethrough. The solid antenna bracket has side walls that are rounded to a predetermined radius, and at least one antenna pocket positioned on said side walls. The antenna pocket receives and secures at least one antenna. The antenna bracket has a polygon shape that follows the contours of the electronic device housing. |
US10062961B2 |
Electronic device furnished with a conducting layer and method of fabrication
An electronic device includes a support board having a mounting face and an integrated circuit chip mounted on the mounting face. An encapsulation block embeds the integrated circuit chip, the encapsulation block extending above the integrated circuit chip and around the integrated circuit chip on the mounting face of the support board. The encapsulation block includes a front face with a hole passing through the encapsulation block to uncovering at least part of an electrical contact. A layer made of an electrically conducting material fills the hole to make electrical connection to the electrical contact and further extends over the front face of the encapsulation block. |
US10062955B2 |
Sample analyzer and reagent information obtaining method
A sample analyzer and a method for obtaining reagent information are disclosed, wherein the sample analyzer analyzes a sample by using a reagent contained in a reagent container, comprising a first reagent container holder configured to hold a first reagent container containing a first reagent, a first electronic tag, on which a reagent information regarding the first reagent is recorded, attached to the first reagent container; a second reagent container holder configured to hold a second reagent container containing a second reagent, a second electronic tag, on which a reagent information regarding the second reagent is recorded, attached to the second reagent container; an antenna that is arranged between the first reagent container holder and the second reagent container holder, and is configured to receive a radio wave from each of the first and second electronic tags; and a reagent information obtainer unit configured to obtain the reagent information recorded on the first electronic tag based on a radio wave received from the first electronic tag, and to obtain the reagent information recorded on the second electronic tag based on a radio wave received from the second electronic tag. |
US10062954B2 |
Auxiliary apparatus for electronic device including antenna
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present invention relates to an assist device for an electronic device including an antenna, wherein the assist device includes a second unit including a second antenna, wherein the second antenna configured to generate capacitance with at least one of a first antenna in a first unit and an internal antenna of the electronic device. Further, the present invention also includes embodiments different from the above-described embodiment. |
US10062953B2 |
Satellite antenna
There is provided a satellite antenna including: a reflector which is directed in a direction toward a target satellite and receives a predetermined satellite signal; and a balance weight module which is mounted on a rear surface of the reflector, in which the balance weight module includes a guide movable balance weight, a guide which defines a movement route along which the guide movable balance weight is moved in a state in which the guide movable balance weight is coupled to the guide, and a fixing member which selectively couples the guide movable balance weight at one side of the guide. By using the satellite antenna according to the present invention, it is possible to easily and quickly perform an operation of adjusting weight balance of the reflector and to prevent a safety accident. |
US10062951B2 |
Deployable phased array antenna assembly
A lightweight deployable antenna assembly for, e.g., microsatellites including multifilar (e.g., quadrifilar) antenna (MHA) structures rigidly maintained in an array pattern by a lightweight linkage and collectively controlled by a central antenna feed circuit and local antenna feed circuits to perform phased array antenna operations. The linkage is preferably an expandable (e.g., flexural-scissor-grid) linkage capable of collapsing into a retracted/stowage state in which the MHA elements are maintained in a closely-spaced (e.g., hexagonal lattice close-packed) configuration optimized for payload storage. To deploy the antenna for operation, the linkage unfolds (expands) such that the MHA elements are moved away from each other and into an evenly spaced (e.g., wide-spaced hexagonal) pattern optimized for phased array operations. The MHA structures utilize modified helical filar elements including metal plated/printed on polymer/plastic beams/ribbons, or thin-walled metal tubes. The helical filar elements are radially offset (e.g., by 90°) and wound around a central axis. |
US10062948B2 |
Microwave cavity resonator
One embodiment is directed to a microwave cavity resonator comprises a cavity housing forming a cavity. A resonator element is arranged in the cavity and extends longitudinally along a longitudinal axis, wherein the resonator element comprises, when viewed along the longitudinal axis, a first end connected to a first housing wall and a second end opposite the first end, the second end being arranged at a distance from a second housing wall. The resonator element, at its second end, comprises at least one first capacitor element and the cavity housing comprises at least one second capacitor element reaching into the cavity and arranged at a distance, when viewed along a direction perpendicular to the longitudinal axis, from the at least one first capacitor element such that a gap between the at least one first capacitor element and the at least one second capacitor element is formed. |
US10062946B2 |
Reflection-based RF phase shifter
Programmable multi-reflective phase shifters which provide reduced root-mean-square phase error, can be optimized for a desired frequency band, can compensate for process variations arising during manufacture, and can help offset system level performance shortfalls. Embodiments include a hybrid coupler (e.g., a Lange hybrid coupler) in combination with a multi-reflective reactance-based terminating circuit with a number of different configurations that permit various modes of operation, including a thermometric mode, a phase overlap mode with interstitial phase shift states, an extended range phase shift mode, and a “tweak bit” mode. A number of programmable or selectable RF phase shifters can be series or parallel connected to provide a desired gamut of phase shift. |
US10062945B2 |
Coupling structure for crossing transmission lines
A coupling structure for crossing three transmission lines millimeter-wave or centimeter-wave signals a signal conductor layer of a circuit substrate, the coupling structure comprising three planar cross-couplers, and from each of the three cross-couplers two input/output points of the cross-coupler being connected clockwise in succession in the plane of the cross-coupler, to respectively one input/output point of a respective other of the three cross-couplers. |
US10062943B2 |
Microstrip line structure and method for fabricating the same
A method for fabricating microstrip line structure is disclosed. First, a substrate is provided, ground patterns are formed on the substrate, an interlayer dielectric (ILD) layer is formed on the ground patterns, contact plugs are formed in the ILD layer, a ground plate is formed on the ILD layer, and a signal line is formed on the ground plate. Preferably, the ground plate includes openings that are completely shielded by the ground patterns. |
US10062940B2 |
Dielectric phase shifter comprised of a cavity having an elongated receiving space where a phase shifting circuit and a slideable dielectric element are disposed
A dielectric phase shifter comprises a cavity having an elongated receiving space, a phase shifting circuit disposed inside the receiving space, and a dielectric element slidably mounted in the receiving space and parallel with the phase shifting circuit. A rail is disposed on an inner wall of the cavity for preventing contact between the movable dielectric element and the phase shifting circuit. By providing a number of rails between the phase shifting circuit and the dielectric element, direct contact between the dielectric element and a feeding network is prevented. As a result, no additional force will be imposed on the feeding network and reliability is enhanced. Moreover, wear of the feeding network and/or dielectric element during operation of the phase shifter is eliminated. |
US10062938B2 |
Battery module and assembled battery
An assembled battery is formed by combining battery modules. Each battery module includes at least one battery cell and a rectangular box-shaped case that accommodates the at least one battery cell. The battery modules include a first battery module and a second battery module located adjacent to each other. The case of each of the first battery module and the second battery module includes an opposing side surface that is opposed to one of the first battery module and the second battery module. Each opposing side surface includes projections, which are laid out in rows, and ribs, which extend parallel to the layout direction of the projections. The ribs are smaller in height than the first projections. The ribs include connection ribs that connect the projections located in a predetermined range in the layout direction of the projections. |
US10062936B2 |
Flex tubing for vehicle assemblies
Flex tubing for a vehicle assembly according to an exemplary aspect of the present disclosure includes, among other things, a tube body made of a metallic material, the tube body including a first rigid segment, a second rigid segment and a flexible segment extending between the first rigid segment and the second rigid segment. |
US10062935B2 |
Cooling plate for an electrical energy storage element
The invention relates to a cooling plate for an electric energy storage element, said cooling plate comprising at least two non-detachably interconnected metal sheets and at least one plastic covering. The joined metal sheets comprise at least one cooling channel which can be created by separating means. |
US10062933B2 |
Hydrometallurgical electrowinning of lead from spent lead-acid batteries
The present disclosure relates generally to recycling lead-acid batteries, and more specifically, relates to purifying and recycling the lead content from lead-acid batteries. A method includes reacting a lead-bearing material with a first carboxylate source to generate a first lead carboxylate. The method includes reacting the first lead carboxylate with a second carboxylate source to generate a second lead carboxylate. The method further includes applying an electrical bias to an aqueous solution of the second lead carboxylate to generate metallic lead. |
US10062928B2 |
Method for charging batteries
A method for charging batteries that have at least one metal electrode or at least one metal-based compound electrode includes applying a DC signal to the batteries and applying an AC signal to the batteries. The DC signal and AC signal may be combined as a composite signal, which is applied to the batteries, or may be applied to the batteries as separate, independent signals, during a charging cycle. As such, the DC signal serves to charge the batteries, while the AC signal operates to suppress, avoids or reverse the growth of dendrites in the batteries. As a result, the operating life of the batteries is extended, and the electrical storage capacity of the batteries is preserved. |
US10062926B2 |
Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
The present invention provides an electrolytic solution capable of restraining gas generation. The present invention relates to an electrolytic solution containing a nonaqueous solvent (I), an electrolyte salt (II), and a compound (III) represented by the following formula (1): wherein Rf represents a C1-C20 linear or branched fluorinated alkyl group or a C3-C20 fluorinated alkyl group having a cyclic structure, R represents a C1-C20 linear or branched alkylene group or a C3-C20 alkylene group having a cyclic structure, hydrogen atoms in R may be partially or fully replaced by fluorine atoms, Rf and R may each contain an oxygen atom between carbon atoms when having a carbon number of 2 or more as long as oxygen atoms are not adjacent to each other. |
US10062920B2 |
Powder supplying device and electrode manufacturing apparatus
A powder supplying device (2) includes a case (6) in which a storage portion (6a) is formed for temporarily storing powder (10), the case (6) having an inlet (6b) formed in an upper end of the storage portion (6a), and a rectangular outlet (6c) formed in a lower end of the storage portion (6a); a rotor (7) that is arranged in the case (6) and transports the powder (10) in the storage portion (6a) to the outlet (6c) by rotating; and a mesh body (8) through which the powder (10) that has been transported to the outlet (6c) passes. The powder supplying device (2) supplies the powder (10) onto an upper surface of an electrode foil (5). The rotor (7) has a brush-like shape, with a plurality of hair members (7b) radially implanted pointing radially outward with an axial center (G) of the rotor (7) as the center. |
US10062916B2 |
Control method and system of fuel cell system
A control method and system of a fuel cell system is provided. The control method includes detecting, by a controller, a voltage of a fuel cell stack when power generation of a fuel cell is stopped while a fuel cell vehicle is being driven. In addition, hydrogen supply pressure at an anode side is adjusted based on a variation in the detected voltage. |
US10062915B2 |
Electrochemical reactor, such as a fuel cell or an electrolyser, provided with a device for measuring a parameter of a gas specific to the operation of said reactor
An electrochemical reactor, such as a fuel cell stack or an electrolyzer, includes a stack of electrochemical cells, a manifold, a sensor, and a monitor. Each electrochemical cell includes an electrode plate having a face in electrical contact with an electrolyte. The manifold is connected to the faces of the electrochemical cells in an exchange circuit, for exchanging a gas with outside of the stack. The sensor is sensitive to a composition of the gas in the circuit. The monitor monitors or controls an operational condition of the electrochemical reactor in response to measurements by the sensor. The stack and the manifold form a one-piece reactor body. A chamber is integrated into the body in communication with the manifold. The sensor is mounted in the body and includes a sensitive or sensing unit exposed directly to an in situ concentration of a component of the gas in the chamber. |
US10062912B2 |
Bipolar plate of an electrochemical cell with low thickness
The invention pertains to a bipolar plate in which each of the distribution channels is located facing a dividing rib of the opposite conductive sheet; and in which said distribution channels include portions of various depths that are arranged so as to form a longitudinal alternation between: an enhanced distribution zone, in which: the distribution channels have a combined cross section of a high distribution value, and the cooling channels have a combined cross section of a low cooling value; and an enhanced cooling zone, in which: the distribution channels have a combined cross section of a value that is lower than the high distribution value, and the cooling channels have a combined cross section of a value that is higher than the low cooling value. |
US10062905B2 |
Process for producing cathode active material for lithium ion secondary battery
To provide a process for producing a cathode active material for a lithium ion secondary battery which can improve the initial charge and discharge efficiency (initial efficiency) and the cycle retention of a lithium ion secondary battery.A process for producing a cathode active material for a lithium ion secondary battery, which comprises a step (I) of bringing a lithium-containing composite oxide (I) containing Li element and a transition metal element into contact with a washing liquid and then separating it from the washing liquid to obtain a lithium-containing composite oxide (II), a step (II) of bringing the lithium-containing composite oxide (II) into contact with a composition (1) consisting of an aqueous solution containing an anion (A) preferably containing F and a composition (2) consisting of an aqueous solution containing a cation (M) preferably containing Al or Zr, and a step (III) of heating the lithium-containing composite oxide (II) after the step (II), in this order. |
US10062902B2 |
Positive electrode for secondary batteries and secondary battery including the same
Disclosed is a positive electrode for secondary batteries manufactured by coating and rolling a slurry for a positive electrode mix including positive electrode active material particles on a current collector, wherein the positive electrode active material particles include one or more selected from the group consisting of lithium iron phosphate particles having an olivine crystal structure and lithium nickel-manganese-cobalt composite oxide particles according to Formula 1, the lithium nickel-manganese-cobalt composite oxide particles existing as secondary particles formed by agglomeration of primary particles, in an amount of greater than 50% and less than 90% based on the total volume of lithium nickel-manganese-cobalt composite oxide, and the lithium iron phosphate particles existing as primary particles in an amount of greater than 50% and less than 100% based on the total volume of lithium iron phosphate (Formula 1 is the same as defined in Claim 1). |
US10062901B2 |
Negative active material, lithium battery including the material, and method of manufacturing the material
A negative active material, a negative electrode, a lithium battery including the negative active material, and a method of preparing the negative active material. The negative active material includes a crystalline carbonaceous substrate; and metal oxide nanoparticles disposed on a surface of the crystalline carbonaceous substrate, wherein the metal oxide nanoparticles have a rutile structure. The negative active material may be used to improve high temperature stability and lifespan characteristics of a lithium battery. |
US10062900B2 |
Cathode for lithium-containing batteries and solvent-free method for the production thereof
The present invention relates to a process for producing a cathode foil of a lithium-containing battery, comprising: (i) provision of a dry, solvent-free composition which comprises polytetrafluoroethylene, an electrically conductive, electrochemically inactive carbon material and an electrochemically active cathode material, (ii) formation of at least partially fibrillated polytetrafluoroethylene by action of shear forces on the dry, solvent-free composition to give a fibrillated composition, (iii) forming of the fibrillated composition to give a cathode foil. |
US10062899B2 |
Method for preparing graphite-titanium oxide composite
According to an embodiment of the present invention, a method for preparing a graphite-titanium oxide composite comprises (S1) a surface-modifying graphite with benzyl alcohol or a cellulose-based material using a sol-gel method, (S2) distributing the surface-modified graphite in a solvent, adding a titanium precursor to the solvent, and mixing the titanium precursor with the surface-modified graphite to obtain a graphite-titanium mixture, and (S3) thermally treating the graphite-titanium mixture to grow a titanium oxide on a surface of the graphite. |
US10062892B2 |
Switched passive architectures for batteries having two different chemistries
A 12 volt automotive battery system includes a first battery coupled to an electrical system, in which the first battery include a first battery chemistry, and a second battery coupled in parallel with the first battery and selectively coupled to the electrical system via a first switch, in which the second battery includes a second battery chemistry that has a higher coulombic efficiency than the first battery chemistry. The first switch couples the second battery to the electrical system during regenerative braking to enable the second battery to capture a majority of the power generated during regenerative braking. The 12 volt automotive battery system further includes a variable voltage alternator that outputs a first voltage during regenerative braking to charge the second battery and a second voltage otherwise, in which the first voltage is higher than the second voltage. |
US10062889B2 |
Lithium ion secondary battery
A lithium ion secondary battery that includes an electrode smoothing layer formed from a composite material including an active material and an organic substance and provided on the surface of at least one of a positive electrode and a negative electrode, and a lithium-ion permeable ceramic separator layer formed from a composite material including insulating inorganic microparticles and an organic substance provided so as to be opposed to at least one of the positive electrode and negative electrode with the electrode smoothing layer interposed therebetween. |
US10062884B2 |
Universal device for quickly plugging and unplugging battery of a UAV
A universal device for quickly plugging and unplugging a battery of a UAV, includes a battery fixing plate and a battery base assembly wherein the battery fixing plate includes a battery fixing plate body, a male plug and copper pillars located on a front part of the battery fixing plate body, and slots and handheld feet located on both sides of a rear part of the battery fixing plate body, wherein the battery base assembly includes a battery base body formed by assembling a plurality of fiberglass boards, slots and tabs disposed on two sides of an inner wall of the battery base body, and a female socket located on a front part of the battery base body. The universal device for quickly plugging and unplugging a battery of a UAV provided by the present invention have many significant technical effects, such as, the battery can be simply and rapidly replaced; and has a beautiful and reliable structure, the high universality and compatibility low production cost, and simple assembly process, and so on. |
US10062877B2 |
Battery module assembly
Disclosed herein is a battery module assembly including unit modules, each unit module comprising unit cells loaded in a cartridge the unit cells being electrically connected to each other via a bus bar, the battery module assembly including two or more sub modules arranged in a lateral direction to each other, each of the sub modules including two or more unit modules stacked in a vertical direction, each sub module having an external input terminal and an external output terminal, a base plate on which the sub modules are loaded, side cover plates mounted at sides of the sub modules, an upper cover plate loaded on tops of the sub modules, the upper cover plate being fastened and coupled to the sub modules and the side cover plates, a front cover plate mounted at a front of the battery module assembly at which the external input and output terminals of the sub modules are located, the front cover plate being fastened and coupled to the sub modules, the base plate, and the side cover plates, a main bus bar for fixing front ends of the sub modules to each other and connecting the external input and output terminals of the sub modules, and a bracket for fixing rear ends of the sub modules to each other. |
US10062875B2 |
Method of manufacturing secondary battery including fixing tape and protection member, and secondary battery
In a fixing process, a fixing tape is wound around a first side surface of an electrode body and a second side surface which is a rear surface of the first side surface across a first end surface and a second end surface positioned at both ends of the electrode body in a stacking direction of the electrode body, from an outside of the stacked electrode body. In a stacking process before the fixing process, the electrode body is formed, and at least at a corner in the first and second side surfaces of the electrode body on a downstream side of a direction in which the fixing tape is wound, a protection member which protects the corner is disposed. |
US10062871B2 |
Rechargeable battery with tabs
A rechargeable battery is disclosed. In one aspect, the battery includes an electrode assembly including a first electrode, a second electrode, and a separator interposed between the first and second electrodes and a case accommodating the electrode assembly, wherein an opening is formed in the case. The battery also includes a cap plate coupled to and closing the opening of the case, a terminal placed to pass through the cap plate and a first tab interconnecting the terminal and the first electrode, wherein the first tab includes a stretchable first drawn portion. |
US10062869B2 |
Display device having stacked resin layers
A display device includes: a light-emitting element including a light-emitting layer, an anode, and a cathode, the anode and the cathode interposing the light-emitting layer therebetween; a sealing layer covering the light-emitting element, at least an uppermost layer of the sealing layer being composed of a silicon nitride film; a first resin layer stacked on and in contact with the silicon nitride film; and a second resin layer stacked on and in contact with the first resin layer. A difference between refractive indices of the silicon nitride film and the first resin layer is less than 0.3. A difference between refractive indices of the first resin layer and the second resin layer is less than 0.3. |
US10062863B2 |
Display device
A display device includes a display region having a plurality of pixels, each of the plurality of pixels including a pixel electrode formed on an insulating surface, the plurality of pixels being arranged in a matrix shape, a bank covering an end of the pixel electrode, an organic layer including a light emitting layer covering respective light emitting regions on the pixel electrodes, an opposite electrode on the organic layer and the bank, and a first inorganic insulating layer on the opposite electrode, wherein each of the opposite electrode and the first inorganic insulating layer has a discontinuous region between the two adjacent light emitting regions. |
US10062858B2 |
Method for manufacturing an organic electronic device
The invention relates to method for manufacturing an electronic device comprising an organic layer (120). According to this method, a stack with a metal layer (130) and an organic layer (120) as first and second outer layers is structured by etching both these outer layers. In one particular embodiment, an additional metal layer (140) may be generated on the outermost metal layer (130) by galvanic growth through a structured isolation 10 layer (150). After removal of said isolation layer (150), the metal (130) may be etched in the openings of the additional metal layer (140). In a further etching step, the organic material (120) may be removed in said openings, too. |
US10062856B1 |
Flexible display substrate and flexible display apparatus
A flexible display substrate and a flexible display apparatus are provided. The flexible display substrate has a display region including a plurality of pixel units and a peripheral region adjacent to the display region. The flexible display substrate includes a substrate and at least one conductive wire disposed on the substrate, each conductive wire includes at least two first conductive portions and at least one second conductive portion, and two adjacent first conductive portions are electrically connected through the second conductive portion. The Young's modulus of the first conductive portions is greater than that of the second conductive portion, and the resistivity of the first conductive portions is less than that of the second conductive portion. |
US10062855B2 |
Adhesive and method of encapsulating organic electronic device using the same
An adhesive, and an encapsulated product and method of encapsulating an organic electronic device (OED) using the same are provided. The adhesive film serves to encapsulate the OED and includes a curable resin and a moisture absorbent, and the adhesive includes a first region coming in contact with the OED upon encapsulation of the OED and a second region not coming in contact with the OED. Also, the moisture absorbent is present at contents of 0 to 20% and 80 to 100% in the first and second regions, respectively, based on the total weight of the moisture absorbent in the adhesive. |
US10062854B2 |
Organic material and photoelectric conversion element
To provide an organic material represented by General Formula (1) below: where, in General Formula (1), R1 and R2 are each independently an alkyl group having from 2 through 8 carbon atoms, R3 and R4 are each independently a straight-chain alkyl group having 1, 2, 4, 6, or 12 carbon atoms, or a hydrogen atom, and n is an integer of 1 or 2. |
US10062852B2 |
Condensed cyclic compound and organic light-emitting device including the same
A condensed cyclic compound represented by Formula 1: wherein, in Formula 1, groups and variables are the same as described in the specification. |
US10062850B2 |
Amine-based compounds and organic light-emitting devices comprising the same
An organic light-emitting device includes an amine-based compound represented by Formula 1 as a dopant, and an anthracene-based compound represented by Formula 2 as a host: Organic light-emitting devices including the amine-based compound of Formula 1 and the anthracene-based compound of Formula 2 may have an improved efficiency, a low driving voltage, and improved lifetime characteristics. |
US10062849B2 |
Condensed-cyclic compound and organic light-emitting device including the same
A condensed-cyclic compound is represented by Formula 1. An organic light-emitting device includes a first electrode, a second electrode facing the first electrode, and an organic layer between the first electrode and the second electrode and including an emission layer, where the organic layer includes at least one of the condensed-cyclic compounds represented by Formula 1. |
US10062846B2 |
Display device
A manufacturing method of a display device includes: forming, in a resin layer including a display area where a plurality of lower electrodes is formed and a peripheral area surrounding the display area, a band-like groove which divides the resin layer in a form of surrounding the display area; forming an organic electroluminescence layer including a light emitting layer, on the resin layer and inside the band-like groove in such a way as to be placed on the plurality of lower electrodes; irradiating the organic electroluminescence layer with a pulse laser and thus eliminating the organic electroluminescence layer in such a way that a part of the organic electroluminescence layer is left in a shape of an island at least on a bottom surface of the band-like groove and that the bottom surface of the band-like groove is continuously exposed in the form of surrounding the display area. |
US10062838B2 |
Co-fired passive integrated circuit devices
A variety of integrated circuit devices and a method for their formation and integration are provided. The integrated circuit devices may include inductors, capacitors, and/or other passive devices. In an exemplary embodiment, a first substrate is received and a conductive material is applied to the first substrate such that a loop of the conductive material is formed on the first substrate. A magnetic material is applied to the first substrate and surrounds at least a portion of the loop. A thermal process is performed on the first substrate having the conductive material and the magnetic material applied thereupon. The conductive material is bonded to a second substrate, and thereafter, the conductive material and the magnetic material are separated from the first substrate. |
US10062836B2 |
Magnetic sensor and method of manufacturing the same
The magnetic sensor includes a semiconductor substrate having Hall elements on a front surface of the semiconductor substrate, a conductive layer formed on a back surface of the semiconductor substrate, and a magnetic flux converging plate formed on the conductive layer. The magnetic flux converging plate is formed on the back surface of the semiconductor substrate through formation of the base conductive layer on the back surface of the semiconductor substrate, formation of a resist on the base conductive layer having an opening for forming the magnetic flux converging plate, formation of the magnetic flux converging plate in the opening of the resist by electroplating, removal of the resist, and removal of a part of the base conductive layer by etching with the magnetic flux converging plate as a mask. |
US10062835B2 |
Magnetic tunnel junctions
A magnetic tunnel junction comprises a conductive first magnetic electrode comprising magnetic recording material, a conductive second magnetic electrode spaced from the first electrode and comprising magnetic reference material, and a non-magnetic tunnel insulator material between the first and second electrodes. The magnetic reference material of the second electrode comprises a synthetic antiferromagnetic construction comprising two spaced magnetic regions one of which is closer to the tunnel insulator material than is the other. The one magnetic region comprises a polarizer region comprising CoxFeyBz where “x” is from 0 to 90, “y” is from 10 to 90, and “z” is from 10 to 50. The CoxFeyBz is directly against the tunnel insulator. A non-magnetic region comprising an Os-containing material is between the two spaced magnetic regions. The other magnetic region comprises a magnetic Co-containing material. Other embodiments are disclosed. |
US10062831B2 |
Structural health management apparatus and system
A structural health management system may include a structural health management apparatus including a carbon nanotube element configured to generate an electrical output in response to a deformation of the carbon nanotube element, a piezoelectric element configured to actuate in response to an electrical voltage applied to the piezoelectric element, electrode elements coupled to the carbon nanotube element and the piezoelectric element, and a controller communicatively coupled to the structural health management apparatus, wherein the controller is configured to convert the electrical output into data representing a measurement value of a structural abnormality and to initiate application of the electrical voltage to the piezoelectric element to counter the structural abnormality upon the measurement value being equal to or greater than a predetermined threshold value. |
US10062830B2 |
Elastic wave resonator, elastic wave filter, duplexer, and elastic wave device
An elastic wave resonator includes an interdigital transducer electrode provided on a piezoelectric substrate and including a first electrode layer made of Al or an alloy with Al as its primary component and including a first main surface on a side where the piezoelectric substrate is located and a second main surface on the opposite side from the first main surface. An SH wave is used as a propagated elastic wave. When a resonant frequency of the elastic wave resonator is fr and an anti-resonant frequency of the elastic wave resonator is fa, a minimum value of an absolute value of a distortion component in the first main surface calculated through a two-dimensional finite element method is about 1.4×10−3 or less at a frequency f expressed as: f=fr+0.06×bw, where bw is fa−fr. |
US10062829B1 |
Isolator based on nondegenerate three-wave mixing Josephson devices
A technique relates to a superconducting device. A gyrator includes a first mixing device coupled to a second mixing device. A lumped-element resistor is connected in parallel to the gyrator. |
US10062826B2 |
Thermoelectric device
The present disclosure relates to thermoelectric devices useful for a range of thermoelectric applications (e.g., high temperature thermoelectric generation, fluid conditioning). Thermoelectric devices may include one or more heat exchangers (e.g., coolant heat exchanger(s)) and one or more thermoelectric layers adjacent to the heat exchanger(s). An enclosure may surround the thermoelectric layer(s) and heat exchanger(s), providing a barrier from outside fluid (e.g., hot fluid flow). The enclosure may conduct heat between the outside surroundings and the thermoelectric layer(s). The heat exchanger(s) may be spaced from and movable or slidable relative to the enclosure, which may accommodate for certain thermal expansion effects. The enclosure may include a conformable surface adapted to conform substantially to the shape of the thermoelectric layer(s) (e.g., when a vacuum is applied). One or more thermally conductive members (e.g., fins) may extend from the conformable enclosure. Various embodiments of a thermal switch are also described. |
US10062825B2 |
Thermo-electric generator module
Described herein are a thermo-electric generator module and a method for constructing the thermo-electric generator module. The thermo-electric generator module includes a plurality of thermo-electric plates on a surface of a heat absorption member; and a heat dissipation region that encases the heat absorption member. The thermo-electric module is connected in series with other thermo-electric generator modules to facilitate generation of electricity. |
US10062819B2 |
Shallow reflector cup for phosphor-converted LED filled with encapsulant
An LED die conformally coated with phosphor is mounted at the base of a shallow, square reflector cup. The cup has flat reflective walls that slope upward from its base to its rim at a shallow angle of approximately 33 degrees. A clear encapsulant completely fills the cup to form a smooth flat top surface. Any emissions from the LED die or phosphor at a low angle are totally internally reflected at the flat air-encapsulant interface toward the cup walls. This combined LED/phosphor light is then reflected upward by the walls and out of the package. Since a large percentage of the light emitted by the LED and phosphor is mixed by the TIR and the walls prior to exiting the package, the color and brightness of the reflected light is fairly uniform across the beam. The encapsulant is intentionally designed to enhance TIR to help mix the light. |
US10062818B2 |
Optoelectronic device comprising light-emitting diodes with improved light extraction
An optoelectronic device including a semiconductor substrate having a face, light-emitting diodes arranged on the face and including wired conical or frustoconical semiconductor elements, and an at least partially transparent dielectric layer covering the light-emitting diodes, the refractive index of the dielectric layer being between 1.6 et 1.8. |
US10062816B2 |
Light-emitting device and manufacturing method thereof
A light-emitting device includes a light-emitting element, a wavelength conversion layer and a light pervious element. The light-emitting element includes a top surface, a bottom surface, a plurality of side surfaces connecting to the top surface and the bottom surface, and a first electrical contact formed on the bottom surface. The wavelength conversion layer covers the top surface of the light-emitting element to form a first thickness, has an average thickness, and includes a transparent binder and a plurality of wavelength conversion particles having an equivalent particle diameter D50. The light pervious element includes a light exiting surface and is disposed on the wavelength conversion layer. The D50 of the wavelength conversion particles is not great than 10 μm. A ratio of the average thickness to the D50 of the wavelength conversion layer is ranged from 6 to 20. |
US10062813B2 |
Optoelectronic device and method for producing an optoelectronic device
An optoelectronic component (100) comprises an optoelectronic semiconductor chip (10), a first contact area (31) and a second contact area (32), which is laterally offset with respect to the first contact area and is electrically insulated therefrom, and a housing element (40). The first contact area (31) is electrically conductively connected to the first semiconductor layer (21) and the second contact area (32) is electrically conductively connected to the second semiconductor layer (22) of the optoelectronic semiconductor chip. The first contact area (31) and the second contact area (32) project beyond the optoelectronic semiconductor chip laterally in each case. The housing element (40) is fixed to the first contact area (31) and the second contact area (32) in regions in which the first contact area (31) and the second contact area (32) project beyond the optoelectronic semiconductor chip laterally in each case. The housing element surrounds the optoelectronic semiconductor chip at least partly. A surface of the housing element that faces the optoelectronic semiconductor chip is embodied as reflective at least in partial regions. A wall of the housing element has a cutout (61). |
US10062811B2 |
Light-emitting element and light-emitting element array comprising the same
Embodiments of a light-emitting element and a light-emitting element array comprise: a light-emitting structure which includes a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer; first and second electrodes which are disposed respectively on the first and second conductive type semiconductor layers; and an insulation layer which is disposed on the light-emitting structure exposed between the first electrode and the second electrode, wherein the second electrode comprises a light-emitting element including: a first part which overlaps with the second conductive type semiconductor layer in the thickness direction of the light-emitting structure; and a second part which extends from the first part and does not overlap with the second conductive type semiconductor layer in the thickness direction, thereby being capable of improving the productivity of a light-emitting element manufacturing process while minimizing the light leakage phenomenon between the light-emitting structure and the second electrode. |
US10062810B2 |
Light-emitting diode module having light-emitting diode joined through solder paste and light-emitting diode
Described are a light emitting diode and a light emitting diode module. The light emitting diode module includes a printed circuit board and a light emitting diode joined thereto through a solder paste. The light emitting diode includes a first electrode pad electrically connected to a first conductive type semiconductor layer and a second electrode pad connected to a second conductive type semiconductor layer, wherein each of the first electrode pad and the second electrode pad includes at least five pairs of Ti/Ni layers or at least five pairs of Ti/Cr layers and the uppermost layer of Au. Thus a metal element such as Sn in the solder paste is prevented from diffusion so as to provide a reliable light emitting diode module. |
US10062809B2 |
Light emitting device package, backlight unit, lighting device and its manufacturing method
Disclosed are a light emitting device package, a backlight unit, and a lighting device which are usable for a display or lighting, and a method of manufacturing the light emitting device package. The light emitting device package includes: a substrate; a light emitting device seated on the substrate; a reflecting member provided on the substrate and provided with a reflector cup surrounding a lateral circumference of the light emitting device; a transparent encapsulant charged in the reflector cup of the reflecting member in a flow state and hardened, and provided with a concave phosphor accommodating space in an upper surface thereof; and a phosphor charged in the phosphor accommodating space in a flow state and hardened. |
US10062808B2 |
Optoelectronic device with improved reflectivity
The invention concerns an optoelectronic device (40) comprising: a substrate (14); a first layer (42) covering the substrate, the first layer having a thickness greater than or equal to 15 nm and comprising a first material having an extinction coefficient greater than or equal to 3 for any wavelength between 380 and 650 nm; a second layer (18) covering and in contact with the first layer, the second layer having a thickness less than or equal to 20 nm and comprising a second material having a refraction index of between 1 and 3 and an extinction coefficient less than or equal to 1.5 or any wavelength between 380 and 650 nm; and conical or frustoconical wire semiconductor elements (24) each having a light-emitting diode stack (DEL), being in contact with the second layer. |
US10062807B2 |
Method for manufacturing nitride semiconductor template
There is provided a method for manufacturing a nitride semiconductor template, including the steps of: growing and forming a buffer layer to be thicker than a peak width of a projection and in a thickness of not less than 11 nm and not more than 400 nm on a sapphire substrate formed by arranging conical or pyramidal projections on its surface in a lattice pattern; and growing and forming a nitride semiconductor layer on the buffer layer. |
US10062804B2 |
Method of manufacturing nano-scale LED electrode assembly comprising selective metal ohmic layer
A method of manufacturing a nano-scale LED electrode assembly including a selective metal ohmic layer is disclosed. Specifically, the method can be useful in increasing conductivity between a nano-scale LED device and electrodes and also reducing contact resistance therebetween by depositing a conductive material in a region in which the nano-scale LED device comes in contact with the electrodes so as to improve the contact between the nano-scale LED device and the electrodes, thereby further improving light extraction efficiency of the nano-scale LED device. |
US10062800B2 |
Photovoltaic devices and method of making
A photovoltaic device is presented. The photovoltaic device includes a layer stack; and an absorber layer is disposed on the layer stack. The absorber layer includes selenium, and an atomic concentration of selenium varies non-linearly across a thickness of the absorber layer. A method of making a photovoltaic device is also presented. |
US10062799B2 |
Quantum-dot photoactive-layer and method for manufacture thereof
Provided are a method of manufacturing a quantum-dot photoactive-layer including: alternately depositing an amorphous silicon compound layer and a silicon-rich compound layer containing conductive impurities and an excess of silicon based on a stoichiometric ratio on a silicon substrate to form a composite multi-layer; and heat treating the composite multi-layer to form a plurality of silicon quantum-dots in a matrix corresponding to a silicon compound, wherein an amorphous silicon layer containing the conductive impurities is formed at least one time instead of the silicon-rich compound layer, and a quantum-dot photoactive-layer manufactured using the method as described above. |
US10062798B2 |
Multiband double junction photodiode and related manufacturing process
A photodiode structure is based on the use of a double junction sensitive to different wavelength bands based on a magnitude of a reverse bias applied to the photodiode. The monolithic integration of a sensor with double functionality in a single chip allows realization of a low cost ultra-compact sensing element in a single packaging useful in many applications which require simultaneous or spatially synchronized detection of optical photons in different spectral regions. |
US10062795B2 |
Sealing sheet for solar cell
A solar cell encapsulant sheet including a resin layer (S) formed of a resin composition containing an olefine-based resin, wherein the storage elastic modulus at 25° C. of the resin layer (S) is 200 MPa or less, at least one surface of the resin layer (S) is the sheet surface of the encapsulant sheet, and the sheet surface satisfies the following requirements (a), (b) and (c): (a) the dynamic friction coefficient on a tempered white glass plate is 1.5 or less, (b) the surface roughness Rzjis is from 0.1 to 50 μm, and (c) the static friction coefficient on a tempered white glass plate is 1.5 or less. |
US10062792B2 |
Method of making a CZTS/silicon thin-film tandem solar cell
A method of making a CZTS/inorganic thin-film tandem solar cell including depositing a textured buffer layer on a substrate, depositing a metal-inorganic film from a eutectic alloy on the buffer layer, and depositing additional elements in CZTS forming a CZTS layer based on the metal from the metal-inorganic film, the metal being incorporated into the CZTS film. |
US10062787B2 |
FinFET
A FinFET includes a fin structure, a gate, a source-drain region and an inter layer dielectric (ILD). The gate crosses over the fin structure. The source-drain region is in the fin structure. The ILD is laterally adjacent to the gate and includes a dopant, in which a dopant concentration of the ILD adjacent to the gate is lower than a dopant concentration of the ILD away from the gate. |
US10062784B1 |
Self-aligned gate hard mask and method forming same
A method includes forming a metal gate in a first inter-layer dielectric, performing a treatment on the metal gate and the first inter-layer dielectric, selectively growing a hard mask on the metal gate without growing the hard mask from the first inter-layer dielectric, depositing a second inter-layer dielectric over the hard mask and the first inter-layer dielectric, planarizing the second inter-layer dielectric and the hard mask, and forming a gate contact plug penetrating through the hard mask to electrically couple to the metal gate. |
US10062783B2 |
Silicon germanium fin channel formation
A method for channel formation in a fin transistor includes removing a dummy gate and dielectric from a dummy gate structure to expose a region of an underlying fin and depositing an amorphous layer including Ge over the region of the underlying fin. The amorphous layer is oxidized to condense out Ge and diffuse the Ge into the region of the underlying fin to form a channel region with Ge in the fin. |
US10062782B2 |
Method of manufacturing a semiconductor device with multilayered channel structure
A semiconductor device includes a fin field effect transistor (FinFET). The FinFET includes a channel disposed on a fin, a gate disposed over the channel and a source and drain. The channel includes at least two pairs of a first semiconductor layer and a second semiconductor layer formed on the first semiconductor layer. The first semiconductor layer has a different lattice constant than the second semiconductor layer. A thickness of the first semiconductor layer is three to ten times a thickness of the second semiconductor layer at least in one pair. |
US10062781B2 |
MOS devices having epitaxy regions with reduced facets
An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region. The second silicon germanium region comprises a portion in the opening. The second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap substantially free from germanium is over the second silicon germanium region. |
US10062780B2 |
FinFET device
A FinFET device and a method of forming the same are disclosed. In accordance with some embodiments, a FinFET device includes a substrate having at least one fin, a gate stack across the at least one fin, a strained layer aside the gate stack and a silicide layer over the strained layer. The strained layer has a boron surface concentration greater than about 2E20 atom/cm3 within a depth range of about 0-5 nm from a surface of the strained layer. |
US10062778B2 |
Semiconductor device
A semiconductor device according to the present invention includes: an insulating layer; a semiconductor layer of a first conductive type laminated on the insulating layer; an annular deep trench having a thickness reaching the insulating layer from a top surface of the semiconductor layer; a body region of a second conductive type formed across an entire thickness of the semiconductor layer along a side surface of the deep trench in an element forming region surrounded by the deep trench; a drift region of the first conductive type constituted of a remainder region besides the body region in the element forming region; a source region of the first conductive type formed in a top layer portion of the body region; a drain region of the first conductive type formed in a top layer portion of the drift region; and a first conductive type region formed in the drift region, having a deepest portion reaching a position deeper than the drain region, and having a first conductive type impurity concentration higher than the first conductive type impurity concentration of the semiconductor layer and lower than the first conductive type impurity concentration of the drain region. |
US10062777B2 |
Trench gate trench field plate vertical MOSFET
A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions. |
US10062776B2 |
Semiconductor structure and manufacturing method thereof
The present disclosure provides a semiconductor device and a method for manufacturing the same. The semiconductor device comprises a substrate, a first III-V compound layer over the substrate, a second III-V compound layer on the first III-V compound layer, a third III-V compound layer on the second III-V compound layer, a source region on the third III-V compound layer, and a drain region on the third III-V compound layer. A percentage of aluminum of the third III-V compound layer is greater than that of the second III-V compound layer. |
US10062775B2 |
GaN-based power electronic device and method for manufacturing the same
A GaN-based power electronic device and a method for manufacturing the same is provided. The GaN-based power electronic device comprising a substrate and an epitaxial layer over the substrate. The epitaxial layer comprises a GaN-based heterostructure layer, a superlattice structure layer and a P-type cap layer. The superlattice structure layer is provided over the heterostructure layer, and the P-type cap layer is provided over the superlattice structure layer. By using this electronic device, gate voltage swing and safe gate voltage range of the GaN-based power electronic device manufactured on the basis of the P-type cap layer technique may be further extended, and dynamic characteristics of the device may be improved. Therefore, application process for the GaN-based power electronic device that is based on the P-type cap layer technique will be promoted. |
US10062772B2 |
Preventing bridge formation between replacement gate and source/drain region through STI structure
A method includes forming at least one fin above a semiconductor substrate. An isolation structure is formed adjacent the fin. A liner layer is formed above the isolation structure adjacent an interface between the fin and the isolation structure. The liner layer includes a material different than the isolation structure. A sacrificial gate structure is formed above a portion of the fin and includes a sacrificial gate insulation layer and a sacrificial gate structure. The sacrificial gate structure is removed. The sacrificial gate insulation layer is removed selectively to the liner layer. A replacement gate structure is formed above a portion of the fin in a cavity defined by removing the sacrificial gate structure. |
US10062770B2 |
Complementary metal oxide semiconductor field effect transistor, metal oxide semiconductor field effect transistor and manufacturing method thereof
A complementary metal oxide semiconductor field-effect transistor (MOSFET) includes a substrate, a first MOSFET and a second MOSFET. The first MOSFET is disposed on the substrate within a first transistor region and the second MOSFET is disposed on the substrate within a second transistor region. The first MOSFET includes a first fin structure, two first lightly-doped regions, two first doped regions and a first gate structure. The first fin structure includes a first body portion and two first epitaxial portions, wherein each of the first epitaxial portions is disposed on each side of the first body portion. A first vertical interface is between the first body portion and each of the first epitaxial portions so that the first-lightly doped region is able to be uniformly distributed on an entire surface of each first vertical interface. |
US10062767B2 |
Memory cell and fabrication method thereof
Memory cells and fabrication methods thereof are provided. An exemplary method includes providing a substrate having a well region; forming a select gate structure, a floating gate structure and a dummy gate structure on a surface of the well region; forming a first lightly doped region, a second lightly doped region and a third lightly doped region in the well region, the first lightly doped region and the second lightly doped region being at two sides of the select gate structure respectively, the second lightly doped region being in between the select gate structure and the floating gate structure, and the third lightly doped region being in between the floating gate structure and the dummy gate structure; and forming bit line region in the first lightly doped region and a source region in the third lightly doped region, the source region being enclosed by the third lightly doped region. |
US10062763B2 |
Method and apparatus for selectively forming nitride caps on metal gate
A sacrificial cap is grown on an upper surface of a conductor. A dielectric spacer is against a side of the conductor. An upper dielectric side spacer is formed on a sidewall of the sacrificial cap. The sacrificial cap is selectively etched, leaving a cap recess, and the upper dielectric side spacer facing the cap recess. Silicon nitride is filled in the cap recess, to form a center cap and a protective cap having center cap and the upper dielectric spacer. |
US10062758B2 |
Semiconductor device
A semiconductor device having a low feedback capacitance and a low switching loss. The semiconductor device includes: a substrate; a drift layer formed on a surface of the semiconductor substrate; a plurality of first well regions formed on a surface of the drift layer; a source region which is an area formed on a surface of each of the first well regions and defining, as a channel region, the surface of each of the first well regions interposed between the area and the drift layer; a gate electrode formed over the channel region and the drift layer thereacross through a gate insulating film; and second well regions buried inside the drift layer below the gate electrode and formed to be individually connected to each of the first well regions adjacent to one another. |
US10062757B2 |
Semiconductor device with buried metallic region, and method for manufacturing the semiconductor device
A semiconductor device includes: a semiconductor body including an active region that houses an electronic component and a passive dielectric region surrounding the active region; a conductive buried region, of metallic material or metallic alloy, which extends in the semiconductor body in the active region; and one or more electrical contacts, of metallic material, which extend between the conductive buried region and a top surface of the semiconductor body, and form respective paths for electrical access to the conductive buried region. |
US10062755B2 |
Nanotube termination structure for power semiconductor devices
Semiconductor devices are formed using a thin epitaxial layer (nanotube) formed on sidewalls of dielectric-filled trenches. In one embodiment, a termination structure is formed in the termination area and includes an array of termination cells formed in the termination area, the array of termination cells including a first termination cell at an interface to the active area to a last termination cell, each termination cell in the array of termination cells being formed in a mesa of the first semiconductor layer and having a first width; and an end termination cell being formed next to the last termination cell in the termination area, the end termination cell being formed in an end mesa of the first semiconductor layer and having a second width greater than the first width. |
US10062754B2 |
Semiconductor devices and methods of fabricating the same
A semiconductor device includes a substrate provided with an active pattern; a gate structure provided on the active pattern to cross the active pattern; and source/drain regions provided at both sides of the gate structure. The active pattern includes a first region below the gate structure and second regions at both sides of the gate structure. A top surface of each of the second regions is lower than that of the first region. The source/drain regions are provided on the second regions, respectively, and each of the source/drain regions covers partially both sidewalls of each of the second regions. |
US10062753B2 |
Semiconductor device
A semiconductor device includes a semiconductor substrate having a drift layer, a base layer, a collector layer and a cathode layer. The semiconductor substrate includes a cell region and an outer peripheral region surrounding the cell region. The cell region includes an IGBT region and a diode region. The semiconductor substrate further includes a damage region arranged in the diode region and a part of the outer peripheral region adjacent to a boundary between the outer peripheral region and the diode region. A length, in a longitudinal direction of the diode region, of the part of the outer peripheral region, in which the damage region is arranged, is equal to or more than twice of a thickness of the semiconductor substrate. As a result, recovery characteristic is improved in a portion of the diode region adjacent to the boundary between the outer peripheral region and the diode region. |
US10062752B1 |
Fabrication of nanowire vertical gate devices
A method of forming a nanowire heterostructure, including, forming a dummy nanowire on a substrate, forming a sacrificial cover layer on the dummy nanowire, forming a spacer layer on a portion of the sacrificial cover layer, wherein a portion of the sacrificial cover layer extends above the top surface of the spacer layer, removing the portion of the sacrificial cover layer that extends above the top surface of the spacer layer, forming a gate structure on the spacer layer and a remaining portion of the sacrificial cover layer, forming an interlayer dielectric (ILD) layer on the gate structure, removing the dummy nanowire to form a nanowire trench, and forming a replacement nanowire in the nanowire trench. |
US10062745B2 |
Methods of forming an array of capacitors, methods of forming an array of memory cells individually comprising a capacitor and a transistor, arrays of capacitors, and arrays of memory cells individually comprising a capacitor and a transistor
A method of forming an array of capacitors comprises forming elevationally-extending and longitudinally-elongated capacitor electrode lines over a substrate. Individual of the capacitor electrode lines are common to and a shared one of two capacitor electrodes of individual capacitors longitudinally along a line of capacitors being formed. A capacitor insulator is formed over a pair of laterally-opposing sides of and longitudinally along individual of the capacitor electrode lines. An elevationally-extending conductive line is formed over the capacitor insulator longitudinally along one of the laterally-opposing sides of the individual capacitor electrode lines. The conductive line is cut laterally through to form spaced individual other of the two capacitor electrodes of the individual capacitors. Other methods are disclosed, including structures independent of method of manufacture. |
US10062744B2 |
Display module
An organic display device includes a pixel driving circuit having a thin film transistor connected to a current supply line and a capacitor. A first insulation layer, with a first electrode thereon, covers a source electrode of the transistor. The first electrode is connected to the transistor through a contact hole the insulation layer. A second insulation layer including an aperture is formed on the first insulation layer and electrode layers. An organic light emitting layer, with a second electrode thereon is formed in the aperture and connected to the first electrode. The second insulation layer includes an inner wall at the aperture, said inner will having a surface of a convex plane on an edge of the recessed part of the first electrode. The convex plane is located between the organic light emitting layer and the edge of the first electrode, and the second electrode is formed over plurality of pixels. |
US10062741B2 |
Method for manufacturing bonded body
A method of manufacturing joined body including: firstly, putting sheet material in intimate contact with first substrate to cover, with resin layer of sheet material, areas of first substrate including first area, boundary area surrounding first area, and second area located across from first area with respect to boundary area, sheet material being laminate including resin layer and separable layer, resin layer containing uncured sealing resin; secondly, curing sealing resin in part of resin layer covering boundary area; thirdly, removing, along with separable layer, part of resin layer covering second area in one direction from one end towards the other of two ends of second area; and fourthly, joining first substrate and second substrate together by arranging second substrate to face first substrate and curing sealing resin with parts of resin layer covering boundary area and first area located between second substrate and first substrate. |
US10062737B2 |
OLED pixel arrangement structure and display device
An OLED pixel arrangement structure includes multiple first sub-pixels, multiple second sub-pixels and multiple third sub-pixels. Four adjacent ones of the first sub-pixels and four adjacent ones of the second sub-pixels are alternately arranged and surround one of the third sub-pixels. Centers of the four adjacent first sub-pixels and centers of the four adjacent second sub-pixels form vertexes of a virtual octagonal cell, and the virtual octagonal cell has at least two orthogonal symmetry axes, a basic pixel unit is formed by the first sub-pixels and the second sub-pixels forming the virtual octagonal cell and a part of the third sub-pixel inside the virtual octagonal cell which are located on one side of one of the at least two orthogonal symmetry axes of the virtual octagonal cell. A center of the third sub-pixel coincides with a center of the virtual octagonal cell. |
US10062734B2 |
Method for fabricating a semiconductor device
A method for fabricating a semiconductor device includes the steps of: forming a channel layer on a substrate; forming a gate dielectric layer on the channel layer; forming a source layer near one side of the gate dielectric layer and a drain layer near another side of the gate dielectric layer; forming a bottom gate on the gate dielectric layer; forming a phase change layer on the bottom gate; and forming a top gate on the phase change layer. |
US10062730B2 |
Light-emitting structure
Disclosed herein is a light-emitting device. The light-emitting device includes a substrate; a first light-emitting unit and a second light-emitting unit, separately formed on the substrate; a trench between the first and the second light-emitting units, including a bottom portion exposing the substrate; an insulating layer, comprising a first part formed on the first light-emitting unit or the second light-emitting unit, and a second part conformably formed on the trench covering the bottom portion and sidewalls of the first light-emitting unit and the second light-emitting unit; and an electrical connection, electrically connecting the first light-emitting unit and the second light-emitting unit, comprising a bridging portion formed on the second part of the insulating layer, and only covering a portion of the trench; and a joining portion, extending from the bridging portion and formed on the first part of the insulating layer; wherein the bridging portion is wider than the joining portion in a top view. |
US10062729B2 |
Light-emitting diode chip
A light-emitting diode (LED) chip includes a substrate, a light-emitting component, an electrical static discharge (ESD) protection component, and a conductive layer. The light-emitting component is disposed on the substrate and includes a first semiconductor layer, a first quantum well layer, and a second semiconductor layer, in which the first quantum well layer is disposed between the first and second semiconductor layers. The ESD protection component is disposed on the substrate and includes a third semiconductor layer, a second quantum well layer, and a fourth semiconductor layer, in which the second quantum well layer is disposed between the third and the fourth semiconductor layers. The first and the fourth semiconductor layers are electrically connected with each other through the conductive layer, and the second and the third semiconductor layers are electrically isolated from each other before packaging the LED chip. |
US10062726B2 |
Imaging device
An imaging device including a unit pixel cell including a semiconductor substrate having a surface including a first area and a second area surrounded by the first area. The semiconductor substrate including a first region of a first conductivity type exposed to the surface in the first area, and a second region of a second conductivity type directly adjacent to the first region and exposed to the surface in the second area; a photoelectric converter; an amplifier; a contact plug connected to the second region; a first transistor including a first electrode; a second electrode covering a second portion of the first area; and a second insulation layer between the second electrode and the semiconductor substrate. When viewed in a direction perpendicular to the surface of the semiconductor substrate, a contact between the second region and the contact plug is located between the first electrode and the second electrode. |
US10062723B2 |
Semiconductor device including a solid state imaging device
A semiconductor device is reduced in power consumption, the semiconductor device including a solid-state imaging device that includes pixels each having a plurality of light receiving elements. A pixel having first and second photodiodes is provided with a first transfer transistor that transfers charge in the first photodiode to a floating diffusion capacitance section, and a second transfer transistor that combines charge in the first photodiode and charge in the second photodiode, and transfers the combined charge to the floating diffusion capacitance section. Consequently, the semiconductor device is reduced in power required for activation of each transfer transistor in operation such as imaging with the solid-state imaging device. |
US10062720B2 |
Deep trench isolation fabrication for BSI image sensor
The present disclosure relates to an integrated circuit, and an associated method of formation. In some embodiments, the integrated circuit comprises a deep trench grid disposed at a back side of a substrate. A passivation layer lines the deep trench grid within the substrate. The passivation layer includes a first high-k dielectric layer and a second high-k dielectric layer disposed over the first high-k dielectric layer. A first dielectric layer is disposed over the passivation layer, lining the deep trench grid and extending over an upper surface of the substrate. A second dielectric layer is disposed over the first dielectric layer and enclosing remaining spaces of the deep trench grid to form air-gaps at lower portions of the deep trench grid. The air-gaps are sealed by the first dielectric layer or the second dielectric layer below the upper surface of the substrate. |
US10062713B1 |
Devices and methods for fully depleted silicon-on-insulator back biasing
An integrated circuit includes a first device having a first threshold voltage (Vt) adjusting implant extension region having a first conductivity type and extending from a first implant rail region under an entirety of a first channel region. The first implant rail region and first Vt adjusting implant extension region are contiguous, and the first channel region is over an insulating layer and the insulating layer is over the first implant rail region and first Vt adjusting implant extension region. A second device has a second Vt adjusting implant extension region having the first conductivity type and extending from a second implant rail region under an entirety of a second channel region. The second implant rail region and second Vt adjusting implant extension region are contiguous, and the second channel region is over the insulating layer and the insulating layer is over the second implant rail region and second Vt adjusting implant extension region. |
US10062705B1 |
Method of manufacturing a flash memory
A method of manufacturing a flash memory includes providing a substrate, a memory gate on the substrate, a hard mask on the memory gate, a spacer on a sidewall of the memory gate, and a select gate disposed on a sidewall of the spacer. A first silicon oxide layer is formed to conformally cover the memory gate, the hard mask, the spacer, and the select gate. A thickness of the first silicon oxide layer is smaller than 0.54 of a thickness of the hard mask. Later, the first silicon oxide layer is thinned by a dry etching process. After that, the first silicon oxide layer and the hard mask are entirely removed by a wet etching process. |
US10062703B2 |
Methods of forming a ferroelectric memory cell
A method of forming a ferroelectric memory cell. The method comprises forming an electrode material exhibiting a desired dominant crystallographic orientation. A hafnium-based material is formed over the electrode material and the hafnium-based material is crystallized to induce formation of a ferroelectric material having a desired crystallographic orientation. Additional methods are also described, as are semiconductor device structures including the ferroelectric material. |
US10062700B2 |
Semiconductor storage device and manufacturing method thereof
A manufacturing method of a semiconductor storage device includes forming a plurality of bit line structures on a semiconductor substrate and forming a plurality of storage node contacts disposed between the bit line structures. The method of forming the storage node contacts includes forming a plurality of conductive patterns on the semiconductor substrate followed by performing an etching back process to the conductive patterns for decreasing a thickness of the conductive patterns. The manufacturing method further includes forming a plurality of isolation patterns between the conductive patterns, wherein the isolation patterns are formed after forming the plurality of conductive patterns and before the etching back process. According to the present invention, the storage node contacts are formed by first forming the conductive patterns and then forming the isolation patterns between the conductive patterns, so as to simplify manufacturing process and increase process yield. |
US10062694B2 |
Patterned gate dielectrics for III-V-based CMOS circuits
Semiconductor devices and methods of making the same include forming a first channel region on a first semiconductor region. A second channel region is formed on a second semiconductor region, the second semiconductor region being formed from a semiconductor material that is different from a semiconductor material of the first semiconductor region. A gate dielectric layer is formed over one or more of the first and second channel regions. A nitrogen-containing layer is formed on the gate dielectric layer. A gate is formed on the gate dielectric. |
US10062693B2 |
Patterned gate dielectrics for III-V-based CMOS circuits
Semiconductor devices and methods of making the same include forming a first channel region on a first semiconductor region. A second channel region is formed on a second semiconductor region, the second semiconductor region being formed from a semiconductor material that is different from a semiconductor material of the first semiconductor region. A nitrogen-containing layer is formed on one or more of the first and second channel regions. A gate dielectric layer is formed over the nitrogen-containing layer. A gate is formed on the gate dielectric. |
US10062691B2 |
Semiconductor device having contact plug and method of forming the same
A semiconductor device includes merged contact plugs. A multi-fin active having N sub-fins is formed in a substrate. A contact plug is formed on the impurity areas. N is an integer between about eight (8) and about one thousand (1000). The N sub-fins include a first sub-fin formed in the outermost portion of the multi-fin active and a second sub-fin formed near the first sub-fin. A straight line perpendicular to a surface of the substrate and passes through a virtual bottom edge of the contact plug is disposed between the first sub-fin and the second sub-fin, or through the second sub-fin. The virtual bottom edge of the contact plug is defined at a cross point of a correlation line extending on a side surface of the contact plug and a horizontal line in contact with a lowermost end of the contact plug and parallel to the surface of the substrate. |
US10062687B2 |
Stack MOM capacitor structure for CIS
A semiconductor device includes a semiconductor substrate, an interlayer dielectric layer on the semiconductor substrate, a capacitor on the interlayer dielectric layer, and a PN-junction diode in the semiconductor substrate and below the capacitor. The PN-junction diode includes a p-type ion implanted region and an n-well located below the p-type ion implanted region and completely surrounding the p-type ion implanted region. The PN-junction diode in the semiconductor substrate may prevent noise from entering the capacitor to improve the noise immunity of the semiconductor device. |
US10062686B2 |
Reverse bipolar junction transistor integrated circuit
A Reverse Bipolar Junction Transistor (RBJT) integrated circuit comprises a bipolar transistor and a parallel-connected distributed diode, where the base region is connected neither to the collector electrode nor to the emitter electrode. The bipolar transistor has unusually high emitter-to-base and emitter-to-collector reverse breakdown voltages. In the case of a PNP-type RBJT, an N base region extends into a P− epitaxial layer, and a plurality of P++ collector regions extend into the base region. Each collector region is annular, and rings a corresponding diode cathode region. Parts of the epitaxial layer serve as the emitter, and other parts serve as the diode anode. Insulation features separate metal of the collector electrode from the base region, and from P− type silicon of the epitaxial layer, so that the diode cathode is separated from the base region. This separation prevents base current leakage and reduces power dissipation during steady state on operation. |
US10062685B2 |
Variable snubber for MOSFET application
Aspects of the present disclosure describe MOSFET devices that have snubber circuits. The snubber circuits comprise one or more resistors with a dynamically controllable resistance that is controlled by changes to a gate and/or drain potentials of the one or more MOSFET structures during switching events. |
US10062682B1 |
Low capacitance bidirectional transient voltage suppressor
A bidirectional transient voltage suppressor (TVS) circuit for data pins of electronic devices includes two sets of steering diodes and a diode triggered clamp device in some embodiment. In other embodiments, a bidirectional transient voltage suppressor (TVS) circuit for data pins of electronic devices includes two sets of steering diodes with a clamp device merged with a steering diode in each set. The TVS circuit is constructed to realize low capacitance at the protected nodes and improved clamping voltage for robust protection against surge evens. In some embodiments, the TVS circuit realizes low capacitance at the protected nodes by fully or almost completely depleting the P-N junction connected to the protected nodes in the operating voltage range. In this manner, the TVS circuit does not present undesirable parasitic capacitance to the data pins being protected, especially when the data pins are applied in high speed applications. |
US10062674B1 |
Systems and methods for display formation using photo-machinable material substrate layers
Embodiments are related to scalable surface structure (e.g., a well or other structure) formation in a substrate and, more particularly, to systems and methods for forming displays using a photo-machinable material layer. |
US10062668B2 |
Semiconductor electronic device with improved testing features and corresponding packaging method
An electronic device provided with a package housing a stacked structure formed by dies of semiconductor material, which have a respective integrated circuit and a respective top surface, which extends in a horizontal plane, and are stacked on one another in a vertical direction, transverse to the horizontal plane, and staggered parallel to the same horizontal plane. Provided at a first portion of the top surface is a first plurality of contact pads, and provided at a second portion of the top surface is a second plurality of contact pads. The first portion is covered by a overlying die, and the second portion is exposed and freely accessible. At least some of the contact pads of the first plurality are electrically coupled to internal through silicon vias traversing a substrate of the overlying die to put overlapping dies in electrical contact. |
US10062667B2 |
Stacked microfeature devices and associated methods
Stacked microfeature devices and associated methods of manufacture are disclosed. A package in accordance with one embodiment includes first and second microfeature devices having corresponding first and second bond pad surfaces that face toward each other. First bond pads can be positioned at least proximate to the first bond pad surface and second bond pads can be positioned at least proximate to the second bond pad surface. A package connection site can provide electrical communication between the first microfeature device and components external to the package. A wirebond can be coupled between at least one of the first bond pads and the package connection site, and an electrically conductive link can be coupled between the first microfeature device and at least one of the second bond pads of the second microfeature device. Accordingly, the first microfeature device can form a portion of an electrical link to the second microfeature device. |
US10062664B2 |
Semiconductor packaging device with heat sink
A semiconductor packaging device includes: a first chip disposed separately from the first chip on a substrate; a second chip disposed on the substrate, wherein the first chip and the second chip comprise a first heat energy producing rating and a second heat energy producing rating, respectively, the first heat energy producing rating is different from the second heat energy producing rating; and a heat sink arranged in thermal communication with the first chip and the second chip, wherein the heat sink is arranged to have a first slot configured substantially along a separation region between the first chip and the second chip. |
US10062654B2 |
Semicondcutor structure and semiconductor manufacturing process thereof
A semiconductor structure has an integrated circuit component, a conductive contact pad, a seal ring structure, a conductive via, a ring barrier, and a mold material. The conductive contact pad is disposed on and electrically connected with the integrated circuit component. The seal ring structure is disposed on the integrated circuit component and surrounding the conductive contact pad. The conductive via is disposed on and electrically connected with the conductive contact pad. The ring barrier is disposed on the seal ring structure. The ring barrier surrounds the conductive via. The mold material covers side surfaces of the integrated circuit component. A semiconductor manufacturing process is also provided. |
US10062652B2 |
Fan-out semiconductor package and method of manufacturing same
The present disclosure relates to a fan-out semiconductor package including a frame having a through hole, a semiconductor chip disposed in the through hole, a first encapsulant disposed in a space between the frame and the semiconductor chip, a second encapsulant disposed on one sides of the frame and the semiconductor chip, and a redistribution layer disposed on the other sides of the frame and the semiconductor chip, and a method of manufacturing the same. The first encapsulant and the second encapsulant may include different materials. |
US10062648B2 |
Semiconductor package and method of forming the same
An embodiment is a structure including a first die having an active surface with a first center point, a molding compound at least laterally encapsulating the first die, and a first redistribution layer (RDL) including metallization patterns extending over the first die and the molding compound. A first portion of the metallization patterns of the first RDL extending over a first portion of a boundary of the first die to the molding compound, the first portion of the metallization patterns not extending parallel to a first line, the first line extending from the first center point of the first die to the first portion of the boundary of the first die. |
US10062644B2 |
Copper interconnect for improving radio frequency (RF) silicon-on-insulator (SOI) switch field effect transistor (FET) stacks
A radio frequency (RF) switch includes a plurality of silicon-on-insulator (SOI) CMOS transistors. A first metal layer (M1) includes traces that connect the SOI CMOS transistors in series to form the RF switch. The first metal layer has a first metal composition. Additional metal layers, having a second metal composition, are formed over the first metal layer. In one embodiment the first metal composition is copper, and the second metal composition is a primarily aluminum composition. In one embodiment, first metal layer is fabricated using a process node having a first minimum line width, and the additional metal layers are fabricated using a process node having a second minimum line width, greater than the first minimum line width. The first metal layer exhibits a reduced resistance and capacitance, thereby reducing the on-resistance and off-capacitance of the RF switch. |
US10062643B2 |
Nickel-silicon fuse for FinFET structures
Semiconductor fuses and methods of forming the same include forming a dummy gate on a semiconductor fin. A dielectric layer is formed around the dummy gate. The dummy gate is removed to expose a region of the semiconductor fin. The exposed region is metallized. |
US10062638B2 |
Semiconductor package and a method for manufacturing a semiconductor device
A semiconductor package includes a die pad; a plurality of external connection terminals located around the die pad; a semiconductor chip located on a top surface of the die pad and electrically connected with the plurality of external connection terminals; and a sealing member covering the die pad, the plurality of external connection terminals and the semiconductor chip and exposing an outer terminal of each of the plurality of external connection terminals. A side surface of the outer terminal of each of the plurality of external connection terminals includes a first area, and the first area is plated. |
US10062636B2 |
Integration of thermally conductive but electrically isolating layers with semiconductor devices
A semiconductor structure includes a semiconductor wafer having at least one semiconductor device integrated in a first device layer, a thermally conductive but electrically isolating layer on a back side of the semiconductor wafer, a front side glass on a front side of the semiconductor wafer, where the thermally conductive but electrically isolating layer is configured to dissipate heat from the at least one semiconductor device integrated in the semiconductor wafer. The thermally conductive but electrically isolating layer is selected from the group consisting of aluminum nitride, beryllium oxide, and aluminum oxide. The at least one semiconductor device is selected from the group consisting of a complementary-metal-oxide-semiconductor (CMOS) switch and a bipolar complementary-metal-oxide-semiconductor (BiCMOS) switch. The semiconductor structure also includes at least one pad opening extending from the back side of the semiconductor wafer to a contact pad. |
US10062634B2 |
Semiconductor die assembly having heat spreader that extends through underlying interposer and related technology
A semiconductor die assembly in accordance with an embodiment of the present technology includes a first semiconductor die, a package substrate underlying the first semiconductor die, an interposer between the package substrate and the first semiconductor die, and a second semiconductor die between the package substrate and the interposer. The semiconductor die assembly further comprises a heat spreader including a cap thermally coupled to the first semiconductor die at a first elevation, and a pillar thermally coupled to the second semiconductor die at a second elevation different than the first elevation. The heat spreader is configured to transfer heat away from the first and second semiconductor dies via the cap and the pillar, respectively. The interposer extends around at least 75% of a perimeter of the pillar in a plane between the first and second elevations. |
US10062630B2 |
Water and ion barrier for the periphery of III-V semiconductor dies
A semiconductor die includes an III-V semiconductor body having a periphery devoid of active devices, the periphery terminating at an edge face of the semiconductor die. The semiconductor die further includes a seal ring structure above the periphery of the III-V semiconductor body and a barrier. The barrier is disposed over the periphery of the III-V semiconductor body at least between the seal ring structure and the edge face of the semiconductor die. The barrier has a density which prevents water, water ions, sodium ions and potassium ions from diffusing through the barrier. |
US10062629B2 |
Antenna impedance matching and aperture tuning circuitry
Antenna aperture tuning circuitry includes a first signal path and a second signal path coupled in parallel between an antenna radiating element and ground. A first LC resonator and a second LC resonator are each coupled between the first signal path and ground. The first LC resonator and the second LC resonator are electromagnetically coupled such that a coupling factor between the first LC resonator and the second LC resonator is between about 1.0% and 40.0%. A third LC resonator and a fourth LC resonator are each coupled between the second signal path and ground. The third LC resonator and the fourth LC resonator are electromagnetically coupled such that a coupling factor between the third LC resonator and the fourth LC resonator is between about 1.0% and 40.0%. |
US10062623B2 |
Semiconductor package substrate, package system using the same and method for manufacturing thereof
A semiconductor package substrate includes an insulating substrate, a circuit pattern on the insulating substrate, a protective layer formed on the insulating substrate to cover the circuit pattern on the insulating substrate, a pad formed on the protective layer while protruding from a surface of the protective layer, and an adhesive member on the pad. |
US10062619B2 |
Air gap spacer implant for NZG reliability fix
A method of forming a semiconductor device includes providing a silicon-on-insulator substrate comprising a semiconductor bulk substrate, a buried insulation layer formed on the semiconductor bulk substrate and a semiconductor layer formed on the buried insulation layer, providing at least one N-type metal-oxide semiconductor gate structure being an NZG gate structure having a gate insulation layer over the semiconductor layer and at least one P-type metal-oxide semiconductor gate structure being a PZG gate structure having a gate insulation layer over the semiconductor layer, the NZG and PZG gate structures being electrically separated from each other. |
US10062618B2 |
Method and structure for formation of replacement metal gate field effect transistors
Embodiments of the present invention provide a process that maintains a “keep cap” metal nitride layer on PFET devices within a CMOS structure. The keep cap metal nitride layer is in place while an N-type work function metal is formed on the NFET devices within the CMOS structure. A sacrificial rare earth oxide layer, such as a lanthanum oxide layer is used to facilitate removal of the n-type work function metal selective to the keep cap metal nitride layer. |
US10062617B2 |
Method and structure for SRB elastic relaxation
A method of forming SRB finFET fins first with a cut mask that is perpendicular to the subsequent fin direction and then with a cut mask that is parallel to the fin direction and the resulting device are provided. Embodiments include forming a SiGe SRB on a substrate; forming a Si layer over the SRB; forming an NFET channel and a SiGe PFET channel in the Si layer; forming cuts through the NFET and PFET channels, respectively, and the SRB down to the substrate, the cuts formed on opposite ends of the substrate and perpendicular to the NFET and PFET channels; forming fins in the SRB and the NFET and PFET channels, the fins formed perpendicular to the cuts; forming a cut between the NFET and PFET channels, the cut formed parallel to the fins; filling the cut with oxide; and recessing the oxide down to the SRB. |
US10062615B2 |
Stacked nanowire devices
A semiconductor device comprises first stack of nanowires arranged on a substrate comprises a first nanowire and a second nanowire, the second nanowire is arranged substantially co-planar in a first plane with the first nanowire the first nanowire and the second nanowire arranged substantially parallel with the substrate, a second stack of nanowires comprises a third nanowire and a fourth nanowire, the third nanowire and the fourth nanowire arranged substantially co-planar in the first plane with the first nanowire, and the first nanowire and the second nanowire comprises a first semiconductor material and the third nanowire and the fourth nanowire comprises a second semiconductor material, the first semiconductor material dissimilar from the second semiconductor material. |
US10062614B2 |
FinFET device
The present disclosure provides many different embodiments of a FinFET device that provide one or more improvements over the prior art. In one embodiment, a FinFET includes a semiconductor substrate and a plurality of fins having a first height and a plurality of fin having a second height on the semiconductor substrate. The second height may be less than the first height. |
US10062611B2 |
Encapsulated semiconductor package and method of manufacturing thereof
Encapsulated semiconductor packages and methods of production thereof. As a non-limiting example, a semiconductor package may be produced by partially dicing a wafer, molding the partially diced wafer, and completely dicing the molded and partially diced wafer. |
US10062608B2 |
Semiconductor devices comprising nickel- and copper-containing interconnects
A method of activating a metal structure on an intermediate semiconductor device structure toward metal plating. The method comprises providing an intermediate semiconductor device structure comprising at least one first metal structure and at least one second metal structure on a semiconductor substrate. The at least one first metal structure comprises at least one aluminum structure, at least one copper structure, or at least one structure comprising a mixture of aluminum and copper and the at least one second metal structure comprises at least one tungsten structure. One of the at least one first metal structure and the at least one second metal structure is activated toward metal plating without activating the other of the at least one first metal structure and the at least one second metal structure. An intermediate semiconductor device structure is also disclosed. |
US10062606B2 |
Methods of fabricating a semiconductor device having a via structure and an interconnection structure
Methods of fabricating a semiconductor device include forming a lower interlayer insulating layer and a conductive base structure, and forming a middle interlayer insulating layer covering the lower interlayer insulating layer and the conductive base structure. The methods include etching the middle interlayer insulating layer to form a via hole and an interconnection trench vertically aligned with the via hole, and forming a via barrier layer on inner walls of the via hole and an interconnection barrier layer on inner walls and a bottom of the interconnection trench, the via barrier layer not being formed on an upper surface of the conductive base structure The methods include forming a via plug on the via barrier layer to fill the via hole, forming a seed layer on the interconnection trench and the via plug, forming an interconnection electrode on the seed layer, and forming an interconnection capping layer on the interconnection electrode. |
US10062605B2 |
Via and chamfer control for advanced interconnects
Methods of forming a semiconductor structure includes etching a via opening through an interlevel dielectric to a metal conductor. A contiguous metal liner is deposited onto exposed surfaces of the substrate. The substrate is exposed to a gaseous ion plasma to remove portions of the metal liner that are horizontally oriented and to reduce a height of the metal liner from portions thereof that are vertically oriented. Subsequently, a trench opening is formed in the interlevel dielectric, wherein the trench opening is connected with the via opening, wherein at least a portion of the metal liner remains on sidewall surfaces within the via opening during the forming of the trench opening. A diffusion barrier liner is deposited within the trench opening and the via opening. A conductive material is formed within remaining portions of the trench opening and the via opening to define the interconnect structure. |
US10062604B2 |
Semiconductor device and method for fabricating the same
A semiconductor device includes: a substrate, a gate structure on the substrate, and a spacer adjacent to the gate structure, in which the spacer extends to a top surface of the gate structure, a top surface of the spacer includes a planar surface, the spacer encloses an air gap, and the spacer is composed of a single material. The gate structure includes a high-k dielectric layer, a work function metal layer, and a low resistance metal layer, in which the high-k dielectric layer is U-shaped. The semiconductor device also includes an interlayer dielectric (ILD) layer around the gate structure and a hard mask on the spacer, in which the top surface of the hard mask is even with the top surface of the ILD layer. |
US10062598B2 |
Thermal processing susceptor
In one embodiment, a susceptor for thermal processing is provided. The susceptor includes an outer rim surrounding and coupled to an inner dish, the outer rim having an inner edge and an outer edge. The susceptor further includes one or more structures for reducing a contacting surface area between a substrate and the susceptor when the substrate is supported by the susceptor. At least one of the one or more structures is coupled to the inner dish proximate the inner edge of the outer rim. |
US10062592B2 |
Substrate processing apparatus
A substrate processing apparatus includes a substrate retaining mechanism; a detecting unit detecting a placed state of the substrate retained by the substrate retaining mechanism; a first determination unit comparing detection data of the substrate obtained by the detecting unit with master data that is a reference to determine if the detection data is within a first allowed value; a confirmation unit confirming substrate type; a second determination unit comparing the detection data of the substrate with the master data to determine if the detection data is within a second allowed value; and a transfer control unit controlling the substrate retaining mechanism depending on a determination result of the second determination unit when substrate type is confirmed as a predetermined type by the confirmation unit when it is determined that the detection data is not within the first allowed value as determined by the first determination unit. |
US10062591B2 |
Equipment platform system and wafer transfer method thereof
An equipment platform system and a wafer transfer method used to a wafer processing is provided. The equipment platform system comprises: a working platform, each side of the working platform is used to mount process chamber; a top-loading wafer device fixed on the top surface of working platform, the top-loading wafer device includes: a cassette or FOUP loading unit, a wafer loading unit installed disposed opposite the cassette or FOUP loading unit, the wafer loading unit has an inside cavity; a central robot, located between the cassette or FOUP loading unit and the wafer loading unit; a loading gate used to open or close the inside cavity; a wafer tray, which is in the inside cavity; a shutoff gate, which is at the bottom of the inside cavity, used to open or close the internal of the working platform; there is an opening at the top of the working platform, the opening is located at the lower part of the inside cavity, and disposed opposite the shutoff gate, the shutoff gate can seal the opening. The equipment platform system of the invention can decrease the floor space, increase the space efficiency, and the wafer transfer efficiency. |
US10062587B2 |
Pedestal with multi-zone temperature control and multiple purge capabilities
Substrate support assemblies for a semiconductor processing apparatus are described. The assemblies may include a pedestal and a stem coupled with the pedestal. The pedestal may be configured to provide multiple regions having independently controlled temperatures. Each region may include a fluid channel to provide a substantially uniform temperature control within the region, by circulating a temperature controlled fluid that is received from and delivered to internal channels in the stem. The fluid channels may include multiple portions configured in a parallel-reverse flow arrangement. The pedestal may also include fluid purge channels that may be configured to provide thermal isolation between the regions of the pedestal. |
US10062586B2 |
Chemical fluid processing apparatus and chemical fluid processing method
A chemical fluid processing apparatus and a chemical fluid processing method are described, to treat a substrate with a plurality of chemical fluids such that substantially constant temperature is maintained across a substrate surface. The apparatus includes a discharge nozzle above the substrate to supply a first chemical fluid at a first temperature to a front surface of the substrate, a bar nozzle oriented in a radial direction of the substrate to supply a second chemical fluid at a second temperature to the front surface or a back surface of the substrate, the second temperature being higher than the first temperature, and where the bar nozzle includes a plurality of outlets for discharging the second chemical fluid to a plurality of contacting places on the front surface or the back surface of the substrate at different distances from the center of the substrate. |
US10062585B2 |
Oxygen compatible plasma source
Described processing chambers may include a chamber housing at least partially defining an interior region of a semiconductor processing chamber. The chamber housing may include a lid. The chamber may include a pedestal configured to support a substrate within a processing region of the chamber. The chamber may also include a first showerhead coupled with an electrical source. The first showerhead may be positioned within the semiconductor processing chamber between the lid and the processing region. The chamber may also include a first dielectric faceplate positioned within the semiconductor processing chamber between the first showerhead and the processing region. The chamber may include a second showerhead coupled with electrical ground and positioned within the semiconductor processing chamber between the first dielectric faceplate and the processing region. The chamber may further include a second dielectric faceplate positioned within the semiconductor processing chamber between the first dielectric faceplate and the second showerhead. |
US10062584B1 |
Method for forming semiconductor structure
A method for forming a semiconductor structure is disclosed. The method includes the following steps. A first pattern structure and a second pattern structure are formed on a substrate. The second pattern structure is wider than the first pattern structure. Spacers are formed on sidewall surfaces of the first pattern structure and the second pattern structure. An oxidizing treatment step is performed to the spacers having a width gradually increased from tops of the spacers. A pattern defined with the spacers is transferred into the substrate after the oxidizing treatment step. |
US10062578B2 |
Methods for etch of metal and metal-oxide films
A method of selectively etching a metal-containing film from a substrate comprising a metal-containing layer and a silicon oxide layer includes flowing a fluorine-containing gas into a plasma generation region of a substrate processing chamber, and applying energy to the fluorine-containing gas to generate a plasma in the plasma generation region. The plasma comprises fluorine radicals and fluorine ions. The method also includes filtering the plasma to provide a reactive gas having a higher concentration of fluorine radicals than fluorine ions, and flowing the reactive gas into a gas reaction region of the substrate processing chamber. The method also includes exposing the substrate to the reactive gas in the gas reaction region of the substrate processing chamber. The reactive gas etches the metal-containing layer at a higher etch rate than the reactive gas etches the silicon oxide layer. |
US10062577B1 |
Method of fabricating III-V fin structures and semiconductor device with III-V fin structures
A method of fabricating III-V fin structures includes providing numerous fins. Then, a group III-V material layer is formed to encapsulate an upper portion of each of the fins. Later, part of the group III-V material layer is removed to expose an end of each of the fins, and divides the group III-V material layer into numerous U-shaped structures. Next, a first part of each of the fins and the entire silicon oxide layer are removed. Finally, part of each of the U-shaped structures is removed to segment each of the U-shaped structures into two III-V fin structures. |
US10062575B2 |
Poly directional etch by oxidation
Processing methods may be performed to form recesses in a semiconductor substrate. The methods may include oxidizing an exposed silicon surface on a semiconductor substrate within a processing region of a semiconductor processing chamber. The methods may include forming an inert plasma within the processing region of the processing chamber. Effluents of the inert plasma may be utilized to modify the oxidized silicon. A remote plasma may be formed from a fluorine-containing precursor to produce plasma effluents. The methods may include flowing the plasma effluents to the processing region of the semiconductor processing chamber. The methods may also include removing the modified oxidized silicon from the semiconductor substrate. |
US10062570B2 |
Semiconductor device and method for manufacturing the same
An object is to provide a high reliable semiconductor device including a thin film transistor having stable electric characteristics. In a method for manufacturing a semiconductor device including a thin film transistor in which an oxide semiconductor film is used for a semiconductor layer including a channel formation region, heat treatment (which is for dehydration or dehydrogenation) is performed so as to improve the purity of the oxide semiconductor film and reduce impurities such as moisture. Besides impurities such as moisture existing in the oxide semiconductor film, heat treatment causes reduction of impurities such as moisture existing in the gate insulating layer and those in interfaces between the oxide semiconductor film and films which are provided over and below the oxide semiconductor film and are in contact with the oxide semiconductor film. |
US10062564B2 |
Method of selective gas phase film deposition on a substrate by modifying the surface using hydrogen plasma
According to one embodiment of the invention, a method is provided for selective surface deposition. In one example, the method includes providing a substrate containing a first material having a first surface and a second material having a second surface, forming a modified first surface and a modified second surface by exposing the first surface and the second surface to hydrogen gas excited by a plasma source, and selectively depositing a film on the modified second surface but not on the modified first surface. |
US10062561B2 |
High-pressure annealing and reducing wet etch rates
Methods are described for reducing the wet etch rate of dielectric films formed on a patterned substrate by flowing the material into gaps during deposition. Films deposited in this manner may initially exhibit elevated wet etch rates. The dielectric films are treated by exposing the patterned substrate to a high pressure of water vapor in the gas phase. The treatment may reduce the wet etch rate of the dielectric films, especially the gapfill portion of the dielectric film. Scanning electron microscopy has confirmed that the quantity and/or size of pores is reduced or eliminated by the procedures described herein. The treatment has also been found to reduce the etch rate, e.g., at the bottom of gaps filled with the dielectric film. |
US10062560B1 |
Method of cleaning semiconductor device
Aspects of the present disclosure provide a method of cleaning a semiconductor device. The method includes providing a semiconductor wafer having an exposed cobalt surface and rinsing the exposed cobalt surface with cathode water having a pH greater than 9 and an oxidation reduction potential of less than 0.0. |
US10062553B2 |
Sputtering apparatus and processing apparatus
A sputtering apparatus includes a space defining member defining a sputtering space for forming a film on a substrate. The space defining member includes a concave portion, and an opening portion is provided in the bottom portion of the concave portion. The sputtering apparatus includes a shield member configured to shield the opening portion from the sputtering space. The opening portion is formed so that a pressure gauge capable of measuring the pressure in the sputtering space can be attached, and the shield member is arranged so that at least a part of the shield member is buried in the concave portion. |
US10062548B2 |
Gas injection system for ion beam device
A gas injection system for an ion beam device, the gas injection system including an extraction plate, an extraction aperture formed in the extraction plate for allowing passage of an ion beam, a first gas distributor removably fastened to the extraction plate on a first side of the extraction aperture, the first gas distributor having a gas orifice formed therein, a second gas distributor removably fastened to the extraction plate on a second side of the extraction aperture opposite the first side, the second gas distributor having a gas orifice formed therein, a first gas conduit extending through the extraction plate between the first gas distributor and a gas manifold mounted to the extraction plate, and a second gas conduit extending through the extraction plate between the second gas distributor the gas manifold, and a residue removal gas source connected to the gas manifold. |
US10062536B2 |
Fusible link unit
A fusible link unit includes: a fuse element including a plurality of fusible portions arrayed in a predetermined array direction; a housing having a window portion penetrating the housing in an intersecting direction to intersect the array direction; and fusible portion covers attached to the housing. The housing holds the fuse element to locate the fusible portions inside the window portion. The fusible portion covers includes a first cover that is transparent and has a plate shape extending in the array direction and covering one opening of the window portion and a second cover that is non-transparent and having a plate shape extending in the array direction and covering the other opening of the window portion. A length of the first cover in the array direction is different from a length of the second cover in the array direction. |
US10062529B2 |
Motor kill switch arrangement
The present invention relates to motor safety devices as used in increasing numbers for the killing of engines or disengaging propulsion units from motors, when there are no operators to maintain control of an apparatus or vehicle such as jet-ski, boat, go-kart and the like or personnel to oversee use of a motorised tool or the like. Motor boat operators on a boat have been known to fall overboard without being detected by the operator of the boat. Such runaway boats have been known to seriously injure the operator of the boat in the water since a runaway boat tends to circle back to the place where the operator has fallen overboard. The present invention is also applicable to other types of equipment such as motorised gymnasium equipment, hand operated power tools, such as agricultural and arboriculturist equipment and wood working tools. |
US10062525B2 |
Wireless switch and method
A wireless switch includes: an adjusting member configured to rotate; a rotary plate comprising a first extending bar extending from a surface of the rotary plate in a radial direction and configured to be rotated together with the adjusting member; a first deformation member configured to be deformed by the first extending bar when the rotary plate rotates to cause the first extending bar to contact the first deformation member; a first piezoelectric element disposed on the first deformation member and configured to generate electricity when the first deformation member is deformed; and a radio frequency (RF) communications module unit configured to transmit a signal according to the electricity generated by the first piezoelectric element. |
US10062524B2 |
Disconnect cabinet with wireless monitoring capability for use with systems having lead assemblies
A disconnect system for a solar installation shuts down power upstream from an inverter, so that it is safe for solar field personnel to perform work related to a solar installation. The system actuates multiple disconnect devices in one motion by a linkage assembly which can associate 2-4 disconnect switches with a single handle. This system preferably includes hardware and logic for monitoring the current and voltage output of electrically coupled combiner/recombiner boxes in the solar field, and for wirelessly transmitting this data to a user. A single disconnect cabinet can accommodate 2-20 inputs from associated lead assemblies and/or recombiner lead assemblies with 5 handles or less. |
US10062514B2 |
Multilayer ceramic capacitor
In a multilayer ceramic capacitor, outer electrodes include base electrode layers including a conductive metal and a glass component on a ceramic multilayer body, conductive resin layers including a thermosetting resin and a metal component on the base electrode layers such that exposed portions of the base electrode layers are exposed at least at one corner on one end surface side of the ceramic multilayer body and at least at one corner on the other end surface side thereof, and plating layers on the conductive resin layers and the exposed portions of the base electrode layers. The exposed portions of the base electrode layers are in direct contact with the plating layers at least at one corner on the one end surface side of the ceramic multilayer body and at least at one corner on the other end surface side thereof. |
US10062513B2 |
Capacitor component
A capacitor component includes a body having a first surface, a second surface, a third surface, a fourth surface, a stack structure including a plurality of dielectric layers, and a first internal electrode and a second internal electrode, a first external electrode formed on the first surface and the fourth surface, and a second external electrode formed on the second surface and the fourth surface. The first internal electrode includes a first region and a second region, the first region being connected to the first external electrode by a lead extending to the fourth surface, and the second region being connected to the first external electrode by a lead extending to the first surface. The second internal electrode includes a third region and a fourth region, the fourth region being connected to the second external electrode by a lead extending to the second surface. |
US10062506B2 |
Capacitor and method of manufacturing same
A capacitor includes a body having a first surface, a second surface, and a third surface and a fourth surface connecting the first surface to the second surface, and including a first internal electrode and a second internal electrode respectively having a first lead portion and a second lead portion exposed to the second surface, a first external electrode and a second external electrode formed on the second surface of the body, and electrically connected to the first internal electrode and the second internal electrode, respectively, and dummy electrodes formed on the third surface and the fourth surface of the body and extending from edges at which the second surface meets the third surface and the fourth surface. |
US10062504B2 |
Manufacturing method of rare-earth magnet
A manufacturing method of a rare-earth magnet includes: manufacturing a first sealing body by filling a graphite container with a magnetic powder to be a rare-earth magnet material and by sealing the graphite container; manufacturing a sintered body by sintering the first sealing body to manufacture a second sealing body in which the sintered body is accommodated; and manufacturing a rare-earth magnet by performing hot plastic working on the second sealing body to give magnetic anisotropy to the sintered body. |
US10062503B2 |
Manufacturing method of green compacts of rare earth alloy magnetic powder and a manufacturing method of rare earth magnet
The present invention discloses a manufacturing method of green compacts of rare earth alloy magnetic powder and a manufacturing method of rare earth magnet, it is a manufacturing method that pressing the rare earth alloy magnetic powder added with organic additive in a closed space filled with inert gases to manufacture the green compacts, wherein the rare earth alloy magnetic powder is compacted under magnetic field in a temperature atmosphere of 25° C.-50° C. and a relative humidity atmosphere of 10%-40%. This method is to set the temperature of the inert atmosphere in a fully closed space, inhibiting bad forming phenomenon of the magnet with low oxygen content (broken, corner-breakage, crack) after sintering, and increasing the degree of orientation, Br and (BH)max. |
US10062502B2 |
Circuit arrangement for compensation of a DC component in a transformer
A circuit arrangement for compensation of a DC component in a transformer, wherein the transformer includes a winding arrangement connected via connecting lines to a power system for transporting electrical energy, and includes a neutral point connected to earth, where the circuit arrangement includes a transductor circuit arranged in a current path that connects a connection point situated on a node-free portion of the connection line to earth, a control and regulation device that controls the transductor circuit via a control signal and to which is fed, on the input side, a signal provided by a detection device with respect to a size and direction of the DC component to be compensated. |
US10062499B2 |
Power module and magnetic component thereof
A power module including a power device and a magnetic component is provided. The magnetic component is stacked with the power device and a vertical projection of the magnetic component is at least partially overlapping with the power device. The magnetic component includes a magnetic core and a winding set. The magnetic core includes a first surface, a second surface and at least one window. The window is located between the first surface and the second surface, and includes a passing-through axis vertical to a surface of the power device, where at least one leading pin or pad is disposed on the surface of the power device. The winding set includes at least one winding portion. The winding portion passes through the window and electrically connected to the power device. Each winding set and the magnetic core are configured to form an inductor, and the winding set is preformed. |
US10062498B2 |
Composite magnetic component
A composite magnetic component is provided. The composite magnetic component includes a magnetic flux-guiding unit, a first coil structure and a second coil structure. The first coil structure and the second coil structure are wound around a first winding portion and a second winding portion of the magnetic flux-guiding unit, respectively. A first magnetic flux results from the first coil structure and the magnetic flux-guiding unit. A second magnetic flux results from the second coil structure and the magnetic flux-guiding unit. The first magnetic flux is orthogonal to the second magnetic flux within the magnetic flux-guiding unit. |
US10062495B2 |
Embedded magnetic component
In manufacturing an embedded magnetic component, a cavity is formed in an insulating substrate with one or more channels connecting the cavity to an exterior of the component. The channels include one or more obstruction sections that define a sealed base area of the cavity into which adhesive is dispensed to secure the magnetic core in the cavity. The obstruction sections prevent egress of the adhesive before it hardens. The cavity and the magnetic core are then covered with a first insulating layer. Through holes are formed through the first insulating layer and the insulating substrate, and plated up to form conductive vias. Metallic traces are added to the exterior surfaces of the first insulating layer and the insulating substrate to form upper and lower winding layers. The metallic traces and the conductive vias form the windings for an embedded magnetic component, such as a transformer or an inductor. |
US10062493B2 |
Electronic component and circuit board having the same mounted thereon
An electronic component and a circuit board having the same mounted thereon. The electronic component includes: a base part; a coil part provided on the base part and including a coil formed by disposing conductive patterns in a spiral shape and an external terminal connected to an end portion of the coil; and a cover part including an external electrode having a first surface contacting an upper surface of the external terminal and a second surface opposing the first surface and a magnetic material part provided on the coil part, made of a magnetic material, and exposing the second surface, wherein a surface area of the first surface is larger than a surface area of the second surface. |
US10062491B1 |
Choke coil module of high power density DC-AC power inverter
A choke coil module of a high power density DC-AC power inverter includes a bottom plate and a top plate. Two upright posts are secured between the bottom plate and the top plate. The upright posts are sleeved with choke coils, respectively. The choke coils and heat radiating holes of the bottom plate and the top plate are communicated with one another to form an air guide passage. When the power converter is actuated, the choke coils generate heat. Through a fan unit, the outside air is guided into a casing via air inlets of the casing, and the heat generated by the choke coils is expelled to the outside via the air guide passage and air outlets of the casing. The choke coil module mounted in the high power density casing is able to achieve an excellent heat radiation effect. |
US10062490B2 |
Method of manufacturing an inductor
An inductor includes a coil substrate, an encapsulation material containing a magnetic material and selectively covering the coil substrate, and first and second external electrodes formed on the exterior of the encapsulation material. The coil substrate includes a laminate of stacked structures each including a conductive track and first and second connection parts on opposite sides of the conductive track in a single wiring layer. The conductive tracks are connected in series to form a helical coil. The first connection parts are connected by a first via to form a first electrode terminal connected to a first end of the helical coil. The second connection parts are connected by a second via to form a second electrode terminal connected to a second end of the helical coil. The first and second external electrodes are connected to the first and second electrode terminals, respectively. |
US10062487B2 |
Strong-magnetic-focused magnet system with terahertz source
A strong-magnetic focused magnet system with a terahertz source includes a first superconducting main coil and a second superconducting main coil. The second superconducting main coil surrounds the outer surface of the first superconducting main coil, and the second superconducting main coil is coaxial with the first superconducting main coil. |
US10062485B2 |
High-temperature superconducting high-current cables
High-temperature superconducting (HTS) devices and methods are disclosed. An HTS cable subassembly has a rectangular shaped cross section. The subassembly includes a stack of tapes formed of a superconducting material, and a cable subassembly wrapper wrapped around the stack of tapes. The tapes in the stack are slidably arranged in a parallel fashion. A cable assembly is formed of a cable assembly wrapper formed of a second non-superconducting material disposed around an n×m array of cable subassemblies. A compound cable assembly is formed by joining two or more cable assemblies. A high temperature superconducting magnet is formed of a solenoidal magnet formed of a cable subassembly, a cable assembly, and/or a compound cable assembly. |
US10062478B2 |
Superconducting cable having outgoing coolant inside a conductor and return coolant outside the conductor, and device and method for cooling superconducting cable
A superconducting cable comprises a superconductor 60, two or more coolant passages including an outgoing coolant passage 12 and a returning coolant passage 14 that transfer a coolant that cools the superconductor, and a heat insulating pipe 10 inside which the superconductor 60 and the coolant passages are formed. For the coolant passages, by a double structured tube of an inner tube 6 and an outer tube 8, the outgoing coolant passage 12 is formed in the internal space of the inner tube 6 and the returning coolant passage 14 is formed in the space between the inner tube 6 and the outer tube 8, the inner tube 6 is formed between the outgoing coolant passage 12 and the returning coolant passage 14 of a heat insulating material, the superconductor 60 is disposed on the outer circumferential side of the inner tube 6, and the superconductor is cooled by the coolant that flows through the returning coolant passage. |
US10062477B1 |
Electromagnetic-wave-absorbing filter
An electromagnetic-wave-absorbing filter comprising an electromagnetic-wave-absorbing layer, an insulating layer, and an electromagnetic-wave-shielding layer in this order from inside; the electromagnetic-wave-absorbing layer being constituted by a laminate of at least two electromagnetic-wave-absorbing films; each electromagnetic-wave-absorbing film comprising a plastic film and a thin metal film formed on a surface of the plastic film, the thin metal film being provided with large numbers of linear scratches in plural directions; the acute crossing angle θs of linear scratches in each electromagnetic-wave-absorbing film being 30-90°; the linear scratches in two electromagnetic-wave-absorbing films being crossing; two electromagnetic-wave-absorbing films having different lengths; and a ratio of the length L2 of a shorter electromagnetic-wave-absorbing film to the length L1 of a longer electromagnetic-wave-absorbing film being 30-70%. |
US10062475B1 |
System, composition and method of application of same for reducing the coefficient of friction and required pulling force during installation of wire or cable
A composition and method for reducing the coefficient of friction and required pulling force of a wire or cable are provided. A composition of aqueous emulsion is provided that is environmentally friendly, halogen free and solvent free. The composition is compatible with various types of insulating materials and may be applied after the wire or cable is cooled and also by spraying or submerging the wire or cable in a bath. The composition contains lubricating agents that provide lower coefficient of friction for wire or cable installation and continuous wire or cable surface lubrication thereafter. |
US10062473B2 |
Silver-coated copper alloy powder and method for producing same
A silver-coated copper alloy powder, which has a low volume resistivity and excellent storage stability (reliability), is produced by coating a copper alloy powder, which has a chemical composition comprising 1 to 50 wt % of at least one of nickel and zinc and the balance being copper and unavoidable impurities (preferably a copper alloy powder wherein a particle diameter (D50 diameter) corresponding to 50% of accumulation in cumulative distribution of the copper alloy powder, which is measured by a laser diffraction particle size analyzer, is 0.1 to 15 μm), with 7 to 50 wt % of a silver containing layer, preferably a layer of silver or an silver compound. |
US10062471B2 |
Additive formulation suitable for antistatic modification and improving the electrical conductivity of inanimate organic material
An additive formulation suitable for antistatic modification and improving the electrical conductivity of inanimate organic material, consisting essentially of (A) from 1 to 50% by weight of an olefin-sulfur dioxide copolymer, (B) from 1 to 50% by weight of a compound which comprises one or more basic nitrogen atoms and has at least one relatively long-chain linear or branched hydrocarbon radical having at least four carbon atoms or an equivalent structural element which ensures the solubility of component (B) in the inanimate organic material, (C) from 0.1 to 30% by weight of an oil-soluble acid and (D) from 1 to 80% by weight of a high-boiling organic solvent which consists of one or more molecule types, where at least 80% by weight of these molecule types have a boiling point of more than 150° C. at standard pressure, where the sum of all components adds up to 100% by weight. |
US10062467B2 |
X-ray generator output regulation
The techniques and device provided herein relate to regulating a source generator in an X-ray based equipment. In particular, an X-ray system is provided that comprises an X-ray generator and a reference detector system that regulates the output of the X-ray generator. The reference detector system comprises a direct channel that allows at least a portion of the photons to directly reach the detector crystal and a plurality of fluorescent channels, such that photon flux entering the reference detector from the fluorescent channels is negligibly impacted by variations of beam spots, shapes and/or positions. |
US10062463B2 |
Radiation protection equipment and radiation protection system provided with radiation protection equipment
An amount of radiation exposure of a medical staff is significantly reduced, and a large working area is ensured during an operation. A size of each component of a radiation protection equipment is reduced so as to decrease a weight thereof. The radiation protection equipment is provided, which can be installed within a short time period before an operation and easily put away after the operation. The radiation protection equipment, includes: a first protection sheet arranged on a periphery of a radiation source device and configured to shield radiation; a second protection sheet formed separately from the first protection sheet, arranged on a side of an operation table, and configured to shield radiation; and a third protection sheet formed separately from the first and second protection sheets, arranged on a periphery of a surgical field so as to expose the surgical field, and configured to shield the radiation. |
US10062462B2 |
Facility for reducing radioactive material and nuclear power plant having the same
The present invention provides a facility for reducing radioactive material comprising: a cooling water storage unit installed inside a containment and formed to store cooling water; a boundary unit forming a boundary of radioactive material inside the containment and surrounding a reactor coolant system installed inside the containment to prevent a radioactive material from releasing from the reactor coolant system or a pipe connected with the reactor coolant system to the containment; a connecting pipe connected with an inner space of the boundary unit and the cooling water storage unit to guide a flow of a fluid caused by a pressure difference between the boundary unit and the cooling water storage unit from the boundary unit to the cooling water storage unit; and a sparging unit disposed to be submerged in the cooling water stored in the cooling water storage unit and connected with the connecting pipe to sparge the fluid that has passed through the connecting pipe and the radioactive material contained in the fluid to the cooling water storage unit. |
US10062459B2 |
Material made of uranium, gadolinium and oxygen and use thereof as consumable neutron poison
The present invention relates to a novel material made of uranium, gadolinium and oxygen, having a crystalline phase having cubic crystallographic structure, having an atomic ratio Gd/[Gd+U] of 0.6 to 0.93, the uranium being present in an oxidation state of +IV and/or +V. The invention further relates to the use of such a material as a consumable neutron poison of a fuel element. |
US10062457B2 |
Predictive notifications for adverse patient events
Methods for providing predictive notifications to a monitoring device are provided. In one aspect, a method includes receiving retrospective patient data collected from a plurality of medical devices, and determining, based on a comparison of the retrospective patient data with current patient data for a patient from a medical device, a likelihood of a potential adverse medical event occurring for the patient. The method also includes providing a notification to a monitoring device indicative of the potential adverse medical event for the patient. Systems, graphical user interfaces, and machine-readable media are also provided. |
US10062454B1 |
Configurable system and method for debugging a circuit
Disclosed approaches for probing signals in a plurality of clock domains include inputting unsynchronized trigger signals from the plurality of clock domains to a plurality of instances of a multi-synchronizer circuit, respectively. Each instance of the multi-synchronizer circuit includes a plurality of synchronizer circuits. One or more of the plurality of synchronizer circuits synchronizes the respective unsynchronized trigger signal with one clock signal from the plurality of clock domains. Output of one of the one or more synchronizer circuits in each instance of the multi-synchronizer circuit is selected as a respective synchronized trigger signal. A trigger equation is evaluated based on a state of each respective synchronized trigger signal. A final trigger signal is generated based the evaluating of the trigger equation, a trigger marker is stored in a memory in response to a state of the final trigger signal, and states of probed signals are stored in the memory. |
US10062452B2 |
Semiconductor memory device and operating method thereof
A semiconductor memory device may include a memory core unit including a plurality of memory cells suitable for storing data, an error correction code (ECC) control unit suitable for detecting an error of the data to output a flag signal corresponding to a result of detection of the error, and an address control unit suitable for adjusting a refresh interval of at least one memory cell that stores data in which the error is detected, or repairing the memory cell among the memory cells, in response to the flag signal. |
US10062450B1 |
Passive switched capacitor circuit for sampling and amplification
In pipelined analog-to-digital converters (ADCs), a passive switched capacitor (PSWC) circuit can be used in a multiplying analog-to-digital converter (MDAC), which generates an analog output being fed to a subsequent stage. Complementary analog input signals are sampled respectively onto first and second capacitors, which are stacked to provide gain. The first capacitor is positioned between a first input switch and an output node of the PSWC circuit, and the second capacitor is positioned between the second input switch and a digital-to-analog converter (DAC) output. The topology advantageously isolates common modes of the complementary analog input signals, the DAC output, and the output of the PSWC circuit. As a result, the topology offers more degrees of freedom in the overall circuit design when stages having the MDAC are cascaded, resulting in pipelined ADCs with a more elegant design with lower noise and lower power consumption. |
US10062449B2 |
Magnetic domain wall motion device based on modulation of spin-orbit torque
A magnetic domain wall (MDW) motion device. The MDW motion device may include a ferromagnetic layer with perpendicular magnetic anisotropy and non-magnetic metal layers extending parallel to and in contact with the ferromagnetic layer. The ferromagnetic layer may include first ferromagnetic regions, which are arranged in an extension direction of the ferromagnetic layer, and second ferromagnetic regions, which are provided between an adjacent pair of the first ferromagnetic regions. The first and second ferromagnetic regions may have spin torque coefficients of opposite signs, and an MDW positioned near an interface between the first and second ferromagnetic regions may be moved by an in-plane current flowing through the non-magnetic metal layer. |
US10062444B2 |
Devices, system, and methods for implementing alternate control settings
An integrated circuit, that may be a part of an electronic system, may include a first set of storage cells to store settings and a second set of storage cells to store alternate settings. At least one control cell may also be included in the integrated circuit. The at least one control cell may indicate whether to use the settings stored in the first set of storage cells, or the alternate settings stored in the second set of storage cells, to control one or more operating parameters of the integrated circuit. Methods for using the alternate setting are also described. |
US10062438B2 |
3D vertical NAND semiconductor memory device and methods thereof
A controller controls a memory including first and second strings. The first and second strings configure first and second string groups, respectively. In each string group, a set of memory cell transistors each from each string configures a unit. The controller is configured to: sequentially write, in the first string group, data in first units to which serially-coupled memory cell transistors respectively belong; sequentially write, in the second string group, data in first units to which serially-coupled memory cell transistors respectively belong; and sequentially write, in the first string group, data in second units to which serially-coupled memory cell transistors respectively belong. |
US10062436B2 |
Non-volatile semiconductor memory device with improved pre-charging for high speed operation
The semiconductor memory includes a plurality of word lines; and a plurality of columns including a plurality of resistive storage cells corresponding to the plurality of word lines, the plurality of columns being divided into a plurality of pages each having one or more columns; a memory circuit coupled to the semiconductor memory to sense data stored in the resistive storage cells; and a memory control circuit coupled to the semiconductor memory and the memory circuit to control sensing of the stored data by the memory circuit to, in a read operation, sense data of resistive storage cells included in a selected page by continuously active-precharging one or more word lines among the plurality of word lines in a period in which the selected page among the plurality of pages is activated. |
US10062435B2 |
Method, system and device for non-volatile memory device operation
Disclosed are methods, systems and devices for operation of non-volatile memory devices. In one aspect, a correlated electron switch (CES) device may be placed in any one of multiple memory states in a write operation. Limiting current between terminals of the non-volatile memory device during read operations may enable use of higher voltages for higher realized gain. |
US10062433B2 |
Apparatuses and methods of reading memory cells
A method is provided for a reading memory even if there is a threshold voltage in an overlapped threshold voltage (VTH) region between a first state distribution and a second state distribution. The method includes ramping a bias on a memory cell a first time to determine a first threshold voltage (VTH1) of the memory cell and determining whether the VTH1 is within the overlapped VTH region. Upon determination that the memory cell is within the overlapped VTH region, the method further includes applying a write pulse to the memory cell; ramping a bias on the memory cell a second time to determine a second threshold voltage (VTH2); and determining the state of the memory cell prior to receiving the write pulse based on a comparison between the VTH1 and the VTH2. |
US10062421B2 |
Memory controller with staggered request signal output
A memory controller having a time-staggered request signal output. A first timing signal is generated while a second timing signal is generated having a first phase difference relative to the first timing signal. An address value is transmitted in response to the first timing signal and a control value is transmitted in response to the second timing signal, the address value and control value constituting portions of a first memory access request. |
US10062418B2 |
Data programming method and memory storage device
A data programming method and a memory storage device are provided. The method includes: programming a plurality of first type physical units in a rewritable non-volatile memory module to store first data; encoding the first data to generate encoded data; receiving second data; and programming at least one of a plurality of second type physical units in the rewritable non-volatile memory module corresponding to the first type physical units to store at least a part of the second data after the first data is encoded. Therefore, the correcting ability for correcting errors in pair physical units in multi-channel programming procedure may be improved. |
US10062414B1 |
Determining a future field of view (FOV) for a particular user viewing a 360 degree video stream in a network
The disclosure relates to technology for providing determined future fields of view (FoVs) of a 360 degree video stream in a network having multiple video streams corresponding to multiple FoVs. FoV interest messages including requests for FoVs at time instants of the video stream are collected from viewers of the stream. A sequence of popular FoVs is created according to the messages, each representing a frequently requested FoV at a distinctive time instant. FoV transitions are created according to the FoV interest messages, each FoV transition including a current FoV a time instant and a next FoV of a next time instant, indicating a likely next FoV to be subsequent requested. Future FoVs of future time instants are determined for a user viewing the video stream with a history of requested FoVs of past time instants, based on the history of requested FoVs, the sequence and the transitions. |
US10062408B2 |
Automatic playback overshoot correction system
An automatic playback overshoot correction system predicts the position in the program material where the user expects to be when the user stops the fast forward progression of the program material. The system determines the position where the program material was stopped and transitions to the new mode that the user selected, starting at the stopped position with an overshoot correction factor subtracted from it. The system uses a prediction method to correctly place the user within the program upon transition out of fast forward mode and determines if the speed of the fast forward mode and then automatically subtracts a time multiple to the frame where the transition was detected and positions the user at the correct frame. The time multiple is fine tuned if the user is consistently correcting after the fast forward mode stops. |
US10062405B2 |
Electronic device and method for operating the same
A video compressing apparatus and method that may increase the compression efficiency while maintaining the quality of video on an electronic device processing multimedia data including video are provided. The apparatus includes a video compressing apparatus and method that obtain a target image from a memory or camera, generate meta data corresponding to attribute information of the obtained target image, and compress the target image based on, at least, the generated meta data. |
US10062402B1 |
Waveguide including first and second layers and manufacturing method thereof
A manufacturing method for a waveguide includes forming a core including a first layer and a second layer. The first layer has a top surface including a first region with which a bottom surface of the second layer is in contact, and a second region with which the bottom surface of the second layer is not in contact. Forming the core includes the steps of: forming an initial first layer; forming an etching stopper layer on the second region of the initial first layer; forming an initial second layer on the initial first layer and the etching stopper layer; etching the initial second layer and the initial first layer so as to make the initial first layer into the first layer; and etching the initial second layer until the etching stopper layer is exposed, so as to make the initial second layer into the second layer. |
US10062399B1 |
Distributing tape drive abrasion
Some embodiments are directed to tape drive systems that oscillate the relative transverse position of the tape and magnetic head during seek operations (for example, by moving the head in the transverse direction). Some embodiments are directed to tape drive systems that select relative transverse position of the tape and magnetic head to counter uneven wear (for example, observed uneven wear, uneven wear predicted based on historical tape and drive usage data). |
US10062398B1 |
Magnetic head having arrays of tunnel valve read transducers
An apparatus, according to one embodiment, includes: a module, and a plurality of tunnel valve read transducers arranged in an array extending along the module. Each of the tunnel valve read transducers includes: a sensor structure, an upper magnetic shield, a lower magnetic shield, an upper conducting spacer layer between the sensor structure and the upper magnetic shield, a lower conducting spacer layer between the sensor structure and the lower magnetic shield, and electrically insulating layers on opposite sides of the sensor structure. The sensor structure includes a cap layer, a free layer, a tunnel barrier layer, a reference layer and an antiferromagnetic layer. Moreover, a height of the free layer measured in a direction perpendicular to a media bearing surface of the module is less than a width of the free layer measured in a cross-track direction perpendicular to an intended direction of media travel. |
US10062381B2 |
Method and electronic device for providing content
An electronic device and a method are provided. The electronic device includes an audio input module configured to receive a speech of a user as a voice input, an audio output module configured to output content corresponding to the voice input, and a processor configured to determine an output scheme of the content based on at least one of a speech rate of the speech, a volume of the speech, and a keyword included in the speech, which is obtained from an analysis of the voice input. |
US10062378B1 |
Sound identification utilizing periodic indications
A computer-implemented method and an apparatus are provided. The method includes obtaining, by a processor, a frequency spectrum of an audio signal data. The method further includes extracting, by the processor, periodic indications from the frequency spectrum. The method also includes inputting, by the processor, the periodic indications and components of the frequency spectrum into a neural network. The method additionally includes estimating, by the processor, sound identification information from the neural network. |
US10062374B2 |
Methods and apparatus for training a transformation component
According to some aspects, a method of training a transformation component using a trained acoustic model comprising first parameters having respective first values established during training of the acoustic model using first training data is provided. The method comprises using at least one computer processor to perform coupling the transformation component to a portion of the acoustic model, the transformation component comprising second parameters, and training the transformation component by determining, for the second parameters, respective second values using second training data input to the transformation component and processed by the acoustic model, wherein the acoustic model retains the first parameters having the respective first values throughout training of the transformation component. |
US10062370B1 |
Impedance matching toilet seat
The novel impedance matching toilet seat apparatus in general, includes a cavity, an acoustic transducer, orifices, and an impedance matching substance dispenser. The cavity is positioned on a top surface of the toilet seat. The acoustic transducer is positioned within the cavity. The orifices are positioned on the top surface adjacent the acoustic transducer. The impedance matching substance dispenser is within an interior portion of the toilet seat. The dispenser includes a reservoir, a conduit, and a pump. The reservoir contains an impedance matching substance and is connected to the conduit and pump. The conduit fluidly connects the reservoir to the orifices. |
US10062368B2 |
Chord judging apparatus and chord judging method
A chord judging method performed by a processor to judge chords of a musical piece, in which the processor estimates plural chord candidates of each of plural parts specified in the musical piece; calculates connection costs, each of which is defined between the chord candidates of adjacent parts of the musical piece; obtains total sums of the connection costs between the chord candidates along plural routes through the musical piece; and selects a route from among the plural routes, which route shows a less total sum of the connection costs of the chord candidates, thereby outputting an appropriate chord candidate of each of the parts along the found route of the musical piece. |
US10062366B2 |
Ringtone sequences based on music harmony, modulation symbols and calling telephone number
An apparatus for generating a reproducible audio information sequence includes a receiver adapted to receive and decode a signal in which at least one sequence of symbols is encoded to which an audio information sequence is to correspond, memory storing a plurality of reproducible audio elements, a processor configured for associating one of the reproducible audio elements with at least one first symbol included in the sequence of symbols on the basis of the first symbol and of at least one second symbol that, in the sequence of symbols, precedes or follows the first symbol, and a sound generator for outputting audio sequences, configured for cyclically reproducing said reproducible audio information sequence. |
US10062352B2 |
Redundancy in a display comprising autonomous pixels
A display comprises a plurality of autonomous pixels on a substrate. Each autonomous pixel comprises a display element, a sensing element and a control element. The sensing element is arranged to detect an external stimulus and the control element is arranged to generate, entirely within the autonomous pixel, a control signal to drive the display element based, at least in part, on a magnitude of the external stimulus detected by the sensing element. Additionally, the control element comprises one or more groups of transistors, each group comprising two or more transistors arranged to perform the same function and connected in parallel with each other. |
US10062351B2 |
Amplifier and display driver including the same
An amplifier feeds a current corresponding to a difference between a gradation voltage corresponding to a luminance level in a video signal and an amplified gradation voltage obtained by amplifying such a gradation voltage through an output current line in a current mirror circuit, and provides a voltage on the output current line to an output part via a driving line. The output part generates the amplified gradation voltage on the output line by feeding a current according to a voltage on the driving line through the output line. |
US10062349B2 |
Display device and driving method thereof
A display device includes a liquid crystal display and a power supply to apply a common voltage to a common electrode of the display. The power supply applies a first common voltage to the common electrode for a first period after power is turned on, and applies a second common voltage higher than the first common voltage to the common electrode until the power is turned off after the first period. |
US10062346B2 |
Display device, method for driving display device and method for minimizing afterimage of display device
A display device including: a liquid crystal panel assembly including pixels; a data driver applying a data voltage to lines which is connected to the pixels; and a common voltage generator providing voltage to the liquid crystal panel assembly, in which the voltage is an optimal voltage for a maximum grayscale at which a flicker is minimized while a maximum grayscale is applied to the pixels, the data driver applies the data voltage with the minimum grayscale to the data lines so that a negative data voltage with a minimum grayscale is higher than the common voltage by a first voltage level or more, and each of the pixels includes a first subpixel and a second subpixel, and when the data voltage is applied to the pixel, a pixel voltage of the first subpixel and a pixel voltage of the second subpixel are different. |
US10062344B2 |
Voltage stabilizing device
The invention provides a voltage stabilizing device. In the voltage stabilizing device, a signal detecting and amplifying circuit detects an operating voltage of the functional circuit, amplifies the detected operating voltage and outputs the amplified voltage signal to a logic processing circuit; the logic processing circuit adjusts a first control signal according to the amplified voltage signal and outputs the adjusted first control signal to a feedback voltage signal generating circuit; the feedback voltage signal generating circuit adjusts a feedback voltage signal according to the adjusted first control signal and outputs the adjusted feedback voltage signal to the logic processing circuit. Moreover, the logic processing circuit further adjusts a second control signal according to the adjusted feedback voltage signal and outputs the adjusted second control signal to the functional circuit, and thereby controls an output voltage of the functional circuit to be kept stable. |
US10062342B2 |
Liquid crystal display (LCD) Q-panel, LCD panel and LCD apparatus
Embodiments of the present invention provide a LCD Q-Panel, a LCD panel and a LCD apparatus, for solving the technical problem that there is a large loss of a signal over the resistance of the signal transmission line when the signal is loaded into a general signal connection port of the LCD Q-Panel in the prior art. The LCD Q-Panel provided in embodiments of the present invention comprises: a general signal connection port, at least one LCD panel comprising a signal connection point, and at least one voltage follower; the signal input from the general signal connection port is transmitted via the at least one voltage follower to the signal connection point connected to an output terminal of the at least one voltage follower and the LCD panel comprising the signal connection point. |
US10062341B2 |
Driving method and driving apparatus, display device
A driving method, a driving apparatus and a display device are disclosed. The driving method comprises: forming a first partition overdriving table and a second partition overdriving table. The first partition overdriving table corresponds to the first partition, and the second partition overdriving table corresponds to the second partition. The first partition overdriving table and the second partition overdriving table have the same matrix form. Smooth treatment is performed on a first partition and a second partition which are adjacent to each other according to the first smooth algorithm so as to blur the boundary between the first partition and the second partition, thereby effectively reducing or eliminating the phenomenon of demarcation between multiple partitions. |
US10062339B2 |
Data signal driving method, driving device and liquid crystal display device
The data signal driving method is disclosed. The method is applied in a display panel. The display panel includes a display region having data lines and a fan-out region having connection lines. The method includes: inputting a reference voltage to each connection lines and obtaining a current in each connection line; setting a most middle connection line as a first connection line, using the first connection line as a reference, respectively calculating and obtaining resistances of a 2nd to a N-th connection lines; inputting a data signal voltage to the connection lines; and inputting a compensation voltage to each of the 2nd to the N-th connection lines according to the data signal voltage and the resistances such that after applying the data signal voltage and the compensation voltages, the current in each connection line is equal; wherein, N is an integer greater than 2. A driving device is also disclosed. |
US10062337B2 |
Electrophoretic display device
An electrophoretic display is provided suitable for passive matrix driving. The electrophoretic display comprises three types of particles, with the first and second types of charged particles carrying charges of opposite polarities and have contrasting colors. The third type of particles has the same color as the first or the second type of particles. |
US10062336B2 |
Method and device for transferring an electronic display device into a secured state, and controller for controlling an electronic display device
A method for setting an electronic display device for a vehicle to a secure state, wherein the electronic display device is designed to display, in response to an image signal received by a control mechanism, an image datum transmitted by the image signal, and to maintain the display without applying an operating voltage, is characterized in that the method comprises a step for receiving a diagnosis signal via an interface to the control mechanism, wherein the diagnosis signal represents a signal provided by the control mechanism, and furthermore, a step for outputting a reset signal to an interface to the display device, depending on a signal status of the diagnosis signal, wherein the reset signal is designed to trigger a display of a secure image datum by the display device, in order to set the display device to the secure state. |
US10062335B1 |
Erasure mechanism for electronic paper
This application describes techniques for erasing (e.g., smudging, rendering illegible, etc.) images that are presented on display mediums, such as electronic-paper displays. Electronic-paper displays include a layer of electronic ink comprising charged particles suspended in a fluid. When a voltage differential is created across the reading surface, the charged colored particles may rise to the reading surface, retreat to the opposite surface, or suspend somewhere there between, thereby creating a visible image. In some instances described herein, a common electrode is partitioned into at least two sets of elements interleaved with one another. To erase an image, a voltage differential may be driven between these two sets of elements, creating an in-plane electrical field that erases the image. |
US10062333B2 |
Backlight control and display mapping for high dynamic range images
Systems and methods are disclosed for dynamically adjusting the backlight of a display during video playback or for generating filtered video metadata. Given an input video stream and associated metadata values of minimum, average, or maximum luminance values of the video frames in the video stream, values of a function of the frame min, mid, or max luminance values are filtered using a temporal filter to generate a filtered output value for each frame. At least one filtering coefficient of the temporal filter is adapted based on a logistic function controlled by slope and sensitivity values. The instantaneous dynamic range of a target display is determined based on the filtered metadata values and the minimum and maximum brightness values of the display. |
US10062332B2 |
Display apparatus and a method of driving the same
A display apparatus includes a display panel including a plurality of pixels, wherein each of the pixels includes a switching element connected to a data line and a gate line, a light source configured to provide the display panel with a light, a light source driver configured to turn the light source on and off, and a panel driver configured to output a data voltage to the data lines and a gate signal to the gate lines during an ON period in which the light source turns on the light, and to block the data voltage to be applied to the data lines and the gate signal to be applied to the gate lines during an OFF period in which the light source turns off the light. |
US10062326B2 |
Display device and method for driving same
Based on the results of detection of characteristics of drive transistors and organic EL elements, a control circuit finds magnitudes of threshold shifts of the drive transistors and the organic EL elements. A power supply voltage control unit sets a value of a low-level power supply voltage to a value lower, by a voltage value corresponding to an average value of the magnitudes of the threshold shifts for all pixels, than a value at an initial point in time. Furthermore, the power supply voltage control unit adjusts a value of a high-level power supply voltage, depending on magnitudes of mobilities obtained by detection of characteristics of the drive transistors. |
US10062322B2 |
Light sensor beneath a dual-mode display
The technology disclosed here integrates a light sensor with a dual-mode display, thus increasing the size of the dual-mode display. The light sensor can be a camera, an ambient sensor, a proximity sensor, etc. The light sensor is placed beneath the dual-mode display and can detect incoming light while the dual-mode display is displaying a display image. The dual-mode display and the light sensor can operate at the same time. For example, a camera placed beneath the dual-mode display can record an image of the environment, while at the same time the dual-mode display is showing the display image. Further, multiple light sensors can be placed at various locations beneath the dual-mode display. |
US10062317B2 |
Panel array for display device with narrow bezel
A display device with a reduced bezel area is disclosed. In one embodiment, the display device includes a cut-out region on which an electronic component is to be placed, and a display panel for displaying an image. The cut-out region extends from a first side toward a second side of the display device. The display panel includes a first display area between a third side of the display device and the cut-out region, a second display area between a fourth side of the display device and the cut-out region, and a third display area between the third side and the fourth side of the display device, the third display area disposed below the first display area, the second display area, and the cut-out region toward the second side of the display device. |
US10062316B2 |
Non-rectangular display apparatus
A display apparatus includes a plurality of pixels arranged in rows and columns, a plurality of gate lines in a first direction and connected to the pixels, and a plurality of data lines connected to the pixels. A number of data lines are between pixels in one row and in each of first areas adjacent to one side of the pixels in one column of a first column and the last column. |
US10062314B2 |
Electronic device and method for controlling display in electronic device
A method for controlling display by an electronic device is provided. The method includes, when a predetermined number or more same frame data are consecutively generated, storing the same frame data in a storage of a display driving module by an application processor, stopping transmitting frame data to the display driving module, and scanning the frame data stored in the storage and outputting to a display panel by the display driving module. |
US10062313B2 |
Data driver including noise shielding lines and display apparatus having the same
A data driver includes a data driving chip, a first data transmitting line, a second data transmitting line, a first shielding line and a second shielding line. The first data transmitting line and the second data transmitting line are configured to transmit a data signal to the data driving chip. The first shielding line is disposed at a first side with respect to the first data transmitting line. A ground voltage is applied to the first shielding line. The second shielding line is disposed at a second side with respect to the second transmitting line. The second side is opposite to the first side. The ground voltage is applied to the second shielding line. |
US10062312B2 |
Method and apparatus for discriminating luminance backgrounds for images, and a display apparatus
The present disclosure relates to a method and an apparatus for discriminating luminance backgrounds for images and a display apparatus thereof. The method comprises the steps of: receiving image information that is to be discriminated, the image information comprising gray scale values for respective sub-pixels in each pixel; forming the gray scale values for specific sub-pixels of pixels within the s±mth row and the t±nth column in the image information, having a pixel of the sth row, tth column as the center, into a digit group, and arranging the digit group in order, wherein s, m, t and n are natural numbers; if the gray scale values for N greater specific sub-pixels in the digit group are all greater than a given gray scale value, and a variance is less than or equal to a specified threshold, it is determined that the specific sub-pixels within the s±mth row and the t±nth column are a high-luminance background region; otherwise, it is determined that the specific sub-pixels within the s±mth row and the t±nth column are a non-high-luminance background region. By means of the method of the present disclosure, an image region can be discriminated as a high-luminance region or a non-high-luminance region. |
US10062311B2 |
Display substrate and fabricating method thereof, and display device
Embodiments of the present invention relate to a display substrate and fabricating method thereof and a display device. The display substrate comprises a plurality of pixel groups, wherein each of said pixel groups comprises a plurality of color sub-pixels and a plurality of white sub-pixels. A first driving transistor is provided in a light emitting layer missing region of the color sub-pixel, for driving the color sub-pixel. A second driving transistor and a white sub-pixel are provided on the first driving transistor, the second driving transistor for driving the white sub-pixel. According to the technical solution, white light OLED display may be implemented by forming the white sub-pixel and the driving transistor thereof on the driving transistor of the color sub-pixel, while making use of the space on the thickness dimension of the color sub-pixel, so that the light emitting layer missing region in the color sub-pixel is fully utilized. |
US10062309B1 |
Safety sign device with dual signs and related methods
A safety sign device for a vehicle may include a first sign having proximal and distal ends, and a first hinge being coupled to the proximal end of the first sign, the first hinge being coupled to a side of the vehicle. The safety sign device may include a second hinge being coupled to the distal end of the first sign, a second sign having a medial portion coupled to the second hinge, and an arm coupled between the second sign and the side of the vehicle and configured to extend and retract the first and second signs between a retracted position and an extended position. The first and second signs may be transverse to each other in the extended position, and be flat against the side of the vehicle in the retracted position. The safety sign device may include a first flexible arm coupled to the first sign. |
US10062308B2 |
System and method for providing a decorative lighting display
A decorative lighting display system and method are described for providing a halo lighting effect around one or more three-dimensional figures. A panel has a recess formed in a front portion thereof and an aperture formed in a portion of the recess. A lens and an associated mask having a predetermined pattern are mounted in the recess in the panel. A decorative laminate is applied on the front portion of the panel. One or more three-dimensional figures are mounted to the panel over the lens, associated mask and decorative laminate. The one or more three-dimensional figures have a two-dimensional cross-section, in a plane parallel to the front portion of the panel, which is slightly smaller than the predetermined pattern of the mask. A light source is mounted on the rear portion of the panel over the aperture and includes light elements which direct light through the lens and associated mask. |
US10062303B2 |
Object tracking for artificial vision
This invention concerns the tracking of objects in video data for artificial vision; for instance for a bionic eye. More particularly, the invention concerns a vision enhancement apparatus for a vision-impaired user. In other aspects, the invention concerns a method for enhancing vision and software to perform the method. The image processor operates to process video data representing images of a scene. Automatically detect and track a user selected object, such as a face, in the images. And, automatically modify the video data, by reserving a user selected area of the displayed images for displaying the tracked object as a separate video tile within the scene. The separate video tile remains in the selected area despite movement of the camera relative to the scene, or movement of the user relative to the object or the scene. |
US10062300B2 |
Modular learning device
A modular learning device comprising of a base board having a frame with plurality of sides, a network of tracks having a spinal track and several other tracks; a plurality of sliding blocks; and a plurality of wisdom cards having an identifier section, a margin having same number of sides as the base board, a plurality of zones in the margin, and a middle area, a solution code for the problems or situations, each wisdom card containing different problems or situations, and an indicator for each problem or situation, for generating the solution code. The wisdom card may be on academic, linguistic, cultural and behavioral subjects, including situations for persons with physical or mental constraints. A plurality of base boards can be unified by a complementary construction to use combination wisdom cards for cross learning of two or more subjects and for learning several languages together. |
US10062298B2 |
Education kit for open hardware
An open hardware education kit is provided. The open hardware education kit comprises an expansion board. The expansion board comprises a plurality of metal terminals joinable with a magnet, a plurality of conductive connection wires respectively connected with the metal terminals, and a plurality of pin headers respectively connected with the connection wires. The plurality of pin headers are joinable with an expansion header of open hardware. |
US10062289B2 |
Device and method for assisting a driver in driving his vehicle into and out of a parking space in a parking facility
A device and method for assisting a driver when parking his vehicle in a parking installation and removing his vehicle therefrom is provided. The vehicle is equipped with a driving assistance system which permits remote-controlled movement and steering. The device has a parking management and monitoring apparatus which is configured to determine, at the start of a parking phase, a first route for a vehicle, which has been left behind by the driver in an entry region of the parking installation, to a currently available free parking space within the parking installation, and transmit corresponding movement instructions to the driving assistance system of the vehicle, and determine, at the end of the parking phase, a second route for the vehicle from this parking space to an exit region of the parking installation, and transmit corresponding movement instructions to the driving assistance system of the vehicle. |
US10062286B2 |
Converging path detection codeword generation
A method and apparatus for use in traversing a vehicle transportation network may include determining a codeword based on host vehicle information and remote vehicle information, and wherein the codeword indicates whether an expected path for the remote vehicle and an expected path for the host vehicle are convergent, and traversing a portion of the vehicle transportation network in response to the codeword. Determining the codeword may include determining an orientation sector based on a geodesic between the host vehicle and the remote vehicle, determining relative position information for the host vehicle and the remote vehicle based on the orientation sector, determining relative elevation information for the host vehicle and the remote vehicle based on the remote vehicle information and the host vehicle information, and determining relative heading information for the host vehicle and the remote vehicle based on the remote vehicle information and the host vehicle information. |
US10062280B2 |
Traffic news interface
One or more techniques and/or systems are provided for providing a traffic news interface. For example, a traffic news provider component may query traffic camera data and/or traffic incident data to identify traffic cameras and/or traffic incidents along a route of a driver. The traffic cameras and/or the traffic incidents may be ranked based upon a safety metric, a travel time sensitivity metric, an alternative route selection metric, a driving behavior pattern, a driver mood, a distance of a traffic camera or traffic incident from a current user location, and/or other information used to determine how relevant information from the traffic camera and/or a traffic incident is to this particular driver. A subset of traffic cameras and/or traffic incidents may be selected for inclusion within a traffic news interface based upon camera relevancy rankings and/or incident relevancy rankings. |
US10062277B2 |
Information sharing among mobile apparatus
Verifying shared event information is provided. Communication with a nearby mobile or immobile apparatus is established to generate an event existence proof in response to encountering the nearby mobile or immobile apparatus. Existence of an incident event is verified in response to arriving at a geographic location of the incident event. A verified incident event is published to add to an incident event distributed ledger for managing incident event information corresponding to the incident event. |
US10062274B2 |
Recognizing alarm fatigue in a clinical setting
A notification system operating in a healthcare setting maintains information in alarm messages received from each of a plurality of call points and in messages received from clinicians, and operates on this information to determine whether a clinician is currently suffering from alarm fatigue or is at risk of suffering from alarm fatigue at some future time. |
US10062273B2 |
Integrated security system with parallel processing architecture
An integrated security system that includes a security coprocessor coupled to a conventional security system panel and an interactive security system. The integrated security system enables conventional security system features as well as the consumer-oriented interactive features and functions of an interactive security system without sacrificing reliability or the significant burden and cost associated with frequent software updates associated with conventional security systems. The integrated security system also minimizes or eliminates the need for new battery backup circuitry or larger batteries. |
US10062271B2 |
Emergency alert system (EAS) ATSC alarms
A method for operating a consumer communication device is described including receiving content from a service provider, determining if the received content is an emergency alert system notification and communicating the emergency alert system notification to a communication device, if the received content is the emergency alert system notification. Further described is a method for operating an enhanced detection device including receiving an emergency alert system notification, determining if the emergency alert system notification is communicated best by means of sounding an alarm or by means of vocalizing the emergency alert system notification and communicating the emergency alert system notification through a protected structure by means of initiating an alarm or by means of verbalizing the emergency alert system notification. |
US10062266B1 |
Programmable security system and method for protecting merchandise
A programmable security system and method for protecting an item of merchandise includes a programming station, a programmable key and a security system. The programming station generates a security code and communicates the security code to a memory of the programmable key. The programmable key initially communicates the security code to a memory of the security device and subsequently operates the security device upon a matching of the security code in the memory of the security device with the security code in the memory of the programmable key. The programmable key may also transfer power via electrical contacts or inductive transfer from an internal battery to the security device to operate a lock mechanism. The security code may be communicated by wireless infrared (IR) systems, electrical contacts or inductive transfer. A timer inactivates the programmable key and/or the security device after a predetermined period of time. A counter inactivates the programmable key after a predetermined maximum number of activations. |
US10062264B2 |
System, apparatus and method to facilitate alarm system communication
A customer terminal (1.000) is adapted to communicate with an alarm system (1.002), and includes: a customer terminal processor (4.019); customer terminal memory associated with the customer terminal processor (4.056); one or more external communication network interfaces (4.015, 4.214, 4.018.2); at least a first local communication interface adapted to connect with an alarm system (4.026, 4.062); wherein the customer terminal memory includes a web server (4.018) adapted to communicate with a remote device (2.030) via at least one external communication network (2.022, 2.024); the customer terminal being adapted to convert instructions in a first format from the remote device to an alarm system format suitable for reception by the alarm system via at least the first local communication interface. |
US10062262B2 |
People metering enhanced with light projection prompting for audience measurement
Example methods, apparatus, systems and articles of manufacture (e.g., physical storage media) to implement people metering enhanced with light projection prompting for audience measurement are disclosed. Example metering methods disclosed herein include determining whether a meter is to enter a first prompting mode. Disclosed example metering methods also include, in response to determining the meter is to enter the first prompting mode, activating a light projector to project light onto an external surface of a display screen of a media device. Disclosed example metering methods further include, after the light projector is activated, deactivating the light projector in response to determining the meter is to exit the first prompting mode. |
US10062260B2 |
Remote sensors for detecting alert conditions and notifying a central station
A method for disseminating emergency notification content from an emergency originating source. The method comprising: delivering the emergency notification content from the emergency originating source to at least one transmitting party; selecting a subset of users from among a set of users for dissemination of the emergency notification content based on the subject matter of the emergency notification content; and delivering the emergency notification content from the at least one transmitting party to a device corresponding to each user from the selected subset of users. |
US10062259B2 |
Pool floatation device with sonar
A pool floatation device including a body configured to float on the surface of water of a pool. A sonar device may be coupled to the body and configured to detect movement of an object beneath the surface of the water of the pool. A wireless communication device may be coupled to the body and configured to transmit a wireless signal for indicating to a terminal device that the sonar device has detected movement of the object beneath the surface of the water of the pool. |
US10062256B1 |
Integrated home lighting and notification system
An integrated lighting and notification system includes a light fixture connected to an electrical power supply, a camera, a control unit, and a trigger device. The electrical power supply provides electrical power to the light source unit and the camera. The control unit transmits a signal via a network in response to receiving a signal transmitted by the trigger device. |
US10062254B1 |
Intrusion detection system
Systems and methods for intrusion detection, including an intrusion detection device configured to send a light source to a retroreflector and receive reflected light from the retroreflector. An alarm is activated if the light source is not detected by the intrusion detection device. The intrusion detection device includes a computing device coupled to a preamplifier, a superregenerative receiver, and a digitizer. |
US10062252B2 |
Wearable charm anti-theft system with power saving feature
An anti-theft proximity alert system that includes a wearable smart charm with a charm housing, and an object monitor having a power saving feature comprising at least one operating instruction to select a power consumption mode of the object monitor based upon a condition of the object monitor. |
US10062251B2 |
Doorbell battery systems
Doorbell systems can communicate wirelessly with remotely located computing devices such as smartphones, laptops, gaming consoles, and streaming media players. In some embodiments, doorbells comprise a camera, a speaker, and a first battery. In several embodiments, a battery pack comprises a second battery and is electrically coupled to the doorbell. A battery charging system can electrically couple the second battery to the first battery such that the second battery is configured to recharge the first battery. |
US10062246B2 |
Accessibility-layered communication service using lighthouse
Methods, computer program products, and systems are presented. The methods include, for instance: providing social media feed cognizant lighthouse display service for communicating to spectators, information in regard to social response to an event, the lighthouse display service by use of a lighthouse structure further including a private display for subscribed data for an accessibility-layered communication service as encoded with a private key to make inaccessible to the spectators but to be decoded on a user device with the private key. |
US10062242B2 |
Checkout system, settlement apparatus and method for executing settlement processing
A checkout system includes a plurality of settlement apparatuses and a registration apparatus. The registration apparatus includes a scanner, a storage unit, a communication interface, and a processor. The processor controls the scanner, the storage unit and the communication interface to identify a commodity corresponding to a scanned code, generate the settlement information, and transmit the settlement information to a selected one of the plurality of settlement apparatuses. The selected one of the plurality of settlement apparatuses determines, with respect to itself, whether a settlement processing is currently being performed and whether a settlement processing was completed within a preceding predetermined amount of time. Based on the determination, the selected one of the plurality of settlement apparatuses performs one of the settlement processing with respect to the received settlement information and transmission of the settlement information to another one of the plurality of settlement apparatuses. |
US10062239B2 |
Bonus round items in an interleaved wagering system
An electronic gaming system including a mobile device providing an interactive controller constructed to communicate application telemetry associated with an interactive application provided by the interactive controller. The system also includes a wager controller constructed to communicate a wager result associated with a received wager request. The system also includes the application controller operatively connected to the interactive controller and the wager controller, and constructed to: receive application telemetry; upon receiving application telemetry, determine whether to trigger a supplementary mode; when triggering the supplementary mode is determined, communicate a notification to provide a supplementary mode session. The interactive controller is further constructed to: provide the supplementary mode session upon receiving the supplementary mode notification; communicate results of the supplementary mode session. The application controller is further constructed to: receive the results of the supplementary mode session; and when the received results are successful, communicate a request for benefits. |
US10062236B2 |
Vending machine for retaining and dispensing products
An apparatus for dispensing a product, including a housing having a storage rack for holding a first dispensable product; a weight movably positioned within the rack and configured to exert a downward force on the first dispensable product; a magnet affixed to the weight; a sensor plate having a sensor affixed thereto; a coin assembly having a first coin slot configured to receive a coin; and a pushbutton configured to cause the coin assembly to move from a first position to a second position; wherein the magnet is configured to substantially align with the sensor once the first dispensable product has been completely dispensed from the housing, the magnet and sensor being configured to activate an indicator light on the outside of the housing; and wherein the housing is configured to dispense the first dispensable product when the coin assembly is within the second position. |
US10062233B1 |
Automatic emergency door unlock system
In some implementations, systems and techniques are described to automatically unlock a front door of a property in response to detecting an alarm signal indicating an emergency at or near a property. Data indicating occurrence of an emergency condition at a property is initially obtained. A lock configuration for an electronic lock of the property is determined. An unlock instruction is generated for the electronic lock based on the determined lock configuration for the electronic lock. The unlock instruction is transmitted to the electronic lock such that, when the unlock instruction is received by the electronic lock, the electronic lock is unlocked according to the unlock instruction. |
US10062232B2 |
Entry control device
Systems of the present invention allow individuals to make and change reservations, check into accommodations, and gain access to their accommodations using their own mobile devices as well as mobile devices provided with the rooms. Room access can be through an entry control system comprising two modules that are mounted to a door and to a proximate wall, or similar fixed surface. One module communicates with an electronically controlled locking mechanism of the door lock, the other module wirelessly receives a room code from the user's mobile device. When the room code is correct, the second module communicates a signal to the first module which unlocks the lock. |
US10062227B2 |
Contents inventory tracking system and protocol
A vehicle inventory system may include a passive entry system configured to authenticate a key fob and including at least one antenna and a controller operably arranged with the at least one antenna. The controller causes, during a tag challenge period, the at least one antenna to transmit at least one tag challenge. The tag challenge period is initiated based on an end of a key fob challenge period. The controller further receives a tag response to the challenge indicative of a tag in the vicinity of the vehicle. |
US10062221B2 |
System producing alarm when wheel misalignment of vehicle occurs and control method for producing the same
A system is configured to produce an alarm when wheel misalignment of a vehicle occurs. The system includes: a navigation device; a lane change detector configured to detect lane change frequency information of the vehicle; a driving information detector configured to detect vehicle speed information and brake frequency information; a steering wheel rotation angle detector configured to detect a rotation angle of a steering wheel; and a controller deriving a criterion based on the rotation angle, for determining whether or not the vehicle travels straight by receiving from the navigation device, the lane change detector, the driving information detector, and the steering wheel rotation angle detector, information necessary to determine whether or not the vehicle travels straight, the controller transmitting an alarm signal to a driver when a current rotation angle of the steering wheel detected by the steering wheel rotation angle detector fails to satisfy the criterion. |
US10062217B2 |
3D object localization with descriptor
The invention notably relates to a computer-implemented method for localizing a 3D modeled object in a 3D scene, the method comprising a positioning of the 3D modeled object in the 3D scene, the positioning being performed following an algorithm that rewards, for each of first couples made of two 3D points of the 3D modeled object and their respective associated normal vectors, a match with a respective second couple made of two 3D point of the 3D scene and its respective associated normal vectors, the match between the first couple and the second couple amounting to a substantial equality between the value of a descriptor for the first couple and the value of the descriptor for the second couple, the descriptor being variable under mirror symmetries. This improves the localizing a 3D modeled object in a 3D scene. |
US10062214B2 |
Rendering digital virtual environments utilizing full path space learning
The present disclosure includes methods and systems for rendering digital images of a virtual environment utilizing full path space learning. In particular, one or more embodiments of the disclosed systems and methods estimate a global light transport function based on sampled paths within a virtual environment. Moreover, in one or more embodiments, the disclosed systems and methods utilize the global light transport function to sample additional paths. Accordingly, the disclosed systems and methods can iteratively update an estimated global light transport function and utilize the estimated global light transport function to focus path sampling on regions of a virtual environment most likely to impact rendering a digital image of the virtual environment from a particular camera perspective. |
US10062213B2 |
Augmented reality spaces with adaptive rules
A system for generating a virtual gaming environment based on features identified within a real-world environment, and adapting the virtual gaming environment over time as the features identified within the real-world environment change is described. Utilizing the technology described, a person wearing a head-mounted display device (HMD) may walk around a real-world environment and play a virtual game that is adapted to that real-world environment. For example, the HMD may identify environmental features within a real-world environment such as five grassy areas and two cars, and then spawn virtual monsters based on the location and type of the environmental features identified. The location and type of the environmental features identified may vary depending on the particular real-world environment in which the HMD exists and therefore each virtual game may look different depending on the particular real-world environment. |
US10062212B2 |
Method and device for providing augmented reality output
Methods and devices for generating an augmented reality output are described. In one aspect, the method includes: obtaining camera data from a camera associated with an electronic device, the camera data defining an image representing a card having a graphic disposed thereon; obtaining sensor data from a sensor associated with the electronic device; and generating an augmented reality output on an output interface based on the sensor data and the graphic. |
US10062211B2 |
Computer-readable recording medium recording information processing program, information processing apparatus, information processing system, and information processing method
An example information processing system includes: a computer; an imaging device; a display device; and a first and a second feature placed in a real space. The computer includes: an image acquiring unit that acquires an image of the real space; a feature detecting unit that detects the first feature and the second feature from the image; a changing unit that changes an association of the first feature with a virtual objects by adding a virtual object associated with the second feature, and an generating unit that generates an image of a virtual space in which the virtual object associated with the first feature is placed at a position based on the first feature; and a display controlling unit that displays an image on the display device. |
US10062210B2 |
Apparatus and method for radiance transfer sampling for augmented reality
Methods, systems, computer-readable media, and apparatuses for radiance transfer sampling for augmented reality are presented. In some embodiments, a method includes receiving at least one video frame of an environment. The method further includes generating a surface reconstruction of the environment. The method additionally includes projecting a plurality of rays within the surface reconstruction of the environment. Upon projecting a plurality of rays within the surface reconstruction of the environment, the method includes generating illumination data of the environment from the at least one video frame. The method also includes determining a subset of rays from the plurality of rays in the environment based on areas within the environment needing refinement. The method further includes rendering the virtual object over the video frames based on the plurality of rays excluding the subset of rays. |
US10062209B2 |
Displaying an object in a panoramic image based upon a line-of-sight direction
An example of a display control system displays, on a display device, an image of a three-dimensional space representing a real world or a virtual world. The object is arranged in the three-dimensional space on the basis of a line-of-sight direction determined in the three-dimensional space. In addition, an image in a field-of-view range, determined on the basis of the line-of-sight direction, of the three-dimensional space is displayed on the display device. The display control system arranges the object in either a first control mode in which the object is arranged on a reference plane set in the three-dimensional space or in an area near the reference plane or a second control mode in which the object is arranged away from the area. In addition, the display control system switches between the first control mode and the second control mode in accordance with the line-of-sight direction. |
US10062206B2 |
Parallel micropolygon rasterizers
A parallel adaptable graphics rasterization system in which a primitive assembler includes a router to selectively route a primitive to a first rasterizer or one of a plurality of second rasterizers. The second rasterizers concurrently operate on different primitives and the primitive is selectively routed based on an area of the primitive. In some variations, a bounding box of the primitive is reduced to a predetermined number of pixels prior to providing the primitive to the one of the plurality of second rasterizers. Reducing the bounding box can include subtracting an origin of the bounding box from coordinates of points that represent the primitive. |
US10062204B2 |
Virtual three-dimensional instrument cluster with three-dimensional navigation system
System, method, and computer program product to perform an operation, the operation comprising generating a three-dimensional graphical output comprising: a three-dimensional representation of a vehicle instrument cluster comprising a plurality of instruments at a first depth level, and a three-dimensional representation of a navigation system map at a second depth level, and outputting the three-dimensional graphical output for display on a three-dimensional display in a vehicle. |
US10062196B2 |
Information processing apparatus, information processing method, and recording medium, for superimposing additional object on image object, based on specified attribute
An information processing apparatus includes processing circuitry configured to specify, with respect to image data including a plurality of image objects each having an attribute. The processing circuitry is further configured to identify all image objects having the specified attribute from among the plurality of image objects, and to create, for each of the identified image objects with the same attribute, an additional object that has an identical shape to the image object and that is to be superimposed on the image object. |
US10062195B2 |
Method and device for processing a picture
A method for processing a picture comprising at least one face is provided. The method comprises: —obtaining (S10) a cropping window in the picture; —processing (S18) the picture by cropping the picture part delimited by the cropping window; wherein the method further comprises detecting (S12) the at least one face, determining (S14) a weight for the detected at least one face and modifying (S16) the position of the cropping window in the picture based on the weight, wherein the weight is determined at least based on the size of the corresponding detected face. |
US10062194B2 |
Split image page generating apparatuses, methods, and computer-readable storage mediums, and image content displaying apparatuses
An image content generating apparatus includes processing circuitry configured to execute computer-readable instructions to: split an image page into a plurality of page portions, the image page including a plurality of image layers, each of the plurality of image layers including at least one of an image and text; split at least a first of the plurality of image layers into a plurality of first image layer portions; associate each of the plurality of image layers and the plurality of first image layer portions with at least one of the plurality of page portions; and generate split image pages corresponding to the plurality of page portions, at least a first of the split image pages including at least one of (i) an image layer from among the plurality of image layers and (ii) a first image layer portion from among the plurality of first image layer portions. |
US10062193B2 |
Attribute based map marker clustering
A system that clusters map markers on a map receives a plurality of map markers, each having an associated location on the map and at least one attribute, and a characteristic corresponding to the attribute. The system location clusters the map markers based on the location within a cluster. The system then groups the clustered map markers based on the associated attribute, where each grouped marker retains the corresponding characteristic. The system then positions the grouped map markers within the corresponding cluster. |
US10062188B2 |
Customizable route planning using graphics processing unit
Customizable route planning is a technique for computing point-to-point shortest paths in road networks. It includes three phases: preprocessing, metric customization, and queries. A graphics processing unit may be used, e.g., in the metric customization phase, to make customization even faster, enabling a wide range of applications including highly dynamic applications and on-line personalized cost functions. |
US10062186B2 |
Method for dynamically generating an adaptive multi-resolution image from algorithms selected based on user input
Methods and systems are proposed herein for generative adaptive, multi-resolution images efficiently without intensive processing and/or memory consumption or hardware requirements. According to one aspect of the claimed subject matter, a system is provided that includes a computing workstation, communicatively coupled to both a data storage device and an image acquisition device. Real time images acquired by the image acquisition device are presented to the user along with one or more digitally reconstructed radiographs (DRRs)—generated using dynamically selected rendering techniques—from previously acquired image data. The user is able to verify the DRRs as a match to the verification image, and subsequently to dynamically generate additional DRRs more suitable by actuating a portion of the generated DRR. Based on the user actuation, a new DRR is generated and presented to the user for verification. |
US10062181B1 |
Method and apparatus for rasterizing and encoding vector graphics
The present invention describes exemplary embodiments of a method and apparatus for transmitting raster graphics. The method comprises determining a region, from 3D scene information for quality adjustment in a raster sequence of frames, wherein the raster sequence is generated by a graphics processing unit (the GPU) and consumed by an image encoder and the 3D scene information is provided by the GPU to the image encoder via shared memory and adjusting, by the image encoder, quality for the region according to the 3D scene information and a resource target for encodings of the raster sequence of frames. |
US10062179B2 |
Auto-calibration of probabilistic tracking parameters for DTI fibre tractography and compilation of tract probability comparison scales
1. A medical data processing method of determining information describing the probable position of a neural fiber in a patient's brain, the method comprising the following steps which are constituted to be executed by a computer: a) acquiring patient-specific medical image data describing the brain of the patient; b) acquiring atlas data defining an image-based model of a human brain; c) determining, based on the patient-specific medical image data and the atlas data, seed region data describing seed regions (A, B) in the patient-specific medical image data in which the ends of neural fibers of the patient's brain may be located; d) determining, based on the patient-specific medical image data and the seed region data, neural fiber tract data describing a plurality of potential tracts (T1, T2, T3) which a specific neural fiber may take through the patient's brain; e) determining, based on the atlas data and the neural fiber tract data, a figure of merit for each one of the potential tracts (T1, T2, T3). |
US10062172B2 |
Automated tattoo recognition techniques
In some implementations, a computer-implemented method is capable of automatically segmenting and detecting a tattoo within an image. An image may be initially obtained. A block coverage pattern that identifies multiple blocks within the obtained image may be determined. A set of processing operations may then be performed for each block. The processing operations may include calculating a plurality of statistical features. A confidence score reflecting a likelihood that at least a portion of the block includes a predetermined graphical attribute associated with tattoos may be calculated. A subset of the multiple blocks of the image that have a respective confidence score greater than a predetermined threshold value may be identified. A portion of the image that includes one or more blocks from among the subset of the multiple blocks may then be determined to correspond to a tattoo. |
US10062170B2 |
Apparatus and method for extracting object
According to one general aspect, an apparatus for extracting an object includes an image receiver configured to receive an image; a coupled saliency-map generator configured to generate a coupled saliency-map which is the sum of the product of a global saliency-map of the image and a predetermined weight value and a local saliency-map; an adaptive tri-map generator configured to generate an adaptive tri-map corresponding to the coupled saliency-map; an alpha matte generator configured to generate an alpha matte based on the adaptive tri-map; and an object detector configured to extract an object according to transparency of the alpha matte to generate an object image. |
US10062169B2 |
Method of providing a descriptor for at least one feature of an image and method of matching features
A method of providing a descriptor for at least one feature of an image comprises the steps of providing an image captured by a capturing device and extracting at least one feature from the image, and assigning a descriptor to the at least one feature, the descriptor depending on at least one parameter which is indicative of an orientation, wherein the at least one parameter is determined from the orientation of the capturing device measured by a tracking system. The invention also relates to a method of matching features of two or more images. |
US10062164B2 |
Method for the analysis of image data representing a three-dimensional volume of biological tissue
In the context of a method for the analysis of image data representing a three-dimensional volume (10, 20) of biological tissue, for each of a number of subvolumes at least two error probability values (41, 42, 43, 44) are generated, each of the values (41, 42, 43, 44) indicating a probability of a type of imaging error, the totality of subvolumes constituting the three-dimensional volume (10, 20). A single consolidated error probability value (51) is determined for each of the number of subvolumes, based on the at least two error probability values (41, 42, 43, 44). Subsequently, the image data is analyzed to obtain a physiologically relevant conclusion applying to a plurality of subvolumes, weighting in the analysis the image data of a given subvolume of the plurality of subvolumes according to the consolidated error probability (51) of the subvolume. |
US10062159B2 |
Method for locating a unit in an assembly
The present embodiments disclose a method for locating a unit in an assembly. According to the embodiments, a unit in an assembly is located. An identification of the target unit in the assembly is obtained. An image of at least a part of the assembly is acquired. The image includes a visual code associated with the part. The visual code is decoded to obtain an identification of at least one unit in the part. It is determined if the target unit is included in the part responsive to identification of a match of the target unit with the identification of the at least one unit. There is further disclosed a corresponding apparatus, assembly, and fault diagnosis device. |
US10062157B2 |
Compressive sensing for metrology
Disclosed are apparatus and methods for determining a structure or process parameter value of a target of interest on a semiconductor wafer. A plurality of collection patterns are defined for a spatial light beam controller positioned at a pupil image plane of a metrology tool. For each collection pattern, a signal is collected from a sensor of the metrology tool, and each collected signal represents a combination of a plurality of signals that the spatial light beam controller samples, using each collection pattern, from a pupil image of the target of interest. The collection patterns are selected so that the pupil image is reconstructable based on the collection patterns and their corresponding collection signals. The collected signal for each of the collection patterns is analyzed to determine a structure or process parameter value for the target of interest. |
US10062154B1 |
System and method for adaptive contrast enhancement
Apparatus, methods, and other embodiments associated with image processing operations are disclosed that provide image contrast enhancement. According to one embodiment, an apparatus includes histogram stretching logic to generate a stretched histogram. The stretched histogram is generated by compressing an enlarging a contrast of brightness bins of an equalized histogram of brightness component values formed from a previous input frame of image pixel data. Flat region detection logic classifies pixels of the previous input frame of image pixel data as being flat pixels or non-flat pixels, and counts a number of the flat pixels. Noise detection logic classifies the flat pixels as being noisy pixels or non-noisy pixels, and counts a number of the noisy pixels. The number of noisy pixels and characteristics of the stretched histogram are used to enhance the contrast of a current input frame of image pixel data. |
US10062153B2 |
Image processing apparatus, image pickup apparatus, image processing method, and storage medium
An image processing apparatus acquires an input image generated by image pickup via an optical system, and perform unsharp mask processing for the input image using a filter generated based on information of a PSF of the optical system. The filter is generated based on an unsharp mask used for the unsharp mask processing, and includes two-dimensional data having filter coefficients that are arranged rotationally asymmetrically with respect to a filter coefficient corresponding to a target pixel in the input image in convoluting the filter with the input image. A peak position or a center of gravity position of the unsharp mask accords with a position of the filter coefficient corresponding to the target pixel in the filter. |
US10062148B2 |
Method for converting a color filter array
Provided are a method and a device for converting a White-Red-Green-Blue (WRGB) color filter array into a Red-Green-Blue (RGB) color filter array in order to be easily applied to a commercial digital camera. The method includes (a) correcting a color of a White-Red-Green-Blue (WRGB) color filter array, (b) converting the WRGB color filter array into a Red-Green-Blue (RGB) color filter array, and (c) correcting a green of the RGB color filter array by using multichannel color difference value. |
US10062146B2 |
System and method for morphing a CAD design element
A system and method for morphing a design element which precisely and efficiently morphs a design element within a data file to new target parameters by changing its general proportions, dimensions or shape. The present invention is generally a computer software program which loads an existing data file which includes one or more design elements, such as parts or an assembly of parts, and then automatically morphs the design element's dimensions, proportions and/or shapes to meet target parameters input by a user. The present invention will create several groups of points corresponding to each surface and associated bounding curves of the existing design. It will then morph each group into a new shape as per the input requirements by the user, fit the morphed group into an infinite surface, create boundary curves for each morphed group and then trim the infinite surface to create the new, morphed design element. |
US10062145B2 |
Method for mapping crystal orientations in a sample made of a polycrystalline material
The invention relates to a method for mapping the crystal orientations of a polycrystalline material, the method comprising: receiving (21) a series of images of the polycrystalline material, which images are acquired by an acquiring device in respective irradiation geometries; estimating (22) at least one intensity profile for at least one point of the material from the series of images, each intensity profile representing the intensity associated with the point in question as a function of irradiation geometry; and determining (24) a crystal orientation for each point in question of the material by comparing (23) the intensity profile associated with said point in question to theoretical signatures of intensity profiles of known crystal orientations, which signatures are contained in a database. |
US10062144B2 |
Construction and evolution of invariants to rotational and translational transformations for electronic visual image recognition
A spherical harmonic is defined which is an operationally optimal small finite subset of the infinite number of spherical harmonics allowed to exist mathematically. The composition of the subset differs depending on its position on virtual hemisphere. The subsets are further divided into small spherical tesserae whose dimensions vary depending on the distance from the hemispherical center. The images of the outside visual scenes are projected on the flat surface of the webcam and from there are read and recalculated programmatically as if the images have been projected on the hemisphere, rotational invariants are then computed in the smallest tesserae using numerical integration, and then invariants from neighboring tesserae are added to compute the rotational invariant of their union. Every computed invariant is checked with the library and stored there if there is no match. The rotational invariants are solely used for visual recognition and classification and operational decision making. |
US10062140B2 |
Graphics processing systems
In a graphics processing system, when rendering plural views of the same scene (step 43), such as for stereoscopic rendering, the vertex shading operation is configured so that rather than executing the vertex shader program separately for each view that is being rendered, a single vertex shading program is executed once for all the views. The vertex shader program that is executed is configured to, for view-dependent operations, perform the respective operation separately for each view (step 48), so as to derive an appropriate vertex shaded output attribute value for each view, and is configured to, for vertex shading operations that are not dependent upon the view being rendered, perform those vertex shading operations only once for the set of views and to provide only a single vertex shaded output value for each vertex attribute in question for the set of views (step 49). |
US10062133B1 |
Image retrieval for computing devices
Implementations generally relate to retrieving images from a device for consumption by the receiving device. In some implementations, a computing device may receive from a communication device an update to a collection of images including at least one image not previously received in a prior version of the collection. The computing device may store in long term memory the update to the collection and copy at least one of the images from the update to a non-persistent memory. The images in non-persistent memory may not exceed a maximum threshold. In response to the computing device changing from inactive to active, the computing device may display an image from non-persistent memory as a background image on the computing device. In further response to a minimum threshold number of images in non-persistent memory, the computing device may copy at least one of the new images to non-persistent memory. |
US10062114B2 |
Multi-broker order routing based on net position
The disclosed embodiments provide tools for multi-broker order routing based on net position at a broker. The net position of a user at a broker to receive a portion of a trade order is considered when allocating the quantity for the trade order to multiple brokers. |
US10062113B2 |
System and method for displaying a view of market depth on a graphical user interface
A graphical interface and method are provided for displaying market information corresponding to a tradeable object. According to one example embodiment, a market depth indicator is displayed in relation to a value axis in a market overview interface. Then, detailed market depth is displayed in a market depth interface, and a plurality of market depth prices displayed in the market depth interface are adjustable based on a position of the market depth indicator in relation to the value axis. |
US10062109B1 |
Systems and methods for financing merchant business needs
A payment system can determine when a business need for a merchant is expected to occur. The payment system can also determine whether the merchant is eligible for financing for a financing amount. Once a determination is made that the merchant is eligible for the financing, the payment system can send the merchant a notification describing the expected business need along with an offer for the financing, which may be presented in an interface on a merchant device. The merchant can accept the offer for the financing by sending an acceptance to the payment system. Upon accepting the offer, the merchant is provided the financing amount, for example, in the form of an electronic deposit in a financial account of the merchant. |
US10062103B2 |
Native e-commerce transactables for familiar user environments
Native e-commerce transactables for social and other familiar and/or suitable user environments are enabled. A user of a network site may interact with a transactable to conduct a transaction with a 3rd party without leaving a user environment of the network site. The transactable may be configured to adopt the “look and feel” of the network site into which it is incorporated. While conducting the transaction with the transactable, the user may perceive that they remain at the network site, even though transaction information may be exchanged with a 3rd party network site. The transaction mediation service may obtain social activity data from a plurality of social network sites, as well as merchant activity data (e.g., transaction activity) from a plurality of merchant network sites. The data of each suitable network site may be translated, transformed and/or normalized into a unified and uniform format maintained by the transaction mediation service. |
US10062099B2 |
Product identification based on location associated with image of product
According to one embodiment of the invention, a system for creating a virtual shopping cart based on location information embedded in an image and the results of image recognition performed on the image is described. One embodiment of the system comprises an access point comprising a hardware processor wherein the system is configured to perform operations comprising: obtaining a first image, of a particular product, taken by a device operated by a user, identifying a first physical location of the device when the image was taken by the device, based on the first physical location, filtering a set of images corresponding to a plurality of products to obtain a first subset of images that are stored in association with the first physical location, and comparing the first image to the first subset of images to identify a product, from the plurality of products, that matches the particular product. |
US10062093B1 |
Companion advertisements on remote control devices
A companion advertisement is displayed on a control client which is also used to control the content being shown on a display client. The companion advertisement is related to a video or advertisement being displayed on the display client. Such a companion advertisement takes advantage of previously unused screen real estate and enables the user to interact with the advertisement or view further information without any interruption of the content being displayed on the display client. A server keeps the content displayed on the display client and control client synchronized. The server recognizes when a user is logged into both a display client and a control client and notifies the control client that an advertisement should be displayed. The control client then retrieves an advertisement related to the content on the display client. |
US10062092B1 |
Constraining ad service based on app content
Application content information is obtained from a mobile device application server. An ad server log includes at least application identifiers for applications that have requested advertisements from an ad network. If identifying information included in the application content information is the same as an application identifier found in the ad server log, the application content information is analyzed to determine whether the corresponding mobile device application is appropriate to be served an advertisement, based on predetermined content criteria. An application registry includes a database of mobile device applications that are registered in the ad network. The application registry record for a mobile device application is updated to indicate the determined appropriateness of the mobile device application corresponding to the analyzed application content information. |
US10062091B1 |
Publisher paywall and supplemental content server integration
The present disclosure is directed generally to systems and methods for allowing a website publisher to integrate a website's paywall system with the website's supplemental content server system. The system and methods of the disclosure allow a publisher to offer subscriptions to customers that result in the display of fewer or no supplemental content items to paying customers while the supplemental content retrieving code remains in place for all website visitors. Additionally, the system allows website analytics to be calculated for all visitors to the website. |
US10062089B2 |
Graph-based compression of data records
In general, embodiments of the present invention provide systems, methods and computer readable media for data record compression using graph-based techniques. |
US10062088B2 |
Information distribution apparatus, information distribution method, and storage medium
An advertisement distribution device includes: an arrangement position acquisition unit configured to acquire an arrangement position on a display screen of a terminal to display advertisement information; an attention degree index extracting unit configured to extract an attention degree index of the arrangement position based on acquisition of a specific position on the display screen and an attention degree index of the specific position; an arrangement position ranking unit configured to rank a plurality of arrangement positions based on a plurality of attention degree indices extracted by the attention degree index extracting unit; a distribution information ranking unit configured to rank a plurality of pieces of advertisement information based on a predetermined ranking process; and a distribution unit configured to distribute the plurality of pieces of advertisement information based on the ranks of the plurality of pieces of advertisement information and the ranks of the plurality of arrangement positions. |
US10062087B2 |
Method and apparatus for providing mission service based on user life log in wireless communication system
A method and an apparatus provide a customized service based on a user log in a wireless communication system. A method of a terminal collects user data existing inside a terminal. The method transmits the user data to a log manage server. The method receives a mission determined based on user data from the log manage server. The method transmits performance results regarding the mission to the log manage server. |
US10062083B2 |
Method and system for clustering and classifying online visual information
A scalable system to provide a means for a brand manager, marketer, consultant, or researcher to identify, monitor, measure, and rank the propagation of a brand's digital imagery across the web, including the social web, the system configured to implement a novel process in which digital image files obtained from social networks that are perceptually similar (i.e., appear identical to the human visual system), but whose digital representation differs, are identified, data associated with the images files is clustered into groups, each group representing a common single piece of content that originated from the user, and enabling a user to access and organize the clusters of brand image data to measure and track the engagement of users on the social network with that brand image content, thereby providing measurable statistics for the user. |
US10062081B2 |
Providing real world contexts to computer applications
A method provides real world contexts to computer applications for outputting data describing one or more real world contexts. Components are identified in a computer application which implement instances of real world contexts and application components are updated so that a real world context instance is active during the execution by the application of a function for the real world context instance. Each real world context instance may have an instance identifier and is referenced by type of real world context. |
US10062078B1 |
Fraud detection and transaction review
An automated purchase transaction service implements a two-phase analysis to identify suspect transactions and to freeze merchant accounts associated with certain of the suspect transactions. In a first analysis phase, a transaction is analyzed using a first predictive model to determine a probability that the transaction is fraudulent. If the probability exceeds a first threshold, the transaction is further analyzed in a second phase. In the second analysis phase, the transaction is analyzed using a second predictive model to determine a probability that manual review by a human analyst will result in freezing the associated account. If the probability exceeds a second threshold, the transaction is automatically frozen. If the probability does not exceed the second threshold, the transaction is submitted to a human analyst for manual review. |
US10062077B2 |
Automatic data transfer
A first request for a transfer of data is transmitted in response to the use of a user device; it is determined that the first request for the transfer of data has been declined; an event is detected that indicates that the transfer of data in response to the use of the user device can be accepted; and a second request for the transfer of data is transmitted in dependence on detecting that the event has occurred. |
US10062076B1 |
System and method for a mobile wallet
A computer-implemented method includes receiving an image captured by a mobile device and determining an orientation and a geographic location of the mobile device based on the image. The method includes generating a display for the image that identifies the location of one or more merchants relative to the mobile device and providing the relative location of the one or more merchants by sending the display to the mobile device as an overlay on the image. |
US10062073B2 |
System and method for providing a BLUETOOTH low energy mobile payment system
A BLUETOOTH low energy mobile payments system may comprise a BLE beacon that is deployed at a merchant location. The BLE beacon may be associated with a specific merchant terminal. The BLE beacon may be configured to broadcast a unique beacon ID that is detectable by a user device. The user device may be configured to communicate the beacon ID to a payment system. In response to receiving the beacon ID, the user device may initiate a payment between a user and a merchant, via a user device and a merchant terminal. |
US10062072B2 |
Facilitating sending and receiving of peer-to-business payments
The present disclosure relates to systems, methods, and devices for enabling peer to business payments using an integrated payment and messaging system. In particular, the integrated payment and messaging system allows users to send electronic payments as well as exchange messages with a merchant. The integrated payment and messaging system can improve security by allowing a user to make a purchase without having to provide sensitive financial information to the merchant. In addition, the integrated payment and messaging system can allow a user to make a payment for an order seamlessly during a conversation with the merchant. |
US10062070B2 |
Electronic money system, electronic value transfer method, mobile terminal, method for controlling mobile terminal, program product, and recording medium on which program product is recorded
Example embodiments enable a server-side value stored in an electronic money server to be transmitted automatically to a mobile terminal prior to payment. This enables payments when a payment terminal only processes payments based on the terminal-side value balance. An asynchronous payment terminal emits ultrasonic waves indicating that the payment terminal is not compatible with payment processes on the basis of a server-side balance. If the mobile terminal determines that the volume of the detected ultrasonic waves corresponds to a received ultrasonic wave pattern that appears while the mobile terminal is near the ultrasonic wave emission source, the mobile terminal transmits a value shift request to an electronic money server that then subtracts a predetermined amount from the server-side value balance, and transmits amount change information which increases the terminal-side value balance by that predetermined amount. An IC module then updates (increases) the terminal-side value balance. |
US10062057B2 |
Electronic meeting intelligence
Techniques related to electronic meeting intelligence are disclosed. An apparatus receives audio/video data including first meeting content data for an electronic meeting that includes multiple participants. The apparatus extracts the first meeting content data from the audio/video data. The apparatus generates meeting content metadata based on analyzing the first meeting content data. The apparatus includes the meeting content metadata in a report of the electronic meeting. If the apparatus determines that the audio/video data includes a cue for the apparatus to intervene in the electronic meeting, the apparatus generates intervention data including second meeting content data that is different from the first meeting content data. During the electronic meeting, the apparatus sends the intervention data to one or more nodes associated with at least one participant of the multiple participants. |
US10062055B2 |
Locating previously communicated electronic messages
Embodiments of the present invention provide an approach for locating previously communicated electronic messages (e.g., emails, etc.). The request is initiated by a first party on behalf of a second party. Specifically, the system will receive a request to locate/retrieve a previously communicated electronic message (“message”). The request can be issued by a sender or a recipient of the message. In any event, the request will include a set (one or more) of characteristics pertaining to the message such as a set of recipients thereof. One or more electronic messaging databases will then be searched based on the message located. Once located, an alert will be sent to the second party alerting the second party that the first party would like to recall the electronic message on their behalf. If the alert is validated (e.g., the message recall was accepted), the message will be displayed to the second party. |
US10062052B2 |
Advanced logistics analysis capabilities environment
The different advantageous embodiments provide a system for modeling supply chain networks comprising a model manager, a node manager, a pipeline manager, a requisitions manager, and a supply control manager. The model manager is configured to initialize a model. The node manager is configured to initialize a number of nodes within the model. The pipeline manager is configured to generate a number of pipeline data objects describing supply chain relationships between a number of nodes. The requisitions manager is configured to generate and receive requests for supplies. The supply control manager is configured to send and receive supplies according to requests for supplies. |
US10062050B2 |
Image-based inventory control system with automatic calibration and image correction
Systems for monitoring an inventory condition of objects based on captured images are described. An exemplary system includes at least one storage drawer, each storage drawer including a plurality of storage locations for storing objects; and an image sensing device configured to capture an image of one of the storage locations. A radio-frequency identification (RFID) sensor sub-system senses attributes of objects located in the inventory control system. A data storage system stores, for each storage location, reference data including identification of the object associated with each storage location. A data processor determines the inventory condition of each storage location of the captured image based on the image data of the captured image in conjunction with the sensing data of attributes of objects located in the inventory control system. |
US10062049B2 |
Systems and processes for tracking items
Systems and processes for tracking the status of an item are disclosed. Systems and processes for decommissioning identifying information from pharmaceutical product containers are disclosed. |
US10062045B2 |
Project workspace prioritization
Prioritization of project workspaces is provided herein. Data items are grouped into project workspaces based on workspace identifiers with which the data items have been tagged. Grouped data items included in a project workspace are tagged with a common workspace identifier that indicates association with a project corresponding to the project workspace, the project including tasks for a user. Priority of the project workspace is determined relative to priority of other project workspaces and based on ascertaining priorities of the tasks of the project by analyzing the grouped data items included in the project workspace. An indication of the priority of the project workspace relative to priority of the other project workspaces is provided for graphical presentation to the user, in order to facilitate focusing the user to a highest priority project workspace of the project workspaces. |
US10062039B1 |
Methods and apparatus for asynchronous and interactive machine learning using word embedding within text-based documents and multimodal documents
A machine learning system continuously receives tag signals indicating membership relations between data objects from a data corpus and tag targets. The machine learning system is asynchronously and iteratively trained with the received tag signals to identify further data objects from the data corpus predicted to have a membership relation with the single tag target. The machine learning system constantly improves its predictive accuracy in short time by the continuous training of a backend machine learning model based on implicit and explicit tag signals gathered from a non-intrusive monitoring of user interactions during a review process of the data corpus. |
US10062035B1 |
Using variable length representations for machine learning statistics
The present disclosure provides methods and systems for using variable length representations of machine learning statistics. A method may include storing an n-bit representation of a first statistic at a first n-bit storage cell. A first update to the first statistic may be received, and it may be determined that the first update causes a first loss of precision of the first statistic as stored in the first n-bit storage cell. Accordingly, an m-bit representation of the first statistic may be stored at a first m-bit storage cell based on the determination. The first m-bit storage cell may be associated with the first n-bit storage cell. As a result, upon receiving an instruction to use the first statistic in a calculation, a combination of the n-bit representation and the m-bit representation may be used to perform the calculation. |
US10062033B2 |
Analysis of team behaviors using role and formation information
Approaches are described for discovering a formation associated with an agent group engaging in an activity over a window of time. A formation analysis system computes first and second results for an objective function based on first and second sets of role assignments for each agent in the agent group at first and second moments in time, respectively. The formation analysis system iterates by: replacing the first set of role assignments with the second set of role assignments, and determining whether completion criteria have been met based at least in part on comparing the first result with the second result. If the completion criteria have not been met, then the formation analysis system replaces the second set of role assignments with a third set of role assignments that associate each agent in the first agent group with a different role assignment in the third set of role assignments at a third moment in time. If the completion criteria have been met, then the formation analysis system determines the first formation based on the second result. |
US10062030B2 |
Tree structured data transform, by determining whether a predicate of a rule matches a given node in a set and applying a function responsive to the match
A transformation process determines whether a predicate of a rule matches a given node of tree structured data containing a set of nodes and, when the predicate of a rule matches the given node, applies a function of an identified rule to the node to generate a compound result and an interim mutated output document, and when the compound result contains a next node, determines whether the next node is compared with the predicate of a next rule. The transform process includes determining that the next node is processed by a next rule, using the interim mutated output document as input, and determining whether a predicate of a rule matches the next node in a set of nodes. When the predicate of a rule matches the next node, a function of an identified rule is applied to the next node to generate a compound result and interim mutated output document. When the compound result does not contain a next node, a final mutated output document is generated. |
US10062021B2 |
Image processing apparatus, information processing method and storage medium
A printing apparatus is provided with a plurality of analyzing units, and a control unit. Each of the plurality of analyzing units analyzes each of different pages of print data, and notifies an error in a case that an analysis error occurs. The control unit receives the error notification from the analyzing unit, at which the analysis error occurs, among the plurality of analyzing units. And, the control unit notifies a cancel to another analyzing unit at which the analysis error does not occur. The control unit is further configured to notify, on a condition that a printing of all pages before a page at which the analysis error occurs is completed, the cancel to the another analyzing unit. |
US10062017B2 |
Print engine with adaptive processing
A print engine is adapted to print image data from a plurality of pre-processing systems that supply image data at different image resolutions and halftoning states. A data interface receives the image data and associated metadata including an image resolution parameter and a halftone state parameter. A metadata interpreter interprets the metadata and determines image processing operations that are required to prepare the image data for printing using a printer module. A resolution modification processor module processes the image data to modify its resolution if the metadata interpreter determines that the image resolution of the image data does not match the printer resolution. A halftone processor module processes the image data by applying a halftoning operation if the metadata interpreter determines that the image data is not in an appropriate halftoning state. |
US10062011B2 |
Systems and methods for machine learning enhanced by human measurements
In various embodiments, training objects are classified by human annotators, psychometric data characterizing the annotation of the training objects is acquired, a human-weighted loss function based at least in part on the classification data and the psychometric data is computationally derived, and one or more features of a query object are computationally classified based at least in part on the human-weighted loss function. |
US10062007B2 |
Apparatus and method for creating an image recognizing program having high positional recognition accuracy
An apparatus stores a plurality of partial programs, which are constituent elements of an image recognizing program that detects a position of a template image on an input image. The apparatus creates a plurality of individual programs each being a combination of at least two of the plurality of partial programs, and calculates a similarity map that associates similarity with the template image with each pixel of the input image by using each of the plurality of individual programs. The apparatus calculates fitness for each of the plurality of individual programs, based on a distribution of the similarity map, selects an individual program for which the fitness is equal to or greater than a prescribed threshold, from among the plurality of individual programs, and outputs the selected individual program as the image recognizing program. |
US10062005B2 |
Multi-scale correspondence point matching using constellation of image chips
A method of matching images A and B of the same scene taken at different locations in the scene is provided by matching correspondence points in the image by evaluating pixel characteristics from nearby regions using a constellation of image chips and utilizing joint information across multiple resolution levels in a probability framework. Since each image chip is small, each chip in one image potentially can be matched with a number of chips in the other image. The accumulation of evidence (probability) over all image chips within the constellation over multiple resolution levels reduces the ambiguity. The use of a constellation of image chips removes the requirement present in most visual point matching techniques to special feature points (e.g. corner points) as the correspondence points. |
US10061999B1 |
System and method for using segmentation to identify object location in images
An example method is disclosed that includes identifying a training set of images, wherein each image in the training set has an identified bounding box that comprises an object class and an object location for an object in the image. The method also includes segmenting each image of the training set, wherein segments comprise sets of pixels that share visual characteristics, and wherein each segment is associated with an object class. The method further includes clustering the segments that are associated with the same object class, and generating a data structure based on the clustering, wherein entries in the data structure comprise visual characteristics for prototypical segments of objects having the object class and further comprise one or more potential bounding boxes for the objects, wherein the data structure is usable to predict bounding boxes of additional images that include an object having the object class. |
US10061998B2 |
System and method for scheduling plurality of imaging tasks in a medical imaging system
A system that provides an improved way of scheduling a plurality of imaging tasks in a medical imaging system is disclosed. The system enables a user (i.e. a technician or medical expert) to group different imaging tasks and executes them simultaneously to significantly reduce scan time. These imaging tasks are of different types or are related to different imaging techniques. If different imaging tasks need to be performed substantially at the same location and have substantially same scan time then they can be scheduled simultaneously so that overall scan time can be reduced. |
US10061997B2 |
Handwriting capture techniques
A set of rules is used by a processor of a device to render a digital image of handwriting (e.g., handwritten signature) by connecting data points captured on a touch sensitive surface of the device with line segments or curves. A set of rules determines whether two given data points will be connected by a line segment or a curve. If a curve is used, the set of rules determine characteristics of the curve through the derivation of control points. In some implementations, a smoothness adjustment factor can be applied to magnitudes of curve control points to reduce excessive smoothing for large distances between data points and maintain acceptable smoothing for short distances between data points. The magnitude can then be adjusted by multiplying by a constant factor which can be determined (e.g., heuristically) from the processing speed and resolution of the device upon which the curve is being rendered. |
US10061996B1 |
Face recognition method and system for personal identification and authentication
The present invention comprises capturing an image of a subject to be authenticated; a step of face verification; followed by the process steps of a scan line detection test, a specular reflection detection test, and a chromatic moment and color diversity feature analysis test in no particular order. The method requires a subject to present her face before a camera, which can be the built-in or peripheral camera of e.g. a mobile communication device or a mobile computing device. The method also requires displaying to the subject certain instructions and the real-time video feedback of the subject face on a display screen, which can be the built-in or peripheral display screen of the mobile communication device or mobile computing device. |
US10061995B2 |
Imaging system to detect a trigger and select an imaging area
An imaging system (CM, 100) is provided with: an imaging device (CM) configured to selectively image a first imaging area and a second imaging area, which is larger than the first imaging area, the first imaging area being used to detect eyes of a user (1), the second imaging area being used to detect a body of the user; a detecting device (110, 120, 160) configured to detect trigger operation of the user; and a selecting device (13) configured to select the first imaging area or the second imaging area on the basis of a detection result of the trigger operation. |
US10061993B2 |
Warning method of obstacles and device of obstacles
An obstacle warning method includes the steps of: acquiring scenario images at a current sampling time and a previous sampling time, and a map about first relative distances between respective viewing points in a viewing field and a vehicle; acquiring a profile and marking information of an obstacle and a map about a second relative distance between the obstacle and the vehicle in accordance with the map about the first relative distances; calculating a map about a third relative distance between the obstacle and the vehicle at a previous sampling time in accordance with the map about the first relative distances at the previous sampling time, the profile and the marking information of the obstacle at the current sampling time and a motion vector of the obstacle from the current sampling time to the previous sampling time. |
US10061991B2 |
Method of data visualization and data sorting
A method of displaying data in a data visualization computing system is described. Various methods of displaying the data are described including using a timeline, the data being aggregated based on time periods wherein the timeline consists of a plurality of time period sizes, the current selected time period covering the smallest time period, the period furthest on the timeline from the current selected period covering the largest time period, the timeline consisting of at least one time period of each time period size. Also described are improved methods of data selection and display. |
US10061988B2 |
Systems and methods for defining and analyzing video clusters based on video image frames
Systems, methods, and non-transitory computer-readable media can identify a first video represented based on a first set of image frames. A first subset of image frames can be extracted from the first set of image frames. The first subset of image frames can be compared to one or more image frames associated with a collection of video clusters. It can be determined that at least a threshold quantity of image frames in the first subset matches, within an allowable deviation, at least some image frames associated with a first video cluster included the collection of video clusters. The first video cluster can be defined to include the first video. |
US10061986B2 |
Systems and methods for identifying activities in media contents based on prediction confidences
There is provided a system comprising a memory and a processor configured to receive a media content depicting an activity, extract a first plurality of features from a first segment of the media content, make a first prediction that the media content depicts a first activity based on the first plurality of features, wherein the first prediction has a first confidence level, extract a second plurality of features from a second segment of the media content, the second segment temporally following the first segment in the media content, make a second prediction that the media content depicts the first activity based on the second plurality of features, wherein the second prediction has a second confidence level, determine that the media content depicts the first activity based on the first prediction and the second prediction, wherein the second confidence level is at least as high as the first confidence level. |
US10061985B2 |
Video understanding platform
In one embodiment, a method includes accessing a first feature vector representing a video-content object corresponding to a node in a social graph, wherein the video-content object comprises frames and audio and is associated with text, the first feature vector is based on one or more of the frames; accessing a second feature vector representing the video-content object, wherein the second feature vector is based on at least some of the text; accessing a third feature vector representing the video-content object, wherein the third feature vector is based on one or more portions of the audio; determining a fourth feature vector representing the video-content object, wherein the fourth feature vector is based on a combination of the first, second, and third feature vectors; and determining a context of the video-content object based on the fourth feature vector and social-graph information. |
US10061979B2 |
Image processing apparatus and method
There provides an apparatus for recognizing a head region in a CT lateral image of a subject, comprising: a deriving unit for deriving a first image representing a bone of the subject from the CT lateral image; an extracting unit for extracting a boundary curve indicating an outer contour of a region comprising at least part of the occipital bone and at least part of the cervical vertebra of the subject in the first image; and a determining unit for determining a first pixel position indicating a bottommost point of the head region of the subject, based on a shape feature parameter of the boundary curve. |
US10061976B2 |
Device for capturing person-specific data
The disclosure relates to a device for capturing person-specific data of a person, wherein the person-specific data comprises a facial image of the person, wherein the device has a camera for recording the facial image of the person, a lighting apparatus, and a semi-transparent mirror, wherein the semi-transparent mirror is arranged between the person and the camera, wherein the semi-transparent mirror is oriented such that, on the side of the semi-transparent mirror facing towards the person, the optical path of light incident on the semi-transparent mirror is parallel to the optical path of the portion of this light reflected back by the semi-transparent mirror, wherein the lighting apparatus is used to illuminate the person from the front, wherein the device also has a control unit for capturing an image, by generating light by means of the lighting apparatus in order to illuminate the face of the person and, during the illumination, capturing a first image of the face of the person by means of the camera, capturing a second image of the face of the person by means of the camera without generation of the light, forming a first differential image of the first image and the second image, wherein in the first differential image the face of the person is freed from the background, wherein the person-specific data comprises the first differential image as the facial image. |
US10061975B2 |
Confirming compliance with a configuration
Confirming compliance with a configuration includes: receiving information about a fixture, where the information includes a specified configuration of items to be displayed on the fixture; generating a display using the information, where the display depicts the specified configuration; presenting the display using a graphics system of a computing device; receiving an image depicting an actual configuration of the fixture; associating metadata with the image, where the metadata includes searchable data that distinguishes the fixture from at least some other fixtures of like type; sending the image, along with the metadata, over a network to a server that is remote from the computing device; and in a case that the specified configuration substantially matches the actual configuration, sending, along with the image and the metadata, a message indicating that the fixture is in compliance with the specified configuration. |
US10061974B2 |
Method and system for classifying and identifying individual cells in a microscopy image
In a method and system for identifying objects in an image, an image and training data are received. The training data identifies a pixel associated with an object of a particular type in the image. A plurality of filtered versions of the image are developed. The training data and the plurality of filtered versions of the image are processed to develop a trained model for classifying pixels associated with objects of the particular type. The trained model is applied to the image to identify pixels associated a plurality of objects of the particular type in the image. Additional image processing steps are developed to further refine the identified pixels for better fitting of the contour of the objects with their edges. |
US10061968B2 |
Method for assembling fingerprint identification module and fingerprint sensor cutting method
A method for assembling a fingerprint identification module is provided. During the process of cutting the sensing strip, the thin junction slices between the fingerprint sensors are retained. Consequently, the size of the top surface of the fingerprint sensor is close to a predetermined size. After the thin junction slices are cut, the concave structures are formed on the bottom surfaces of the fingerprint sensors. Consequently, the size of the bottom surface of the fingerprint sensor is smaller than the size of the top surface of the fingerprint sensor. Even if the cutting skew is generated during the cutting process, the fingerprint sensor can pass the size test. Consequently, the production efficiency is enhanced. |
US10061967B2 |
Fan-out semiconductor package
A fan-out semiconductor package includes: a first connection member having a through-hole; a semiconductor chip disposed in the through-hole of the first connection member and having an active surface with connection pads disposed thereon and an inactive surface opposing the active surface; an encapsulant encapsulating at least portions of the first connection member and the semiconductor chip; and a second connection member disposed on the first connection member and the semiconductor chip. The first connection member and the second connection member respectively include first redistribution layers and second redistribution layers electrically connected to the connection pads and formed of one or more layers, at least one of the first redistribution layers is disposed between a plurality of insulating layers of the first connection member, and at least one of the second redistribution layers includes sensor patterns recognizing a fingerprint. |