Document | Document Title |
---|---|
US09848519B2 |
Power module assembly and manifold
A vehicle power module assembly including an array of frames each defining a passthrough and step is provided. The frames may be stacked such that the passthroughs are in at least partial registration with one another and the steps align to define an inlet manifold having first and second chambers extending a length of the array. The chambers may be partially open to one another such that the steps influence a momentum of coolant traveling from the first to the second chamber. A pair of endplates may be disposed on either end of the array and configured to retain the frames therebetween. Each of the frames may further define a pair of channels and may be arranged with one another to define a power stage cavity therebetween. A power stage may be disposed within the power stage cavity. |
US09848518B2 |
Integrated power module packaging structure
An integrated power module packaging structure includes a plastic housing having a cavity; a plurality of step-shaped pins embedded in the plastic housing, a first printed circuit board disposed in the cavity, and a second printed circuit board disposed above the first printed circuit board in the cavity. Each of the step-shaped pins includes a first L-shaped bending portion and a second L-shaped bending portion connected to each other. The first printed circuit board is disposed with at least a power device and is electrically connected to at least a part of the first L-shaped bending portions. Two opposite surfaces of the second printed circuit board are respectively disposed with at least an electronic device, and the second printed circuit board is electrically connected to at least a part of the second L-shaped bending portions. |
US09848516B2 |
Liquid-assisted bottom air cooling of electronic racks in data centers
An electronic rack includes a housing to contain one or more IT components arranged in a stack, a first rack aisle formed on a first side of the one or more IT components to direct cooler air received from the cooling unit upwardly, and a second rack aisle formed on a second side of the one or more IT components to direct warmer air to the cooling unit downwardly. The electronic rack further includes a cooling unit having one or more cooling units disposed underneath the IT components to receive first liquid from an external chiller system, to exchange heat carried by the warmer air using the first liquid to generate the cooler air, to transform the first liquid into a second liquid with a higher temperature, and to transmit the second liquid carrying the exchanged heat back to the external chiller system. |
US09848515B1 |
Multi-compartment computing device with shared cooling device
Various computing devices, thermal solutions and enclosures are disclosed. In one aspect, a computing device enclosure is provided that includes a first compartment that has a first upper side and is adapted to house the computing device and a liquid cooling device. The computing device has at least one heat generating component operable to transfer heat to the liquid cooling device. A second compartment has a lower side that includes an air inlet and a second upper side that has an air outlet. The second compartment is adapted to house a head exchanger to remove hear transferred to the liquid cooling device. A hub connects the first second compartment to the first compartment in spaced apart relation so as to leave a gap between the first upper side and the lower side. |
US09848514B2 |
System and method for cooling information handling resources
A method may comprise causing a fluid to flow from a first fluidic column primary quick disconnect fluid fitting through a first fluidic column, the first fluidic column primary quick disconnect fluid fitting fluidically coupled to the first fluidic column and configured to couple to a first quick disconnect fluid fitting of a fluid network port. The method may also comprise causing the fluid to flow from the first fluidic column through at least one first fluidic column secondary quick disconnect fluid fitting having a fluidic network of corresponding information handling resource fluidically coupled thereto, the at least one first fluidic column secondary quick disconnect fluid fitting fluidically coupled to the first fluidic column and the fluidic network having one or more fluid conduits for conveying the fluid proximate to the information handling resource. |
US09848513B2 |
Cooling systems and methods
According to one example of the present invention, a cooling system is provided. The cooling system comprises a water-cooled air conditioning module for cooling air from a chamber. The chamber is arranged for receiving air to be cooled and hot humid air. The cooling system also comprises a control system for controlling the flow of hot humid air to the chamber such that the air input to the air conditioning module has a predetermined relative humidity level within a predetermined range. |
US09848512B2 |
Heat dissipation for substrate assemblies
Various embodiments described herein include systems, methods and/or devices used to dissipate heat generated by electronic components in an electronic system (e.g., a memory system including closely spaced memory modules). Specifically, a heat sink includes an attachment structure and a tab. The attachment structure defines a slot configured to receive an edge of a substrate and thermally couple to a ground plane of the substrate. The tab is located opposite to the slot, and is configured to slide into a card guide slot of an assembly rack, such that in use, heat generated by at least one electronic component on the substrate is at least partially transferred through the ground plane to the attachment structure to be dissipated. |
US09848511B2 |
Electronic device
A base plate for a circuit board assembly, to which an electronic component is soldered, has a through-hole. A screw hole is formed in a housing, to which the base plate is fixed by screw members. Multiple screw-fixing portions are formed in an electronic device, so that each of the screw members is inserted through each of the through-holes of the base plate and fixed to the housing in each of the screw-fixing portions. Two projections are formed at a first casing of the housing in each of the screw-fixing portions, so that the base plate is in contact with the first casing at two contacting points formed by the projections. The projections are symmetrically formed with respect to a center of the screw hole. |
US09848510B2 |
Socket loading element and associated techniques and configurations
Embodiments of the present disclosure are directed towards a socket loading element and associated techniques and configurations. In one embodiment, an apparatus may include a loading element configured to transfer a compressive load from a heat spreader to a socket assembly, wherein the loading element is configured to form a perimeter around a die when the loading element is coupled with an interposer disposed between the die and the socket assembly and wherein the loading element includes an opening configured to accommodate the die. Other embodiments may be described and/or claimed. |
US09848509B2 |
Heat sink module
A heat sink module for cooling a heat providing surface can include an inlet chamber and an outlet chamber formed within the heat sink module. The outlet chamber can have an open portion that can be enclosed by the heat providing surface when the heat sink module is installed on the heat providing surface. The heat sink module can include a dividing member disposed between the inlet chamber and the outlet chamber. The dividing member can include a first plurality of orifices extending from a top surface of the dividing member to a bottom surface of the dividing member. The first plurality of orifices can be configured to deliver a plurality of jet streams of coolant into the outlet chamber and against the heat providing surface when the heat sink module is installed on the heat providing surface and when pressurized coolant is provided to the inlet chamber. |
US09848508B1 |
Cooling systems and synthetic jets configured to harvest energy and vehicles including the same
A cooling system includes a diaphragm, at least one conductor layer disposed on the diaphragm, at least one dielectric film layer, and a controller. The controller is programmed to operate the cooling system in a contact mode and in a non-contact mode. In the contact mode, the diaphragm is controlled to oscillate at a first amplitude such that the conductor layer contacts the dielectric film layer. In the non-contact mode, the diaphragm is controlled to oscillate at a second amplitude such that the conductor layer does not contact the dielectric film layer while the diaphragm oscillates. |
US09848505B2 |
Case and wireless communication device
A housing for storing therein a circuit board, includes: a through hole; an electrically conductive pattern passing through inner walls of the through hole so as to be stretched from the outside surface of the housing to the inside surface of the housing, and being electrically connected to the circuit board; and a plug member with which the through hole is filled, the through hole having openings on the outside and the inside, respectively, of the housing, and the opening on the outside of the housing being larger than the opening on the inside of the housing. |
US09848504B2 |
Electronic device having a housing for suppression of electromagnetic noise
According to an embodiment, an electronic device includes a housing, metal patches, and a first metal member. The housing includes a bottom, a lid, and a side unit. The side unit is disposed to enclose a space between the bottom and the lid. A circuit substrate is disposed on a bottom surface of the bottom. The side unit is conductive and connected to a ground potential. The metal patches are disposed on a lid surface of the lid. The metal patches are arranged periodically in a first direction and a second direction. The second direction intersects the first direction. The metal patches are connected to the ground potential. The first metal member is disposed on the lid surface. The first metal member is connected to the ground potential. The first metal member includes a first portion. The first portion contacts a first surface of the side unit. |
US09848498B2 |
Optoelectronic subassembly with components mounted on top and bottom of substrate
This disclosure generally relates to high-speed fiber optic networks that use light signals to transmit data over a network. The disclosed subject matter includes devices and methods relating to header subassemblies and/or optoelectronic subassemblies. In some aspects, the disclosed devices and methods may relate to a header subassembly that can include: a substrate with a substrate top and a substrate bottom; at least one optoelectronic transducer on the substrate top; at least one top electrical component on the substrate top, the electrical component can be operably coupled with the optoelectronic transducer; and at least one bottom electrical component on the substrate bottom, the bottom electrical component can be operably coupled with the optoelectronic transducer. |
US09848496B2 |
Electronic component module and manufacturing method thereof
An electronic component module includes a substrate; at least one electronic component mounted on an electronic component mounting surface of the substrate; an insulating body covering the electronic component on the electronic component mounting surface of the substrate; and a metal film formed by sputtering, the metal film covering at least one exterior surface of the insulating body and at least one side surface of the substrate. The substrate has a recess portion formed on a periphery of the surface of the substrate that is opposite to the electronic component mounting surface, and the recess portion has a top surface parallel to the electronic component mounting surface and a side surface perpendicular to the top surface, and the metal film is extended to cover the top surface of the recess portion, without covering the side surface thereof. It obtains improved electromagnetic wave shielding effect and improved manufacturing efficiency. |
US09848493B1 |
Printed circuit board having improved high speed transmission lines
A printed circuit board assembly comprises a printed circuit board (PCB) defining a mounting end and an opposite contacting end, a row of first pads on the mounting end, a row of second pads on the contacting end, and an edge connector on the contacting end electrically contacted with the second pads, and a high speed line module mounted on a top side of the PCB and including a group of conductive lines, the conductive lines extending parallel to each other over the plane of the PCB, each conductive line having two ends electrically connected to corresponding first and second pads, respectively. |
US09848490B2 |
Solder in cavity interconnection technology
An interconnection technology may use molded solder to define solder balls. A mask layer may be patterned to form cavities and solder paste deposited in the cavities. Upon heating, solder balls are formed. The cavity is defined by spaced walls to keep the solder ball from bridging during a bonding process. In some embodiments, the solder bumps connected to the solder balls may have facing surfaces which are larger than the facing surfaces of the solder ball. |
US09848485B2 |
Methods and apparatus for pulsed-DC dielectric barrier discharge plasma actuator and circuit
A plasma generating device intended to induce a flow in a fluid via plasma generation includes a dielectric separating two electrodes and a power supply. The first electrode is exposed to a fluid flow while the second electrode is positioned under the dielectric. The power supply is electrically coupled to a switch and the first and second electrodes. When the power supply is energized by repeated action of the switch, it causes a pulsed DC current between the electrodes which causes the fluid to ionize generating a plasma. The generation of the plasma induces a force with a velocity component in the fluid. |
US09848484B2 |
Power-supply apparatus
A power supply apparatus includes a controller that performs the following action. The controller determines a target direct-current electric amount value in accordance with an external input. Then, the controller performs feedback control in such a manner that an amount of direct-current electric power input to an inverter reaches the target direct-current electric amount value. |
US09848480B1 |
Lightbulb in a fixture having a configuration memory
An internet of things system having a smart light bulb and a smart fixture. The smart light bulb may be inserted into and connect with the smart fixture for power to the smart light bulb. The smart light bulb may be configured by reading configuration information from a memory in the smart fixture. As a whole, the system may have two or more smart light bulbs inserted in two or more smart fixtures, respectively. The two or more smart light bulbs may be interconnected with one another with communication links to make up a mesh network. Non-bulb devices may be connected to the mesh network. |
US09848478B2 |
Automatic light adjusting method and related camera
An automatic light adjusting method applied to a camera having at least one image capturing unit and a plurality of lighting units includes driving the plurality of lighting units to output maximal illumination, driving the at least one image capturing unit to acquire a first image by a first exposure duration, calculating a plurality of first light intensity of a plurality of regions on the first image, comparing the plurality of first light intensity with a predetermined range, and determining whether to set a first ratio about the plurality of first light intensity as a lighting limitation ratio of the plurality of lighting units according to a comparison result. |
US09848474B2 |
Lighting nodes having a core node and sensor pods
In one example, a sensor node comprises a core node to enable lighting control for a luminaire. The core node has a base forming a plug portion of a socket. The plug portion has at least one optional pin and represents a NEMA socket including a receptacle that is attached to the base of the core node such that the core node is enclosed by the NEMA socket. The socket provides light level control for a light-emitting diode (LED) driver for the luminaire. The sensor node further comprises one or more peripheral devices having sensors for detecting conditions and producing sensor information based on the detected conditions. The sensor node also includes a pod bus which enables power signals to be transmitted to each of the peripheral devices. |
US09848470B2 |
LED driving circuit using double bridge diode and LED illumination device comprising same
According to the present invention, provided is an LED driving circuit comprising: a first rectification module, connected to an alternating current power source, for full-wave rectifying an applied alternating current voltage and for supplying a first rectification voltage which has been full-wave rectified to an LED light emitting module as a first driving voltage; and a second driving voltage supply module, connected to the alternating current power source in parallel with the first rectification module, for full-wave rectifying an applied alternating current voltage to generate a second rectification voltage, for charging energy using the generated second rectification voltage at a charging section, and for supplying a second driving voltage to the LED light emitting module at a compensating section. |
US09848469B2 |
Lighting apparatus and system having electrical insulation structure between dimmer and driver
A lighting apparatus having an electrical insulation structure of a dimmer and a driver includes: an input power supply unit; a converter for converting input power into lighting unit supply power; a lighting unit applied with the lighting unit supply power to emit light; a dimmer for inputting a dimming signal for controlling the lighting unit; a PWM generation unit for receiving the dimming signal and generating a PWM signal; and a PWM control unit for controlling the lighting unit supply power according to the PWM signal, in which the input power supply unit, the converter, the lighting unit and the PWM control unit are connected to a first ground, the dimmer and the PWM generation unit are connected to a second ground, and the first ground is electrically separated from the second ground. |
US09848462B2 |
Temperature sensor and induction heating cooker having the same
An induction heating cooker including a temperature sensor disposed between a plurality of working coils which are uniformly disposed below a cooking table and a heat transfer member to transfer heat from the working coils adjacent to the temperature sensor to the temperature sensor, thereby improving productivity and space utilization. |
US09848459B2 |
Dynamic network connectivity using unmanned aerial vehicles
A method for establishing an unmanned aerial vehicle (UAV) network among a plurality of UAVs that is programmed to communicate packet data, wherein the plurality of UAVs comprises a first UAV and creating a first wireless connection between the first UAV of the plurality of UAVs and a second UAV. The method includes receiving a first signal indicating that the second UAV has been added to the plurality of UAVs and transmitting a second signal to the second UAV that causes the second UAV to generate a wireless coverage area that extends a wireless range of the UAV network. The method includes calculating a plurality of link cost values for one or more wireless connections to or from each particular UAV to one or more other UAVs in the plurality of UAVs; and determining whether to realign the plurality of UAVs based on the plurality of link cost values. |
US09848458B2 |
Wireless parameter-sensing node and network thereof
A wireless parameter-sensing node in a network thereof, the parameter-sensing node includes: sensors to sample values of parameters, respectively; a memory; a collection engine configured to: selectively collect data representing at least some of the sampled values, respectively; and store the collected data in the memory; an omega engine configured to: retrieve selected portions of the collected data from the memory; and send the selected portions to a remote host; wherein at least one of the collection, the storage, the retrieval and the sending are performable according to one or more reconfigurable collection-control criteria, one or more reconfigurable storage-control criteria, one or more reconfigurable retrieval-control criteria and one or more reconfigurable reporting-control criteria, respectively, stored in the memory. The parameter-sensing node and the remote host relate, e.g., as a taskee-client and a taskor-server, respectively. |
US09848455B2 |
User terminal, processor, and base station
A user terminal in a mobile communication system supporting D2D communication that is direct device-to-device communication comprises a controller configured to establish a D2D communication bearer used for the direct D2D communication between the user terminal and other user terminal that is a partner terminal of the D2D communication, in accordance with a parameter that characterizes a property of D2D data transmitted by the D2D communication; and a transmitter configured to transmit the D2D data corresponding to the parameter via the D2D communication bearer depending on the parameter by using a radio resource assigned in accordance with the parameter. |
US09848452B2 |
Techniques for allocating short addresses to network devices
Disclosed are various embodiments for assigning a short address to a node in a network. A first node receives an association request that is a request from a second node to join the network. The first node transmits an association response to the second node, whereby the association response permits the second node to conditionally join the network and enter a low-power state. Data from the association request is transmitted to a coordinator node for the network on behalf of the second node. The first node receives a proxy response from the coordinator node in response to the data from the association request. When the second node is active, a notification is transmitted to the second node based on the response to the request. The notification includes an assignment of a short address when the response indicates the second node has joined the network. |
US09848450B2 |
Method, system and device for recovering invalid downlink data tunnel between networks
Described herein is a method for processing an invalidation of a downlink data tunnel between networks. The method includes the following steps: (1) a core network user plane anchor receives an error indication of data tunnel sent from an access network device, (2) after deciding that the user plane corresponding to the error indication uses a One Tunnel technology, the core network user plane anchor notifies a relevant core network control plane to request recovering the downlink data tunnel, (3) the core network control plane recovers the downlink data tunnel and notifies the core network user plane anchor to update information of the user plane. In addition, a communication system and a communication device are also provided. The method, system, and device can improve the speed of recovering data transmission after the downlink data tunnel becomes invalid. |
US09848448B2 |
Communication management method, management server, and communication system
There is provided a communication management method including the steps of registering, by a management server managing communication of a base station, a communication terminal whose connection to the base station is to be permitted as a first communication terminal, registering, by the management server, another communication terminal as a second communication terminal based on a request from the communication terminal registered as the first communication terminal, requesting the base station, by a communication terminal, for connection, and permitting, by the management server, connection to the base station in a case the communication terminal which has requested the base station for connection is registered as the first communication terminal or the second communication terminal. |
US09848447B2 |
Method and system for emergency notification
Method and apparatus for notifying an emergency responder of a vehicle emergency. Communication is established with a cellular telephone located within the vehicle. The communication link is monitored and the vehicle occupant is notified of link loss. The apparatus monitors vehicle safety systems for detection of an emergency condition. Upon detection, the occupant is notified that an emergency call will be made. If no cancellation is received, vehicle location information is obtained from a global position system, synthesized into voice signals, and communicated to an emergency responder using the cellular telephone. A plurality of occupant and vehicle emergency information may also be provided. Emergency responders may be provided with a touch tone menu to select among the available information. Vehicle and occupant information may be communicated to the apparatus from external sources, such as a web server database via cellular telephone connection, or removable memory. |
US09848440B2 |
Downlink channel access for non-operator devices
A device for providing downlink channel access for non-operator devices includes at least one processor circuit. The at least one processor circuit is configured to establish a local connection with an operator device that is serviced by a network operator. The at least one processor circuit is configured to provide, to the operator device over the local connection, a request to establish a connection to a network, the request comprising a destination address. The at least one processor circuit is configured to receive, from the operator device over the local connection, control information for reception of a downlink channel provisioned by the network operator for the operator device. The at least one processor circuit is configured to receive downlink data associated with the destination address on the downlink channel and provide, to the operator device, uplink data associated with the destination address for transmission to the network. |
US09848435B2 |
Systems and methods to enhance radio link performance in a multi-carrier environment
Described herein are systems and methods to enhance radio link performance in a multi-carrier environment. A method may comprise sending, by an upper level layer of a wireless device, user data in a packet for transmission, wherein the packet includes an indication of a level of priority of the packet, receiving, by a media access control (“MAC”) layer of the wireless device, the packet for transmission including the indication of the level of priority provided by the upper level layer, identifying, by the MAC layer, a reliability of each of a plurality of component carriers, and selecting, by the MAC layer, one of the component carriers on which to transmit the packet, wherein the selecting is based on the level of priority of the packet and the reliability of the one of the component carriers. |
US09848433B2 |
Hybrid air-to-ground and satellite system traffic management
A technique for providing users with in-flight connectivity includes a method for operating a communications system on an aircraft comprising allocating to a communications session between equipment on the aircraft and other equipment, a first bandwidth allocation of a selected communications system selected from the group consisting of a satellite communications system and an air-to-ground communications system. The allocating is based on a latency tolerance of the communications session and a prioritization level of the communications session. The method includes communicating signals of the communications session using the first bandwidth allocation of the selected communications system. |
US09848431B2 |
Method for data scheduling and power control and electronic device thereof
A method of operating a first terminal is provided. The method includes detecting a signal pattern according to motion of the first terminal by a sensor included in the first terminal, wherein the signal pattern corresponds to a pattern of wireless channel quality between the first terminal and a second terminal; predicting the wireless channel quality between the first terminal and the second terminal using the signal pattern detected by the sensor; and allocating a resource for transmitting data to the second terminal on the basis of the predicted channel quality. |
US09848429B2 |
Method, apparatus and system for bearing circuit switched domain service data over radio bearer
A method for bearing CS-domain service data over radio bearer is disclosed. The method includes: letting CS-domain service data be borne over a radio high-speed packet data access channel according to a channel mapping relation between CS-domain service data and the radio high-speed packet data access channel. An apparatus and a system are also provided herein. |
US09848425B2 |
Communication device and method for controlling transceiver chains of a communication device
A communication device is described comprising a first transceiver chain set to communicate signals in a first frequency range, a second transceiver chain set to communicate signals in a second frequency range or set to no communication and a controller, configured to receive an instruction for a resetting of carrier aggregation comprising a setting of the first transceiver chain or the second transceiver chain to receive signals in a third frequency range different from the first frequency range and the second frequency range, to control, in response of the reception of the instruction, the second transceiver chain to receive signals within the first frequency range simultaneously with the first transceiver chain and to control the first transceiver chain, when the communication of signals within the first frequency range by the second transceiver chain fulfills a predetermined criterion, to stop communication of signals within the first frequency range. |
US09848424B2 |
SRS design for unlicensed carriers
There is disclosed a User Equipment for a MulteFire wireless communication network. The User Equipment comprises processing circuitry and a transmitter, the User Equipment being adapted for utilizing the processing circuitry and the transmitter for performing a Listen-Before-Talk (LBT) procedure for one or more transmission bandwidths; transmitting Physical Uplink Shared CHannel (PUSCH) signaling in a PUSCH subframe on one or more interlaces within the one or more transmission bandwidths; and transmitting Sounding Reference Signaling on the one or more interlaces in the PUSCH subframe. |
US09848417B2 |
Method for transreceiving signals and apparatus for same
The present invention relates to a wireless communication system. More particularly, the present invention relates to a method for transmitting an uplink signal in a wireless communication system supporting carrier aggregation (CA), and to an apparatus for same, comprising the steps of: establishing a first cell having a first time division duplex (TDD) uplink-downlink (UL-DL) configuration and a second cell having a second TDD UL-DL configuration; receiving data through a DL subframe of the first cell; and transmitting reception reply information with respect to the data through a UL subframe of the second cell. |
US09848413B2 |
Method for transmitting control information and apparatus for same
A wireless communication system is disclosed. A method for transmitting uplink control information in a wireless communication system supporting carrier aggregation and operating in TDD includes: generating a first HARQ-ACK (hybrid automatic repeat request-acknowledgement) set for a first cell using a value M; generating a second HARQ-ACK set for a second cell using the value M; and transmitting a bit value corresponding to a third HARQ-ACK set including the first HARQ-ACK set and the second HARQ-ACK set in an uplink subframe n, wherein M=max(M1, M2), max(M1, M2) representing a value being equal to or larger than not smaller between M1 and M2, wherein M1 corresponds to the number of downlink subframes corresponding to the uplink subframe n in the first cell, and M2 corresponds to the number of downlink subframes corresponding to the uplink subframe n in the second cell, wherein the first cell and the second cell have different UL-DL configurations. |
US09848408B2 |
Proactive rank index management in SLTE enabled modem to achieve higher throughput
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE which uses a first antenna and a second antenna for communication with a first RAT. The apparatus determines that the second antenna is to be used for a procedure associated with a second RAT at a first time. The apparatus reduces a UE RI from an initial value to a reduced value for the communication with the first RAT at the first time based on the determination. |
US09848397B2 |
Synchronizing signal receiving method and user equipment, and synchronizing signal transmitting method and base station
The present invention defines multiple synchronizing signal resource candidates from/in which a synchronizing signal can be transmitted or detected. The base station according to the present invention transmits a synchronizing signal from a synchronizing signal resource, which corresponds to at least the cell identifier of a cell which is associated with the synchronizing signal, the time synchronization of the cell, the length of a cyclic prefix which is applied to the cell, or the type of the base station, among the multiple synchronizing signal resource candidates. The user equipment according to the present invention can obtain information on at least the cell identifier, the time synchronization with the cell, the length of the cyclic prefix, or the type of the base station, on the basis of the synchronizing signal resource in which the synchronizing signal has been detected. |
US09848396B1 |
Tracking device power preservation through signal strength reduction
The power consumption of a tracking device can be reduced by managing the transmission power of the tracking device when a mobile device is at the edge of the range of the tracking device. A connection can be established between a tracking device and a mobile device at the edge of a first range of the tracking device. The transmission range of the tracking device can be reduced to sever the connection between the tracking device and the mobile device. After a pre-determined time interval or after a connection with the mobile device is re-established the transmission range of the tracking device can be restored. |
US09848392B2 |
Radio communication system, high-power base station, low-power base station, and communication control method
A radio communication system 1 includes a pico-cell base station PeNB installed in a communication area of a macro-cell base station MeNB, having lower transmission power than the macro-cell base station MeNB, and expanded in its coverage. The macro-cell base station MeNB determines a degree of expanding the coverage of the pico-cell base station PeNB, according to an amount of usable PDSCH resources of the macro-cell base station MeNB. |
US09848378B2 |
Selective access point name assignment based on machine-to-machine traffic analysis
A method is provided in one example embodiment and includes analyzing characteristics of traffic associated with an application in a data communications network; defining each of a plurality of Access Point Names (“APNs”) for terminating traffic in the data communications network; comparing the application traffic characteristics with the APNs; and selecting one of the APNs based on results of the comparing, in which the selected one of the APNs is assigned to terminate the application traffic. In some embodiments, the application traffic characteristics include at least one of average data packet size, average uplink traffic volume, average downlink traffic volume, triggering traffic data generation, and session frequency. The method may further include periodically re-comparing the application traffic characteristics with the APNs and selecting a different one of the APNs based on results of the recomparing to terminate the application traffic. |
US09848377B2 |
Communication network setting method of wireless communication terminal
According to a communication network setting method of a wireless communication terminal, wireless communication can be performed with a communication network by reading in advance features related to a communication standard or a communication provider for recognizing a wireless communication network accessible at a current place, detecting features from a wireless communication signal received at the current place, and then setting a modem in a hardware or software scheme according to the features. |
US09848376B2 |
Method and apparatus for selecting domain service in wireless communication system
According to an embodiment, a network access method of a user equipment (UE) in a communication system comprises the steps of: receiving information including an access order from a configuration server; storing the received information; and transmitting an access request to the network according to an access method determined on the basis of the stored information. According to another embodiment, a UE for accessing a wireless communication system comprises: a transceiving unit which receives information including an access order from a configuration server; and a control unit for storing the received information and controlling the transceiving unit to transmit an access request to the network according to an access method determined on the basis of the stored information. According to an embodiment of the present disclosure, when a UE for supporting a PS network and a CS network accesses a network, the UE receives a configuration of each domain registration method in advance, and thus can more easily access each network. In addition, according to another embodiment of the present disclosure, message transmission can be more easily achieved between a system in which a long SMS message can be transmitted and a system in which a SMS message of conventional-length is transmitted. Furthermore, according to another embodiment of the present disclosure, when a UE, which has performed a CS fallback, returns to a 4G network due to the end of a CS service, the UE can be prevented from returning to another provider network since the UE has existing return information. |
US09848375B2 |
Home automation system including device signature pairing and related methods
A home automation (HA) system may include addressable HA devices each having a respective HA device signature associated therewith and each wirelessly communicating using respective different wireless communications protocols from among different wireless communications protocols. The HA system may also include a controller and a memory coupled thereto. The memory may store HA device signatures for paired and unpaired ones of the addressable HA devices. The controller may poll the addressable HA devices, determine an unpaired addressable HA device based upon the polling, and compare the associated HA device signature of the unpaired addressable HA device with the stored HA device signatures. The controller also, when there is a match between the HA device signature of the unpaired addressable HA device and one of the stored HA device signatures, may permit pairing of the unpaired addressable HA device to communicate therewith using the respective wireless communications protocol. |
US09848368B2 |
Network nodes and methods for handling traffic tracing of a user equipment
A method in a first network node for handling traffic tracing of a user equipment. The first network node is comprised in a first Radio Access Technology, RAT, system. The first network node starts a handover procedure to handover the user equipment from the first RAT system to a second RAT system. The user equipment has an active traffic tracing ongoing in the first RAT system. The traffic tracing relates to tracing associated with communication between the user equipment and the first RAT system. The first network node sends a message to a second network node in the second RAT system. The message is sent directly to the second network node or via one or more intermediate network nodes. The message comprises one or more parameters relating to the ongoing traffic tracing of the user equipment. The parameters define when the traffic tracing is to continue in the second RAT system. |
US09848365B2 |
Dynamic configuration of mobile network entity in a mobile mobile-wireless network (MMWN)
A method of dynamically configuring a first mobile network entity (that is included in a first mobile mobile-wireless network (MMWN)) includes: recognizing that one or more of the following conditions; and adjusting one or more aspects which affect how the first mobile network entity performs cellular-data communication according to the one or more satisfied conditions, respectively. Such conditions include: a change in location of the first mobile network entity; a change in location of at least one other mobile network entity that (1) has neighbor-status of yes relative to the first mobile network entity and (2) is included within a corresponding at least one other MMWN, respectively; and a change in neighbor-status of at least one other mobile network entity that is included within at least one other MMWN, respectively. |
US09848363B2 |
Sending access information from physical access control system to user terminal
A system and method for executing a handover of a mobile communication device from a source access point to a target access point includes an access control module configured to be communicatively coupled to the mobile communication device, a management system communicatively coupled to the access control module and the target access point, and a communication network, access to which is controlled by the target access point. The access control module is configured to provide access information from the management system to a mobile communication device over a short distance communication link to allow the mobile communication device to access the communication network. |
US09848358B2 |
Apparatus to enable fallback to circuit switched domain from packet switched domain
An apparatus is used to perform a Circuit Switched (CS) fallback in wireless communications. The Non-Access Stratum (NAS) of the apparatus determines whether to perform a CS fallback based on an Internet Protocol (IP) Multimedia Subsystem (IMS) registration status, and sends a service request indicating a request to perform the CS fallback when the WTRU is attached to a CS domain. The apparatus also includes an Access Stratum (AS) that receives the CS service request from the NAS, sends an indication of the CS service request in a Radio Resource Control (RRC) message to an Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN), wherein the RRC message includes CS service information, and receives a handover command in response to the CS service request. |
US09848355B2 |
Centralized data plane flow control
The invention relates to a central control entity (100) configured to control a data plane flow of a stream of data packages in an access network part of a mobile communications network, the central control entity comprising:—a detecting unit (140), configured to detect a presence of data plane applications (300) linked to forwarding elements (200) of the access network part, configured to detect information about a type of data plane application that is to be applied to said data plane flow, and configured to detect flow information reports from forwarding elements (200) which are directly linked to one network node containing the determined type of data plane application, each flow information report from one of the forwarding elements (200) containing information about a data packet volume transmitted from said one forwarding element to said one data plane application,—a flow control unit (110) configured to determine a path of the data plane flow through the forwarding elements (200) of the access network part to one of the network nodes containing the determined type of data plane application (300), wherein the flow control unit (110) is configured to determine a load of said one data plane application provided on said one network node, taking into account the flow information reports from the forwarding elements (200) which are directly linked to said one data plane application, wherein the flow control unit (110) determines the path of the data plane flow, taking into account the determined load of said one data plane application. |
US09848352B2 |
Apparatus and method for saving power consumption in broadband wireless communication system
An apparatus and method reduce power consumption in a broadband wireless communication system. A transmitting end apparatus that includes a plurality of transmit (Tx) antennas includes a control block, a Processor (DSP) block, a modem block, and at least one power controller. The control block determines a traffic amount based on an amount of used resources. The Digital Signal Processor (DSP) block performs scheduling by using a subset of Tx antennas and a subset of resources on a frequency axis if the traffic amount is less than a threshold. The modem block applies boosting to a signal transmitted using the subset of resources. And at least one controller turns off an operation of at least one power amplifier that corresponds to at least one Tx antenna that is not included in the subset of Tx antennas. |
US09848346B2 |
Apparatus and method for end-to-end link quality indication
A mechanism for end-to-end link quality indication, including a wireless router, coupled to other wireless routers over a multi-hop mesh network, responsive to a first message received from an origination device, configured to forward the first message to a next one of the other wireless routers in route to a destination device. The wireless router has received signal strength indication (RSSI) logic, that adds first RSSI information to a first field of the first message, and that adds second RSSI information to a second field of an acknowledgement message prior to transmitting the acknowledgement message to the origination device. The first and second RSSI information, along with intermediate RSSI information added by one or more of the other wireless routers along a path from the origination device to the destination device, is aggregated into a single term representative of total round-trip quality for the first message and the acknowledgment message. |
US09848345B1 |
Bi-directional wireless sensor network
Systems and methods include a WSN having sensor nodes that are configured with electronic circuitry for interfacing with one or more associated sensors. The WSN also includes a gateway sensor node configured to receive sensor data from and forward instructions to the one or more sensor nodes, and a server configured to control the WSN in combination with the gateway sensor node. The WSN also includes circuitry configured to recognize a link break within a data communication route of the WSN via a routing protocol, and buffer incoming packets from a source node. The circuitry is also configured to propagate a RERR message of the link break to the plurality of sensor nodes, and build a bypass route around the link break of the data communication route towards a destination node. The circuitry is also configured to send the buffered incoming packets to the destination node through the bypass route. |
US09848342B1 |
Excursion compensation in multipath communication systems having performance requirements parameters
Methods, apparatuses, and systems that compensate for communication excursions in multipath communication systems (e.g. MIMO communication systems) while satisfying performance requirements parameters of the communication system. A plurality of communication signals may be received in a transmitter. The plurality of communication signals may be precoded (e.g. mixed) into a plurality of precoded communication signals. Excursions in the precoded communication signals may be scaled to generate a plurality of excursion compensated precoded communication signals. The scaling may be based on performance requirements parameters of a communication system and based on parameters of the precoding the plurality of communication signals. The plurality of excursion compensated precoded communication signals may then be amplified by a plurality of amplifiers. |
US09848340B2 |
Technique for performing cell measurement on at least two cells
A technique for performing at least one measurement on at least a first cell and a second cell is disclosed. The first cell employs i) a first Radio Access Technology (RAT), different from a second RAT of the second cell, and ii) a first carrier substantially the same as a second carrier of the second cell. In a method aspect, the method is performed in a by a User Equipment (UE), and comprises the step of configuring the UE to perform the at least one measurement on the first and second cells substantially simultaneously with UE operations different from the at least one measurement. |
US09848337B2 |
Metro cell planning
Dynamic metro cell location planning is provided within the wireless communication coverage area of a macro cell. Metro cell location planning can include obtaining performance parameters associated with the macro cell and evaluating coverage parameters of the macro cell. Metro cell location planning can also include selecting, based on the performance parameters and the coverage parameters, a location within a wireless communication coverage area of the macro cell for placement of the metro cell. The selected location can be conveyed to a user and/or entity for deployment of the metro cells. Metro cells can be used by a carrier to fill a coverage hole and/or to offload capacity hot-spots within the network. |
US09848334B2 |
Apparatus, system and method for MTC
In order for making MTC more efficient and/or secure, a base station (20) forming a communication system connects a UE (10) to a core network. A node (50) serves as an entering point to the core network for a service provider, and transmits traffic between the service provider and the UE (10). The node (50) establishes, as a connection to the base station (20), a first connection for directly transceiving messages between the node (50) and the base station (20). Alternatively, the node (50) establishes a second connection for transparently transceiving the messages through a different node (30) that is placed within the core network and has established a different secure connection to the base station (20). |
US09848327B2 |
Systems, apparatuses, and methods for secure beacon authentication via mobile devices
Systems, apparatuses, and methods for secure beacon authentication via mobile devices are disclosed. In some example embodiments, a verification element comprises: a memory storing a plurality of non-repeated verification codes; a wireless broadcast element; and a processing circuit electronically coupled to the memory and the wireless broadcast element, the processing circuit being configured to retrieve one of the non-repeated verification codes from the memory and to transfer the non-repeated verification code to the wireless broadcast element, the wireless broadcast element being configured to wirelessly broadcast the non-repeated verification code to a plurality of mobile devices for individual verification of the plurality of mobile devices, the non-repeated verification code being different than any other non-repeated verification code previously retrieved from the memory and used for individual verification of the plurality of mobile devices. |
US09848323B2 |
Method for resolving security issues using NH and NCC pairs in mobile communication system
This application discloses a method of using NH and NCC pairs to resolve security issues. It includes: an MME sends a sequence including multiple NH and NCC pairs to S1GW that is calculated to correspond to a UE. After the S1GW receives a UE handover message or a UE bearer switch message from a base station, the S1GW may choose a next unused NH and NCC pair from the sequence sent by the MME and send it to a target base station. In using this application, part of the bearer switch of the UE or the switch of the UE can be terminated at the S1GW or HeNB GW, which reduces impact on the core network and cuts down on the use of system resources. |
US09848322B2 |
Method, apparatus and system for managing bearers in a wireless communication system
Embodiments of the present disclosure describe methods, apparatuses, and systems for managing bearers in a wireless communication system. In some embodiments, an apparatus, to be employed by a user equipment (UE), may comprise a communication module to: communicate with a core network on a first bearer through a master evolved Node B (MeNB); receive, from the MeNB, a first message of reconfiguring a radio resource control (RRC) connection to establish a second bearer between the UE and the core network and through a secondary eNB (SeNB); synchronize, in response to the message, with the SeNB in order to establish the second bearer; and communicate with the core network on the second bearer through the SeNB, and continue communicating with the core network on the first bearer through the MeNB. |
US09848318B2 |
Camel roaming adaptations
The present invention is directed towards a method for facilitating roaming tests for a club network. The method includes simulating a roamer's profile by a signaling gateway and associating with either a club network or a roaming partner network of the club network. The club network and the roaming partner network correspond to a Home Public Mobile Network (HPMN) and a Visited PMN, respectively, in case the roamer is an outbound roamer. In case the roamer is an inbound roamer, the club network corresponds to the VPMN and roaming partner network corresponds to the HPMN. The method further includes performing by the signaling gateway, one or more CAMEL capability tests on the roamer. The roaming subscriber is associated with either the club network or the roaming partner network. |
US09848316B2 |
Method for performing D2D discovery and terminal using same
The present invention relates to a method for performing a D2D discovery and a terminal using the same. Particularly, the present invention relates to a method for performing a D2D discovery, which compares a congestion level of another discovery slot selected randomly or according to a preset pattern with a threshold or a congestion level of a current discovery slot and determines a discovery slot to transmit a discovery message and a transmission period of the discovery message according to a result of the comparison, and a terminal using the same. The present invention relates to a method for performing a D2D discovery using discovery resources including a plurality of discovery slots, and a terminal performing the same, the method comprising the steps of: broadcasting a discovery message by using a first discovery slot; comparing a congestion level of a selected second discovery slot with a predetermined congestion level value; determining a discovery slot to broadcast the discovery message on the basis of a result of the comparison; and broadcasting the discovery message by using the determined discovery slot. |
US09848308B2 |
System and method for generating driver status and destination arrival notifications for reducing distracted driving and increasing driver safety
System and method for generating notifications when a person is in a driving state, in a non-driving state, and optionally a destination arrival notification so that interested parties, such as family members, friends and/or co-workers, can make informed and proactive decisions to not call or text the person while driving is described. With push notifications, interested parties can thus make informed decisions and purposely delay making a phone call or texting a driver until after they have arrived at their destination and are no longer driving. As a result, drivers are not needlessly distracted, significantly improving road safety. |
US09848307B2 |
Messaging over a network
In accordance with one aspect of the present invention, there is provided a method for providing a short messaging service for a device to enable communication of a short message over an Internet Protocol (IP) network, the device adapted to access a telecommunications system communicatively coupled to the IP network, the IP network comprising one or more network nodes, the method comprising: subscribing to an attachment notification, the attachment notification indicating that the device has attached to the telecommunications system and is contactable for communication, said subscribing being performed by a network element communicatively coupled between the device and the one or more network nodes; receiving, at the network element, the attachment notification when the device has attached to the telecommunications system, the attachment notification comprising identification information for the device; and registering the device with at least one of the one or more network nodes for communication of short messages over the IP network, said registering being performed by the network element based on at least some of the identification information received in the attachment notification. |
US09848301B2 |
Facilitation of mobile device geolocation
More efficient mobile device location data can be obtained by estimating a most likely location point in a coverage pattern using a kernel density estimation technique. The kernel density estimation technique can provide a continuous estimate of the most frequented locations of a mobile device(s) within a coverage area. For each wireless sector, the collected location data can grouped to the closest geographic coordinate system, and an inference can be made based on the grouped data. |
US09848290B2 |
Location based computerized system and method thereof
The invention includes a computerized method for providing a location based service, the method comprising reporting a location of at least one user client device to a location based service program, querying a database of location based applications of the location based service program to identify one or more location based applications associated with the location of the at least one user client device, and launching at least one of the one or more location based applications on the user client device so as to offer a user experience for the location of the user client device. |
US09848288B2 |
Bluetooth pairing system, method, and apparatus
The system provides secure controlled access to multiple Bluetooth devices issued to users. For example an officer may be issued a weapon. To enable monitoring of weapon status, a Bluetooth sensor may be fitted to a holster and the Officer issued with a Bluetooth enabled mobile phone. In order to establish a secure Bluetooth connection between the devices, sensor contains a restored link key and the mobile phone stores a partial link key. The supervisor enters their username and password, and a secret key into the phone which is then used with the partial link key to generate a copy of the link key stored in the first device, so that a secure connection can be established with the first device. The officer enters their username and password into the sensor, and once the secure connection is established it is sent over the secure connection to the mobile phone which then sends both user names and passwords to a verification authority. If the officer is verified and authorized to issue the devices, an authorization message is returned and use of the devices allowed. If the authorization fails, a failure message is returned and the devices are not issued and features may be blocked. The verification authority may be internal or external to the phone. If the authority is external, then the supervisor's user name and password could be omitted. |
US09848285B2 |
Bluetooth communication method and bluetooth communication device
A Bluetooth communication method and a device including a Bluetooth module to perform the method are provided. In the method: the device is renamed so that a name of the device includes a character string. The Bluetooth module searches for a second device whose name includes the same character string or a corresponding character string. The Bluetooth module establishes a connection between the device and the second device. The device transmits data with the second device using the established the connection. |
US09848282B2 |
Method for communicating with other devices, and communication device
One embodiment relates to a method performed by a converged personal network service (CPNS) enabled entity. The communication method comprises a step in which the CPNS enabled entity transmits a request message for instructing performance of a discovery procedure to a first PNE which belongs to a first network if a second PNE which belongs to a second network is not found in the coverage of the first network at the state where the CPNS enabled entity is established as a gateway for managing the first network; a step in which the CPNS enabled entity receives, from the first PNE, a response message; and a step of transmitting, based on the response message, a bridge request message for requesting that the second PNE operates as a bridge for interconnecting the first network and the second network, to a second gateway which manages the second network. |
US09848280B2 |
Wireless sensor module
A wireless sensor module can include a primary body, a primary processor, a first plurality of sockets, a secondary body, a secondary processor, a first transducer, and a wireless transceiver. The primary processor and the sockets can be mounted to the primary body. The secondary body can be releasibly mounted to the primary body and the secondary processor can be mounted to the secondary body. The primary processor and the secondary processor can be in electrical communication with one another, operating asynchronously. The primary processor can direct electrical signals generated by the first transducer to the secondary processor. The secondary processor can process the electrical signals independently of the primary processor and selectively communicate output to the primary processor. The primary processor can be configured to control communications through the wireless transceiver independently of the secondary processor. |
US09848269B2 |
Predicting harmful noise events and implementing corrective actions prior to noise induced hearing loss
A method of avoiding harmful noise levels, the method comprising implementing a cognitive suite of workplace hygiene and injury predictors (WHIP) that has learned to identify noise sources and indicators of harmful noise levels, detecting an indicator, and implementing a corrective action by at least one of altering the operation of a noise source, modifying a time of a scheduled task, or changing prescribed personal protective equipment. |
US09848268B2 |
Acoustic generator, acoustic generation device, and electronic apparatus
There are provided an acoustic generator capable of generating a high-quality sound having little distortion, and an acoustic generation device and an electronic apparatus using the same. An acoustic generator has a vibration body, a first exciter, a second exciter, a first damping material and a second damping material. The vibration body has two surfaces which are positioned with a gap therebetween in a first direction. The first exciter and the second exciter are disposed on the vibration body. The first damping material is disposed on the vibration body and has a first portion which overlaps the first exciter when viewed in the first direction. The second damping material is disposed on the vibration body and has a second portion which overlaps the second exciter when viewed in the first direction. |
US09848265B2 |
LED lighting device and speaker
The present invention provides a multifunctional LED device and multifunctional speaker system. The multifunctional LED device includes a power supply unit; a control unit configured to process audio signals and control commands; an audio power amplifier configured to drive a speaker; a speaker; a first wireless transceiver configured to communicate with a smart terminal; a second wireless transceiver configured to communicate with other LED devices; and an LED light source. The multifunctional speaker system includes several multifunctional wireless LED devices configured to works as wireless speakers, and a smart terminal to control the system remotely. The smart terminal may communicate with and control all the multifunctional LED devices. The multifunctional LED devices may communicate with each other. Two multifunctional LED devices may be configured as a 2.0-channel speaker system. Other speaker systems, such as 2.1-channel, 5.1-channel speaker systems, may be realized using more multifunctional wireless LED devices. |
US09848264B2 |
Audio signal amplification device
An audio signal amplification device of the disclosure includes: a delta-sigma modulation part configured to resample an input digital audio signal with a quantization number smaller than a quantization number of the digital audio signal; a pulse-width modulation part configured to convert an output signal from the delta-sigma modulation part into a pulse-width modulation signal which sets a gradation of the output signal in an amplitude direction at a gradation of a pulse width; a power amplification part configured to perform power amplification on an output signal from the pulse-width modulation part; a low-pass filter configured to diminish a component higher than a predetermined cutoff frequency, in an output signal from the power amplification part, and to output the resultant signal; and a correction processing part configured to generate a correction signal for correcting the digital audio signal. The correction processing part includes a switch configured to control coupling of the correction processing part to the low-pass filter. When the switch is on, the correction processing part couples a loudspeaker to the low-pass filter, and generates the correction signal. |
US09848260B2 |
Wearable communication enhancement device
Embodiments disclosed herein may include a wearable apparatus including a frame having a memory and processor associated therewith. The apparatus may include a camera associated with the frame and in communication with the processor, the camera configured to track an eye of a wearer. The apparatus may also include at least one microphone associated with the frame. The at least one microphone may be configured to receive a directional instruction from the processor. The directional instruction may be based upon an adaptive beamforming analysis performed in response to a detected eye movement from the infrared camera. The apparatus may also include a speaker associated with the frame configured to provide an audio signal received at the at least one microphone to the wearer. |
US09848259B2 |
Loudspeaker
A loudspeaker includes an enclosure including a resonance chamber and an acoustic emission aperture for communication of the resonance chamber with the outside, and a plurality of speaker units including a first speaker unit arranged in a first direction and a second speaker unit arranged in a second direction, and the plurality of speakers being accommodated in the enclosure in a non-coaxial arrangement. Front slit spaces of the plurality of speaker units are in communication with the resonance chamber. |
US09848257B2 |
In-ear hearing device and broadcast streaming system
An improved earbud design providing for full modularity; improved and variable hearing protection, sound quality, comfort, fit, aesthetics, and signal connectivity; and the ability to maintain environmental sound directionality comprised of a multitude of new features with variable vents and membranes which dilute the harmful pneumatic effects of sound while improving its acoustic quality. A location-based transmission system provides event attendees to mix live sound with streamed sound through Ambrose Earbuds for reduced hearing risk and no quality detriments due to timing gaps, occlusion or ear tip spectral broadening, and enables noise pollution-free musical performances. A displacement-based digital compression algorithm caps maximum output air displacement as well as sound pressure level. Thus, an earbud is provided that through adjustments and modularity can act as a personal listening device, a hearing protection device and as a personal aesthetic statement with customized fit and comfort. |
US09848255B1 |
Method for manufacturing a plastic speaker grill for wireless speaker assembly
A method for manufacturing a plastic speaker grill is provided. The method includes the steps of providing a base member having a first side and an opposing second side and defining a thickness therebetween. The base member has a plurality of spaced blind holes wherein the first side is in communication with the plurality of blind holes and the second side defines a surface that is generally uniform and uninterrupted. The method further includes cutting the base member proximate the second side to remove a portion of the base member and define the speaker grill, and in response to cutting the base member, exposing the blind holes wherein the blind holes define apertures that extend completely through the speaker grill. A plastic speaker grill is provided having tightly-spaced and miniscule apertures. |
US09848254B2 |
Efficient transport network architecture for content delivery network
A content delivery network (CDN) includes: at least one CDN origin node; and multiple CDN cache nodes connected to the at least one CDN origin node via an optical transport network (OTN). Deliveries and/or routing from the multiple CDN cache nodes to the at least one CDN origin node and/or vice versa is performed below layer 3 of the Open Systems Interconnection (OSI) model. |
US09848253B2 |
Information processing apparatus, information processing method, and program
There is provided an information processing apparatus to allow a user to use a device network by a natural and simple operation by automatically selecting a device for providing a response to a request, the information processing apparatus including: a request acquiring part configured to acquire a request to a system; a response determining part configured to determine a response to the request; a device selecting part configured to select, on the basis of at least an attribute of the response, a device that provides the response among devices included in the system; and a device controller configured to perform control that causes the selected device to provide the response. |
US09848251B2 |
Apparatus for receiving a broadcast signal, and method for transmitting a broadcast signal
A method of receiving a broadcast signal including a Non-Real-Time (NRT) service and a broadcast receiver are disclosed herein. A method of receiving a broadcast signal including a Non-Real-Time (NRT) service, the method comprises receiving a broadcast signal including an NRT content and NRT service guide information, the NRT service guide information including a content fragment, identifying a File Delivery over Unidirectional Transport (FLUTE) session delivering the NRT content from the broadcast signal, detecting a first content identification information from a File Description Table (FDT) of the FLUTE session, and detecting a second content identification information of the content fragment matched with the first content identification information. |
US09848242B2 |
Systems and methods for adjusting the priority of media assets scheduled to be recorded
Systems and methods are described herein for adjusting the priority of media assets scheduled to be recorded to reflect the current behavior and interests of the user. For example, a household with young children may have scheduled recordings for the DVR with a wide variety of television shows of different genres (e.g., Children's Shows, Sports Games, and Crime Procedurals) and as the children grow up, the preference may gradually shift towards other types of shows. As this shift of interest happens over time, it can be difficult or impossible for the user to change the priority of each of the media assets of the scheduled recordings each time the interests of the user changes an incremental amount. |
US09848238B2 |
Media playback method and device
A media playback method and device that relate to the field of computer technologies are provided. The method includes turning on a camera to detect the number of human eyes within a shooting range to determine an initial number of viewers when a user performs a media playback activity, detecting, at a set interval, the number of human eyes to determine a current number of viewers, and encrypting a playback image when the current number of viewers is greater than the initial number of viewers. The method is applicable when a user views information, such as a text, a picture, or a video, on a device such as a mobile phone terminal, a pad device, or a computer. |
US09848237B2 |
Systems and methods for identifying a source of a user interface from a fingerprint of the user interface
Systems and methods are provided herein for determining aspects of a user interface, and determining therefrom a service or device that corresponds to the user interface. In doing so, a user's activity can be profiled, and aggregate usage data over a population of particular devices and OTT applications can be tracked. Moreover, losses and gains of popularity of services or devices may be monitored. |
US09848236B2 |
System and method for digital media content creation and distribution
A method and system for providing on-site content delivery and on-demand content access. The method comprising recording digital media content on a DMR device, managing distribution of the digital media content to one or more remote devices, automatically distributing the digital media content to the one or more remote devices, the distributed digital media content configured for local hosting at the one or more remote devices, and monitoring consumption of the digital media content distributed to the one or remote devices. |
US09848228B1 |
System, method, and program product for generating graphical video clip representations associated with video clips correlated to electronic audio files
Systems, methods, and program products for matching electronic audio files (such as songs) to associated electronic video work excerpts or electronic video clips from movies, televisions shows or advertisements in accordance with one or more sync licenses and generating and providing graphical representations of such video clips are disclosed. |
US09848221B2 |
Method and infrastructure for synchronized streaming of content
Systems and methods for synchronizing the playback of network media across multiple content playback devices, termed herein as “playback devices”, “clients”, or “client devices”. In one implementation, client devices are controlled to parse and buffer media content separately. Once all clients are ready, a controller may cause the client devices to start in a synchronized fashion based on signals sent by the controller. The controller adjusts the timing of the signal so that the outputs are displayed in synchronization on each client device. In other implementations, device lag times may be measured. In still other implementations, a master device may synchronize playback of media content on slave devices. In yet other implementations, devices may buffer and join playback of media content occurring on other devices. In further implementations, the systems and methods may be expanded to include steps of processing authentication for service providers prior to arranging synchronized playback. |
US09848220B2 |
Method and system for encoding and multiplexing programs of a plurality of television channels
A solution is proposed for encoding/multiplexing programs of national television channels and at at least one group of regional channels. A plurality of encoders works in variable bit rate (each is called national or regional depending on whether it receives programs from a national or regional television channel). An aggregator device generates at least one piece of common information from the information coming from the regional encoders. A statistical allocator receives it along with information coming from national encoders and gives a dedicated set of encoding parameters to each national encoder and a common set of encoding parameters to the regional encoders. For each region, a multiplexer generates a multiplexed signal from output signals of the national encoders and from the output signal of the encoder associated with the regional channel of this region. |
US09848214B2 |
Sequentially overlaying media content
A method, system, or device to determine when media content has been displayed. The method can include receiving a unique identifier (UID) and fingerprint for a media segment. The method can also include determining a media segment ID for the media segment, generating and submitting a query for the media segment ID in a record database, determining that the media segment ID is not stored in the record database, and identifying an overlay content segment ID. The method can include generating and submitting for the overlay content segment ID in the record database, determining it is not stored in an entry, sending the overlay content segment to the electronic device, and receiving a notification from the electronic device. |
US09848212B2 |
Multi-view video streaming with fast and smooth view switch
A video server comprises memory to store video content obtained from multiple camera views; one or more streaming components configured to stream video content to a client application; and one or more frame feeder components. A frame feeder component is configured to access first video content corresponding to a first camera view and provide the first video content to a streaming component; access, in response to a request received at the video server to stream second video content corresponding to a second camera view, intermediate video content corresponding to one or more camera views intermediate to the first and second camera views; and access the second video content, and provide the intermediate video content and the second intermediate video to the streaming component. |
US09848210B2 |
Error concealment method using spatial interpolation and exemplar-based image inpainting
A hybrid error concealment method including: receiving an image including a source area and a restoration area to be restored by means of a decoder; determining a target patch in which a target pixel having the highest priority is at the center among pixels positioned in a boundary area of the restoration area by means of the decoder; and performing restoring by exemplar-based image inpainting for the target patch based on a difference between the target patch and the final source patch of the source area or performing spatial interpolation for the target pixel by means of the decoder. |
US09848202B2 |
Method and apparatus for image encoding/decoding
This document discloses a method and apparatus for image encoding/decoding which support multiple layers. The method for image decoding comprises analyzing a video parameter set (VPS) extension for layer dependency on a current layer, analyzing slices for layer dependency on a current slice by determining whether not to apply layer dependency to the current slice or to apply new layer dependency to the current slice, the new layer dependency determining within a range of layer dependency analyzed from the VPS extension, and constructing a reference picture list about the current layer based on at least one of layer dependency analyzed from the VPS extension and layer dependency analyzed from the slice. |
US09848201B2 |
Method and apparatus for coding and decoding videos
This disclosure relates to the field of video coding and decoding technology, and particularly, to a method and an apparatus for coding and decoding videos, wherein the coding method comprises: acquiring available neighboring pixel points which are reconstructed and neighboring to a coding unit; finding a reference block corresponding to the coding unit according to the motion vector of a prediction unit for a pixel attribute in the coding unit, and acquiring corresponding reference pixel points around the reference block; calculating a pixel attribute compensation parameter of the prediction unit using a value of the pixel attribute of the neighboring pixel point and a value of the same pixel attribute of the reference pixel point; and calculating a first prediction value of the prediction unit according to the pixel attribute compensation parameter, and coding the coding unit according to the first prediction value. |
US09848200B2 |
Video decoding method and apparatus using the same
Disclosed is a video decoding method that decodes a bitstream, the method including receiving a picture parameter set (PPS) comprising at least one of first information indicating whether the same reference picture list is applied to slices comprised in a picture and second information indicating whether additional information on modification of the reference picture list is present, and deriving a construction of the reference picture list based on the PPS. Accordingly, there are provided a method and an apparatus for signaling by a picture whether the construction of the reference picture list is modified when constructing the reference picture list. |
US09848195B2 |
Picture decoding device, picture decoding method, and picture decoding program
There is provided a picture coding device that performs intra prediction coding of a picture signal including a luma signal and a chroma signal in units of blocks and codes information relating to an intra prediction mode. When the intra prediction of a picture signal is made in units of coding blocks, in a case where a chroma format is 4:2:2, in a mode for setting a chroma intra prediction mode in accordance with the luma intra prediction mode, an intra prediction unit sets the chroma intra prediction mode based on the luma intra prediction mode and the chroma format and makes an intra prediction of the chroma signal. |
US09848194B2 |
Image coding and decoding method and apparatus considering human visual characteristics
An image coding method and apparatus considering human visual characteristics are provided. The image coding method comprises (a) modeling image quality distribution of an input image in units of scenes such that the quality of an image input in units of scenes is gradually lowered from a region of interest to a background region, (b) determining a quantization parameter of each region constituting one scene according to the result of modeling of image quality distribution, (c) quantizing image data in accordance with the quantization parameter, and (d) coding entropy of the quantized image data. |
US09848192B2 |
Region-based image decompression
A method and a non-transitory computer readable medium for decompressing an image including one or more regions are presented. A region of the image is selected to be decoded. The region and metadata associated with the region are decoded, the metadata including transformation and quantization settings used to compress the region. A reconstruction transformation is applied to the region using the transformation and quantization settings. |
US09848189B2 |
Moving picture coding device, moving picture coding method and moving picture coding program, and moving picture decoding device, moving picture decoding method and moving picture decoding program
A merging motion information candidate list construction unit generates a merging motion information candidate list, which is a list of merging motion information candidates, using a spatial merging motion information candidate and a temporal merging motion information candidate. A second merging motion information candidate supplying unit generates a new merging motion information candidate including, if a reference index indicates an available reference picture, the reference index and, if the reference index does not indicate an available reference picture, a predetermined reference index along with a motion vector having a size and a direction that are preset and adds the new merging motion information candidate to the merging motion information candidate list. A merging motion information selection unit selects one merging motion information candidate from the merging motion information candidate list to which the new merging motion information candidate has been added. |
US09848185B2 |
Video display system, display device and source device
A video display system includes a source device for reproducing and outputting contents; and a display device for displaying contents which is output from the source device. Upon receiving a message for requesting display of a 3D video from the source device in a state of unreadiness to display the 3D video, the display device transmits a message for stopping reproduction of 3D contents to the source device. Upon receiving the message for stopping reproduction of 3D contents, the source device stops reproduction of the 3D contents. Upon completing preparations for displaying the 3D video, the display device transmits a message for reproducing the 3D contents to the source device. Upon receiving the message for reproducing the 3D contents, the source device reproduces and outputs the 3D contents. |
US09848184B2 |
Stereoscopic display system using light field type data
Systems and methods for a head tracked stereoscopic display system that uses light field type data may include receiving light field type data corresponding to a scene. The stereoscopic display system may track a user's head. Using the received light field type data and the head tracking, the system may generate three dimensional (3D) virtual content that corresponds to a virtual representation of the scene. The stereoscopic display system may then present the 3D virtual content to a user. The stereoscopic display system may present a left eye perspective image and a right eye perspective image of the scene to the user based on the position and orientation of the user's head. The images presented to the user may be updated based on a change in the position or the orientation of the user's head or based on receiving user input. |
US09848181B2 |
Hand-held electronic apparatus, image capturing apparatus and method for obtaining depth information
A hand-held electronic apparatus, an image capturing apparatus and a method for obtaining depth information are provided. The image capturing apparatus includes a time of fly (TOF) image capturer, a TOF controller, a main and sub image capturers, and a controller. The TOF image capturer calculates a TOF depth map according to a TOF image, defines an effective region and an un-effective region according to the TOF depth map, and obtains a first depth information set of the effective region. The main and sub image capturers captures a first and second images, respectively. The controller obtains a second depth information set of the un-effectively region by comparing the first and second images, and generates an overall depth map by combining the first depth information set and the second depth information set. |
US09848179B2 |
Interlaced 3D video
A video processing device (100) for processing 3D video is coupled to a 3D display device (120). The device receives the 3D video data according to a high resolution interlaced 3D format. A video processor (106) generates a 3D display signal according to a display format. 3D display capability data indicates at least one interlaced 3D display format accepted by the 3D display device, the interlaced 3D display format having a lower resolution than the high resolution interlaced 3D format. The device has a storage unit (21,31) for storing the 3D display capability data and 3D conversion capability data. The 3D conversion capability data indicates a capability of the video processing device for interlaced down conversion for enabling a selection mechanism to control the processing of the 3D video information by selecting the interlaced 3D display format and the interlaced down conversion. Advantageously the user is provided with the best possible 3D view. |
US09848172B2 |
Autonomous systems and methods for still and moving picture production
Systems and methods facilitate autonomous image capture and/or picture production. A location unit is attached to each tracked object. An object tracking device receives location information from each location unit. A camera control device controls, based upon the location information, at least one motorized camera to capture image data of at least one tracked object. |
US09848170B2 |
System and method for improving communication productivity
A method, computer readable storage medium, and system are disclosed for improving communication productivity in a conference between two or more subjects, wherein at least one of the two or more subjects participates in the conference from a first location and one or more of the two or more subjects participate in the meeting from a second location. The method includes capturing, at least one first three-dimensional (3D) stream of data and at least one second three-dimensional (3D) stream of data on each of the two or more subjects participating in the conference; generating a synchrony score for the two or more subjects, wherein the synchrony score is calculated by comparing time series of skeletal data of each of the two or more subjects to one another for a defined period of time; and using the synchrony score to generate an engagement index between the two or more subjects. |
US09848167B1 |
Low bandwidth video
Devices, systems and methods are disclosed for enabling a standby mode during videoconferencing, the standby mode having reduced bandwidth consumption and configured to indicate whether a person is present while protecting a privacy of the person. For example, a local device may capture low resolution video data at a low sampling rate, downsample the video data and send the downsampled video data to a remote device, which may upsample the downsampled video data and display the upsampled video data on a display. The upsampled video data indicates an environment of the local device while blurring details, enabling a user of the remote device to identify movement or activity while maintaining privacy for anyone near the local device. The local device may identify activity, motion and/or objects of interest in the video data and may apply a special effect emphasizing the activity, motion and/or objects of interest. |
US09848165B2 |
Protecting privacy of a customer and an agent using face recognition in a video contact center environment
A method, apparatus and computer program product for protecting privacy of a customer and an agent using face recognition in a video contact center environment is presented. A video call is initiated by a customer to a contact center. The customer video is muted while audio of the customer is provided to an agent of the contact center. A determination is made regarding whether a face is present in a video image of the customer. When a presence of a face is determined in the video image of the customer, then video of the customer is enabled. When a presence of a face is not present in the video image of the customer then the customer is notified so the customer can take appropriate action. |
US09848164B2 |
Signal transmission method and electronic device
According to one embodiment, an electronic device including a signal division module and a plurality of output ports. The signal division module receive an input signal and to divide the received input signal into a predetermined number of signals. The plurality of output ports being configured to output the predetermined number of signals into which the input signal is divided by the signal division module and information indicating physical addresses of themselves to a plurality of two-way communication interfaces a number of which corresponds to the predetermined number at the time of division by the signal division module. |
US09848163B2 |
Image processing apparatus and image processing method
For sharpening an input image by up-converting the input image in order to increase the number of pixels of an image and generating a frequency component higher than a frequency component contained in an input image signal representing the input image, the number of multipliers is reduced, thereby achieving significant downsizing of an apparatus and cost reduction. An image processing apparatus includes a path on a base image side for up-converting the input image signal and a path on a sharpening processing side for carrying out nonlinear arithmetic processing on the input image signal. The path on the sharpening processing side includes an up-converter at a subsequent stage of at least one filter, after which the nonlinear arithmetic processing is carried out. The at least one filter may be either a two-dimensional low pass filter for noise removal or a high pass filter for removing a DC component. |
US09848160B2 |
Imaging apparatus, imaging method and program
An imaging apparatus includes a display control unit that displays, according to an operation of activating an imaging unit, a first region in which an image created by the imaging unit is displayed and a second region in which map information is displayed; and an image recording unit, wherein according to an operation of appending the image to the map information after an imaging instructing operation for the first region, the image recording unit adds location information about a position, at which the appending operation to the map information has been performed, to the image and stores the image. |
US09848159B2 |
Image reproducing apparatus and method for controlling same
An image reproducing apparatus including a selection unit configured to select a still image to be reproduced, a moving image to be reproduced, and a reproduction range of the moving image from a recording medium in which a plurality of still images and moving images is recorded, and a reproduction control unit configured to perform control to sequentially reproduce the still image and the reproduction range of the moving image selected to be reproduced by the selection unit, the selection unit being configured to perform control so that both a still image and a range of a moving image in which the still image is inserted are not selected to be reproduced. |
US09848155B2 |
TV program playing method, remote control and TV
The present disclosure provides a TV program playing method, a remote control and a TV, and the method comprises: obtaining, by the remote control, a first unlock instruction triggered by a first user when a TV system is in standby state; obtaining, by the remote control, a first heart rate feature information of the first user via the optical sensor according to the first unlock instruction; sending, by the remote control, a first playing instruction carrying an identifier of the first user to the TV when a difference between the first heart rate feature information and a second heart rate feature information in a feature library is less than a threshold so that the TV plays a program in a program list corresponding to the identifier of the first user, wherein the feature library pre-stores corresponding relationship between identifiers and heart rate feature information of users. |
US09848153B2 |
Image processing device to extract color and depth data from image data, and mobile computing device having the same
In an example embodiment, an image processing device includes a pixel array including pixels two-dimensionally arranged and configured to capture an image, each of the pixels including a plurality of photoelectric conversion elements and an image data processing circuit configured to generate image data from pixel signals output from the pixels. The image processing device further includes a color data processing circuit configured to extract color data from the image data and output extracted color data. The image processing device further includes a depth data extraction circuit configured to extract depth data from the image data and output extracted depth data. The image processing device further includes an output control circuit configured to control the output of the color data and the depth data. |
US09848151B2 |
Solid state imaging device including photodetecting section
A solid-state imaging device includes a photodetecting section, a vertical shift register section, first row selection lines, and second row selection lines. The vertical shift register section provides the row selection lines of the m-th row with common row selection signals. |
US09848140B2 |
Horizontal banding reduction with ramp generator isolation in an image sensor
A readout circuit for use in an image sensor includes a system ramp generator coupled to generate a system ramp signal. A plurality of analog-to-digital converters is coupled to a plurality of column bitlines from a pixel array to receive corresponding analog column image signals. An isolation ramp buffer is coupled between the system ramp generator and the analog-to-digital converters. The isolation ramp buffer includes a single input to receive the system ramp signal, and a plurality of isolated outputs. Each of the isolated outputs is coupled to provide an isolated column ramp signal to a corresponding analog-to-digital converter. Each of the of analog-to-digital converters is coupled to generate a corresponding digital column image signal in response to the corresponding analog column image signal and corresponding isolated column ramp signal. |
US09848134B2 |
Infrared imager with integrated metal layers
Various techniques are provided for implementing, operating, and manufacturing infrared imaging devices using integrated circuits. In one example, a system includes a focal plane array (FPA) integrated circuit comprising an array of infrared sensors adapted to image a scene, a plurality of active circuit components, a first metal layer disposed above and connected to the circuit components, a second metal layer disposed above the first metal layer and connected to the first metal layer, and a third metal layer disposed above the second metal layer and below the infrared sensors. The third metal layer is connected to the second metal layer and the infrared sensors. The first, second, and third metal layers are the only metal layers of the FPA between the infrared sensors and the circuit components. The first, second, and third metal layers are adapted to route signals between the circuit components and the infrared sensors. |
US09848131B2 |
Imaging display device and control method thereof
An imaging display device includes a lens unit, an imaging unit that outputs an imaging signal obtained by imaging, an image signal generating unit that generates an image signal by performing image processing in accordance with optical properties of the lens unit, a display unit that displays an image based on the image signal, and a timing control unit that controls the phase difference from the frame start of the imaging signal to the frame start of the image signal so as to be changed in accordance with a predetermined time required for the image processing. |
US09848127B2 |
System and method for a compact display
Provided is a compact display system and method for creating, with minimal volume, a focused, high quality, full color, large FOV virtual image characterized by eye-limited spatial resolution. The provided compact display (i) enables a flexible range of eye relief, and (ii) enables a large exit pupil. |
US09848122B2 |
Optical positioning sensor
A sensor comprising a support structure and an imaging device having an image sensor, such as a CCD or CMOS or N-type metal-oxide-semiconductor (NMOS or Live MOS) sensor, positioned proximate the support structure. The support structure and the imaging device can be movable relative to one another in at least one degree of freedom. The sensor can also comprise a fiduciary disposed about the support structure and identifiable by the imaging device, wherein a position of the fiduciary relative to the imaging device is caused to change with the relative movement of the support structure and the imaging device. A position module can be configured to determine a relative position of the imaging device and the support structure based on the position of the fiduciary relative to the imaging device. |
US09848120B2 |
System and method for preserving video clips from a handheld device
A system and method for recording video that combines video capture, touch-screen and voice-control technologies into an integrated system that produces cleanly edited, short-duration, compliant video files that exactly capture a moment after it has actually occurred The present invention maintains the device in a ready state that is always ready to capture video up to N seconds or minutes in the past (where N depends on available system memory). This enables the user to run the system indefinitely without having to worry about running out of storage. Touch gestures and voice commands actually initiate captures without having to actually monitor the system itself thereby allowing for complete focus on the live action itself. When the user sees something happen, he or she can use an appropriate voice or touch command to cause the system to create a video media file based on time points derived from the user's commands. |
US09848119B2 |
Image pickup apparatus comprising image sensors and a light beam splitter
The image pickup apparatus includes: a first imaging sensor in which pixels including photoelectric conversion units are arranged two-dimensionally; a second imaging sensor in which pixels including photoelectric conversion units are arranged two-dimensionally, each pixel including one micro lens, and a first and a second photoelectric conversion units; a light beam splitting unit for splitting a flux of light entering an optical system into fluxes of light entering the first and the second imaging sensors separately; a first image processing unit for processing signals from the first imaging sensor, the first image processing unit generating a still image based on signals from the first imaging sensor; and a second image processing unit for processing signals from the second imaging sensor, the second image processing unit generating signals usable for focal point detection of a phase difference method and generating a moving image based on signals from the second imaging sensor. |
US09848117B2 |
Focus control apparatus, method therefor, and storage medium
A focus control apparatus, comprises an area setting unit that sets a plurality of divided areas by dividing in a first direction and in a second direction, the first direction corresponding to a direction in which a focus state is detected; a focus detection unit that detects first information related to the focus state; a calculation unit that calculates defocus information on the basis of the first information; and a control unit that performs focus control on the basis of the calculated defocus information, wherein in a first mode in which the defocus information for the focus control is calculated by combining pieces of the first information, the calculation unit causes the part of the plurality of divided areas to vary in accordance with pieces of the first information. |
US09848114B2 |
Vehicle camera system
A vehicle camera system and method for operating a vehicle camera system comprising a vehicle camera with communication capabilities. The vehicle camera operating in conjunction with other components to provide information to users. The vehicle camera system compiles information from multiple components into a single repository of video recordings with information, such as location information, vehicle status and diagnostic information, alert information and other information. |
US09848113B2 |
Multi-band biometric camera system having iris color recognition
A system and method for authenticating a user of a device. A multi-band biometric iris scan camera system is capable of obtaining an iris image using near-infrared (NIR) light and/or visible wavelength (VW) light. The camera system can initially image a user to detect the iris color of the user and, based on the iris color, determine whether to use the NIR iris scan or the VW iris scan. Additionally, NIR and VW systems can be operated as integrated camera systems. The iris scan camera system can take a series of images and compare against a database of anonymous iris images captured at different illumination conditions, for selecting a preferred illumination condition for capturing the iris and performing authentication. The iris scan camera system can optionally track eye movement to determine when to trigger an iris scan, identify obstructions to the iris such as eyelids and eyelashes to implement corrective measures in the iris image processing, and identify facial features to determine whether the left and/or right eye is being imaged. |
US09848110B2 |
Inspection scope devices and methods for mobile electronic devices
Inspection scopes suitable for use in connection with mobile electronic devices are disclosed. The inspection scope may utilize an optical connection to the mobile electronic device and/or an electrical connection to the mobile electronic device. Software operative on the mobile electronic device is configured for control of inspection scope components and for acquisition of video and/or image data. |
US09848102B2 |
Information processing apparatus, information processing method and program for determining suitability of printing content data displayed on a display apparatus
A display control apparatus includes a display control unit that controls display of a display unit. A communication unit starts wireless communication with a printing apparatus according to a decrease in distance between the display control apparatus and the printing apparatus. A display switching unit performs a predetermined display related to printing in a case where the communication unit starts communication with the printing apparatus while a content to be printed is displayed on the display unit. The display control unit is configured to not perform the predetermined display in a case where the communication unit starts communication with the printing apparatus while a content not to be printed is displayed on the display unit. |
US09848099B2 |
Liquid management structures for an image reading apparatus
An image reading apparatus includes a reading device having an opening in an upper surface thereof, a main device disposed below the reading device, a first cable connected to the reading device and the main device and including a first portion, a retaining portion disposed in the main device, and a groove portion. The retaining portion is configured to retain the first portion of the first cable such that the first portion has a substantially U-shaped curve, which is curved downwardly, and such that a liquid passes through the opening of the reading device, runs on the first portion downwardly and drops down from a lower end of the substantially U-shaped curve in the first portion of the first cable. The groove portion is configured to receive the liquid dropping down from the lower end of the substantially U-shaped curve in the first portion of the first cable. |
US09848098B2 |
Image forming apparatus capable of correcting image formation position
An image processing apparatus 1 obtains displacement amounts of patterns formed on front and back sides of a recording sheet respectively, and performs correction of an image formation position based on the displacement amounts. The image processing apparatus 1 calculates the lengths of the sides of each of the front and back sides of a recording sheet by detecting the intersection points of the surrounding edges of the recording sheet with reference to the image data of the each of the front and back sides. A magnification error is calculated based on the lengths of the sides corresponding between the front and back sides. A correction amount is then calculated based on the calculated magnification error in order to make the lengths of each side match each other. Displacement amounts of the positions of the patterns is obtained after correction based on the correction amount. |
US09848097B2 |
Image reading device, image reading method, image forming apparatus, and computer-readable recording medium
An image reading device includes a controller that performs control, when a document size is to be determined, so as to reduce a light amount irradiated by a light source more than that in a case of image reading; a period extending unit that extends, when the document size is to be determined, a period in which an image sensor performs photoelectric conversion in a main scanning direction longer than that in a case of image reading; an averaging unit that averages, when the document size is to be determined, results obtained when a plurality of predetermined pixels perform the photoelectric conversion; and a determining unit that determines the document size according to a result averaged by the averaging unit in a period extended by the period extending unit. |
US09848096B2 |
Device, method, and storage medium for supporting imaging work
A user is allowed to set contents of imaging work for digitization of a book using a page turning device to turn over each page of the book in a spread state from an original position to a destination position and settings of the imaging work are stored in advance. When a user commands initiation of the imaging work, the stored settings are confirmed and an imaging operation screen to present, to the user, guidance information related to an imaging procedure corresponding to the settings is separately displayed. |
US09848095B2 |
Image forming apparatus and non-transitory computer readable recording medium
There is provided an image forming apparatus, including: a feeder mechanism that feeds a sheet in a sheet-feeding direction; a metal-detector antenna capable of detecting an NFC (Near Field Communication) tag on the sheet entirely in the carriage-moving direction over the sheet; a carriage that moves back and forth in the carriage-moving direction and includes a print head, the print head forming an image on an area of the sheet, the area having passed the metal-detector antenna; an NFC antenna on the carriage, the NFC antenna being capable of communicating with the NFC tag via near field communication; and an NFC writer that writes NFC data in the NFC tag via the NFC antenna. |
US09848094B2 |
Mobile scanner via private data on cloud
Presented are cloud storage architectures for private data of scanned documents uploaded from smart phone among terminals with enhanced capability of data privacy and survivability. Pre-processing for storing data in IP cloud comprises: transforming multiple first data sets into multiple second data sets at an uploading site, wherein one of said second data sets comprises a weighted sum of said first data sets; storing said second data sets in an IP cloud via IP connectivity; and storing data in multiple data storages linking to said second data sets at said uploading site. In accordance with an embodiment of present invention post processing may comprise recovering said second data sets at a downloading site via IP network. |
US09848091B2 |
Interim billing for sessions in IMS networks
Charging systems and associated methods are disclosed that provide interim billing for a session in an IMS network. The charging system includes a charging data system that receives accounting messages from network elements serving the session in the IMS network, and generates partial CDRs for each network element based on the accounting messages. The charging data system also sets an aggregation/correlation timer. Responsive to an expiration of the aggregation/correlation timer, the charging data system aggregates the partial CDRs for each network element to generate an aggregated CDR for each network element. The charging system further includes a charging gateway system that, in further response to the expiration of the aggregation/correlation timer, correlates the aggregated CDRs to generate an interim consolidated CDR for the session, and transmits the interim consolidated CDR to a billing system. The billing system may then provide interim billing for the session based on the interim consolidated CDR. |
US09848089B2 |
Methods and apparatus to generate an overall performance index
Methods, apparatus, systems and articles of manufacture are disclosed to generate an overall performance index. The overall performance index is generated from data values from multiple different datasources that measure the same aspect of network performance of wireless providers of interest. The data values are used to generate metrics that measure the same aspect of network performance. The metrics are indexed and combined to generate an overall performance index. |
US09848084B2 |
Adaptable business objective routing for a contact center
A system and method for enhanced interaction processing in a contact center that includes routing interactions based on adaptable business objectives. A processor detects a pending interaction with a customer. The processor identifies first and second objectives of the contact center in response to detecting the pending interaction, where the first objective is identified as more important to the contact center than the second objective. The processor identifies a first agent for handling the first objective, and determines a likelihood of success of the first agent in achieving the first objective. The processor identifies a second agent for handling the second objective, and determines a likelihood of success of the second agent in achieving the second objective. In the event that the likelihood of success in achieving the second objective by the second agent is higher than the likelihood of success of achieving the first objective by the first agent, the processor transmits instructions to route the pending interaction to the second agent. The processor also prompts the second agent to pursue the second objective. |
US09848083B2 |
Speech recognition method of and system for determining the status of an answered telephone during the course of an outbound telephone call
A system for determining the status of an answered telephone during the course of an outbound telephone call includes an automated telephone calling device for placing a telephone call to a location having a telephone number at which a target person is listed, upon the telephone call being answered, initiating a prerecorded greeting which asks for the target person and receiving a spoken response from an answering person and a speech recognition device for performing a speech recognition analysis on the spoken response to determine a status of the spoken response. If the speech recognition device determines that the answering person is the target person, the speech recognition device initiates a speech recognition application with the target person. |
US09848082B1 |
Agent assisting system for processing customer enquiries in a contact center
A system is disclosed that assists contact center agents with servicing customer enquiries. A wireless caller with an enquiry calls a contact center and is prompted to leave a voice message and accept a text callback as a response. The voice message is processed by a speech analytics system that extracts certain keywords in the voice message and develops a transcript as well. Upon selecting an available agent to provide the response, the keywords and transcript are presented to the agent along with a draft text response, formulated by the system using the identified keywords. Additional resources may be provided as necessary to the agent, who can also review the original audio recording. Upon reviewing and potentially editing the text response, the agent causes the text to be sent to the wireless caller, which may be sent as an SMS text, or in some other form. |
US09848079B2 |
Call management between multiple user devices
A connection manager manages connections for associated user devices by determining whether an incoming connection has been answered at a user device, and if so then generating and transmitting silencing commands to associated user devices using first and second wireless communication modes, with one mode being faster. Connections can comprise phone calls, and modes can comprise push and Bluetooth® messaging. The connection manager can instruct device outputs to provide connection alerts, limited to visual alerts when an associated user device is active, listen for associated user device communications, and instruct device outputs to stop providing alerts when a silencing command is received. Further, a connection manager can receive a signal regarding a headset status, route an outside connection from a phone to the headset when the headset is active or to another device when the headset is not active, detect a change in headset status, and reroute the connection accordingly. |
US09848076B2 |
Electronic device and method for controlling notification in electronic device
An electronic device and a method controlling a notification are provided. The method includes determining an execution state of an application that is currently executed when an interruption occurs while the application is executed, and controlling whether to output a notification associated with the interruption based on the execution state of the application. |
US09848072B2 |
Electronic device monitoring method and apparatus
A method and apparatus for checking use of an electronic device based on a video signal obtained by a camera in the state that the device displays an authentication screen. The electronic device of the present disclosure includes a memory that stores user authentication information, a camera module, an input interface, and a processor. The processor receives a request for displaying a lock screen, activates the camera module based on the request, acquires images including at least one object in association with the electronic device, receives an input made through the input interface, compares the input with the authentication information, and transmits, when the input mismatches the authentication information, the acquired images to an external electronic device. |
US09848071B2 |
Rotatable electrical connector
A connecting system for an electronic device is disclosed herein. The connecting system may comprise a connector port including an alignment feature and two or more conductive traces corresponding to contacts of a dock interface. The connector port may be rotatable relative to the dock interface with at least two conductive traces arranged in a manner such that the contacts are maintained in contacting relation with the conductive traces along a contact path when the electronic device is rotated relative to the dock interface. The connector port may further include one or more nonconductive separating spaces that separate the at least two conductive traces along the contact path. The connecting system may comprise a rotation stop arranged such that the contacts are prevented from having contacting relation with conductive traces other than a conductive trace to which the contact corresponds and with which the contact is aligned. |
US09848067B2 |
Managing sequence values with added headers in computing devices
In one embodiment, the disclosure provides a data processing method comprising receiving, from a client computer, a first handshake message segment comprising a first client sequence value; sending to a server computer a second handshake message segment comprising a second client sequence value equal to the first client sequence value less an added data length value; receiving a third handshake message segment from the client computer and sending a fourth handshake message segment to the server computer and determining that connections to the client computer and the server computer have reached established states; receiving from the client computer a first data segment comprising a first data length value; forming a second data segment that comprises: payload data from the first data segment; added data that is equal in size to the added data length value; and a second data length value equal to a sum of the first data length value and the added data length value; sending the second data segment to the server computer; wherein the method is performed using one or more computing devices. |
US09848066B2 |
Communication recording apparatus, system and method
A communication recording apparatus includes: a storage unit and a computational unit. The storage unit stores packets transmitted from a transmitter apparatus to a destination apparatus. The computational unit executes a process including deciding, in accordance with a port number included in the received packets, whether the packets are to be compressed, compressing the packets decided to be compressed, and storing the compressed packets in the storage unit. |
US09848063B2 |
Facilitating communication between smart object and application provider
A smart object establishes communication with an application provider server computing device by sending a request to a manufacturer server computing device to identify a second server computing device; receiving a response from the first server computing device with an identifier indicating the second server computing device; and using the identifier to establish communication between the smart object and the second server computing device. |
US09848062B2 |
Communication apparatus which establishes wireless connection with external apparatus
A communication apparatus may cause a display to display a first inquiry message in a case where an apparatus search signal is received from an external apparatus, the apparatus search signal being for searching a target apparatus which is to establish a wireless connection with the external apparatus, and the first inquiry message being for inquiring a user whether a particular wireless connection is to be established between the communication apparatus and the external apparatus. The communication apparatus may establish the particular wireless connection between the communication apparatus and the external apparatus in a case where it is selected by the user, in response to the first inquiry message, that the particular wireless connection is to be established. |
US09848061B1 |
System and method for rules engine that dynamically adapts application behavior
In some implementations, a system enables an administrator to customize a set of rules to dynamically adjust the configuration and output of an application provided to users. A configuration interface for setting rules that dynamically adjust output of an application is provided. Data indicating one or more rules are received through the configuration interface. Activity data indicating user interaction with the application or sensor data for at least some of a plurality of users of the application are then received from multiple client devices. A determination relating to the activity data satisfying at least one condition or trigger is then made. Instructions to adjust output of the application according to one or more system actions of the one or more rules are then communicated to client devices associated with the users in the first subset of the plurality of users. |
US09848059B2 |
Content handling method, apparatus, and system
The method includes: receiving a content-requesting message sent by a terminal; determining coding block information corresponding to a requested content according to a name of the requested content and pre-stored coding block information; performing an AND operation on a request identifier respectively with attribute fields in the coding block information corresponding to the requested content, and obtaining a coding block corresponding to an attribute field with which the AND operation produces a non-zero result and which is not part of excluded information as a first target coding block; and sending a first content reply message including the first target coding block and the corresponding attribute field thereof to the terminal. |
US09848058B2 |
Medical data transport over wireless life critical network employing dynamic communication link mapping
A portable source medical device determines communication links of a network presently available to effect communications with a target component when the source medical device is at each of a multiplicity of geographical locations. A profile is generated comprising information about each available communication link and attributes associated with each available communication link for each geographical location. When the source medical device is at a particular geographical location, a profile associated with the particular geographical location is accessed and a network connection is established between the source medical device and the target component using a communication link associated with the particular profile. Medical information is transferred between the source medical device and the target component via the communication link associated with the particular profile. |
US09848055B1 |
Local client discovery for content via cache
Systems and techniques are disclosed for predictively selecting media content items and providing the predicted media content items to a cache. A media client may be in communication with a cache and detect the media content items stored on the cache. Based on the detection, a media content user interface may be modified and may contain the cached media content items or links to the cached media content items. |
US09848048B2 |
Method and apparatus for transmitting an identity
The invention relates to a session control entity, method and computer program for receiving a first identity of a calling user from a subscription entity, wherein the first identity is an identity for displaying to a called user, receiving a request from the calling user, including the first identity in the request as an identity for displaying to the called user, and, transmitting the request towards the called user. |
US09848047B2 |
High density hosting for messaging service
Aspects of the subject matter described herein relate migrating message for a messaging service. In aspects, a determination is made that messages need to be migrated based on a threshold being crossed. In response, an agent is instructed to migrate data associated with the messages to another location. The agent uses various factors to determine one or more queues to migrate. While a queue is being migrated, during a first portion of the migration, messages may be added to and removed from the queue as senders send new messages and receivers consume messages. During a second portion of the migration, the queue is frozen to disallow the queue to be used for receiving new messages and delivering queued messages. The migration may be orchestrated to attempt to achieve certain goals. |
US09848044B2 |
Distributed storage network with coordinated partial task execution and methods for use therewith
A method includes receiving a task for execution by a plurality of distributed storage and task execution units A priority level is determined for the task. A plurality of coordinated partial task requests are generated and sent to the plurality of distributed storage and task execution units, wherein the plurality coordinated partial task requests indicate a plurality of coordinated partial tasks and the priority level. A plurality of partial task results are received in response to performance of the plurality of coordinated partial tasks by the plurality of distributed storage and task execution units. A task result for the task is generated based on the plurality of partial task results. |
US09848042B1 |
System and method for data migration between high performance computing architectures and de-clustered RAID data storage system with automatic data redistribution
A system and method for data migration between data generating entities and de-clustered RAID storage employs a data re-distribution approach with the purpose of eliminating drives thrashing and attain an even I/O activity distribution for Physical Disk Extents (PDEs) residing on Physical Disks. The system monitors the I/O activity map, identifies competing over-used PDEs residing on the same physical disk drive, and if the drive thrashing is detected, re-directs “write” or “read” requests from the over-used PDEs to a different physical disk or to underused PDEs on the same physical disk. |
US09848041B2 |
Automatic scaling of resource instance groups within compute clusters
A service provider may apply customer-selected or customer-defined auto-scaling policies to a cluster of resources (e.g., virtualized computing resource instances or storage resource instances in a MapReduce cluster). Different policies may be applied to different subsets of cluster resources (e.g., different instance groups containing nodes of different types or having different roles). Each policy may define an expression to be evaluated during execution of a distributed application, a scaling action to take if the expression evaluates true, and an amount by which capacity should be increased or decreased. The expression may be dependent on metrics emitted by the application, cluster, or resource instances by default, metrics defined by the client and emitted by the application, or metrics created through aggregation. Metric collection, aggregation and rules evaluation may be performed by a separate service or by cluster components. An API may support auto-scaling policy definition. |
US09848040B2 |
Name services for virtual cluster switching
One embodiment of the present invention provides a switch that facilitates name services in a virtual cluster switch. The switch includes a name service database indicating at least one media access control (MAC) address learned at a second switch. The switch also includes a control mechanism. During operation, the control mechanism distributes information on a locally learned MAC address to the second switch. In addition, the control mechanism receives information on a MAC address learned at the second switch. |
US09848037B2 |
System for displaying content
The invention describes a system and a method for displaying content on a first device by using a second device. In an exemplary system, the first device comprises a first display, a first transmitter for transmitting a first identification message comprising information for identifying the first device, and a first receiver for receiving content. The second device comprises input means for receiving input from a user, specifying specific content to be displayed at least on the first display, control means for creating a command message based on the user input, and a second transmitter for transmitting a second identification message and the command message. The server comprises receiving means for receiving the identification messages and the command message, server control means for establishing a logic relationship between at least the first device and the second device based at least on the first and second identification messages and for providing a first instruction for the first device based on the logic relationship and the command message, content providing means for providing content based on the first instruction, so that the content can be displayed at least on the first display. |
US09848036B1 |
Systems, methods, and media for causing an action to be performed on a user device
Systems, methods, and media for causing an action to be performed on a user device are provided. In some implementations, the systems comprise: a first user device comprising at least one hardware processor that is configured to: detect a second user device in proximity to the first user device; receive a user input indicative of an action to be performed; determine a plurality of candidate devices that are capable of performing the action, wherein the plurality of candidate devices includes the second user device; determine a plurality of device types corresponding to the plurality of candidate devices; determine a plurality of priorities associated with the plurality of candidate devices based at least in part on the plurality of device types; select a target device from the plurality of candidate devices based at least in part on the plurality of priorities; and cause the action to be performed by the target device. |
US09848035B2 |
Measurements exchange network, such as for internet-of-things (IoT) devices
Measurement exchange networks and protocols to exchange measurements of a parameter amongst devices (e.g., IoT devices), select the best measurement(s), accuracy/precision-wise, and determine a process variable for a control system based on the selected best measurement(s). A device may select a peer-provided best measurement to output as the process variable in place of a local measurement, and/or compute the process variable from multiple best measurements (e.g., local and/or peer-provided measurements). Metadata may be used to select a measurement(s) and/or to increase reliability/trust of exchanged data. In this way, each device of an exchange group/network may obtain the highest measurement accuracy of all available collocated sensors with little or no additional processing or cloud connectivity. A best measurement(s) may be selected based on measurement quality specifications extracted from metadata, measurement qualities computed from measurements of respective sensors, locations/proximities of the sensors, a policy(ies), and/or device IDs (e.g., extracted from metadata). |
US09848028B2 |
Classification of web client network bandwidth by a web server
This invention provides apparatuses, methods, and systems for classification of a web client's network bandwidth by a web server in real time over the Internet. The web server, based upon the round trip time (RTT) taken to establish the TCP connection with the web client, classifies the network bandwidth. The RTT for establishment of the TCP connection using a 3-way handshake is stored on the web server on most modern Operating Systems and can be fetched on demand by the web server for a given connection. A web application on the web server could then use this bandwidth classification to serve varied content to the web client, such as a light or heavy web page depending on the level of the bandwidth. |
US09848027B2 |
Systems and methods for streaming content to nearby displays
The present disclosure provides systems and methods for a mobile device to select content, such as user profiles, contact information, images, and/or videos, to automatically stream to available displays when the mobile device moves within a certain range of the displays. In one embodiment, a method at a mobile device comprises receiving a user input to select a media content asset; detecting a display within a proximity of the mobile device; and sending the selected media content asset to the display without requiring additional user input. |
US09848026B2 |
Simultaneous wireless connections with improved efficiency
An interface circuit in a computing device may communicate with user-interface devices using shared slots during time intervals. In particular, the computing device may transmit outgoing messages to the user-interface devices at a first predefined time during sequential time intervals when the user-interface devices transition from a sleep mode to a normal mode. In response, the computing device may receive incoming messages from one or more of the user-interface devices at a second predefined time following the first predefined time during the sequential time intervals. Then, the computing device may transmit a multicast message to the user-interface devices at a third predefined time during the sequential time intervals. In response to the given multicast message, one of the user-interface devices may communicate data to the computing device. Note that, in some instances, a multicast time slot may instead be used to communicate data to one of the user-interface devices. |
US09848022B2 |
Method and apparatus for inter-device transfer (handoff) between IMS and generic IP clients
A method of Inter-User Equipment (UE) Transfer (IUT) for use in an Internet Protocol (IP) Multimedia Subsystem (IMS) capable wireless transmit/receive unit (WTRU), the method comprising: receiving a registration request from a non-IMS capable WTRU; translating the registration request to an IMS based message; transmitting the translated IMS based message to a Service Centralization and Continuity Application Server (SCC AS), transmitting an IUT transfer command, transmitting an IUT process message; receiving an IUT process-accept message; and establishing an IMS session between the non-IMS capable WTRU and the remote party. |
US09848019B2 |
Failover for mobile devices
A device may receive information that identifies a failover configuration associated with a user device. The failover configuration may identify a backup user device. The device may receive information indicating that a failover condition, identified in the failover configuration, has been satisfied. The device may identify the backup user device based on receiving the information indicating that the failover condition has been satisfied. The device may contact the backup user device based on identifying the backup user device. The device may determine that a service request, associated with a service and intended for the user device, is to be forwarded to the backup user device based on contacting the backup user device. The service may be identified by the failover configuration. The device may forward the service request to the backup user device to permit the backup user device to obtain the service rather than the user device. |
US09848017B2 |
Techniques for identity and policy based routing
Techniques for identity and policy based routing are presented. A resource is initiated on a device with a resource identity and role assignments along with policies are obtained for the resource. A customized network is created for the resource using a device address for the device, the resource identity, the role assignments, and the policies. |
US09848015B2 |
Domain name hijack protection
A domain name registering entity (such as a domain registry, registrar, or reseller) or an independent proxy registration service may offer a domain name hijack protection to their actual or potential customers. When a domain name transfer request or notice is received, the domain name registering entity or the proxy registration service may ignore or decline it. Customers may be given an ability to turn the domain name hijack protection service on and off, as well as an ability to adjust a variety of settings associated with the service. |
US09848014B2 |
Delegated authentication in an internet of things (IoT) network
A method includes performing, by a processor of a network controller of a network: storing device identifications corresponding to respective ones of a plurality of devices connected via the network, respectively, storing an association between a first one and a second one of the plurality of devices, the association being represented as a pairing identification code corresponding to the first and second ones of the plurality of devices, receiving a communication from an intruder device, the communication comprising the device identification corresponding to one of the first and the second ones of the plurality of devices, sending a request to the intruder device to communicate the pairing identification code, and denying access to the network to the intruder device responsive to the intruder device failing to communicate the pairing identification code. |
US09848011B2 |
Security safeguard modification
An adaptable network security system includes trust mediator agents that are coupled to each network component. Trust mediator agents continuously detect changes in the security characteristics of the network and communicate the detected security characteristics to a trust mediator. Based on the security characteristics received from the trust mediator agents, the trust mediator adjusts security safeguards to maintain an acceptable level of security. Trust mediator also uses predetermined rules in determining whether to adjust security safeguards. Despite inevitable changes in security characteristics, an acceptable level of security and efficient network operation are achieved without subjecting users of the network to over burdensome security safeguards. |
US09848009B2 |
Identification of computerized bots and automated cyber-attack modules
Devices, systems, and methods of detecting whether an electronic device or computerized device or computer, is being controlled by a legitimate human user, or by an automated cyber-attack unit or malware or automatic script. The system monitors interactions performed via one or more input units of the electronic device. The system searches for abnormal input-user interactions; or for an abnormal discrepancy between: the input-unit gestures that were actually registered by the input unit, and the content that the electronic device reports as allegedly entered via such input units. A discrepancy or abnormality indicates that more-possibly, or necessarily or certainly, a malware or automated script is controlling the electronic device, rather than a legitimate human user. Optionally, an input-output aberration or interference is injected, in order to check for manual corrective actions that only a human user, and not an automated script, is able to perform. |
US09848004B2 |
Methods and systems for internet protocol (IP) packet header collection and storage
A computer-based method for providing information about a potential security incident ascertained from received internet protocol (IP) packets is described. The method includes capturing IP packets from a network, stripping packet header data from the captured IP packets, calculating a cyclic redundancy code (CRC) from one or more fields of the packet header data, determining whether any packet header data has occurred multiple times by comparing the calculated CRC to stored CRCs in each of successive entries in a cache, and storing, in a database, only a single instance of packet header data for any packet header data that is determined to have occurred multiple times. |
US09848002B2 |
Allowing first module of computer code to make use of service provided by second module while ensuring security of system
A system for integrating modules of computer code may include a sandbox validator for receiving a first module and verifying that the first module complies with one or more sandbox constraints. A computing device may execute the first module within a runtime environment. A module integrator may operate within the runtime environment for receiving a request from the first module to access a service provided by a second module and only allowing the first module to access the service when the first module is authorized to access the service according to a service authorization table. The sandbox validator may ensure the first module correctly identifies itself when requesting a service provide by another module and that the first module includes runtime policing functions for non-deterministic operations. A service authorizer may generate an authorization policy for the first module, which is sent to the computing device along with the first module. |
US09848001B2 |
Secure access to mobile applications
Securing access to one or more applications in an enterprise zone (e.g., a set of protected applications) is disclosed. A last activity time associated with a use of at least one mobile application in the protected subset may be retrieved from a shared storage location associated with a protected subset of two or more protected mobile applications. It may be determined that the last activity time is within a session expiration time period associated with the protected subset. Access to one or more applications in the protected subset may be allowed without credential verification based at least in part on the determination. |
US09847998B2 |
System and method for delegation of permissions to a third party
A system and method for delegating permissions to a third party are presented. A request to access a first computing resource of a computer server is received from a first user. The first user is prompted to supply a first authentication credential for access to the first computing resource of the computer server and the first authentication credential is received from the first user. After the first authentication credential is received, a request to access a second computing resource of the computer server is received from the first user. An authentication database is accessed to identify a second user associated with the second computing resource, and a request for a second authentication credential is transmitted to a second user. The second authentication credential is received from the second user. When the second authentication credential is received from the second user, the first user is given access to the second computing resource. |
US09847997B2 |
Server based biometric authentication
A server-side biometric authentication system is disclosed that can split data knowledge and processes, so that extensive collusion would be required in order for a fraudster to compromise the system. Biometric data provided by a user during authentication can be matched with a combination of pieces of a biometric template stored across two or more server(s), rather than on a consumer device as is typically done. More specifically, at the time of enrollment, a biometric template can be split into two or more fragments. Each of the fragments can be encrypted and stored on a template storage server. At a later point in time, during authentication, biometric data provided by a user (e.g., from a fingerprint) can be compared against a reconstructed version of the biometric template where each fragment of the template is retrieved from a matcher computer and combined together. |
US09847995B2 |
Adaptive policies and protections for securing financial transaction data at rest
A system, method, and computer-readable medium for challenge-response authentication are provided. A plurality of codes is received over a communication network based on input provided by way of a user interface displaying a plurality of images. An alphanumeric string is generated based on the received plurality of codes and based on a table that associates each one of the plurality of codes with a respective one of the plurality of images and with a respective one of a plurality of alphanumeric characters. A determination is made as to whether to grant authorization based on whether the generated alphanumeric string matches an alphanumeric user identifier stored in a memory device in association with a user. |
US09847993B2 |
Method and system for accessing service/data of a first network from a second network for service/data access via the second network
The present invention relates to a method for accessing service/data of a first network from a second network for service/data access via the second network, comprising the steps of a) Pairing of a user device with the first network, b) Attaching the user device to the second network, c) Authenticating the user device with the second network, d) Providing connectivity information for services/data of the first network to the second network, e) Providing available services/data information by the first network to the second network, f) Accessing a service and/or data of the first network by the second network. The present invention relates also to a system for accessing service/data of a first network from a second network for service/data access via the second network. |
US09847990B1 |
Determining, by a remote system, applications provided on a device based on association with a common identifier
Systems and methods are provided for determining applications that are co-installed on a device. In an aspect, a system includes a registration component that receives, from a device, a request to register a first application provided on the device with a notification service, the request comprising an account identifier associated with a user identity, a session token, and an identifier for the first application. The session token is derived from an authentication token that is unique to the user identity and the device. The system further includes an authentication component configured to authenticate the user identity using the session token, and a fingerprint component configured to receive a fingerprint of the authentication token based on authentication of the user identity using the session token, wherein the registration component is configured to associate the account identifier, the identifier for the first application, and the fingerprint with one another in a database. |
US09847988B2 |
Single-SSID and dual-SSID enhancements
A wireless local area network system establishes a PASSPOINT™ connection between a mobile station and a hotspot using an enhanced single SSID method or an enhanced dual SSID method. In the dual SSID method, an access point associates and authenticates a mobile device to a secondary SSID of the access point during enrollment and provisioning. After enrollment, the access point authenticates the mobile station to a primary SSID of the access point using the credential that the mobile station received from an online sign-up (“OSU”) server in connection with the secondary SSID. In the single SSID method, an access point performs two levels of authentication. During authentication, communications are limited to an 802.1x controlled port running on the mobile station and access point. After a first authentication, communications between the OSU server and the mobile station are unblocked. After the second authentication, all traffic from the mobile station is unblocked. |
US09847985B2 |
Assembly manager
An assembly management system allows a software service provider (SSP) to compile and upload client-specific client application code into a repository. The SSP deploys a client application comprising non-client-specific code to various clients. When a user logs in, a call is made to a web service, which queries the repository for code specific to the requesting client. If available, the web service sends a response with the name and version of the assembly to which the client is subscribed. If the locally-saved version does not match the version of the assembly in the repository, and if the SSP has permission to write to the client's disk, the web service retrieves the assembly and commits it to the disk. If the SSP does not have permission, the assembly is streamed to the client device and retained and executed in memory for the duration of the login. |
US09847979B2 |
Security and key management of digital content
Managing access to digital content within a particular domain, including: receiving the digital content at a first client device; decrypting the received digital content at the first client device using a first key; transcoding the digital content to another format; re-encrypting the transcoded content using a second key, wherein the second key is obtained by one of: (1) directly from a server; or (2) indirectly by deriving it locally based on information received from the server; and transmitting the re-encrypted content to a second client device, wherein the second client device obtains the second key and decrypts the re-encrypted content at the second client device. |
US09847978B2 |
Secure mobile affirmative consent management
A method, system and computer program product for secure mobile affirmative consent management is provided and includes receiving from a requesting individual a request to manage affirmative consent with a different individual. In response, the requesting individual is prompted to specify a self-assessed indication of sobriety and a sobriety test is administered to the requesting individual and a performance scored. The scored performance is compared with a pre-stored typical performance for individuals having a same self-assessed indication and the self-assessed indication is validated based upon the comparison. A payload is received from the different individual, and combined with data identifying the requesting individual, and including the validated self-assessed indication. Finally, the combination is stored in remote storage. |
US09847975B2 |
Method of provisioning persistent household keys for in-home media content distribution
A method of providing a household key to a client device, comprising receiving a key request including a subscriber identifier at an update server from a client device, and determining whether the subscriber identifier has previously been associated with a household encryption key. The household encryption key can be configured to be used by the client device to encrypt recordings of media content it makes and/or decrypt recordings of media content it previously made or that it receives from another client device that encrypted the recording using the household key. If the subscriber identifier has previously been associated with a household encryption key, the update server retrieves the household key and sends it to the client device. If the subscriber identifier has not previously been associated with a household encryption key, the update server retrieves a new household key from a pool, associates the new household key with the subscriber identifier, and sends it to the client device. |
US09847967B2 |
DHCP proxy in a subscriber environment
Methods and apparatuses for a network element having DHCP proxy functionality are described. According to one embodiment, an exemplary method includes receiving, at a network element, a request for an IP address from a subscriber, in response to the request, on behalf of the subscriber, communicating with one or more IP address providers over a network to process the request, and responding to the subscriber with respect to the request as if the network element is an IP address provider, on behalf of the one or more IP address providers. |
US09847964B2 |
Service provisioning profile for a fabric network
Methods and systems for pairing a device to an account managed by a remote service include connecting to a commissioning device. The commissioning device is a device that manages pairing of devices to a remote service. Pairing the device to the fabric in a remote service also includes receiving service configuration details from the commissioning device. The commissioning device has previously retrieved the service configuration details that contain details configured to enable the joining device to connect to the remote service. Using the service configuration details, a device connects to the remote service using the received service configuration details. |
US09847963B2 |
Communicating service denials back to client during MDNS service discovery
Methods and systems may be provided to receive a first client request for a first service. A unicast mDNS query response may be provided to the first client, wherein the query response comprises information indicative of a denial of the first service and the query response is available for display to the first client. |
US09847960B2 |
Dynamically updating content in e-mail
Methods and systems of dynamically updating content in e-mail messages are described. In some embodiments, an e-mail message is generated. The e-mail message comprises existing content viewable within an e-mail client and is configured to initiate a modification of the existing content within the e-mail message by the e-mail client subsequent to the e-mail message being downloaded by the e-mail client. The modification of the existing content is viewable within the e-mail client. The generated e-mail message is sent to an e-mail account from which a user can view the e-mail message within the e-mail client. In some embodiments, the e-mail message is further configured to cause the e-mail client to obtain new content from a remote server for use in the modification of the existing content within the e-mail message. |
US09847957B2 |
Method, system, and computer readable storage device for managing message delivery based on context of recipients and message content
Message delivery is controlled based on the context of multiple recipients and the content of one or more messages. One or more messages are received from one or more sender devices, the messages containing dynamic content. Contextual requirement data is received from the sender device(s) indicating a dynamic contextual requirement to be met for the message(s) to be made available to a user of one or more recipient devices. Context data is received, indicating a context of each user of a respective recipient device. The dynamic content and the dynamic contextual requirements are modifiable, depending on the context data. The context data is evaluated to determine whether the dynamic contextual requirement is met. Responsive to the dynamic contextual requirements being met, a respective message is made available to a respective user of the recipient devices. |
US09847950B1 |
Messaging system thread pool
A thread pool of consumers polls existing queues. A thread manager controls the number of active threads. This approach limits the number of threads, but is still able to keep up with the volume of traffic. |
US09847949B1 |
Arbitrating data packets
Examples disclosed herein relate to receiving, by a scheduler, a request for a window during which to send a data packet through a crossbar. Transmission of the data packet is dependent upon a pool of transmission credits. The scheduler determines whether the pool of transmission credits is sufficient for transmitting the data packet, and when it is determined that the pool of transmission credits is insufficient, the scheduler determines whether to block the request or to speculatively arbitrate the window based on a value of a speculative request counter. |
US09847948B2 |
Schedule and location responsive agreement compliance controlled device throttle
Controls electronic devices and/or throttles electronic devices and/or information for electronic devices based on agreements or events and/or based on schedule, location, time, or any combination thereof. An agreement includes condition(s) to satisfy the agreement, such as task(s) or activities to be performed by an agreement performer, for example based on a schedule and/or location, at a particular time, or time period, or, or events that may be detected, and actions performed to enforce or assert the agreement. Actions may include controlling the electronic device and/or at least partially enabling/disabling or otherwise limiting, reducing or increasing the amount or type of information allowed with respect to any or all electronic devices associated with the agreement performer. Embodiments may reduce or block information from particular sources during a scheduled school class to limit web surfing for information related to that class based on a schedule and/or location of the electronic device. |
US09847947B2 |
Cloud-based network tool optimizers for server cloud networks
Network tool optimizers for server cloud networks and related methods are disclosed. In part, master filters are defined to segregate and control user traffic, and user filters are defined to forward the user traffic to cloud-based network tools or tool instances. A master user interface and user interfaces for each user are provided so that the master filters and user filters can be defined and managed. A filter rules compiler within the cloud-based network tool optimizer then combines the master filters with the user filters, resolves conflicts in favor of the master filters, and generates filter engine rules that are applied to filter engines within the network tool optimizer for the cloud network. The filter engines then forward packets received at input ports for the network tool optimizer to output ports for the network tool optimizer that are coupled to network tools or tool instances within the cloud network. |
US09847944B2 |
Systems and methods for traffic load balancing on multiple WAN backhauls and multiple distinct LAN networks
In accordance with embodiments disclosed herein, there are provided methods, systems, mechanisms, techniques, and apparatuses for traffic aggregation on multiple WAN backhauls and multiple distinct LAN networks; for traffic load balancing on multiple WAN backhauls and multiple distinct LAN networks; and for performing self-healing operations utilizing multiple WAN backhauls serving multiple distinct LAN networks. For example, in one embodiment, a first Local Area Network (LAN) access device is to establish a first LAN; a second LAN access device is to establish a second LAN; a first Wide Area Network (WAN) backhaul connection is to provide the first LAN access device with WAN connectivity; a second WAN backhaul connection to provide the second LAN access device with WAN connectivity; a management device is communicatively interfaced with each of the first LAN access device, the second LAN access device, the first WAN backhaul connection, and the second WAN backhaul connection; and the management device routes a first portion of traffic originating from the first LAN over the first WAN backhaul connection and routes a second portion of the traffic originating from the first LAN over the second WAN backhaul connection. |
US09847940B2 |
Control method, packet processing device, and storage medium
A control method executed by a packet processing device, the control method includes receiving, by a first processor, a received packet; identifying first processing execution information corresponding to the received packet, from among a plurality of first processing execution information, by referring to the first memory, based on packet identification information included in the received packet; and transmitting processing specification information included in the identified first processing execution information together with the received packet, to a second processor, when the processing specification information included in the identified first processing execution information specifies processing by the second processor; receiving, by the second processor, the processing specification information included in the identified first processing execution information and the received packet; and executing the processing for the received packet in accordance with second processing execution information specified by the received processing specification information, by referring to the plurality of second processing execution information. |
US09847938B2 |
Configuring logical routers on hardware switches
A method for configuring a managed hardware forwarding element (MHFE) to perform packet forwarding operations for a logical network is described. The method receives data for the logical network that defines a logical router and a set of logical switches for logically connecting several end machines that operate on different host machines to several physical machines that are connected to the MHFE. The method defines multiple routing components for the logical router, where each routing component includes a separate set of logical ports. The method then configures a forwarding table on the MHFE by populating the forwarding table with tunnel endpoint data for each logical port of each routing component of the logical router that is associated with a logical port of a logical switch. The tunnel endpoint data populated for logical ports of one routing component indicate that no tunnel should be established for any of the logical ports. |
US09847937B2 |
Hardware acceleration for routing programs
The present disclosure describes techniques for hardware acceleration for routing programs. In some aspects communications between a routing determination program and a packet router are monitored in a router, both the routing determination program and the packet router being part of a software layer of the router. The communications include the routing determination program providing configuration data to the packet router. Based on the monitored communications, a packet processor is changed to reflect the configuration data, the packet processor being part of a hardware layer of the router. The packet processor performs packet routing operations of receiving packets, determining the next routers in the paths to the target destinations of the packets, and sending the packets to the next routers independent of the software layer. |
US09847935B2 |
Technologies for distributed routing table lookup
Technologies for distributed table lookup via a distributed router includes an ingress computing node, an intermediate computing node, and an egress computing node. Each computing node of the distributed router includes a forwarding table to store a different set of network routing entries obtained from a routing table of the distributed router. The ingress computing node generates a hash key based on the destination address included in a received network packet. The hash key identifies the intermediate computing node of the distributed router that stores the forwarding table that includes a network routing entry corresponding to the destination address. The ingress computing node forwards the received network packet to the intermediate computing node for routing. The intermediate computing node receives the forwarded network packet, determines a destination address of the network packet, and determines the egress computing node for transmission of the network packet from the distributed router. |
US09847934B2 |
Reducing packet reordering in flow-based networks
The present disclosure provides for methods, network devices, and computer readable storage media for packet reordering. In one embodiment, a method includes receiving a first packet of a first flow at a network device and determining whether flow-identifying information extracted from the first packet matches an existing flow entry. The method also includes, in response to a determination that the flow-identifying information does not match any existing flow entries, generating a new transient flow entry that includes the flow-identifying information and packet-in state. The method also includes forwarding the first packet to a controller via a packet-in stream. |
US09847933B2 |
End-to-end multipathing through network having switching devices compatible with different protocols
A first cluster includes first switching devices that are compatible with a software-defined networking (SDN) protocol. A second cluster includes second switching devices within or partially within overlapping the first cluster. Each second switching device is compatible with a protocol for an open systems interconnection (OSI) model layer. The first switching devices include one or more border switching devices located at a boundary between the first cluster and the second cluster. Each border switching device is also compatible with the protocol for the OSI model layer. The first switching devices effect first multipathing through the network except through the second cluster, and the second switching devices effect second multipathing just through the second cluster of the network. As such, the first switching devices and the second switching devices together effect end-to-end multipathing through both the first cluster and the second cluster of the network. |
US09847928B2 |
Verifying connector placement via loopback schemas
A method and system for verification of connector placement via loopback schemas is disclosed. The method for verification of connector placement via loopback schemas applies a schema to the loopback facilities associated with the signaling pairs at a particular port, with the schema being identified at the remote end of a cable connected to the port via a connectivity test, and the resulting schema identifying the port connected thereto. The method and system for verification of connector placement via loopback schemas provides advantages over systems known in the art positively identifying a particular port while eliminating the requirement for detailed connector labeling. |
US09847927B2 |
Information processing device, method, and medium
In an information processing device in which analysis of a received packet is distributed to a plurality of cores, each core determines whether or not the core is appropriate as a core for analyzing the distributed packet, and when it is determined that the core is not appropriate, the core records request information for requesting another core to analyze the packet in a shared memory. |
US09847926B2 |
Presenting application performance monitoring data in distributed computer systems
Systems and methods for presenting application performance monitoring data in distributed computer systems. An example method may comprise: receiving, by a processing device, one or more application performance monitoring (APM) rules, each APM rule determining an application operational status based on one or more APM parameters; receiving APM data comprising a plurality of APM data items representing values of the APM parameters of a software application; determining an operational status of the software application by applying the APM rules to the APM data; and causing the operational status to be visually represented via a graphical user interface (GUI). |
US09847925B2 |
Accurate measurement of distributed counters
Aspects of the disclosure provide a method for collecting distributed counter values in a packet-switched system having multiple distributed packet processors. The method includes receiving a probe packet at a packet processor, storing a counter value corresponding to a flow processed by the packet processor for subsequent delivery to a management controller, and forwarding the probe packet to a next packet processor. The next packet processor stores a counter value of the next packet processor for subsequent delivery to the management controller. |
US09847918B2 |
Distributed workload reassignment following communication failure
A generation identifier is employed with various systems and methods in order to identify situations where a workload has been reassigned to a new node and where a workload is still being processed by an old node during a failure between nodes. A master node may assign a workload to a worker node. The worker node sends a request to access target data. The request may be associated with a generation identifier and workload identifier that identifies the node and workload. At some point, a failure occurs between the master node and worker node. The master node reassigns the workload to another worker node. The new worker node accesses the target data with a different generation identifier, indicating to the storage system that the workload has been reassigned. The old worker node receives an indication from the storage system that the workload has been reassigned and stops processing the workload. |
US09847916B2 |
Control apparatus, control apparatus control method, and program
A control apparatus includes a packet handling operation setting unit that sets a packet handling operation for processing a packet for a communication node selected from a plurality of communication nodes. The packet handling operation setting unit sets the packet handling operation for communication nodes out of the plurality of communication nodes other than the selected communication node, in response to the fact that it was possible to set the packet handling operation for the selected communication node. |
US09847903B2 |
Method and apparatus for configuring a communication system
A method in a configuration server for configuring a communication system comprises configuring a plurality of nodes in a first cluster, and configuring a plurality of nodes in at least a second cluster, such that the configuration server acts as a common configuration server for at least first and second clusters. A method in a node associated with a cluster comprises determining a configuration service address relating to a common configuration server that is adapted to configure the cluster associated with the node and at least one other cluster, sending a request for configuration information to the common configuration server, and receiving configuration information from the common configuration server. |
US09847902B2 |
Stateless microkernel web server architecture with self discoverable objects
A method is provided for exchanging a self discoverable data object between a client executed on a client computing device and a server with a stateless REST-compliant software architecture, which is configured to reply to HTTP requests from a browser engine of the client and to messages from a runtime executable program executed by a runtime executable program interpreter of the client. The method may include receiving an HTTP response from the server, the response including the data object, the data object including a self entity including a URI and a content type of the data object, passing the data object to the runtime executable program at the runtime executable program interpreter for processing. The runtime executable program may communicate with the server using the URI and content type of the data object. Cache controls and an HREF may also be contained in the self entity. |
US09847900B2 |
Receiver and method of receiving
A receiver for detecting and recovering payload data from a received signal comprises a radio frequency demodulation circuit configured to detect the received signal. The received signal has been formed and transmitted by a transmitter to carry the payload data as Orthogonal Frequency Division Multiplexed (OFDM) symbols in one or more of a plurality of time divided frames, each frame including a preamble including a plurality of bootstrap OFDM symbols. One or more of the bootstrap OFDM symbols of the preamble carrying signalling data represented as a relative cyclic shift of a signature sequence which has been combined with the one or more of the bootstrap OFDM symbols. A bootstrap processor is configured to detect the signalling data from the bootstrap OFDM symbols using an estimate of the channel transfer function determined from one or more of the bootstrap OFDM symbols, and a demodulator circuit is configured to recover the payload data from the payload OFDM symbols using the signalling data. The bootstrap processor comprises a channel shaper, which is configured to convolve a time domain copy of the signature sequence with the estimate of the channel impulse response to generate a channel shaped signature sequence, a cross-correlator and a cyclic shift detector. A cross-correlator is configured to cross-correlate the useful part of each of the one or more bootstrap OFDM symbols with the channel shaped copy of the signature sequence, and the cyclic shift detector is configured to estimate the signalling data conveyed by each of the one or more bootstrap OFDM symbols by detecting a cyclic shift of the signature sequence present in each of the one or more bootstrap OFDM symbols from a peak of the samples representing a result of the cross-correlation. Accordingly the signalling data can be detected by identifying the cyclic shift of the signature sequence by cross-correlating the signature sequence with the bootstrap OFDM symbols carrying the signature sequence in the time domain, which can provide a more efficient implementation. |
US09847899B2 |
Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
A method for transmitting broadcast signals including encoding service data, mapping the encoded service data, and time interleaving the mapped service data. The time interleaving including block interleaving the mapped service data by writing cells of the mapped service data in a memory and reading the cells in the memory and spreading out the block interleaved service data over at least one signal frame. At least one Forward Error Correction (FEC) Block is included in at least one time interleaving (TI) Block for interleaving, and a number of FEC Blocks varies between TI Blocks. A virtual FEC Block is included ahead of the at least one FEC Block and virtual cells belonging to the virtual FEC Block are skipped during the reading. The method further includes modulating the time interleaved service data by an Orthogonal Frequency Division Multiplex (OFDM) scheme, and transmitting the broadcast signals carrying the modulated service data. |
US09847895B2 |
Modulation index shift signaling
A transmitting device (20) overlays control information onto information bit stream intended for a receiving device (40) by varying or shifting the modulation index in continuous phase modulation (CPM) waveform. The receiving device (40) detects the modulation index used at the transmitting device (20) to modulate the data burst. The receiving device (40) then determines the control information based on the detected modulation index. |
US09847894B2 |
Transmitter, receiver, and wireless communication method thereof
A transmitter is configured to transmit a radio frequency (RF) signal to a receiver. The receiver is configured to receive the RF signal and decode data. Furthermore, a method of wireless communication is provided between the transmitter and the receiver, in which the transmitter transmits to the receiver the RF signal. A carrier phase of the RF signal is randomly converted. The receiver detects an envelope of the RF signal, and extracts data from the RF signal. |
US09847893B2 |
Digital equalizer adaptation using on-die instrument
Systems and methods are provided for adjusting gain of a receiver. Adaptation circuitry is operable to identify, based on a matrix representation of a receiver's output generated from horizontal and vertical sweeps of the receiver's output, an eye opening of the receiver's output. The adaptation circuitry is also operable to determine whether a size of the eye opening needs to be changed. When it is determined that the size of the eye opening needs to be changed, the adaptation circuitry is operable to generate a digital signal to change a gain setting of the receiver. When the signal at the receiver's output is under-equalized, the AC gain of the receiver is increased. When the signal at the receiver's output is over-equalized, the AC gain of the receiver is decreased. |
US09847892B2 |
Embedded wire feed forward equalization
Embodiments of the present disclosure provide methods and apparatus for providing feed forward equalization to a communication line by providing a resistance and a capacitance to the communication line. The method includes determining the resistance based on a desired value of feed forward equalization to provide to a communication line, determining the capacitance based on the desired value of feed forward equalization to provide to the communication line, providing a layer of resistive material between a first conductor and a second conductor of the communication line, wherein a dimension of the layer of resistive material is determined based on the determined resistance and providing a layer of dielectric material between the first conductor and the second conductor, wherein a dimension of the layer of dielectric material is determined based on the determined capacitance. |
US09847886B2 |
Sleeping link waking method and apparatus
The present invention discloses a sleeping link waking method and apparatus, and relates to the field of communications network technologies, which can automatically wake a sleeping link in a timely manner according to an actual load condition of a network, and reduce labor maintenance costs. According to embodiments of the present invention, a first router receives a first LSP packet sent by a management router, where the first LSP packet includes a first TLV, and the first TLV is used to determine a sleeping link to be woken; the first router determines, according to the first TLV, the sleeping link to be woken; and the first router wakes the sleeping link. The solutions provided by the embodiments of the present invention are suitable to be used to wake a sleeping link. |
US09847880B2 |
Techniques for ensuring authentication and integrity of communications
Techniques are described for ensuring data integrity and authentication of received messages. One technique includes sending a request from a first module to a second module in which the request includes a first portion that is a shared secret encrypted with a public key, obtaining by the second module a private key from a secure and trusted information store, such as a license information store, including license information or other application specific information for the first module, using the private key to decrypt the first portion and obtain the shared secret, sending a response from the second module to the first module in which the response includes authentication data and at least one data item used with the shared secret to determine the authentication data, and performing by the first module verification processing to verify the authentication data included in the response. |
US09847878B2 |
System and method for interleaving information into slices of a data packet, differentially encrypting the slices, and obfuscating information in the data packet
Approaches for combining different information to be transmitted into different slices of a data packet and/or encrypting the slices using different cryptographic schemes for secure transmission of the information are disclosed. In some implementations, first information and second information may be received. A first data slice representing a portion of the first information may be generated based on a first cryptographic scheme. A second data slice representing a portion of the second information may be generated based on a second cryptographic scheme different than the first cryptographic scheme. A first header may be generated such that the first header may specify the first cryptographic scheme for the first data slice and the second cryptographic scheme for the second data slice. A first data packet may be generated such that the first data packet may include the first header, the first data slice, and the second data slice. |
US09847875B1 |
Methods and systems for bootstrapping an end-to-end application layer session security keyset based on a subscriber identity master security credential
An exemplary security key bootstrapping system determines an application layer session security keyset uniquely associated with a client device and based on a subscriber identity master security credential. The subscriber identity master security credential is permanently stored within a component of the client device and is also stored on a subscriber identity management server associated with a provider network by which the client device is communicatively coupled with an application server system. The security key bootstrapping system uses the application layer session security keyset as a credential to provide end-to-end security for an application layer session between the client device and the application server system over the provider network. Neither the component of the client device nor the subscriber identity management server obtains the subscriber identity master security credential from an exchange of the subscriber identity master security credential over the provider network. |
US09847872B2 |
Memory integrity
Systems and methods may provide for identifying unencrypted data including a plurality of bits, wherein the unencrypted data may be encrypted and stored in memory. In addition, a determination may be made as to whether the unencrypted data includes a random distribution of the plurality of bits. An integrity action may be implemented, for example, when the unencrypted data includes a random distribution of the plurality of bits. |
US09847871B2 |
Systems and methods for a multiple value packing scheme for homomorphic encryption
Systems and methods for a multiple value packing scheme for homomorphic encryption are described, including at a server, generating a plurality of encrypted payloads, each having a plurality of data values; and at a client, receiving each of the encrypted payloads having the plurality of data values; and multiplying one or more of the data values of one of the encrypted payloads by one or more other data values in one or more of the other encrypted payloads, to generate a product that represents the summation of data values corresponding to the multiplied one or more data values of the encrypted payloads and the one or more of the other data values in the one or more other encrypted payloads. |
US09847869B1 |
Frequency synthesizer with microcode control
A frequency synthesizer with microcode control that allows one or more programmable circuits of a frequency synthesizer system to be programmed using a plurality of microcode instructions. A method includes, setting a frequency synthesizer system to operate in a microcode mode, programming the frequency synthesizer system for microcode execution of a plurality of microcode instructions and executing the plurality of microcode instructions at the frequency synthesizer system to control one or more behaviors of one or more programmable circuits of the frequency synthesizer system. |
US09847868B2 |
Method of routing synchronization messages
A method of routing synchronization messages in a packet communication network, in which a packet is routed using a global routing table. A piece of equipment in the network implements the following steps: detecting a packet carrying a synchronization message in a packet stream; determining an output port; emitting a packet carrying the message at the determined output port, the message being modified using a piece of information representing a time of transit in the equipment. A synchronization routing table, which stores at least one association between an input port and at least one output port, is configured in the equipment. When the packet carrying the received message indicates a routing needs to be carried out using the synchronization table, the output port for this packet is determined by the equipment according to an input port on which the packet is received and by reading the synchronization table. |
US09847867B2 |
Method for selecting an HD-FDD duplexing model
The object of the present invention is a method for selecting a terminal of an HD-FDD duplexing model. The invention enables the complexity of a switch of a terminal operating in an HD-FDD duplexing mode, at a level equivalent to that of a terminal operating in a TDD or FDD duplexing mode, to be reduced. To do this, thanks to the invention, it is provided that the terminal operating in an HD-FDD duplexing mode receives notifications or information via a network that programs the HD-FDD terminals through different uplink and downlink transmission models illustrated in FIG. 1. It may also be provided that the terminal operating in an HD-FDD duplexing mode has knowledge of the HD-FDD model to use for its communication. In this event, the complexity of its communication is reduced to the same level as that of a terminal operating in TDD mode. |
US09847866B2 |
Method and apparatus for transmitting/receiving signal in wireless access system which supports FDR transmission
The present invention relates a wireless access system which supports a full duplex radio (FDR) transmission environment. A method for receiving a signal from a base station by a terminal in the wireless access system which supports FDR transmission according to an embodiment of the present invention comprises the steps of: receiving, from the base station, reference signal mode information indicating resources by which a reference signal is transmitted, from among reference signal available resources by which the reference signal can be transmitted; receiving, from the base station, additional resource mode information indicating additional data resources by which a terminal can simultaneously transmit data, from among the resources by which the reference signal is transmitted; and transmitting the data using the additional resource mode information simultaneously while receiving the reference signal using the reference signal mode information. |
US09847865B2 |
System and method for digital cancellation of self-interference in full-duplex communications
Embodiments are provided for cancelling self-interference in a full-duplex communications system. The cancellation includes using a digital cancellation stage in additional to analog cancellation. In an embodiment, a method by a full-duplex communications device includes sampling a received signal, wherein the sampling provides a received digital signal corresponding to the received signal. The method further includes sampling a transmitted signal, wherein the sampling provides a transmitted digital signal corresponding to the transmitted signal. A channel distortion introducing self-interference in the received signal is then estimated according to the transmitted digital signal and the received digital signal. The method further includes estimating the self-interference in the received digital signal according to the estimated channel distortion. |
US09847862B2 |
Reciprocal channel sounding reference signal multiplexing
Systems and techniques are disclosed to enhance the efficiency of available bandwidth between UEs and base stations. A UE transmits a sounding reference signal (SRS) to the base station. The base station characterizes the uplink channel based on the SRS received and, using reciprocity, applies the channel characterization for the downlink channel. As part of applying the channel information, the base station forms the beam to the UE based on the uplink channel information obtained from the SRS. The UE may include an array of antennas, each UE transmitting a different SRS that the base station receives and uses to characterize the downlink. Multiple UEs (or a single UE with multiple antennas) transmit SRS at the same time and frequency allocation (non-orthogonal), but with each sending its own unique SRS. Further, multiple UEs (or a single UE with multiple antennas) may send their SRS at unique time/frequency allocations (orthogonal). |
US09847861B2 |
Method and apparatus for allocating a pilot signal adapted to the channel characteristics
A set of different pilot structures are designed for use in different environments and/or different user behaviors that are expected to occur in a cell. The radio conditions for a user are estimated. Each user is then assigned an area (108A-E) in resource space for its communication, which has a suitable pilot configuration. In one embodiment, the entire resource space is provided with different pilot structures in different parts (110A-D) In advance and allocation of resources to the users are then performed in order to match estimated radio conditions to the provided pilot structure. In another embodiment, allocation is performed first, and then the actual pilot structure is adapted within the allocated resource space area to suit the environmental conditions. |
US09847859B2 |
Data mapping and multiplexing method and device and data demultiplexing and demapping method and device
Provided are a method and device for mapping, multiplexing, demapping and demultiplexing data are provided. The method includes: mapping an Ethernet service data stream the rate of which is m*100 Gb/s sequentially into m Optical Payload Unit Sub-frames (OPUC) and multiplexing the m OPUC into an Optical Payload Unit Frame (OPUCm) the rate of which is m*100 Gb/s according to the way of byte interleave; and adding an Optical Channel Data Unit (ODU) overhead to the head of the OPUCm to obtain an Optical Channel Data Unit Frame (ODUCm) the rate of which is m*100 Gb/s, wherein the frame structure of the OPUC consists of 4 rows and 3810 columns; the frame structure of the OPUCm consists of 4 rows and 3810*m columns; and the frame structure of the ODUCm consists of 4 rows and 3824*m columns, wherein m is a positive integer. The present disclosure improves the spectrum efficiency of optical fibers and the systematic flexibility and the compatibility. |
US09847855B2 |
Systems and methods for managing feedback in a wireless network
A method of managing inter-cell interference in a wireless communication device includes obtaining information indicating a first set of candidate subframes. Each of the candidate subframe satisfies a candidate condition that relates to transmissions in a second cell during that subframe. The method also includes identifying at least one subframe associated with downlink transmissions to the wireless communication device in a first cell and determining whether the identified subframe is included in the set of candidate subframes. If the identified subframe is included in the set of candidate subframes, the method includes receiving at least one downlink transmission during the identified subframe. If the identified subframe is not included in the set of candidate subframes, the method includes performing one or more of assuming no downlink transmission will occur in the identified subframe, deciding to not receive a downlink transmission in the identified subframe, and assuming a pre-defined result for a downlink transmission associated with the identified subframe. |
US09847853B1 |
Method and apparatus for reduced HARQ buffer storage
Automatic Repeat Request (ARQ) protocol is used in many modern telecommunication systems for improved link level reliability. Hybrid ARQ (HARQ) protocol takes advantage of the retransmissions in ARQ to enable the receiver to decode the currently received data by combining it with all the previously received transmissions that were not successfully decoded. Each successive retransmission improves the probability of correctly decoding the data. To support HARQ, the receiver is required to store the previously received unsuccessful transmissions for combining with future retransmissions. The storage of the previously received unsuccessful transmissions can be very large depending on type of the HARQ protocol used. A method and apparatus are disclosed that enable reduced memory storage requirements while maintaining the HARQ performance requirements. The reduced memory requirements result in reduced cost, reduced power consumption and lowered cost. |
US09847851B2 |
Transmitting apparatus and non-uniform constellation mapping method thereof
A transmitting apparatus is disclosed. The transmitting apparatus includes an encoder to perform channel encoding with respect to bits and generate a codeword, an interleaver to interleave the codeword, and a modulator to map the interleaved codeword onto a non-uniform constellation according to a modulation scheme, and the constellation may include constellation points defined based on various tables according to the modulation scheme. |
US09847849B2 |
Modulation and coding scheme codes
This disclosure describes methods, apparatus, and systems related to a modulation and coding scheme (MCS) system. The device may determine a wireless communications channel with a first device in accordance with a wireless communications standard. The device may generate a header in accordance with a communication standard, the header including, at least in part, a modulation and coding scheme (MCS) index value. The device may determine a code rate associated with the MCS index value based at least in part on the wireless communications channel. The device may cause to send the header to the first device over the wireless communications channel based at least in part on the MCS index value. |
US09847847B2 |
Method and device for managing optical channel overhead and optical signal receiving node
Disclosed are a method and device for managing optical channel overhead, and an optical signal receiving node. The method comprises: optical channel overhead information is structured, wherein the optical channel overhead information comprises at least one of the following: the optical channel nominal central frequency, the optical channel application code, and the optical channel trail trace identifier; and the optical channel overhead information is sent to the optical signal receiving node. The disclosure solves the technical problem in the related art of an inability to negotiate a single, unified optical channel nominal central frequency and application code between the optical transmitter and the optical receiver, i.e. the disclosure enables an optical transmitter and the optical receiver to negotiate such the nominal central frequency and application code, thereby achieving the technical result of an optical signal being correctly sent and received. |
US09847846B2 |
Content delivery system
The audio outputs 29 of each of a plurality of telecommunications terminals in a packet switched system are synchronized by having each terminal transmit a stream of packets whose rate, and therefore duration is determined according to a clock generator 25, and is thus indicative of the rate at which the terminal is generating its audio output. The signals from each terminal are transmitted to a common server. For each terminal, the server uses a master dock to compare the duration of the packet stream with an expected duration, and calculates an offset value which is returned to the respective terminal. Each terminal stores the offset value it receives (20) and uses it to adjust the output of its clock generator 25 so that its operations can be synchronized to the server. This allows all the terminals' digital-to-analog conversion processes to be synchronized such that all their analog outputs are coordinated, allowing co-located acoustic outputs to be synchronous. A second embodiment maintains synchronization by maintaining the volume of the data buffer 23 serving the audio output 29 within predetermined limits. |
US09847844B2 |
Technique for usage forecasting in a switched digital video system
A plurality of digital video recorders are polled to extract data indicative of recordings scheduled thereon. The polling is carried out over a video content network by a component at a node in the video content network that is remote from the plurality of digital video recorders. At least a portion of the data is used to obtain a prediction of future switched digital video channel usage for the video content network. At least one network management activity is carried out on the video content network in response to the prediction of future switched digital video channel usage for the video content network. |
US09847843B2 |
Apparatus and method for wireless testing of a plurality of transmit paths and a plurality of receive paths of an electronic device
An apparatus for wireless testing, wherein the apparatus includes a test interface, a test generator, a test module, and an analysis module. The test interface is coupled to an electronic device and is configured to transmit data to the electronic device and to receive data from the electronic device. The test generator drives the electronic device through the test interface to vary the beam direction. The test module determines a plurality of transmit values of a transmit parameter based on the test signal wirelessly received from the electronic device using at least one static antenna for receiving the test signal. Each transmit value of the transmit parameter is associated with a different beam direction. The analysis module provides an assessment of the plurality of transmit paths of the electronic device based on the plurality of transmit values. |
US09847840B2 |
Multi-channel transceiver with laser array and photonic integrated circuit
A laser module can include: a laser chip having a plurality of laser diodes; a focusing lens optically coupled to each of the plurality of distinct laser diodes; and a photonic integrated circuit (PIC) having a plurality of optical inlet ports optically coupled to the plurality of laser diodes through the focusing lens. The laser module can include an optical isolator optically coupled to the focusing lens and PIC and positioned between the focusing lens and PIC. The laser chip can include a fine pitch laser array. The laser module can include a plurality of optical fibers optically coupled to an optical outlet port of the PIC. The laser module can include a hermetic package containing the laser chip and having a single focusing lens positioned for the plurality of laser diodes to emit laser beams there through. |
US09847839B2 |
PAM4 transceivers for high-speed communication
The present invention is directed to data communication. More specifically, embodiments of the present invention provide a transceiver that processes an incoming data stream and generates a recovered clock signal based on the incoming data stream. The transceiver includes a voltage gain amplifier that also performs equalization and provides a driving signal to track and hold circuits that hold the incoming data stream, which is stored by shift and holder buffer circuits. Analog to digital conversion is then performed on the buffer data by a plurality of ADC circuits. Various DSP functions are then performed over the converted data. The converted data are then encoded and transmitted in a PAM format. There are other embodiments as well. |
US09847833B2 |
Optical signal-to-noise ratio (OSNR) monitoring and measurement in optical communications sytems
Disclosed are methods for monitoring and measuring Optical Signal-To-Noise Ratios in optical communications systems. One exemplary method involves intentionally inserting zero power symbols into an optical signal stream such that those periods of time in which only zero power symbols are transmitted may be detected and compared with periods of time in which signals modulated with information including both signal and noise are detected such that the OSNR may be determined. |
US09847831B2 |
Dual wavelenth optical time domain reflectometer systems and methods embedded in a WDM system
A dual wavelength Optical Time Domain Reflectometer (OTDR) system, embedded in a network element, includes a first OTDR source for wavelength λ1; a second OTDR source for wavelength λ2; an OTDR measurement subsystem adapted to measure backscatter signals λ1_BACK, λ2_BACK associated with the wavelength λ1 and the wavelength λ2; and one or more ports connecting the first OTDR source, the second OTDR source, and the OTDR measurement subsystem to one or more fiber pairs; wherein wavelength λ1 and wavelength λ2 are each outside of one or more signal bands with traffic-bearing channels, thereby enabling operation in-service with the traffic-bearing channels. |
US09847828B2 |
Adjusting beam width of air-to-ground communications based on distance to neighbor balloon(s) in order to maintain contiguous service
Example methods and systems for adjusting the beam width of radio frequency (RF) signals for purposes of balloon-to-ground communication are described. One example method includes determining, based on respective locations of a plurality of balloons and areas covered by respective ground-facing communication beams of the balloons, a contiguous ground coverage area served by the plurality of balloons, where the communication beam of a balloon defines a corresponding individual coverage area within the ground coverage area, determining a change in position of at least one of the balloons, based on the change in position of the at least one balloon, determining an adjustment to a first of the individual coverage areas in an effort to maintain the contiguous ground coverage area after the change in position of at least one of the balloons, and adjusting a width of the ground-facing communication beam of the balloon corresponding to the first individual coverage area in order to make the determined adjustment to the first individual coverage area. |
US09847827B2 |
Method and system for transmitting data in wireless local area network
Disclosed are a method and system for transmitting data in a wireless local access network. The method includes: a first station sending a radio frame to a second station in an obtained transmission opportunity, and carrying, in the radio frame, notification information indicating that the second station uses the transmission opportunity to communicate with a third station. The technical scheme provided in embodiments of the present invention are applicable to transmission opportunity management in a data relay process in the wireless local area network, to achieve the control right management of transmission opportunity under the control of the first station. |
US09847826B2 |
Communication apparatus, communication method, and communication system
Even when the lengths of data items to be transmitted to users are not the same, the frames multiplexed at the same time finally have the same frame length and are transmitted. Even when the lengths of frames for the users are not the same at the time when a transmission request is received from a higher layer, a communication apparatus reconfigures at least two of the frames having short lengths into a frame having a long length through Aggregation so that the frames finally have the same frame length and transmits the frames at the same time in a multiplexed manner. On the transmitter side, the transmission power used per destination communication station can be increased due to a decrease in the total number of multiplexed frames. On the receiver side, an unstable AGC operation can be prevented. |
US09847822B2 |
Signal generating method and signal generating device
A transmission method of simultaneously transmitting a first modulated signal and a second modulated signal at a common frequency performs precoding on both signals using a fixed precoding matrix and regularly changes the phase of at least one of the signals. One of signal generation processing in which phase change is performed and signal generation processing in which phase change is not performed is selectable, thereby improving general versatility in signal generation. |
US09847819B2 |
Adaptive precoding in a MIMO wireless communication system
This invention presents methods for estimating MU-MIMO channel information using SU-MIMO channel information to choose a modulation and channel coding appropriate for the quality of the MU-MIMO channels, for adaptively selecting MU-MIMO precoding methods based on estimations of a plural of UEs and for compensating hardware impairments in MU-MIMO precoding. |
US09847813B2 |
Feed unit and feed system for non-contact power transmission
A feed unit includes: a power transmission section configured to perform power transmission with use of a magnetic field or an electronic field; a power limiting section provided on a power supply line from an external power source to the power transmission section; and a control section provided on a side closer to the external power source than the power limiting section, and including a power transmission control section, the power transmission control section being configured to control the power transmission. |
US09847812B2 |
Method for the contactless tapping of communication signals
The invention relates to a method for the contactless tapping of communication signals that are exchanged between two communication units, in particular a sensor or actuator and a digital evaluating or control unit, wherein the communication signals are transmitted on a line (2) of a multi-core cable (1) as voltage signals. According to the invention, in order that the communication signals can be tapped also in the case of multi-core cables without the line having to be interrupted for this purpose, the communication signals are tapped capacitively, wherein at least two electrodes (10a, 10b), which lie on the cable sheath and the angular position of which in relation to the cable axis is variable, are used for the tapping and the angular position at which the differential signal between the two electrodes (10a, 10b) is maximized is determined, wherein the at least two electrodes (10a, 10b), each consisting of a plurality of individual electrodes (E1-E8), are designed as collection electrodes and the various angular positions of the collection electrodes (10a, 10b) are achieved in that the association of the individual electrodes (E1-E8) with the at least two collection electrodes (10a, 10b) is sequentially changed by means of a controller (26). The invention further relates to an assembly for performing said method. |
US09847810B2 |
Add-on apparatus for channel compensation of frequency diversity communications and methods useful in conjunction therewith
A communication system, typically wireless and comprising at least one wireless (say) communication network node having a capacity for communicating with at least one additional wireless (say) communication network node at a given center frequency; and at least one external frequency converter, external to the node, operative to cause at least one wireless (say) communication network node, from outside said node, to communicate with at least one additional wireless (say) communication network node, at least on occasion, according to a given e.g. wireless communication protocol, at at least one converted center frequency which differs from the given center frequency, wherein a Channel Compensation Signal (CCS) is employed. |
US09847806B1 |
Cell phone case
A cellular phone protection case that has four impact absorbing corners and a planar body extending therebetween. Portions of the planar body are asymmetrical relative to imaginary central axes associated with the planar body. Additionally, the four corners define free spaces therebetween to define a cell phone cover that is substantially free of planar sidewalls extending between respective corners. The corners may deflect to repeatably engage a cell phone at complementarily shaped cellphone corners. |
US09847804B2 |
Bypass path loss reduction
Aspects of this disclosure relate to reducing insertion loss associated with a bypass path. In an embodiment, an apparatus includes a first switch having at least two throws, a second switch having at least two throws, a bypass path between the first switch and the second switch, and at least one inductor. The at least one inductor is configured to compensate for capacitance associated with the bypass path to cause insertion loss of the bypass path to be reduced. |
US09847803B2 |
Electromagnetic interference reduction by beam steering using phase variation
A system, method, and array of transceivers are disclosed. The disclosed method enables an efficient mechanism for managing electromagnetic radiation by a first processing device and a second processing device into a common area. Concepts of employing different time-varying phase delays at the different emitters of electromagnetic radiation help to minimize the otherwise cumulative effects of multiple emitters being located in close proximity to one another. |
US09847798B2 |
Method for polarity bit line encoding using aperiodic frames
The invention relates to a method for serial data transmission, comprising the steps consisting in computing the running disparity (RD) of a bit stream that is being transmitted; when the running disparity reaches a threshold (T), computing a point disparity on a subsequent frame (S) of the stream; if the point disparity has the same sign as the threshold, inverting the states of the bits of the frame in the transmitted bit stream; and inserting into the transmitted bit stream a polarity bit having a state signalling the inversion. |
US09847797B2 |
Wireless controllers
A wireless controller for operably controlling at least two devices. The wireless controller includes a cover portion, a base portion, a transmission mechanism and a component activation mechanism. The base portion is operably attached to the cover portion. The transmission mechanism and the component activation mechanism are each mounted to at least one of the cover portion and the base portion. The component activation mechanism causes the transmission mechanism to transmit a communication signal to the at least one of the at least two devices. When the cover portion and the base portion are in a closed configuration, the component activation mechanism is substantially covered. |
US09847794B2 |
Transmitting apparatus and interleaving method thereof
A transmitting apparatus is provided. The transmitting apparatus includes: an encoder configured to generate a low density parity check (LDPC) codeword by LDPC encoding based on a parity check matrix; an interleaver configured to interleave the LDPC codeword; and a modulator configured to map the interleaved LDPC codeword onto a modulation symbol, wherein the modulator is further configured to map a bit included in a predetermined bit group from among a plurality of bit groups constituting the LDPC codeword onto a predetermined bit of the modulation symbol. |
US09847790B2 |
Hybrid analog-to-digital converter using digital slope analog-to-digital converter and related hybrid analog-to-digital conversion method thereof
A hybrid analog-to-digital converter (ADC) includes a plurality of analog-to-digital conversion circuits and a combining circuit. The analog-to-digital conversion circuits generate a plurality of partial digital outputs for a same analog input, respectively, wherein the analog-to-digital conversion circuits include a digital slope ADC used to perform signal quantization in a time domain. The combining circuit combines the partial digital outputs generated from the analog-to-digital conversion circuits to generate a final digital output of the analog input. |
US09847781B2 |
Radio frequency switch including filter circuit
A radio frequency switch may include a common port transmitting and receiving a radio frequency signal, a first switching unit including a plurality of first switch elements connected in series and opening or closing a signal transfer path between a first port inputting and outputting the radio frequency signal and the common port, and a second switching unit having a plurality of second switch elements connected in series and opening or closing a signal transfer path between a second port inputting and outputting the radio frequency signal and the common port. The second switching unit further includes a first filter circuit unit connected to a control terminal of at least one second switch element among the plurality of second switch elements to remove at least one preset frequency band signal. |
US09847779B2 |
Dead time adjusting circuit
In a dead time adjusting circuit, a switch voltage appearing at a connection node between a first output switch and a second output switch, which are connected in series between two different potentials, is monitored to detect a first dead time, which is from a time at which the second output switch is turned off to a time at which the first output switch is turned on, and a second dead time, which is from a time at which the first output switch is turned off to a time at which the second output switch is turned on, each of the first and second dead times being feedback-controlled to be identical to a predetermined target value. |
US09847777B2 |
Signal potential converter
Disclosed herein is a signal potential converter which may perform high-speed operation and which may still maintain intended signal amplitude and operate normally even while operating at a low rate or receiving a burst signal. In this signal potential converter, a capacitor receives an input signal CIN at one terminal thereof and has the other terminal thereof connected to a terminal node. A clamp circuit defines a potential at the terminal node, i.e., a signal IN, within the range of a first potential to a second potential. If a potential at the terminal node is higher than a third potential, a voltage holder circuit operates to raise the potential at the terminal node. If the potential at the terminal node is lower than the third potential, the voltage holder circuit operates to lower the potential at the terminal node. |
US09847770B2 |
Elastic wave resonator, elastic wave filter apparatus, and duplexer
In an elastic wave resonator, a first IDT electrode, a second IDT electrode, a first reflector, and a second reflector are located on a piezoelectric substrate. The first IDT electrode and the second IDT electrode share a shared bus bar. Between a first terminal and a second terminal, the first IDT electrode and the second IDT electrode are connected in parallel. The shared bus bar and the first reflector are connected to the first terminal. A first bus bar and a second bus bar are connected to the second reflector, and are further connected to the second terminal. |
US09847769B2 |
Tunable compensation circuit for filter circuitry using acoustic resonators
Tunable filter circuitry includes a series acoustic resonator between first and second nodes and a compensation circuit in parallel with the series acoustic resonator. The compensation circuit includes first and second inductors coupled in series between the first node and the second node, wherein the first inductor and the second inductor are negatively coupled with one another and a common node is provided between the first and second inductors. The compensation circuit also includes first and second shunt acoustic resonators, which are coupled in parallel with one another between the common node and a fixed voltage node. A first variable capacitor is also coupled between the common node and the fixed voltage node, wherein changing a capacitance of the first variable capacitor changes a bandwidth of a passband of the filter circuitry. |
US09847764B2 |
Generating adaptive notification
A method for generating adaptive notifications include analyzing, at a user device, a spectrum of environmental noise. A portion of the spectrum for adaptive notification enhancement is selected based on the analyzing the spectrum of environmental noise. An adapted notification is generated at the user device by enhancing the selected portion of the spectrum. The adapted notification is transmitted at the user device. |
US09847759B2 |
Scalable periphery tunable matching power amplifier
A scalable periphery tunable matching power amplifier is presented. Varying power levels can be accommodated by selectively activating or deactivating unit cells of which the scalable periphery tunable matching power amplifier is comprised. Tunable matching allows individual unit cells to see a constant output impedance, reducing need for transforming a low impedance up to a system impedance and attendant power loss. The scalable periphery tunable matching power amplifier can also be tuned for different operating conditions such as different frequencies of operation or different modes. |
US09847758B2 |
Low noise amplifier
A low noise amplifier includes: first and seventh transistors configured to respectively receive first and second input signals; second, third, and fifth transistors connected to the first transistor; eighth, ninth, and eleventh transistors connected to the seventh transistor; a third resistive element; fourth and tenth transistors respectively connected to the third and ninth transistors; sixth and twelfth transistors respectively connected to second and first output terminals; and first and second resistive elements. |
US09847753B2 |
Electro-mechanical voltage-controlled oscillator and a method for generating tunable balanced oscillations
A cross-coupled complementary balanced voltage-controlled oscillator and a method for operating same. The oscillator comprises an electro-mechanical resonator, and an oscillator core. The oscillator core comprises capacitvely cross-coupled complementary inverters and a resistor network. The oscillator may comprise a frequency tuning network having inductors for increasing the tuning range. The capacitance inhibit the inverters from latching to a static direct current state. The resistor network forms a high pass filter with the capacitance to inhibit relaxation oscillations. The method comprises enabling the resistor network to form a high pass filter and starting balanced oscillations in the oscillator, the capacitance of the high pass filter for inhibiting latching, and the high pass filter for inhibiting relaxation oscillations. The method may comprise tuning the frequency by varying the capacitance of the oscillator. |
US09847752B2 |
Manufacturing automation of in-situ temperature compensation information
An in-situ temperature compensation method of an electronic device and an associated temperature sensor includes providing airflow from a vortex air gun to a board including the electronic device and the associated temperature sensor; determining an associated offset at various temperatures in an operating range; and creating and storing a calibration table in memory including the associated offsets at the various temperatures, the calibration table is used during operation of the electronic device for compensation due to temperature variation. A system includes a board, an electronic device disposed to the board; a temperature sensor disposed on the board; a processor disposed to the board and communicatively coupled to the electronic device and the temperature sensor; and instructions that cause the processor to determine an associated offset at various temperatures in an operating range, and create and store a calibration table in memory with the associated offsets at the various temperatures. |
US09847743B2 |
Method for controlling a power train and corresponding system
A method for controlling a power train and corresponding system. A method for controlling a power train equipping a motor vehicle and comprising an electric motor provided with a rotor and a stator, said method comprising the regulation of the currents of the rotor and the stator delivering control signals to the electric motor, said currents to be regulated and said control signals being expressed in a rotating reference system and comprising a plurality of axes. The method includes a measurement of the values of the currents of the rotor and the stator, a transformation of said measurements into said rotating reference system, a determination of minimum and maximum limits for each of the currents on the basis of said control signals, and a comparison of the measured signals with said minimum and maximum limits. |
US09847741B2 |
Circuit arrangement for an electromagnetic holding brake
A circuit arrangement is configured to supply an electromagnetic holding brake of an electric motor with an operating voltage for releasing the holding brake, and a voltage that is reduced relative to the operating voltage for holding the holding brake in the released position. The operating voltage is supplied from a higher-level control system disposed separately from the motor and the holding brake. The circuit arrangement is disposed in or on the motor or in or on the holding brake and includes a voltage regulator adapted to regulate, independently of the operating voltage, the reduced voltage to a fixed value after the holding brake is released. |
US09847733B2 |
Power conversion system with DC bus regulation for abnormal grid condition ride through
Power conversion systems and methods are provided for ride through of abnormal grid conditions or disturbances, in which a system rectifier is operated in a first mode to regulate a DC voltage of an intermediate DC circuit, an inverter is operated in the first mode to convert DC power from the intermediate DC circuit to provide AC output power to drive a load. In response to detecting an abnormal grid condition, the system changes to a second mode in which the rectifier is turned off and the inverter regulates the DC voltage of the intermediate DC circuit using power from the load. |
US09847729B2 |
Method of operating a switched mode power supply, computer program, and switched mode power supply
A method of operating a switched mode power supply comprising a switched mode converter and a control arrangement. The switched mode converter converts an input voltage to an output voltage and includes a primary winding, controllable switch based circuitry connecting the input voltage over the primary winding, a secondary winding coupled to the primary winding, and an LC filter including an inductive element and a capacitive element, wherein the output voltage is obtained as the voltage over the capacitive element and a duty cycle of the switched mode converter can be controlled by controlling the switch based circuitry. The switched mode converter is controlled depending on measurements of the input and output voltages in a hybrid regulated ratio control scheme. The power of the switched mode power supply is shut off or a current thereof is limited, when a current of the switched mode power supply reaches a maximum current. |
US09847725B2 |
Relay drive with voltage isolation
Disclosed herein is a flyback system. The flyback system includes a tank circuit comprising a primary side and a secondary side. The flyback system also includes a switching device configured to pulse energy to the tank circuit. The energy is stored in a first side of the tank circuit when the switching device is on. The energy is transferred from the primary side to the secondary side when the switching device is off. |
US09847723B2 |
Power conversion device
A power conversion device, which includes an insulation type full bridge converter and can switch a power transmission direction at a high speed, is provided. A DC/DC converter (10) constitutes a power conversion device, which operates as a first type converter that converts a voltage within a first range applied to a first input/output terminal pair into a voltage within a second range and outputs the voltage from a second input/output terminal pair or a second type converter that converts a voltage within the second range applied to the second input/output terminal pair into a voltage within the first range and outputs the voltage from the first input/output terminal pair, as a device that performs a predetermined state transition of the DC/DC converter (10) after waiting for a load current value of a primary or secondary side of a transformer (TR) becomes a value within a predetermined current value range. |
US09847721B2 |
Driving circuit, voltage converter having adaptive dead time control function and method of controlling dead time
A voltage converter includes a switching driver, a controller, a low-pass filter and a pulse width modulation signal generator. The switching driver includes a pull-up switching circuit connecting an input voltage to a switching node in response to a pull-up signal and a pull-down switching circuit connecting a ground voltage to the switching node in response to a pull-down signal. The controller generates the pull-up signal and the pull-down signal in response to a pulse width modulation signal and measures pull-up and pull-down turn-on times of the pull-up and pull-down switching circuits in real time to control a dead time. The low-pass filter filters a switching voltage signal on the switching node to generate an output voltage. The pulse width modulation signal generator generates the pulse width modulation signal based on a reference signal and the output voltage. |
US09847718B2 |
Apparatus and methods for integrated power converter with high bandwidth
A DC-DC power converter includes a switched inductor power converter and a parallel linear voltage regulator. Two transistors are positioned in the switched inductor power converter to periodically set a bridge voltage thereby producing a square wave with a fixed frequency and variable duty cycle. An inductor and an output capacitor filter the bridge voltage so that only the average value of the bridge voltage is passed to the load. Parasitic impedance due to physical separation of the switched inductor power converter and the load is overcome by providing the parallel linear regulator with its own dedicated channel to the load. |
US09847714B2 |
Voltage multiplier for high-current use
A voltage multiplier includes: a multitude of winding blocks connected in series; a switching circuit configured to connect to ground a first node arranged between a first winding block and a second winding block and a second node arranged between a third winding block and a fourth winding node; a first controlled switch arranged between the first winding block and the second winding block; a second controlled switch arranged between the third winding block and the fourth winding block; wherein each of the first controlled switch and the second controlled switch is configured to be switched in a conductive state or a non-conductive state; wherein the second winding block and the fourth winding block are coupled to an output of the voltage multiplier, such that an output voltage is set at the output depending on the switching state of the switching circuit. |
US09847712B2 |
Fault control for switched capacitor power converter
Transient or fault conditions for a switched capacitor power converter are detected by measuring one or more of internal voltages and/or currents associated with switching elements (e.g., transistors) or phase nodes, or voltages or currents at terminals of the converter, and based on these measurements detect that a condition has occurred when the measurements deviate from a predetermined range. Upon detection of the condition fault control circuitry alters operation of the converter, for example, by using a high voltage switch to electrically disconnect at least some of the switching elements from one or more terminals of the converter, or by altering timing characteristics of the phase signals. |
US09847711B2 |
Switching power supply device control circuit and switching power supply device
A switching power supply device enables measures against noise even when the conducted EMI standard is expanded to a low frequency region. A jitter control circuit, configured so as to reduce generation of conducted EMI noise by giving jitter (frequency diffusion) to a switching frequency which drives a switching element, upon receiving a feedback voltage representing the condition of a load, expands the diffusion width of the switching frequency in stages in accordance with a shift from a fixed frequency region of a maximum oscillation frequency, through a frequency reduction region, to a fixed frequency region of a minimum oscillation frequency. By so doing, it is possible to obtain the effect of sufficient reduction of EMI noise even when an EMI noise measurement frequency range is expanded to a low frequency side. |
US09847708B2 |
PFC circuit
In one embodiment, a power factor correction (PFC) circuit can include: (i) a rectifier bridge and a PFC converter coupled to an input capacitor; (ii) a harmonic wave compensation circuit configured to shift a phase of a DC input voltage provided from the rectifier bridge, where the harmonic wave compensation circuit comprises a phase of about −45° when a corner frequency is about 50 Hz; and (iii) a PFC control circuit configured to control the PFC converter, where the PFC control circuit comprises a first sampling voltage, and the harmonic wave compensation circuit is configured to control a phase of the first sampling voltage to lag a phase of the DC input voltage by about 45°. |
US09847702B2 |
In-situ method for sealing fluid cooled conduits for a generator
A method for sealing fluid cooled conduits in-situ for a generator is provided. The fluid or liquid cooled conduits are located external to a stator of the generator and substantially outward of stator bars. The method includes draining coolant from the fluid cooled conduits, and drying interior surfaces of the fluid cooled conduits. In inserting step inserts a borescope and a sealant applicator through an opening in one of the fluid cooled conduits. A locating step locates a brazed joint in the fluid cooled conduit, and a positioning step positions the borescope and the sealant applicator near the brazed joint. An applying step applies a sealant to the inside of the fluid cooled conduit at the brazed joint A viewing step may be used to view the brazed joint with the borescope to confirm that the applying step has been successful. |
US09847698B2 |
Rotating electric machine and method of operating the same
Provided is an electric motor having improved overall cooling efficiency by enabling a coolant to flow around a stator and around and through a rotor in parallel for the stator and the rotor to allow the stator and the rotor to be cooled in parallel. In the electric motor, after an automatic transmission fluid flowing into a first coolant inflow port (10) passes through a shaft internal flow path and rotor internal flow paths (27), the automatic transmission fluid passes through a coolant exhaust port (20) to flow out of a housing (18). After the automatic transmission fluid flowing into a second coolant inflow port (11) passes through a clearance (31) between the housing (18) and a stator (17) and around coil ends (29) of stator coils (16), the automatic transmission fluid passes through the coolant exhaust port (20) to flow out of the housing (18). |
US09847696B2 |
System for producing energy via use of gravity
The present invention is a system for producing energy via use of gravity and then integrating such a force into a system design of energy power generation by translating the force of gravity into potential energy then into kinetic energy and from kinetic energy back into potential energy again. This system can operate mechanically or electromechanically with the aid of a minimal amount of external energy. A mechanical sequence is introduced in the system's operation to prolong the operational functionality of motion to its working components to the point where full, or substantially full, and independent recycling of fluids takes place and in the process it generates power to run the system's electricity producing generators and supply electricity to the power grid. |
US09847695B2 |
Mobile energy generator
A system for recycling energy within an assembly line includes a mobile power generator attached to a conveyer platform (a.k.a. a “skillet”) or other conveyance within the assembly line. The mobile power generator has a drive wheel that contacts an adjacent surface, such as a floor, and is rotated by movement of the conveyance along or past the surface. Rotation of the drive wheel is transmitted to a low RPM electrical generator to produce electrical energy at the conveyance. |
US09847694B2 |
Rotor of motor
A rotor of a motor capable of simplifying a manufacturing process and improving precision. The rotor includes a screw type of ball spindle, and a nut spindle that surrounds the ball spindle, is screwed onto the ball spindle, and has magnets attached to an outer circumferential surface thereof. |
US09847693B2 |
Motor brake device
A motor brake device includes an armature base, an armature plate, a fixing plate and at least one brake lining. The armature plate is disposed on the armature base. The armature plate is vertically movable relative to the armature base. The fixing plate is fixed on the armature base. The fixing plate and the armature base are located at two opposite sides of the armature plate. The braking assembly is arranged between the armature plate and the fixing plate, and includes a two-winged rotor hub plate, a brake friction plate and at least two elastic elements. The at least one brake lining is arranged between the armature plate and the braking assembly and/or between the fixing plate and the braking assembly. |
US09847691B2 |
Power collection device for electric machine
A power collection device includes a carrier and a connection portion integrated with or attached to the carrier. The connection portion has a via for a wire to pass therethrough, a first side being in contact and connection with the carrier, a second side opposite to the first side, and a third side connected with the first and second sides. The via is in a shape of a circle, rectangle, square, rhombus, triangle with one side being close to the second side, or triangle with one angle being close to the second side. The via has a maximum length in a direction parallel to the first side being ¼ to ¾ times a length of the first side, and a maximum length in a direction perpendicular to the first side being ¼ to ¾ times a length from the first side to the second side. |
US09847689B2 |
Motor
In a motor, a magnet is configured so that four pairs of S-poles and N-poles are formed at equal angular intervals, and a stator core has six salient poles formed thereon. Of the plurality of salient poles, when the first salient pole or the second salient pole faces a position between an S-pole and an N-pole, the other salient pole faces the center of an S-pole or the center of an N-pole. The radial-direction lengths of the first salient pole and the second salient pole among the plurality of salient poles are longer than the other salient poles, and the radial-direction length of the portion of the first coil wound around the first salient pole and the radial-direction length of the portion of the second coil wound around the second salient pole are longer than the radial-direction lengths of the other salient poles. |
US09847683B2 |
Hairpin connecting device and hairpin winding motor including the same
Disclosed are a hairpin connecting device and a hairpin winding motor including the same. An exemplary embodiment of the present invention may provide a hairpin connecting device including: a cover part shaped like a circular loop fastened to a leg side of a stator core; and a plurality of connection caps arranged inside the cover part in a circumference direction and configured to electrically connect connected ends of respective hairpins exposed to the leg side. |
US09847682B2 |
Rotor and rotating electric machine including the rotor
A rotor includes a hollow cylindrical rotor core that has a center hole, in which a rotating shaft is to be press-fitted, and a plurality of magnet-receiving holes in which a plurality of permanent magnets are respectively received. In a radially inner surface of the rotor core defining the center hole, there are formed a plurality of non-contacting recesses and a plurality of contacting protrusions alternately in the circumferential direction of the rotor core. Each of the non-contacting recesses is recessed radially outward so as not to be in contact with the rotating shaft. Each of the contacting protrusions protrudes radially inward so as to be in pressed contact with the rotating shaft. The rotor core further has a plurality of through-holes each of which penetrates the rotor core in the axial direction of the rotor core and is located radially outside a corresponding one of the contacting protrusions. |
US09847676B2 |
Power saving technique for digital to time converters
This document discusses apparatus and methods for reducing energy consumption of digital-to-time converter (DTC) based transmitters. In an example, a wireless device can include a digital-to-time converter (DTC) configured to receive phase information from a baseband processor and to provide a first modulation signal for generating a wireless signal, and a detector configured to detect an operating condition of the wireless device and to adjust a parameter of the DTC in response to a change in the operating condition. |
US09847675B2 |
Power receiving device and power feeding system
The invented power feeding system includes power transmitting and power receiving devices. The power transmitting device includes an AC power source, a first electromagnetic induction coil, a first resonant coil, and a first capacitor. The power receiving device includes an antenna unit including a second resonant coil, a second capacitor, and a second electromagnetic induction coil; a charging circuit unit including a rectifier circuit, a power storage device, a current detection circuit for detecting a current value supplied to the power storage device, and a voltage detection circuit for detecting a voltage value applied to the power storage device; and a communication control unit including a control circuit for generating a selection signal based on the detected current value and the detected current voltage, a plurality of switches to be turned on or off by the selection signal, and passive elements electrically connected to the plurality of switches. |
US09847669B2 |
Laptop computer as a transmitter for wireless charging
Configurations and methods of wireless power transmission using a laptop computer may include a transmitter and/or a receiver embedded in the laptop screen. The embedded transmitter may emit RF waves for the generation of pockets of energy that may be utilized by receivers in peripheral devices for charging or powering. Meanwhile, the receiver embedded in the laptop computer may collect RF waves from a separate transmitter for charging or powering the laptop computer. |
US09847660B2 |
Managing a picogrid with a computing device
Methods, systems, and computer program products for managing a picogrid with a computing device are provided herein. A method includes generating one or more power-related models based on (i) data pertaining to a given device battery, (ii) data pertaining to one or more context sources, and (iii) one or more items of power-related historical data; determining a charging schedule for the given device battery to provision power for a picogrid based on the one or more power-related models, wherein said picogrid comprises a set of one or more additional devices connected to (i) the given device and (ii) an energy storage component; and implementing the charging schedule on the given device. |
US09847654B2 |
Battery energy storage system and control system and applications thereof
An electrical energy storage unit and control system, and applications thereof. In an embodiment, the electrical energy storage unit (which may also be referred to as a battery energy storage system (“BESS”)) includes a battery system controller and battery packs. Each battery pack has battery cells, a battery pack controller that monitors the cells, a battery pack cell balancer that adjusts the amount of energy stored in the cells, and a battery pack charger. The battery pack controller operates the battery pack cell balancer and the battery pack charger to control the state-of-charge of the cells. In an embodiment, the cells are lithium ion battery cells. |
US09847647B2 |
Solar power conversion system and method
A solar power conversion system includes a photovoltaic array having photovoltaic modules for generating direct current (DC) power. A power converter is provided in the system for converting the DC power to alternating current (AC) power. A transformer is coupled between the power converter and a power grid for transmitting the AC power to the power grid. The transformer is connected to the power grid at the point of common coupling (PCC) and to the power converter at output terminals. A reactance estimation module is provided in the system for estimating a short circuit reactance at PCC based on a small change in a measured voltage at output terminals with respect to a small change in a measured reactive power at the output terminals. Further, a maximum reactive power estimation module estimates a maximum reactive power based on the estimated reactance, the measured voltage at output terminals, and the measured reactive power at the output terminals. A controller in the system generates switching command signals for the power converter based on the measured voltage at output terminals and the estimated maximum reactive power. |
US09847645B2 |
Neuro-fuzzy control system for grid-connected photovoltaic systems
The neuro-fuzzy control system for a grid-connected photovoltaic (PV) system includes an Adaptive Neuro-Fuzzy Inference System (ANFIS) implemented in real time. Independent active and reactive P-Q power control transfers the generated power to the grid using a voltage source inverter (VSI). The PV system includes a PV module, a buck converter, a VSI, a maximum power point tracking (MPPT) controller for the buck converter, and a VSI controller. The MPPT controller uses irradiation and temperature as inputs. A five-layer ANFIS processes these inputs and provides a control reference voltage as input to a PI controller connected to the buck converter to maintain the output voltage of the photovoltaic array with respect to the control reference voltage. |
US09847644B2 |
Systems and methods for demand response and distributed energy resource management
Techniques are described for incorporating distribution network analysis in the demand response scheduling process. In one example, a method includes receiving demand response (DR) request from a DR initiator, transmitting the DR request to an aggregator, for each customer, receiving customer location information and a customer DR value from the aggregator, aggregating DR at a distribution transformer in a distribution system, determining if there are any violations in the distribution system, determining an aggregated DR value for each electric node affected by the DR request, and transmitting each determined DR value to the DR initiator. |
US09847643B2 |
System and method for managing AC power using auxiliary DC-to-AC inversion
A system and method are provided for managing demand for a client with a fluctuating AC power grid demand, using DC-to-AC power inversion as an auxiliary source of power. The inverter has a selectable inversion power output levels connected to the AC client to supply auxiliary power for a portion of the AC power demand. The AC grid demand is averaged. In each of a series of periodic time intervals, a current AC grid demand average in a current time interval is compared to a demand goal, which is the highest AC grid demand average, as measured at an end of a time interval, and selected from a plurality of time intervals. The inverter output power level is selected so that the current AC grid demand average is less than or equal to the demand goal by the end of the current time interval. |
US09847639B2 |
Electric power system control with measurement of energy demand and energy efficiency
A method, apparatus, system and computer program is provided for controlling an electric power system, including implementation of voltage measurement using paired comparison analysis applied to calculating a shift in average usage per customer from one time period to another time period for a given electrical use population where the pairing process is optimized using a novel technique to improve the accuracy of the measurement. |
US09847637B2 |
Changeover method of HVDC transmission system
A changeover method of a high voltage direct current (HVDC) transmission system is provided. A first system is set to an active state. A ready signal is transmitted from the first system to a first COL. A ready detection signal and an active signal are transmitted to the first system, in response to the ready signal. A confirm signal is transmitted to the first system in response to the active signal when the ready detection signal matches the ready signal. |
US09847636B2 |
Low voltage buss system
An example low voltage buss system is provided. The low voltage bus system distributes low voltage DC power into the office workspace in a manner that reduces clutter and promotes customizable and efficient workspace usage. The low voltage bus system distributes low voltage DC power into the office workspace via an electrical buss having a connector at the end of the buss to distribute low voltage DC power to and throughout office workspace and, in particular, office furniture. |
US09847634B2 |
Providing protection against arc-flash in a genset
An arc flash protection device including a sensor, a timer, and a controller. The sensor is configured to detect a presence of at least one entity or arc flash protection qualifying event in proximity to the generator set. The controller is configured to initiate an arc flash protection regime when the presence of the at least one person or arc flash protection qualifying event is detected in proximity to the generator set. The arc flash protection regime includes shutting down the generator set automatically upon detection of a short circuit. |
US09847633B2 |
Insulating cover for transformer brackets
The present disclosure provides insulating covers for mounting brackets used to secure arrester assemblies to transformers. The purpose of the insulating cover is to protect wildlife from electric shock, and to prevent power interruptions on high voltage distribution lines caused by the bridging of high voltage circuits by wildlife. |
US09847632B2 |
Cable termination method and apparatus
A cable termination system and method include providing an outer socket having a frustum shaped socket interior tapering from a base to a top opening. The outer socket is comprised of two semicircular socket pieces, each forming a portion of a complete circumference of the outer socket. A plurality of elongate cable strands extend through the socket interior with individual strands circumferentially spaced to form a single layer of strands at the base opening. A frustoconical inner plug is inserted into the socket by a compressive force exceeding a maximum tensile force of the stranded cable for holding the cable in the socket without slippage when a tensile force is applied between the cable and the outer socket. The inner plug includes a plurality of longitudinally extending, laterally separate plug subassemblies. |
US09847631B2 |
Extendable electrical box
An extendable electrical box comprises an electrical box having two open ends to an internal box space having a first depth. The electrical box comprises a mounting structure attached to at least one wall of the electrical box. The mounting structure is configured to mount the electrical box to a vertical wall structure such that the open end faces substantially parallel to the vertical wall structure. At least two extendable first rings each continuously surround one of the two open ends of the electrical box. The at least two extendable first rings are each slidably coupled with the electrical box via the sliding mechanical cooperation of one or more guides with one or more tracks, such that sliding either of the at least two extendable first rings in relation to the open ends of the electrical box expands the electrical box from the first depth to a larger second depth. |
US09847629B2 |
Instrumentation transfer strut
A monolithic lead separator includes a primary lead tube defining a primary channel, a plurality of secondary lead tubes formed monolithically with the primary lead tube, and an instrumentation lead splitter. A cap is positioned in an aperture in the instrumentation lead splitter in a fluid-tight manner. Each of the secondary channels intersects the primary channel. The instrumentation lead splitter is situated at the intersection of the primary channel and the secondary channels. |
US09847625B2 |
Automatic switching interface box for generator
An automatic switching interface box for generators in residential dwellings and small commercial applications provides a breaker box transfer switch for generators powering one or more electrical loads. In power blackout situations, the breaker box transfer switch uses a power control relay to keep the load power on, which eliminates the need for a hot generator plug, because the plug in box is not powered. The generator power output cord is plugged onto the male plug of the interface box, or hard wired thereto. If the auxiliary generator had been started and is at rated voltage, the load is immediately and automatically switched from the utility connection to the generator as electrical source. The relay keeps the prongs of the male plug safely unpowered until the generator is attached since the relay coil is powered by the generator output and the plug is connected to the normally open contacts. |
US09847624B2 |
Ionic cooling assembly for electronic device
In one embodiment an ionic airflow system comprises an anode, a cathode platform having an elongated surface, and a first ultrasonic transducer to direct ultrasonic waves into the cathode platform. Other embodiments may be described. |
US09847622B2 |
Spark plug for an internal combustion engine
A spark plug for an internal combustion engine provided with a cylindrical housing, a ceramic insulator, a center electrode and a ground electrode. The ground electrode has a body base disposed from a front end surface of the cylindrical housing to a front end-side thereof. The ground electrode has a spark discharge gap formed therebetween itself and the center electrode. The body base is provided with pair of side-connecting surfaces which connect the inner surface and the outer surface. Each of the side-connecting surfaces having a side flat surface which is a flat surface parallel to an aligning direction of the center electrode and the body base. A distance between the pair of the side flat surfaces is a maximum width of the body base. A minimum distance between the inner surface and the side flat surface satisfies a relationship of 0.1 mm≦L≦0.5 mm, in the aligning direction. |
US09847617B2 |
Nanosecond Ti:Sapphire laser
A laser according to an exemplary embodiment of the present invention includes a pump laser outputting laser light, and a laser resonator including a laser crystal and an acoustic optical modulator and resonating the laser light output from the pump laser, wherein the pump laser is a Nd:YAG, and the laser crystal is Ti:Sapphire. |
US09847611B2 |
Electrical wiring device with shutters
The present invention is directed to an assembly that includes a shutter having an interface portion coupled to a railed guidance structure so that the shutter rides the railed guidance structure from a return position to an open position in response to being engaged by the plurality of plug blades; the interface portion and the railed guidance structure allowing the shutter to rotationally align with the ends of the plug blades in response to an asymmetry in respective lengths of the plug blades. The open position permits electrical engagement of the plurality of plug blades with the plurality of receptacle contacts. The shutter is also directed from the return position to a blocking position in response to being engaged by a foreign object via one of the plurality of receptacle openings to prevent the foreign object from engaging the set of receptacle contacts. |
US09847609B2 |
Electrical assembly with leaktight connection
Electrical assembly, comprising: —a base part (20), and —a removable part (10) configured to be fixed in a removable manner on the base part (20), the base part (20) comprising: —a flexible membrane (22) delimiting, at least in part, a leaktight internal volume (24), —at least one movable electrically conducting element (25), carried by the membrane (22), and extending, at least in part, in the internal volume (24), and —at least one internal electrical contact (28) disposed in the internal volume (24) under the movable conducting element (25), the movable conducting element (25) contacting, during a deformation of the membrane related to the assembly of the removable part (10) on the base part (20), the internal electrical contact (28) for the establishment of an electrical connection between them, and being distant from the internal electrical contact in the absence of fixing of the removable part on the base part. |
US09847608B2 |
Method of configuring a modular plug connector
A modular plug connector includes a plug connector housing, a retaining frame accommodated therein, and at least one plug connector module. The retaining frame is connected to the plug connector housing by fasteners. The at least one plug connector module is accommodated in a module slot in the retaining frame by retaining elements. The plug connector modules are equipped with sensors, which are connected to evaluating electronics in the module plug connector. The evaluating electronics are provided for processing and rendering measured values of the sensors in the plug connector modules, recognizing the accommodated plug connector modules, and managing the configuration of the modular plug connector. |
US09847607B2 |
Electrical connector with shield cap and shielded terminals
A shield cap is mounted to an electrical connector for reducing crosstalk between adjoining electrical connectors. The shield cap includes a body portion and opposite shield plates. The body portion is configured to engage the electrical connector and is formed from a non-conductive material. The opposite shield plates are connected to opposite sides of the body portion and configured to at least partially cover one or more insulation displacement contacts exposed from the electrical connector. The electrical connector includes a wire termination conductor configured to be connected to a wire conductor of a cable. The wire termination conductor is at least partially coated with a shielding layer. |
US09847606B2 |
Electrical connector having extended separating wall portion for preventing insertion of uncut terminals
An electrical connector includes: an insulative housing having a base portion and a tongue portion extending forwardly from the base portion, the tongue portion having a plurality of terminal-receiving slots, a respective separating wall being disposed between every two neighboring terminal-receiving slots, at least one separating wall having an extending portion extending backwardly along an insertion direction to be located behind respective rear ends of the other separating walls; a number of terminals retained in the insulative housing and including a row of first contacts, each first contact having a pair of gaps located forwardly of the extending portion along the insertion direction; a metallic shielding plate retained in the insulative housing; and a shielding shell attached to the insulative housing. |
US09847593B2 |
Electrical connector assembly and connection arrangement
An electrical connector assembly 1 comprising: a terminal holder 18, and a fastening assembly 20, accommodated within the terminal holder 18, for clamping a plurality of terminals 3, 4 in the direction of a longitudinal axis L for an electrical connection between said terminals 3, 4, said fastening assembly 20 including a first fastening member 23 made of a metal material and a second fastening member 29 which first and second fastening members 23, 29 are connected to each other for clamping said terminals 3, 4 and which define a terminal receiving area 37, wherein the electrical connector further comprises an insulation arrangement 30 which is arranged between said first fastening member 23 and the terminal receiving area 37. |
US09847589B2 |
Coupling continuity connector
A coaxial connector including a continuity element extending between a nut surface and a body base. |
US09847586B2 |
Metal terminal fitting crimped to a folded end portion of a braided wire
An electrical wire with a terminal fitting that can be manufactured without using a welding device, and a method of manufacturing this electrical wire with a terminal fitting. Metal foil is wrapped around end portions of the braided wire, and terminal fittings are connected to the end portions. According to this configuration, the metal foil makes it possible to prevent strands in the end portions of the braided wire from becoming loose and spreading apart, and this makes it possible to manufacture the electrical wire with a terminal fitting without using a welding device. |
US09847579B2 |
Antenna device and wireless communication device
An antenna device includes a feed coil and a sheet conductor. The feed coil includes a magnetic core and a coil-shaped conductor, which is provided around the magnetic core. An RFIC is connected to the feed coil. The sheet conductor has a larger area than the feed coil. A slit that extends from a portion of the edge of the sheet conductor toward the inner side of the sheet conductor is provided in the sheet conductor. The feed coil is arranged such that the direction of the axis around which the feed coil is disposed is parallel or substantially parallel to the directions in which the sheet conductor extends. The feed coil is arranged such that the feed coil is close to the slit and one of coil openings at the ends of the feed coil faces the slit. |
US09847578B2 |
Antenna device and communication terminal apparatus
An antenna device includes a feed coil connected to a feed circuit, and a coil antenna disposed near the feed coil. A ferrite sheet, in which a magnetic loss term in a usable frequency band is relatively large, is provided between the feed coil and the coil antenna. The feed coil and the coil antenna are magnetically coupled to each other via the ferrite sheet. With this configuration, signal transmission efficiency between the feed coil and the coil antenna is enhanced. |
US09847576B2 |
UHF-RFID antenna for point of sales application
A UHF-RFID antenna having a central segmented loop surrounded by passive dipole structures provides shaping of the electric and magnetic fields to reduce the number of false positive reads by a UHF-RFID reader at a point of sale. |
US09847575B2 |
Electronic device and antenna thereof
An antenna is provided. The antenna includes a first radiator, a second radiator, a third radiator, a ground portion and a short structure. The first radiator extends in a first direction. The second radiator extends in a second direction. The first direction is opposite to the second direction. The short structure is coupled to the ground portion. The first radiator, the second radiator and the third radiator are connected to the short structure. The short structure defines an L-shaped groove. |
US09847574B2 |
Multiband helical antenna
A multiband antenna including a feed point, a helical radiating element galvanically connected to and fed by the feed point, the helical radiating element resonating in a Very High Frequency range and an elongate radiating element arranged coaxially within the helical radiating element and galvanically connected to and fed by the feed point, the elongate radiating element extending along only a portion of the helical radiating element, the elongate radiating element having a first resonant frequency and a second resonant frequency, the elongate radiating element operating as a quarter-wavelength monopole at the first resonant frequency and as an eighth-wavelength monopole at the second resonant frequency. |
US09847572B2 |
Arrangement and method for electronically tracking RF reflector antennas
A high-frequency reflector antenna (1) is provided that includes at least one main reflector (2), at least one sub-reflector (3) and at least one horn (4). The stationary elements (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) for influencing the direction-dependent reception characteristic are present in the beam path between the main reflector (2) and the horn (4). The stationary elements (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) may protrude into the free aperture area (6) of the horn (4). The stationary elements (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) are switchable dipole elements (5.1.1, 5.2.1, 5.3.1, 5.4.1, 5.5.1, 5.6.1, 5.7.1, 5.8.1) that are arranged with their dipole axis (15) in a manner to influence the reception characteristics of elliptically to circularly or linearly polarised high-frequency radiation. |
US09847568B2 |
Method of forming a coaxial transmission line slot filter with absorptive matrix
A filter is provided and includes potting material formed into a body defining a through-hole. The body includes first and second opposing faces and a sidewall extending between the first and second opposing faces. The sidewall is formed to define first and second openings at opposite ends of the through-hole, first angles at an interface between the sidewall and the first face and second angles, which complement the first angles, at an interface between the sidewall and the second face. |
US09847566B2 |
Method and apparatus for adjusting a field of a signal to mitigate interference
Aspects of the subject disclosure may include, for example, a system that performs operations including detecting a signal degradation of guided electromagnetic waves bound to a transmission medium without utilizing an electrical return path, the guided electromagnetic waves having a non-optical frequency range, and adjusting an alignment of at least a portion of fields of the guided electromagnetic waves to mitigate the signal degradation. Other embodiments are disclosed. |
US09847565B2 |
Tunable slow-wave transmission line
The present disclosure relates to a tunable slow-wave transmission line. The tunable slow-wave transmission line is formed in a multi-layer substrate and includes an undulating signal path. The undulating signal path includes at least two loop structures, wherein each loop structure includes at least two via structures connected by at least one intra-loop trace. The undulating signal path further includes at least one inter-loop trace connecting the at least two loop structures. The tunable slow-wave transmission line includes a first ground structure disposed along the undulating signal path. Further, the tunable slow-wave transmission line includes one or more circuits that may alter a signal transmitted in the tunable slow-wave transmission line so as to tune a frequency of the signal. |
US09847564B2 |
Slow-wave transmission line formed in a multi-layer substrate
The present disclosure relates to a slow-wave transmission line for transmitting slow-wave signals with reduced loss. In this regard, the slow-wave transmission line is formed in a multi-layer substrate and includes an undulating signal path. The undulating signal path includes at least two loop structures, wherein each loop structure includes at least two via structures connected by at least one intra-loop trace. The undulating signal path further includes at least one inter-loop trace connecting the at least two loop structures. Additionally, the slow-wave transmission line includes a first ground structure disposed along the undulating signal path. In this manner, a loop inductance is formed by each of the at least two loop structures, while a first distributed capacitance is formed between the undulating signal path and the ground structure. |
US09847563B2 |
Power supply system
A first power storage section and a second power storage section are connected in parallel. The first power storage section includes a first non-aqueous electrolyte secondary battery. The second power storage section includes parallel-connected second non-aqueous electrolyte secondary batteries. Each of the second non-aqueous electrolyte secondary batteries has a higher energy density than that of the first non-aqueous electrolyte secondary battery. In a case where the second power storage section is discharged at a current value corresponding to a first assumed maximum discharge current value, the parallel-connected number of the second non-aqueous electrolyte secondary batteries is set such that a discharge rate of each of the second non-aqueous electrolyte secondary batteries becomes the preset reference discharge rate or less. |
US09847562B2 |
Battery pack
As a cooling draft flows from a rear side to a front side of battery cells (72) inside a battery pack (30), it is divided into two cooling drafts (F1, F2) in a left-right direction, which is the direction that the battery cells (72) are disposed in parallel, and those two cooling drafts respectively flow through a plurality of passageways that longitudinally extend along the battery cells (72). More particularly, a second battery cell (722) is cooled by the cooling draft flowing in a second ventilation-path volume (Q2) before a first battery cell (721) and a third battery cell (723) are cooled by cooling drafts respectively flowing in a first ventilation-path volume (Q1) and a third ventilation-path volume (Q3), which are longer than the second ventilation-path volume (Q2). |
US09847559B2 |
Charging and discharging inspection device and charging and discharging inspection method for thin secondary battery
A plurality of batteries is stacked, together with spacers, in a compressed state. Charging and discharging units are arranged facing lead terminals protruding from the batteries and are independently operable for the respective batteries. The charging and discharging units each independently include substantially V-like shaped power-side and measurement-side contact elements elastically supported by compression coil springs and having floating freedom. When the batteries are moved all together toward the charging and discharging units, front end surfaces of the lead terminals are pressed against and electrically connected to flat surfaces of the power-side and measurement-side contact elements. By this, it is possible to smoothly perform charging and discharging inspection on the batteries even when the lead terminals protruding from the battery package are subjected in advance to surface treatment. |
US09847556B2 |
Method for manufacturing film-packaged cell
A film-packaged cell has a flat rectangular shape where power-generating element is housed in packaging body together with an electrolytic solution, the film-packaged cell being sealed along four edges of the packaging body in a state where terminals are led out through one edge thereof. In an electrolyte injection step, the electrolytic solution is injected into bag-shaped body where three edges excluding the upper edge of the packaging body are sealed in an orientation where the terminals are protruding laterally, the electrolytic solution being injected from the side of the opening upper edge. In a partial sealing step performed before the electrolyte injection step, only one section of opening upper edge of the bag-shaped body near edge through which terminals are led out is partially sealed, thereby preventing the electrolytic solution from leaking out during electrolyte injection. |
US09847554B2 |
Organic electrolytic solution and lithium battery comprising organic electrolyte solution
Provided is an organic electrolyte solution including a disultone-based compound represented by Formula 1; a first lithium salt that is at least one selected from lithium bis(fluorosulfonyl) imide (Li(FSO2)2N) and lithium difluorophosphate (LiPO2F2); a second lithium salt; and an organic solvent: wherein, in Formula 1, A1, A2, A3, and A4 are each independently a C1 to C5 alkylene group unsubstituted or substituted with a substituent; a carbonyl group; or a sulfinyl group, n1 to n4 are each independently 1 to 3, and when the number of A1, A2, A3, and A4 are each independently two or greater, the plurality of A1, A2, A3, and A4 are identical to or different from each other. |
US09847553B2 |
Electrolyte for lithium secondary battery and lithium secondary battery containing the same
Provided are an electrolyte for a lithium secondary battery, and a lithium secondary battery containing the same, wherein the electrolyte for a secondary battery has significantly excellent high-temperature stability, low-temperature discharge capacity, and life cycle characteristics. |
US09847550B2 |
Lithium sulfur electrochemical cell including insoluble nitrogen-containing compound and battery including the cell
An electrochemical cell including at least one nitrogen-containing compound is disclosed. The at least one nitrogen-containing compound may form part of or be included in: an anode structure, a cathode structure, an electrolyte and/or a separator of the electrochemical cell. Also disclosed is a battery including the electrochemical cell. |
US09847549B2 |
Electrolyte and rechargeable lithium battery including same
An electrolyte for a rechargeable lithium battery including a lithium salt, a non-aqueous organic solvent, and an additive, wherein the additive includes a compound represented by Chemical Formula 1 and a rechargeable lithium battery including the same. |
US09847548B2 |
Ionic conductor and secondary battery
An ionic conductor is provided, wherein a composition formula thereof is Li9+xAl3(P2O7)3(PO4)2−x(GeO4)x, wherein x is a range of 0 |
US09847539B2 |
Method for producing a humidifier block for a humidifier
A humidifier block and a method for producing a humidifier block are disclosed. The humidifier block may include a plurality of membranes each having a cavity for passing a through-flow and a jacket surrounding the cavity in a circumferential direction. The jacket may be moisture-permeable. At least one strip-shaped carrier may be fitted with the plurality of membranes, and the plurality of membranes may arranged in a longitudinal direction parallel to one another and adjacent to one another on the at least one carrier. The at least one carrier fitted with the plurality of membranes may be shaped into the humidifier block such that the plurality of membranes are arranged adjacent to one another in a transverse direction running transversely to the longitudinal direction and adjacent in a height direction running transversely to the longitudinal direction and transversely to the transverse direction. |
US09847538B2 |
Fuel cell system
A fuel cell system including a cathode gas supply system of a cathode gas bypass type includes a first flow rate sensor which detects a cathode gas flow rate to be supplied by the compressor, a second flow rate sensor which detects a cathode gas flow rate to be supplied to the fuel cell, a bypass valve which controls a cathode gas flow rate flowed in the bypass channel, a bypass valve controlling unit configured to execute an open/shut-off control of the bypass valve in accordance with an operation state of the fuel cell system, and a mismatch diagnosing unit configured to detect a mismatch of detected values of the first flow rate sensor and the second flow rate sensor based on the detected values of the both sensors during total shut-off of the bypass valve. |
US09847536B2 |
Injected metal bead channel seal achieved through stamped plate features on fuel cell bipolar plates
A fuel cell system with reduced leakage and a method of assembling a fuel cell system. Bipolar plates within the system include reactant channels and coolant channels that are fluidly coupled to inlet and outlet flowpaths, all of which are formed within a coolant-engaging or reactant-engaging surface of the plate. One or more seals are also formed on the fluid-engaging surface to help reduce leakage by maintaining fluid isolation of the reactants and coolant as they flow through their respective channels and flowpaths that are defined between adjacently-placed plates. The seal—with its combination of in-plane and out-of-plane dimensions—forms a substantially hollow volume, into which a plug is placed to reduce the tendency of the seal to form a shunted flow of the coolant or reactant around the intended active area of the plate. A fluid port intersection is integrally formed with the seal and is formed to be fluidly cooperative with the volume, and is capable of accepting the introduction of a fluent precursor of the plug material such that upon curing, the precursor material forms a substantially rigid insert that continuously fills both the volume and intersection, thereby increasing the resistance of the plug to movement and the seal to shunted flow. In one form, the geometry of the fluent material injection site is such that it promotes plug anchoring within its intended location, while also providing a manufacturing aid to visually inspect for plug installation, as well as to serve as a bipolar plate stacking alignment locator and verification. |
US09847535B2 |
Fuel cell stack with enhanced freeze-thaw durability
The present invention provides a fuel cell stack with enhanced freeze-thaw durability. In particular, the fuel cell stack includes a gas diffusion layer between a membrane-electrode assembly and a bipolar plate. The gas diffusion layer has a structure that reduces contact resistance in a fuel cell and is cut at a certain angle such that the machine direction (high stiffness direction) of GDL roll is not in parallel with the major flow field direction of the bipolar plate, resulting in an increased GDL stiffness in a width direction perpendicular to a major flow field direction of a bipolar plate. |
US09847531B2 |
Current collectors for improved safety
A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, and methods for operating a battery. |
US09847528B2 |
Predoping material, electric storage device including the material, and method of producing the device
A predoping material is used for an alkali metal ion electric storage device and is represented by Formula (1): RSM)n (1) where M represents lithium or sodium; n represents an integer of 2 to 6; and R represents an aliphatic hydrocarbon, optionally substituted aromatic hydrocarbon, or optionally substituted heterocycle having 1 to 10 carbon atoms). |
US09847526B2 |
Lithium titanate particles and process for producing the lithium titanate particles, Mg-containing lithium titanate particles and process for producing the Mg-containing lithium titanate particles, negative electrode active substance particles for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
According to the present invention, there are provided lithium titanate particles which exhibit an excellent initial discharge capacity and an enhanced high-efficiency discharge capacity retention rate as an active substance for non-aqueous electrolyte secondary batteries and a process for producing the lithium titanate particles, and Mg-containing lithium titanate particles. |
US09847524B2 |
Non-aqueous electrolyte secondary cell and method for manufacturing same
A non-aqueous electrolyte secondary cell has reduced degradation of the electrolytic solution or the anode active material and high cycle durability. The non-aqueous electrolyte secondary cell includes: a cathode capable of doping and de-doping lithium ions; an anode capable of occluding and releasing lithium ions, lithium or a lithium alloy; and an electrolytic solution containing an organic solvent, a lithium salt electrolyte and an additive. The cathode active material of the cathode contains a layered lithium-containing transition metal oxide of formula Li1.5[NiaCobMnc[Li]d]O3, where a, b, c, and d satisfy0 |
US09847510B2 |
Organic light emitting diode display apparatus
Disclosed is an organic light emitting diode display apparatus including: a substrate; an organic light emitting diode disposed on the substrate; and an encapsulation layer encapsulating the organic light emitting diode. The encapsulation layer has a structure in which two or more inorganic layers and one or more organic layers are alternately stacked one above another, two adjacent inorganic layers at least partially contact each other, and the organic layers are formed of an encapsulating composition. The encapsulating composition includes: about 10 wt % to about 70 wt % of (A) a non-silicon-based di(meth)acrylate, about 20 wt % to about 70 wt % of (B) a silicon-based di(meth)acrylate, about 5 wt % to about 40 wt % of (C) a mono(meth)acrylate, and about 1 wt % to about 10 wt % of (D) an initiator, the (B) silicon-based di(meth)acrylate being represented by Formula 1. |
US09847509B2 |
Package of flexible environmental sensitive electronic device and sealing member
A flexible environmental sensitive electronic device package including a flexible electronic device, a thin film encapsulation (TFE) and a sealing member is provided. The TFE covers the flexible electronic device as well as the sealing member covers the TFE and the flexible electronic device. The sealing member includes a first portion and a second portion, wherein the first portion covers the flexible electronic device and the TFE, and the second portion covers the first portion. Young's modulus of the second portion is between the 0 MPa and 100 MPa. Young's modulus of the first portion is greater than that of the second portion. The thickness of the first portion is less than that of the second portion. |
US09847507B2 |
Display apparatus and manufacturing method thereof
A display panel includes: a substrate including a first substrate layer which includes a glass material and a second substrate layer contacting the first substrate layer and which includes a polymer material; a thin film transistor disposed on the substrate; and a light emitting element disposed on the thin film transistor. |
US09847499B2 |
Metal complexes
The present invention relates to metal complexes of formula (1), and to electronic devices, in particular organic electroluminescent devices, comprising these metal complexes, in particular as emitters. |
US09847498B2 |
Organic electroluminescent materials and devices
A novel type of blue emitter is described based on the azaphenanthridine imidazole ligand. The preferred use of this moiety for generating blue phosphorescence is as part of a symmetric platinum tetradentate complex. |
US09847497B2 |
Organic electroluminescent materials and devices
A compound having a structure of Formula M(LA)x(LB)y(LC)z, where ligand LA is ligand LB is and ligand LC is is disclosed. In Formula M(LA)x(LB)y(LC)z, M is a metal having an atomic number greater than 40; x is 1, 2, or 3; y and z are 0, 1, or 2; x+y+z is the oxidation state of metal M; Z1-Z6 are each C or N; ZD is N or a carbene carbon; rings C and D are independently a 5 or 6-membered carbocyclic or heterocyclic ring; R4 is substituted, while each of R1, R2, R3, RC, RD, R11, R12, and R13 are selected from hydrogen and a variety of moieties; and any adjacent substituents of R1, R2, R3, R4, RC, RD, R11, R12, and R13 are optionally joined to form a ring. Formulations and devices, such as an OLEDs, that include the compound of formula M(LA)x(LB)y(LC)z are also described. |
US09847494B2 |
Metal-based tris-bipyridyl complexes and uses thereof in electrochromic applications
The present invention relates to metal-based tris-bipyridyl complexes, e.g., iron-based tris-bipyridyl complexes, and their use in fabrication of surface confined assemblies for electrochromic applications. Formulae I and II. |
US09847493B2 |
Material for organic electroluminescence device and organic electroluminescence device using the same
Provided are an organic electroluminescence device, which shows high luminous efficiency, is free of any pixel defect, and has a long lifetime, and a material for an organic electroluminescence device for realizing the device. The material for an organic electroluminescence device is a compound having a π-conjugated heteroacene skeleton crosslinked with a carbon atom, nitrogen atom, oxygen atom, or sulfur atom. The organic electroluminescence device has one or more organic thin film layers including a light emitting layer between a cathode and an anode, and at least one layer of the organic thin film layers contains the material for an organic electroluminescence device. |
US09847487B2 |
Use of inverse quasi-epitaxy to modify order during post-deposition processing of organic photovoltaics
Disclosed herein are methods for fabricating an organic photovoltaic device comprising depositing an amorphous organic layer and a crystalline organic layer over a first electrode, wherein the amorphous organic layer and the crystalline organic layer contact one another at an interface; annealing the amorphous organic layer and the crystalline organic layer for a time sufficient to induce at least partial crystallinity in the amorphous organic layer; and depositing a second electrode over the amorphous organic layer and the crystalline organic layer. In the methods and devices herein, the amorphous organic layer may comprise at least one material that undergoes inverse-quasi epitaxial (IQE) alignment to a material of the crystalline organic layer as a result of the annealing. |
US09847486B2 |
Method of manufacturing organic light emitting display device
An organic light emitting display device having high transmittance with respect to external light and a method of manufacturing the same. The organic light emitting display device includes a substrate; a plurality of pixels formed on the substrate, each of the pixels including a first region that emits light and a second region that transmits external light; a plurality of thin film transistors disposed in the first region of each pixel; a plurality of first electrodes disposed in the first region of each pixel and electrically connected to the thin film transistors, respectively; a second electrode formed opposite to the plurality of first electrodes and comprising a plurality of transmission windows corresponding to the second regions; and an organic layer formed between the first electrodes and the second electrode. The transmission windows can be formed in the second electrode, that is, a cathode. |
US09847485B2 |
Mask frame assembly, display manufacturing apparatus including mask frame assembly, and method of manufacturing display apparatus using mask frame assembly
A mask frame assembly includes a frame, a first support bar, split masks, and a second support bar. The frame includes an opening. The first support bar spans the opening in a first direction, the first support bar includes first ends disposed on the frame. The split masks span the opening in a second direction crossing the first direction, the split masks include first portions disposed on the first support bar and second ends disposed on the frame. The second support bar is disposed on the first support bar, the second support bar being more magnetic than the first support bar. |
US09847483B1 |
Device and method for patterning substrate, and method of manufacturing organic light-emitting device
A method of patterning a substrate includes applying a first potential to a spray nozzle, applying a second potential to at least one first cell electrode among a plurality of cell electrodes on a first surface of the substrate, applying a third potential to at least one second cell electrode excluding the at least one first cell electrode among the cell electrodes, and applying a fourth potential to a second surface that is opposite to the first surface of the substrate. |
US09847480B2 |
Resistance variable memory structure and method of forming the same
A semiconductor structure includes a resistance variable memory structure. The semiconductor structure also includes a dielectric layer. A portion of the resistance variable memory structure is over the dielectric layer. The resistance variable memory structure includes a first electrode embedded in the dielectric layer. A resistance variable layer disposed over the first electrode and a portion of the dielectric layer. A second electrode disposed over the resistance variable layer. |
US09847478B2 |
Methods and apparatus for resistive random access memory (RRAM)
Methods and apparatuses for a resistive random access memory (RRAM) device are disclosed. The RRAM device comprises a bottom electrode, a resistive switching layer disposed on the bottom electrode, and a top electrode disposed on the resistive switching layer. The resistive switching layer is made of a composite of a metal, Si, and O. There may be an additional tunnel barrier layer between the top electrode and the bottom electrode. The top electrode and the bottom electrode may comprise multiple sub-layers. |
US09847477B2 |
Method of forming a bottom electrode of a magnetoresistive random access memory cell
A method of fabricating a semiconductor device is disclosed. The method includes forming an opening with a tapered profile in a first material layer. An upper width of the opening is greater than a bottom width of opening. The method also includes forming a second material layer in the opening and forming a hard mask to cover a portion of the second material layer. The hard mask aligns to the opening and has a width smaller than the upper width of the opening. The method also includes etching the second material layer by using the hard mask as an etch mask to form an upper portion of a feature with a tapered profile. |
US09847469B2 |
Natural-superlattice-structured thermoelectric material
Provided is a thermoelectric material satisfying (MX)1+a(TX2)n and having a superlattice structure, wherein M is at least one element selected from the group consisting of Group 13, Group 14, and Group 15, T is at least one element selected from Group 5, X is a chalcogenide element, a is a real number satisfying 0 |
US09847468B1 |
Plated lead frame including doped silver layer
A lead frame comprises a substrate comprising copper and includes a layer of bright silver is plated onto the substrate. A layer of doped bright silver is thereafter plated over a top surface of the layer of bright silver for enhancing the performance of LED devices utilizing the lead frame. |
US09847467B2 |
Optoelectronic component and method for the production thereof
A method of producing a contact element for an optoelectronic component includes providing an auxiliary carrier with a sacrificial layer arranged on a top side of the auxiliary carrier; providing a carrier structure having a top side and a rear side situated opposite the top side, wherein an insulation layer is arranged at the rear side of the carrier structure; connecting the sacrificial layer to the insulation layer by an electrically conductive connection layer; creating at least one blind hole extending from the top side of the carrier structure as far as the insulation layer; opening the insulation layer in a region of the at least one blind hole; arranging an electrically conductive material in the at least one blind hole; detaching the auxiliary carrier by separating the sacrificial layer; and patterning the electrically conductive connection layer. |
US09847463B2 |
Method of manufacturing light emitting device including metal patterns and cut-out section
A light emitting device includes a support member having a mounting surface. The support member includes an insulating member having top surface and a plurality of side surfaces, a first metal pattern disposed on the top surface of the insulating member, and a second metal pattern disposed on the side surface of the insulating member such that a side surface of the second metal pattern is continuous with a top surface of the first metal pattern. The light emitting device further includes a light emitting element mounted on the mounting surface at a location of the first metal pattern, and a bonding member that bonds the light emitting element to the mounting surface. The bonding member covers at least a portion of the first metal pattern and at least a portion of the second metal pattern. |
US09847461B2 |
Optoelectronic semiconductor component with sapphire flip-chip
An optoelectronic semiconductor component has a volume-emitting sapphire flip-chip with an upper side and a lower side. This optoelectronic semiconductor component is embedded in an optically transparent mold body with an upper side and a lower side. |
US09847460B2 |
Light emitting device with reflective electrode
A light-emitting device includes a semiconductor light emitting stack; an electrode on the semiconductor light emitting stack, the electrode including a mirror layer, an adhesion layer inserted between the mirror layer and the semiconductor light emitting stack, a bonding layer; and a plurality of pits between the bonding layer and the semiconductor light emitting stack, wherein one of the plurality of pits is not filled up by the adhesion layer. |
US09847454B2 |
Light-emitting device
A light-emitting device is provided. The light-emitting device comprises a light-emitting stack comprising a first semiconductor layer, a second semiconductor layer and an active layer between the first semiconductor layer and the second semiconductor layer. The light-emitting device further comprises a third semiconductor layer on the light-emitting stack and comprising a first sub-layer, a second sub-layer and a roughened surface, wherein the first sub-layer has the same composition as that of the second sub-layer, and the composition of the first sub-layer is with a different atomic ratio from that of the second sub-layer. A method for manufacturing the light-emitting device is also provided. |
US09847451B2 |
Light-emitting device having a patterned surface
A light-emitting device comprises a substrate having a top surface and a plurality of patterned units protruding from the top surface; and a light-emitting stack formed on the substrate and having an active layer with a first surface substantially parallel to the top surface, wherein one of the plurality of patterned units comprises a plurality of connecting sides constituting a polygon shape in a top view of the light-emitting device, the one of the plurality of patterned units comprises a vertex and a plurality of inclined surfaces respectively extending from the plurality of connecting sides, the plurality of inclined surfaces commonly join at the vertex in a cross-sectional view of the light-emitting device, the vertex being between the top surface of the substrate and the first surface of the active layer, and six of the plurality of patterned units forms a hexagon in the top view of the light-emitting device. |
US09847445B2 |
LED thin-film device partial singulation prior to substrate thinning or removal
LED dies are partially singulated while on an unthinned depth growth substrate. Slots are made through the streets separating the LED dies, but not through the growth substrate, leaving the now separated LED dies on the growth substrate. A secondary support is attached to the LED dies on the opposite surface from the growth substrate, and the growth substrate is thinned or removed, leaving the LED dies on the secondary support. Because the LED dies are separated while on the unthinned growth substrate, the likelihood of distortion before slicing is virtually eliminated, and the width of the streets between the LED dies may be correspondingly reduced. |
US09847444B2 |
Photonic device and optical coherence tomography apparatus including the photonic device as light source
Provided is a photonic device in which emission intensity in a short wavelength region is suppressed even in the case of increasing carrier injection density so as to obtain a wide spectrum half-maximum width as well as a high output. The photonic device includes: a first cladding layer; a second cladding layer; and an active layer including an emitting layer and a barrier layer and being provided between the first cladding layer and the second cladding layer, the emitting layer emitting light in a spectrum having a center wavelength λc and a spectrum half-maximum width Δλ, in which at least one of the first cladding layer and the second cladding layer includes a light absorbing part for absorbing light having a wavelength of λs or less represented by the following Expression (1): λs<(λc−(Δλ/2)) (1). |
US09847443B2 |
Advanced hydrogenation of silicon solar cells
A method of hydrogenation of a silicon photovoltaic junction device is provided, the silicon photovoltaic junction device comprising p-type silicon semiconductor material and n-type silicon semiconductor material forming at least one p-n junction.The method comprises: i) ensuring that any silicon surface phosphorus diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1020 atoms/cm3 or less and silicon surface boron diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1019 atoms/cm3 or less; ii) Providing one or more hydrogen sources accessible by each surface of the device; and iii) Heating the device, or a local region of the device to at least 40° C. while simultaneously illuminating at least some and/or advantageously all of the device with at least one light source whereby the cumulative power of all the incident photons with sufficient energy to generate electron hole pairs within the silicon (in other words photons with energy levels above the bandgap of silicon of 1.12 eV) is at least 20 mW/cm2. |
US09847441B2 |
Doped multiplier avalanche photodiode
An epitaxial grown avalanche photodiode (APD), the avalanche photodiode comprising an anode, a cathode, an absorber, and a doped multiplier. The absorber and the doped multiplier are about between the cathode and the anode. The doped multiplier has a multiplier dopant concentration. The doped multiplier substantially depleted during operation of the epitaxial grown photodiode. The doped multiplier may comprise of a plurality of multiplication regions, each of the multiplication regions substantially depleted during operation of the avalanche photodiode. |
US09847439B2 |
Stress-induced bandgap-shifted semiconductor photoelectrolytic/photocatalytic/photovoltaic surface and method for making same
Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.0, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection. |
US09847438B2 |
Reduced contact resistance and improved lifetime of solar cells
A solar cell, having a front side which faces the sun during normal operation, and a back side opposite the front side can include a silicon substrate having doped regions and a polysilicon layer disposed over the doped regions. The solar cell can include a conductive filling formed between a first metal layer and doped regions and through or at least partially through the polysilicon layer, where the conductive filling electrically couples the first metal layer and the doped region. In an embodiment, a second metal layer is formed on the first metal layer, where the first metal layer and the conductive filling electrically couple the doped regions and the second metal layer. In some embodiments, the solar cell can be a front contact solar cell or a back contact solar cell. |
US09847436B2 |
Method for manufacturing a solar cell
A method of manufacturing a solar cell, including providing a patterned silicon wafer having a covered area and an uncovered area, and forming at least one electrode layer in the uncovered area in a low-temperature process. |
US09847434B2 |
Multichannel receiver optical subassembly with improved sensitivity
A multi-channel receiver optical subassembly (ROSA) such as an arrayed waveguide grating (AWG), with outputs directly optically coupled to respective photodetectors such as photodiodes. In one embodiment, the photodetectors are mounted on a photodetector mounting bar that includes a multiple conductive photodetector pads (PD pads). Each of the PD pads may be configured to receive a photodetector, and the PD pads are electrically isolated from ground such that the photodetectors are floating. The photodetector bar further includes multiple conductive transimpedance amplifier pads (TIA pads). Each of the TIA pads may be configured to receive a TIA, associated with one of the photodetectors, and to be electrically coupled to one or more ground ports of the TIA. The TIA pads are electrically connected to a common ground shared be each of said TIAs. |
US09847433B2 |
Integrated MOS varicap, and voltage controlled oscillator and filter having same
Each of varicaps 50A to 50C configured to be connected in parallel is an MOS capacitor III produced under a common and single process condition. Each of the varicaps 50A to 50C has a conductor layer serving as a second electrode and formed via a capacitance insulating film on a first conductivity-type semiconductor substrate serving as a first electrode, and a second conductivity-type impurity region formed near a surface in proximity to a region of the first conductivity-type semiconductor substrate opposing the conductor layer. Each of the varicaps 50A to 50C is configured such that a capacitance value as a capacitance element between the first conductivity-type semiconductor substrate serving as the first electrode and the conductor layer serving as the second electrode is changed by applying a control voltage to the conductor layer while applying any one of a plurality of types of direct-current voltages having different voltages to the second conductivity-type impurity region. |
US09847429B2 |
Semiconductor device
A semiconductor device is provided with a first oxide semiconductor film over an insulating surface; a second oxide semiconductor film over the first oxide semiconductor film; a third oxide semiconductor film in contact with a top surface of the insulating surface, a side surface of the first oxide semiconductor film, and side and top surfaces of the second oxide semiconductor film; a gate insulating film over the third oxide semiconductor film; and a gate electrode in contact with the gate insulating film and faces the top and side surfaces a of the second oxide semiconductor film. A thickness of the first oxide semiconductor film is larger than a sum of a thickness of the third oxide semiconductor film and a thickness of the gate insulating film, and the difference is larger than or equal to 20 nm. |
US09847426B2 |
Display device
According to one embodiment, a display device includes a first light shielding layer, a second light shielding layer, a first semiconductor layer, a second semiconductor layer, a gate line, a first source line, a second source line, a switching element, and a pixel electrode, wherein an area in which the first light shielding layer and the pixel electrode are opposed to each other and an area in which the second light shielding layer and the pixel electrode are opposed to each other are equal in size. |
US09847425B2 |
FinFET with a semiconductor strip as a base
A method includes forming a first hard mask over a semiconductor substrate, etching the semiconductor substrate to form recesses, with a semiconductor strip located between two neighboring ones of the recesses, forming a second hard mask on sidewalls of the semiconductor strip, performing a first anisotropic etch on the second hard mask to remove horizontal portions of the second hard mask, and performing a second anisotropic etch on the semiconductor substrate using the first hard mask and vertical portions of the second hard mask as an etching mask to extend the recesses down. The method further includes removing the vertical portions of the second hard mask, and forming isolation regions in the recesses. The isolation regions are recessed, and a portion of the semiconductor strip between the isolation regions protrudes higher than the isolation regions to form a semiconductor fin. |
US09847424B2 |
Semiconductor devices and FinFETS
Semiconductor devices and fin field effect transistors (FinFETs) are disclosed. In some embodiments, a representative semiconductor device includes a group III material over a substrate, the group III material comprising a thickness of about 2 monolayers or less, and a group III-V material over the group III material. |
US09847423B1 |
Semiconductor device and method for fabricating the same
A method for fabricating semiconductor device includes the steps of: forming a fin-shaped structure on a substrate; forming a shallow trench isolation (STI) around the fin-shaped structure; removing part of the fin-shaped structure and part of the STI to form a first trench and removing part of the STI adjacent to the fin-shaped structure to form a second trench; and forming a dielectric layer into the first trench and the second trench to form a first single diffusion break (SDB) and a second single diffusion break. |
US09847422B2 |
Semiconductor device and method of fabricating the same
A semiconductor device includes an isolation layer defining an active region formed in a semiconductor substrate. A first recessing process is performed on the isolation layer to expose edge portions of the active region. A first rounding process is performed to round the edge portions of the active region. A second recessing process is performed on the isolation layer. A second rounding process is performed to round the edge portions of the active region. |
US09847421B2 |
Semiconductor device
A semiconductor device is provided that includes a deep trench defining an active region, and a fin-type pattern protruding within the active region. The fin-type pattern having a lower portion, an upper portion of a narrower width than the lower portion, and a first stepped portion formed at a boundary between the upper portion and the lower portion. The device also includes a first field insulating film surrounding the lower portion and a second field insulating film formed on the first field insulating film and partially surrounding the upper portion. |
US09847420B2 |
Active regions with compatible dielectric layers
A method to form a semiconductor structure with an active region and a compatible dielectric layer is described. In one embodiment, a semiconductor structure has a dielectric layer comprised of an oxide of a first semiconductor material, wherein a second (and compositionally different) semiconductor material is formed between the dielectric layer and the first semiconductor material. In another embodiment, a portion of the second semiconductor material is replaced with a third semiconductor material in order to impart uniaxial strain to the lattice structure of the second semiconductor material. |
US09847419B2 |
Semiconductor device and fabrication method for forming the same
The present disclosure provides a fabrication method for forming a semiconductor device, including: forming a substrate, the substrate including first fins, second fins, and a first trench located in the substrate between a first fin and an adjacent fin; forming a first mask layer on the substrate, the first fins, and the second fins; and removing portions of the first mask layer neighboring a first trench to expose a portion of a top surface of a first fin and a portion of a top surface of the adjacent second fin to form a first opening, a portion of the top surface of the first fin covered by a remaining portion of the first mask layer being a first fin device region, a portion of the top surface of the second fin covered by a remaining portion of the first mask layer being a second fin device region. |
US09847411B2 |
Recessed field plate transistor structures
A transistor device including a field plate is described. One embodiment of such a device includes a field plate separated from a semiconductor layer by a thin spacer layer. In one embodiment, the thickness of spacer layer separating the field plate from the semiconductor layers is less than the thickness of spacer layer separating the field plate from the gate. In another embodiment, the non-zero distance separating the field plate from the semiconductor layers is about 1500 Å or less. Devices according to the present invention can show capacitances which are less drain bias dependent, resulting in improved linearity. |
US09847410B2 |
Semiconductor device and method of manufacturing the same
A semiconductor device including an IGBT element having features of a low on-state voltage and a low turn-off loss is provided. The semiconductor device is comprised of a trench gate type IGBT element. The IGBT element includes: a plurality of gate trench electrodes to which gate potential is given; and a plurality of emitter trench electrodes to which emitter potential is given. Between adjacent trench electrodes, a contact to an emitter electrode layer is formed. In this regard, there is formed, in the semiconductor substrate, a P type floating region which is in contact with bottom portions of at least some of the emitter trench electrodes via an interlayer insulation layer. |
US09847407B2 |
Devices and methods related to a gallium arsenide Schottky diode having low turn-on voltage
Disclosed are structures and methods related to metallization of a doped gallium arsenide (GaAs) layer. In some embodiments, such metallization can include a tantalum nitride (TaN) layer formed on the doped GaAs layer, and a metal layer formed on the TaN layer. Such a combination can yield a Schottky diode having a low turn-on voltage, with the metal layer acting as an anode and an electrical contact connected to the doped GaAs layer acting as a cathode. Such a Schottky diode can be utilized in applications such as radio-frequency (RF) power detection, reference-voltage generation using a clamp diode, and photoelectric conversion. In some embodiments, the low turn-on Schottky diode can be fabricated utilizing heterojunction bipolar transistor (HBT) processes. |
US09847399B1 |
Semiconductor device and a method for fabricating the same
In a method of manufacturing a semiconductor device, an isolation region is formed in a substrate. The isolation region surrounds an active region of the substrate in plan view and includes an insulating material. A first dielectric layer is formed over the active region. A mask layer is formed on at least a part of a border line between the isolation region and the active region. The mask layer covers a part, but not entirety, of the first dielectric layer and a part of the isolation region surrounding the active region. The first dielectric layer not covered by the mask layer is removed such that a part of the active region is exposed. After the first dielectric layer is removed, the mask layer is removed. A second dielectric layer is formed so that a gate dielectric layer is formed. A gate electrode is formed over the gate dielectric layer. |
US09847397B2 |
Method of forming split gate memory with improved reliability
A first doped region extends from a top surface of a substrate to a first depth. An implant into the first doped region forms a second doped region of a second conductivity type. The second doped region extends from the top surface to a second depth that is less than the first depth. A split gate NVM structure has select and control gates over the second doped region. A drain region of the second conductivity type is formed adjacent to the select gate. A source region of the second conductivity type is formed adjacent to the control gate. Angled implants into the second doped region form a third doped region of the first conductivity type under a portion of the select gate and a fourth doped region of the first conductivity type under a portion of the control gate. The drain and source regions adjoin the third and fourth regions. |
US09847396B2 |
Semiconductor device and manufacturing method thereof
A structure by which electric-field concentration which might occur between a source electrode and a drain electrode in a bottom-gate thin film transistor is relaxed and deterioration of the switching characteristics is suppressed, and a manufacturing method thereof. A bottom-gate thin film transistor in which an oxide semiconductor layer is provided over a source and drain electrodes is manufactured, and angle θ1 of the side surface of the source electrode which is in contact with the oxide semiconductor layer and angle θ2 of the side surface of the drain electrode which is in contact with the oxide semiconductor layer are each set to be greater than or equal to 20° and less than 90°, so that the distance from the top edge to the bottom edge in the side surface of each electrode is increased. |
US09847393B2 |
Semiconductor device
A semiconductor device is disclosed. The semiconductor device includes: a substrate, a gate structure on the substrate, a spacer adjacent to the gate structure, an epitaxial layer in the substrate adjacent to two sides of the spacer, and a dislocation embedded within the epitaxial layer. Preferably, the top surface of the epitaxial layer is lower than the top surface of the substrate, and the top surface of the epitaxial layer has a V-shape. |
US09847389B2 |
Semiconductor device including an active region and two layers having different stress characteristics
An integrated circuit includes a device including an active region of the device, where the active region of the device includes a channel region having a transverse and a lateral direction. The device further includes an isolation region adjacent to the active region in a traverse direction from the active region, where the isolation region includes a first region located in a transverse direction to the channel region. The isolation region further includes a second region located in a lateral direction from the first region. The first region of the isolation region is under a stress of a first type and the second region of the isolative region is one of under a lesser stress of the first type or of under a stress of a second type being opposite of the first type. |
US09847388B2 |
High thermal budget compatible punch through stop integration using doped glass
A method of forming a punch through stop region in a fin structure is disclosed. The method may include forming a doped glass layer on a fin structure and forming a masking layer on the doped glass layer. The method may further include removing a portion of the masking layer from an active portion of the fin structure, and removing an exposed portion the doped glass layer that is present on the active portion of the fin structure. A remaining portion of the doped glass layer is present on the isolation portion of the fin structure. Dopant from the doped glass layer may then be diffused into the isolation portion of the fin structure to form the punch through stop region between the active portion of the fin structure and a supporting substrate. |
US09847386B2 |
Display device and manufacturing method thereof
It is an object of the present invention to prevent an influence of voltage drop due to wiring resistance, trouble in writing of a signal into a pixel, and trouble in gray scales, and provide a display device with higher definition, represented by an EL display device and a liquid crystal display device. In the present invention, a wiring including Cu is provided as an electrode or a wiring used for the display device represented by the EL display device and the liquid crystal display device. Besides, sputtering is performed with a mask to form the wiring including Cu. With such structure, it is possible to reduce the voltage drop and a deadened signal. |
US09847383B2 |
Electro-optical device and electronic apparatus
Subpixels of R, G, and B corresponding to a scanning line as a first conductive layer extended in a row direction and a data transfer line as a second conductive layer extended in a column direction are provided. A plurality of transistors in the subpixel of each of the colors is disposed along the column direction, and a reflective layer in the subpixel of at least one color is disposed along the row direction so as to overlap any transistor of subpixels of each display color. A center position of a disposition region of a reflective layer in one pixel unit including the subpixels of R, G, and B is different from a center position of a disposition region of a transistor in one pixel unit. |
US09847377B2 |
Compact RRAM structure with contact-less unit cell
A RRAM device having a diode device structure coupled to a variable resistance layer is disclosed. The diode device structure can either be embedded into or fabricated over the substrate. A memory device having an array of said RRAM devices can be fabricated with multiple common bit lines and common word lines. |
US09847364B2 |
Image sensor devices and design and manufacturing methods thereof
Image sensor devices, design methods thereof, and manufacturing methods thereof are disclosed. In some embodiments, a design method for an image sensor device includes providing an initial design for an image sensor device. The initial design includes a pixel array region and a through-via region disposed proximate the pixel array region. The initial design has a first length between the pixel array region and the through-via region. The initial design has a second length that is a width of the through-via region. The design method includes analyzing a ratio of the second length and the first length, and modifying the initial design to achieve an optimal ratio of the second length and the first length. |
US09847361B2 |
Pixel cell, image sensor, and manufacturing method
A pixel cell, a method for manufacturing the same and an image sensor including the same are provided. The pixel cell includes: a substrate; a photodiode, a pass transistor and a floating diffusion structure respectively formed on the substrate, in which the pass transistor is formed between the photodiode and the floating diffusion structure; and a PINNED structure, formed on the substrate and connected with the floating diffusion structure, in which a reset voltage of the floating diffusion structure is higher than a depletion voltage of the PINNED structure. |
US09847358B2 |
Semiconductor device
A semiconductor device including an oxide semiconductor in which on-state current is high is provided. The semiconductor device includes a first transistor provided in a driver circuit portion and a second transistor provided in a pixel portion; the first transistor and the second transistor have different structures. Furthermore, the first transistor and the second transistor are transistors having a top-gate structure. In an oxide semiconductor film of each of the transistors, an impurity element is contained in regions which do not overlap with a gate electrode. The regions of the oxide semiconductor film which contain the impurity element function as low-resistance regions. Furthermore, the regions of the oxide semiconductor film which contain the impurity element are in contact with a film containing hydrogen. The first transistor provided in the driver circuit portion includes two gate electrodes between which the oxide semiconductor film is provided. |
US09847356B2 |
Display array structure having embedded magnetic force generator and assembly method thereof
An array substrate, a display apparatus applying the same and the assembly method thereof are provided, wherein the array substrate includes a substrate having a plurality of pixels, each of the pixels at least includes a thin film transistor (TFT) device, a first electrode, a second electrode separated from the first electrode all of which are disposed on the substrate. at least one of the first electrode and the second electrode is electrically contacted to the TFT device, and either the first electrode or the second electrode has a magnetic force generator used to generate a magnetic force substantially ranging from 10 gauss to 1000 gauss. |
US09847350B2 |
Liquid crystal display device and method of manufacturing a liquid crystal display device
Provided is a liquid crystal display device, including: an array substrate; a plurality of pixels sectioned by video signal lines and scanning signal lines formed on the array substrate; a TFT arranged for each of the plurality of pixels; and a pixel electrode arranged inside each of the plurality of pixels. The TFT includes a channel semiconductor layer and the pixel electrode that are formed of a seamless layer made of an oxide semiconductor. The pixel electrode has an electrical conductivity larger than an electrical conductivity of the channel semiconductor layer under a state in which a gate voltage is not applied. |
US09847349B1 |
Biasing the substrate region of an MOS transistor
An integrated electronic device is supported by a substrate of a silicon on insulator type. At least one transistor is formed in and on a semiconductor film of the substrate. The transistor includes a drain region and a source region of a first conductivity type and a substrate (body) region of a second conductivity type lying under a gate region. An extension region laterally continues the substrate (body) region beyond the source and drain regions and borders, in contact with, the source region through a border region having the first conductivity type. This supports formation of an electrical connection of the source region and the substrate (body) region. |
US09847347B1 |
Semiconductor structure including a first transistor at a semiconductor-on-insulator region and a second transistor at a bulk region and method for the formation thereof
A semiconductor structure includes a substrate, a first transistor and a second transistor. The substrate includes a semiconductor-on-insulator region and a bulk region. The first transistor is provided at the semiconductor-on-insulator region and includes a first gate structure and a first channel region provided in a layer of semiconductor material over a layer of electrically insulating material. The second transistor is provided at the bulk region and includes a second gate structure and a second channel region provided in a bulk semiconductor material. A plane of an interface between the second channel region and the second gate structure is not above a plane of an interface between the bulk semiconductor material and the layer of electrically insulating material in the semiconductor-on-insulator region. A height of the second gate structure is greater than a height of the first gate structure. |
US09847345B2 |
Semiconductor memory device and method of manufacturing the same
According to an embodiment, a semiconductor memory device comprises: a stacked body that includes a plurality of control gate electrodes stacked above a substrate; a memory columnar body that extends in a first direction above the substrate and configures a memory string along with the stacked body; and a source contact that extends in the first direction and is electrically connected to one end of the memory string. Moreover, this source contact is adjacent to the stacked body via a spacer insulating layer. Furthermore, a spacer protective layer including a nitride or a metal oxide is provided between these source contact and spacer insulating layer. |
US09847344B2 |
Semiconductor device
A semiconductor device may include first conductive patterns and first interlayer insulating layers. Each of the first conductive patterns may include a first pad pattern extending in a first direction and first line patterns extending from the first pad pattern in a second direction crossing the first direction, widths of the first line patterns increasing as a distance from the first pad pattern decreases. The first conductive patterns and the first interlayer insulating layers may be stacked on top of each other. |
US09847343B2 |
Charge trapping nonvolatile memory devices, methods of fabricating the same, and methods of operating the same
A charge trapping nonvolatile memory device includes a source region and a drain region disposed in an upper portion of a substrate and spaced apart from each other by a first trapping region, a channel region, and a second trapping region. A gate stack structure is disposed over the channel region. A first stack including a tunnel insulation layer, a first charge trap layer, and a first blocking insulation layer are disposed over the first trapping region. A second stack including a tunnel insulation layer, a second charge trap layer, and a second blocking insulation layer are disposed over the second trapping region. An interlayer insulation layer is disposed over the substrate and covers the gate stack structure. A first contact plug and a second contact plug penetrate the interlayer insulation layer and respectively contact the source region and the drain region. A third contact plug penetrates the interlayer insulation layer, contacts the gate stack structure, and overlaps with the first and the second charge trap layers. |
US09847334B1 |
Structure and formation method of semiconductor device with channel layer
Structures and formation methods of a semiconductor device are provided. The semiconductor device includes a semiconductor substrate with a first lattice constant and having a PMOS region and an NMOS region. The semiconductor device further includes first and second fin structures over the PMOS region and NMOS region respectively. The first fin structure includes a buffer layer with a second lattice constant and a first channel layer. The lattice constant difference between the first channel layer and the buffer layer is smaller than that between the first channel layer and the semiconductor layer. The first channel layer has a third lattice constant, which is greater than the second lattice constant. The first lattice constant is greater than the second lattice constant. The second fin structure includes a second channel layer. The second channel layer has a fourth lattice constant which is less than the first lattice constant. |
US09847331B2 |
Semiconductor integrated circuit
A semiconductor integrated circuit includes a substrate, a multi-gate transistor device positioned on the substrate, and an LDMOS device positioned on the substrate. The substrate includes a plurality of first isolation structures and a plurality of second isolation structures. A depth of the first isolation structures is smaller than a depth of the second isolation structures. The multi-gate transistor device includes a plurality of first fin structures and a first gate electrode. The first fin structures are parallel with each other and spaced apart from each other by the first isolation structures. The first gate electrode is intersectionally arranged with the first fin structures, and covers a portion of each first fin structure. The LDMOS device includes a second gate electrode covering on the substrate. The LDMOS device is electrically isolated from the multi-gate transistor device by another second isolation structure. |
US09847329B2 |
Structure of fin feature and method of making same
A semiconductor device includes a first fin feature embedded within an isolation structure disposed over a semiconductor substrate, the first fin structure having a first sidewall and a second opposing sidewall and a top surface extending from the first sidewall to the second sidewall. The device also includes a second fin feature disposed over the isolation structure and having a third sidewall and a fourth sidewall. The third sidewall is aligned with the first sidewall of the first fin structure. The device also includes a gate dielectric layer disposed directly on the top surface of the first fin structure, the third sidewall and the fourth sidewall of the second fin feature and a gate electrode disposed over the gate dielectric. |
US09847328B2 |
Method for manufacturing a semiconductor device
The improvement of the reliability of a semiconductor device having a split gate type MONOS memory is implemented. An ONO film and a second polysilicon film are sequentially formed so as to fill between a first polysilicon film and a dummy gate electrode. Then, the dummy gate electrode is removed. Then, the top surfaces of the first and second polysilicon films are polished, thereby to form a memory gate electrode formed of the second polysilicon film at the sidewall of a control gate electrode formed of the first polysilicon film via the ONO film. As a result, the memory gate electrode high in perpendicularity of the sidewall, and uniform in film thickness is formed. |
US09847325B2 |
Electronic device
In a conventional electronic device and a method of manufacturing the same, reduction in cost of the electronic device is hindered because resin used in an interconnect layer on the solder ball side is limited. The electronic device includes an interconnect layer (a first interconnect layer) and an interconnect layer (a second interconnect layer). The second interconnect layer is formed on the undersurface of the first interconnect layer. The second interconnect layer is larger in area seen from the top than the first interconnect layer and is extended to the outside from the first interconnect layer. |
US09847323B1 |
Integrated circuit package having voltage regulation circuitry
In an example, an IC package includes a package substrate including a plurality of bumps configured for coupling to a printed circuit board, the package substrate including a core disposed between a plurality of top-side conductive layers and a plurality of bottom-side conductive layers. The IC package further includes an IC die coupled to the package substrate and disposed on top of the plurality of top-side conductive layers. The IC die further includes a voltage regulator IC die disposed on the package substrate adjacent to the IC die, the voltage regulator IC die being coupled to the IC die using two of four top-most layers of the plurality of top-side conductive layers nearest the IC die. |
US09847322B2 |
Semiconductor packages including through mold ball connectors and methods of manufacturing the same
There is provided a structure and a method of manufacturing a semiconductor package. The method includes disposing a first semiconductor device and through mold ball connectors (TMBCs) on a first surface of an interconnection structure layer, recessing a molding layer on the first surface of the interconnection structure layer to expose a portion of each of the TMBCs, attaching outer connectors to the exposed portions of the TMBCs, and mounting a second semiconductor device on a second surface of the interconnection structure layer opposite to the molding layer. |
US09847321B2 |
Semiconductor device and control method for the same
A semiconductor device includes: a first semiconductor chip including a first terminal at a first face side, a first load whose one end is connected to the first terminal, another end of the first load being to be connected to a power source potential, a second terminal at a second face side, a second load whose one end is connected to the second terminal, another end of the second load being to be connected to a ground potential, a first detection circuit that detects generation of potential difference at the first load, and a second detection circuit that detects generation of potential difference at the second load; and a second semiconductor chip including a connection terminal disposed at a face facing the first semiconductor chip; wherein the power source potential or the ground potential is to be connected through the connection terminal to the first or second terminal. |
US09847319B2 |
Solid state drive package and data storage system including the same
A solid state drive (SSD) package type has a lower package including a lower package substrate, a controller chip mounted on the lower package substrate, and a plurality of upper packages disposed on the lower package as spaced apart from each other. The plurality of upper packages includes at least one non-volatile memory and at least one first individual electronic component. The upper packages are electrically connected to the lower package such that the package type is a package-on-package (PoP) type. The height of the first individual electronic component is greater than the spacing between the lower package and each of the upper packages. |
US09847318B2 |
Monolithic stacked integrated circuits with a redundant layer for repairing defects
Provided is a monolithic stacked integrated circuit (IC). The IC includes a first layer over a substrate and a second layer over the first layer. The first layer includes first circuit elements where a first portion of the first circuit elements has a defect. The second layer includes second circuit elements. The IC further includes interconnect elements coupling the first portion to a second portion of the second circuit elements for mitigating the defect. |
US09847317B2 |
Methods of packaging semiconductor devices and packaged semiconductor devices
Methods of packaging semiconductor devices and packaged semiconductor devices are disclosed. In some embodiments, a method of packaging a semiconductor device includes forming a dam structure on dies proximate edge regions of the dies. A molding material is disposed around the dies, and a top portion of the molding material and a top portion of the dam structure are removed. |
US09847316B2 |
Production of optoelectronic components
A method of producing optoelectronic components includes providing an auxiliary carrier, forming separate connection elements on the auxiliary carrier, forming a molded body on the auxiliary carrier with recesses, arranging optoelectronic semiconductor chips on connection elements in the recesses of the molded body, removing the auxiliary carrier, and severing the molded body to form singulated optoelectronic components. |
US09847314B2 |
Bond heads for thermocompression bonders, thermocompression bonders, and methods of operating the same
A bond head for a thermocompression bonder is provided. The bond head includes a tool configured to hold a workpiece to be bonded, a heater configured to heat the workpiece to be bonded, and a chamber proximate the heater. The chamber is configured to receive a cooling fluid for cooling the heater. |
US09847310B2 |
Flip chip bonding alloys
A method of bonding a plurality of die having first and second metal layers on a die surface to a board, comprising placing a first die onto a board comprising one of a ceramic or substrate board or metal lead frame having a solderable surface and placing the first die and the board into a reflow oven. The method includes reflowing at a first reflow temperature for a first period until the first metal board layer and at least one of the first and second metal die layers of the first die form an alloy to adhere the first die to the board. The newly formed alloy has a higher melting temperature than the first reflow temperature. Accordingly, additional die may be reflowed and attached to the board without causing the bonding of the first die to the board to fail if the same reflow temperature is used. |
US09847309B2 |
Semiconductor device and method of forming vertical interconnect structure between semiconductor die and substrate
A semiconductor device has a semiconductor die and substrate with a plurality of stud bumps formed over the semiconductor die or substrate. The stud bumps include a base portion and stem portion extending from the base portion. The stud bumps include a non-fusible material or fusible material. The semiconductor die is mounted to the substrate with the stud bumps electrically connecting the semiconductor die to the substrate. A width of the base portion is greater than a mating conductive trace formed on the substrate. Alternatively, a vertical interconnect structure, such as a conductive column, is formed over the semiconductor die or substrate. The conductive column can have a tapered sidewall or oval cross sectional area. An underfill material is deposited between the semiconductor die and substrate. The semiconductor die includes a flexible property. The vertical interconnect structure includes a flexible property. The substrate includes a flexible property. |
US09847302B2 |
Wafer surface conditioning for stability in fab environment
Hydroxyl moieties are formed on a surface over a semiconductor substrate. The surfaces are silylized to replace the hydroxyl groups with silyl ether groups, the silyl ether groups being of the form: —OSiR1R2R3, where R1, R2, and R3 are each hydrocarbyl groups comprising at least one carbon atom. Silylation protects the wafers from forming defects through hydrolysis while the wafers are being transported or stored under ambient conditions. |
US09847300B2 |
Method of manufacturing semiconductor device
Product management and/or prompt defect analysis of a semiconductor device may be carried out without reducing the throughput in assembly and testing. Unique identification information is attached to a plurality of substrates (lead frames) used in manufacturing a semiconductor device (QFP) and to a transport unit for transporting a plurality of substrates, respectively. Identification information (rack ID) of the transport unit and identification information (substrate ID) of the substrate stored into the transport unit are associated with each other. The substrate is taken out from the transport unit set to a loader unit of each manufacturing apparatus and supplied to a processing unit, of the apparatus and in storing the substrate, the processing of which is complete, into a transport unit of an unloader unit of the apparatus, an association between identification information of the transport unit and the identification information of the substrate is checked. |
US09847299B2 |
Semiconductor package and mounting structure thereof
A semiconductor package includes an interposer, a semiconductor element installed on a first surface of the interposer, bumps formed on a second surface of the interposer, and a chip component installed on the second surface of the interposer. The interposer is a silicon interposer; the semiconductor element is flip-chip mounted on the first surface of the interposer; the chip component is a thin film passive element formed by carrying out a thin film process on a silicon substrate, and a pad being formed on one surface of the thin film passive element; and the pad of the chip component is connected to a land formed on the second surface of the interposer using a conductive bonding material. According to this structure, the reliability of a bond between the interposer and the chip component of the semiconductor package can be ensured while achieving a small size. |
US09847294B2 |
Semiconductor device allowing metal layer routing formed directly under metal pad
The present invention provides a semiconductor device. The semiconductor device comprises: a metal pad and a first specific metal layer routing. The metal pad is positioned on a first metal layer of the semiconductor device. The first specific metal layer routing is formed in a second metal layer and directly under the metal pad, wherein an oxide layer is positioned between the first metal layer and the second metal layer. |
US09847292B2 |
Electrical isolator packaging structure and manufacturing method for electrical isolator
An electrical isolator packaging structure and a manufacturing method of an electrical isolator are provided. The electrical isolator packaging structure includes a first substrate, a second substrate, a coil, and a magnetic field (MF) sensor. The coil is disposed on the first substrate. The MF sensor is disposed on the second substrate. The position of the coil is arranged according to the position of the MF sensor such that the coil transmits a signal to the MF sensor. Thus, the electrical isolator can be implemented by magnetic coupling with the coil and the MF sensor. |
US09847289B2 |
Protective via cap for improved interconnect performance
Exemplary methods of forming a semiconductor structure may include etching a via through a semiconductor structure to expose a first circuit layer interconnect metal. The methods may include forming a layer of a material overlying the exposed first circuit layer interconnect metal. The methods may also include forming a barrier layer within the via having minimal coverage along the bottom of the via. The methods may additionally include forming a second circuit layer interconnect metal overlying the layer of material. |
US09847288B2 |
Semiconductor having protective lines
A semiconductor device includes a signal transmission line extending in a first direction; an outer protective line extending in a substantially identical direction as the first direction and spaced apart from the signal transmission line by a predetermined distance along a second direction which is substantially perpendicular to the first direction; and an inner protective line, disposed between the outer protective line and the signal transmission line, and intermittently extending substantially in parallel with said signal transmission line and outer protective line. |
US09847286B2 |
High-temperature cycling BGA packaging
An example method for attaching a ball grid array chip to a circuit board includes providing an adapter for attaching a chip with a plurality of solder balls to a circuit board, the adapter having an adapter substrate made from a material having substantially the same coefficient of thermal expansion as the substrate used in the chip and having at least one electrical contact site on a mounting surface of the adapter substrate for engaging a solder ball on the ball grid array chip and a plurality of lead wires extending from each side of the adapter substrate. At least one of the lead wires is electrically connected to at least one electrical contact site on the adapter substrate. |
US09847285B1 |
Semiconductor packages including heat spreaders and methods of manufacturing the same
There may be provided a method of manufacturing a semiconductor package. The method may include disposing a first semiconductor device and through mold ball connectors (TMBCs) on a first surface of an interconnection structure layer, forming a molding layer on the first surface of the interconnection structure layer to expose a portion of each of the TMBCs, attaching outer connectors to the exposed portions of the TMBCs, mounting a second semiconductor device on a second surface of the interconnection structure layer opposite to the molding layer, and attaching a heat spreader to the second surface of the interconnection structure layer to overlap with a portion of the first semiconductor device. |
US09847281B2 |
Leadframe package with stable extended leads
Embodiments of the present disclosure are directed to leadframes having the cantilevered extension that includes an integral support on the end of the lead nearest the die pad. A support integral to the leadframe allows the support to be built to the proper height to support the cantilevered lead in each package and reduces or eliminates the upward, downward, and side to side deflections caused or allowed by supports built-in to the tooling of the manufacturing equipment. Also, by building the support into the leadframe, the leadframes may be pretaped prior to the die attach and wire bonding steps of the manufacturing process. |
US09847279B2 |
Composite lead frame structure
The present invention relates to a structure of a composite lead frame generally having a die bonding layer and a solder layer and may further have an cohesive layer between the die bonding layer and the solder layer. The die bonding layer is made of flex substrate and the solder layer is made of traditional lead frame. Thus, the composite lead frame structure is suitable for the flip chip or wire bonding packaging process of LED and also suitable for semiconductor IC packaging process. It is good in electric and heat conductivity, and also with higher mechanical strength, resulting high pin counts and minimization of resulted IC. |
US09847272B2 |
Three-dimensional integrated circuit structures providing thermoelectric cooling and methods for cooling such integrated circuit structures
Three-dimensional integrated circuit structures providing thermoelectric cooling and methods for cooling such integrated circuit structures are disclosed. In one exemplary embodiment, a three-dimensional integrated circuit structure includes a plurality of integrated circuit chips stacked one on top of another to form a three-dimensional chip stack, a thermoelectric cooling daisy chain comprising a plurality of vias electrically connected in series with one another formed surrounding the three-dimensional chip stack, a thermoelectric cooling plate electrically connected in series with the thermoelectric cooling daisy chain, and a heat sink physically connected with the thermoelectric cooling plate. |
US09847270B2 |
Method for insulating singulated electronic die
In one embodiment, a method of forming an electronic device includes providing a wafer having plurality of die separated by spaces. The method includes plasma singulating the wafer through the spaces to form singulation lines that expose side surfaces of the plurality of die. The method includes forming an insulating layer on the exposed side surfaces. In one embodiment, the steps of singulating and forming the insulating layer are carried out with the wafer mounted to a carrier substrate that supports the wafer and singulated die during both steps. |
US09847268B2 |
Semiconductor package and manufacturing method thereof
A semiconductor package and a manufacturing method thereof are disclosed. The semiconductor package includes a device carrier and a stiffener structure. The device carrier includes at least one insulating layer and at least conductive layer defining at least one trace layout unit. The stiffener structure is disposed on the device carrier, surrounding the periphery of the at least one trace layout unit. The stiffener structure is disposed away from the periphery of the at least one trace layout unit, forming a cavity with the device carrier. The shape and disposition of the stiffener structure enhance the strength of the semiconductor package, impeding flexure to the semiconductor package. |
US09847267B2 |
Electronic component housing package and electronic apparatus
An electronic component housing package and the like capable of reducing time of infrared heating operation are provided. An electronic component housing package includes an insulating substrate including a plurality of insulating layers stacked on top of each other, an upper surface of the insulating substrate being provided with an electronic component mounting section. The plurality of insulating layers each containing a first metal oxide as a major constituent. The insulating substrate further includes a first metal layer in frame-like form disposed on an upper surface of an uppermost one of the plurality of insulating layers. The first metal layer contains a second metal oxide which is higher in infrared absorptivity than the first metal oxide. |
US09847263B2 |
Substrate processing method including reprocessing rejected wafers
A substrate processing method which can increase the yield by reprocessing a substrate whose processing has been interrupted by a processing interruption command during a substrate processing is disclosed. A substrate processing method performs a predetermined processing of a substrate while sequentially transporting the substrate to a plurality of processing sections according to a preset recipe. The substrate processing method includes processing a substrate in one of the processing sections; interrupting the processing of the substrate by a processing interruption command during processing of the substrate; setting the substrate whose processing has been interrupted in a standby state; and customizing the recipe and performing reprocessing of the processing-interrupted substrate according to the customized recipe, or performing reprocessing of the processing-interrupted substrate according to a preset recipe for reprocessing. |
US09847261B2 |
Metal reflow for middle of line contacts
A method of forming a contact in a semiconductor device includes forming a first gate and a second gate on a substrate; removing an interlayer dielectric (ILD) material arranged between the first gate and the second gate to form a trench that extends from a surface of the first gate and a surface of the second gate to the substrate; depositing a liner along a sidewall of the trench and an endwall of the trench in contact with the substrate; depositing by a physical vapor deposition method (PVD) a layer of metal on a surface of the first gate and a surface of the second gate; and heating to reflow metal from the layer of metal on the surface of the first gate and the second gate into the trench and form the contact. |
US09847247B2 |
Method for filling gaps of semiconductor device and semiconductor device formed by the same
A method for filling gaps of semiconductor device and a semiconductor device with insulation gaps formed by the same are provided. First, a silicon substrate with plural protruding portions is provided, and the protruding portions are spaced apart from each other by gaps with predetermined depths. A nitride-containing layer is formed above the silicon substrate for covering the protruding portions and surfaces of the gaps as a liner nitride. Then, an amorphous silicon layer is formed on the nitride-containing layer. An insulating layer is formed on the amorphous silicon layer, and the gaps are filled up with the insulating layer. |
US09847245B1 |
Filling processes
A method of filling cavities in a semiconductor structure during fabrication. A layer of a first material, e.g., a polysilazane, is deposited on the semiconductor, and subjected to a first thermal process to change its chemical composition, e.g., to change it to silicon dioxide. It is then etched back, and the cycle of deposition, and thermal processing is repeated. The etch-back may also be repeated in one or more of the cycles after the first cycle, and a second thermal process, that may increase the density of one or more of the deposited layers, may be performed in one or more of the cycles. |
US09847244B2 |
Semiconductor device and method
Disclosed herein is a semiconductor device that includes a semiconductor die and a substrate including a first surface and a second surface. The substrate includes a conductive circuit and an insulative material over the conductive circuit. The semiconductor die is attached to the second surface. The semiconductor device further includes an interconnect joint structure in the substrate creating a capture pad including a middle copper layer, an adjacent top nickel layer, and an adjacent bottom nickel layer. A method for making a semiconductor device is further disclosed. |
US09847242B2 |
Apparatus and method for aligning two plates during transmission small angle X-ray scattering measurements
The disclosure provides an apparatus for aligning first and second plates that are parallel to each other and have the same orientation. The apparatus includes a detector that detects composite small-angle X-ray scattering emitted from patterns of the first and second plates that are perpendicularly impinged by X-ray, and a moving unit that aligns the first and second plates according to a composite amplitude distribution of the composite small-angle X-ray scattering. Therefore, the first and second plates are aligned to each other accurately. |
US09847241B2 |
Transport module for a semiconductor fabrication device or coupling device
A transport module for loading and unloading a process module of a semiconductor production device includes a housing, which has a chamber that can be evacuated. The chamber has an opening that can be closed in a gas-tight manner by a closure device, which opens out into a first coupling duct associated with the transport module. The first coupling duct is connected with a flange plate using an elastic intermediate element, wherein the flange plate can be seated in a plane parallel, sealing manner on a flange plate of a second coupling duct associated with the process module. After opening the closure device, an evacuated loading and unloading duct to the process module is created. An inner and outer mounting section of the intermediate element is spaced apart from one another in the radial direction, with respect to the axis of the first coupling duct, by a deformation zone. |
US09847235B2 |
Semiconductor device with plated lead frame, and method for manufacturing thereof
A carrier substrate having a plurality of receptacles each for receiving and carrying a semiconductor chip is provided. Semiconductor chips are arranged in the receptacles, and metal is plated in the receptacles to form a metal structure on and in contact with the semiconductor chips. The carrier substrate is cut to form separate semiconductor devices. |
US09847234B2 |
Embedded semiconductive chips in reconstituted wafers, and systems containing same
A reconstituted wafer includes a rigid mass with a flat surface and a base surface disposed parallel planar to the flat surface. A plurality of dice are embedded in the rigid mass. The plurality of dice include terminals that are exposed through coplanar with the flat surface. A process of forming the reconstituted wafer includes removing some of the rigid mass to expose the terminals, while retaining the plurality of dice in the rigid mass. A process of forming an apparatus includes separating one apparatus from the reconstituted wafer. |
US09847232B1 |
Pattern-forming method
A pattern-forming method includes forming a base pattern having recessed portions on a front face side of a substrate. A first composition is applied on lateral faces of the recessed portions of the base pattern, to form a coating. The first composition includes a first polymer which includes on at least one end of a main chain thereof a group capable of interacting with the base pattern. A surface of the coating is contacted with a highly polar solvent. The recessed portions are filled with a second composition. The second composition includes a second polymer which is capable of forming a phase separation structure through directed self-assembly. Phase separation is permitted in the second composition to form phases. A part of the phases is removed to form a miniaturized pattern. The substrate is etched directly or indirectly using the miniaturized pattern as a mask. |
US09847225B2 |
Semiconductor device and method of manufacturing the same
An integrated circuit device and method for manufacturing the integrated circuit device are disclosed. The disclosed method comprises forming a wedge-shaped recess with an initial bottom surface in the substrate; transforming the wedge-shaped recess into an enlarged recess with a height greater than the height of the wedge-shaped recess; and epitaxially growing a strained material in the enlarged recess. |
US09847223B2 |
Buffer stack for group IIIA-N devices
A method of fabricating a multi-layer epitaxial buffer layer stack for transistors includes depositing a buffer stack on a substrate. A first voided Group IIIA-N layer is deposited on the substrate, and a first essentially void-free Group IIIA-N layer is then deposited on the first voided Group IIIA-N layer. A first high roughness Group IIIA-N layer is deposited on the first essentially void-free Group IIIA-N layer, and a first essentially smooth Group IIIA-N layer is deposited on the first high roughness Group IIIA-N layer. At least one Group IIIA-N surface layer is then deposited on the first essentially smooth Group IIIA-N layer. |
US09847218B2 |
High-resolution ion trap mass spectrometer
Techniques can increase the resolution and accuracy of mass spectra obtained using ion traps through the use of the actual shape of the ion trap peaks, which is a series of smaller ion ejection events. The peak shapes are identified as changing over a common period of the trapping signal and the excitation signal, at which point the peak shapes repeat. Peak shapes can be characterized over the common period to create N basis functions, each for a different fractional mass for a given scan rate. The N basis functions over the common period can be duplicated (e.g., shifted by the common period) to obtain a set of mass functions that characterize fractional masses over the full scan range. The mass spectrum can be obtained by fitting the set of mass functions to the measured data to obtain a best fit contribution of each mass function to the measured data. |
US09847217B2 |
Devices and systems including a boost device
A device for mass spectroscopy comprising a chamber configured to provide an atomization source, a boost device configured to provide radio frequency energy to the chamber, and a mass analyzer in fluid communication with the chamber and configured to separate species based on mass-to-charge ratios is disclosed. In certain examples, a boost device may be used with a flame or plasma to provide additional energy to a flame or plasma to enhance desolvation, atomization, and/or ionization. |
US09847214B2 |
Detectors and methods of using them
Certain embodiments described herein are directed to detectors and systems using them. In some examples, the detector can include a plurality of dynodes, in which one or more of the dynodes are coupled to an electrometer. In some instances, an analog signal from a non-saturated dynode is measured and cross-calibrated with a pulse count signal to extend the dynamic range of the detector. |
US09847213B2 |
Vacuum trap
A vacuum trap, a plasma etch system using the vacuum trap and a method of cleaning the vacuum trap. The vacuum trap includes a baffle housing; and a removable baffle assembly disposed in the baffle housing, the baffle assembly comprising a set of baffle plates, the baffle plates spaced along a support rod from a first baffle plate to a last baffle plate, the baffle plates alternately disposed above and below the support rod and alternately disposed in an upper region and a lower region of the baffle housing. |
US09847210B2 |
Particle beam irradiation apparatus for irradiating a subject with an arbitrary number of particles
A particle beam irradiation apparatus includes an accelerator that extracts a pulse-shaped particle beam and a switching system that switches a particle beam to prevent irradiation of a subject. The apparatus also includes a database in which a time dependency of the number of particles in one pulse of the particle beam is stored in association with a driving condition of the accelerator. A computer processor calculates a timing of switching by the switching system, based on a desired accumulated number of particles to be irradiated onto the irradiation subject and the time dependency of the number of particles in one pulse of the particle beam, and a switching controller controls the switching system based on the timing of switching calculated by the computer processor. |
US09847207B2 |
X-ray tube assembly
According to one embodiment, an X-ray tube assembly includes a cathode includes a first non-magnetic metal member having high electrical conductivity, an anode target includes a second non-magnetic metal member having high electrical conductivity, a vacuum envelope having depressed portion depressed, and a first magnetic deflector provided outside the vacuum envelope, includes first magnetic pole pair generating the alternating magnetic field, the first magnetic pole pair being provided in close vicinity to a wall surface of the depressed portion. |
US09847205B2 |
High reliability, long lifetime, negative ion source
A negative ion source includes a plasma chamber, a microwave source, a negative ion converter, a magnetic filter and a beam formation mechanism. The plasma chamber contains gas to be ionized. The microwave source transmits microwaves to the plasma chamber to ionize the gas into atomic species including hyperthermal neutral atoms. The negative ion converter converts the hyperthermal neutral atoms to negative ions. The magnetic filter reduces a temperature of electrons provided between the plasma chamber and the negative ion converter. The beam formation mechanism extracts the negative ions. |
US09847204B2 |
Multi-pole switch-fused arrangement for busbar systems
The present invention relates to a multi-pole fused switch arrangement for busbar systems, with at least two fused switch units, each of which can accommodate a fuse. The fused switch arrangement includes a fuse holder per fused switch unit, a fuse driver unit and a switching lever, wherein the fused switch unit is designed such that it enables the insertion and replacement of fuses in a particularly advantageous manner, and furthermore brings the fuses into their contact position in a particularly advantageous manner. |
US09847200B1 |
Molded case circuit breaker
The present disclosure relates to a molded case circuit breaker. In accordance with one aspect of the present disclosure, a molded case circuit breaker for use in connection with a main busbar provided on a distribution board panel includes a power-source-side terminal provided to a front portion of a case and having a terminal assembly hole formed at an upper portion thereof; a base bus supporter comprising a connector protruding from a front surface thereof so as to engage with the main busbar installed on one side of the distribution board panel, the base bus supporter being coupled to an upper surface and a lower surface of the power-source-side terminal; an auxiliary cover plate coupled to an upper portion of the power-source-side terminal and provided with a temperature measurement hole communicating with the terminal assembly hole. |
US09847198B2 |
Plug-in power contactor and system including the same
A power contactor that includes a number of inputs for a number of power sources, a number of outputs for a number of loads, a number of separable contacts for each pair of the number of inputs and the number of outputs, and an electromagnetic coil. The power contactor also includes a control circuit structured to control the electromagnetic coil to cause the number of separable contacts to open or close, and a plurality of plug-in pins. Each of the plug-in pins is for a corresponding one of the number of inputs and the number of outputs, and is structured to plug into a backplane socket. The power contactor also includes an electrically insulating housing electrically insulating each of the plug-in pins from the other the plug-in pins. |
US09847195B2 |
Rocker switch with movable light ducts
A rocker switch includes a housing. An actuating part is pivotably mounted at the housing and includes at least two opposing actuating surfaces with two opposing actuating directions associated thereto. At least one actuating surface includes a backlit lighting surface. At least one lighting device is attached to the housing for backlighting the lighting surface. The rocker switch includes least one electromechanical pushbutton and at least one multiple-part telescoping light duct. At least one plunger is displaceably supported at the housing. The at least one plunger acts through the actuator part on the electromechanical pushbutton and the at least one light duct so as to define a light channel between the at least one lighting device and the lighting surface. The at least one light duct having a tubular lower light duct section corresponding to the electromechanical pushbutton and a tubular upper light duct section corresponding to the lighting surface. |
US09847188B2 |
Key structure
A key structure includes a first movable plate, a second movable plate, a keycap, a first linkage lever and a second linkage lever. The second movable plate is disposed over the first movable plate. The keycap is disposed over the second movable plate. The first linkage lever is connected with the keycap and the first movable plate. The second linkage lever is connected with the keycap and the second movable plate. While the first movable plate is moved in a first direction and the second movable plate is moved in a second direction, the first linkage lever and the second linkage lever are moved in different directions, so that a height of the keycap is reduced. |
US09847182B2 |
Electric storage apparatus configured to pass a heat exchange medium
An electric storage apparatus includes a plurality of electric storage elements, a bus bar electrically connecting the plurality of electric storage elements, and a case housing the plurality of electric storage elements. Each of the electric storage elements extends in a predetermined direction and has a positive electrode terminal and a negative electrode terminal at both ends in the predetermined direction. The plurality of electric storage elements are aligned in a plane orthogonal to the predetermined direction. The case has an opening portion configured to pass a heat exchange medium therethrough and extending in the predetermined direction. A portion of the bus bar extends in the predetermined direction and is disposed along a wall face of the case having the opening portion formed therein, the portion being disposed at a position different from a position of the opening portion. |
US09847179B2 |
Solid electrolytic capacitor and method of manufacturing a solid electrolytic capacitor
Provided is a method for forming a capacitor. The method includes: providing an anode with a dielectric thereon and a conductive node in electrical contact with the anode; applying a conductive seed layer on the dielectric; forming a conductive bridge between the conductive seed layer and the conductive node; applying voltage to the anode; electrochemically polymerizing a monomer thereby forming an electrically conducting polymer of monomer on the conductive seed layer; and disrupting the conductive bridge between the conductive seed layer and the conductive node. |
US09847178B2 |
BST capacitor control
A circuit for controlling a capacitor having a capacitance adjustable by biasing, including an amplifier for delivering a D.C. bias voltage, having a feedback slowed down by a resistive and capacitive cell. |
US09847175B2 |
Method for stacking electronic components
A method of forming a stacked electronic component, and an electronic component formed by the method wherein the method includes: providing a multiplicity of electronic components wherein each electronic component comprises a first external termination and a second external termination; providing a first lead frame plate and a second lead frame plate wherein the first lead frame plate and the second lead frame plate comprises barbs and leads; providing a molded case comprising a cavity and a bottom; and forming a sandwich of electronic components in an array between the first lead frame plate and the second lead frame plate with the barbs protruding towards the electronic components and the leads extending through the bottom. |
US09847172B2 |
Embedded device, and printed circuit board having the same
An embedded device includes a multilayer body including dielectric layers and internal electrode layers interposed between adjacent dielectric layers; external electrodes disposed on external surfaces of the multilayer body to apply electric charges having different polarities to adjacent internal electrode layers, the external electrodes containing a conductive material; first copper layers disposed on external surfaces of the external electrodes to cover the external electrodes; and second copper layers disposed on the first copper layers to cover the first copper layers. An average particle diameter of powder particles of the first copper layers is greater than an average particle diameter of powder particles of the second copper layers. |
US09847171B2 |
Flexible cable and electronic device
A flexible cable includes an elongated flexible substrate including first and second surfaces on opposite sides thereof, a first capacitor electrode provided on the first surface side of the flexible substrate, the first capacitor electrode extending from a first end of the flexible substrate toward a second end of the flexible substrate, a second capacitor electrode provided on the second surface side of the flexible substrate, the second capacitor electrode extending from the second end of the flexible substrate toward the first end of the flexible substrate, a first connection portion provided at an end of the first capacitor electrode located at the first end of the flexible substrate, and a second connection portion provided at an end of the second capacitor electrode located at the second end of the flexible substrate. |
US09847170B2 |
Multilayer ceramic capacitor and board having the same
A multilayer ceramic capacitor may includes a ceramic body in which first and second dielectric layers are layered in a width direction, first and third internal electrodes disposed on the first dielectric layer and partially exposed to an upper surface of the ceramic body, second and fourth internal electrodes disposed on the second dielectric layer and partially exposed to a lower surface of the ceramic body, first and third external electrodes disposed on the upper surface of the ceramic body and connected to the first and third internal electrodes, respectively, second and fourth external electrodes disposed on the lower surface of the ceramic body and connected to the second and fourth internal electrodes, respectively, and a resistance layer disposed on the upper surface of the ceramic body to cover the first and third external electrodes. |
US09847168B2 |
Method for manufacturing steel sheet for rotor core for IPM motor
The present invention manufactures a steel sheet for a rotor core for an IPM motor, wherein the steel sheet has a magnetic flux density B8000 of 1.65 T or more as measured when magnetic field strength is 8000 A/m, and a residual magnetic flux density Br of 0.5 T or more as measured at that time, and optionally, a coercivity Hc of 100 A/m or more as measured after magnetization reaches 8000 A/m. By using the steel sheet manufactured according to the present invention for a rotor core of an IPM motor, it is possible to increase further an output torque in a high-speed rotational range and raise further the maximum rotational speed. |
US09847167B2 |
Enhanced track resistant dome structure for dry-type cast coil transformer
A dry type cast coil transformer (28) includes a hollow body (29), a dome structure (26) extending from the body, and undulation structure (30), defining at least a portion of an outer surface of the dome structure, constructed and arranged to increase an electrical track path in the dome structure. |
US09847164B2 |
Inductor core
An inductor core including a two separate inductor core components which, when assembled with each other, together form the inductor core and define a common axis; wherein the inductor core components form at least one magnetic flux barrier, the magnetic flux barrier having a width in the circumferential direction relative to the common axis; wherein the width is adjustable by rotating the inductor core components relative to each other around the common axis. |
US09847163B2 |
Current transformer support device and switchgear using current transformer support device
A current transformer support device includes three plate-like conductors, each of which has a first connection portion at one end and a second connection portion at the other end, and which are aligned linearly side by side while being spaced apart from one another, and a current transformer case which integrally insulates and supports the three conductors between the one end and the other end. The current transformer support device is characterized in that the current transformer case has current transformer attachment portions provided at positions corresponding to at least two of the three conductors, to which ring-like current transformer coils formed so as to insert the conductors are attached, and that the current transformer case and the current transformer coils attached to the current transformer attachment portions are formed into one unit with a hardening insulating material. |
US09847158B2 |
Grain oriented electrical steel sheet having excellent core loss, and method for manufacturing same
The present invention relates to a grain oriented electrical steel sheet having excellent core loss and to a method for manufacturing same. The electrical steel sheet according to one aspect of the present invention may have a composition comprising, by weight %, Si: 1.0 to 4.0%, Al: 0.1 to 4.0%, and a rare earth element: 0.0001 to 0.5% by the total content of the whole rare earth element. |
US09847153B2 |
Power cable assembly device and a power cable provided with such a device
A power cable assembly device adapted to be arranged in the spaces between neighboring power cores of a power cable. The power cable assembly device includes an extruded profiled body made of a polymer material having a first, second, and third walls. The first wall being convex and having an exterior surface adapted to face a jacket of the power cable. The profiled body also having a chamber wall extending from the second to the third wall, defining a slit and adapted to receive a fiber optic cable. |
US09847148B2 |
Self-contained emergency spent nuclear fuel pool cooling system
An auxiliary system for cooling a spent nuclear fuel pool through a submersible heat exchanger to be located within the pool. In each train or installation, a single loop or series of loops of cooling fluid (e.g., sea water or service water) is circulated. The system is modular, readily and easily installed during an emergency and can be self operating with its own power source. Multiple trains may be used in parallel in order to accomplish the required degree of spent fuel pool cooling required. |
US09847147B2 |
Articulated manipulator
Disclosed herein is an articulated manipulator capable of moving a tool such as an inspection device, a processing device, or a welding device to a desired position for inspection or repair of a defect portion in a limited place. The articulated manipulator includes a base plate, a movable unit slidably coupled on the base plate, a rotatable unit rotatably coupled on the movable unit, and a rotation unit rotatably coupled to one side of the rotatable unit. |
US09847146B2 |
Anti-seismic apparatus for control element drive mechanisms
An anti-seismic apparatus for control element drive mechanisms of a nuclear reactor includes: an anti-seismic support plate including a plurality of insertion holes in which the control element drive mechanisms are respectively inserted; and bushings inserted between outer surfaces of the control element drive mechanisms and inner surfaces of the insertion holes. The support plate includes an upper support plate comprising a plurality of first insertion holes, a lower support plate comprising a plurality of second insertion holes at positions corresponding to the first insertion holes, and a connection part connecting the upper support plate and the lower support plate. The connection part includes a support beam vertically extending from an end portion of the lower support plate, an inner flange extending inward from an upper end portion of the support beam, and an outer flange extending outward from the upper end portion of the support beam. |
US09847143B2 |
Nuclear fuel element
A top end plug design for a nuclear fuel rod or control rod that maximizes the fuel rod length and internal volume for high burn-up, but limits plenum spring melting for eutectic formation margin. The press fit length of the top end plug is increased to increase the distance from the center of heat from the TIG welding process that seals the end plug to the cladding, to the back face of the end plug. A hole in the back of the end plug is enlarged to recover the volume loss from the press fit length increase. |
US09847140B2 |
Storage device and operating method of storage device
An operating method of a storage device which includes a nonvolatile memory and a memory controller configured to control the nonvolatile memory, may include tracking a clock signal; entering a vendor mode of the storage device when the clock signal corresponds to a vendor pattern; and maintaining a normal mode of the storage device when the clock signal does not correspond to the vendor pattern, wherein, in the normal mode, a command received from an external host device is executed according to a first rule, and wherein, in the vendor mode, the command received from the external host device is executed according to a second rule different from the first rule. |
US09847136B2 |
Operating method for host device and memory system including host device and storage device
A host device controls a storage device to perform a read operation of a read data unit with respect to selected memory areas. A read latency corresponding to the read operation of the storage device is stored in a read latency table of the host device. A determination is made whether a latency change ratio exceeds a threshold value, based on the read latency stored in the read latency table. The data host requests a data retention operation from the storage device, through a retention command, when the latency change ratio exceeds the threshold value. |
US09847131B2 |
Memory cells, memory cell arrays, methods of using and methods of making
A semiconductor memory cell and arrays of memory cells are provided In at least one embodiment, a memory cell includes a substrate having a top surface, the substrate having a first conductivity type selected from a p-type conductivity type and an n-type conductivity type; a first region having a second conductivity type selected from the p-type and n-type conductivity types, the second conductivity type being different from the first conductivity type, the first region being formed in the substrate and exposed at the top surface; a second region having the second conductivity type, the second region being formed in the substrate, spaced apart from the first region and exposed at the top surface; a buried layer in the substrate below the first and second regions, spaced apart from the first and second regions and having the second conductivity type; a body region formed between the first and second regions and the buried layer, the body region having the first conductivity type; a gate positioned between the first and second regions and above the top surface; and a nonvolatile memory configured to store data upon transfer from the body region. |
US09847129B2 |
Memristor programming error reduction
Error reduction in memristor programming includes programming an n-th switched memristor of a switched memristor array with an error-corrected target resistance. The error-corrected target resistance is a function of a resistance error of the switched memristor array and a target resistance of the n-th switched memristor. The n-th switched memristor programming is to reduce a total resistance error of the switched memristor array. |
US09847127B1 |
Resistive non-volatile memory and a method for sensing a memory cell in a resistive non-volatile memory
A memory device includes a sense amplifier coupled to a first read voltage during a first phase of a read operation and a second read voltage during a second phase of the read operation. A first and second bias voltages are based on the first and second read voltages and corresponding current on a bit line. A first capacitor includes a terminal coupled to the first and second bias voltages. A first amplifier includes an input coupled to another terminal of the first capacitor and another input coupled to a common mode voltage during the first phase and to a reference voltage during the second phase. A second capacitor includes a terminal coupled to an output of the first amplifier. A second amplifier includes an inverting input coupled to another terminal of the second capacitor and another input coupled to a common mode voltage. |
US09847119B2 |
Tunable negative bitline write assist and boost attenuation circuit
An apparatus and method are provided for implementing write assist with boost attenuation for static random access memory (SRAM) arrays. The apparatus includes a memory array comprising a plurality of SRAM cells. The apparatus further includes a write driver connected to each of a differential pair of bit lines in each of the plurality of SRAM cells of the memory array. The apparatus further includes a write assist attenuation circuit connected to the write driver, the write assist attenuation circuit comprising a clamping device configured to modify a control signal as a function of supply voltage and process to attenuate an amount of boost applied to pull one of the bit lines below ground in an active phase of a write cycle. |
US09847117B1 |
Dynamic reference voltage determination
Methods, systems, and devices for operating a ferroelectric memory cell or cells are described. A first value may be written to a first memory cell and a second value may be written to a second memory cell. Each value may have a corresponding voltage when the memory cells are discharged onto their respective digit lines. The voltage on each digit line after a read operation may be temporarily stored at a node in electronic communication with the respective digit line. A conductive path may be established between the nodes so that charge sharing occurs between the nodes. The voltage resulting from the charge sharing may be used to adjust a reference voltage that is used by other components. |
US09847116B2 |
Circuit and method for controlling MRAM cell bias voltages
A cell bias control circuit maximizes the performance of devices in the read/write path of memory cells (magnetic tunnel junction device+transistor) without exceeding leakage current or reliability limits by automatically adjusting multiple control inputs of the read/write path at the memory array according to predefined profiles over supply voltage, temperature, and process corner variations by applying any specific reference parameter profiles to the memory array. |
US09847111B2 |
Systems and methods of pipelined output latching involving synchronous memory arrays
Systems and methods of synchronous memories and synchronous memory operation are disclosed. According to one illustrative implementation, a memory device is disclosed comprising memory circuitry having a memory output, the memory circuitry including a sense amplifier having a first output and a second output, a first data path coupled to the first output of the sense amplifier, the first data path including 2 latches/registers, and a second data path coupled to the second output of the sense amplifier, the second data path including a plurality latches/registers. In further implementations, various control circuitry, connections and control signals may be utilized to operate the latches/registers in the first and second data paths according to specified configurations, control, modes, latency and/or timing domain information, to achieve, for example, pipelined output latching and/or double data rate output. |
US09847110B2 |
Apparatuses and methods for storing a data value in multiple columns of an array corresponding to digits of a vector
An example apparatus comprises an array of memory cells coupled to sensing circuitry. The apparatus can include a control component configured to cause computing of a data value equal to a logical OR between the digit of a mask and a data value stored in a memory cell located in a row at a column of the array corresponding to a digit of a vector stored in the array. The control component can cause storing of the data value equal to the logical OR in the memory cell located in the row at the column of the array corresponding to the digit of the vector. |
US09847108B2 |
Semiconductor storage device
A semiconductor storage device includes: a plurality of memory cell arrays; a plurality of bidirectional data buses provided in correspondence with respective ones of the plurality of memory cell arrays; a plurality of bidirectional buffer circuits, which are provided in correspondence with respective ones of the memory cell arrays, capable of connecting adjacent bidirectional data buses serially so as to relay data in the bidirectional data buses; and a control circuit for controlling activation of the bidirectional buffer circuits. The bidirectional buffer circuit is arranged so as to invert logic and the bidirectional buffer circuit is arranged so as not to invert logic. |
US09847104B2 |
Electronic apparatus
An electronic apparatus includes a plurality of parts, a frame having an outer periphery surrounding the plurality of parts and formed from resin, a circuit board disposed at one side in a first direction with respect to the plurality of parts, a chassis disposed at the one side in the first direction with respect to the plurality of parts, attached to the frame, and formed from metal, and a metal plate disposed at the other side in the first direction with respect to at least one of the plurality of parts and attached to the frame. |
US09847102B2 |
Method and device for bounding an object in a video
The invention relates to a method for bounding an object in a video sequence Fx,y,t. The method includes obtaining a subset of pixels located in the object to annotate, in each frame of the video sequence. Spatio-temporal slicing is performed on the video sequence Fx,y,t, centered on the obtained subsets of pixels, resulting in a first image Fy,t obtained by an horizontal concatenation of first slices, comprising the obtained subsets of pixels, and resulting in a second image Fx,t obtained by a vertical concatenation of second slices. A trajectory of the obtained subsets of pixels is displayed on both the first Fy,t and second Fx,t image. A bounding form around the object to annotate is obtained out of four points in each frame of the video sequence, wherein the coordinates of the four points of a frame t are obtained from the coordinates of the points located in the first and second boundary of the first and second image for that frame t. |
US09847101B2 |
Video storytelling based on conditions determined from a business object
A method, system, and computer program product for data presentation using video. Embodiments commence upon invoking a computer-implemented task to receive a user credential, which credential is used to determine and access one or more initial search corpora. Information in the initial search corpora are analyzed to determine at least one attribute pertaining to the information. The attribute, such as a performance metric or attribute, is used to evaluate various scene conditions comprising one or another forms of decision criteria based on the attribute or performance metric. A scene condition is then used to determine the content of a particular next scene, wherein the content can comprise new information, which in turn is used in evaluation of another scene condition to determine yet another next scene. The process continues iteratively or recursively wherein determining the next scene is based at least in part on the scene condition of another scene. |
US09847097B2 |
Audio signal processing device, audio signal processing method, and recording medium storing a program
An audio signal processing device that includes: a processor configured to execute a procedure, the procedure comprising: detecting a speech segment of an audio signal; suppressing noise in the audio signal; and adjusting an amount of suppression of noise such that the amount of suppression during a specific period, which starts from a position based on a terminal end of the detected speech segment and is a period shorter than a period spanning from the terminal end of the detected speech segment to a starting end of a next speech segment, becomes greater than in other segments, and a memory configured to store audio signals before and after noise suppression and the amount of suppression before and after adjustment. |
US09847093B2 |
Method and apparatus for processing speech signal
An apparatus for processing a speech signal is provided. The apparatus includes a communicator comprising communication circuitry configured to transmit and receive data, an actuator comprising actuation circuitry configured to generate vibration and to output a signal, a formant enhancement filter configured to increase a formant of the speech signal, and a controller comprising processing circuitry configured to control the speech signal to be received through the communicator, to estimate at least one formant frequency from the speech signal based on linear predictive coding (LPC), to estimate a bandwidth of the at least one formant frequency, to determine whether the speech signal is a voiced sound or a voiceless sound, to configure the formant enhancement filter based on the at least one formant frequency, the bandwidth of the at least one formant frequency, characteristics of the determined voiced sound or voiceless sound, and signal delivery characteristics of a human body, to apply the formant enhancement filter to the speech signal, and to control the speech signal to which the formant enhancement filter is applied to be output using the actuator through the human body. |
US09847088B2 |
Intermediate compression for higher order ambisonic audio data
In general, techniques are directed to intermediate compression of higher order ambisonic audio data. For example, a device comprising a processor and a memory may be configured to perform the techniques. The memory may be configured to store an intermediately formatted audio data generated as a result of an intermediate compression of higher order ambisonic audio data. The one or more processors may be configured to process the intermediately formatted audio data. |
US09847087B2 |
Higher order ambisonics signal compression
Systems and techniques for compression and decoding of audio data are generally disclosed. An example device for compressing higher order ambisonic (HOA) coefficients representative of a soundfield includes a memory configured to store audio data and one or more processors configured to: determine when to use ambient HOA coefficients of the HOA coefficients to augment one or more foreground audio objects obtained through decomposition of the HOA coefficients based on one or more singular values also obtained through the decomposition of the HOA coefficients, the ambient HOA coefficients representative of an ambient component of the soundfield. |
US09847083B2 |
System and method for voice actuated configuration of a controlling device
A speech recognition engine is provided voice data indicative of at least a brand of a target appliance. The speech recognition engine uses the voice data indicative of at least a brand of the target appliance to identify within a library of codesets at least one codeset that is cross-referenced to the brand of the target appliance. The at least one codeset so identified is then caused to be provisioned to the controlling device for use in commanding functional operations of the target appliance. |
US09847082B2 |
System for modifying speech recognition and beamforming using a depth image
A system includes a speech recognition processor, a depth sensor coupled to the speech recognition processor, and an array of microphones coupled to the speech recognition processor. The depth sensor is operable to calculate a distance and a direction from the array of microphones to a source of audio data. The speech recognition processor is operable to select an acoustic model as a function of the distance and the direction from the array of microphones to the source of audio data. The speech recognition processor is operable to apply the distance measure in the microphone array beam formation so as to boost portions of the signals originating from the source of audio data and to suppress portions of the signals resulting from noise. |
US09847081B2 |
Audio systems for providing isolated listening zones
An audio system includes a plurality of near-field speakers arranged in a listening area. A plurality of cross-talk cancellation filters are coupled to the speakers. The speakers and the filters are arranged to provide first and second listening zones in the listening area such that audio from the first listening zone is cancelled in the second listening zone and vice versa. The system also includes at least one audio source providing audio content. Volume-based equalization circuitry receives an audio signal representing audio content for the first listening zone from the audio source and controls a volume adjustment applied to the audio signal to control a volume of audio in the first listening zone. The circuitry limits attenuation or amplification of a first frequency portion of the audio signal when a volume setting differential corresponding to a difference between volume settings for the first and second zones exceeds a predetermined value. |
US09847077B1 |
Guitar pick retrieval tool
The guitar pick retrieval tool is a hand tool that is configured to retrieve a pick that has fallen into the sound hole of a guitar. The guitar pick retrieval tool comprises an adhesive tip, a flexible shaft, and a handle. The handle is attached to an end of the flexible shaft. The adhesive tip is attached to the end of the flexible shaft that is distal from the handle. The flexible shaft is a semi-rigid shaft. The flexible shaft does not behave in an elastic manner. The semi-rigid nature of the flexible shaft allows the shaft to be bent into an arbitrary but stationary position which will be maintained until the flexible shaft is subsequently manipulated. The adhesive tip captures the pick by adhering to the pick when the adhesive tip is placed against the pick. |
US09847073B2 |
Apparatus and method for preparing, storing, transmitting and displaying images
An imaging and display apparatus for passive displays evaluates the illumination of an input scene and incorporates data representative of such input scene within a transfer media. The transfer media may be a storage medium storing image data, illumination data and gamma information for delivery to a passive display system. The data controls the optical characteristics of the illumination source for the passive display and the gamma and tends to minimize energy requirements, to maximize contrast or shades of gray in the displayed image, and to optimize light source operation for color fidelity. The data provided the media and/or display as a video signal, modulated video signal, s-video signal, digital signal, or other signal that can be used by a passive display system to display images. |