Document | Document Title |
---|---|
US09906192B2 |
Amplifier for vehicle and vehicle including the same
The present disclosure provides an amplifier for vehicle, vehicle including the amplifier, and method for controlling the amplifier for vehicle, which uses a 48 volt (V) battery voltage and adjusts speaker output according to variable audio signals, thereby minimizing the size of the amplifier, reducing conversion loss of a Direct Current (DC)-to-DC converter, and increasing output efficiency. In accordance with one aspect of the present disclosure, An amplifier for vehicle includes a first input port for receiving a first voltage; a second input port for receiving a second voltage lower than the first voltage; at least one power Integrated Chip (power IC) connected to a speaker for using a voltage received from the first input port; and a controller for controlling the power IC using a voltage received from the second input port. |
US09906188B2 |
Photovoltaic mounting system
A two-piece rooftop photovoltaic mounting system. A fixed base portion is attached directly to a roof surface via a lag bolt or other mechanical fastener. A movable portion is attached to and pivots about the base portion providing freedom of movement radially and axially with respect to the base portion. A photovoltaic module coupler is attached to the movable portion to support at least two photovoltaic modules at a location dictated by positioning of the movable portion. A locking nut locks the movable portion to the base portion at the desired location. A sheet of sealant material under the base portion helps prevent ingress of water into the roof surface via the lag bolt. |
US09906186B2 |
Holding frame and solar cell module
A holding frame includes a main frame member extending along a first side of the light-receiving surface, and a sub-frame member extending along a second side adjacent to the first side, wherein the main frame member includes a main outer wall extending along the first side, main holding units formed on the main outer wall to hold the solar cell panel from the first-side side, and a main bottom piece formed on the main outer wall protruding towards inside of the holding frame. The sub-frame member includes a sub-outer wall extending along the second side, sub-holding units formed on the sub-outer wall to hold the solar cell panel from the second-side side, and a cylindrical part formed to include the sub-outer wall, extending along the second side on the back surface side of the solar cell panel. |
US09906185B2 |
Method for detecting a short circuit in a synchronous machine fitted with an angular position sensor
The invention relates to a method for detecting a short circuit between the phases of a polyphase synchronous machine (1) comprising a stator (2) and a rotor (3), said machine being fitted with at least one angular position sensor (1a) of the rotor (3), the rotor (3) comprising means for generating a magnetic induction provided to move said rotor around the stator (2), the angular position sensor (1a) comprising at least two magnetic induction measurement sensors (6), the induction measurement sensors (6) extending to an axial end (3a) of the rotor (3), facing and immediately adjacent to the axial edges (4a) of the means for generating a magnetic induction, characterized in that said method consists of: i1) using the values measured and supplied by the induction measurement sensors, i2) calculating the gradient of the curve of the measured values as a function of time, i3) comparing the calculated gradient with a threshold value, Vs, and i4) if the calculated gradient is greater than or equal to the threshold value, Vs, generating a warning signal, S, using an electronic unit and, if this is not the case, returning to step i1). |
US09906183B1 |
Parallel interleaved 2-level or 3-level regenerative drives
A paralleled drive having a first plurality of interphase inductors to distribute three phase alternating current power to a first and a second converter that transfer power to a first and a second direct current (DC) buses respectively, a bus coupler connecting the first and second DC buses, a first and a second inverter connected to the first and second DC buses respectively. The drive also includes a controller connected to the first and second converters and the first and second inverters, the controller generates control signals to cause the first and second converter to transfer power to the first and second direct current (DC) buses respectively, and the controller configured to generate control signals to cause the first and the second inverters to generate a plurality of motor excitation signals respectively, and a second plurality of interphase inductors operable to combine the plurality of motor excitation signals. |
US09906181B2 |
Voice coil motor driver and camera module having the same
A camera module having a voice coil motor driver, including a driving controller configured to compare a reference voltage and a negative feedback voltage to output a driving control signal, and a driver configured to drive a coil of the voice coil motor according to the driving control signal. |
US09906180B2 |
Inverter drives having a controlled power output
An electromechanical system includes an inverter drive, a component arranged during operation to generate a variable force having one or more periodic frequency components, and processing circuitry arranged to determine the power output of the inverter drive, measure a difference between the power output and a reference power output, and control an output frequency of the inverter drive as a function of the measured difference, so as to stabilise the power output during operation of the component. Other example electromechanical systems, inverter drives and methods are also disclosed. |
US09906177B2 |
Low-frequency band suppression enhanced anti-reversal power system stabilizer
A low-frequency band suppression enhanced anti-reversal power system stabilizer is presented by the invention. Currently the widely used PSS2B power system stabilizer needs lead elements above Order 2 to meet the phase compensation requirement of DC blocking signal of active power, thus quickly increasing high-frequency band gain, restricting allowable total setting gain of PSS, limiting low-band gain and reducing low-frequency band suppression ability of power system stabilizer. The invention will add generator speed signal ω (which is treated by DC blocking element and corrected by parallel proportional differential PD) and active power signal Pe (which is treated by DC blocking element and gained by gain factor Ks3) to get equivalent synthetic mechanical power of power system stabilizer. The actual active power signal gained by gain factor KS1 can meet the requirement of phase compensation through Order 1 lead and lag elements, thus increasing allowable total setting gain of PSS and improving the ability of low-frequency band oscillation suppression. |
US09906175B2 |
Method of starting a three-phase BLDC motor and motor driver using same
Method of starting a three-phase sinusoidal BLDC motor, comprising: a) determining an initial position of the rotor; b) applying a first set of sinusoidal energizing signals to the windings, corresponding to a set of sinusoidal waveforms shifted apart by 120° and 240° sampled at a first angle (Φ1); and maintaining the energizing signals for allowing the rotor to move to a first angular position; c) while maintaining the energizing signals, monitoring two of the phase currents, and determining whether a predefined condition is satisfied, comprising testing whether a ratio of two total current values is equal to a predefined value, and if true, to repeat steps b) and c), but with second and further sinusoidal energizing signals sampled at a second or further angular position, selected from a limited group of discrete angular positions. |
US09906174B2 |
Power steering device and control device for power steering device
Provided are a power steering device and a control device for a power steering device, which are capable of reducing power consumption. The power steering device includes a current detection number setting circuit configured to set the number of times of detection of a DC bus current value by a current detecting circuit to a first predetermined number over a first predetermined cycle of a PWM period when the steering-state signal indicative of a steering operation state is received, and to set the number of times of detection so that the number of times of detection becomes smaller than the first predetermined number over the first predetermined cycle of the PWM period when a steering-state signal indicative of a non-steered state is received. |
US09906171B2 |
Piezoelectric energy harvesting apparatus
A piezoelectric energy harvesting apparatus includes a housing and a piezoelectric module disposed in the housing. The piezoelectric module includes a piezoelectric wafer unit and a clamp unit clamping the piezoelectric wafer unit. A resilient member is connected between the clamp unit and an inner wall of the housing to transmit an oscillation movement to the clamp unit, which in turn causes oscillation of the piezoelectric wafer unit for generating an electric power. An impact unit extends movably into the housing and is capable of pushing the clamp unit against the resilient member when being subjected to an ambient natural force such that the resilient member generates the oscillation movement. |
US09906169B1 |
DC-AC conversion circuit having a first double ended DC pulse stage and a second AC stage
A voltage converter system includes a first DC-AC voltage converter that converts a first DC voltage signal to a first AC voltage signal. A DC link converts the first AC voltage signal to a second DC voltage signal. A second DC-AC voltage converter converts the second DC voltage signal to a second AC voltage signal. In another configuration a DC-AC voltage converter converts a DC voltage signal to a first AC voltage signal. An AC-AC voltage converter converts the first AC voltage signal to a second, lower-frequency AC voltage signal. In yet another configuration a first voltage converter portion converts a DC voltage signal to pulses of DC voltage. A second voltage converter portion converts the pulses of DC voltage to a relatively low-frequency AC voltage signal. The voltage converter system is selectably configurable as a DC-AC voltage converter or an AC-DC voltage converter. |
US09906168B2 |
Power converting apparatus, control device, and method for controlling power converting apparatus
A power converting apparatus is provided. The power converting apparatus includes a power converter configured to output a voltage to a load, and a controller configured to output a PWM signal which is generated in response to a voltage command to the power converter. The power converter includes a plurality of switching elements driven based on the PWM signal. The controller is configured to generate the PWM signal such that a first period during which a zero voltage is outputted and a second period during which a non-zero voltage is outputted are adjusted according to the voltage command. The controller is allowed to output the PWM signal which is set such that one first period and one or more second periods exist within an updating cycle of the voltage command, to the power converter. |
US09906166B2 |
Method and device for controlling operation of inverter
Provided are a method and a device for controlling an operation of an inverter. The method includes: determining whether a direct current side voltage of the inverter is greater than an operation voltage setting threshold; and if no, controlling the inverter to operate according to a five level control strategy; and if yes: adjusting the direct current side voltage by using a maximum power tracking algorithm; adjusting linearly a floating capacitor voltage of the inverter based on the adjusted direct current side voltage; determining whether the adjusted floating capacitor voltage is in a preset range; and if yes, controlling the inverter to operate according to a five level control strategy; and if no, controlling the inverter to operate according to a seven level control strategy. |
US09906163B2 |
Device and method for safe control of a semiconductor switch of an inverter
A device for safe control of at least one driver module for controlling a semiconductor switch of an inverter, wherein the driver module controls the semiconductor switch in dependence on a pulse signal, wherein a switching arrangement which is connected with the driver module is provided and that this has a switching connection for applying an inhibition signal and a first connection for applying the pulse signal, in order to either inhibit or switch the pulse signal applied to the first connection through to the driver module, depending on the inhibition signal. |
US09906159B2 |
Controller for a voltage converter
In some examples, a control module for a voltage converter may have an input for connection to an AC supply having an operating voltage range. A first detector is provided for detecting the operating voltage range of the AC supply and generating a first control signal to identify the detected operating voltage range. A second detector is also provided for detecting the operating voltage range of the AC supply and generating a second control signal to identify the detected operating voltage range. The control module has one or more switches for selectively enabling and/or disabling a voltage multiplier in response to said first and second control signals. The present disclosure also relates to a method of controlling a voltage converter. |
US09906158B2 |
Power conversion device
A power conversion device possesses a capacitor module, a power module, a circuit board on which a control circuit is mounted and which has a ground layer formed in a control circuit mounting region, a noise shielding plate, and a metal housing. The circuit board is above the capacitor module, and the noise shielding plate faces the control circuit mounting region between the circuit board and the capacitor module, in which the noise shielding plate has a plurality of connection parts to be electrically connected to the metal housing. A first end part on the power module side of the noise shielding plate is on the power module side more than a second end part on the power module side of the ground layer, and the connection part which is the closest to the first end part is provided on the power module side more than the second end part. |
US09906157B2 |
Package assembly
A package assembly includes a main body, a power module and replaceable top cover. The main body has a hollow part. The power module is disposed within a hollow part of the main body and located beside the bottom part of the main body. At least one first pin is disposed on a surface of the power module. The at least one first pin is accommodated within the hollow part of the main body and partially protruded out of a first open end of the hollow part near a top part of the main body. The top cover is disposed in the hollow part of the main body, and includes at least one first opening corresponding to the at least one first pin. The at least one first pin is penetrated through the corresponding first opening and exposed outside the first open end of the hollow part. |
US09906156B2 |
Direct-power-converter control device
A control device includes a charge controller. The charge controller includes an amplitude determining unit, a charge command generating unit, and a charging operation controller. The amplitude determining unit determines an amplitude of a current to be input to a converter by performing at least proportional-integral control on a deviation between a voltage across the buffer capacitor and an average voltage command value that is a command value of an average of the voltage across the buffer capacitor. The charge command generating unit determines a charge command by multiplying by the amplitude a function determined according to a discharge duty, a rectifying duty, and a distribution factor of power. The charging operation controller controls a charging operation of the buffer capacitor on the basis of the charge command. |
US09906155B2 |
Power management utilizing a high-frequency low voltage pre-charge and synchronous common coupling
The present disclosure relates to power management systems utilizing a high-frequency low voltage pre-charge. A power management system may comprise a low voltage power source, a power supply assembly connected to the low voltage power source, and a power module comprising a plurality of arrays. Each array may comprise a plurality of electrically isolated stacks connected through a synchronous common coupling. Each electrically isolated stack may comprise a plurality of stages, a multi-winding secondary, a pre-charge circuit connected to at least one of the plurality of stages, and a plurality of multi-winding isolated power supplies. Each multi-winding isolated power supply may be connected to one of the plurality of stages. The power supply assembly may be configured to supply charging current from the low voltage power source to at least one of the plurality of electrically isolated stacks. |
US09906154B2 |
Power conversion unit and power conversion device
The present invention reduces the footprint of a power conversion device. A first power semiconductor module and a second power semiconductor module are connected to a positive conductor, a negative conductor, and an alternating-current conductor. An external alternating-current terminal, the first power semiconductor module, the second power semiconductor module, a capacitor, and an external direct-current terminal including an external positive terminal and an external negative terminal are arrayed on a straight line extending in the longitudinal direction of a circuit connection section. The external alternating-current terminal is disposed at one longitudinal end of the circuit connection section. The external direct-current terminal is disposed at the other longitudinal end of the circuit connection section. |
US09906153B2 |
Two-wire neutralless digital dimmer for leading-edge dimmable lamp driver and a method of operation thereof
A dimmer switch (110-x, 200, 400, 600, 700A, 700B, 1200) adapted to be coupled to an alternating current (AC) source and to a load so as to control an amount of power delivered from the AC source to the load, the dimmer switch may include: a triode for AC (TRIAC) (208, 408, 612) coupled between the AC source and the load, and which when triggered conducts to deliver a controlled amount of power from the AC source to the load for a corresponding half-cycle of one or more half cycles of the AC source. The dimmer switch may include first and second triggering circuits (606, 608) configured to trigger the TRIAC when charged after being enabled. One or more of the triggering circuits may be a self-balancing triggering circuit. The dimmer switch may further include a controller (412, 602, 1210) which selects and thereafter enables one or more of the first or second triggering circuits. |
US09906148B2 |
Method for controlling a full-bridge DC-dc converter
In order to enable a switching process with a zero-voltage sequence (ZVS) in a full bridge DC/DC converter (1) with phase shift control without having to provide an additional inductor for this purpose, it is provided that a short-circuit is generated in the secondary-side output rectifier (5) in the transition phase from the active to the passive phase prior to switching to a passive phase of the full bridge (2), said short-cut increasing the primary current (ip) across the primary side of the transformer (T) by means of the resulting short-circuit current (ik) across the secondary side of the transformer. |
US09906147B2 |
Adaptive dead time control apparatus and method for switching power converters
An embodiment apparatus comprises a secondary synchronous rectifier and a secondary gate drive controller coupled to a transformer winding. The secondary gate drive controller is configured to generate a forward gate drive signal for the forward switch and generate a freewheeling gate drive signal for the freewheeling switch, wherein the secondary gate drive controller generates a dead time between the forward gate drive signal and the freewheeling gate drive signal. |
US09906146B2 |
Thermal protection circuit for switching power supply
To operate a switching power supply again automatically (automatic return) after the switching power supply is stopped for protection.A protection circuit 6 includes a bipolar transistor Q1 that becomes ON state and sets current that flows to a photo coupler 62 larger in case that a temperature detection element 63 supplies a detection signal, a control IC 4 that controls a switching element 3, and a protection power supply circuit 66 that includes a condenser C3 that is charged by output voltage from the switching power supply 1. Power supply voltage form the protection power supply circuit 66 is supplied to the temperature detection circuit 63 and the photo coupler 62. Further, in case that voltage value that is changed by the photo coupler 62 is not more than a predetermined value, the control IC 4 stops the switching element 3. |
US09906143B1 |
Systems and methods for diagnostic current shunt and overcurrent protection (OCP) for power supplies
Systems and methods are provided that may be implemented to provide a power supply with automatic overcurrent protection (OCP) point calibration and/or current sense resistor (Rsense) verification. The provided systems and methods may implement auto-calibration techniques on the secondary side of a power supply to achieve a more precise OCP point than is possible with conventional adapter technology, and in one example may implement auto trimming for OCP voltage threshold value. |
US09906137B2 |
High power density, high efficiency power electronic converter
AC to DC power electronic converter circuitry includes isolated converter circuitry and control circuitry coupled to the isolated converter circuitry. The isolated converter circuitry includes one or more wide bandgap switching components. The control circuitry is configured to drive at least one of the wide bandgap switching components such that the power electronic converter circuitry is configured to generate a DC output with an output power greater than 100W at an efficiency greater than 92%. Using wide bandgap components in the isolated converter circuitry allows the power electronic converter circuitry to achieve a high efficiency and high power density. |
US09906135B2 |
Multiphase DC/DC converters and control circuits for controlling converters using fixed and/or variable frequencies
A multiphase DC/DC power converter includes an input, an output, at least a first converter and a second converter coupled in parallel between the input and the output, an inductor coupled to the first and second converters, an output capacitor coupled between the first and second converters and the output, and a control circuit coupled to the first converter and the second converter. The first and second converters each include a power switch. The control circuit is configured to switch the power switches at a frequency with a phase shift therebetween, and to vary the frequency to regulate a voltage at the output. Additionally, the control circuit may be configured to switch power switches at a fixed frequency with substantially no phase shift therebetween during startup of a multiphase DC/DC power converter, and at a variable frequency with a defined phase shift therebetween after startup. |
US09906134B1 |
Insulation detecting circuit, power converting device and insulation impedance value detecting method
An insulation detecting circuit includes a first switching unit, a second switching unit, a detecting resistor, a processing unit, and a voltage detecting unit. The second switching unit is electrically coupled to the first switching unit. The processing unit is configured to control the first and the second switching units. The voltage detecting unit obtains a first voltage value across the detecting resistor when the processing unit controls the first switching unit to be on and the second switching unit to be off. The voltage detecting unit obtains a second voltage value across the detecting resistor when the processing unit controls the first switching unit to be off and the second switching unit to be on. The processing unit operates in a first mode and configured to calculate an insulation impedance value of a power converting device according to the first and the second voltage values. |
US09906130B2 |
Electrical source system
An electrical source system has an electrical power converter which has a plurality of switching elements and performs an electrical power conversion with first and second electricity storage apparatus; and a control apparatus which controls an operation of the electrical power converter, when the electrical power converter performs the electrical power conversion with one electricity storage apparatus, the control apparatus controls the electrical power converter to change a switching state of one of two switching elements while keeping a switching state of the other one of the two switching elements in an ON state, each of two switching elements constitutes predetermined arm element whose switching state should be changed to perform the electrical power conversion with the one electricity storage apparatus. |
US09906129B2 |
Power supply system
A power supply system includes a load, a power line, first and second DC power supplies, a power converter, and a controller for controlling the power converter. Upon selection of an operation mode in which the first and second DC power supplies are parallelly connected to the power line for providing the power line with an output from the first DC power supply after DC voltage conversion in the power converter and with an output from the second DC power supply without DC voltage conversion, the controller sets the maximum value of the total power output from the first and second DC power supplies to the power line at the sum of actual power of the first DC power supply and a charge limiting value for the second DC power supply. |
US09906128B2 |
Intermediate voltage bus converter with power saving modes
A DC/DC voltage converter includes a first stage operable to convert a first DC voltage rail to a second DC voltage rail different than the first DC voltage rail and a second stage operable to convert the second DC voltage rail to a third DC voltage rail lower than the second DC voltage rail and deliver current to a load at the third DC voltage rail, the amount of current delivered to the load corresponding to an operating set point of the second stage. The second stage is operable to change its operating set point responsive to a command received from the load, such that the amount of current delivered to the load is reduced. The first stage is operable to change its operating set point responsive to a command issued by the load, such that the amount of current delivered to the second stage is reduced. |
US09906124B2 |
Reference voltage generation circuit and semiconductor device
A reference voltage generation circuit includes a voltage dividing circuit, a transistor, and a capacitor. The voltage dividing circuit divides a power-supply voltage into a specified level to generate a predetermined voltage. The transistor has a gate applied with the predetermined voltage and a drain outputting, as a reference voltage, a voltage obtained by adding the predetermined voltage and a threshold voltage of the transistor. The capacitor bypasses the gate and source of the transistor. Moreover, one end of the capacitor is connected to the gate of the transistor, and the other end of the capacitor is connected to the source of the transistor and ground. Furthermore, an electric charge output source which outputs an electric charge is connected to the drain of the transistor. |
US09906121B2 |
Control circuits and methods for transitioning between power converter control modes
A control circuit includes a first integrator circuit corresponding to a first mode and a second integrator circuit corresponding to a second mode. The control circuit is configured to transition control of the power converter between the first mode and the second mode such that one of the first mode and the second mode is a controlling mode for a period of time and the other one of the first mode and the second mode is a non-controlling mode for the period of time, and set an output of the first integrator circuit or the second integrator circuit corresponding to the non-controlling mode to equal an output of the first integrator circuit or the second integrator circuit corresponding to the controlling mode. Other example control circuits, power converters including a control circuit, and methods for controlling a power converter are also disclosed. |
US09906120B2 |
Overcurrent protection system and method for inverter circuit
A overcurrent protection system includes an inductor current detection circuit configured to detect an inductor current in the inverter circuit to obtain an inductor current detection value, a pulse-by-pulse current limit enable signal generation circuit connected to the inductor current detection circuit and to the pulse-by-pulse current limit enable signal generation circuit, and configured to perform turn-off control on a switching transistor in the inverter circuit according to the pulse-by-pulse current limit enable signal, and a first instant-feeding load impact signal generation circuit connected to the pulse-by-pulse current limit enable signal generation circuit and configured to detect an inductor voltage in the inverter circuit to obtain an inductor voltage detection value, and generate an instant-feeding load impact signal in response to determining that the inductor voltage detection value reaches a preset voltage threshold. |
US09906118B2 |
Impedance matching circuit
A system for performing ozone water treatment comprises a voltage supply circuit and a plasma eductor reactor. The voltage supply circuit includes an H-bridge controller and driver, a transformer, and an output port. The H-bridge controller and driver are configured to switch the electrical polarity of a pair of terminals. A primary of the transformer is connected to the H-bridge driver and controller. A secondary of the transformer connects in parallel with a first capacitor and in series with an inductor and a second capacitor. The output port connects in parallel with the second capacitor. The plasma eductor reactor includes an electric field generator, a flow spreader, and a diffuser. The electric field generator includes a pair of electrodes that generate an electric field. The flow spreader supplies a stream of oxygen. The diffuser supplies a stream of water. The streams of water and oxygen pass through the electric field. |
US09906115B2 |
Electromagnetic coupling apparatus
The present invention relates to an electromagnetic coupling apparatus (10) for drive arrangements, comprising:—an armature disc arrangement (14) which comprises at least one armature disc,—a rotor arrangement (12). In the case of this coupling apparatus, provision is made for the armature disc arrangement (14) to comprise at least one air gap-adjusting unit (LE) which has a closure screw (42) and which interacts with a fastening screw (44) for fastening the armature disc arrangement (14) to a drive shaft (28) in order to adjust an air gap (LS) between the armature disc arrangement (14) and the rotor arrangement (12). |
US09906113B2 |
Linear actuator
Provided is a linear actuator whose entire length can be shortened while thrust thereof can be made large. The linear actuator of the present invention is provided with the following: a hollow drive magnet (11); a coil (4) disposed at either the outside or the inside of the drive magnet (11); and a return magnet (8) that is disposed at the other of the outside or the inside of the drive magnet (11), is connected to the coil (4), and returns the drive magnet (11) to the starting point. By conducting electricity to the coil (4), the drive magnet (11) or the coil (4) and the return magnet (8) move in the axial direction of the drive magnet 11. |
US09906110B2 |
Controlled motion system having end teeth to facilitate the formation of a magnetic flux bridge joining linear motor sections
A linear controlled motion system include a track formed from one or more track sections and having at least one mover mounted to the track and effective for receiving articles at one location and transporting the articles to another location. The system includes at least one magnetic linear motion motor for providing a magnetic field effective for moving each mover in a controlled motion along the track and a magnetic flux bridge for reducing changes in the magnetic flux that reduces the efficiency or interferes with the operation of the controlled motion system. The ends of each track section of the magnetic linear motion motor may include end teeth that have a small recess in the top portion thereof. The recesses may be sized to fit the lip of a cover placed over the track section so that the ends of each track section form substantially smooth and planar surfaces that may be joined together to substantially eliminate any air gap between the joined track sections. |
US09906106B1 |
Electrical generator or motor with variable coil winding patterns exhibiting multiple wires incorporated into a plurality coil configurations defined around a rotor and incorporating a gearbox arrangement exhibiting oppositely driven rotor and stator gears configured with multi-tiered reversing gears exhibiting both straight and helical patterns and for varying turning ratios for establishing either of acceleration or deceleration aspects for increased power output
An induction motor or generator assembly for converting either of an electrical input or rotating work input to a mechanical/rotating work or electrical output. An outer annular arrayed component is rotatable in a first direction and includes a plurality of magnets arranged in a circumferentially extending and inwardly facing fashion according to a first perimeter array, the outer component further incorporating a rotating shaft projecting from a central location. An inner concentrically arrayed and reverse rotating component exhibits a plurality of outwardly facing and circumferentially spaced array of coil-subassemblies opposing the magnetic elements, such that a gap separates the coil-subassemblies from the magnets. The coil sub-assemblies each include a plurality of concentrically arrayed coils configured within a platform support of the inner component. A plurality of stacked commutator segments each have a plurality of annular extending and individually insulated segments arranged in exteriorly facing manner. |
US09906105B1 |
Electrical induction motor with reconfigured rotor mounted commutators for receiving an armature current from a stator mounted brush component along with a reversing gear arrangement for driving a pair of opposite gear rings
An induction motor or generator assembly for converting either of an electrical input or rotating work input to a mechanical/rotating work or electrical output. An outer annular arrayed component is rotatable in a first direction and includes a plurality of magnets arranged in a circumferentially extending and inwardly facing fashion according to a first perimeter array, the outer component further incorporating a rotating shaft projecting from a central location. An inner concentrically arrayed and reverse rotating component exhibits a plurality of outwardly facing and circumferentially spaced array of coil-subassemblies opposing the magnetic elements, such that a gap separates the coil-subassemblies from the magnets. The coil sub-assemblies each include a plurality of concentrically arrayed coils configured within a platform support of the inner component. A fixed commutator has a plurality of annular extending and individually insulated segments, a similar plurality of outer rotating brushes in continuous contact with the commutator segments. |
US09906103B2 |
Rotary electrical machine cooling apparatus
A rotary electrical machine cooling apparatus includes: a rotary electrical machine including a stator having an annular resin portion which covers a coil end, and a rotor; and a cooling portion that injects a coolant from an upper side to the annular resin portion. The annular resin portion includes: an annular main body portion, and a plurality of island portions that protrude in the axial direction from a plurality of positions in a circumferential direction of an axially outer end face of the annular main body portion. The plurality of island portions include a plurality of first island portions having first maximum circumferential lengths and a second island portion that has a second maximum circumferential length L2 and the coolant impinges on the outer circumferential face to flow in a circumferential direction. Thus, the coolability of the coil can be improved. |
US09906102B2 |
Insulation in an electric machine
It is common in electric machines to use the housing as a heat sink to remove energy from the electric machine. In some applications, however, the housing receives energy from a hot element. For example, in an electronically controlled turbocharger, the very hot turbine housing radiates and conducts energy to the electric machine housing exacerbating the heating within the electric machine. To reduce the heat transfer into the electric machine, a gap is provided between the stator and the housing outside the stator. In one alternative, the gap is filled with an insulating material. In another embodiment, the gap is an air gap with the stator located within the housing by circumferential rings or axial rods in corresponding grooves. In yet another embodiment, coolant is provided to the gap at the top and drained away at the bottom under the action of gravity. |
US09906099B2 |
Brake system, generator and wind turbine
A brake system, especially for a generator, including a rotor assembly, a stator assembly and a rotation axis is disclosed. The rotor assembly includes an outer portion which is located radially outward of the stator assembly. The outer portion includes a brake disc, and the stator assembly comprises at least one frictional member operatively configured for frictionally engaging at least a portion of the brake disc. |
US09906094B2 |
Direct drive actuator with switched reluctance motor
An actuator having a switched reluctance motor and a plunger assembly. The switched reluctance motor has a stator and a rotor. The stator has a plurality of stator poles and a plurality of stator windings. Each of the stator windings is wound about a corresponding one of the stator poles. The rotor is rotatable about an axis and has a plurality of rotor poles. The plunger assembly has a plunger and at least one spring. The plunger is co-axially received in the rotor and movable in an axial direction along the axis. The at least one spring is disposed in a force transmission path that includes the plunger and is configured to permit movement of the plunger along the axis in opposite axial directions. The plunger assembly is being driven by the rotor. |
US09906089B2 |
Rotating electric machine
Provided is a rotating electric machine capable of suppressing an increase in temperature of an output terminal (26) to suppress a temperature rise of an internal device, and preventing lowering of a force for fastening the output terminal and a terminal portion of an external device. The rotating electric machine for a vehicle includes a rectifier provided inside a casing, and a terminal device projecting outward through an opening portion of the casing to connect the internal device and the external device. The terminal device includes the output terminal (26) projecting outward through the opening portion to be connected to the terminal portion of the external device by fastening, and a resin body (37) having electrical insulating property and high thermal conductivity, for integrally covering the output terminal (26) except at least for a portion to be connected to a harness-side terminal (35). |
US09906088B2 |
Rotor-holding structure of rotating electrical machine for hybrid vehicle
It is an object of the present invention, to provide a rotor-holding structure of a rotating electrical machine for hybrid-vehicle, the structure being capable of ensuring a space is present between a stator and a rotor. A rotating electrical machine includes a stator and a rotor, the stator being fixed to a housing, and the rotor being disposed opposite to stator across a predetermined space, wherein the rotor has a rotor boss section, a rotor core, and a permanent magnet. The rotor boss section is rotatably attached to the housing through a bearing. The rotor core and the permanent magnet are attached to the rotor boss section. Multiple through-holes are provided at the respective corresponding locations of the housing and the rotor boss section. A supporting member is passed through each of the through-holes, thereby holding the rotor boss section. |
US09906083B2 |
Rotors with segmented magnet configurations and related dynamoelectric machines and compressors
A rotor for a dynamoelectric machine includes a rotor core having an outer periphery and at least a first set of magnets positioned within the outer periphery of the rotor core. The first set of magnets includes at least two block magnets and an arc magnet. The block magnets have a substantially parallel magnetization pattern and the arc magnet has a substantially radial magnetization pattern. The arc magnet has a concave surface facing the outer periphery of the rotor core. The first set of magnets defines a pole of the rotor. Rotors with other magnet configurations, and dynamoelectric machines and compressors incorporating such rotors, are also disclosed. |
US09906078B2 |
Infrared signal generation from AC induction field heating of graphite foam
A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam to produce light. An energy conversion device utilizes light energy from the heated graphite foam to perform a light energy consuming function. A device for producing light and a method of converting energy are also disclosed. |
US09906076B2 |
Non-contact type power transmitting coil and non-contact type power supplying apparatus
A non-contact type power transmitting coil may include at least one conductor pattern disposed on at least one surface of a base having a predetermined area, having a plurality of turns, and transmitting received power externally in a non-contact manner. The intervals between at least some of adjacent pattern portions of the conductor pattern in a direction from a center portion of an inner diameter of the conductor pattern to an outermost pattern portion conductor pattern may be different from one another. |
US09906069B2 |
Vehicle battery status detection by tracking a temperature gradient
This disclosure generally relates to a system, apparatus, and method for diagnosing a vehicle battery for further charging purposes. A battery diagnostic tool is provided to receive temperature information on the vehicle battery during a vehicle battery charging operation. The temperature information is referenced to generate a temperature gradient that will be further referenced to identify temperature changes to the vehicle battery over a period of time. |
US09906061B2 |
Quick charging mobile terminal, method and system
A quick charging mobile terminal, a charger, and a method for charging a mobile terminal are disclosed. The terminal includes: a detecting circuit, used to detect a charging environment of the mobile terminal, the charging environment including at least one of room temperature, battery parameters and charger parameters; a processing circuit, used to obtain an optimal quick charging curve according to the charging environment detected by the detecting circuit, and a charging management circuit, used to charge the mobile terminal according to the optimal quick charging curve and the charging environment. The disclosed terminal can ensure safety and the service life of the terminal while achieving quick charging of the terminal. |
US09906055B2 |
Charger
A pair of right and left fixing holes and a pair of strap attachment holes are provided on a rear surface of a main body housing at a position which does not protrude from a side area S in a planar view. A bottom edge portion of an upper recessed portion is provided above the fixing hole to cover each of the right and left fixing holes, the strap attachment holes are provided to be coaxial with the bottom edge portion, and it is ensured that durability and compactness of the charger are obtained. |
US09906054B2 |
Relay connector and battery pack
Sneaking of a charging current to a load is avoided, a voltage of a battery is not output to terminals of a connector, and the number of installed switch elements that make conductive or interrupt a feeding path is minimized. A battery pack including a battery that supplies power to a load and to which power is supplied from a charger includes: a relay connector including a first terminal, a second terminal, and a third terminal; a first feeder that connects the load to the first terminal of the relay connector; a second feeder that connects one electrode terminal of the battery to the second terminal of the relay connector; a third feeder for which one terminal is connected to the third terminal of the relay connector; and a switch element that is connected between the other terminal of the third feeder, and the other electrode terminal of the battery. The first terminal and the second terminal of the relay connector are short-circuited by a jumper wire of a jumper plug, and the second terminal and the third terminal of the relay connector are respectively connected to one electrode feeder and the other electrode feeder of the charger by using a charging connector. |
US09906053B2 |
Energy storage device and control method thereof
An energy storage device capable of receiving energy using an energy input interface or charging an electronic device using an energy output interface. The energy storage device includes an adapter, an energy storage unit and a charger module. The adapter provides the charger module with an input current, and the charger module provides the energy storage unit with a first current. Otherwise, the charger module provides the electronic device with the input current. When the input current provided by the adapter is higher than a maximum safe current of the adapter, the energy storage unit provides the charger module with a second current. The charger module outputs energy to the electronic device according to the second current to assist the adapter to charge the electronic device. The second current is opposite to the first current. |
US09906044B2 |
Inductive power transfer
A detection method for use in a primary unit of an inductive power transfer system, the primary unit being operable to transmit power wirelessly by electromagnetic induction to at least one secondary unit of the system located in proximity to the primary unit and/or to a foreign object located in said proximity, the method comprising: driving the primary unit so that in a driven state the magnitude of an electrical drive signal supplied to one or more primary coils of the primary unit changes from a first value to a second value; assessing the effect of such driving on an electrical characteristic of the primary unit; and detecting in dependence upon the assessed effect the presence of a said secondary unit and/or a foreign object located in proximity to said primary unit. |
US09906041B2 |
Decentralized generator control
The present disclosure pertains to distributed controllers configured to control a plurality of electrical generators in an electrical generation and distribution system. In one embodiment, a distributed controller consistent with the present disclosure may include a communication subsystem to obtain a first plurality of time-stamped electrical parameter measurements from a first node. A measurement analysis subsystem may compare the first plurality of time-stamped electrical parameter measurements and the second plurality of time-stamped electrical parameter measurements. The first node and the second node may be associated in an electrical island by a topology detection subsystem based on the correlation. A control subsystem may be configured to implement a control action based on the association of the first node and the second node in the electrical island. |
US09906038B2 |
Smart renewable power generation system with grid and DC source flexibility
A method and apparatus is disclosed relating to smart renewable power generation systems with grid and DC source flexibility that can (1) intelligently and selectively pull power from one or multiple DC sources including solar panels, wind generators, and batteries based on certain criteria; (2) invert DC power to AC power; (3) supply the AC power to the electric grid or to an off-grid electric circuit to power AC loads; (4) supply DC power through one or multiple DC output ports to power DC loads; and (5) charge batteries. Various types of on-grid, off-grid, and on/off-grid DC flexible power inverters are described to demonstrate the innovation for delivering flexible, cost-effective, and user-friendly power generation systems to harvest any form of renewable energy available and convert it to usable electricity. |
US09906037B2 |
Energy generation load compensation
An inverter energy system supplies power to a site. The inverter energy system comprises a number of solar strings, each solar string including a solar panel(s) as a renewable energy source and an inverter. The inverter energy system is connected to a mains power supply (grid) and to a site load (sub circuits). The forward or reverse power flow into or out of the mains power supply is monitored at a monitoring point at the site. A rate limit is set for power flow into and/or or out of the mains power supply. The supply of power from the inverter energy system is controlled so that the power flow into or out of the mains power supply is within the set rate limit. |
US09906035B2 |
Method of assessing proper operation of voltage control device
A method of operating an electrical feeder permits the electrical feeder voltage to be maintained at the minimum voltage within a voltage range based upon dynamic grouping together of electrical generators on the electrical feeder with demand response loads on the electrical feeder. A method of assessing the proper operation of a voltage control device on the electrical feeder involves detecting a number of properties of the electrical power in the electrical feeder both prior to and subsequent to a change in an operational parameter of a voltage control device. An expected effect upon the electrical feeder of one or more distributed generators is filtered from this in order to determine a net effect of the voltage control device itself on the electrical feeder. Based upon the detected net effect and a predicted baseline effect for the voltage control device, it can be determined whether the voltage control device is functioning properly. |
US09906032B2 |
Electrical energy transmission system
An electrical energy transmission system has a three-phase electric current power source generating a three-phase current including three currents of different phases, a three-phase current converting device which converts at least some of the currents, a single-wire electric current transmission line configured to transmit the converted currents to a consumer, and a balancing device configured to balance the electric currents in the three-phase current source and providing thereby a stable operation of the three-phase current power source. |
US09906024B2 |
Power management between sources and load
Devices (20) for coupling sources (11, 12) to loads (13) comprise first converters (21) for converting first input signals from first sources (11) into first output signals. The first converters (21) comprise control inputs for receiving control signals. Control values of the control signals define first parameters of the first output signals. Circuits (23) in the devices (20) receive the first output signals and receive second output signals originating from second sources (12) or from second converters (22) coupled to the second sources (12) and provide power signals to the loads (13). The second sources (12) comprise solar panels. Controllers (24) adapt the control values of the control signals in response to detections of changes in second parameters of the first input or output signals. The controllers (24) may operate independently from the second output signals and from second input signals. |
US09906022B2 |
Cascaded multilevel converter self-test system and self-test method for the same
A cascaded multilevel converter self-test system and a self-test method for the cascaded multilevel converter self-test system are provided. The self-test system includes a cascaded multilevel converter and a self-test device. The cascaded multilevel converter includes at least two converting circuits which are cascaded. The self-test device includes at least one current detecting circuit, a voltage acquiring module and a calculating module. The current detecting circuit is configured to detect a first detected current and a second detected current. The voltage acquiring module is configured to acquire first bus voltages and second bus voltages. The calculating module is configured to calculate an insulation resistance value of the cascaded multilevel converter based on the first detected current, the second detected current, the first bus voltages and the second bus voltages. |
US09906021B2 |
Battery made up of a chain assembly of modules
Energy transmission device, notably a battery or energy generating device, having (i) at least one module (20) arranged within a casing (25), with a plurality of independent electrical power links (27, 29) and blocks, each having at least one first electrical power link (27) connected to a pair of connectors (A1, B1) to connect to a connector of a second module, a plurality of cells (21) connected to this first link (27), allowing these cells (21) to be connected to external components by the connectors (A1, B1), and switches (24) to modify the link between cells (21) of the block, (ii) a connection component (57) allowing electrical connection of a plurality of independent links (27, 29) of the at least one module (20), and (iii) a plurality of output connectors (A1, A2; A1; CP) allowing polyphase electrical linking of the energy transmission device to an outer component. |
US09906018B2 |
Electrical line status monitoring system
Disclosed are advances in the arts with novel methods and apparatus for detecting faulty connections in an electrical system. Exemplary preferred embodiments include monitoring techniques and systems for monitoring signals at one or more device loads and analyzing the monitored signals for determining fault conditions at the device loads and/or at the main transmission lines. The invention preferably provides the capability to test and monitor electrical interconnections without fully activating the host system. |
US09906009B2 |
Semiconductor module
A semiconductor module which includes a plurality of control circuits that respectively drive a plurality of semiconductor elements on and off and a plurality of signal output circuits for the respective control circuits and which output operation status information, where the signal output circuits are respectively provided with signal output terminals having an open-drain configuration, and the signal output terminals each are connected to an internal lead frame on which the power semiconductor elements and the control circuits are mounted. |
US09906008B2 |
Bus bar connection device and switchgear including the same
A bus bar connection device for a switchgear has a first bushing with an internal stem conductor whose end is a first connection surface at a nose of the bushing. The bus bar connection device has a second bushing with an internal stem conductor whose end is a second connection surface at a nose of the bushing. The first connection surface of the first bushing is placed opposite the second connection surface of the second bushing, the axis of the first bushing being identical to the axis of the second bushing. A connection element electrically connects the first connection surface with the second connection surface. A cylindrical insulation adapter surrounds the nose of the first bushing, the nose of the second bushing, and the connection element as one. |
US09906001B2 |
Passive cooling system for switchgear with star-shaped condenser
A condenser for condensing vapor to liquid for cooling a switchgear having a heat generating component inside an enclosure and tubing structure associated with the heat generating component. A working fluid is disposed within an end portion of the tubing structure. The condenser includes a hollow tubular base defining a volume and having first and second opposing opened ends. A plurality of fins extends from a periphery of the base. The fins are in spaced relation and disposed about the entire circumference of the base. A first end cap is coupled to the base so as to close the first opened end. A second end cap is coupled to the base to close the second opened end. The second end cap has port structure constructed and arranged to fluidly communicate the tubing structure with the volume. |
US09905996B2 |
Heat assisted media recording device with reduced likelihood of laser mode hopping
An apparatus includes a laser diode, a heater arrangement, and a circuit. The laser diode is configured to facilitate heat assisted magnetic recording during a lasing state. The heater arrangement is positioned proximate the laser diode. The circuit electrically couples the laser diode and the heater arrangement in a parallel relationship. The circuit is configured to alternately operate the laser diode in a lasing state and a non-lasing state, and to activate the heater arrangement during the non-lasing state to warm a junction of the laser diode. |
US09905992B1 |
Self-Raman laser for lidar system
In one embodiment, a lidar system includes a self-Raman laser that includes a Raman-active gain medium and a Q-switch. The self-Raman laser is configured to: produce Q-switched pulses of light at a lasing wavelength of the self-Raman laser; Raman-shift, in the Raman-active gain medium, at least a portion of the Q-switched pulses to produce Raman-shifted pulses of light, where the Raman-shifted pulses have a Raman-shifted wavelength that is longer than the lasing wavelength; and emit at least a portion of the Raman-shifted pulses. The lidar system further includes a scanner configured to scan the emitted pulses of light across a field of regard and a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system. The lidar system also includes a processor configured to determine the distance from the lidar system to the target. |
US09905990B1 |
Background removal from Raman spectra by an intracavity active-tuning element for a laser
A system, apparatus, and method for multiple wavelength Raman interrogation laser generation and Raman spectra acquisition. An intracavity laser tuning subsystem is integrated into the laser cavity. The tuning subsystem allows switching between at least two laser output frequencies in a manner effective for good identification and separation of Raman spectra from non-Raman spectra, including auto-fluorescence from the sample and background. The tuning subsystem can be implemented in different ways in the cavity. It does not require material alteration of the line-narrowing components. Also, processing of acquired raw signal from the multiple wavelength interrogation can further assist effective Raman spectra identification and separation. |
US09905985B2 |
Optimized high current connector pattern for PDB
A power distribution box assembly may include a housing, a circuit board disposed in the housing, a plurality of electrical components attached to the circuit board, and/or a plurality of electrical traces attached to the circuit board and configured for electrically connecting the plurality of electrical components to at least one of another electrical component of the plurality of electrical components and an electronic control unit. A power distribution box assembly may include a wiring harness connector connected to the housing. In embodiments, a wiring harness connector may include a connector housing and a plurality of connector terminals that may be configured for electrical connection with the plurality of electrical components. A plurality of electrical components may be disposed relative to the circuit board in a manner that minimizes at least one of a number, a length, and a volume of the electrical traces. |
US09905980B2 |
High density communications device
A communications device comprises a housing with a height less than one standard unit (IU). At least two first adjacent rows of at least 16 first plate communication interfaces are disposed along one length of one side of the housing. At least two second adjacent rows of at least 16 second plate communication interfaces are disposed along the length of the second side of the housing. At least one circuit board is disposed in the housing and electrically connected to: at least 16 first plate communication interfaces; and at least 16 second plate communication interfaces. |
US09905979B2 |
Push-on coaxial connector
A push-on coaxial cable connector includes a port grip, a joint, and a cable clamp. |
US09905978B2 |
Insertion-type connector having a twisted-pair cable
An insertion-type connector having a housing and at least two contact elements fixed within the housing, which are designed for connection to two cores of a twisted-pair cable, wherein the housing forms a guide by which the cores are fixed in a twist which continues the twist of the twisted-pair cable. A system having such an insertion-type connector and a twisted-pair cable is taught, and a method of producing the same. |
US09905977B2 |
Motor terminal, motor terminal assembly having the same, and method of assembling motor using the same
Disclosed herein is a motor terminal assembly comprising a terminal case comprising a terminal accommodation portion accommodate a terminal of another component, and a front end portion having a larger horizontal cross-section than a terminal hole so as to be caught by the terminal hole outside a bracket, and a body portion formed beneath the front end portion and having a smaller horizontal cross-section than the terminal hole so as to move in the terminal hole and A part of electrical connection means to be connected to a terminal a busbar terminal, and to be located at inside the terminal case. Consequently, it may be possible to prevent damage to the terminal and more effectively prevent the terminal from being inclined or biased in an initial state in which the terminal is inserted into a terminal hole. |
US09905976B1 |
Mounting strap having a connector to connect an electric fixture to a junction box
An electrical fixture includes an electrical fixture housing having a mounting surface, an electrical connector disposed on the mounting surface, and an electrical fixture support. A corresponding cover plate or mounting strap includes an electrical connector configured to electrically connect to hot and neutral lines from a junction box and the corresponding electrical connector disposed on the mounting surface of the electrical fixture. An electrical fixture ground connection separate from the fixture electrical connector electrically connects to an electrical ground from the junction box. |
US09905975B2 |
Very high speed, high density electrical interconnection system with edge to broadside transition
A modular electrical connector with broad-side coupled signal conductors in a right angle intermediate portion and edge coupled end portions. Broadside coupling provides balanced pairs for very high frequency operation, while edge coupling provides a high density interconnection system at low cost. Each module has separately shielded signal conductor pairs. The shielding is shaped to avoid or suppress undesirable propagation modes within an enclosure formed by shielding per module. Lossy material is selectively placed within and outside the shielding per module to likewise avoid or suppress unwanted signal propagation. |
US09905972B2 |
Plug connector having crosstalk compensation
A plug-in connector that can be manufactured using MID technology, which nevertheless ensures good crosstalk compensation and thus a high data transmission rate has two assembled contact carrier parts with contacts are disposed between these contact carrier parts. A separate, electrically conductive compensation coating may be provided in each contact carrier part, each having a connection surface for producing an electrically conductive connection to an associated contact. Each of the electrically conductive compensation coatings has at least one coupling surface for a targeted capacitive coupling with one or more further contacts. Between each coupling surface and the associated contact, an insulating film or part of an insulating film is provided, which acts as a dielectric and a spacer. By selection of the contacts to be coupled and the capacitance of the coupling, good compensation of undesired crosstalk can thus be achieved in a simple manner. |
US09905970B2 |
Connector with mounting member that restricts rearward movement of connector until connector is connected properly to mating connector
It is aimed to provide a connector capable of reaching a properly connected state while responding to a rotational movement. A connector housing (10) is mounted into a mounting member (16) displaceably to a temporary holding position and a retracted position, has a rearward movement restricted at the temporary holding position and is released from a holding state at the temporary holding position and moved rearward together with a mating connector housing (11) after being properly connected to the mating connector housing (11). The connector housing (10) is not held by the mounting member (16) at the retracted position and is movable integrally with the mating connector housing (11) according to a movement of the side of the mating connector housing (11). |
US09905966B2 |
Hand-held machine tool
A hand-held machine tool has an integrated tool or a tool holder to receive a tool. An electric motor drives the tool or the tool holder. A battery pack for supplying power to the electric motor can be pushed into a guide in a first direction. Electrical contacts are disposed in a contact holder being offset with respect to each other in a second direction. A mounting for the contact holder holds the contact holder so that it can move in the first direction-and in a third direction with respect to the mounting. The first direction, second direction and third direction are orthogonal to each other in pairs. A spring acts upon the contact holder with a force opposite to the first direction. An end face oriented opposite to the first direction is provided with a centerer which cooperates with a centering support on the battery pack in order to prevent a relative movement between the end face and the battery pack in the third direction. |
US09905961B2 |
Fine pitch connector socket
Fine pitch electrical connector socket, comprising at least two opposing walls between which a passageway is defined for receiving an insert with contact pins, the walls being formed from a fiber reinforced flame retardant thermoplastic polymer composition comprising a polyamide polymer, a flame retardant system and a fibrous reinforcing agent, wherein the polyamide polymer comprises at least a semi-crystalline polyamide (A) having a melting temperature Tm-A of at least 280° C., and optionally a second polyamide (B); the polyamide polymer has a crystallization enthalpy ΔHc of at least 50 J/g, the melting temperature Tm-A and crystallization enthalpy ΔHc being measured by DSC with the method according to ISO11357-1/3 with a heating and cooling rate of 20° C.; the flame retardant system comprises a combination of (C-1) a metal salt of dialkylphosphinate and/or diphosphinate and (C-2) a metal salt of phosphoric acid; and the composition has a heat distortion temperature of at least 265° C., measured according to ISO 75-1/2. |
US09905960B2 |
Electrical connector
An electrical connector having an insulative housing having a mating cavity and a plurality of passageways, a plurality of electrical contacts received in the corresponding passageways and a sealing member received in the mating cavity. The insulative housing defines a front face and a mounting wall, the mating cavity is formed between the front face and the mounting wall. Each electrical contact has a contacting portion, a tail portion, and a main portion connecting the contacting portion with the tail portion, each main portion defines a plurality of barbs on both sides thereof. The sealing member has a base portion and at least one opening defined in the base portion for tail portions passing through. At least one electrical contact defines a wing on one side thereof, and the sealing member is restricted between the wing and the mounting wall. |
US09905959B2 |
Coaxial connector with inhibited ingress and improved grounding
A coaxial connector includes a body, a post, a coupling nut, and a sealing member. The sealing member is axially compressed between a rear end facing surface of the coupling nut and a front end facing surface of the hollow body in order to facilitate improved grounding and RF shielding characteristics. |
US09905941B2 |
Wire with crimped terminal, wire harness, and crimped terminal
A wire with crimped terminal is provided with a wire and a crimped terminal connected to a terminal portion of the wire. The crimped terminal is provided with a board-shaped base portion where the wire is arranged; a counterpart member connector provided at a forefront end of the base portion; a pair of core wire crimp tabs crimped to a core wire portion of the wire; and a pair of sheath crimp tabs crimped to an insulated sheath portion of the wire. The core wire crimp tabs are each provided with an inwardly-recessed contracted portion on both sides of the core wire crimp tab in an X axis direction, in an area closer to the base portion than a leading edge portion of the core wire crimp tab, the contracted portion thereby having a smaller width in the X axis direction. |
US09905939B2 |
Antenna device
An antenna device includes: a first antenna element configured to radiate first radio waves having a first plane of polarization; and a second antenna element configured to radiate second radio waves having a second plane of polarization orthogonal to the first plane of polarization, wherein ends of the first antenna element and the second antenna element located at mutually approaching sides are disposed in a positional relationship, and a phase deviation caused by an electromagnetic coupling based on the positional relationship is compensated and an electrical power is fed to the first antenna element and the second antenna element with a phase difference that causes a composite wave of the first radio waves and the second radio waves to form a circularly polarized wave. |
US09905938B2 |
Dual polarized high gain and wideband complementary antenna
A dual polarized high gain and wideband complementary antenna is presented herein. A dual polarized antenna can include a ground plane, a folded dipole portion electrically coupled to the ground plane, a shorted patch antenna portion including an open end that is electrically coupled to the folded dipole portion, and a metal plate located at a bottom portion of the dual polarized antenna. In one example, the folded dipole portion can include four folded dipoles. Further, the open end of the shorted patch antenna portion can be electrically coupled to the folded dipole portion using the metal plate. Further, the dual polarized antenna can include two ports—each port including a pair of feeding sources, and each feeding source configured to generate an electric dipole and a magnetic dipole. In another example, magnitudes of the electric dipoles can be equivalent, and magnitudes of the magnetic dipoles can be equivalent. |
US09905932B2 |
Multiband multifilar antenna
Multi-band quadrifilar antennas that are suitable for satellite communication include composite elements each of which include multiple conductors operating at different frequencies connected to a bus bar. Each composite element is coupled to a signal feed and to a ground structure. |
US09905929B2 |
Microstrip antenna transceiver
A microstrip antenna transceiver with switchable polarizations includes a substrate, a first switch element, a second switch element and an antenna module. The first switch element and the second switch element are disposed on a first surface of the substrate; the antenna module is disposed on a second surface of the substrate and includes a radiation patch including a first pattern slot, a vertical polarization feed-in point and a horizontal polarization feed-in point. The vertical polarization feed-in point and the horizontal polarization feed-in point are symmetric with respect to a symmetrical axis. Size and displacement of the first pattern slot are related to reflection phase of the first switch element and the second switch element in order to generate a right-handed polarized signal or a left-handed polarized signal. |
US09905928B2 |
Electrical components and method of manufacture
An electrical component provides a ceramic element located on or in a dielectric substrate between and in contact with a pair of electrical conductors, wherein the ceramic element includes one or more metal oxides having fluctuations in metal-oxide compositional uniformity less than or equal to 1.5 mol % throughout the ceramic element. A method of fabricating an electrical component, provides or forming a ceramic element between and in contact with a pair of electrical conductors on a substrate including depositing a mixture of metalorganic precursors and causing simultaneous decomposition of the metal oxide precursors to form the ceramic element including one or more metal oxides. |
US09905925B2 |
NFC antenna module and portable terminal comprising same
Disclosed are a NFC antenna module which maximizes antenna performance by mounting a radiation sheet in such a manner as to overlap a part of an antenna sheet and a portable terminal comprising the same. The disclosed NFC antenna module comprises: a first antenna sheet having a first radiation pattern formed along the outer periphery of a first central portion; a second antenna sheet having a second radiation pattern formed along the outer periphery of a second central portion in such a manner as to partially overlap with the first radiation pattern; and an electromagnetic wave shielding sheet laminated on the first antenna sheet and the second antenna sheet. |
US09905921B2 |
Antenna element placement for a cylindrical feed antenna
A method and apparatus is disclosed herein for antenna element placement are disclosed. In one embodiment, an antenna comprises an antenna feed to input a cylindrical feed wave; a single physical antenna aperture having at least one antenna array of antenna elements, where the antenna elements are located on a plurality of concentric rings concentrically located relative to an antenna feed, wherein rings of the plurality of concentric rings are separated by a ring-to-ring distance, wherein a first distance between elements along rings of the plurality of concentric rings is a function of a second distance between rings of the plurality of concentric rings; and a controller to control each antenna element of the array separately using matrix drive circuitry, where each of the antenna elements is uniquely addressed by the matrix drive circuitry. |
US09905915B2 |
Pattern antenna
A pattern antenna, with excellent broadband antenna characteristics, that is formed in a small area is provided. The pattern antenna includes a substrate, a first ground portion formed on a first surface of the substrate, an antenna element portion, a protruding and short-circuiting portion, and a second ground portion. The antenna element portion includes a conductor pattern in which a plurality of bent portions are formed. The conductor pattern is formed on the first surface of the substrate and is electrically connected to the first ground portion. The protruding and short-circuiting portion includes a taper portion with a tapered shape, a protruding portion, and an extended portion extended toward a side opposite to a feed point as viewed in planar view. The second ground portion, with no contact with the taper portion, with such a shape that sandwiches at least a part of a tapered section of the taper portion as viewed in planar view. |
US09905914B2 |
Slot antenna built into a vehicle body panel
Slot antennas built into metallic body panels utilize the vehicle body itself as an antenna radiator. Building the slot antennas directly into the metallic body panels converts the vehicle body from functioning as an RF shield into an RF antenna, which significantly improves mobile communication reception for a wide range of RF communication devices. Different types of slot antennas may be included for different communication channels utilized by different types of devices. Multi-band slot antennas are configured to receive multiple bands within a larger frequency channel. Dual-polarity antennas are configured to receive signals propagating in a dual-polarity mode. Multiple slot components may be configured as multi-band, dual-polarity antennas. Each slot antenna may be passive (without an RF pickup) or active with an RF pickup and coaxial cable connecting the antenna to an electronic device, such as receiver or amplifier located inside or otherwise interconnected with the vehicle. |
US09905912B2 |
Antenna module
An antenna module includes a parasitic unit and a first antenna unit. The parasitic unit includes a first parasitic radiation portion and a second parasitic radiation portion. The second parasitic radiation portion is electrically connected to the first parasitic radiation portion. The first parasitic radiation portion and the second parasitic radiation portion surround a central area. The first antenna unit includes a feeding terminal, a ground terminal and a first radiation portion, in which the ground terminal is electrically connected to a ground portion. The feeding terminal is configured to transmit and receive a first antenna signal. The first radiation portion is configured to collaborate with the parasitic unit to generate a first resonant mode. The first resonant mode includes a central frequency, a frequency twice of the central frequency and a frequency three times of the central frequency. |
US09905910B2 |
Electronic device and multi-band antenna
An electronic device with multi-band antenna includes a first antenna frame, a second antenna frame, and a switching unit being electrically coupled between the first antenna frame and the second antenna frame. A first feed point only is located on the first antenna frame and multiple electrical connection points, a second feed point, and a ground point are located on the second antenna frame. One end of the first antenna frame can be connected to one of the electrical connection points by controlling the switching unit, and multiple radiating elements, able to radiate signals in different frequency bands, are formed on the multi-band antenna. Radiating elements are formed between the first feed point and the second feed point and the ground point. |
US09905909B2 |
Antenna module and wireless communication device using same
An antenna module includes a metallic member and a first radiating portion. The metallic member defines a slot. The slot is configured to divide the metallic member into a first metallic portion and a second metallic portion. The second metallic portion is spaced apart from the first metallic portion. The first radiating portion is positioned in the second metallic portion and is spaced apart from the second metallic portion. The first metallic portion is grounded. The first radiating portion is configured to receive a current signal and couple the current signal to the second metallic portion. The second metallic portion and the first metallic portion are configured to cooperatively activate a plurality of resonating modes through the slot. |
US09905908B2 |
Antenna structure with proximity sensor
An antenna structure includes a dielectric layer, on one side thereof a patterned conductive layer, a proximity sensor and a capacitor are provided. The patterned conductive layer includes a first and a second conductive layer that together form a coupled-fed antenna and respectively have a first and a second feed terminal connected to a signal feed line and a ground signal line. The proximity sensor includes a peripheral circuit connected to the second feed terminal, and a capacitance to digital circuit. The capacitor is connected between the ground signal line and the second feed terminal. By integrating the coupled-fed antenna and the proximity sensor on one circuit substrate, a part of the antenna can be used as the proximity sensor's capacitor electrode to reduce the volume and manufacturing cost of the antenna, and the proximity sensor is not interfered by other parts of the antenna and thereby has increased sensitivity. |
US09905907B2 |
Housing for electronic device and method for making same
The housing includes a base and an antenna coating layer. The base includes a first surface. The base is made of one of glass and ceramic. The antenna coating layer is formed on the first surface. The antenna coating layer is made of metal power. The metal power is selected from one of copper power, copper alloy power, or copper and nickel mixed power. |
US09905904B2 |
Artificial dielectric resonator and artificial dielectric filter using the same
An embodiment of an artificial dielectric resonator that can enhance a relative dielectric constant in a basic mode is provided. The artificial dielectric resonator has a first group of a series of metal strips including a plurality of metal strips each in a thin sheet shape arranged with microscopic gaps provided in a longitudinal direction, and a second group of a series of metal strips including a plurality of metal strips each in a thin sheet shape arranged with gaps provided in a longitudinal direction, the first group of a series of metal strips and the second group of a series of metal strips are disposed close to each other in a thickness direction of the metal strips, and the metal strip of one metal strip group is disposed to face oppositely disposed gaps and cross vertically adjacent gaps of the other metal strip group. |
US09905897B2 |
Device for blocking high frequency signal and passing low frequency signal
A device includes a transmission plate, a conductive plate, a first capacitive unit, and electrodes. The transmission plate is configured to be electrically coupled between an input source and a load. The conductive plate includes a winding structure and is configured to be electrically coupled to ground. The first capacitive unit is electrically coupled between the conductive plate and the transmission plate. The electrodes are interdigitated with the winding structure of the conductive plate. |
US09905885B2 |
1,2,4-thiadiazinane-3,5-dione-1,1-dioxide derivatives, production and use thereof
The present invention provides a compound with a general formula (I) or a salt thereof, wherein, R1 and R2, are, independently of each other, F or CnF2n+1 with n=1-10, and R3 and R4 are, independently of each other, C1-C10-alkyl. |
US09905884B2 |
Electrolyte for secondary battery and secondary battery including the same
An electrolyte for a secondary battery includes a non-aqueous solvent; a lithium salt; and a heterocyclic compound represented by Formula 1: wherein, in Formula 1, R1 and R2 are each independently selected from hydrogen, a halogen group, a cyano group, a hydroxy group, a nitro group, —C(═O)Ra, —C(═O)ORa, —OCO(ORa), —C═N(Ra), a substituted or unsubstituted C1-C20 alkyl group, and a combination thereof, wherein Ra is selected from hydrogen and a C1-C10 alkyl group, and, provided that at least one selected from R1 and R2 is selected from a halogen group, a cyano group, a hydroxy group, a nitro group, —C(═O)Ra, —C(═O)ORa, a substituted or unsubstituted C1-C20 alkyl group, and a combination thereof. |
US09905881B2 |
Electrode assembly having protection tape and rechargeable battery including the same
An electrode assembly and a rechargeable battery that can prevent an active material from separating and prevent a short circuit and damage due to a tab that is attached to a current collector are provided. The electrode assembly includes a positive electrode, a negative electrode, and a separator that is disposed between the positive electrode and the negative electrode. The positive electrode has a positive electrode coating portion in which a positive electrode active material layer is formed and a positive electrode uncoated region in which a positive electrode active material layer is not formed, and a positive electrode tab is attached to the positive electrode uncoated region. A first positive electrode protection tape is attached to the positive electrode uncoated region, and the first positive electrode protection tape includes a first cover that covers the side end of the positive electrode coating portion and a second cover that is extended from the first cover and that covers both the positive electrode tab and the positive electrode uncoated region. |
US09905880B2 |
Fuel cell stack
A fuel cell stack is comprised of a plurality of power generating units which are stacked along the horizontal direction. An oxidant gas inlet port and a fuel gas inlet port are provided in an upper portion of one of the power generating units, and an oxidant gas outlet port and a fuel gas outlet port are provided in the lower portion of the power generating unit. A refrigerant inlet port and a refrigerant outlet port are formed in each of the left and right portions of the power generating unit. |
US09905879B2 |
Fuel cell device
A fuel cell device includes a fuel cell body, a case and a pin having one end contacting a part of the fuel cell body. A through hole is formed in the case. The through hole penetrates the case from the outside to the inside. The pin is inserted in the through hole and provided with a sealing member formed on at least a part of an outer circumferential surface. The through hole has a constant inner diameter from a position inside the case to a border with the outside. In the through hole, an inner diameter between a portion of the constant inner diameter and the border with the outside is larger than the constant inner diameter. The pin has an opposite end located inside the through hole in a portion from an end of the portion of the constant inner diameter to the border with the outside. |
US09905878B2 |
Fuel cell stack and fuel cell vehicle
A fuel cell vehicle includes a fuel cell stack and a housing that has first and second end plates and four side plates connecting the sides of the first and second end plates. Projections provided on the first and second end plates have openings communicating with a space formed between an inner wall of the housing and a fuel cell laminate. |
US09905873B2 |
Permeable metal substrate, metal-supported solid oxide fuel cell and their manufacturing methods
The invention provides a permeable metal substrate and its manufacturing method. The permeable metal substrate includes a substrate body and a permeable powder layer. The permeable powder layer is located on the top of the substrate body. The substrate body can be a thick substrate or formed of a thick substrate and a thin substrate that are welded together. Both the thick and thin substrates have a plurality of permeable straight gas channels. In addition, a metal-supported solid oxide fuel cell and its manufacturing method are also provided. |
US09905871B2 |
Low temperature solid oxide cells
The present invention provides solid oxide cells such as fuel cells, electrolyzers, and sensors comprising an electrolyte having an interface between an yttria-stabilized zirconia material and a glass material, in some embodiments. Other embodiments add an interface between a platinum oxide material and the yttria-stabilized zirconia material in the electrolyte. Further embodiments of solid oxide cells have an ion-conducting species such as an ionic liquid or inorganic salt in contact with at least one electrode of the cell. Certain embodiments provide room temperature operation of solid oxide cells. |
US09905869B2 |
Fuel cell system and method of controlling the same
In the event that at least a portion of unit cells in a fuel cell stack have experienced a significant drop in voltage, the fuel cell system will execute a voltage recovery process allowing them to recover generating capability. In the voltage recovery process, a controller measures impedance of the fuel cell stack, and based on these measurements, determines the hydration condition of the electrolyte membrane inside the fuel cell. If, during the determination of hydration condition, the controller has determined that the hydration level is low, a current limiting process for temporarily limiting output of the fuel cell in order to recover generating capability will be triggered under more lenient conditions, as compared to if determined that the hydration level is high. |
US09905868B2 |
Humidity control method including AC impedance measurement for fuel cell and a fuel cell system
A method of controlling humidification of a fuel cell includes the steps of measuring impedance of the fuel cell, and adjusting humidification quantity of the fuel cell based on an imaginary axis value Xi and a real axis value Xr on a complex number plane of the measured impedance after the measurement step. In the measurement step, impedance is measured based on supply of alternating current having one frequency of 10 Hz or less during power generation of the fuel cell. |
US09905866B2 |
Fuel cell system and fuel cell system control method
A fuel cell system includes a fuel cell containing a unit cell with an anode and a cathode included therein, a hydrogen supply unit that supplies hydrogen gas to the anode, a circulation pump that supplies an anode exhaust gas containing hydrogen that has not been used for power generation by the fuel cell and is discharged from the anode, once again to the anode to circulate the anode exhaust gas, and a controller that controls supply quantity of the hydrogen gas by the hydrogen supply unit as well as rotating speed of the circulation pump. The controller drives the circulation pump so that the rotating speed of the circulation pump approaches an optimum rotating speed of the circulation pump at which a total hydrogen loss quantity becomes a minimum under a specified current value, the total hydrogen loss quantity being a sum of a hydrogen quantity corresponding to an electric power necessary for driving the circulation pump and a hydrogen quantity passing from anode side to cathode side of the fuel cell. |
US09905861B2 |
Solid-state reserve battery activated by compression
A reserve batter is provided. The reserve battery includes a housing; a battery inside the housing, the battery including an anode, a cathode and a solid electrolyte between the anode and the cathode; and a movable piece for sliding within the housing to compress the battery such that sufficient heat is generated within the battery to activate the solid electrolyte. Methods of activating a reserve battery are also provided. |
US09905859B2 |
Catalyst for solid polymer fuel cell and method for manufacturing the same
The invention is a catalyst for solid polymer fuel cell having catalyst particles composed of platinum, cobalt and magnesium supported on a carbon powder carrier, in which a composition ratio (molar ratio) among platinum, cobalt and magnesium in the catalyst particles is Pt:Co:Mg=1:0.4 to 0.5:0.00070 to 0.00095. This catalyst is manufactured by supporting cobalt and magnesium on a platinum catalyst and then conducting a heat treatment and a treatment to be brought into contact with an oxidizing solution, the feature of the catalyst manufactured in this manner includes a peak position of a main peak appearing between 2θ=40° and 42° in X-ray diffraction analysis, and the peak position is shifted to from 41.0° to 41.5°. |
US09905856B1 |
Flexible and shape-conformal rope-shape alkali metal-sulfur batteries
Provided is a rope-shape alkali metal-sulfur battery having (a) a first electrode comprising a conductive porous rod and a mixture of a first electrode active material and a first electrolyte residing in pores of the first porous rod; (b) a porous separator wrapping around the first electrode to form a separator-protected first electrode; (c) a second electrode comprising a conductive porous rod having a mixture of a second electrode active material and a second electrolyte residing in pores of the second porous rod; wherein the separator-protected first electrode and the second electrode are combined to form a braid or a yarn; and (d) a protective sheath encasing the braid or yarn; wherein either the first or the second electrode is a cathode containing sulfur or a sulfur compound as a cathode active material and the battery has a rope shape having a length-to-diameter aspect ratio no less than 5. |
US09905851B2 |
Cathode active material and method of preparing the same
Provided are a cathode active material including polycrystalline lithium manganese oxide and a boron-containing coating layer on a surface of the polycrystalline lithium manganese oxide, and a method preparing the same. Since the cathode active material according to an embodiment of the present invention may prevent direct contact between the polycrystalline lithium manganese oxide and an electrolyte solution by including the boron-containing coating layer on the surface of the polycrystalline lithium manganese oxide, the cathode active material may prevent side reactions between the cathode active material and the electrolyte solution. In addition, since limitations, such as the Jahn-Teller distortion and the dissolution of Mn2+, may be addressed by structurally stabilizing the polycrystalline lithium manganese oxide, tap density, life characteristics, and charge and discharge capacity characteristics of a secondary battery may be improved. |
US09905841B2 |
Cathode active material and lithium secondary battery including the same, and method of manufacturing cathode active material
Disclosed are a cathode active material and a lithium secondary battery including the same, and a method of manufacturing the cathode active material, the method including: (a) manufacturing a lithium metal oxide according to formula 1 below: Li1+zNiaMnbCo1−(a+b)O2 (1) wherein 0≦z≦0.1, 0.1≦a≦0.8, 0.1≦b≦0.8 and a+b<1; (b) dry mixing the lithium metal oxide, and a precursor including zirconium and fluorine; and (c) changing the precursor including zirconium and fluorine into ZrO2 and substituting some of oxygen (O) anions with F by heat-treatment after dry mixing of step (b), wherein the cathode active material is coated with ZrO2 and F. |
US09905831B2 |
Cell wiring module
A cell wiring module includes a first unit holding one side of a connection member in a connection direction on a first base plate that extends along the connection member; and a second unit holding the other side of the connection member in the connection direction on a second base plate that extends along the connection member. Sliding occurs in the connection direction of the connection member between the connection member and at least one of the first unit and the second unit. The first base plate that extends to a second base plate side and the second base plate that extends to a first base plate side extend to such positions that the connection member is not exposed on a single cell side in an area between the first base plate and the second base plate. |
US09905830B2 |
Rechargeable battery module
A rechargeable battery module includes: a plurality of unit cells arranged along a first direction; a bus bar holder on the unit cells; a bus bar in the bus bar holder electrically connecting the unit cells; first and second end plates on opposite ends of the unit cells in the first direction; and a side plate on opposite ends of the unit cells in a second direction intersecting the first direction and connected to the end plates, wherein the bus bar comprises a first member extending in the first direction and connected to electrode terminals of the unit cells, and a second member connected to the first member. |
US09905829B2 |
Energy storage apparatus
An energy storage apparatus includes: an energy storage device including a case housing an electrode assembly therein, an external terminal disposed at the case, and a fixing member for fixing the external terminal to the case, the fixing member electrically connecting the electrode assembly to the external terminal; and a bus bar member to be welded to the external terminal, wherein one of the bus bar member and the fixing member has a recess whereas the other of the bus bar member and the fixing member has a projection to be inserted into the recess. |
US09905826B2 |
Electric storage device and rechargeable battery
The electric storage device is provided with a case body and an electrode assembly accommodated in the case body. The electrode assembly includes positive and negative electrode sheets each having an active material layer. The case body includes at least one primary inner wall surface, at least one secondary inner wall surface, and corner surfaces. A plane that includes the boundary line between a primary inner wall surface and the corresponding corner surface and faces the corresponding secondary inner wall surface is defined as an imaginary boundary plane. An edge of the active material layer of a positive electrode sheet facing the corresponding secondary inner wall surface is positioned on the surface of the imaginary boundary plane, or is positioned in a region spaced further apart from the secondary inner wall surface facing the edge than the position of the imaginary boundary plane. |
US09905820B2 |
Battery cell storage apparatus and storage apparatus transport system
A battery cell storage apparatus includes a plurality of sheet-formed middle plates, a plurality of middle plate holding members and a fixing member. The plurality of sheet-formed middle plates are aligned so as to store flat cells therebetween. The plurality of middle plate holding members are aligned in a direction of alignment of the sheet-formed middle plates, and each sheet-formed middle plate holding member of the plurality of middle plate holding members holding a respective sheet-formed middle plate of the plurality of sheet-formed middle plates in a direction perpendicular to the direction of alignment. The fixing member is configured to fix the flat cells stored between the sheet-formed middle plates by sandwiching the flat cells together with the sheet-formed middle plates. |
US09905819B2 |
Prismatic battery
A square battery includes a battery can surrounded by four side wall portions, and having an upper end portion on one side in a height direction of the side wall portions opened and a bottom portion in a lower end portion on the other side in the height direction, and a battery lid welded to the upper end portion to seal the battery can, wherein between the battery can and the battery lid, a lateral boundary surface in a lateral direction crossing the height direction of the side wall portions and a vertical boundary surface in a vertical direction crossing the lateral boundary surface and along the height direction of the side wall portions are formed, at least a part of the lateral and vertical boundary surfaces being welded by a laser radiated in the vertical direction along the height direction of the side wall portions. |
US09905817B2 |
Resin-metal composite seal container and method for producing same
A resin-metal composite sealed container having a heat seal part using a heat-sealing resin, between an end part of a first metal foil and an end part of a second metal foil, and a metallically sealed part with a weld bead, on the end face outside the heat sealed part of the first metal foil and the second metal foil. The resin-metal composite sealed container, wherein the melting point of the metal constituting the metal foil is higher by 300° C. or more than the thermal decomposition temperature of the heat-sealing resin, the specific gravity of the metal constituting the metal foil is 5 or more, and the weld bead is formed by a laser welding. A method for producing a metal-resin composite sealed container, comprising forming a container by heat sealing end parts of metal foils having laminated on at least one surface thereof a heat-sealing resin, and forming a metallically sealed part with a weld bead on the end faces of the metal foils by heating/welding an outer side of the heat sealed part of the container from a side of the end faces of the metal foils. |
US09905816B2 |
Rechargeable battery and manufacturing method of the same
A rechargeable battery that may be manufactured and used in various shapes is disclosed. An embodiment of the rechargeable battery includes: an electrode assembly including a pair of electrodes on respective surfaces of a separator and a pair of lead tabs extending from the pair of electrodes; and a pouch receiving the electrode assembly and having the lead tabs protruding out to one side, each of the electrodes including a first bending part including a molded plate including active material particles and a metal fiber yarn of a current collector, and the pouch including a second bending part superimposed on the electrodes in parallel and including a molded sheet having a shape corresponding to that of the first bending part. |
US09905806B2 |
Encapsulation structures of OLED, encapsulation methods, and OLEDs
A OLED encapsulation structure includes: a first encapsulation layer; a second encapsulation arranged on one side of the first encapsulation layer; and scattering particles formed between the first encapsulation layer and the second encapsulation layer, and the scattering particles are configured to scatter incident lights. In addition, an encapsulation method of OLEDs and the OLEDs having the encapsulation structure are disclosed. The scattering particles are formed within the cathode encapsulation layer. The scattering particles may generate the scattering effect for the ambient lights or the stray lights to reduce the reflection of the light beams by the cathode. Thus, the brightness and the clearness of the OLED may be enhanced. |
US09905802B2 |
Organic light emitting display apparatus and method of manufacturing the same
An organic light emitting display apparatus and a method of manufacturing the same are provided. The apparatus includes a substrate, a first electrode formed on the substrate, an intermediate layer formed on the first electrode. The intermediate layer includes an organic emission layer. A second electrode is formed on the intermediate layer, and a capping layer is formed on the second electrode in a first region. The capping layer includes a first edge portion and at least two layers. A third electrode is formed on the second electrode in a second region. The second region is not overlapped with the first region, and the third electrode includes a second edge portion having a side portion facing a side portion of the first edge portion of the capping layer. Electric properties and image quality may be improved. |
US09905799B2 |
Display substrate and display device
A display substrate includes an annular package region and a display region inside package region. The package region includes an annular adhering region and a groove region positioned inside and/or outside the adhering region. A groove structure in which water-absorbing material and/or oxygen-absorbing material is provided is formed in the groove region. The display substrate can solve the problems of poor moisture isolation effect and influence of oxygen in the conventional display device. A display device including the display substrate is further provided. |
US09905795B2 |
Folding type display apparatus and electric equipment
Disclosed are folding type display apparatuses. The folding type display apparatus comprises a flexible display section, and a plurality of housings, which includes a first housing having a space formed therein, and second and third housings bendably connected to both ends of the first housing. The display section is fixed to the second and third housings, and in a closed state of the second and third housings, a folding portion of the display section is housed in the space formed by the first housing, while in an open state of the second and third housings away from each other, the display section becomes flat, and the first housing functions as a leg protruding from flat surfaces of the second and third housings, so that the second and third housings are fixed to each other and the folding portion of the display section is supported, by a holding member for connecting these housings. |
US09905792B2 |
Organic light emitting diode and organic light emitting diode display including the same
An organic light emitting element according to an example embodiment of the present disclosure includes: a first electrode and a second electrode facing each other; an emission layer between the first electrode and the second electrode; an electron transport layer between the emission layer and the second electrode; and a buffer layer between the emission layer and the electron transport layer, wherein the buffer layer includes a first material having a higher LUMO level than that of the electron transport layer. |
US09905791B2 |
Organic light-emitting device having electron transport region including lanthanide and alkali metal halide
An organic light-emitting device includes a substrate, an anode on the substrate, a hole transport region on the anode, an emission layer on the hole transport region, an electron transport region on the emission layer, and a cathode on the electron transport region, wherein the electron transport region includes an electron injection layer including a first material including at least one of a halide of an alkali metal, and a second material including at least one of a lanthanide metal and a alkaline earth metal, and wherein the cathode contacts the electron injection layer and includes a first metal including at least one of silver, gold, platinum, copper, manganese, titanium, cobalt, nickel, and tungsten, and a second metal including at least one of a lanthanide metal and an alkaline earth metal, wherein an amount of the first metal is equal to or greater than that of the second metal. |
US09905788B2 |
Organic light emitting display
An organic light emitting display includes a red light emitting layer, a green light emitting layer and a blue light emitting layer formed between first and second electrodes, a hole-transporting layer formed between the first electrode and each of the red, the green and the blue light emitting layers, and an electron-transporting layer formed between the second electrode and each of the red, the green and the blue light emitting layers, wherein at least one light emitting layer of the red, the green and the blue light emitting layers includes a first light emitting layer including a light emitting host and a light emitting dopant, and a second light emitting layer which is formed between the first light emitting layer and at least one of the electron-transporting layer and the hole-transporting layer, and includes the light emitting dopant. |
US09905786B2 |
Organometallic complex and organic light-emitting device including the same
An organometallic complex represented by Formula 1-1 or Formula 1-2 is provided: wherein in Formulae 1-1 and 1-2, descriptions of R1 to R7, X1, X2, Y1 to Y4, rings A, B, C, and a to e are understood by referring to the description provided herein. An organic light-emitting device includes a first electrode, a second electrode facing the first electrode, and an organic layer that is disposed between the first electrode and the second electrode and includes an emission layer, wherein the organic layer includes at least one organometallic complex represented by Formula 1-1 or Formula 1-2. |
US09905782B2 |
Light-emitting element, compound, organic compound, display module, lighting module, light-emitting device, display device, lighting device, and electronic device
A light-emitting element having high emission efficiency is provided. A light-emitting element having a low driving voltage is provided. A novel compound which can be used for a transport layer or as a host material or a light-emitting material of a light-emitting element is provided. A novel compound with a benzofuropyrimidine skeleton is provided. Also provided is a light-emitting element which includes the compound with the benzofuropyrimidine skeleton between a pair of electrodes. |
US09905777B2 |
Compound and organic electroluminescence device comprising same
The present invention relates to a novel compound and an organic electroluminescence device including the same, and the compound according to the present invention may be used in an organic material layer, preferably a light-emitting layer of an organic electroluminescence device, thereby enhancing the light-emitting efficiency, driving voltage, lifespan, and the like of the organic electroluminescence device. |
US09905773B2 |
Compound for organic electronic element, organic electronic element using the same and electronic device thereof
A compound represented by Formula 1. An organic electric element includes a first electrode, a second electrode, and an organic material layer between the first electrode and the second electrode. The organic material layer includes the compound represented by Formula 1. When the organic electric element includes the compound in the organic material layer, luminous efficiency, stability, and life span can be improved. |
US09905772B2 |
Material for organic electroluminescence device and use thereof
The present invention discloses an organic material is represented by the following formula (1) or formula (2), the organic EL device employing the material as light emitting host or dopant of emitting layer, hole blocking layer (HBL), electron blocking layer (EBL), electron transport layer (ETL) and hole transport layer (HTL) can display good performance. wherein B represents a fused ring hydrocarbon units with two to three rings, m represents an integer of 0 to 10, R1, G, Rs, X and Y are the same definition as described in the present invention. |
US09905768B2 |
Semiconductor device and insulating layer-forming composition
Provided is a semiconductor device which includes a semiconductor layer and an insulating layer adjacent to the semiconductor layer, in which the insulating layer is formed of a crosslinked product of a polymer compound that has a repeating unit (IA) represented by the following Formula (IA) and a repeating unit (IB) represented by the following Formula (IB); and an insulating layer-forming composition which is used for forming an insulating layer of a semiconductor device and contains a polymer compound that has the following repeating units (IA) and (IB). In Formulae, R1a and R1b each independently represent a hydrogen atom, a halogen atom, or an alkyl group. L1a, L2a, and L1b each independently represent a single bond or a linking group. X represents a crosslinkable group and YB represents a decomposable group or a hydrogen atom. m1a and m2a each independently represent an integer of 1 to 5. The symbol “*” represents a bonding position of the repeating units. |
US09905760B2 |
Non-volatile resistance-switching thin film devices
Disclosed herein are resistive switching devices having, e.g., an amorphous layer comprised of an insulating aluminum-based or silicon-based material and a conducting material. The amorphous layer may be disposed between two or more electrodes and be capable of switching between at least two resistance states. Circuits and memory devices including resistive switching devices are also disclosed, and a composition of matter involving an insulating aluminum-based or an silicon-based material and a conducting material. Also disclosed herein are methods for switching the resistance of an amorphous material. |
US09905756B2 |
Semiconductor storage device
In a semiconductor storage device that is formed on a semiconductor substrate, flows a current to a recording material formed between electrodes to change a resistance value of the recording material and store information, and flows currents of different magnitudes in a high resistance change operation and a low resistance change operation, electrodes of a plurality of memory cells are electrically connected directly or via transistors to form large electrodes, the large electrodes are connected to a feeding terminal from a power source circuit, and the large electrodes are connected to large electrodes connected to a feeding terminal from a power source connected between a plurality of memory cells different from the plurality of memory cells via inter-large electrode connection transistors. By using the semiconductor storage device, a connection pattern of a feeding electrode for the memory cells can be configured according to the magnitude of a consumption current, power consumption by a voltage drop by a parasitic resistance of the feeding electrode and power consumption by charge/discharge of a parasitic capacitance around the feeding electrode can be suppressed, and performance per consumption power in read/set/reset operations can be improved. |
US09905755B2 |
Semiconductor device and method for producing a semiconductor device
A semiconductor device includes first pillar-shaped silicon layers, a first gate insulating film formed around the first pillar-shaped silicon layers, gate electrodes formed of metal and formed around the first gate insulating film, gate lines formed of metal and connected to the gate electrodes, a second gate insulating film formed around upper portions of the first pillar-shaped silicon layers, first contacts formed of a first metal material and formed around the second gate insulating film, second contacts formed of a second metal material and connecting upper portions of the first contacts and upper portions of the first pillar-shaped silicon layers, diffusion layers formed in lower portions of the first pillar-shaped silicon layers, and variable-resistance memory elements formed on the second contacts. |
US09905754B1 |
Method of forming patterns and method of manufacturing a semiconductor device using the same
In a method of forming a pattern of a semiconductor device, a first mask layer and an anti-reflective coating layer may be sequentially formed on a substrate. A photoresist layer may be formed on the anti-reflective coating layer. The photoresist layer may be exposed and developed to form a first preliminary photoresist pattern. A first ion beam etching process may be performed on the first preliminary photoresist pattern to form a second preliminary photoresist pattern. A second ion beam etching process may be performed on the second preliminary photoresist pattern to form a photoresist pattern. A second incident angle of an ion beam in the second ion beam etching process may be greater than a first incident angle of an ion beam in the first ion beam etching process. The anti-reflective coating layer and the first mask layer may be etched using the photoresist pattern as an etching mask to form a mask structure. |
US09905745B2 |
Device for converting thermal energy to electrical energy
The invention relates to a device for converting thermal energy to electrical energy, comprising at least one thermoelectric module (19) which has an outer surface having a hot side (20) for contacting a heat source and having a cold side (22) for contacting a heat sink, wherein the hot side of the thermoelectric module is thermally conductively connected to a heat source, in particular an exhaust channel (11) of a combustion engine. The device further comprises a cooling channel (25) through which a cooling fluid can flow and which is thermally conductively connected to the cold side of the thermoelectric module. The cooling channel has at least one opening to the cold side of the thermoelectric module and is sealed in a fluid-tight manner around the opening with respect to the hot side of the thermoelectric module. |
US09905740B2 |
Light emitting device and method of manufacturing the same
A light emitting device includes a light emitting element, a light-reflecting substrate, and an electrically conductive member. The light emitting element includes a first surface and an electrode provided on the first surface. The light-reflecting substrate has a first main surface facing the first surface of the light emitting element and has a second main surface opposite to the first main surface. The light-reflecting substrate defines a hole at a position corresponding to the electrode. The hole penetrates through the light-reflecting substrate from the first main surface to the second main surface. The electrically conductive member includes a substantially spherical core arranged in the hole and bonded with the electrode, and a coating portion provided in a space between the substantially spherical core and a lateral surface of the hole. |
US09905739B2 |
Light emitting packages
A semiconductor light emitting device may include a light emitting package. A light emitting package may include a light emitting stack including a sequential stack of a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer. An encapsulation layer may at least partially surround the second conductivity type semiconductor layer, and a wavelength conversion layer may cover the first conductivity type semiconductor layer. One or more of the encapsulation layer and the wavelength conversion layer may have a greater coefficient of thermal expansion (CTE) than a GaN-based compound semiconductor. The semiconductor light emitting device may include a stress applying structure that may apply a tensile stress to the light emitting stack. The light emitting stack may have reduced thermal droop at an operation temperature and improved luminous efficiency. |
US09905730B2 |
Light emitting device with bonded interface
In some embodiments of the invention, a transparent substrate AlInGaP device includes an etch stop layer that may be less absorbing than a conventional etch stop layer. In some embodiments of the invention, a transparent substrate AlInGaP device includes a bonded interface that may be configured to give a lower forward voltage than a conventional bonded interface. Reducing the absorption and/or the forward voltage in a device may improve the efficiency of the device. |
US09905729B2 |
Light emitting diode
A light emitting diode is provided to comprises: a substrate that has an elongated rectangular shape in one direction; a light emitting structure positioned on the substrate and having an opening for exposing a first conductive semiconductor layer; a first electrode pad disposed to be closer to a first corner of the substrate; a second electrode pad disposed to be relatively closer to a second corner of the substrate opposing to the first corner; a first extension extending from the first electrode pad; and a second extension and a third extension extending from the second electrode pad to sides of the first extension, wherein an imaginary line connecting an end of the second extension and an end of the third extension is located between the first electrode pad and the first corner. |
US09905725B2 |
Light emitting diode and data transmission and reception apparatus
A light emitting diode, including a semiconductor epitaxial structure, a first electrode and a second electrode is provided. The semiconductor epitaxial structure includes a plurality stacked light-emitting layers, and each of the light-emitting layers respectively emits different range of wavelength of light. The first electrode is electrically connected to the semiconductor epitaxial structure. The second electrode is electrically connected to the semiconductor epitaxial structure. Furthermore, a data transmission and reception apparatus is provided. |
US09905717B2 |
Horizontal balanced solar tracker
In an example, the present invention provides a solar tracker apparatus. In an example, the apparatus comprises a center of mass with an adjustable hanger assembly configured with a clam shell clamp assembly on the adjustable hanger assembly and a cylindrical torque tube comprising a plurality of torque tubes configured together in a continuous length from a first end to a second end such that the center of mass is aligned with a center of rotation of the cylindrical torque tubes to reduce a load of a drive motor operably coupled to the cylindrical torque tube. Further details of the present example, among others, can be found throughout the present specification and more particularly below. |
US09905713B2 |
Method and substrates for material application
A method of and an apparatus for making a composite material is provided. The composite is able to be formed by mixing a binder and a physical property enhancing material to form a mixer. The binder is able to be pitch, such as mesophase pitch. The physical property enhancing material is able to be fiber glass. The mixer is able to be processed through a lamination process, stabilization/cross-link process, and carbonization. The composite material is able to be applied in the field of electronic components and green technology, such as a substrate of a photovoltaic cell. |
US09905710B2 |
Solar cell
An embodiment of a solar cell is provided comprising a silicon substrate, on a first surface of which a texture structure including mountain portions and valley portions is formed, and an amorphous silicon layer provided on the first surface of the silicon substrate. The texture structure, in a cross section passing through the mountain portions and the valley portions, includes pairs of slant portions, each pair slanting to extend from a pair of neighboring ones of the mountain portions toward the valley portion therebetween while coming closer to each other. The valley portion located between the slant portions is in a round shape with a radius of curvature of 150 nm or smaller. The amorphous silicon layer includes an epitaxial growth area grown from the valley portion, the epitaxial growth area on the valley portion is thicker than that on a region other than the valley portion. |
US09905709B2 |
Photovoltaic cell device with switchable lighting/reflection
The present invention relates to a photovoltaic cell device with combined energy conversion and lighting option and a method a controlling such a device. It comprises a responsive element, a reflector or a light source for changing light absorption and thus appearance of photovoltaic cells (e.g. solar panel). It is also possible to combine the responsive element or the reflector with light source(s) providing extra illumination. When combined with a sensor and control unit, ambient intelligent solar panels and ambient intelligent lighting systems can be obtained. A combination of a luminescent solar concentrator (LSC) and light-emitting device is also possible, where an energy storage device is charged by a photovoltaic cell upon irradiation. The energy storage powers one or more light sources which are coupled to the sides of the luminescent plate. The light emitted by the light sources is coupled into the plate and (partly) converted by the luminescent plate. This results in a plate that homogeneously emits light. |
US09905708B2 |
Panel, panel manufacturing method, solar cell module, printing apparatus, and printing method
A panel of the present invention includes a substrate, an electrode provided on the substrate, and a transparent conductive layer provided on the substrate along a side of the electrode. The electrode includes a contact region in contact with the transparent conductive layer and a non-contact region out of contact with the transparent conductive layer. Preferably, a part of the electrode is exposed through the transparent conductive layer. Preferably, the conductive layer is separated into one side and the other side of the electrode extending a predetermined direction. |
US09905706B2 |
Integrated cantilever switch
An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 μm2. |
US09905699B2 |
Thin film transistor, method of manufacturing the same, and display apparatus
Provided is a bottom gate type thin film transistor including on a substrate (1) a gate electrode (2), a first insulating film (3) as a gate insulating film, an oxide semiconductor layer (4) as a channel layer, a second insulating film (5) as a protective layer, a source electrode (6), and a drain electrode (7), in which the oxide semiconductor layer (4) includes an oxide including at least one selected from the group consisting of In, Zn, and Sn, and the second insulating film (5) includes an amorphous oxide insulator formed so as to be in contact with the oxide semiconductor layer (4) and contains therein 3.8×1019 molecules/cm3 or more of a desorbed gas observed as oxygen by temperature programmed desorption mass spectrometry. |
US09905695B2 |
Multi-layered oxide semiconductor transistor
To provide a semiconductor device having a structure with which the device can be easily manufactured even if the size is decreased and which can suppress a decrease in electrical characteristics caused by the decrease in the size, and a manufacturing method thereof. A source electrode layer and a drain electrode layer are formed on an upper surface of an oxide semiconductor layer. A side surface of the oxide semiconductor layer and a side surface of the source electrode layer are provided on the same surface and are electrically connected to a first wiring. Further, a side surface of the oxide semiconductor layer and a side surface of the drain electrode layer are provided on the same surface and are electrically connected to a second wiring. |
US09905694B2 |
Fin-type field-effect transistors with strained channels
Device structures for a fin-type field-effect transistor (FinFET) and methods for fabricating a device structure for a FinFET. A fin comprised of a semiconductor material having a first crystal structure is formed. A dielectric layer is formed that includes an opening aligned with the fin. A dummy gate structure is removed from the opening in the dielectric layer. After the dummy gate structure is removed, a section of the fin aligned with the opening is implanted with non-dopant ions to amorphize the first crystal structure of the semiconductor material of the fin. After the section of the fin is implanted, the section of the fin is annealed such that the semiconductor material in the section of the fin recrystallizes with a second crystal structure incorporating internal strain. |
US09905687B1 |
Semiconductor device and method of making
Laterally diffused metal-oxide-semiconductor (LDMOS) device is disclosed. The device is surrounded by an isolation ring and a buried layer of a first doping type, that is of the same type as its source and drain regions of the same doping type. A control gate of the device includes step gate dielectric. |
US09905682B2 |
Bidirectional MOS device and method for preparing the same
A bidirectional Metal-Oxide-Semiconductor (MOS) device, including a P-type substrate, and an active region. The active region includes a drift region, a first MOS structure and a second MOS structure; the first MOS structure includes a first P-type body region, a first P+ contact region, a first N+ source region, a first metal electrode, and a first gate structure; the second MOS structure includes a second P-type body region, a second P+ contact region, a second N+ source region, a second metal electrode, and a second gate structure; and the drift region includes a dielectric slot, a first N-type layer, a second N-type layer, and an N-type region. The active region is disposed on the upper surface of the P-type substrate. The first MOS structure and the second MOS structure are symmetrically disposed on two ends of the upper layer of the drift region. |
US09905681B2 |
Power semiconductor device and method of fabricating the same
Provided is a power semiconductor device comprising a pair of gate electrodes respectively disposed in a first trench and a second trench spaced apart from each other in a substrate; a body region having a first conductivity type disposed between the first trench and the second trench; a pair of floating regions having a first conductivity type spaced apart from each other and surrounding a bottom surface and at least one side surface of the first trench and the second trench, respectively; and a drift region having a second conductivity type which extends from below the pair of floating regions through a region between the pair of floating regions to the body region, wherein, in the drift region, the doping concentration of a second conductivity type between the pair of floating regions is higher than the doping concentration of a second conductivity type below the pair of floating regions. |
US09905679B2 |
Semiconductor device comprising a bipolar transistor
A semiconductor device comprising a bipolar transistor and a method of making the same. The bipolar transistor includes a collector having a laterally extending drift region. The bipolar transistor also includes a base located above the collector. The bipolar transistor further includes an emitter located above the base. The bipolar transistor also includes a reduced surface field (RESURF) gate located above an upper surface of the laterally extending drift region for shaping an electric field within the collector. The bipolar transistor further includes a gap located between the reduced surface field gate and an extrinsic region of the base of the device, for electrically isolating the reduced surface field gate from the base. A lateral dimension Lgap of the gap is in the range 0.1 μm≦Lgap≦1.0 μm. |
US09905678B2 |
Semiconductor device with multiple HBTs having different emitter ballast resistances
The present disclosure relates to a semiconductor device with multiple heterojunction bipolar transistors (HBTs) that have different emitter ballast resistances. The disclosed semiconductor device includes a substrate, a first HBT and a second HBT formed over the substrate. The first HBT includes a first collector, a first base over the first collector, a first emitter over the first base, and a first cap structure over the first emitter. The second HBT includes a second collector, a second base over the second collector, a second emitter over the second base, and a second cap structure over the second emitter. Herein, the first cap structure is different from the second cap structure, such that a first emitter ballast resistance from the first cap structure is at least 1.5 times greater than a second emitter ballast resistance from the second cap structure. |
US09905675B1 |
Gate and field electrode trench formation process
An upper portion of a field electrode trench and a gate trench are simultaneously formed in the main surface of a substrate to approximately the same depth. A first protective layer is formed that completely fills the gate trench and lines the upper field electrode trench. The first protective layer is removed from the bottom of the upper trench and semiconductor material is removed thereby forming a lower portion of the field electrode trench while the gate trench remains completely filled by the first protective layer. An electrically conductive field electrode and a field electrode dielectric are formed in the field electrode trench. At least some of the first protective layer is removed from the gate trench. A conformal gate dielectric layer is formed on the substrate. An electrically conductive gate electrode is formed in the gate trench while the field electrode remains covered by the gate dielectric layer. |
US09905668B2 |
Bipolar junction transistors and methods of fabrication
A structure, including a bipolar junction transistor and method of fabrication thereof, is provided herein. The bipolar junction transistor includes: a substrate including a substrate region having a first conductivity type; an emitter region over a first portion of the substrate region, the emitter region having a second conductivity type; a collector region over a second portion of the substrate region, the collector region having the second conductivity type; and, a base region overlie structure disposed over, in part, the substrate region. The base region overlie structure separates the emitter region from the collector region and aligns to a base region of the bipolar junction transistor within the substrate region, between the first portion and the second portion of the substrate region. |
US09905665B2 |
Replacement metal gate stack for diffusion prevention
A method of forming a semiconductor structure includes depositing a gate dielectric layer lining a recess of a gate structure formed on a substrate with a first portion of the gate dielectric layer covering sidewalls of the recess and a second portion of the gate dielectric layer covering a bottom of the recess. A protective layer is deposited above the gate dielectric layer and then recessed selectively to the gate dielectric layer so that a top surface of the protective layer is below of the recess. The first portion of the gate dielectric layer is recessed until a top of the first portion of the gate dielectric layer is approximately coplanar with the top surface of the protective layer. The protective layer is removed and a conductive barrier is deposited above the recessed first portion of the gate dielectric layer to cut a diffusion path to the gate dielectric layer. |
US09905664B2 |
Semiconductor devices and methods of manufacturing the same
A semiconductor device includes a substrate, a tunnel insulation pattern on the substrate, a charge storage pattern on the tunnel insulation pattern, a dielectric pattern having a width smaller than a width of the charge storage pattern on the charge storage pattern, a control gate having a width greater than the width of the dielectric pattern on the dielectric pattern, and a metal-containing gate on the control gate. |
US09905663B2 |
Fabrication of a vertical fin field effect transistor with a reduced contact resistance
A method of forming a vertical fin field effect transistor (vertical finFET) with an increased surface area between a source/drain contact and a doped region, including forming a doped region on a substrate, forming one or more interfacial features on the doped region, and forming a source/drain contact on at least a portion of the doped region, wherein the one or more interfacial features increases the surface area of the interface between the source/drain contact and the doped region compared to a flat source/drain contact-doped region interface. |
US09905662B2 |
Method of making a semiconductor device using a dummy gate
A method of making a semiconductor device includes forming a fin mask layer on a semiconductor layer, forming a dummy gate over the fin mask layer, and forming source and drain regions on opposite sides of the dummy gate. The dummy gate is removed and the underlying fin mask layer is used to define a plurality of fins in the semiconductor layer. A gate is formed over the plurality of fins. |
US09905659B2 |
Semiconductor device having buried gate structure and method of fabricating the same
A semiconductor device may include a device isolation region configured to define an active region in a substrate, an active gate structure disposed in the active region, and a field gate structure disposed in the device isolation region. The field gate structure may include a gate conductive layer. The active gate structure may include an upper active gate structure including a gate conductive layer and a lower active gate structure formed under the upper active gate structure and vertically spaced apart from the upper active gate structure. The lower active gate structure may include a gate conductive layer. A top surface of the gate conductive layer of the field gate structure is located at a lower level than a bottom surface of the gate conductive layer of the upper active gate structure. |
US09905657B2 |
Semiconductor device and method for manufacturing semiconductor device
A semiconductor device in which parasitic capacitance is reduced is provided. A first oxide insulating layer and a first oxide semiconductor layer are sequentially formed over a first insulating layer. A first conductive layer is formed over the first oxide semiconductor layer and etched to form a second conductive layer. The first oxide insulating layer and the first oxide semiconductor layer are etched with the second conductive layer as a mask to form a second oxide insulating layer and a second oxide semiconductor layer. A planarized insulating layer is formed over the first insulating layer and the second conductive layer. A second insulating layer, a source electrode layer, and a drain electrode layer are formed by etching the planarized insulating layer and the second conductive layer. A third oxide insulating layer, a gate insulating layer, and a gate electrode layer are formed over the second oxide semiconductor layer. |
US09905654B2 |
Bridge diode
Provided is a bridge diode according to an embodiment of the inventive concept. The bridge diode includes a first structure including a first lower nitride film and a first upper nitride film, which are laminated on the substrate, a second structure including a second lower nitride film and a second upper nitride film, which are laminated on the substrate, a first electrode structural body disposed on the first structure, and a second electrode structural body disposed on the second structure. The first electrode structural body includes a first electrode, a second electrode, and a third electrode, which are arranged in a clockwise direction, the second electrode structural body includes a fourth electrode, a fifth electrode, and a sixth electrode, which are arranged in a clockwise direction, the first electrode and the sixth electrode, which are connected to each other, are connected to an external circuit, the third electrode and the fourth electrode, which are connected to each other, are connected to an external circuit, and each of the second electrode and the fifth electrode is connected to the external circuit. |
US09905653B2 |
Silicon carbide semiconductor device and method for manufacturing the same
A silicon carbide semiconductor device includes a silicon carbide substrate, a gate insulating film, and a gate electrode. The gate insulating film is provided as being in contact with the first main surface of the silicon carbide substrate. The gate electrode is provided on the gate insulating film such that the gate insulating film lies between the gate electrode and the silicon carbide substrate. In a first stress test in which a gate voltage of −5 V is applied to the gate electrode for 100 hours at a temperature of 175° C., an absolute value of a difference between a first threshold voltage and a second threshold voltage is not more than 0.5 V, with a threshold voltage before the first stress test being defined as the first threshold voltage and a threshold voltage after the first stress test being defined as the second threshold voltage. |
US09905648B2 |
Silicon on insulator device with partially recessed gate
Transistors having partially recessed gates are constructed on silicon-on-insulator (SOI) semiconductor wafers provided with a buried oxide layer (BOX), for example, FD-SOI and UTBB devices. An epitaxially grown channel region relaxes constraints on the design of doped source and drain profiles. Formation of a partially recessed gate and raised epitaxial source and drain regions allow further improvements in transistor performance and reduction of short channel effects such as drain induced barrier lowering (DIBL) and control of a characteristic subthreshold slope. Gate recess can be varied to place the channel at different depths relative to the dopant profile, assisted by advanced process control. The partially recessed gate has an associated high-k gate dielectric that is initially formed in contact with three sides of the gate. Subsequent removal of the high-k sidewalls and substitution of a lower-k silicon nitride encapsulant lowers capacitance between the gate and the source and drain regions. |
US09905646B2 |
V-shaped epitaxially formed semiconductor layer
The present disclosure provides a method in accordance with some embodiments. The method includes forming a recess in a source/drain region of a semiconductor substrate, wherein the semiconductor substrate is formed of a first semiconductor material. The method further includes epitaxially growing a second semiconductor material within the recess to form a S/D feature in the recess, and removing a portion of the S/D feature to form a v-shaped valley extending into the S/D feature. |
US09905639B2 |
Method of manufacturing superjunction semiconductor devices with a superstructure in alignment with a foundation
By using a single trench mask, first and second trenches are formed that extend from a main surface into a semiconductor layer. A foundation is formed that includes first regions in and/or directly adjoining the first trenches. A superstructure is formed in alignment with the foundation by using position information directly obtained from structures formed in the first and/or the second trenches. |
US09905636B2 |
Super-junction structure and method for manufacturing the same and semiconductor device thereof
The present disclosure relates to a super-junction structure, a method for manufacturing the super-junction structure and a semiconductor device including the super-junction structure. The super-junction structure includes an epitaxy layer of a first doping type and a plurality of first pillar regions of a second doping type which are formed in the epitaxy layer and are separated from each other. Each of the first pillar regions has a doping concentration that decreases from bottom to top. A portion of the epitaxy layer between adjacent ones of the first pillar regions is a second pillar region. The first pillar regions and the second pillar region are arranged alternatively to form the super-junction structure. The first pillar regions are characterized by the doping concentration that decreases from bottom to top so that the super-junction structure has a relatively high breakdown voltage and a relatively low on resistance. Moreover, the super-junction structure changes a path of an avalanche current and thus suppresses an avalanche current so that the device is not easily damaged. |
US09905634B2 |
Power semiconductor device edge structure
A semiconductor device having a first load terminal, a second load terminal and a semiconductor body is presented. The semiconductor body comprises an active region configured to conduct a load current between the first load terminal and the second load terminal and a junction termination region surrounding the active region. The semiconductor body includes a drift layer arranged within both the active region and the junction termination region and having dopants of a first conductivity type at a drift layer dopant concentration of equal to or less than 1014 cm−3; a body zone arranged in the active region and having dopants of a second conductivity type complementary to the first conductivity type and isolating the drift layer from the first load terminal; a guard zone arranged in the junction termination region and having dopants of the second conductivity type and being configured to extend a depletion region formed by a transition between the drift layer and the body zone; a field stop zone arranged adjacent to the guard zone, the field stop zone having dopants of the first conductivity type at a field stop zone dopant concentration that is higher than the drift layer dopant concentration by a factor of at least 2; a low doped zone arranged adjacent to the field stop zone, the low doped zone having dopants of the first conductivity type at a dopant concentration that is lower than the drift layer dopant concentration by a factor of at least 1.5, wherein the body zone, the guard zone, the field stop zone and the low doped zone are arranged in the semiconductor body such that they exhibit a common depth range (DR) of at least 1 μm along a vertical extension direction (Z). |
US09905620B2 |
Method for fabricating display device and display device
Provided is a method for fabricating a display device. The method for fabricating the display device includes preparing a flexible display panel including a plurality of pixels and a thin film transistor connected to at least one of the plurality of pixels, forming a thin film encapsulation layer over the flexible display panel, and forming a touch screen panel over the thin film encapsulation layer. The touch screen panel is formed at least partly by a transfer process. |
US09905618B2 |
Self-oscillating flexible OLED panel and fabrication method thereof
A device and method of making such a device that includes a flexible OLED layer comprising a light emitting side and a self-oscillating layer disposed on the light emitting side of the flexible OLED layer. The self-oscillating layer comprises an elastic polymer matrix containing a photo-responsive element and independently self-oscillating gel islands. The photo-responsive element in the elastic polymer matrix causes synchronization of the independently self-oscillating polymer gel islands in response to light emitted from the flexible OLED layer. |
US09905612B2 |
Display device and method for manufacturing the same
A display device including a substrate including a display area and a non-display area, a common electrode line in the non-display area, and a protective layer coating at least a part of an end portion of the common electrode line. |
US09905609B2 |
Manufacturing of an imager device and imager device
Embodiments related to the manufacturing of an imager device and an imager device are disclosed. Embodiments associated with methods of an imager device are also disclosed. |
US09905607B2 |
Radiation detector fabrication
The present approach relates to the fabrication of radiation detectors. In certain embodiments, additive manufacture techniques, such as 3D metallic printing techniques are employed to fabricate one or more parts of a detector. In an example of one such printing embodiment, amorphous silicon may be initially disposed onto a substrate and a laser may be employed to melt some or all of the amorphous silicon so as to form crystalline silicon circuitry of a light imager panel. Such printing techniques may also be employed to fabricate other aspects of a radiation detector, such as a scintillator layer. |
US09905603B1 |
Successive approximation register analog-to-digital converter, CMOS image sensor including the same and operating method thereof
A complementary metal oxide semiconductor (CMOS) image sensor includes a pixel array suitable for outputting a pixel signal corresponding to incident light; a row decoder suitable for selecting and controlling pixels in the pixel array by row lines; a tracking voltage generator suitable for generating a tracking voltage; a plurality of successive approximation register (SAR) analog-to-digital converters suitable for analog-to-digital converting a pixel signal by repeatedly performing N times (where N is a natural number representing desired resolution) a process of comparing the pixel signal generated by the pixel array with the tracking voltage generated by the tracking voltage generator and modulating the pixel signal; and a control unit suitable for controlling operations of the row decoder, the tracking voltage generator, and the plurality of SAR analog-to-digital converters. |
US09905600B1 |
Image sensor device and manufacturing method thereof
The present disclosure provides a method of manufacturing an image sensor device. The method includes: forming an etch stop layer on a first substrate; forming a light-sensing region comprising a light sensing quantum structure being able to detect a wavelength greater than about 1.5 um; forming a semiconductive substrate over the light-sensing region, the semiconductive substrate comprising an active component; forming an isolation structure extended through the light-sensing region; selectively removing the first substrate to expose the etch stop layer; and thinning the etch stop layer thereby exposing the light-sensing region. |
US09905596B2 |
Semiconductor device comprising a channel region of a transistor with a crystalline oxide semiconductor and a specific off-state current for the transistor
A solid-state image sensor which holds a potential for a long time and includes a thin film transistor with stable electrical characteristics is provided. A reset transistor is omitted by initializing the signal charge storage portion to a cathode potential of a photoelectric conversion element portion in the solid-state image sensor. When a thin film transistor which includes an oxide semiconductor layer and has an off-state current of 1×10−13 A or less is used as a transfer transistor of the solid-state image sensor, the potential of the signal charge storage portion is kept constant, so that a dynamic range can be improved. When a silicon semiconductor which can be used for a complementary metal oxide semiconductor is used for a peripheral circuit, a high-speed semiconductor device with low power consumption can be manufactured. |
US09905595B2 |
Photoelectric sensor
A photoelectric sensor includes a current division control circuit that sequentially sets a reference voltage for each current divider circuit along one of the arrangement directions of photodiodes so that the reference voltage for the current divider circuit is equal to or larger than the voltage value of the reference voltage set for a current divider circuit in the preceding stage, and sets one common control voltage for all of the current divider circuits, the common control voltage falling within a range that includes all of the reference voltages. |
US09905593B2 |
Mask plate and method for manufacturing array substrate
The present disclosure provides a mask plate, including a first region corresponding to a GOA region of an array substrate and a second region corresponding to a display region of the array substrate. The first region comprises at least one first aperture, the at least one first aperture is used to form a GI via-hole penetrating through a gate insulating layer at the GOA region, and a gate line is exposed through the GI via-hole. The second region comprises at least one second aperture, the at least one second aperture is a half-tone mask aperture and is used to form a VIA via-hole at the display region, and a source/drain metal layer pattern is exposed through the VIA via-hole. |
US09905587B2 |
Array substrate comprising a conductive contact formed on a surface of a pixel electrode exposed by an opening, manufacturing method thereof, and display panel
The present invention provides an array substrate and a manufacturing method thereof, and a display panel comprising said array substrate. The array substrate comprises a plurality of pixel units, each of which comprising: a gate formed on a substrate; a gate insulating layer formed on the gate; an active layer being corresponding to the gate and formed on the gate insulating layer; a source and a drain formed on the active layer respectively; a pixel electrode formed on the gate insulating layer and electrically connected to the drain; a passivation layer covering the source, the drain and the pixel electrode; and a common electrode being corresponding to the pixel electrode and formed on the passivation layer, wherein an opening passing through the passivation layer is formed in the common electrode, so as to expose the pixel electrode below the passivation layer. |
US09905586B2 |
Capacitor comprising metal oxide film having high alignment
An oxide semiconductor film with a low density of defect states is formed. In addition, an oxide semiconductor film with a low impurity concentration is formed. Electrical characteristics of a semiconductor device or the like using an oxide semiconductor film is improved. A semiconductor device including a capacitor, a resistor, or a transistor having a metal oxide film that includes a region; with a transmission electron diffraction measurement apparatus, a diffraction pattern with luminescent spots indicating alignment is observed in 70% or more and less than 100% of the region when an observation area is changed one-dimensionally within a range of 300 nm. |
US09905585B2 |
Semiconductor device comprising capacitor
A semiconductor device in which the aperture ratio and which includes a capacitor with increased charge capacity is provided. A semiconductor device in which the number of masks used in a manufacturing process is reduced and the manufacturing costs are reduced is also provided. An impurity is contained in a light-transmitting semiconductor film so that the semiconductor film functions as one of a pair of electrodes in a capacitor. The other pair of electrodes is formed using a light-transmitting conductive film such as a pixel electrode. Further, a scan line and a capacitor line are provided on the same surface and in parallel to each other. An opening reaching the capacitor line and an opening reaching a conductive film which can be formed in the formation of a source electrode or a drain electrode of the transistor can be formed concurrently in an insulating film. |
US09905581B2 |
Array substrate and display panel with same
An array substrate can include a plurality of thin film transistors, a plurality of function lines, a plurality of leads, a coupling part and a driver. The plurality of function lines are configured to transmit driving signals to the thin film transistors. The plurality of leads include a first lead and a second lead. The coupling part is electrically coupling the leads to the function lines. The driver is electrically coupled to the leads, and configured to provide the driving signals to the function lines. The first lead has a length larger than that of the second lead. A contacting area between the first lead and the coupling part is larger than that between the second lead and the coupling part. A display panel with the array substrate is also provided. |
US09905578B2 |
Pixel structure and method of manufacturing a pixel structure
A pixel structure and a method of manufacturing a pixel structure are provided. The pixel structure includes an active device, a gate insulation layer, a dielectric insulation layer, a capacitance electrode, a protection layer and a pixel electrode. The active device includes a gate, a semiconductor channel layer, a source and a drain. The dielectric insulation layer covers the semiconductor channel layer. A dielectric index of the dielectric insulation layer is greater than a dielectric index of the gate insulation layer. The capacitance electrode is overlapped with the drain. The capacitance electrode, the drain and the dielectric insulation layer between the two constitute a storage capacitor structure. The protection layer is disposed on the dielectric insulation layer and the capacitance electrode is located between the protection layer and the dielectric insulation layer. The pixel electrode is disposed on the protection layer and connected to the drain of the active device. |
US09905576B2 |
Semiconductor chip including region having rectangular-shaped gate structures and first metal structures
Gate structures are positioned within a region in accordance with a gate horizontal grid that includes at least seven gate gridlines separated from each other by a gate pitch of less than or equal to about 193 nanometers. Each gate structure has a substantially rectangular shape with a width of less than or equal to about 45 nanometers and is positioned to extend lengthwise along a corresponding gate gridline. Each gate gridline has at least one gate structure positioned thereon. A first-metal layer is formed above top surfaces of the gate structures within the region and includes first-metal structures positioned in accordance with a first-metal vertical grid that includes at least eight first-metal gridlines. Each first-metal structure has a substantially rectangular shape and is positioned to extend along a corresponding first-metal gridline. At least six contact structures of substantially rectangular shape contact the at least six gate structures. |
US09905574B2 |
Three-dimensional semiconductor memory devices
Three-dimensional (3D) nonvolatile memory devices include a substrate having a well region of second conductivity type (e.g., P-type) therein and a common source region of first conductivity type (e.g., N-type) on the well region. A recess extends partially (or completely) through the common source region. A vertical stack of nonvolatile memory cells on the substrate includes a vertical stack of spaced-apart gate electrodes and a vertical active region, which extends on sidewalls of the vertical stack of spaced-apart gate electrodes and on a sidewall of the recess. Gate dielectric layers extend between respective ones of the vertical stack of spaced-apart gate electrodes and the vertical active region. The gate dielectric layers may include a composite of a tunnel insulating layer, a charge storage layer, a relatively high bandgap barrier dielectric layer and a blocking insulating layer having a relatively high dielectric strength. |
US09905571B2 |
Nonvolatile semiconductor memory device and method of manufacturing the same
According to one embodiment, a memory device includes first and second fin type stacked structures each includes first to i-th memory strings (i is a natural number except 1) that are stacked in a first direction, the first and second fin type stacked structures which extend in a second direction and which are adjacent in a third direction, a first portion connected to one end in the second direction of the first fin type stacked structure, a width in the third direction of the first portion being greater than a width in the third direction of the first fin type stacked structure, and a second portion connected to one end in the second direction of the second fin type stacked structure, a width in the third direction of the second portion being greater than a width in the third direction of the second fin type stacked structure. |
US09905569B1 |
Semiconductor device and method of manufacturing the same
A method of forming a nonvolatile memory device includes forming first, second, and third gate structures, with the second and third gate structures including first and second spacer structures formed on a sidewall of the second gate structure and sidewalls of the third gate structure. Impurity regions are formed through ion implantation and the first spacer structure shields the second and third gate structures during ion implantation. The second spacer structure defines resulting impurity regions. |
US09905564B2 |
Memory cell comprising first and second transistors and methods of operating
Semiconductor memory cells, array and methods of operating are disclosed. In one instance, a memory cell includes a bi-stable floating body transistor and an access device; wherein the bi-stable floating body transistor and the access device are electrically connected in series. |
US09905561B2 |
Integrated circuit and semiconductor device
An embodiment includes an integrated circuit comprising a standard cell, the standard cell comprising: first and second active regions having different conductivity types and extending in a first direction; first, second, and third conductive lines extending over the first and second active regions in a second direction substantially perpendicular to the first direction, and disposed parallel to each other; and a cutting layer extending in the first direction between the first and second active regions and separating the first conductive line into a first upper conductive line and a first lower conductive line, the second conductive line into a second upper conductive line and a second lower conductive line, and the third conductive line into a third upper conductive line and a third lower conductive line; wherein: the first upper conductive line and the third lower conductive line are electrically connected together; and the second upper conductive line and the second lower conductive line are electrically connected together. |
US09905560B2 |
Multi-voltage complementary metal oxide semiconductor integrated circuits based on always-on N-well architecture
Examples of multi-voltage (MV) complementary metal oxide semiconductor (CMOS) integrated circuits (ICs) based on always-on N-well architecture are described. A MV CMOS IC may include first CMOS cells, second CMOS cells, N-wells and always-on taps. Each first CMOS cell may have a supply terminal configured to receive a local supply voltage, and an N-well (NW) terminal configured to receive a global supply voltage. The second CMOS cells may include always-on CMOS cells. Each second CMOS cell may have a supply terminal configured to receive the global supply voltage, and an NW terminal configured to receive the global supply voltage. The NW terminal of at least one of the second CMOS cells and the NW terminal of at least one of the first CMOS cells may be formed in a first N-well of the one or more N-wells. |
US09905559B2 |
Semiconductor device having fin-type field effect transistor and method of manufacturing the same
A semiconductor device includes a first fin structure disposed on a substrate. The first fin structure extends in a first direction. A first sacrificial layer pattern is disposed on the first fin structure. The first sacrificial layer pattern includes a left portion and a right portion arranged in the first direction. A dielectric layer pattern is disposed on the first fin structure and interposed between the left and right portions of the first sacrificial layer pattern. A first active layer pattern extending in the first direction is disposed on the first sacrificial layer pattern and the dielectric layer pattern. A first gate electrode structure is disposed on a portion of the first active layer pattern. The portion of the first active layer is disposed on the dielectric layer pattern. The first gate electrode structure extends in a second direction crossing the first direction. |
US09905555B2 |
Semiconductor device and semiconductor device manufacturing method
An SJ-MOSFET and IGBT are provided in a single semiconductor chip. Furthermore, a balance is made between a carrier amount of n-type columns and a carrier amount of p-type columns, to encourage formation of a depletion layer in when a reverse voltage is applied in the SJ-MOSFET section. Provided is a includes a semiconductor substrate, a super junction structure formed on a front surface side of the semiconductor substrate, and a field stop layer formed at a position overlapping with the super junction structure on a back surface side of the semiconductor substrate, in a manner to not contact an end of the super junction structure on the back surface side. |
US09905554B2 |
Silicon carbide semiconductor device and method of manufacturing the same
Provided are a silicon carbide semiconductor device that is capable of preventing breakdown voltage degradation in the edge termination structure and a method of manufacturing the same. The p-type regions 31, 32 and the p-type region 33, which serves as an electric field relaxation region and is connected to the first p-type base regions 10, are positioned under the step-like portion 40, and the bottom surfaces of the p-type regions 31, 32, 33 are substantially flatly connected to the bottom surface of the first p-type base regions 10. The first base regions have an impurity concentration of 4×1017 cm−3 or higher. The p-type region 33 is designed to have a lower impurity concentration than the first base regions 10 and higher than the p-type regions 31, 32. In this way, the breakdown voltage degradation in the edge termination structure 102 can be prevented. |
US09905553B1 |
Integrated circuit containing standard logic cells and library-compatible, NCEM-enabled fill cells, including at least via-open-configured, AACNT-short-configured, GATECNT-short-configured, and metal-short-configured, NCEM-enabled fill cells
An IC includes logic cells, selected from a standard cell library, and fill cells, configured for compatibility with the standard logic cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The IC includes such NCEM-enabled fill cells configured to enable detection and/or measurement of a variety of open-circuit and short-circuit failure modes, including at least one via-open-related failure mode, one AACNT-short-related failure mode, one GATECNT-short-related failure mode, and one metal-short-related failure mode. |
US09905551B2 |
Method of manufacturing wafer level packaging including through encapsulation vias
Provided is a method of manufacturing a wafer level package. The method includes forming a repassivation layer that encapsulates a plurality of semiconductor chips isolated from a wafer, forming a through encapsulation via (TEV) in the repassivation layer, forming a redistribution layer electrically connected to the TEV, and forming a bump ball on the redistribution layer. |
US09905542B2 |
LED light bar manufacturing method and LED light bar
A method for fabricating an LED light bar and an LED light bar are provided. The method includes: providing a transparent base, wherein at least one framework region for fixing LED chips is arranged on the transparent base, at least one milling groove parallel to the framework region is arranged at each of two sides of each framework region; arranging one or more LED chips on the at least one framework region; covering an upper surface and a lower surface of the transparent base where the LED chips are arranged with a packaging adhesive mixed with fluorescent powder, and filling up the milling groove with the packaging adhesive; and cutting the transparent base along the milling groove, to obtain an LED light bar surrounded by the adhesive. |
US09905537B2 |
Compact semiconductor package and related methods
A method of forming a semiconductor package includes providing a substrate having one or more conductive elements disposed therein. Each conductive element extends from a first surface of the substrate toward a second surface of the substrate extending beyond the second surface. The second surface comprises one or more substrate regions not occupied by a conductive element. A first die is attached within a substrate region, and the first die is coupled to at least one of the conductive elements. The first die may be coupled to at least one of the conductive elements by a wire bond connection. Alternatively, an RDL is formed over the second surface, and the first die is coupled to at least one conductive element through the RDL. A second die may be attached to an outer surface of the RDL, and the second die is electrically coupled to the first die through the RDL. |
US09905532B2 |
Methods and apparatuses for high temperature bonding and bonded substrates having variable porosity distribution formed therefrom
Methods and systems of bonding substrates include disposing a low melting point material and one or more high melting point materials having a higher melting temperature than a melting temperature of the low melting point material between a first substrate and a second substrate to form a substrate assembly including a contacting surface comprising first and second areas; applying a first force at the first area; and applying heat to form a bond layer between the first and second substrates. A first formed porosity of the bond layer is aligned with the first area of the contacting surface. A second formed porosity of the bond layer is aligned with the second area of the contacting surface to which the first force was not applied, and the first formed porosity is different from the second formed porosity. |
US09905531B2 |
Method for producing composite structure with metal/metal bonding
Method for producing a composite structure comprising the direct bonding of at least one first wafer with a second wafer, and comprising a step of initiating the propagation of a bonding wave, where the bonding interface between the first and second wafers after the propagation of the bonding wave has a bonding energy of less than or equal to 0.7 J/m2. The step of initiating the propagation of the bonding wave is performed under one or more of the following conditions: placement of the wafers in an environment at a pressure of less than 20 mbar and/or application to one of the two wafers of a mechanical pressure of between 0.1 MPa and 33.3 MPa. The method further comprises, after the step of initiating the propagation of a bonding wave, a step of determining the level of stress induced during bonding of the two wafers, the level of stress being determined on the basis of a stress parameter Ct calculated using the formula Ct=Rc/Ep, where: Rc corresponds to the radius of curvature (in km) of the two-wafer assembly and Ep corresponds to the thickness (in μm) of the two-wafer assembly. The method further comprises a step of validating the bonding when the level of stress Ct determined is greater than or equal to 0.07. |
US09905526B2 |
Electronic component package and method of manufacturing the same
An electronic component package includes a redistribution layer, an electronic component disposed on the redistribution layer, and an encapsulant encapsulating the electronic component. The electronic component has a trench formed in one side thereof. |
US09905525B1 |
Semiconductor wafer and method of ball drop on thin wafer with edge support ring
A semiconductor wafer has an edge support ring around a perimeter of the semiconductor wafer and conductive layer formed over a surface of the semiconductor wafer within the edge support ring. A first stencil is disposed over the edge support ring with first openings aligned with the conductive layer. The first stencil includes a horizontal portion over the edge support ring, and a step-down portion extending the first openings to the conductive layer formed over the surface of the semiconductor wafer. The horizontal portion may have a notch with the edge support ring disposed within the notch. A plurality of bumps is dispersed over the first stencil to occupy the first openings over the conductive layer. A second stencil is disposed over the edge support ring with second openings aligned with the conductive layer to deposit a flux material in the second openings over the conductive layer. |
US09905521B2 |
Method for manufacturing semiconductor light-emitting device and semiconductor light-emitting device
Methods for manufacturing semiconductor light-emitting devices and semiconductor light-emitting devices having a high radiating performance and can include a metallic laminate substrate, a semiconductor light-emitting chip and a transparent resin. The metallic laminate substrate can include a cavity so as to be able to accurately mount the light-emitting chip, and also can structures to efficiently radiate heat generated from the light-emitting chip. The transparent resin to encapsulate the semiconductor light-emitting chip in the cavity can include various wavelength converting materials. Additionally, the light-emitting devices can be manufactured in manufacturing processes similar to conventional light-emitting devices. Thus, the disclosed subject matter can provide semiconductor light-emitting devices having a high radiating performance and a high alignment accuracy, which can emit various color lights including a substantially white color tone, and therefore can be used as a light source for lighting units such as a vehicle headlight, general light, a stage lighting, etc. |
US09905517B2 |
Semiconductor device
Signal transmission characteristics of a semiconductor device are improved. A plurality of wirings of a wiring substrate on which a semiconductor chip is mounted include a first wiring and a second wiring that constitute a differential pair for use in transmitting a differential signal. Moreover, the first wiring and the second wiring respectively have first portions that extend in parallel with each other with a first clearance and second portions that are formed on the same wiring layer as the first portions, and extend in parallel with each other with a second clearance and third portions that are installed between the first portions and the second portions and designed to detour in such directions as to allow the mutual clearance to become greater than the first clearance and the second clearance. |
US09905513B1 |
Selective blocking boundary placement for circuit locations requiring electromigration short-length
A method is presented for forming a semiconductor structure. The method includes depositing an insulating layer over a semiconductor substrate, etching the insulating layer to form trenches for receiving copper (Cu), selectively recessing the Cu at one or more of the trenches corresponding to circuit locations requiring electromigration (EM) short-length, and forming self-aligned conducting caps over the one or more trenches where the Cu has been selectively recessed. The conducting caps can be tantalum nitride (TaN) caps. The method further includes forming a via extending into each of the trenches for receiving Cu. Additionally, the via for trenches including recessed Cu extends to the self-aligned conducting cap, whereas the via for trenches including non-recessed Cu extends to a top surface of the Cu. |
US09905507B2 |
Circuit assemblies with multiple interposer substrates, and methods of fabrication
A combined interposer (120) includes multiple constituent interposers (120.i), each with its own substrate (120.iS) and with a circuit layer (e.g. redistribution layer) on top and/or bottom of the substrate. The top circuit layers can be part of a common circuit layer (120R.T) which can interconnect different interposers. Likewise, the bottom circuit layers can be part of a common circuit layer (120R.B). The constituent interposer substrates (120.iS) are initially part of a common wafer, and the common top circuit layer is fabricated before separation of the constituent interposer substrates from the wafer. Use of separated substrates reduces stress compared to use of a single large substrate. Other features are also provided. |
US09905505B2 |
Assembly including plural through wafer vias, method of cooling the assembly and method of fabricating the assembly
An assembly includes a chip including an integrated circuit, a casing including an integrated circuit including plural active elements and including an upper portion formed on a side of the chip, a lower portion formed on another side of the chip, and a cooling inlet and a cooling outlet for transferring a coolant, provided in an upper surface of the casing, and forming outer sidewalls of the upper portion and inner sidewalls of the lower portion, plural through-wafer vias (TWVs) for electrically connecting the integrated circuit of the chip and the integrated circuit of the casing, and a card connected to the casing for electrically connecting the casing to a system board. |
US09905502B2 |
Sintered conductive matrix material on wire bond
A method is disclosed of fabricating a microelectronic package comprising a substrate overlying the front face of a microelectronic element. A plurality of metal bumps project from conductive elements of the substrate towards the microelectronic element, the metal bumps having first ends extending from the conductive elements, second ends remote from the conductive elements, and lateral surfaces extending between the first and second ends. The metal bumps can be wire bonds having first and second ends attached to a same conductive pad of the substrate. A conductive matrix material contacts at least portions of the lateral surfaces of respective ones of the metal bumps and joins the metal bumps with contacts of the microelectronic element. |
US09905497B2 |
Resin sealing type semiconductor device and method of manufacturing the same, and lead frame
The invention is directed to firm bonding between semiconductor dies etc bonded to a lead frame and wire-bonding portions of the lead frame by ultrasonic Al wire bonding, and the prevention of shortcircuit between the semiconductor dies etc due to a remaining portion of the outer frame of the lead frame after the outer frame is cut. By extending the wire-bonding portion etc on the lead frame in a wire-bonding direction and connecting the wire-bonding portion etc to the outer frame of the lead frame through a connection lead etc, the ultrasonic vibration force in the ultrasonic Al wire bonding is prevented from dispersing and the Al wire and the wire-bonding portion etc are firmly bonded. The outer frame is cut after a resin sealing process is completed. Even when a portion of the outer frame remains on the side surface of the resin package, connection between the connection lead etc and other hanging lead etc are prevented by providing a notch etc in the outer frame between the connection lead etc and the hanging lead etc. |
US09905496B2 |
Wiring circuit board and method of manufacturing the same
A flexure has a metal support layer, an electric insulating layer laid on a surface of the metal support layer, a wiring layer having a general part laid on a surface of the electric insulating layer and a terminal to provide a conductive connection to an external slider, and a raising structure in a thickness direction of the wiring layer provided to the terminal independently of the metal support layer so that the terminal protrudes from a surface of the general part or has a surface being flush with the surface of the general part. |
US09905493B2 |
Array substrate and activation method for TFT elements in array substrate
The invention provides an array substrate and activation method for TFT elements in the array substrate. The array substrate comprises a shielding metal layer (10) and a TFT layer (20) disposed on the shielding metal layer (10); by connecting the shielding metal blocks (11) on the shielding metal layer (10) to electricity to heat up the shielding metal blocks (11) for pre-heating the TFT layer (20) to accelerate activating the TFT elements in the TFT layer (20). The activation method, by connecting the shielding metal blocks (11) on the shielding metal layer (10) to electricity to heat up the shielding metal blocks (11) for pre-heating the TFT layer (20) before activating the TFT elements in the TFT layer (20), accelerates activating the TFT elements in the TFT layer (20). The method is applicable to activating the TFT elements in array substrate in low temperature environment. |
US09905492B2 |
System and method for gas-phase passivation of a semiconductor surface
Improved methods and systems for passivating a surface of a high-mobility semiconductor and structures and devices formed using the methods are disclosed. The method includes providing a high-mobility semiconductor surface to a chamber of a reactor and exposing the high-mobility semiconductor surface to a gas-phase sulfur precursor to passivate the high-mobility semiconductor surface. |
US09905491B1 |
Interposer substrate designs for semiconductor packages
Semiconductor packages with multiple substrates can incorporate cavities in a portion of an upper substrate to minimize or reduce void formations during a molding process. The cavities can be formed substantially over the integrated circuit devices and not over the internal interconnects to further facilitate the flow of the molding compound. The combination with extension members or recesses on a top or exterior surface of the upper substrate can further cut down on bleeding or spill over of the molding compound between adjacent packages and improve device reliability and yield. |
US09905489B2 |
Semiconductor device and electrical device
A semiconductor device is provided comprising a semiconductor element, a case portion housing the semiconductor element and having an opening end on at least some of wall portion, a lid portion covering the opening end of the case portion, and a sealing material sealing the semiconductor element inside the case portion, where a projection portion or a dent portion is provided on a surface of the wall portion close to the sealing material between the opening end and the sealing material. The Purpose is to prevent an oil leakage from a semiconductor device. Also, instead of the projection portion or the dent portion, a semiconductor device is provided with a liquid receiving portion that receives a liquid dripping from the opening end on a surface facing away from the sealing material. |
US09905480B1 |
Semiconductor devices and methods for forming the same
A method includes forming a first nitride layer on a semiconductor substrate, forming a first oxide layer on the first nitride layer, forming a first trench through the first oxide layer, the first nitride layer and a portion of the semiconductor substrate, forming a first spacer on a sidewall of the first trench, forming a second trench in the semiconductor substrate by using the first spacer as a mask, forming a third trench, forming a second oxide layer in the second trench, wherein the second oxide layer laterally extends into the semiconductor substrate and under the first spacer, forming a second spacer on a sidewall of the third trench, and removing a portion of the first nitride layer and a portion of the semiconductor substrate by etching and using the second spacer as a mask to form a fin structure on the second oxide layer. |
US09905479B2 |
Semiconductor devices with sidewall spacers of equal thickness
Semiconductor structures with different devices each having spacers of equal thickness and methods of manufacture are disclosed. The method includes forming a first gate stack and a second gate stack. The method further includes forming sidewall spacers of equal thickness for both the first gate stack and the second gate stack by depositing a liner material over spacer material on sidewalls of the first gate stack and the second gate stack and within a space formed between the spacer material and source and drain regions of the first gate stack. |
US09905476B2 |
Alternative threshold voltage scheme via direct metal gate patterning for high performance CMOS FinFETs
Multiple gate stack portions are formed in a gate cavity by direct metal gate patterning to provide FinFETs having different threshold voltages. The different threshold voltages are obtained by selectively incorporating metal layers with different work functions in different gate stack portions. |
US09905475B2 |
Self-aligned hard mask for epitaxy protection
A method includes isolating a first and at least a second region on a semiconductor substrate, and forming one or more devices on each of the first and at least second regions. Forming the one or more devices includes forming at least one gate structures in each of the first and at least second regions on a first surface of the substrate, depositing a spacer over the gate structures in each of the first and the at least second regions and over the first surface of the substrate, etching horizontal portions of the spacer in the first region, growing epitaxial portions in the first region in alignment with said at least one gate structure in the first region, oxidizing exposed surfaces of the epitaxial portions in the first region, and repeating the etching, growing and oxidizing steps for the at least second region. |
US09905461B2 |
High speed, high density, low power die interconnect system
A system for interconnecting at least two die each die having a plurality of conducting layers and dielectric layers disposed upon a substrate which may include active and passive elements. In one embodiment there is at least one interconnect coupling at least one conducting layer on a side of one die to at least one conducting layer on a side of the other die. Another interconnect embodiment is a slug having conducting and dielectric layers disposed between two or more die to interconnect between the die. Other interconnect techniques include direct coupling such as rod, ball, dual balls, bar, cylinder, bump, slug, and carbon nanotube, as well as indirect coupling such as inductive coupling, capacitive coupling, and wireless communications. The die may have features to facilitate placement of the interconnects such as dogleg cuts, grooves, notches, enlarged contact pads, tapered side edges and stepped vias. |
US09905456B1 |
Semiconductor device and manufacturing method thereof
In a method for manufacturing a semiconductor device, a first interlayer dielectric layer is formed over a substrate. First recesses are formed in the first interlayer dielectric layer. First metal wirings are formed in the first recesses. A first etch-resistance layer is formed in a surface of the first interlayer dielectric layer between the first metal wirings but not on upper surfaces of the first metal wirings. A first insulating layer is formed on the first etch-resistance layer and the upper surfaces of the first metal wirings. |
US09905446B2 |
Substrate transferring apparatus
Substrate transferring apparatus includes a first-hand mechanism and second hand mechanism. The first-hand mechanism includes a first lower arm, first upper arm, first-hand having a tip end portion as a first substrate holding portion, and first driven mechanism to rotate the first-hand with rotation of the first upper arm. The first-hand mechanism so the first substrate holding portion movable by rotations of the first lower arm, first upper arm, and first-hand between a contracted and extended positions. The second-hand mechanism includes a second lower arm, second upper arm, second-hand having a tip end portion as a second substrate holding portion, and second driven mechanism to rotate the second-hand with rotation of the second upper arm. The second-hand mechanism so the second substrate holding portion movable by rotations of the second lower arm, second upper arm, and second-hand in sync with the first substrate holding portion between a contracted and extended positions. |
US09905434B2 |
Method for fabricating array substrate, array substrate and display device
The invention relates to a method for fabricating an array substrate, an array substrate and a display device. The method for fabricating an array substrate may comprise: forming a metal thin film layer for a source electrode, a drain electrode and a data line; forming a non-crystalline semiconductor thin film layer on the metal thin film layer; and performing annealing, so as to at least partly convert the non-crystalline semiconductor thin film layer into a metal semiconductor compound. By at least partly converting the non-crystalline semiconductor thin film layer into a metal semiconductor compound, the resulting metal semiconductor compound may prevent oxidative-corrosion of the metal thin film layer, such as a low-resistance metal (e.g., Cu or Ti) layer, in the subsequent procedures, which is favorable for the fabrication of a metal oxide thin film transistor using Cu or Ti. |
US09905432B2 |
Semiconductor device, method for manufacturing the same and power converter
The method for manufacturing comprises an ion implantation process of implanting a p-type impurity into a semiconductor layer mainly made of a group III nitride by ion implantation; a first heating process of heating the semiconductor layer at a first temperature in a first atmospheric gas including ammonia (NH3) after the ion implantation process; and a second heating process of heating the semiconductor layer, after the first heating process, at a second temperature that is lower than the first temperature in a second atmospheric gas including oxygen (O2). |
US09905430B1 |
Method for forming semiconductor structure
A method for forming a semiconductor structure includes following steps. A substrate is provided, and a semiconductor layer is formed on the substrate. Next, a SiN-rich pre-oxide layer is formed on the semiconductor layer. After forming the SiN-rich pre-oxide layer, an anneal treatment is performed to partially transfer the SiN-rich pre-oxide layer to form a SiN layer and a SiO layer. And the SiO layer is formed the on the SiN layer. Subsequently, a planarization process is performed to remove a portion of the SiO layer to expose the SiN layer. |
US09905428B2 |
Split-gate lateral extended drain MOS transistor structure and process
A semiconductor device includes a split-gate lateral extended drain MOS transistor, which includes a first gate and a second gate laterally adjacent to the first gate. The first gate is laterally separated from the second gate by a gap of 10 nanometers to 250 nanometers. The first gate extends at least partially over the body, and the second gate extends at least partially over a drain drift region. The drain drift region abuts the body at a top surface of the substrate. A boundary between the drain drift region and the body at the top surface of the substrate is located under at least one of the first gate, the second gate and the gap between the first gate and the second gate. The second gate may be coupled to a gate bias voltage node or a gate signal node. |
US09905425B2 |
Engineering the optical properties of an integrated computational element by ion implantation
Systems and methods of engineering the optical properties of an optical Integrated Computational Element device using ion implantation during fabrication are provided. A system as disclosed herein includes a chamber, a material source contained within the chamber, an ion source configured to provide a high-energy ion beam, a substrate holder to support a multilayer stack of materials that form the Integrated Computational Element device, a measurement system, and a computational unit. The material source provides a material layer to the multilayer stack, and at least a portion of the ion beam is deposited in the material layer according to an optical value provided by the measurement system. |
US09905422B2 |
Two-dimensional material hard mask, method of manufacturing the same, and method of forming material layer pattern using the hard mask
A 2D material hard mask includes hydrogen, oxygen, and a 2D material layer having a layered crystalline structure. The 2D material layer may be a material layer including one of a carbon structure (for example, a graphene sheet) and a non-carbon structure. |
US09905419B2 |
Nitride semiconductor element and nitride semiconductor package
A nitride semiconductor element capable of accommodating GaN electron transfer layers of a wide range of thickness, so as to allow greater freedom of device design, and a nitride semiconductor element package with excellent voltage tolerance performance and reliability. On a substrate, a buffer layer including an AlN layer, a first AlGaN layer and a second AlGaN layer is formed. On the buffer layer, an element action layer including a GaN electron transfer layer and an AlGaN electron supply layer is formed. Thus, an HEMT element is constituted. |
US09905417B2 |
Composition for forming ferroelectric thin film, and method for manufacturing same
A composition containing a precursor of a ferroelectric thin film, a solvent, and a reaction control substance, can form a ferroelectric thin film by temporary firing and permanent firing of a coating film. The composition contains the reaction control substance in such an amount that a Young's modulus of a film formed in a step of temporary firing at a temperature of 200° C. to 300° C. becomes equal to or less than 42 GPa, and a Young's modulus of a film formed in a step of permanent firing at a temperature of 400° C. to 500° C. becomes equal to or greater than 55 GPa. Thus a thin film having high crystallinity can be formed which substantially does not crack at the time of permanent firing even if the thickness of the coating film formed per single coating operation is increased. |
US09905416B2 |
Si precursors for deposition of SiN at low temperatures
Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). |
US09905414B2 |
Vapor deposition of metal oxides, silicates and phosphates, and silicon dioxide
Metal silicates or phosphates are deposited on a heated substrate by the reaction of vapors of alkoxysilanols or alkylphosphates along with reactive metal amides, alkyls or alkoxides. For example, vapors of tris(tert-butoxy)silanol react with vapors of tetrakis(ethylmethylamido) hafnium to deposit hafnium silicate on surfaces heated to 300° C. The product film has a very uniform stoichiometry throughout the reactor. Similarly, vapors of diisopropylphosphate react with vapors of lithium bis(ethyldimethylsilyl)amide to deposit lithium phosphate films on substrates heated to 250° C. Supplying the vapors in alternating pulses produces these same compositions with a very uniform distribution of thickness and excellent step coverage. |
US09905411B2 |
Method for processing semiconductor wafer, method for manufacturing bonded wafer, and method for manufacturing epitaxial wafer
Method for processing a semiconductor-wafer having a front surface, back surface, and chamfered-portion composed of a chamfered surface on the front surface side, a chamfered surface on the back surface side, and an end face at a peripheral end, including: mirror-polishing of each portion of the chamfered surface on the front surface side, the chamfered surface on the back surface side, the end face, and an outermost peripheral-portion on the front or back surface adjacent to the chamfered surface; wherein the end face mirror-polishing and mirror-polishing of the outermost peripheral-portion on the front or back surface are performed in one step, after step of mirror-polishing the chamfered surface on the front surface side and step of mirror-polishing the chamfered surface on the back surface side; roll-off amount of the outermost peripheral-portion on the front or back surface is adjusted by one step-performed mirror-polishing of the end face and outermost peripheral-portion. |
US09905410B2 |
Time-of-flight mass spectrometry using multi-channel detectors
A time-of-flight mass spectrometer (TOF-MS) utilizes a multi-channel ion detector to detect ions traveling in separate flight paths, spatially dispersed along a drift axis and/or a transverse axis, in a flight tube of a TOF analyzer. The ion beams may be dispersed by drift energy, deflection along the drift and/or transverse axis, ion mass, or a combination of two or more of the foregoing. The dispersion may be carried out before, at, or after an ion accelerator of the TOF analyzer. Ion packets may be accelerated into the flight tube at a multi-pulse firing rate. Tandem MS may be implemented on parallel ion beams simultaneously. |
US09905406B2 |
Charge-stripping of multiply-charged ions
A method of mass spectrometry or ion mobility spectrometry is disclosed wherein a sample is ionized by an electrified sprayer so as to produce multiply charged analyte ions of a first polarity in gas-phase. A reaction region is provided downstream of the electrified sprayer, wherein the reaction region is maintained substantially at atmospheric pressure and is maintained substantially free of electric-fields. A gas flow is provided from said electrified sprayer to said reaction region such that the gas flow carries the analyte ions from the electrified sprayer into the reaction region. Free electrons or reagent ions of a second polarity are generated in the reaction region, wherein the second polarity is opposite to said first polarity. The free electrons or reagent ions are then reacted with the analyte ions in the reaction region so as to reduce the charge state of the multiply charged analyte ions and thereby produce charge-reduced analyte ions. |
US09905405B1 |
Method of generating an inclusion list for targeted mass spectrometric analysis
A method of generating an inclusion list for targeted mass spectrometric analysis is disclosed. Experimentally-acquired data for a plurality of isobarically-labeled peptides of interest is received at a computer. The data includes, for each of the isobarically-labeled peptides, a mass-to-charge (m/z) ratio, a charge state, and a chromatographic retention time. Predicted properties for a corresponding unlabeled peptide are determined via the computer. The predicted properties include a predicted m/z, a predicted charge state, and a predicted chromatographic retention time. The predicted properties for each corresponding unlabeled peptide are stored to the inclusion list. The predicted chromatographic retention time for the corresponding unlabeled peptide is determined based on hydrophobicity indices of the isobarically-labeled peptide and the corresponding unlabeled peptide, and chromatographic conditions for the targeted mass spectrometric analysis. |
US09905404B2 |
Sputtering apparatus
A sputtering apparatus includes a vacuum chamber, a substrate holder, a target support member, a cathode magnet arranged on a side of the target support member, which is opposite to a side of a substrate held by the substrate holder, a magnet moving unit configured to adjust a distance between the cathode magnet and the target support member, a target moving unit configured to adjust a distance between the target support member and the substrate, and a control unit configured to control the target moving unit and the magnet moving unit. |
US09905398B1 |
System and tool for manipulating insert
An apparatus may include a shaft and a base, where the base is affixed to a first end portion of the shaft, the base comprising a first end and a second end. The apparatus may further include a first end effector, where the first end effector is rotatably coupled to the first end of the base, wherein the first end effector is rotatable from a first closed position to a first open position. The apparatus may include a second end effector, where the second end effector is rotatably coupled to the second end of the base, wherein the second end effector is rotatable from a second closed position to a second open position. The apparatus may also include a spring, including a first spring end coupled to the first end effector, and a second spring end, coupled to the second end effector. |
US09905394B1 |
Method for analyzing an object and a charged particle beam device for carrying out this method
The system described herein analyzes an object using a charged particle beam device, such as an electron beam device and/or an ion beam device. The charged particle beam device is used to generate high resolution 3D data sets by sequentially removing material from the object, exposing surfaces of the object and generating images of the surfaces. When removing material from the object, an opening having sides is generated. Lamellas are generated using the sides and material characteristics of those lamellas are identified. Moreover, filtered data is generated for each pixel of images of the sides of the opening. The method uses the information with respect to the identified material characteristics, the images of the sides and the filtered data of those images to obtain information on the material characteristics for each pixel of each surface generated when sequentially removing material from the object. |
US09905386B2 |
Relay
Some embodiments of the present disclosure relate to a relay capable of preventing a chattering phenomenon, and capable of solving an unbalanced contact state occurring when contacts come in contact with each other.The relay may include: a stationary contact having a first stationary contact and a second stationary contact; a movable contact moveable to a first position to contact the first stationary contact, and a second position to be separated from the first stationary contact; a conductive connector configured to always electrically connect the movable contact with the second stationary contact; and a driving mechanism configured to provide a driving force to the movable contact such that the movable contact is moveable to the first position or the second position. |
US09905381B1 |
Luminous keyboard
A luminous keyboard includes plural keys, a membrane switch circuit board and a light-emitting element. The membrane switch circuit board includes an upper wiring plate, a lower wiring plate, a conductor line pattern, a separation layer and an etched line pattern. The lower wiring plate includes a wiring plate opening. The conductor line pattern is arranged between the upper wiring plate and the lower wiring plate. The etched line pattern is arranged between the separation layer and the lower wiring plate. The etched line pattern is exposed through the wiring plate opening. The light-emitting element is electrically connected with the etched line pattern through the wiring plate opening in order to acquire electric power. Consequently, it is not necessary to install the illumination circuit board to provide the electric power to the light-emitting element. |
US09905371B2 |
All-solid-state-supercapacitor and a process for the fabrication thereof
The present invention discloses. all-solid-state supercapacitor (ASSP) with enhanced electrode-electrolyte interface which gives highest very high specific capacitance, areal capacitance and shows very low internal resistance (ESR). The invention particularly discloses the fabrication of all-solid-state supercapacitor by intercalation of solid state polymer electrolyte inside the conducting porous substrate coated with a charge storage electrode material to achieve the desired effect. |
US09905370B2 |
Energy storage electrodes and devices
An energy storage electrode and a device can be fabricated from Ultrafine Metal Mesh (UMM). Deposited onto the said UMM surfaces are electrode materials including electrochemically active materials and electrolytes, producing UMM-based electrodes. Lamination of alternately stacked positive and negative UMM-based electrodes results in high performance energy storage devices including supercapacitors, Li-ion batteries, and Li metal batteries. The energy storage device shows improved energy and power characteristics resulting from the 3-D architectures of the UMM-based energy storage devices. |
US09905368B2 |
Multiple leadwires using carrier wire for low ESR electrolytic capacitors
A solid electrolytic capacitor including a capacitor element, a first anode lead, a second anode lead, and a carrier wire. The capacitor element includes a sintered, porous anode body; a dielectric layer overlying the sintered, porous anode body; and a cathode overlying the dielectric layer that includes a solid electrolyte. The first and second anode leads each have an embedded portion positioned within the anode body and an external portion extending longitudinally from a surface of the anode body in an x-direction, while the carrier wire is positioned external to the anode body. Further, a first portion of the carrier wire is connected to the external portions of the first and second anode leads, while a second portion of the carrier wire extends longitudinally away from the surface of the anode body in the x-direction. Such an arrangement reduces the ESR and leakage current of the capacitor. |
US09905367B2 |
Metallic glass-alloys for capacitor anodes
A metallic glass formed from a Be-containing alloy near eutectic composition has the chemical formula: (M1-aXa)bBecYdZe wherein M is Ti, Zr, Ta, or Hf; X is Nb, Ta, or Hf; X is not same element as M; Y is at least one of Ti, Zr, Ta, Nb, or Hf; and Y is not the same element as M and/or X. |
US09905365B2 |
Composite electronic device
Composite electronic including coil, capacitor and intermediate parts, wherein coil part includes coil-conductor and magnetic-layer, capacitor part includes internal electrodes and dielectric-layer, which contains SrO—TiO2 or ZnO—TiO2 based oxide, intermediate part between coil and capacitor parts, intermediate part includes intermediate material layer, which contains ZnO, TiO2 and boron, ZnO contained in intermediate material layer 50-85 parts by mole and TiO2 contained the intermediate material layer 15-50 parts by mole when total content of ZnO and TiO2 in intermediate material layer is 100 parts by mole, content boron in intermediate material layer is 0.1-5.0 parts by weight of B2O3 when total of ZnO and TiO2 in intermediate material layer set to 100 parts by weight, part of ZnO and TiO2 intermediate material layer constitute ZnO—TiO2 compound, which in intermediate material layer is 50 wt % or more when total weight of ZnO and TiO2 in intermediate material layer is set to 100 wt %. |
US09905363B2 |
Capacitor arrangement
A capacitor arrangement includes at least one ceramic multilayer capacitor with a main body having ceramic layers and first and second electrode layers arranged therebetween. The capacitor also has a first external contact and a second external contact on mutually opposite side surfaces. The first external contact is electrically conductively connected to the first electrode layers and the second external contact is electrically conductively connected to the second electrode layers. A contact arrangement includes two metallic contact plates, between which the at least one ceramic multilayer capacitor is arranged. The first and second external contacts are electrically conductively connected in each case to one of the metallic contact plates. |
US09905356B2 |
Magnetic component for a switching power supply and a method of manufacturing a magnetic component
The present application relates to magnetic components employed in switching power supplies. The application provides a gapped magnetic core (20) construction in which the gap is distributed by placing gaps between the legs (23) of the core and the top and bottom sections (21, 22). The application also provides a bobbin construction having a reduced footprint for inductor and transformers. |
US09905355B2 |
Coil component
A coil component includes a first core, a second core, a lead wire, an outside mark, and an inside mark. The first core includes a winding portion and a pair of core ends. The second core connects a pair of the core ends and includes an inside surface and an outside surface. The lead wire is wound around the winding portion. The outside mark is formed on the outside surface of the second core and designed to change its arrangement at the time of rotating the second core by 90 degrees in a rotational direction whose central axis is along a normal direction of the outside surface. The inside mark with undulation is formed on the inside surface of the second core and designed to change its arrangement at the time of rotating the second core by 90 degrees in the rotational direction. |
US09905353B2 |
Construction of double gap inductor
A low loss power inductor core and method for making same. The magnetic core includes an outer portion formed as a closed loop from multiple magnetic core pieces, and inner portion disposed within the closed loop. Non-magnetic spacers at opposing ends of the inner core portion position and secure the inner core portion between mutually opposed inner sides of the closed loop. |
US09905352B2 |
Thermal management system for SMC inductors
The invention relates to an inductor (1) having a coil (2) and a core (3), wherein the core (3) is made of a Soft Magnetic Composite (SMC), the coil (2) is composed of a annularly wound electrical conductor, the coil (2) is substantially integrated into said core (3) so that the core (3) material acts as a thermal conductor having thermal conductivity above 1.5 W/m*K more preferably 2 W/m*K most preferably 3 W/m*K, conducting heat from said coil (2), wherein the inductor (1) is in thermal connection with at least one thermal connecting fixture (10-25), wherein said at least one thermal connecting fixture (10-25) is adapted to be connected to a first external heat receiver (4) so as to conduct heat from the inductor to said first external heat receiver (4). |
US09905351B2 |
Power supply apparatus
A power supply apparatus capable of appropriately supplying electrical power to a power transmission coil even if a foreign object is heated during power supply. The power supply apparatus (100) is provided with a power supply coil (103a) opposing a power-receiving unit (153) provided to a vehicle and supplying power to the power-receiving unit (153), and a casing (103b) accommodating the power supply coil (103a). In the casing (103b), a first cover (202) is formed on a surface of the casing (103b) opposing the power-receiving unit (153), and a second cover (203) opposing the first cover (202) is arranged between the first cover (202) and the power supply coil (103a). |
US09905346B2 |
Magnet chuck
A magnet chuck includes, for example, four permanent magnets of a first permanent magnet through a fourth permanent magnet, serving as an attracting and retaining member for attracting and retaining a workpiece. In the first permanent magnet and the third permanent magnet, the magnetic polarity of a workpiece magnetic attracting surface facing the workpiece is of an N-polarity. On the other hand, in the second permanent magnet and the fourth permanent magnet, the magnetic polarity of a workpiece magnetic attracting surface is of an S-polarity. More specifically, in this case, combinations of the N-pole and the S-pole on the workpiece magnet attracting surface are formed in two pairs, and the N-pole and the S-pole, which are of different polarities, are adjacent to one another. |
US09905345B2 |
Magnet electroplating
Coatings for magnetic materials, such as rare earth magnets, are described. The coatings are designed to reduce or prevent the release of one or both of nickel and cobalt from the coatings or from the underlying magnetic material. The coatings are designed to resist corrosion and release of nickel and cobalt when exposed to moist conditions. The coatings are also designed to be robust enough to withstand damage due to scratch forces. In some embodiments, the coatings include multiple layers of one or of metal and non-metal materials. The coated magnets are well suited for use in the manufacture of wearable consumer products. |
US09905341B2 |
Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
Provided are a metal nitride material for a thermistor, which exhibits high reliability and high heat resistance and can be directly deposited on a film or the like without firing, a method for producing the metal nitride material for a thermistor, and a film type thermistor sensor. The metal nitride material for a thermistor consists of a metal nitride represented by the general formula: TixAlyNz (where 0.70≦y/(x+y)≦0.95, 0.4≦z≦0.5, and x+y+z=1), and the crystal structure thereof is a hexagonal wurtzite-type single phase. |
US09905339B2 |
Conductive film forming method and sintering promoter
In a conductive film forming method using photo sintering, a conductive film having low electric resistance is easily formed. Disclosed is a conductive film forming method in which a conductive film is formed using a photo sintering, which includes the steps of: forming a liquid film made of a copper particulate dispersion on a substrate, drying the liquid film to form a copper particulate layer, subjecting the copper particulate layer to photo sintering to form a conductive film, attaching a sintering promoter to the conductive film, and further subjecting the conductive film having the sintering promoter attached to photo sintering. The sintering promoter is a compound which removes copper oxide from metallic copper. Thereby, the sintering promoter removes a surface oxide film of copper particulates in the conductive film. |
US09905336B2 |
Coated steel wire as armouring wire for power cable
A steel wire as an armoring wire for a power cable for transmitting electrical power, where the steel wire has a steel core and a non-magnetic coating. The coating has a thickness in the range of 0.2 mm to 3.0 mm and selected from metals or alloys having a melting point below 700° C. |
US09905333B2 |
Transparent conductive film and electronic device including the same
A transparent conductive film includes a metal oxide, a metal, and an epoxy, wherein a refractive index of the metal may be lower than that of the epoxy. |
US09905316B2 |
Efficient sense amplifier shifting for memory redundancy
A memory includes a plurality of columns and a redundant column. The memory includes a plurality of multiplexers corresponding to the plurality of columns. Depending upon the location of a defect, the multiplexers are configured to select for their corresponding column or an immediately-subsequent column to their corresponding column. |
US09905314B2 |
Storage module and method for datapath bypass
A storage module and method for datapath bypass are disclosed. In one embodiment, a storage module begins to perform a read operation that reads a set of code words from the memory and attempts to perform an error detection and correction operation on one of the read code words. In response to determining that the code word has an uncorrectable error, the storage module reads the other code words in the set but bypasses the error detection and correction operation on those other code words. The code word that had the uncorrectable error and the other code words are re-read, wherein at least the code word with the uncorrectable error is re-read with a different read condition. The storage module then attempts to perform the error detection and correction operation on the re-read code words. Other embodiments are provided. |
US09905300B2 |
Memory device with variable trim parameters
A memory device comprising a memory array comprising a plurality of memory cells, two or more fuses coupled to the memory array, wherein each of the two or more fuses contains trim data for the memory array and a mode register for selecting one of the two or more fuses to be enabled. |
US09905299B2 |
Nonvolatile memory device and operating method of nonvolatile memory device
A nonvolatile memory device includes a memory cell array including a plurality of memory cells, a row decoder circuit connected to the memory cell array through a plurality of word lines; and a page buffer circuit connected to the memory cell array through bit lines. The row decoder circuit applies read voltages to a selected word line during a read operation. During a read operation performed with respect to each of N logical pages (N being a positive integer) of memory cells connected to the selected word line, the row decoder circuit applies a read voltage from among adjacent N read voltages to the selected word line without applying read voltages other than the adjacent N read voltages to the selected word line. The adjacent N read voltages include a second highest read voltage among the read voltages. |
US09905298B2 |
Nonvolatile memory device and methods of operating the same including floating a common source line based on at least one of a program command and an access address
A nonvolatile memory device includes a common source line connected to a plurality of cell strings. The cell strings each include a first selection transistor coupled to a string selection line, a second selection transistor coupled to a ground selection line, and a plurality of memory cells coupled to a plurality word-lines. The second selection transistors are commonly coupled to the common source line. A method of operating the nonvolatile memory device includes receiving a program command and an access address, and performing a program operation on a selected page according to the access address while floating the common source line. The common source line is floated based on at least one of the program command and the access address. |
US09905296B2 |
Apparatuses and methods including memory access in cross point memory
Some embodiments include apparatuses and methods having a memory cell, first and second conductive lines configured to access the memory cell, and a switch configured to apply a signal to one of the first and second conductive lines. In at least one of such embodiments, the switch can include a phase change material. Other embodiments including additional apparatuses and methods are described. |
US09905294B1 |
Writing logically offset pages of data to N-level memory cells coupled to a common word line
Method and apparatus for managing data in a data storage device. In some embodiments, a non-volatile cache memory stores a sequence of pages from a host device. A non-volatile main memory has a plurality of n-level cells arranged on m separate integrated circuit dies each simultaneously accessible during programming and read operations using an associated transfer circuit, where m and n are plural numbers. A control circuit writes first and second pages from the sequence of pages to a selected set of the n-level cells coupled to a common word line on a selected integrated circuit die. The second page is separated from the first page in the sequence of pages by a logical offset comprising a plurality of intervening pages in the sequence of pages. The logical offset is selected responsive to the m number of integrated circuit dies and a delay time associated with the transfer circuits. |
US09905286B2 |
Memory controller for strobe-based memory systems
An integrated circuit (IC) memory controller is disclosed. The memory controller includes a receiver to receive a strobe signal and provide an internal strobe signal. An adjustable delay circuit delays an enable signal to generate a delayed enable signal. A gate circuit generates a gated strobe signal using the delayed enable signal that masks transitions of the internal strobe signal that occur prior to a valid region of the internal strobe signal. A sample circuit samples data using the gated strobe signal. |
US09905285B2 |
Dynamic random access memory device and operating method with improved reliability and reduced cost
A dynamic random access memory (DRAM) device includes a memory cell array including a plurality of memory cells, a refresh controller configured to perform a plurality of refresh operations on the plurality of memory cells in response to a plurality of refresh commands from an external device, and a refresh counter configured to count a number of the refresh commands for a fixed period of time and compare the counted number with a threshold. The refresh counter is configured to generate a power failure signal to cause the DRAM device to enter a power failure mode in response to the comparison of the counted number with the threshold. The refresh controller is configured to perform a refresh operation on the plurality of memory cells without control of the external device in the power failure mode. |
US09905284B2 |
Data reading procedure based on voltage values of power supplied to memory cells
A storage device includes a memory cell array, a voltage detector disposed to detect a voltage of power supplied to the memory cell array, and a controller. The controller is configured to carry out reading of data from a target memory cell and then rewriting of the data in the target memory cell, if the detected voltage is above a threshold when a prompt of a read operation with respect to the target memory cell occurs, and prohibit the reading operation from being started, if the detected voltage is below the threshold when the prompt occurs. |
US09905280B2 |
Methods and apparatuses for modulating threshold voltages of memory cells
Methods and apparatuses for increasing the voltage budget window of a memory array are disclosed. One or more pre-bias voltages may be applied across a selected cell by providing voltages to memory access lines coupled to the selected cell. The threshold voltage of the selected cell may decrease responsive to the pre-bias voltage. Conversely, threshold voltage of deselected cells coupled to only one of the memory access lines coupled to the selected cell may increase responsive to the pre-bias voltage. The decrease of the threshold voltage of the selected cell and the increase of the threshold voltage of the deselected cells may increase the voltage window of the memory array. |
US09905275B2 |
Providing power availability information to memory
The present disclosure includes apparatuses and methods for providing power availability information to memory. A number of embodiments include a memory and a controller. The controller is configured to provide power and power availability information to the memory, and the memory is configured to determine whether to adjust its operation based, at least in part, on the power availability information. |
US09905273B2 |
Methods and devices for detecting shock events
An apparatus includes an actuator assembly, a dampening assembly coupled to the actuator assembly, and a vibration sensor assembly coupled to the dampening assembly and coupled to the actuator assembly by way of the dampening assembly. A method includes attaching a dampening assembly to an actuator assembly and attaching a vibration sensor assembly to the dampening assembly. The dampening assembly is positioned between the vibration sensor assembly and the actuator assembly. |
US09905265B2 |
Destructive system having a functional layer and an adjacent reactive layer and an associated method
The invention relates to a destruction system for destroying a functional layer, which may receive data or perform other functions, such as optical functions, for example, and a related method. The reactants may be interspersed within the functional layer or may be provided in a separate layer adjacent to the functional layer. The reactants are structured to be ignited to destroy the functionality of the functional layer and the data. Ignition may be obtained through a flame or by suitable electrical current in certain embodiments of the invention. |
US09905264B2 |
Servo control system having function of switching learning memory
A servo control system according to the present invention includes a servo control device for driving a driven body that operates periodically using a servomotor; and a learning controller for generating correction data based on a location deviation with respect to a uniform command pattern, and storing the correction data in delay memory and correcting the location deviation. The delay memory includes first memory having a short access delay time and second memory having a long access delay time. The servo control device includes a switching unit for assigning one of the first memory and the second memory to the learning controller, depending on a learning period according to the command pattern. |
US09905262B2 |
Method for transmitting and/or receiving audio signals
A method for transmitting and/or receiving a potential aggressor audio signal includes a transmission and/or a reception of successive groups of data timed by a first clock signal within respective successive frames synchronized by a second clock signal. In the presence of a risk of interference of the potential aggressor audio signal with a different, potential victim, signal, during the transmission or reception of the potential aggressor audio signal, the frequency of the first clock signal is modified while keeping the frequency of the second clock signal unchanged. |
US09905261B2 |
Media mobility unit (MMU) and methods of use thereof
In one embodiment, a data storage system includes a source media library configured to send a message to a destination media library when a media cartridge from the source media library is sent to the destination media library using a media mobility unit (MMU), and/or a destination media library configured to receive a message from a source media library when a media cartridge from the source media library is sent to the destination media library using a MMU. In another embodiment, a method for transporting a media cartridge includes receiving one or more media cartridges from a source media library, storing the media cartridge(s) in a holding portion of a media mobility unit, sensing at least an approximate location of the media mobility unit, transporting the media cartridge(s) to a destination library; and transferring the media cartridge(s) from the MMU to the destination media library. |
US09905257B2 |
Hard disk drive, manufacturing method of the same, and servo data writing method
A method for writing servo data includes writing servo data as a head moves outward on a disk one step at a time, so as to overwrite part of servo data that have been written in a previous step, writing servo data as the head moves inward on the disk one step at a time, so as to overwrite part of servo data that have been written in a previous step, and writing one of two-phase burst data, or address data and the other of said two-phase burst data, at the radial position, so as to overwrite at least part of servo data written in each last step of the writings as the head moves outward and inward. The same address data are written in two consecutive steps as the head moves outward and as the head moves inward. |
US09905256B1 |
Magnetic disc apparatus
According to one embodiment, servo patterns different in servo pattern frequency are recorded in zones divided in a radial direction on a magnetic disc, and the servo patterns in the adjacent zones overlap each other in a predetermined area from a zone servo boundary between the zones, and a determination boundary where it is determined to execute a crossing process is set within the overlapping area of the servo patterns upstream from the zone servo boundary, based on position information on a seek destination and the present position of the magnetic head. |
US09905250B2 |
Voice detection method
A voice detection method which makes it possible to detect the presence of voice signals in an noisy acoustic signal x(t) from a microphone, including the following consecutive steps: calculating a detection function FD(τ) based on calculating a difference function D(τ) varying in accordance with the shift τ on an integration window with length W starting at the time t0, with: a step of adapting the threshold in said current interval, in accordance with values calculated from the acoustic signal x(t) established in said current interval; searching for the minimum of the detection function FD(τ) and comparing the minimum with a threshold, for (τ) varying in a predetermined time interval referred to as current interval so as to detect the possible presence of a fundamental frequency F0 that is characteristic of a voice signal in said current interval. |
US09905249B1 |
Acoustics based anomaly detection in machine rooms
Monitoring a plurality of machines located in an operating environment. First and second acoustic signal readings and their respective detecting locations are received from a sensing device. First and second acoustic signal spatialization map containing characteristic data signatures for the machines are generated based on the first and second acoustic signal readings. One or more differences are determined that exceed a predetermined threshold value, between corresponding characteristic data signatures in each of the first and second acoustic signal spatialization maps. At least one of the machines that are associated with the determined differences is identified. A corrective action to perform on the machine is identified, based on the determined one or more differences. Commands are transmitted to a corrective action module in the operating environment to cause the corrective action module to perform the corrective action. |
US09905244B2 |
Personalized, real-time audio processing
An apparatus and method for real-time audio processing employs a gaze detection sensor to detect a direction of a user's gaze and output a gaze signal corresponding to the detected direction of the user's gaze. A digital signal processing unit responds to a plurality of signals corresponding to a plurality of sounds received at the apparatus, and the determined direction of gaze to identify a signal of interest from the plurality of signals using the gaze signal. The signal of interest is processed for output to the user. In embodiments, a microphone array provides the plurality of signals. An imaging sensor may work with either the microphone array or the gaze detection sensor to identify the signal of interest. |
US09905242B2 |
Signal analysis device, signal control device, its system, method, and program
A signal analysis device includes: a signal reception unit which receives an input signal containing a plurality of constituent elements; and a signal analysis unit which generates analysis information indicating the relationship between the constituent elements from the input signal. |
US09905241B2 |
Method and apparatus for voice communication using wireless earbuds
One example discloses an apparatus for voice communication, including: a first wireless device including a first pressure sensor having a first acoustical profile and configured to capture a first set of acoustic energy within a time window; wherein the first wireless device includes a near-field magnetic induction (NFMI) signal input; wherein the first wireless device includes a processing element configured to: receive, through the NFMI signal input, a second set of acoustic energy captured by a second pressure sensor, having a second acoustical profile, within a second wireless device and within the time window; apply a signal enhancement technique to the first and second sets of acoustic energy based on the first and second acoustical profiles; and output an enhanced voice signal based on applying the signal enhancement. |
US09905239B2 |
Methods of decoding speech from the brain and systems for practicing the same
Provided are methods of decoding speech from the brain of a subject. The methods include detecting speech production signals from electrodes operably coupled to the speech motor cortex of a subject while the subject produces or imagines producing a speech sound. The methods further include deriving a speech production signal pattern from the detected speech production signals, and correlating the speech production signal pattern with a reference speech production signal pattern to decode speech from the brain of the subject. Speech communication systems and devices for practicing the subject methods are also provided. |
US09905235B2 |
Device and method for improved magnitude response and temporal alignment in a phase vocoder based bandwidth extension method for audio signals
An apparatus for generating a bandwidth extended audio signal from an input signal, includes a patch generator for generating one or more patch signals from the input signal, wherein the patch generator is configured for performing a time stretching of subband signals from an analysis filterbank, and wherein the patch generator further includes a phase adjuster for adjusting phases of the subband signals using a filterbank-channel dependent phase correction. |
US09905233B1 |
Methods and apparatus for facilitating ambient content recognition using digital watermarks, and related arrangements
The present disclosure relates generally to signal processing techniques for content signals such as audio, images and video signals. More particularly, the present disclosure relates to processing content signals to facilitate recognition of ambient content signals using digital watermarks and/or digital fingerprints. |
US09905229B2 |
Methods and apparatus for formatting text for clinical fact extraction
An original text that is a representation of a narration of a patient encounter provided by a clinician may be received and re-formatted to produce a formatted text. One or more clinical facts may be extracted from the formatted text. A first fact of the clinical facts may be extracted from a first portion of the formatted text, and the first portion of the formatted text may be a formatted version of a first portion of the original text. A linkage may be maintained between the first fact and the first portion of the original text. |
US09905224B2 |
System and method for automatic language model generation
A computer-implemented method of generating a language model. An embodiment of a system and method may include selecting a set of words from a transcription of an audio input, the transcription produced by a current language model. The set of words may be used to obtain a set of content objects. The set of content objects may be used to generate a new language model. The current language model may be replaced by the new language model. |
US09905222B2 |
Multitask learning for spoken language understanding
Systems for improving or generating a spoken language understanding system using a multitask learning method for intent or call-type classification. The multitask learning method aims at training tasks in parallel while using a shared representation. A computing device automatically re-uses the existing labeled data from various applications, which are similar but may have different call-types, intents or intent distributions to improve the performance. An automated intent mapping algorithm operates across applications. In one aspect, active learning is employed to selectively sample the data to be re-used. |
US09905219B2 |
Speech synthesis apparatus, method, and computer-readable medium that generates synthesized speech having prosodic feature
According to one embodiment, a speech synthesis apparatus is provided with generation, normalization, interpolation and synthesis units. The generation unit generates a first parameter using a prosodic control dictionary of a target speaker and one or more second parameters using a prosodic control dictionary of one or more standard speakers based on language information for an input text. The normalization unit normalizes the one or more second parameters based a normalization parameter. The interpolation unit interpolates the first parameter and the one or more normalized second parameters based on weight information to generate a third parameter and the synthesis unit generates synthesized speech using the third parameter. |
US09905215B2 |
Noise control method and device
A noise control method and device are provided that relate to the field of noise control. A noise control method includes: acquiring noise information of an ambient environment; and judging whether the noise information satisfies a predetermined condition, and if so, sending a noise control message to another device, the noise control message being used to notify the other device to adjust a volume. Another noise control method includes: receiving, by a device, a noise control message from an external device; and adjusting a volume based on a volume adjustment policy according to the noise control message and a current volume of the device. The noise control method and device in the embodiments of the present application may easily and quickly realize control over ambient noise, thereby improving user experience. |
US09905209B2 |
Electronic keyboard musical instrument
An electronic keyboard musical instrument with a plurality of keys is provided. The electronic keyboard musical instrument comprises a detection sensor configured to detect a gentle key press to an adjacent position that is shallower than and adjacent to a resonant performance position; a computer configured to, when the detection sensor detects a gentle key press to the adjacent position of at least one first key, execute a resonance permission process to give a permission to output a resonant tone of the at least one first key; and a tone emission device configured to, when at least one second key different from the at least one first key and having a resonant relationship with the at least one first key is regularly pressed, emit a regular tone of the at least one second key and the resonant tone of the at least one first key. |
US09905205B2 |
Support assembly and keyboard apparatus
A support assembly according to an embodiment of the present invention includes a support rotatably disposed with respect to a frame, a jack rotatably connected with respect to the support on a side opposite to a rotation center of the support, and a support heel disposed on a lower surface side of the support to make contact with a member connected to a key, wherein the support is configured of a first main body portion, a bent portion, a second main body portion, and a jack support portion from the rotation center side of the support toward a rotation center side of the jack, and the second main body portion is disposed on a side closer to the key than the first main body portion by the bent portion which couples the first main body portion and the second main body portion. |
US09905200B2 |
Computerized system and method for automatically creating and applying a filter to alter the display of rendered media
Disclosed are systems and methods for improving interactions with and between computers in content searching, generating, hosting and/or providing systems supported by or configured with personal computing devices, servers and/or platforms. The systems interact to identify and retrieve data within or across platforms, which can be used to improve the quality of data used in processing interactions between or among processors in such systems. The disclosed systems and methods provide systems and methods for automatically filtering a compressed media file for perceptual display of the media content in a modified, higher-resolution format. The disclosed systems and methods apply novel visual filtering techniques to a compressed media file that enable the display of the rendered media content to appear to be displayed as a modified, higher-resolution version of itself without actually modifying the compressed media file during rendering. |
US09905195B2 |
Image processing method
The image processing method includes following steps. Determine an image display space of an CIELCH color space corresponding to an original color space. Convert a plurality of first pixel data of the original color space to a plurality of second pixel data of the CIELCH color space. Perform an image adjustment process to the second pixel data of the CIELCH color space to obtain a plurality of third pixel data of the CIELCH color space, wherein the third pixel data is restricted within the image display space. Convert the third pixel data of the CIELCH color space to a plurality of fourth pixel data of the original color space to set an image displayed by a display apparatus. |
US09905186B2 |
Liquid crystal panel and driving method thereof and liquid crystal display
The present invention discloses a liquid crystal panel. The panel includes a display area that includes an array of pixel units formed thereon, a source controller, a gamma voltage control section, a gate controller, a chamfer voltage control section, and an image inspection section. The image inspection section classifies images into n classes according to ranking of grey level. The chamfer voltage control section is operated in response to the class of an image to control one of the n chamfer voltage circuits to supply the chamfer voltage to the gate controller and the gamma voltage control section is operated in responses to the class of the image to control one of the n gamma voltage circuits to supply the gamma voltage to the source controller, where n is an integer greater than 1. The present invention also discloses a driving method for the liquid crystal panel and a liquid crystal display including the liquid crystal panel. The liquid crystal panel provided by the present invention allows for reduction of a feed-through voltage ΔV and at the same time reducing the difference of ΔV between high and low grey levels so as to enhance the displaying quality of the liquid crystal panel. |
US09905185B2 |
Switched column driver of display device
A column driver of a display device provides a high slew rate with lowered power requirements by using external switches connected to upper and bottom output buffers. The upper output buffer is driven between a first voltage rail and a second voltage rail, and outputs a first output signal in response to a first input signal and a second input signal. The bottom output buffer is driven between the second voltage rail and a third voltage rail, and outputs a second output signal in response to a third input signal and a fourth input signal. A first switch group selectively provides input for the upper output buffer and the bottom output buffer. A second switch group feeds back the first and the second output signals to the first or the second input terminal of each of the upper output buffer and the bottom output buffer. |
US09905182B2 |
GOA driving circuits, TFT display panels and display devices
A GOA driving circuit, a TFT display panel and a display device are disclosed. The GOA driving circuit includes: an input module configured for outputting first control signals in accordance with the received display scanning signals and the touch scanning signals; an output module configured for outputting the first output control signals in accordance with the first control signals and the first clock signals; a pull-down module configured for outputting pull-down signals in accordance with the first control signals, the second control signals and the low level signals; and a pull-down maintaining module configure for outputting the second output control signals in accordance with the pull-down signals, the high level signals, and the first clock signals. The DC source is adopted to charge/discharge Qn to keep Qn at a reasonable level, and the transfer capability is enhanced. In addition, the forward scanning and the backward scanning may be implemented. |
US09905181B2 |
Array substrate and scan driving circuit thereon
The present disclosure discloses a scan driving circuit on an array substrate which includes a multi-stage cascade circuit, each stage of the cascade circuit inputs a clock signal corresponding to a current stage, and outputs an current stage scanning signal and a current stage cascade signal, different stages of the cascade circuit are connected with each other via a cascade signal; a plurality of cancellation circuits, each cancellation circuit is corresponding to one stage of the cascade circuit, the cancellation circuit corresponding to the current stage cascade circuit inputs a clock signal corresponding to an adjacent stage cascade circuit, and outputs a cancellation signal to offset a part of the current stage scanning signal outputted from the current stage cascade circuit, so that the scanning signals outputted from two adjacent stages of the cascade circuit are not overlapped. An array substrate is also disclosed in the present disclosure. |
US09905179B2 |
Shift register, driving method, gate driving circuit and display device
A shift register, a driving method, a gate driving circuit and a display device. The shift register comprises an input terminal (STV_IN), a reset terminal (STV_RES), a trigger terminal (CLK_IN), an output terminal (STV_OUT), an input module connected to the input terminal (STV_IN) and the reset terminal (STV_RES) and configured to deliver a signal received from the input terminal (STV_IN) or a signal received from the reset terminal (STV_RES) to an output module under the control of an external signal (U2D, D2U); a trigger module connected to the input terminal (STV_IN), the reset terminal (STV_RES) and the trigger terminal (CLK_IN) and configured to deliver a signal received from the trigger terminal (CLK_IN) to the output module when a signal is received from the input terminal (STV_IN) or from the reset terminal (STV_RES); and the output module connected to the input module, the trigger module and the output terminal (STV_OUT) and configured to flip a signal outputted from the output terminal (STV_OUT) between an output state and a reset state according to a signal from the input module under the trigger of the signal from the trigger module. The trigger signal is filtered out when no signal is inputted by setting the trigger module or the trigger unit, such that remaining circuits keep in a steady state holding state, which is benefit for reducing of power consumption. |
US09905169B2 |
Display device
Provided is a display device capable of implementing a small size thereof by reducing a size of a frame and capable of implementing low cost. A source control circuit is formed integrally with a substrate being provided to a backlight frame and mounting a light-emitting diode. The substrate performs a function as a substrate for the light-emitting diode and a function as a substrate for the source control circuit. Since both functions are configured to be performed in one substrate, a frame area may be narrow, and a small-sized display device may be implemented. |
US09905162B2 |
Degradation compensator of organic light emitting diode display device
Degradation compensator includes a compressor which generates a block-level compression stress matrix (“BCSM”) representing a degradation level of a block included in a frame by R, G, and B input signals of the block, an updater update a frame-level accumulated compression stress matrix (“FACSM”) by adding the BCSM, an error corrector which executes error-correction encoding to elements of a block-level accumulated compression stress matrix (“BACSM”) included in the FACSM, writes encoded elements as a storage data of a non-volatile memory device when a power supply is stopped, executes error-correction decoding to the storage data and writes the decoded storage data as the FACSM of the volatile memory when the power supply is started, a restorer which generates a block-level accumulated stress matrix (“BASM”), and an internal compensator which generates compensated R, G, and B output signals. |
US09905160B2 |
Organic light emitting diode display for sensing electrical characteristic of driving element
An organic light emitting diode display is disclosed. The organic light emitting diode display includes a display panel including a plurality of pixels, a plurality of sensing units configured to integrate current information of the pixels through a plurality of sensing channels connected to sensing lines of the display panel and output a first sensing value, a reference sensing unit configured to integrate previously set reference current information and output a reference sensing value, a calculation block configured to calculate the first sensing value and the reference sensing value, remove a common noise component from the first sensing value, and output a second sensing value, and an analog-to-digital converter configured to convert the second sensing value into a digital sensing value. |
US09905158B2 |
Display device and power control device capable of preventing the degradation of image quality
A display device and a power control device capable of preventing the degradation of image quality that may occur unexpectedly by performing the sub-pixel luminance deviation compensation. The display device can include an analog-to-digital converter, a timing controller, a power generator, and a power controller, among other components. The power control device can include a power generator and a power controller, among other components. |
US09905156B2 |
Display device
A high-precision display device is capable of suppressing a leak current and operating at a low power consumption. The display device comprises a source power supply for providing a pixel electric potential to each pixel placed on a substrate through a first thin-film transistor; a gate power supply for controlling conductive and nonconductive states of the first thin-film transistor; and a second thin-film transistor disposed between the first thin-film transistor and the gate power supply, the second thin-film transistor being controllable independently of the first thin-film transistor. |
US09905151B2 |
Display panel having daisy-chain-connected pixels, pixel chip, and electronic apparatus
A display panel includes a plurality of first unit pixels, each including: a data input terminal, a data output terminal, a display element, and a waveform shaping section. The display element is configured to perform display based on data inputted to the data input terminal. The first waveform shaping section is provided on a signal path from the data input terminal to the data output terminal. |
US09905148B2 |
Voltage compensation circuits and voltage compensation methods thereof
The present disclosure discloses a voltage compensation circuit and the method thereof. The voltage compensation circuit includes a power management chip, a feedback circuit, and a control circuit. A gate driving voltage (VGH) connects an input end of the control circuit, the input end of the control circuit connects to a first end of the fifth resistor (R5), and a second end of the fifth resistor (R5) connects to a forward input end of the voltage comparator, and first ends of the sixth resistor (R6) and the first capacitor (C1). A second end of the sixth resistor (R6) and a second end of the first capacitor (C1) are grounded, a backward input end of the voltage comparator connects to the reference voltage (VREF), an output end of the voltage comparator connects to a gate of the first FET (Q1). With such configuration, the display performance may be enhanced. |
US09905146B2 |
RGBW TFT LCD having reduced horizontal crosstalk
A TFT array substrate for a TFT LCD includes a plurality of pixels each consisting of a red sub-pixel, a green sub-pixel, a blue sub-pixel and a white sub-pixel arranged in a 2×2 matrix. Two data lines are located between each two neighboring columns of the sub-pixels. A scan line is located between two neighboring rows of the sub-pixels. The sub-pixels are driven by column inversion. The scan lines in electrical connections with different rows of the pixels are turned on successively along a vertical direction. Two neighboring same colored sub-pixels in a same row of the sub-pixels have opposite polarities and two neighboring same colored sub-pixel in a same column of the sub-pixels respectively have the same polarity when the TFT LCD is operated to output a screen having a color the same as the color of the two neighboring same colored sub-pixels. |
US09905144B2 |
Liquid crystal display and test circuit thereof
A liquid crystal display and a test circuit thereof are provided. The test circuit has a plurality of signal pads, a first data distributor, a plurality of logic circuit units and N switches. N is a positive integer. The signal pads are configured to receive a test data signal, a voltage signal, an enable signal and a plurality of first switch control signals. The first data distributor distributes the test data signal to N output terminals of the first data distributor. Each of the logic circuit units generates a second switch control signal according to the voltage signal, the enable signal and a corresponding one of the first switch control signals. Each of the switches controls the electrical connection between an output terminal of the first data distributor coupled thereto and at least a data line coupled thereto. |
US09905143B1 |
Display apparatus and method of displaying using image renderers and optical combiners
Disclosed is a display apparatus. The display apparatus includes at least one context image renderer for rendering a context image, wherein an angular width of a projection of the rendered context image ranges from 40 degrees to 220 degrees; at least one focus image renderer for rendering a focus image, wherein an angular width of a projection of the rendered focus image ranges from 5 degrees to 60 degrees; and at least one optical combiner for combining the projection of the rendered context image with the projection of the rendered focus image to create a visual scene, wherein the visual scene is to be created in a manner that at least two different optical distances are provided therein. |
US09905142B2 |
Uni-directional and multi-directional interchangeable screen
Embodiments of the present invention provide a method, computer program product, and system for a uni-directional and multi-directional interchangeable screen. The system includes a screen and an opaque micro-tube connected at one end to the screen. A bottom backlight is connected to the other end of the opaque micro-tube and a top backlight is connected to the screen. The system is controlled by an automated screen selection program, which activates the bottom backlight and deactivates the top backlight for uni-directional screen view. Automated screen selection program activates top backlight for multi-directional screen view. |
US09905140B2 |
Fuel pump sign
A fuel pump sign (50) comprising a fuel type indicator panel (52) for indicating the type of fuel supplied by a pump, and a pump availability indicator panel (54) for indicating whether the pump is available for use. Also disclosed is a method of use of a display panel having a plurality of display areas as a fuel pump sign for indicating whether or not a fuel pump is available for use. The method of use comprises displaying an indication of a fuel type supplied by the pump on a first display area of the display panel, and displaying an indication of whether or not the pump is available for use on a second display area of the display panel. |
US09905138B2 |
Multi-station system of motorized skeletal bone models for assessing landmark asymmetries
Paired bones are individually secured in an anatomically relevant manner onto independent, parallel positioned platforms, and configured into motorized models for the purpose of teaching and assessing clinicians' ability to identify and compare the relative positions of bony landmarks within the coronal and sagittal planes. One platform can be powered by two motors to generate precise landmark asymmetries, moving the platforms in the coronal plane and around a horizontal axis. As the platform shears upward or rotates forward, the landmarks on the bone attached to that platform can be moved superiorly compared to the other side. A central computer can instruct the motors of a plurality of models to move predetermined amounts via a two-way wireless communications link. The model can communicate back to the computer once the movement is completed, assuring a high level of precision in obtaining the intended positional asymmetry or informing the user that the move exceeds the limits of the model. |
US09905135B2 |
Medical device and procedure simulation and training
A healthcare simulation system including a mannequin with active physiological characteristics, a display monitor adapted for displaying physiological parameters, and a computer for controlling the mannequin and the monitor. A healthcare simulation method including the steps of programming the computer with healthcare scenarios, operating active characteristics of the mannequin, and dynamically displaying physiological parameters corresponding to patient vital signs. Alternative aspects of the invention include tools, such as computers and other equipment, for obtaining and displaying information and for interconnecting and interfacing participants, subjects and controllers in training systems and methods. Systems and methods for glucometer simulation and training are also disclosed. |
US09905132B2 |
Driving support apparatus for a vehicle
A driving support apparatus for a vehicle is provided. The apparatus causes an alarm unit to issue an alarm based on a lane marking of an own lane in which an own vehicle runs. The apparatus includes a leading vehicle detection section that determines a leading vehicle running in the own lane, a crossing over determination section that determines whether or not the leading vehicle has crossed over the lane marking present at an opposite side of the target, when a target is present at a left side or a right side of the leading vehicle in the own lane, and an alarm inhibition section that inhibits the alarm based on a result of the determination whether or not the leading vehicle has crossed over the lane marking present at the opposite side of the target. |
US09905128B2 |
System and method for providing augmented reality notification
A system and a method for providing augmented reality (AR) notification are provided. The system includes a recognizing unit configured to recognize a ground region, which is a region corresponding to the ground, on an AR driving image and a controller configured to add a display element to the ground region and to control a notification output associated with driving through the display element. |
US09905124B2 |
Wireless communication system
There is provided a wireless communication system for a marine propulsor, comprising: a transmitter; a receiver; and a waveguide, arranged to convey an electromagnetic data signal between the transmitter and the receiver; wherein the waveguide comprises an electrically non-conductive solid or liquid medium for propagating the electromagnetic data signal. |
US09905122B2 |
Smart-home control system providing HVAC system dependent responses to hazard detection events
Systems and methods for controlling a climate control system of a smart-home environment that includes a plurality of smart devices are provided. One method includes detecting, with a hazard detector of the smart devices, a level of carbon monoxide (CO) at the hazard detector that exceeds a threshold CO level at a location of the hazard detector, determining, by one of the smart devices, that the climate control system includes a combustion based heat source, and in response to the detecting and the determination, transmitting, by a system controller of the climate control system, a first signal to turn off at least one aspect of the climate control system. |
US09905118B1 |
Limiting service availability when sensor device is non-operational due to noise floor change
Concepts and technologies are disclosed herein for limiting service availability when a sensor device is non-operational due to a noise floor change. According to one aspect of the concepts and technologies disclosed herein, a connected home system includes a controller device configured to monitor a plurality of sensor devices deployed within a premises, and a sensor device of the plurality of sensor devices. The sensor device can monitor radio frequency (“RF”) noise in a radio environment associated with the premises. The radio environment is associated with an RF noise floor. The sensor device can determine whether the radio frequency noise exceeds a noise threshold. In response to determining that the RF noise exceeds the noise threshold, the sensor device can cause the controller device to exclude the sensor device from being monitored by the controller device until the RF noise returns to below the noise threshold. |
US09905117B2 |
Systems and methods for notifying law enforcement officers of armed intruder situations
A computer-implemented method executed by one or more computer servers includes receiving a notification from a communication device, determining whether one or more other communication devices are within a stationary geofence, and in response to the notification, sending an emergency alert to the other communication devices determined to be within the stationary geofence. The computer-implemented method may further include receiving an acknowledgement of the emergency alert from at least one of the other communication devices determined to be within the stationary geofence and/or sending data indicating an approximate location of the communication device and an associated tolerance of the approximate location. Other example computer-implemented methods, communication devices including software applications, and systems are also disclosed. |
US09905116B2 |
Method and apparatus for detecting a hazard alert signal
An apparatus is described for detecting a pattern warning signal from a hazard alarm and sending an alert signal to a home security panel for notification to a remote monitoring station. The apparatus is mounted proximate to the hazard alarm, where it receives audible pattern warning signals from the hazard alarm when the hazard alarm detects a hazard, such as smoke, fire, carbon monoxide, etc. A user of the apparatus enters identification of the hazard alarm into the apparatus. When a pattern warning signal has been detected by the apparatus, the apparatus transmits an alert signal to the home security panel, as well as the identification of the hazard alarm that generated the audible pattern warning signal. |
US09905112B1 |
Contextual assessment of current conditions
In some examples, systems, methods, and devices are described that generate contextual suggestions for patients. Generation of the contextual suggestions is triggered by certain events performed by a medical professional with respect to a patient (e.g., updating a patient record). The contextual suggestions are related to addressing health conditions of the patient and represent tasks or considerations which the medical professional should be made aware. The contextual suggestions are generated in a way that is considerate of patient context, medical professional context, and contexts of similar patients. The contextual suggestions can be presented to the medical professional for selection and execution. |
US09905111B1 |
Alert-capable refuse system
A system for alerting a user when the contents of a refuse container have reached or exceeded a specific weight level. The system measures the weight of the contents and will have the potential to send an alert in a plurality of ways selected by the user or selected by someone associated with the user. |
US09905109B2 |
Retroactive messaging for handling missed synchronization events
Various arrangements for handling delayed status update are presented. A network-enabled sensor unit may be used to measure an environmental condition. The sensor unit may determine, based on measuring the environmental condition, an environmental condition status has changed state. A network connection may be established that permits communication with a remote notification service system. This notification service system may maintain a remote status intended to be synchronized with the environmental condition status of the sensor unit. The sensor unit may determine that the environmental condition status has changed prior to communicating the environmental condition status to the notification service system. A historical status array may be transmitted to the notification service system in response to determining the environmental condition status has reverted to the first state prior to communicating the environmental condition status. The historical status array can indicate previous states of the environmental condition status of the sensor unit. |
US09905108B2 |
Systems, methods, and apparatus for monitoring alertness of an individual utilizing a wearable device and providing notification
Methods, systems, and apparatus for monitoring fatigue and notifying an individual are described. The individual may be an operator of a vehicle, equipment, or machine, a student, or other person that may experience fatigue. In addition to the individual, another person such as an employer, teacher, or parent may be notified. |
US09905105B1 |
Method of increasing sensing device noticeability upon low battery level
A wireless sensing device and a method for operating a wireless sensing device are described herein. The wireless sensing device includes a battery power supply and a processor that transmits detected physiological parameters from the sensing device to a monitoring device. when the battery level within the sensing device falls below a minimum threshold, the processor of the sensing device reserves a portion of the battery charge to power an indicator to increase the noticeability of the sensing device. The sensing device can also include an RFID tag that is written to by the processor when the state of charge on the battery falls below the minimum threshold. The RFID tag allows RFID detectors to sense the presence of the sensing device without requiring additional battery power. |
US09905104B1 |
Baby detection for electronic-gate environments
A baby detection system and corresponding method are provided. The baby detection system includes a camera configured to capture an input image of a subject purported to be a baby and presented at an electronic-gate system. The baby detection system further includes a memory storing a deep learning model configured to perform a baby detection task for an electronic-gate application corresponding to the electronic-gate system. The baby detection system also includes a processor configured to apply the deep learning model to the input image to provide a baby detection result of either a presence or an absence of an actual baby in relation to the subject purported to be the baby. The baby detection task is configured to evaluate one or more different distractor modalities corresponding to one or more different physical spoofing materials to prevent baby spoofing for the baby detection task. |
US09905102B2 |
Open scattered light smoke detector and testing device for an open scattered light smoke detector of this type
An open scattered light smoke detector for detecting smoke may include a light transmitter for emitting light, a light receiver spectrally matched to the light transmitter, and a control unit configured to repeatedly actuate the light transmitter, with a pulsed signal sequence, to emit corresponding light pulses, evaluate temporally a signal sequence received by the light receiver, and output a fire alarm if a received signal strength exceeds a minimum value for the smoke concentration. The control unit may be configured to switch the detector from a normal operating mode into a service mode if a phase angle between an emitted and received signal sequence, as determined on the detector side, increases by a minimum angular value which, in terms of the travel time, corresponds technically to an increase in the optical path length from the light transmitter to the light receiver of more than some predefined distance. |
US09905101B1 |
Tailgating detection
Systems and methods for detecting doorway tailgating are disclosed. A method includes: determining, by a computer device, a mobile device moves through a doorway to a secure area; determining, by the computer device, a security protocol was not passed for the mobile device to move through the doorway; and generating, by the computer device, an alert based on both the determining the mobile device moves through the doorway to the secure area and the determining the security protocol was not passed. |
US09905094B1 |
Stabilize and status alert device for a refuse can
A stabilizer and status alert device for a refuse can includes a base configured to support the refuse can in an upright position, a retaining feature configured to releasably couple the refuse can to the base, and an alert system configured to deliver a status notification to a user device in response to the refuse can be uncoupled from the base. |
US09905088B2 |
Responsive visual communication system and method
A wearable device providing responsive visual feedback is provided. The wearable device includes a wearable device housing, at least one lighting element associated with the housing for providing, visual feedback, a processor disposed within the wearable device housing, the processor operatively connected to the at least one lighting element, a plurality of sensors operatively connected to the processor, wherein the processor is programmed to determine a mode of operation using sensed data from the plurality of sensor, and wherein the processor is programmed to control the at least one lighting element to convey visual feedback based on the mode of operation determined by the processor. |
US09905087B2 |
Point-of-sale system that measures radioactivity of a product
POS system checks for radioactive contamination of products without increasing any personnel workload. The POS system includes: a storage means for storing a product code and a radioactivity threshold defined for each product code in association with each other; a barcode scanner; a radioactivity measurement part for measuring radioactivity of a product based on a radiation dose emitted from the product; a comparison means for comparing a radioactivity threshold associated with the product code read by the barcode scanner with a radioactivity measurement value measured by the radioactivity measurement part; and alarm an output means for outputting an alarm when the radioactivity measurement value exceeds the radioactivity threshold. The radioactivity measurement part is arranged at such a position that, when the product exists at a scanning position (A) where the product code is read with the barcode scanner, the radioactivity measurement part detects the radioactivity of the product. |
US09905083B2 |
Gaming system, gaming device and method including a community game
In various embodiments, the gaming system, gaming device, and gaming method disclosed herein provides a community game having a trail or path. The community game enables a plurality of players to each simultaneously pick one or more directions of movement along the trail or path (i.e., pick or designate a destination position which that player wants to move to). If the picked directions of movement for more than one player result in more than one player each designating the same destination position, the gaming system determines which player is moved to the designated destination position (and is provided a displayed award or outcome associated with that position) and which player is moved to an alternative position (and is provided a displayed award or outcome associated with that alternative position). |
US09905082B2 |
Systems, methods, and computer-readable media for determining and synchronizing live event information
Systems and methods for monitoring live events are generally described. A live event management system may be configured to track in-play activities during a live event and to provide live event information to data consumers. The management system may be configured to provide an event timeline in real time or substantially real time that may facilitate reliable in-play wagering using accurate and up-to-date information. The event timeline may be used as a reference to review, manage, and monitor live events, wagers, and wager activity. The management system may be configured as an “end-to-end” wagering solution capable of, among other things, receiving wagers (or “bets”) from bettors, managing and processing event information, and presenting wagers received from bettors to bookmakers. |
US09905080B2 |
Gaming system and method for providing a persistent game
A gaming system including a multiple player persistent game, such as an ongoing community game. This ongoing community game includes a community game matrix which is continuously displayed to at least each of the players. The community game matrix includes a plurality of displayed positions which may be associated with an award or an award opportunity. In operation, at least each of the players playing the gaming devices of the gaming system are associated with a displayed participant that moves (either randomly or based on the player's control) to different of the displayed positions of the community game matrix. If a player moves their associated participant to a displayed position that is associated with an award or an award opportunity, the gaming system provides the player any associated award or enables the player to participate in any associated award opportunity to potentially win an award. |
US09905078B2 |
Submission of pre-authorized tax-related documents relating to game payouts
Methods, apparatuses, and computer-readable media for submitting a tax submission on behalf of a player of a game. Based on the location of the gaming device, determine at least one jurisdiction that governs the player's taxable winnings. The player fill out an electronic tax form for each jurisdiction and submits an electronic authorization. Transmitting, in response to the tax liability, a tax submission to a remote device, in which the tax submission comprises at least the electronic tax form and the electronic authorization. |
US09905077B2 |
Method and apparatus for electronic gaming
A system and method for controlling a player's rate of play is provided. In an embodiment, a rate of play is defined that influences when a player is transferred to a new hand, such as upon folding or when play in a current hand is completed. Rate of play may be expressed, for example, as a percentage of hands to transfer upon which the player is to be moved upon folding. In another embodiment, a player may select, for example, a “Fold and Transfer” option or a “Fold and Observe” option, thereby allowing the player to better control the rate of play. In yet another embodiment, a player may designate a rate of play and be presented with a “Fold and Transfer” option and/or a “Fold and Observe” option, wherein the “Fold and Transfer” option and/or the “Fold and Observe” option may override the designated rate of play. |
US09905076B2 |
System and method of bet-matching and chance-element features for multi-player online skill games
A system and method for providing matching of bets for an online skill game includes a display device for displaying the game and a computer coupled to the display device. The computer is configured to analyze a skill level of a first player based on the playing history of the first player, to analyze a skill level of a second player based on the playing history of the second player, to generate an initial proposal for a fair match between the first player and the second player based on the analyzed skill levels, and to communicate the initial proposal either one of the first player or the second player, and wherein either the first player or the second player accepts or rejects the initial proposal by communicating the acceptance or rejection to the computer. |
US09905074B2 |
Hybrid gaming system, apparatus and method
An apparatus, system and for providing a game to online game players over a network that combines physical gaming values produced at a location with electronical game values generated by the server, comprising receiving one or more electronic indications of the physical game values over a network from the location for use in playing the game, generating one or more electronic game values for use in playing the game, providing the one or more electronic game values to an online game player of the online game players over the network, providing the one or more electronic representations of the physical game values to the online game player over the network, and determining, by the processor, a final game result based on at least the one or more electronic representations and the one or more electronic game values. |
US09905069B1 |
Optically based bankenote authentication system having broke discrimination
A method and a system are disclosed for processing a banknote. The method includes providing a banknote having at least one photonically active security feature, the banknote being moved along a conveyance path; illuminating the at least one security feature with light from a stimulus source; identifying a location of the at least one security feature by detecting an emission from the security feature; directing an excitation source at the identified location; illuminating the at least security feature with light from the excitation source; and detecting a further emission from the photonically active security feature in response to the light from the excitation source. Further the process includes the step of analyzing the shape and size of each object within an image during the search phase to determine if the object has the expected physical attributes of the real feature. |
US09905067B2 |
Automobile power window enable and disable method
A method, apparatus and system for controlling the actuation of a movable structure, the moveable structure configured to open and close an aperture in a vehicle, is disclosed. The method comprises receiving a sequence containing a request to at least one of open and close the aperture, interpreting the sequence as a request to one of enable and disable the actuation of the moveable structure, and in response to the interpretation, one of enabling and disabling the actuation of the moveable structure. |
US09905065B2 |
Radio controls for electric devices and methods for transmitting commands through radio controls
A radio control for electric devices may include: a containment body provided with at least one button, at least one electronic transmitter configured to transmit a unique code in a direction of the electric devices, and a microprocessor to which generated signals are sent, by pressing the at least one button, that is configured to control the at least one transmitter, and that is configured to determine the unique code. Each time the at least one button is pressed, the unique code may be transmitted by the at least one electronic transmitter at least once at a first frequency and then may be retransmitted at least once at a second frequency different than the first frequency. |
US09905064B2 |
Vehicle remote control system and vehicle-mounted apparatus incorporated in the same
A vehicle remote control system including an electronic key pre-registered as a device via which a vehicle can be remote-operated, and a mobile communication device pre-registered as a device that belongs to a user of the vehicle. In the system, a vehicle-mounted authentication unit is configured to determine whether or not authentication of the electronic key and the mobile communication device has succeeded, and a vehicle-mounted allowance determination unit is configured to, if it is determined by the vehicle-mounted authentication unit that the authentication of the electronic key and the mobile communication device has succeeded, allow operation of a predetermined vehicle-mounted activation unit. |
US09905063B1 |
Systems and methods for individual identification and authorization utilizing conformable electronics
An identification device includes, but is not limited to, a deformable substrate configured to conform to a skin surface of a body portion of a healthcare provider; a sensor assembly coupled to the deformable substrate, the sensor assembly including one or more identity sensors configured to generate one or more identity sense signals associated with at least one physical characteristic of the healthcare provider; circuitry configured to compare the one or more identity sense signals generated by the sensor assembly to reference data indicative of one or more physical characteristics associated with an identity; and a reporter configured to generate one or more communication signals associated with a comparison of the one or more identity sense signals generated by the sensor assembly to reference data indicative of one or more physical characteristics associated with an identity of at least one individual. |
US09905060B2 |
System and method for data recording and analysis
A data analyzing method includes retrieving selected operational data from a plurality of prior events, analyzing the selected operational data to determine an experience level of the platform operator, characterizing the experience level of the platform operator based on analyzing the selected operational data, and performing at least one of increasing platform performance characteristics of the moving platform when the moving platform is operated by an experienced platform operator or decreasing the platform performance characteristics when the moving platform is operated by a novice platform operator. |
US09905059B2 |
Data transfer system, data transmission device, and data reception device
A data transfer system includes: a data transmission device; and a data reception device. The data transmission device includes a visible-light reception controller that receives visible-light data from the data reception device, a memory from which accumulated data is read out in a case where the visible-light reception controller receives the visible-light data, and a millimeter-wave communication controller that, in a case where the visible-light reception controller receives the visible-light data, establishes wireless connection for communication with the data reception device using a frequency in a millimeter band, and transmits the readout data to the data reception device. |
US09905056B2 |
Systems, methods, and computer readable media for transferring data from delivery items to labels for application of the labels onto the delivery items
Systems, methods, and computer readable media for transferring data from a delivery item to a label for application of the label onto the delivery item are disclosed. In some aspects, the system can include a camera configured to capture an image of the data on the delivery item, a control computer including at least one hardware processor and memory, the control computer being configured to process the image of the data, integrate the image of the data into a label template, and to generate a print file from the label template, and at least one label applicator disposed after the camera relative to a direction of travel of the delivery item on a conveyor, the at least one label applicator being configured to print the label including the data contained in the print file and apply the printed label onto a top surface of the delivery item. |
US09905051B2 |
Context-aware tagging for augmented reality environments
A method for tag-based search includes capturing an image, extracting a tag from the image, identifying a location associated with the captured image, and querying stored content for information that matches the location and the tag. Local storage is checked for the information first, and remote storage may be checked subsequently. Any located information may be used to augment the image. Information located in the remote storage may be saved in the local storage until it reaches a certain age, until it fails to be accessed for a threshold period of time, or until the location moves outside a threshold radius associated with a location of the information located in the remote storage. |
US09905044B1 |
Systems and methods for functional imaging
A system includes a structural imaging acquisition unit, a functional imaging acquisition unit, and one or more processors. The structural imaging acquisition unit is configured to perform a structural scan to acquire structural imaging information of a patient. The functional imaging acquisition unit is configured to perform a functional scan to acquire functional imaging information of a patient. The one or more processors are configured to obtain, using the structural imaging information, a structural image of the patient including anatomical volumetric data; determine an anatomical probability map corresponding to a probability that a determined anatomical object correlates to potential functional data; obtain, using the functional imaging information, a functional image of the patient including functional volumetric data; re-distribute the functional volumetric data using the anatomical probability map to provide re-distributed functional volumetric data; and generate an image using the re-distributed functional volumetric data. |
US09905043B2 |
Techniques to generate digital maps
Techniques to generate digital maps are described. A method may include receiving category information having multiple categories defined for a geographic area of a digital map, each of the multiple categories having one or more category values, scheduling tasks to generate an annotated digital map with one or more processor circuits, the annotated digital map to include a visual representation of the multiple categories and associated category values for the geographic area of the digital map, the visual representation having different visual portions each representing a category as defined by an associated category value that changes over time, the visual portions each comprising a set of data points, and generating, by circuitry, the annotated digital map with the visual representation in accordance with the scheduled tasks. Other embodiments are described and claimed. |
US09905040B2 |
Texture sampling techniques
Techniques are disclosed relating to texture sampling operations. In some embodiments, multi-fetch sampling instructions specify a region of a texture in which multiple samples are to be performed and texture processing circuitry is configured to sample the texture multiple times within the region. In some embodiments, the locations of the samples are determined according to a formula, which may be pseudo-random. In some embodiments, the locations of the samples are jittered to produce stochastic results. In some embodiments, the locations of the samples are determined based on one or more stored sets of samples that have particular properties (e.g., blue noise, in some embodiments). In various embodiments, disclosed techniques may facilitate Monte Carlo sampling. |
US09905039B2 |
View independent color equalized 3D scene texturing
One disclosed example method for view independent color equalized 3D scene texturing includes capturing a plurality of keyframes of an object; accessing a 3D representation of the object comprising a surface mesh model for the object, the surface mesh model comprising a plurality of polygons; for each polygon, assigning one of the plurality of keyframes to the polygon based on one or more image quality characteristics associated with a portion of the keyframe corresponding to the polygon; reducing a number of assigned keyframes by changing associations between assigned keyframes; and for each polygon of the surface mesh model having an assigned keyframe: equalizing a texture color of at least a portion of the polygon based at least in part on one or more image quality characteristics of the plurality of keyframes associated with the polygon; and assigning the equalized texture color to the 3D representation of the object. |
US09905032B2 |
Object removal using lidar-based classification
In scenarios involving the capturing of an environment, it may be desirable to remove temporary objects (e.g., vehicles depicted in captured images of a street) in furtherance of individual privacy and/or an unobstructed rendering of the environment. However, techniques involving the evaluation of visual images to identify and remove objects may be imprecise, e.g., failing to identify and remove some objects while incorrectly omitting portions of the images that do not depict such objects. However, such capturing scenarios often involve capturing a lidar point cloud, which may identify the presence and shapes of objects with higher precision. The lidar data may also enable a movement classification of respective objects differentiating moving and stationary objects, which may facilitate an accurate removal of the objects from the rendering of the environment (e.g., identifying the object in a first image may guide the identification of the object in sequentially adjacent images). |
US09905031B2 |
Method and related apparatus for capturing and processing image data
A method for processing image data includes obtaining at least two captured images, where focal points of the obtained captured images are different; obtaining a focus-capture parameter, and fusing the captured images according to the focus-capture parameter to obtain a fused image; and performing joint coding on the fused image, and outputting an image; where when registration, mapping, cutting, and fusion are performed on the captured images according to the focus-capture parameter, a mask image is corrected through analysis of motion information of the captured images, and images are selected; and the corrected mask image includes a sequence number of a captured image selected at each pixel in the connected motion object region after the captured images are marked with sequence numbers. The method is used to implement high-efficiency and high-quality image processing. |
US09905029B2 |
Input device for inputting and editing text, display apparatus and methods thereof
A method and apparatus for displaying are provided. The apparatus includes an interface unit that receives key event signals from a plurality of devices, and a display unit that displays a window. The apparatus also includes a control unit that performs an operation of inputting and editing text corresponding to the key event signals of the plurality of devices on at least one window matching each of the plurality of devices. Accordingly, a text operation may be performed through a plurality of devices simultaneously. |
US09905028B2 |
Simulating sub-surface scattering of illumination for simulated three-dimensional objects
Embodiments involve simulating sub-surface scattering of illumination for three-dimensional objects. An application determines, for each point defining a simulated three-dimensional surface, a respective first simulated light at the point caused by a simulated light source illuminating the three-dimensional surface. Each first simulated light includes a weighted average of simulated incident light at the point. Each weighted average is determined based on simulated incident light contributions from neighboring points of the three-dimensional surface. The application also determines, for each point, a respective second simulated light at the point. Each second simulated light includes light from the light source that is diffusively reflected at the point. The application also generates, for each point, a respective correction factor for the simulated light source to compensate for a difference between the first and second simulated lights by specifying a modification to color information generated based on the second simulated light. |
US09905027B2 |
Pigment identification of complex coating mixtures with sparkle color
A method that includes obtaining, using a processor, image data from a target coating. The method also includes performing, using the processor, an image analysis to determine at least one sparkle point from the image data, and performing, using the processor, a hue analysis to determine a sparkle color from the sparkle point. The method further includes calculating, using the processor, a sparkle color distribution, and generating, using the processor, a coating formulation that is the same or substantially similar in appearance to the target coating. |
US09905024B2 |
Object recognition device, vehicle having the same and method of controlling the same
An object recognition device includes: a storage unit that stores image information corresponding to respective shapes of a plurality of objects, and a control unit that groups a plurality of signals detected by a distance detection unit to acquire position information of at least one of the plurality of objects, sets a first object of the plurality of objects based on the acquired position information, sets an interference area based on position information of the first object, acquires position information and image information of a second object of the plurality of objects located in the interference area, and corrects the acquired position information of the second object based on the image information of the second object and the image information stored in the storage unit. |
US09905023B2 |
Depth image processing method and depth image processing system
A depth image processing method and a depth image processing system are provided. The depth image processing method includes: capturing a first image and a second image; performing a feature comparison to acquire a plurality of feature pairs between the first image and the second image, wherein each of the feature pairs includes a feature in the first image and a corresponding feature in the second image; computing disparities of the feature pairs; computing a depth image through the first image and the second image when the disparities of the feature pairs are all smaller than a disparity threshold. |
US09905022B1 |
Electronic display for demonstrating eyewear functionality
Embodiments disclosed herein include systems and methods for demonstrating the functionality of eyewear using digital images on an electronic display. The functionality of certain types of eyewear, such as, for example, sunglasses, may not be readily perceivable when the wearer is indoors. In some embodiments, a demonstration image is shown on an electronic display. In certain embodiments, the demonstration image can have a background portion, a wanted color portion, and unwanted color portion, and/or other portions that cooperate with an optical filter of the eyewear to simulate and/or emphasize the functionality of the eyewear when viewing real-world scenes. |
US09905011B2 |
Apparatus, system, and method for processing information and program for the same
An information processing apparatus that acquires distance information from image data includes an input unit 162 and a procedure selection unit 164. The input unit 162 inputs image data and information associated with the image data and specifying a procedure for deriving distance information. The procedure selection unit 164 selects at least one from a plurality of procedures on the basis of the information specifying a procedure for acquiring distance information and derives distance information from the image data using the selected procedure. |
US09905010B2 |
Image position determination device and image position determination method for reducing an image of a closed eye person
An imaging position determination device includes an image reception unit that acquires an image and a position of a person within a monitoring area, an eye state detection unit that detects an open and closed state of eyes of a person from the image acquired by the image reception unit, an eye state map creation unit that creates an eye state map which shows an eye state of the person in the monitoring area based on the open and closed state of eyes of the person that is acquired by the eye state detection unit, and an adjustment amount estimation unit that determines an imaging position of the person in the monitoring area based on the eye state map that is created by the eye state map creation unit. |
US09905009B2 |
Monitor system
A surveillance system 1, which is an example of a surveillance system to which the present invention is applied, includes a surveillance region storage means 2 and an image analyzing means 3. Also, the surveillance system 1 includes an effective area information storage means 4 and an object criterion information storage means 5. A detection subject can be detected efficiently by setting a first step criterion of whether or not a portion of an object in an image is included in a range of a surveillance region and a predetermined second step criterion and determining whether or not these criteria are met. |
US09905008B2 |
Automated fundus image field detection and quality assessment
A method, system, and computer readable medium which automatically determine the side, field and a level of image quality of fundus images of the retina of a human eye is disclosed. The disclosure combines image processing, computer vision and pattern recognition techniques in a unique way to provide a robust process to identify and grade the quality of fundus images with application to improve efficiency and reduce errors in clinical or diagnostic retinal imaging workflows. |
US09905004B2 |
Image processing device, method, and recording medium having stored therein program
A target place is set in an area of a human body structure having a tree structure in a three-dimensional image. The tree structure of the human body structure is extracted. A path from a reference point set on a branch upstream side of the target place on the tree structure to the target place is determined. Priority is set for respective portions of the tree structure of the human body structure outside the path based on a positional relationship between the portions and the target place. An initial image representing only a portion of the path and images for confirmation of each step sequentially representing the respective portions of the human body structure outside the path according to the priority are generated from the three-dimensional image. The initial image is displayed, and then, the generated images for confirmation of each step are displayed. |
US09905003B2 |
Processing dual energy spectral mammography images
A method for processing X-ray image data comprises: receiving sum image data (28) and difference image data (30), wherein the sum image data (28) and the difference image data (30) comprise intensity information of X-rays (18) of two different energies passing through an object (20), the sum image data (28) is based on a sum intensity of the two different energies and the difference image data (30) is based on a difference intensity of the two different energies; partitioning the difference image data (30) into a low frequency range (32) and a high frequency range (34); and generating low noise image data (36) by replacing the high frequency range (32) of the difference image (30) with a high frequency range based on the sum image data (28). |
US09905002B2 |
Method and system for determining the prognosis of a patient suffering from pulmonary embolism
A system for determining the prognosis of a patient suffering from pulmonary embolism is provided. The system may include at least one computer system configure to receive patient specific data regarding his pulmonary embolism status. The at least one computer system may be further configured to create a model of the patient's heart, with at least information of the two ventricles, and to determine the ratio of sizes of the ventricles. The system will then report such ratio to the clinician or report a risk index of clinical outcome for such patient. |
US09904998B2 |
Patient-specific and automatic x-ray system adjustment based on optical 3D scene detection and interpretation
An apparatus (130) and method for automatically or semi-automatically controlling a collimator (COL) of an x-ray imager (100) to collimate imager (100)'s x-ray beam and adjusting an alignment of the x-ray imager (100) in respect of an object (PAT). The collimation and alignment operation is based on 3D image data (3DI) of the object (PAT) to be imaged. The 3D image data (3DI) is acquired by a sensor (S). The sensor (S) operates on non-ionizing radiation. The 3D image data (3DI) describes a shape in 3D of the object (PAT) and anatomic landmarks are derived therefrom to define a collimation window (W) for a region of interest (ROI). Based on the collimation window (W) the collimator (COL)'s setting and imager (100) alignment is adjusted accordingly. |
US09904997B2 |
Image processing apparatus, image processing method and storage medium for extracting a lesion having a ground glass opactiy
An image processing apparatus which extracts a lesion having a ground glass opacity from an image includes a change unit which changes a pixel value corresponding to a candidate region for the ground glass opacity to a predetermined pixel value range, a first feature amount extraction unit which obtains a first feature amount from the image, the pixel value of which is changed, and an extraction unit which extracts the lesion from the image based on the first feature amount. |
US09904992B2 |
Packeted drug inspection device and method
It is determined whether the type of drug inserted into a packaging machine is correct, on the basis of the dispensing information of the drug to be packaged and the drug type information of the drug to be inserted into the packaging machine. Number-by-appearance information indicating the number of drugs for each outward appearance which are packaged in each packet is acquired. The image of each drug corresponding to each dose is captured. The number of drugs for each outward appearance which are packaged in each packet is counted on the basis of the captured image of the drugs. It is determined whether the number of drugs for each outward appearance is correct, on the basis of the number-by-appearance information and the counting result of the number-by-appearance counting unit. It is determined whether the occurrence or non-occurrence of a mix-up of the drugs can be determined, on the basis of at least the dispensing information of the drugs to be packaged and the drug type information of the drugs inserted into the packaging machine. It is determined whether the drugs packaged in each packet are correct. |
US09904991B2 |
Image pickup apparatus that corrects contrast of image, control method for the image pickup apparatus, and storage medium
An image pickup apparatus which is capable of appropriately correcting the contrast of an image. A luminance histogram is detected from an image including a subject, and a subject distance to the subject is measured. A frequency percentage, which defines a luminance range in the luminance histogram for use in calculating a control point for a tone curve used to correct contrast of the image, is decided according to the subject distance. The frequency percentage is higher when the subject distance is long than when the subject distance is short. |
US09904990B2 |
Single image rectification
The disclosure includes a system and method for performing image rectification using a single image and information identified from the single image. An image recognition application receives an input image, identifies a plurality of objects in the input image, estimates rectification parameters for the plurality of objects, identifies a plurality of candidate rectification parameters using a voting procedure on the rectification parameters for the plurality of objects, estimates final rectification parameters based on the plurality of candidate rectification parameters, computes a global transformation matrix using the final rectification parameters, and performs image rectification on the input image using the global transformation matrix. |
US09904986B2 |
Image denoising method and terminal
An image denoising method and terminal, where the method includes acquiring image data of an image, performing wavelet decomposition on at least one component of three components of the image data to obtain a high frequency wavelet coefficient and a low frequency wavelet coefficient of each component, performing recursive denoising on the low frequency wavelet coefficient of each component in at least one direction, to obtain a denoised low frequency wavelet coefficient of each component, performing wavelet reconstruction according to the high frequency wavelet coefficient of each component and the denoised low frequency wavelet coefficient of each component, to obtain at least one denoised component, and obtaining denoised image data. |
US09904984B1 |
Wireless communication device configured to capture orientation information and orientation information gathering method
A wireless communication device configured to gather device orientation information and an orientation information gathering method in a wireless communication device are provided. The wireless communication device in one example embodiment includes an interface configured to communicate with a user and with external devices, a storage system configured to store at least an orientation detect routine and reference point information corresponding to two or more reference points on the wireless communication device, and a processing system coupled to the interface and the storage system and configured to determine if a predetermined orientation capture event has occurred, if the predetermined orientation capture event has occurred, then determine relative positions of the two or more reference points, save the relative positions of the two or more reference points to the orientation information and accumulate the orientation information for the wireless communication device, and transfer the orientation information to an external device or devices at intervals. |
US09904978B2 |
Pairing of an anatomy representation with live images
The present invention relates to pairing an anatomy representation with live images. In order to provide an enhanced and more flexible pairing of an anatomy representation with live images, for pairing an anatomy representation with live images, reference projected-anatomy image data of a device in a spatial relation to the anatomy is provided (100), wherein the image data comprises at least a first and second image showing the device from different viewing angles. Further, an anatomy representation with an anatomy frame of reference is provided (200). The anatomy representation is brought (300) into spatial coherence with the at least first and second image of the reference projected anatomy image data. A three-dimensional model of the device within the anatomy frame of reference is computed (400) from the projected anatomy image data. At least one live image is provided (500) containing the device. The model and the at least one live image are registered (600) based on the device information contained in the live image. The anatomy representation is brought (700) into spatial correspondence with the at least one live image based on the registering of the model and the at least one live image. The registered anatomy is combined (800) with the at least one live image. |
US09904973B2 |
Application-specific virtualized graphics processing
Methods, systems, and computer-readable media for application-specific virtualized graphics processing are disclosed. A virtual compute instance is provisioned from a provider network. The provider network comprises a plurality of computing devices configured to implement a plurality of virtual compute instances with multi-tenancy. A virtual GPU is attached to the virtual compute instance. The virtual GPU is selected based at least in part on requirements of an application. The virtual GPU is implemented using a physical GPU, and the physical GPU is accessible to the virtual compute instance over a network. The application is executed using the virtual GPU on the virtual compute instance. |
US09904966B2 |
Using image references in radiology reports to support report-to-image navigation
A system, method and computer readable storage medium for retrieving a narrative report for at least one study including a plurality of images of a patient from a memory, determining text structure boundaries to identify and classify each text structure in the narrative report, determining image references in each text structure of the narrative report, extracting image references from text structures classified as including an image reference and determining a study to which an extracted image reference corresponds. |
US09904964B1 |
System and method for travel product alignment and user interface
Disclosed is a process and system for solving the problem of presenting users aligned travel products from disparate or aligned sources in a single user interface. The system packages travel products by alignment or combination from disparate or un-aligned data sources, driven by the system capability to utilize a configurable logic instruction system incorporated into a database and user interface management platform, which configured to align individual travel product element data types and attributes as well as bundled travel product data types and attributes. In various embodiments configurable logic instructions are created for individual target airlines to capture the explicit and implicit mechanisms by which an individual airline present travel products to users by the user interface. For a plurality of airlines, travel product packages and associated configurable logic instructions are imported into a common database template structure which is configured to allow member airlines to market travel products other than just tickets and seats from other carriers by communicating product types and attributes mapped in the database from disparate data sources to users in a single interface. |
US09904961B2 |
System and method for determining the feedback capacity of information distributed in a complex network
The system and method for determining the feedback capacity of information distributed in a complex network determines feedback capacity as information is received and diffused throughout the network. Traditionally, real networks, such as computer networks, were used in determining network feedback. However, current complex networks typically incorporate graphing models for network analysis. The system and method provide a process to determine the quality of a complex network with respect to feedback capacity, such as can be determined by a corresponding Belief Propagation algorithm and a corresponding entropy equation. The system and method can also determine the cyclic entropy per penetration in a complex network, the depth penetration for nodes in the complex network and a plurality of cycle counts per node in the complex network based on a source node. |
US09904954B2 |
Flexible commercial loan pool
Bidding activity is analyzed over a duration in which multiple bids are received in the auction. A bid increment is dynamically determined for the auction in response to auction activity. An online auction system can utilize the bid increment to determine or suggest the next bid that can be received in the auction for purpose of supplanting the current bid. |
US09904953B2 |
Method and system of building store product finders
One embodiment provides a system for building store product finders. The system may include: a product search engine to find products matching at least one product subcategory of product subcategories of a store product category for a store product finder, and a dominant product subcategory determining device to determine a dominant product subcategory. Each product subcategory has a product coverage. The dominant product subcategory has a highest product coverage among the product subcategories. The system may also include a filter installing device to install at least one product search filter into the store product finder. |
US09904952B2 |
Dynamically optimizing inventory picking path within a store
One embodiment provides a system for dynamically optimizing inventory picking paths within a physical store. The system performs operations including receiving merchandise requests from customers, providing the merchandise requests to merchandise pickers, and receiving, from the merchandise pickers, picking data identifying picking paths executed by the merchandise pickers when picking items within the physical store to fulfill the merchandise requests. The operations further include analyzing the merchandise requests and the picking data to identify an algorithm suitable for determining an optimized picking path, and, in response to receiving a new merchandise request, applying the algorithm to determine an optimized picking path for fulfilling the new merchandise request. The optimized picking path is provided to at least one of the merchandise pickers. The algorithm is dynamically adjustable in response to receiving additional picking data identifying different picking paths that reflect changes to the store layout. |
US09904949B1 |
Product recommendations
The technology may monitor context items as a content page is navigated. A similarities dataset may be selected from a plurality of similarities datasets as a source of recommendations based on the context items. Recommendations in the similarities dataset selected may be ranked based on the context items. The recommendations may be provided based on the ranking. |
US09904947B2 |
Providing an enhanced shopping experience
Methods, apparatus, and products are disclosed for enhancing a shopping experience that include: determining, by a self-checkout terminal, that a shopper invoked a help event; selecting, by the self-checkout terminal in dependence upon the help event, a shopper assistant to assist the shopper; and providing, by the self-checkout terminal to the shopper, distinguishing information identifying the shopper assistant. |
US09904942B2 |
System and method for adding an advertisement to a personal communication
A system and method is provided for adding at least one advertisement to a personal communication and providing additional communication data to a recipient that interacts with the advertisement. A sender network device communicates with an advertising application operating on a Web site to generate a personal communication containing at least one advertisement, where the at least one advertisement is selected from a palette of advertisements. In one embodiment of the present invention, the sender has control over advertisements that are displayed together with the personal communication by allowing the sender to delete (or remove) an advertisement from either the at least one advertisement or the palette of advertisements. If a displayed advertisement is interactive, and the advertisement is interacted with, the advertising application will provide the recipient with additional communication data in a format that can be understood by the recipient network device. |
US09904940B2 |
Methods, systems and computer program products for tailoring advertisements to a user based on actions taken using a portable electronic device
A method of advertising tailored based on usage patterns of a portable electronic device includes determining if a portable electronic device has entered an area associated with a local area network (LAN). A link is established between the portable electronic device and the LAN if it is determined that the portable electronic device has entered the area associated with the LAN. User services are established between the portable electronic device and a remote server using the established link based on a user profile associated with the portable electronic device. Devices associated with the remote server communicatively coupled to the LAN are controlled using the portable electronic device. Actions and/or behaviors of a user are tracked based on use of the portable electronic device. Advertisements are displayed and/or played on at least one of the controlled devices based on the tracked user actions and/or behaviors. |
US09904939B2 |
System and method for targeting advertising to a device based on installed applications
A system for targeting advertising can include a communications interface and a processor. The communications interface can receive data associated with times of use of applications. The processor can be communicatively coupled to the communications interface and can categorize the applications by genres. The categorization is within a time of use group and is based on at least part of the retrieved data. The processor can also determine priority values associated with the genres based on levels of use of the applications during a period of time associated with the time of use group. The processor can also identify a current time and determine an advertisement according to at least one genre of the genres. The at least one genre can be associated with a highest priority value of the determined priority values. The period associated with the time of use group can correspond to the identified current time. |
US09904934B1 |
Offline payment processing
This disclosure is directed to techniques and systems to enable customers to make secure electronic payments to entities (e.g., merchants, vending machines, etc.). The entities may be at brick-and-mortar locations or other locations where the entities are “offline” and may not readily receive payments from customers that have payment accounts stored and managed by a host. In various embodiments, a customer may direct the host to transfer a payment to a merchant after the customer and merchant exchange a code that includes a payment instruction. The code may be used in place of usernames, passwords, or other personal information and may be difficult for others (e.g., bystanders, etc.) to intercept. After the exchange of the code, the customer may authorize the host to a transfer payment to the merchant based on the payment instruction. |
US09904933B2 |
System and method for aggregation, analysis, presentation and monetization of pricing data for vehicles and other commodities
Embodiments of systems and methods for the aggregation, analysis, display and monetization of pricing data for commodities in general, and which may be particularly useful applied to vehicles are disclosed. Specifically, in certain embodiments, historical transaction data associated with a particular vehicle configuration may be obtained and processed to determine pricing data associated with the vehicle configuration. The historical transaction data or determined pricing data may then be presented in an intuitive manner. |
US09904932B2 |
Analyzing semantic places and related data from a plurality of location data reports
Computer-implemented methods and systems of determining semantic place data include receiving a plurality of location data reports from a plurality of mobile devices, partitioning them into localized segments, and estimating a geographic region bucket for each segment. For clustering canopies of localized segments identified as satisfying a potential geographic overlap characterization, an overlap score is calculated that correlates the overlap among actual geographic regions covered by movement of the mobile devices generating the localized segments in that given clustering canopy. A data structure that provides a hierarchical clustering configuration of the localized segments in each geographic region bucket is generated from the determined overlap scores. Additional semantic data for nodes in the data structure can also be provided. |
US09904930B2 |
Integrated and comprehensive advertising campaign management and optimization
Techniques are provided for integrated and comprehensive advertising campaign management and optimization. Techniques are provided in which advertisers, including large-budget advertisers such as Chief Marketing Officers, can easily, efficiently and optimally define, manage and implement advertising budgets and campaigns, from high to granular levels, across a variety of online and offline channels. Such channels can include Web, mobile, social networking, etc., as well as traditional advertising channels such as TV, radio, etc. Techniques are provided, for example, in which advertisers, with a single click or selection, can cause implementation of a customized, optimized and comprehensive online and offline advertising campaign. |
US09904926B2 |
Reducing overhead associated with large-scale purchasing
A method of verifying a receiving of an item by a purchaser is disclosed. An indication that the purchaser agreed to purchase the item is received. A record is added to a purchase history associated with the purchaser, the record including a data item pertaining to the purchasing of the item. A notification that the purchaser has scanned information from a label on a package is received. It is determined that the package contains the item based on a correspondence between the data item and the information from the label. The record is updated to include verification data that the purchaser received the item. |
US09904921B2 |
Systems and methods for tokenless authentication of consumers during payment transactions
A computer-implemented method for tokenless authentication of a paying consumer during a payment transaction uses a computing device having a processor and a memory. The method includes receiving a plurality of biometric data sets for a plurality of consumers. Each biometric data set includes at least a biometric image of a consumer and an associated payment account identifier. The method also includes receiving, from a first biometric input device communicatively coupled to the processor, a first biometric image of the paying consumer including an iris image. The method further includes determining a payment account associated with the paying consumer based on at least the first biometric image and the plurality of biometric data sets. The method also includes authenticating use of the payment account by the paying consumer for a payment transaction at the retail location by comparing the first biometric image to the plurality of biometric data sets. |
US09904912B2 |
Protecting transactions
Technology is described for protecting transactions. The technology may include a switching component that a user can employ to switch an associated mobile device into a secure mode so that a user can confirm the transaction. After initiating a transaction request, the user can confirm the transaction request by activating the switching component, which can cause the mobile device to switch into a secure mode. In the secure mode, the mobile device may prevent the mobile device from conducting various normal activities, such as executing applications, receiving input, providing output, and so forth. The switching component may disable other processing temporarily. Upon receiving the confirmation from the user, the switching component may send a confirmation communication to complete the transaction. |
US09904910B1 |
System controlled by data bearing records
A system controlled responsive at least in part to data read from data bearing records is operative to cause vehicle repair parts to be determined and furnished. Data read by a reader from a tag associated with a damaged vehicle is used to determine vehicle identifying data. A repair estimate calculation circuit (RECC) operates responsive to the read data to produce a needed parts record (NPR). The records produced by the RECC are operative to cause a vehicle repair entity (VRE) to be furnished the vehicle repair parts. |
US09904908B2 |
Computer-assisted and/or enabled systems, methods, techniques, services and user interfaces for conducting motor vehicle and other inspections
A computer-assisted inspection system including an integrated software suite provides vehicle inspection services for various clients. Features include automatic grading, flat car part picking, easy to use, ability to run in an environment where the inspector has no constant connectivity to the network (no guaranteed access to the internet, full data replication, intermittent connectivity, synch back up), inspectors can be geographically separated (e.g., all over the country), and the system is installable over the internet to provide efficient installation to far-flung install sites. |
US09904904B2 |
Determining time histories for financial information
Embodiments of a computer system that determines a time history are described. During operation, the computer system receives a single command which accesses information associated with the time history, wherein the command is received from a user, and the information is to be used by financial software. Then, the computer system generates multiple queries corresponding to the time history, where the multiple queries access multiple data sources. Next, the computer system executes the multiple queries to obtain the time history. |
US09904902B2 |
Methods and apparatus for pseudo master node mode operations within a hierarchical wireless network
Methods of operation and systems are described for node communication within a hierarchical wireless node network having a plurality of ID nodes on a first level, a master node on a second level, and a server at a third level. A first of the ID nodes associates with the master node. The first ID node cannot self-determine its location while the master node is adapted to self-determine its location via location circuitry. The first ID node captures relevant node information, such as profile data, security data, association data, shared data, and/or sensor data. The relevant node information may be captured from another ID node. The first ID node begins operating in a pseudo master node mode so that it can transmit the relevant node information to the server without using the master node as an intermediary to the server. |
US09904900B2 |
Systems and methods for on-demand transportation
Systems and methods relating to one or more ride-sharing vehicles, each having a driver mobile device in the vehicle to receive a ride-sharing request from one or more riders. The system includes a server coupled to the mobile device, wherein the server receives a group purchase of rides, the server determining first and second riders interested in purchasing rides and establishing a customer-defined group identity with the first and second rider being group members receiving a benefit, and wherein the one or more ride-sharing vehicles provides one or more rides by the first and second customer using the group identity. |
US09904898B2 |
Distributed order orchestration system with rules engine
A computer-readable medium, computer-implemented method, and system are provided. In one embodiment, a business rule is created, and, when a rule set does not already exist, a rule set is already created. The business rule is added to the rule set, and the rule set is added to a rule dictionary of a business process. The rule dictionary is stored in a process definition table. |
US09904896B2 |
Object management system
A method and apparatus for managing a configuration of a vehicle structure. Data sets are compared each representing the configuration of the vehicle structure at different phases in a lifecycle of the vehicle structure. Each of the data sets includes identifications of components for the vehicle structure. Differences are identified between the identifications of the components in the data sets. |
US09904895B2 |
Computer based guest monitoring and identification system and method
A guest monitoring and identification system is shown. The system comprises an RFID carried by a guest and includes therein programmed predetermined data identifying a guest. An activating transmitter transmits a monitoring signal over a designated area to be traversed by a guest having the RFID. A receiver receives from the RFID a transmitted data signal containing the programmed predetermined data identifying the guest. A guest identification and service information processor receives the transmitted data signal. The processor interprets the programmed predetermined data identifying a guest and generates data/information signals providing the name and service profile for an identified guest. A communication device communicates to service staff the name and service profile for an identified guest. |
US09904894B2 |
User specific location assignment and valuation
Systems and methods for assigning a user to a physical location. User data that includes characteristics of a user is acquired. The user is matched with an attendee based on the user characteristics and attendee characteristics of the attendee. A physical location is determined based on a location that the attendee matched to the user will occupy. A notification including an identification of the physical location, an identification of the attendee, and the attendee characteristics are sent to the user. Input is received that indicates whether the user wants to obtain a right to occupy the physical location and if the input indicates that the user wants to obtain the right to occupy the physical location, then the right to occupy the physical location is obtained. |
US09904889B2 |
Methods and systems for artificial cognition
Methods, systems and apparatus that provide for perceptual, cognitive, and motor behaviors in an integrated system implemented using neural architectures. Components of the system communicate using artificial neurons that implement neural networks. The connections between these networks form representations—referred to as semantic pointers—which model the various firing patterns of biological neural network connections. Semantic pointers can be thought of as elements of a neural vector space, and can implement a form of abstraction level filtering or compression, in which high-dimensional structures can be abstracted one or more times thereby reducing the number of dimensions needed to represent a particular structure. |
US09904888B2 |
Methods and a computing device for determining whether a mark is genuine
The present disclosure is generally directed to a method and computing device for determining whether a mark is genuine. According to various implementations, a computing device (or logic circuitry thereof) uses unintentionally-produced artifacts within a genuine mark to define an identifiable electronic signature, extracts certain attributes of the signature (such as deviation from the mean value for each band of the signature), and assigns numerical values to the extracted attributes in order to create a hash identifier that is significantly smaller than the electronic signature itself. The hash identifier is then used as an index for a database of electronic signatures (of genuine marks) to enhance the ease and speed with which numerous genuine signatures can be searched (e.g., in a database) and compared with signatures (of candidate marks. |
US09904887B2 |
Computing device with NFC and active load modulation
An RFID card includes a smartcard controller that receives power from a host device. The RFID card also includes a small inductive device capable of inductive coupling with an RFID reader. The small inductive device is small enough to fit in the form factor of a memory card or SIM card. Enhancement circuits enhance the usable read and write distance of the RFID card. |
US09904876B2 |
Modular print engines and modular print engine components
Modular print engines and print engine components that are usable in desktop card printers for personalizing plastic cards such as financial cards including credit and debit cards, identification cards, driver's licenses, and other personalized plastic cards. The modular nature of the print engines and print engine components permit alteration in the specific functionality of the desktop card printers depending upon, for example, the personalization requirements of the plastic cards and intended applications of the desktop card printers. In addition, the modular print engine components can be completely tested prior to installation into the modular print engines to ensure that the modular print engine components are working correctly prior to installation. Furthermore, the modular print engine components add flexibility to the desktop card printers as upgraded functionality and features can be introduced by developing new modular components. |
US09904873B2 |
Extracting card data with card models
Embodiments herein provide computer-implemented techniques for allowing a user computing device to extract financial card information using optical character recognition (“OCR”). Extracting financial card information may be improved by applying various classifiers and other transformations to the image data. For example, applying a linear classifier to the image to determine digit locations before applying the OCR algorithm allows the user computing device to use less processing capacity to extract accurate card data. The OCR application may train a classifier to use the wear patterns of a card to improve OCR algorithm performance. The OCR application may apply a linear classifier and then a nonlinear classifier to improve the performance and the accuracy of the OCR algorithm. The OCR application uses the known digit patterns used by typical credit and debit cards to improve the accuracy of the OCR algorithm. |
US09904872B2 |
Visual representations of photo albums
Systems and methods for selecting representative photos for a photo album are described. An example computing device may include a display, a logic device, and a storage device storing instructions executable by the logic device to, for each known individual recognized in one or more photos of the album, determine an affinity score for that known individual indicating a connection of that known individual to a) a user of the computing device and b) a context corresponding to the album. The instructions may be further executable to select one or more known individuals based on the affinity score to be included in a subset of the known individuals recognized in one or more photos of the album, and select a representative photo of each of the subset of the known individuals to be included in one or more of a highlight photoset and a cover photo for the album. |
US09904871B2 |
Deep convolutional neural network prediction of image professionalism
In an example embodiment, a deep convolutional neural network (DCNN) is created to assign a professionalism score to an input image. The professionalism score indicates a perceived professionalism of a subject of the input image. The DCNN is designed to automatically learn features of images relevant to the professionalism through a training process. |
US09904867B2 |
Systems and methods for extracting information about objects from scene information
Examples of various method and systems are provided for information extraction from scene information. 2D image information can be generated from 2D images of the scene that are overlapping at least part of one or more object(s). The 2D image information can be combined with 3D information about the scene incorporating at least part of the object(s) to generate projective geometry information. Clustered 3D information associated with the object(s) can be generated by partitioning and grouping 3D data points present in the 3D information. The clustered 3D information can be used to provide, e.g., measurement information, dimensions, geometric information, and/or topological information about the object(s). Segmented 2D information can also be generated from the 2D image information. Validated 2D and 3D information can be produced by cross-referencing between the projective geometry information, clustered 3D information, and/or segmented 2D image information, and used to label the object(s) in the scene. |
US09904866B1 |
Architectures for object recognition
The accuracy of an image matching and/or object identification process can be improved by utilizing a BCM network-based process that maintains higher order relationships between features in an image. A dataset of images can be converted to floating point vectors and then processed using a BCM-based approach. The resulting vectors can be stored as an image library for purposes of matching subsequently received images. When a match is located for a query image, for example, information associated with the matching image can be provided in order to help identify one or more objects in the received query image. |
US09904862B2 |
Three-dimensional printing modeling apparatus for hand-written characters and method thereof
A three-dimensional printing modeling apparatus for hand-written characters and a method thereof are disclosed. Based on the fact that hand-written characters can be finished in one stroke, the present disclosure includes identifying linking feature information of strokes inside or between the hand-written characters, forming a curve linked between the strokes inside or between the hand-written characters according to the linking feature information, and performing three-dimensional modeling of the hand-written characters to obtain a three-dimensional printing object. |
US09904861B2 |
Method for detecting target objects in a surveillance region
The present application presents methods and apparatuses for detecting target objects in an image sequence of a monitoring region. In some examples, such methods may include adjusting pixel values of images of the image sequence for interference components associated with at least one interfering object, generating the interference components associated with the at least one interfering object that is situated in the monitoring region, searching the image sequence for the target objects based on the adjusted pixel values, detecting a start of a predetermined sequence of motions associated with the interfering object, and computing an instantaneous position of the at least one interfering object during the predetermined sequence of motions, wherein adjusting the pixel values of the images is based upon the instantaneous position. |
US09904855B2 |
Atomic scenes for scalable traffic scene recognition in monocular videos
Systems and methods are disclosed to provide an Advanced Warning System (AWS) for a driver of a vehicle, by capturing traffic scene types from a single camera video; generating real-time monocular SFM and 2D object detection from the single camera video; detecting a ground plane from the real-time monocular SFM and the 2D object detection; performing dense 3D estimation from the real-time monocular SFM and the 2D object detection; generating a joint 3D object localization from the ground plane and dense 3D estimation; and communicating a situation that requires caution to the driver. |
US09904854B2 |
Image processing device and image processing method
A computer determines a type of change in a state of a bed on the basis of a correspondence relationship between a boundary that indicates a first bed area in a first image and a line segment represented by an edge detected from a second image. The second image is an image that is captured after the first image is captured, and the change in the state of the bed is a state change that occurs during a time period from the capturing of the first image to the capturing of the second image. |
US09904853B2 |
Monitoring camera device and related region-based motion detection method
A region-based motion detection method and a related monitoring camera device are applied to detect an object's motion on a frame. The region-based motion detection method includes dividing a current frame into a plurality of first template arrays, dividing a first reference frame into a plurality of second template arrays, acquiring characteristic values of one of the first template arrays and a corresponding second template array, comparing the characteristic value of the foresaid first template array with the characteristic value of the corresponding second template array by matching process, and executing motion detection of the current frame according to a matching result. |
US09904851B2 |
Exploiting visual information for enhancing audio signals via source separation and beamforming
A system for exploiting visual information for enhancing audio signals via source separation and beamforming is disclosed. The system may obtain visual content associated with an environment of a user, and may extract, from the visual content, metadata associated with the environment. The system may determine a location of the user based on the extracted metadata. Additionally, the system may load, based on the location, an audio profile corresponding to the location of the user. The system may also load a user profile of the user that includes audio data associated with the user. Furthermore, the system may cancel, based on the audio profile and user profile, noise from the environment of the user. Moreover, the system may include adjusting, based on the audio profile and user profile, an audio signal generated by the user so as to enhance the audio signal during a communications session of the user. |
US09904850B2 |
Fast recognition algorithm processing, systems and methods
Systems and methods of quickly recognizing or differentiating many objects are presented. Contemplated systems include an object model database storing recognition models associated with known modeled objects. The object identifiers can be indexed in the object model database based on recognition features derived from key frames of the modeled object. Such objects are recognized by a recognition engine at a later time. The recognition engine can construct a recognition strategy based on a current context where the recognition strategy includes rules for executing one or more recognition algorithms on a digital representation of a scene. The recognition engine can recognize an object from the object model database, and then attempt to identify key frame bundles that are contextually relevant, which can then be used to track the object or to query a content database for content information. |
US09904849B2 |
System for simplified generation of systems for broad area geospatial object detection
A system for simplified generation of systems for analysis of satellite images to geolocate one or more objects of interest. A plurality of training images labeled for a study object or objects with irrelevant features loaded into a preexisting feature identification subsystem causes automated generation of models for the study object. This model is used to parameterize pre-engineered machine learning elements that are running a preprogrammed machine learning protocol. Training images with the study are used to train object recognition filters. This filter is used to identify the study object in unanalyzed images. The system reports results in a requestor's preferred format. |
US09904847B2 |
System for recognizing multiple object input and method and product for same
Methods, systems, and computer program products are provided for the recognition of input of multiple objects into a computing device, wherein the computing device has a processor and at least one application for recognizing the input under control of the processor. The application is configured to determine at least one geometrical feature of a plurality of elements of the input, and compare the determined at least one geometrical feature with at least one pre-determined geometrical threshold to determine a positive or negative result. If the comparison yields a negative result, the application considers the elements as belonging to one object in the recognition of the input. If the comparison yields a positive result, the application considers the elements as belonging to multiple objects in the recognition of the input. |
US09904846B2 |
Pedestrian behavior predicting device and pedestrian behavior predicting method
According to the present invention, a pedestrian is detected from an imaged image and a partial image including the pedestrian is extracted, shape information of the pedestrian acquired from the extracted partial image is accumulated and the shape information of a predetermined time before and the current shape information are compared using the accumulated shape information to detect change in the movement of the pedestrian, discontinuous movement estimating information indicating a discontinuous movement of the pedestrian that occurs following the change in the movement of the pedestrian is acquired from a storage means at the time the change in the movement of the pedestrian is detected, and a behavior of the pedestrian is predicted using the acquired discontinuous movement estimating information. |
US09904844B1 |
Clustering large database of images using multilevel clustering approach for optimized face recognition process
In multilevel clustering for a face recognition process, the first stage clustering is performed on each computing node, using the first x vector coefficients. From the resulting k clusters created in the first stage, a limited number of clusters are selected on which the second stage clustering is performed, using the next y vector coefficients. The search for a matching image is then limited to these selected clusters. Computational costs are reduced at the first stage clustering by using just the first x vector coefficients. Computational costs for the second stage clustering are also reduced by performing the second stage only with the limited number of clusters on a limited number of computing nodes. In this manner, the overall computational costs in the face recognition process is significantly reduced while maintaining a desired level of accuracy. |
US09904840B2 |
Fingerprint recognition method and apparatus
A method for fingerprint recognition utilizes an auto encode decode network to perform feature extraction on a first fingerprint image acquired by a fingerprint sensor and a second fingerprint image retrieved from a database. First and second fingerprint features corresponding to the first and second fingerprint images are thus obtained. The first and second fingerprint features may have equal dimensionality. Dimensionality reduction may be performed on the first and second fingerprint features to respectively obtain third and fourth fingerprint features. The third and fourth fingerprint features may have equal dimensionality. A cosine distance between the third and fourth finger print features may determine whether the first fingerprint image and the second fingerprint image belong to a same fingerprint. |
US09904839B2 |
Fingerprint detection apparatus, mobile device using the same and manufacturing method thereof
A fingerprint detection apparatus, a mobile device using the same and a manufacturing method thereof are provided. The fingerprint detection apparatus comprises an image sensing integrated circuit and a spatial filter disposed on the image sensing integrated circuit. The spatial filter has adjacent light tunnels for restricting an incident angle of light to the image sensing integrated circuit to prevent scattered light from entering the image sensing integrated circuit. |
US09904836B2 |
Reducing edge effects within segmented acoustic imaging systems
An acoustic imaging system can include an array of transducers in acoustic communication with a substrate configured to receive a subject for imaging. The transducers can independently or cooperatively send an acoustic pulse into the substrate toward the subject. In many examples, a number of adjacently-positioned transducers are activated substantially simultaneously so as to generate a plane wave into the substrate. After the plane wave has had an opportunity to propagate through the substrate, reflect from the top surface, and propagate through the substrate again, the electrical signals can be obtained from the transducers and an image of the subject can be assembled. In many embodiments, the plurality of transducers can be driven and read in groups such as non-intersecting (disjoint) sets or subarrays. |
US09904835B1 |
System and method for detecting missing fingers in a fingerprint slap
A computer-implemented method that includes: accessing data encoding a fingerprint slap scan image, the fingerprint slap scan image including fingerprints of a number of fingers from a subject's hand; performing a radon transform of the fingerprint slap scan image to generate a sinogram, the sinogram represented on a grid having a lateral span axis and a projection angle axis; automatically identifying patterns of segments on the sinogram as finger lines, each finger lines corresponding to a particular finger present on the fingerprint slap scan image; and based on identified finger lines on the sinogram, automatically determining whether one or more fingers are missing on the fingerprint slap scan image. |
US09904830B2 |
Convertible handheld reader device
A convertible handheld reader device is provided. The convertible handheld reader device includes a network assembly comprising a network component and a computing component, at least one reader coupled to the computing component and reading at least one of a barcode or Radio-frequency identification (RFID), a wearable wrist band unit having a first wrist band unit and a second wrist band unit, wherein each of the first wrist band unit and the second wrist band unit is coupled to the network assembly, the first wrist band unit is extended in a different direction from the second wrist band unit. The first wrist band unit has an attachment component and the attachment component is detachably attached to one of the network assembly and the second wrist band unit. When the attachment component is attached to one of the network assembly and the second wrist band unit, a structure of the first wrist band, the network assembly, and the second wrist band is converted from a wearable position to a handheld position. |
US09904823B2 |
Antenna for a read/write unit for radio frequency identification (RFID) arrangements, and read/write unit for operation with an external antenna
An antenna, a read/write unit, an radio frequency identification (RFID) arrangement and a method, wherein the antenna is configured to connect to an external antenna connection of the read/write unit via an antenna line, wherein the antenna includes a data memory having type information and/or having property information, the content of the data memory being readable by the read/write unit, and includes a measuring device for determining a value of the field strength or power of a radio frequency signal fed into the antenna by the read/write unit, and includes a device for informing the read/write unit about the value being reached or exceeded. |
US09904816B1 |
Implementation of a proximity-based system for object tracking and automatic application initialization
Various apparatuses for use in a wireless network are disclosed. A first apparatus comprises two antennae oriented orthogonally, a biosensor capable of reading a user's fingerprint, and a housing comprising a groove for guiding a user's finger, the groove physically separating the antennae, effectively creating a radome for each antenna. A second apparatus comprises a printed circuit board (PCB) a port, a shell enclosing the PCB, and at least one horseshoe gasket, the shell and gasket creating a waterproof seal isolating the port and the external environment from the rest of the PCB. A third apparatus comprising a bracket for attaching a housing to a building material, an aiming annulus for aiming the housing and the housing. Wherein two or more of the bracket, aiming annulus and housing may be joined in order to mount and aim the housing using one or more structures on the components. |
US09904811B2 |
Tamper-proof electronic packages with two-phase dielectric fluid
Tamper-proof electronic packages and fabrication methods are provided including an enclosure enclosing, at least in part, at least one electronic component within a secure volume, a two-phase dielectric fluid within the secure volume, and a tamper-respondent detector. The tamper-respondent detector monitors, at least in part, temperature and pressure of the two-phase dielectric fluid. In operation, the two-phase dielectric fluid deviates from an established saturation line of the two-phase dielectric fluid within the secure volume with an intrusion event into the secure volume, and the tamper-respondent detector detects, from the monitoring of the temperature and pressure of the two-phase dielectric fluid, the deviation from the established saturation line, and thereby occurrence of the intrusion event. |
US09904808B2 |
Numeric keypad encryption for augmented reality devices
Embodiments of the present invention provide methods and systems for numeric keypad encryption using an augmented reality device. The method may include establishing a secure connection to an augmented reality device. A random keypad layout is generated and sent to the augmented reality device. The random keypad layout is displayed in the augmented reality view over a real-world numeric keypad. |
US09904802B2 |
System on chip
A system on chip having two or more responder units and two or more protection units is provided. Each of the responder units comprises a set of responder elements. Each of the protection units is associated with and protects one of the responder units and is arranged to provide a group mapping. The group mapping assigns one or more group identifiers to each of the responder elements of the respective responder unit. |
US09904801B2 |
Moving a portion of a streaming application to a public cloud based on sensitive data
A streams manager determines which portions of a streaming application process sensitive data, and when performance of the streaming application needs to be increased, selects based on the sensitive data which portion(s) of the streaming application can be moved to a public cloud. The streams manager then interacts with the public cloud manager to move the selected portion(s) of the streaming application to the public cloud. This may include cloning of processing elements or operators to a public cloud, then splitting tuple attributes so tuple attributes that do not include sensitive data can be processed in the public cloud while tuple attributes that include sensitive data are processed in a secure system. The tuple attributes are then recombined into full tuples in the secure system. The streams manager thus protects the integrity of sensitive data while still taking advantage of the additional resources available in a public cloud. |
US09904798B2 |
Focused personal identifying information redaction
Personal information is retrieved from at least one data source and personal information associated with a first individual is identified. A document is generated that is a version of a first document, wherein the personal information associated with the first individual cannot be discerned. |
US09904797B2 |
Method and apparatus for providing data based on granularity information
An approach is provided for providing data based on granularity information. The policy platform determines to act on a request, from an application or a service, for data associated with a device, a user of the device or a combination thereof. Next, the policy platform determines a granularity level for the data based, at least in part, on at least one privacy policy associated with the data, the application, the service, the device, the user of the device or a combination thereof. Then, the policy platform processes and/or facilitates a processing of the data to generate transformed data based, at least in part, on the granularity level. |
US09904796B2 |
Leading system determination
Embodiments described herein relate to an improved technique for blocking access to data records associated with an entity in a network comprising a plurality of systems. The operations include accessing and analyzing determination criteria associated with the entity to determine in which systems the data should be blocked. An end-of-purpose determination can be performed in one or more of the systems based on whether the current system is a master system, a dependent system of the master system, or a standalone system of the plurality of systems. Access to the entity data records can then be blocked from the appropriate systems when an end of purpose for the data has been reached for any processes running on the system. |
US09904795B2 |
Implementing extent granularity authorization command flow processing in CAPI adapters
A method, system and computer program product are provided for implementing block extent granularity authorization command flow processing for a Coherent Accelerator Processor Interface (CAPI) adapter. An Application Client builds a command including start LBA and number of LBAs and Child Authorization Handle. The Application Client sends the command directly to the CAPI Adapter via the Application Clients CAPI Server Registers assigned to the specific Application Client. The CAPI adapter validate that the requesting Client is authorized to perform the command using the Authorization Handle and the receiving CAPI Server Register address. The CAPI Adapter executes the validated command and sends completion back to the Application Client. |
US09904792B1 |
Inhibition of heap-spray attacks
A method for protecting a computer includes identifying potential NOP-sled target addresses in a heap within the memory of the computer. Using a security program module running on the computer, blocks of the memory containing the identified target addresses are preallocated so as to prevent exploitation of the identified target addresses by a heap-spray attack. |
US09904791B1 |
Processing device having secure container for accessing enterprise data over a network
A processing device comprises a processor coupled to a memory and implements a secure container for accessing data over a network. The secure container is configured to interact with backend infrastructure of an enterprise in order to provide secure access to enterprise data at the processing device. The secure container may be configured in accordance with an access model that implements multiple-factor authentication in combination with active directory authentication. The backend infrastructure may comprise, for example, a threat management gateway and an application control engine coupled to the threat management gateway and configured to support the multi-factor authentication, as well as additional components such as an active directory, a data loss prevention engine adapted to process communications between the backend infrastructure and the secure container, and a proxy server providing access to a content adaptation server configured to filter communications received from the processing device. |
US09904788B2 |
Redundant key management
A data storage service redundantly stores data and keys used to encrypt the data. Data objects are encrypted with first cryptographic keys. The first cryptographic keys are encrypted by second cryptographic keys. The first cryptographic keys and second cryptographic keys are redundantly stored in a data storage system to enable access of the data objects, such as to respond to requests to retrieve the data objects. The second cryptographic keys may be encrypted by third keys and redundantly stored in the event access to a second cryptographic key is lost. |
US09904787B2 |
Identifying stored security vulnerabilities in computer software applications
Identifying stored security vulnerabilities in computer software applications by providing via a first interface of a computer software application during execution of the computer software application, test data having a characteristic of a malicious payload, where an interaction performed with the first interface resulted in data being written to a location within a persistent data store, and where an interaction performed with a second interface of the computer software application resulted in data being read from the location within the persistent data store, and identifying a stored security vulnerability associated with the computer software application if the test data are written to the persistent data store at the location. |
US09904786B2 |
Identifying stored security vulnerabilities in computer software applications
Identifying stored security vulnerabilities in computer software applications by providing via a first interface of a computer software application during execution of the computer software application, test data having a characteristic of a malicious payload, where an interaction performed with the first interface resulted in data being written to a location within a persistent data store, and where an interaction performed with a second interface of the computer software application resulted in data being read from the location within the persistent data store, and identifying a stored security vulnerability associated with the computer software application if the test data are written to the persistent data store at the location. |
US09904783B2 |
Information processing method and electronic device
An information processing method and an electronic device are provided. The method includes: detecting a first operation of a first application, where the first operation is for displaying a first interface corresponding to the first application on a display of the electronic device; determining whether the first application is identical to one of M applications to obtain a first determination result where M is a positive integer, where each of the M applications has at least one corresponding interface currently displayed on the display of the electronic device; and generating and outputting a prompt message if the first determination result indicates that the first application is not identical to any one of the M applications. |
US09904782B2 |
Synchronous execution of designated computing events using hardware-assisted virtualization
Providing synchronous processing of the designated computing events using hardware-assisted virtualization technology by performing at least the following: detecting a designated computing event using a high priority, low capability routine, creating a copy code in an alternate memory space of a first code located in a first memory space, modifying the copy code to call for analysis of at least a portion of the copy code that corresponds to the first code, switching execution of the first code with the modified copy code using an address translation data structure that translates a guest memory address to a host memory address after a return of the high priority, low capability routine; and analyzing synchronously the at least a portion of the code within the copy code that corresponds to the first code based on the replacement of the first code with the modified copy code. |
US09904781B2 |
Emulating expected network communications to applications in a virtual machine environment
One example method includes executing a software application within the virtual machine environment; during execution of the software application, detecting a network request sent from the software application within the virtual machine environment, the network request formatted according to a particular network protocol; in response to detecting the network request: determining an expected response to the network request based on at least one of information included in the network request or the particular network protocol; and providing the expected response to the software application within the virtual machine environment. |
US09904768B2 |
Methods and apparatus for presenting alternative hypotheses for medical facts
Techniques for presenting alternative hypotheses for medical facts may include identifying, using at least one statistical fact extraction model, a plurality of alternative hypotheses for a medical fact to be extracted from a portion of text documenting a patient encounter. At least two of the alternative hypotheses may be selected, and the selected hypotheses may be presented to a user documenting the patient encounter. |
US09904765B2 |
Monitoring medical device states to determine update timing
A medical device operates in conjunction with a medical device controller. The medical device can include a low-power processor that monitors the states of the medical device. The low-power processor can determine to wake data processors and memory in the medical device based on the states. The data processors can further determine the current versions of executable code and configuration information associated with the data processors by polling a network server or a medical device controller to determine whether at least one update to the current versions is available. If an update is available, the medical device can receive the at least one update from the network server or medical device controller, and deploy it to the appropriate data processor. After deployment the medical device controller can activate the at least one update at a clinically appropriate time. |
US09904761B2 |
Self correction for spatial orientation and motion of portable clinical analyzers
The present invention covers the integration and utility of accelerometer features into a clinical analysis system. For example, measurement of dynamic acceleration and orientation of a blood-testing instrument with respect to Earth's gravitational field may be used to determine reliability of a test procedure and optionally to provide corrective elements thereof. |
US09904745B2 |
Method and apparatus for driving simulation of vehicle
A method and an apparatus for driving simulation of a vehicle are provided and obtain various and more accurate simulation data without directly performing a test for an actual vehicle. In particular the apparatus performs the driving simulation of the vehicle based on a power train model and a dynamic model of the vehicle and a road environment model. |
US09904741B2 |
Colocation and anticolocation in colocation data centers via elastic nets
An application processing system for placing applications and their associated data into a colocation data center, wherein an application placement module is configured to perform the method of steps including: constructing a facility communication node graph; constructing a composite elastic map which represents the compute nodes in the colocation data center; associating a force function between two nodes based on communication bandwidth; constructing an application usage data space; inserting the node graph into the application data space; assigning the applications to the compute nodes; associating a force function between each application and each compute node based on the assignment; determining an elastic map energy (EME) for the elastic map, wherein the EME is the total energy of the system; and assigning the real-world applications to the real-world compute nodes in the data center if the EME is less than a threshold energy. |
US09904739B2 |
Service provider system and service provider method
A service provider system and a service provider method are disclosed herein. The service provider system includes a service provider device and a mobile device. The mobile device includes a network module, a processing module and a storage module. The network module of the mobile device connects to the service provider device through a wireless network and receives a service description file provided by the service provider device. The processing module is configured to execute a program code stored in the storage module so as to implement a synthesizing method of an application program. The synthesizing method includes the following steps: parsing multiple service description data from the service description file; and generating an application program corresponding to the service description file according to the service description data and a resource list corresponding to the mobile device. |
US09904738B2 |
Web tracking protection
Technologies and implementations for providing web tracking protection are generally disclosed. |
US09904737B2 |
Method for providing contents curation service and an electronic device thereof
A method for providing a contents curation service in an electronic device includes selecting a part or entirety of the contents, detecting that the selected part or entirety of the contents moves to an area of a screen, and storing the selected part or entirety of the contents to a folder, if the selected part or entirety of the contents moves to the area of the screen. An electronic includes a processor configured to select a part or entirety of the content, a touch screen configured to detect that the selected part or entirety of the contents moves to an area of a screen, and a memory configured to store the selected part or entirety of the content to a folder, if it is detected that the selected part or entirety of the content moves to the area of the screen. |
US09904734B2 |
Multimode image and spectral reader
A multi-mode reader instrument capable of detecting and determining digital data from a signal from one or more markers, indicia or taggants on an object, the markers, indicia or taggants such as a bar code, a QR code, an RFID, an optical compound, a fluorescent compound, a phosphorescent compound, a DNA taggant, an upconverting phosphor (UCP), a chemical dye, a digitized image, a radioactive compound, an olfactory compound or a thermal attribute of the object is provided. Also, provided is a method and a system for identifying an object, the system includes: a multi-mode reader instrument for detecting data from a signal from one or more markers, indicia or taggants on an object and assignment of digital code for the marker and a database for securing and retrieving information relevant to the item. |
US09904732B2 |
Dynamic index and search engine server
An apparatus for, computer software for, and method of providing personalized search capabilities of internet web pages comprising: providing an index server maintaining a dynamic index to internet web pages and employing a hierarchical plurality of topic categories; permitting a non-administrative end-user to specify any subset of the plurality of topic categories; and adding to an internet web page controlled by the user link information permitting execution of searches of the index server in any category of the subset but only of categories in the subset. |
US09904728B2 |
Messaging digest
A method and associated system for processing messages. An action to be subsequently performed on the message is identified. In response to the action being identified, one or more word objects are extracted from the message. A first combination of one or more concepts is derived. from the one or more word objects. Each concept of the one or more concepts is associated with at least one object of the one or more word objects. Each word object is an instance of the associated concept. A first interest value associated with the first combination is determined. In response to a determination that the first interest value is at least a specified first threshold value, a concept interest dataset that includes combinations of concepts is updated. The updated concept interest dataset includes the first combination and a cumulative interest value that encompasses the first interest value. |
US09904726B2 |
Apparatus and method for automated and assisted patent claim mapping and expense planning
An apparatus and computer implemented method that include obtaining, into a computer, text of a patent, automatically finding and extracting, using the computer, a set of claim text from the patent text, identifying, using the computer, text of independent claims from the set of claim text, displaying in a first row on a computer monitor the text of the independent claims, automatically determining a plurality of preliminary scope-concept phrases from the text of the independent claims, displaying in a second row on the computer monitor the text of the plurality of preliminary scope-concept phrases, eliciting and receiving user input to specify a first one of the plurality of preliminary scope-concepts phrases, and highlighting each occurrence of the specified first one of the plurality of preliminary scope-concept phrases in a plurality of the independent claims displayed in the first row. A scope concept builder tool is also provided. |
US09904724B1 |
Method and apparatus for message based security audit logging
Example embodiments of the present invention provide a method, an apparatus, and a computer program product for message based security audit logging. The method includes receiving an event notification related to an event in a storage resource management service, processing the event notification according to a messaging fabric and an ontology model, and, according to the processed event notification, persisting an audit log entry corresponding to the event. |
US09904715B1 |
Intelligent data integration system
Data objects stored in a data store include data attribute(s) and associated value(s) for the attributes. Data analysis tools (DATs) stored in a data store are associated with reference data attritbute(s). The data objects are identified by one or more DATs based on each reference data attribute(s) of a corresponding DAT matching one of the data attribute(s) of the corresponding data object(s) and independent of the value for the data attribute(s). The DATs generate an additional data object as a function of the identified data object, and the additional data object is stored in the data store. |
US09904712B2 |
Systems, methods, and interfaces for aggregating and providing information regarding legal professionals
Systems, methods, interfaces, and software can facilitate identification of law firms and/or legal professionals. For example, an informational retrieval system may include a database comprising information regarding lawyers and a server is configured to: receive a query regarding a legal issue from at least one client access device; associate the query with a corresponding legal context; generate a list of lawyer names contained in the database; calculate at least one legal experience indicator for each of the lawyer names; and rank the lawyer names in the list according to the calculated legal experience indicator associated with each of the lawyer names and according to the corresponding legal context associated with the query. |
US09904707B1 |
Systems and methods for optimized database sampling
In one embodiment, a method includes receiving a request to execute a database statement in satisfaction of a time constraint. The method further includes determining a pattern of the database statement. Additionally, the method includes comparing the pattern to pattern metadata associated with cached samples of the distributed database. Also, the method includes, responsive to a determination that the comparing has resulted in one or more matches, selecting a target sample and causing the database statement to be executed on the target sample. The method further includes, responsive to a determination that the target sample resolves the database statement in satisfaction of the time constraint, returning a resulting dataset to a requestor. Moreover, the method includes, responsive to a determination that the target sample does not resolve the database statement in satisfaction of the time constraint, causing a new real-time sampling of the distributed database to be executed. |
US09904705B2 |
Data table performance optimization
A computer system to optimize a database is provided. A processor determines a frequency of search for a plurality of columns in a table. A processor determines a length of the plurality of columns. A processor determines a rank for the plurality of columns based, at least in part, on both the frequency of search and the length of the plurality of columns. A processor generates a first set of combinations of the plurality of columns. A processor determines an optimization of the first set of combinations of the plurality of columns. A processor selects an optimal combination of the first set of combinations, wherein the optimization of the optimal combination is greater than the optimization for all other combinations in the first set of combinations. A processor moves the plurality of columns excluded from the optimal combination. |
US09904700B2 |
Method and apparatus for guaranteeing and optimizing data exchange in mobile M2M communication with restricted connectivity
A method for transmitting data from a mobile unit to a backend system includes, when connectivity is present between the mobile unit and the backend system: receiving, by the mobile unit, a master index from the backend system, deleting, by the mobile unit, data of the local database which are contained in the master database based on a comparison of a local index with the master index and updating the local index, transmitting, by the mobile unit, data stored in the local database which are not yet contained in the master database, receiving and storing a new master index from the backend system, and deleting the transmitted data of the local database based on a comparison of the updated local index with the new master index and further updating the local index. |
US09904695B2 |
Efficient sorting of large data set with duplicate values
Techniques are disclosed for sorting an input data set. A sort tool determines a distribution of values of a data set that includes a plurality of data records. The sort tool partitions the data set into a plurality of subsets based on the distribution. Each of the data records is inserted into one of the subsets based on a corresponding sort value of the data record. The sort tool identifies one or more of the subsets that contain at least two distinct sort values. In each of the identified subsets, the data records are sorted by a corresponding sort value of the data record. |
US09904692B2 |
System and method for creating custom composite images from layered images in a client-server environment
In response to receiving a request from a client device, a first image can be determined based at least in part on an image identification in the request. The first image may be associated with a plurality of layers. A subset of the plurality of layers can be determined. Information configured to enable a selection of at least one layer in the subset may be sent to the client device. In response to receiving a request from a client device, a composite image can be obtained based at least in part on a selection of at least one layer of a plurality of layers of an image received in the request. The composite image may be dynamically generated or retrieved from a storage device. The composite image and/or information associated with the composite image can be sent to the client device. |
US09904690B1 |
Method and system for determining correlated geographic areas
A method of determining a geographic area having similar characteristics to a first geographic area associated with a user includes receiving a plurality of inputs related to characteristics of a plurality of geographic areas and constructing a feature vector for each of the geographic areas based on the plurality of inputs. The method also includes receiving a plurality of inputs related to characteristics of the first geographic area and constructing a feature vector for the first geographic area associated with the user. The method further includes receiving an input from the user related to a city of interest, comparing the feature vector for the first geographic area to feature vectors associated with geographic areas located in or adjacent to the city of interest, and ranking the geographic areas located in or adjacent to the city of interest using the comparing step. |
US09904686B2 |
Method and terminal for creating new folder on touch screen equipment
A method and terminal for creating a new folder on a touch screen device are provided. One method includes: creating a new folder at any vacant position on a current interface after a touch screen device detects that an object on the current interface is selected and dragged to a specific area and released, and saving the object in the new folder. Another method includes: creating a new folder at any vacant position on a current interface after the touch screen device detects that at least two objects on the current interface are successively selected and within a preset time range, dragged in succession to a specific area and released; and saving the at least two objects in the new folder. |
US09904683B2 |
Displaying at least one categorized message based on a percentage
Displaying at least one categorized message based on a percentage includes retrieving a number of messages, categorizing at least one message from the number of messages into at least one category to create categorized messages, identifying a percentage, the percentage representing a portion of a display utilized for displaying the at least one category associated with the categorized messages, determining, based on the percentage, at least one of the categorized messages to present in the portion of the display, and presenting, in the portion of the display, the at least one of the categorized messages. |
US09904681B2 |
Method and apparatus for assembling a set of documents related to a triggering item
The present invention relates to a method and apparatus for assembling a set of documents related to a triggering item. One embodiment of a method for assembling a set of electronic documents related to an electronic triggering item detected by a computing device being operated by a user includes automatically extracting by the computing device a set of features from the triggering item, without receiving a request by the user to assemble the set of electronic documents, and assembling as the set of electronic documents a plurality of documents that is relevant to the set of features, wherein the plurality of documents is retrieved from a plurality of different types of electronic sources. |
US09904680B2 |
Automated milestone prediction and presentation
Various embodiments are generally directed to automated identification and prediction of game milestones, and to automated presentation of those predictions and of the milestones as they are achieved. A method comprises searching statistical data for an indication of a milestone specified in an alerts data towards achievement of which an extent of progress has been made; identifying the milestone in the statistical data; predicting a time required to achieve the milestone; comparing the predicted time required to a condition specified in the alerts data; comparing the predicted time required to an indication of time that remains in scheduled game events in a game season in a scheduling data; and transmitting an alert that predicts achievement of the milestone based on the predicted time required meeting the condition and on the time that remains in the season providing at least the predicted time required. Other embodiments are described and claimed herein. |
US09904677B2 |
Data processing device for contextual analysis and method for constructing script model
According to an embodiment, a data processing device includes an extractor, a generator, and a constructor. The extractor is configured to extract, from a document having been subjected to predicate argument structure analysis and anaphora resolution, an element sequence including elements each being a combination of predicate having a shared argument and case type information of the shared argument, together with the shared argument. The generator is configured to produce case example data expressed by a feature vector for each attention element which is one of the elements. The feature vector includes feature value(s) about a sub-sequence having the attention element and feature value(s) about a sequence of the shared argument corresponding to the sub-sequence. The constructor is configured to construct a script model for estimating the elements each following antecedent context by performing machine learning based on a discriminative model using the case example data. |
US09904676B2 |
Method and apparatus for expressing time in an output text
Methods, apparatuses, and computer program products are described herein that are configured to express a time in an output text. In some example embodiments, a method is provided that comprises identifying a time period to be described linguistically in an output text. The method of this embodiment may also include identifying a communicative context for the output text. The method of this embodiment may also include determining one or more temporal reference frames that are applicable to the time period and a domain defined by the communicative context. The method of this embodiment may also include generating a phrase specification that linguistically describes the time period based on the descriptor that is defined by a temporal reference frame of the one or more temporal reference frames. In some examples, the descriptor specifies a time window that is inclusive of at least a portion of the time period to be described linguistically. |
US09904672B2 |
Machine-translation based corrections
Technology is disclosed for building correction models that correct natural language snippets. Correction models can include rules comprising pairs of word sequences identified from viable correction snippet pairs, where a first sequence of words in the pair should be replaced with a second sequence of words in the pair. Viable correction snippet pairs can be identified from among pairs of language snippets, such as a post to a social media website and a subsequent update to that post. Viable corrections can be the snippet pairs that both have no more unaligned words than a word alignment threshold and have no aligned word pair with a character edit difference above an edit distance threshold. In some implementations, word alignments can be found by aligning all the characters between a pair of language snippets, and identifying aligned words as those that have at least one aligned letter in common. |
US09904663B2 |
Information processing apparatus, information processing method, and information processing program
Provided is an information processing apparatus including: a detection unit for detecting quotations from a plurality of texts from other texts; a conversion unit for deleting or replacing with predetermined character strings the quotations in a plurality of the texts; and a text mining unit for executing text mining for a plurality of the converted texts. |
US09904660B1 |
Nonparametric method for measuring clustered level of time rank in binary data
A nonparametric method for measuring a clustered level of time rank in binary data is provided. A sample set of engineering data is classified into a target group and a reference group, and a rank is set to each sample in a chronological order. A minimum rank and a maximum rank are obtained from the target group, by which a characteristic period is defined. In the characteristic period, an average rank values of the target group and an average rank value of the reference group are calculated. After creating a dummy sample set, the dummy sample set is incorporated into an analysis data set and a new rank is set based on a comparison result of the average rank value of the target group and the average rank value of the reference group, and the minimum rank and the maximum rank of the characteristic period to obtain adjusted test data. A Mann-Whitney U test is executed on the adjusted test data to obtain a clustered level index of time rank in binary data. |
US09904654B2 |
Providing I2C bus over ethernet
In one embodiment, a method includes receiving a request from a remote distributed fabric protocol (DFP) system master, using a dedicated processor of a DFP system member, to register local I2C devices on the DFP system member, and sending an acknowledgement including a list of local I2C bus devices back to the DFP system master using the dedicated processor of the DFP system member. The acknowledgement present on the DFP system member. In another embodiment, a system includes a local processor, one or more local I2C bus devices, and a dedicated processor electrically coupled to the local I2C bus devices. The dedicated processor is configured to route interrupts from the local I2C bus devices to the local processor, and expose the local I2C devices to a remote DFP system master by sending details of the local I2C bus devices to the remote DFP system master. |
US09904650B2 |
Configuring a remote M-PHY
An interface for low power, high bandwidth communications between units in a device in provided herein. The interface comprises a USB 3.0 system interface and a SuperSpeed inter-chip (SSIC) protocol adaptor configured to facilitate communications between the USB3.0 system interface and an M-PHY interface, wherein the SSIC is configured to issue remote register access protocol (RRAP) commands through a local M-PHY to a remote M-PHY in a low speed burst mode. |
US09904649B2 |
Dual interface card with backward and forward compatibility
A memory card includes a first set of contacts and a second set of contacts. A first edge of the memory card includes an indentation. Insertion of the memory card into a first slot of a host device engages the first set of contacts. The indentation is configured to accept a pivoting lever arm located in the first slot when the memory card is inserted into the first slot. |
US09904643B2 |
Electronic system and method of switching operating systems thereof
An electronic system including a first electronic device and a second electronic device and a method of switching operating systems thereof are provided. The first electronic device executes a first operating system. The second electronic device executes a second operating system. The operating system switch unit of the first electronic device includes an input and output switch unit and a logic determining circuit unit. The logic determining circuit unit determines whether the second electronic device is connected to the first electronic device to generate the connection information and determines whether to receive switch information which is generated by enabling a switch. The input and output switch unit determines to provide the control right of the peripheral input and output device of the first electronic device to the first electronic device or the second electronic device according to the connection information and the switch information, and the first operating system and the second operating system is selectively executed accordingly. As a result, the operating system of multiple electronic devices, respectively, can be freely switched to be executed at one of the electronic devices via the peripheral input and output device of one of the electronic devices. |
US09904642B2 |
Detection circuit of universal serial bus
A detection circuit of Universal Serial Bus (USB) is provided. A port of the USB has a first configuration channel pin and a second configuration channel pin, and the first and second configuration channel pins are disposed on opposite sides. The detection circuit includes a switch unit and a detection unit. The switch unit is coupled to the first and second configuration channel pins to sequentially provide a first voltage level of the first configuration channel pin and a second voltage level of the second configuration channel pin. The detection unit is coupled to the switch unit and correspondingly provides a state reference signal according to the first and second voltage levels. |
US09904637B2 |
In-band interrupt time stamp
System, methods and apparatus are described that facilitate transmission of data, particularly between two devices within an electronic apparatus. A method performed by a slave device coupled to a serial bus includes detecting an event related to a function of the slave device, initiating a first counter in the slave device, asserting an in-band interrupt request by driving at least one signal on the serial bus, and transmitting content of the first counter to a bus master coupled to the serial bus during an interrupt handling procedure. The first counter may count cycles of a clock used by the slave device or occurrences of a signaling state or condition on the serial bus. The content of the first counter may be used to determine a time stamp for the event. |
US09904636B2 |
Modular ultra-wide internal bus mainframe processing units
Modular processing units for mainframe construction built around an ultra-wide internal bus, and equipped with memory storage, an arithmetic logic unit and instruction execution unit, and a plurality of input/output ports that are designed to be directly connected with identical neighbor modular processing units, to form a mainframe computing array. In some examples, the processing units include multiple instruction units. In some further examples, the processing units include all necessary components on a single chip, in a single chip carrier package, needing only a properly specified power source. |
US09904634B2 |
Input signal emulation
Input signals, received by a primary computer, are emulated to a guest computer. For example, an input redirection component is connected between the primary computer and the guest computer. The primary computer may be communicatively connected to an input device (e.g., a touch display, a keyboard, etc.). The guest computer may not, however, be communicatively connected to the input device, and thus may be unaware of input signals from the input device. Accordingly, the input redirection component may receive, from the primary computer, a message regarding an input signal from the input device. The input redirection component may emulate the input device (e.g., connect to the guest computer as though the input redirection component is the input device), and may provide an emulated input signal, emulating the input signal, to the guest computer (e.g., the input signal, received by the primary computer, may be used to control the guest computer). |
US09904632B2 |
Technique for supporting multiple secure enclaves
A technique to enable secure application and data integrity within a computer system. In one embodiment, one or more secure enclaves are established in which an application and data may be stored and executed. |
US09904627B2 |
Controller and method for migrating RDMA memory mappings of a virtual machine
An RDMA-capable network interface controller provides an RDMA access to a physical memory using multiple mapping tables; the physical memory includes a plurality of physical memory regions, at least some of which are associated with a virtual memory region. A mapping unit is configured to map memory region identifiers, each of which is adapted to identify a virtual memory region and an associated physical memory region, to virtual memory regions and to the associated physical memory regions based on a mapping table selected from multiple mapping tables based on a network identifier. Each of the mapping tables is indexed using a plurality of memory region identifiers, each associated with a virtual memory region and a physical memory region. A processing unit is configured to receive an access request from a client for accessing one of the physical memory regions associated with a virtual memory region. |
US09904621B2 |
Methods and systems for flash buffer sizing
The embodiments described herein are used to allocate memory in a storage system. The method includes, at a memory controller in the storage system, determining a current memory allocation for a set of memory devices, wherein the set of memory devices is formatted with a ratio of first storage density designated portions to second storage density designated portions in accordance with the current memory allocation. The method further includes detecting satisfaction of one or more memory reallocation trigger conditions. The method further includes, in response to detecting satisfaction of one or more memory reallocation trigger conditions, modifying the ratio of the first storage density designated portions to the second storage density designated portions in the set of memory devices to generate a second memory allocation for the set of memory devices. |
US09904619B2 |
Memory system with improved efficiency of data transfer between host, buffer, and nonvolatile memory
The present invention provides a memory system which contributes to improvement in efficiency of a data process accompanying a memory access. A memory system has a rewritable nonvolatile memory, a buffer memory, and a controller. The controller controls, in response to an access request from an external apparatus, first data transfer between the controller and the external apparatus, second data transfer between the controller and the nonvolatile memory, and third data transfer between the controller and the buffer memory, controls transfer from the controller to the buffer memory in the third data transfer and transfer from the buffer memory to the controller in a time sharing manner, and enables the first data transfer or the second data transfer to be performed in parallel with the transfer carried out in the time sharing manner. |
US09904617B2 |
System parameter processing method, device and system
The present disclosure discloses system parameter processing method, device and system. The method includes receiving a parameter processing instruction input by a user; responding to parameter processing sub-instruction to acquire a responding result; storing the responding result corresponding to parameter processing sub-instruction in a preset format; comparing the actual value of the parameter corresponding to the parameter identifier to be processed with the test value thereof respectively; and outputting a comparison result. |
US09904611B1 |
Data buffer spare architectures for dual channel serial interface memories
Examples of techniques for implementing a spare data buffer in a memory are disclosed. In one example implementation according to aspects of the present disclosure, a computer-implemented method may include detecting, by a processor, a failed data buffer in a memory. The method may also include enabling, by the processor, the spare data buffer in the memory. The method may further include extending, by the processor, a buffer communication to the spare data buffer to enable the spare buffer to functionally replace the failed data buffer. |
US09904608B2 |
Filtering event log entries
Efficient logging in a control system. Register update requests to store data values in one or more of a plurality of primary registers are received. The most frequently updated primary registers of the plurality of primary registers are periodically identifying. A shadow register is associated with each of the identified most frequently updated primary registers. In response to receiving a register update request to store a data value in one of the most frequently updated primary registers, it is determined if the data value to store is different than the data value stored in the shadow register associated with the register to update. If so, the data value to store is stored into the register to update, stored into the shadow register associated with the register to update, and a log entry corresponding to the register update request is stored in an event log file. |
US09904606B1 |
Scheduled recovery in a data protection system
Systems and methods for scheduling a recovery operation for a host. A user interface is displayed and a recovery operation is configured. Configuration information for the recovery operation is stored and associated with a schedule that is also set via the user interface. The recovery operation may be an ad hoc recovery operation, a periodic recovery operation, and/or a validating recovery operation. |
US09904605B2 |
System and method for enhancing availability of a distributed object storage system during a partial database outage
An “operate with missing region” feature allows a cluster to continue servicing reads for available regions even when some regions are missing. Upon a given node failure condition, the cluster is placed in an effective read-only mode for all regions. The node failure condition typically is one where there has been a failure of an authoritative region copy and no backup copy is then available. Typically, “read-only” means no client write or update requests succeed while the cluster is in this state. Those requests should fail with an error message that indicates failure because of the read-only status. Preferably, such requests are re-tried. In this mode, regions are only allowed to perform read operations but the cluster continues to operate with missing regions, and missing regions are entered on a region map. The cluster then automatically recovers returning missing regions, after which it leaves the read-only state. |
US09904603B2 |
Successive data fingerprinting for copy accuracy assurance
Systems and methods for checking data integrity of a data object copied between storage pools in a storage system by comparing data samples copied from data objects. A series of successive copy operations are scheduled over time for copying a data object from a source data store to a target data store. A first data sample is generated based on a sampling scheme comprising an offset and a period. A second data sample is generated using a similar sampling scheme. The blocks of data in the first data sample and the second data sample are compared to determine if they differ to thereby indicate that the data object at the target store differs from the corresponding data object at the source data store. |