Document Document Title
US09762352B2 Decoding method and receiving apparatus in wireless communication system
A method for decoding Polar codes includes: receiving a Polar code having a length of N, and dividing the Polar code into m subcodes that are coupled to each other, each subcode has a length of N/m, and each of N and m is an integer powers of 2; calculating squared Euclidean distances of input bits in the m subcodes, to obtain minimum squared Euclidean distances of the input bits that are independent of each other; obtaining, accordingly a minimum squared Euclidean distance of input bits that are coupled to each other in the m subcodes; and obtaining input bits that are in the m subcodes and that meet the independent minimum squared Euclidean distances and the combined minimum squared Euclidean distance, and obtaining a decoding result of the Polar code with reference to relationships between the m subcodes and the Polar code.
US09762351B2 Statistics adaptive soft decision forward error correction in digital communication
A digital communication receiver uses a maximum likelihood sequence estimation stage to recover symbols from digitized sample values of a received signal. A probability density function is calculated and used to improve a soft decision forward error correction calculation. The results of error decoding, which represent error corrected data bits, are further used to improve the probability density function calculation.
US09762347B2 Dynamic configuration of a flexible orthogonal frequency division multiplexing PHY transport data frame preamble
A method for operating a transmitting device to communicate with a receiving device is described herein. The method includes the step of the transmitting device selecting a root index value from a set of root index values. The method further includes the step of the transmitting device generating a frequency domain Constant Amplitude Zero Auto-Correlation sequence based on the selected root index value. The method further includes the step of the transmitting device modulating the Constant Amplitude Zero Auto-Correlation sequence by a pseudo-noise sequence. The method further includes the step of the transmitting device generating an Orthogonal Frequency Division Multiplexing symbol, wherein the frequency domain Constant Amplitude Zero Auto-Correlation sequence modulated by the pseudo-noise sequence defines subcarrier values for the Orthogonal Frequency Division Multiplexing symbol. The method further includes the step of the transmitting device transmitting the Orthogonal Frequency Division Multiplexing symbol as an initial Orthogonal Frequency Division Multiplexing symbol of a preamble of a frame to the receiving device.
US09762345B2 Receiving device
A receiving device according to the present invention is a receiver for receiving a signal including null symbols. The receiver includes a null extraction unit for extracting the null symbols from the received signal, a power calculation unit for calculating a power of each null symbol extracted by the null extraction unit, a two-dimensional filter unit for performing a plurality of kinds of filtering for the powers of the respective null symbols calculated by the power calculation unit and obtaining a plurality of kinds of average power values, and a normalizing unit for normalizing a data symbol included in the received signal based on a value obtained by performing nonlinear processing to the average power values obtained by the two-dimensional filter unit.
US09762343B2 Interference rejection for improved cell detection
Systems and methods are disclosed for detecting one or more predefined signals while suppressing interference. In some embodiments, a method of operation of a wireless device in a wireless network to detect a predetermined signal in the presence of interference comprises detecting one or more first cells and detecting one or more predetermined signals from a second cell while spatially filtering transmissions from one or more perceived directions of the one or more first cells, respectively. In this manner, detection of the one or more predefined signals from the second cell is improved. In some embodiments, the one or more first cells are strong relative to the weaker second cell.
US09762342B2 Transmitting data to and from nodes of a clustered multi-hop network with a TDMA scheme
A method for transmitting data to and from nodes of a multi-hop network with a Time Division Multiple Access (TDMA) scheme is suggested. The network is clustered into N clusters, wherein each cluster of the N clusters has at least one of the nodes. In a first step, the TDMA scheme is organized by periodic superframes. Each superframe of the periodic superframes has a number of frames including at least one broadcast frame and one collection frame for the N clusters. In a second step, one dedicated communication channel is shared by the N clusters within the broadcast frame. In a third step, N separate communication channels are used by the N clusters within the collection frame.
US09762338B2 Emergency responder systems
Systems for aiding emergency responders are described. An exemplary system may include a primary device and a secondary device. The primary device may be configured to provide audio communication between the primary device and one or more of the plurality of secondary devices along a wireless communication path. The primary device may be configured to compress audio communication for transmission over a low bitrate band. The plurality of secondary devices may be configured as a network where each of the devices is configured to communicate with at least two other secondary devices. The secondary devices may also be configured to receive audio communication from the primary device and automatically transmit the received audio communication to one or more other of the secondary devices.
US09762337B2 Communication apparatus and computer readable medium for executing application programs based on radio-wave intensity
According to one embodiment, a communication apparatus includes a Bluetooth (trademark) controller which is wirelessly connected to a mobile information terminal, and a CPU configured to acquire a radio-wave intensity of wireless connection to the wirelessly connected mobile information terminal, to selectively read an application program from a program memory, based on the acquired radio-wave intensity, and to execute the application program.
US09762333B2 Optical receiver and optical reception method
In order to reduce a delay at the time of detecting inputted optical signals in an optical receiver using a variable optical attenuator, the optical receiver includes: a variable optical attenuator that outputs optical signals by attenuating the intensity of inputted optical signals; a photoelectric converter that converts the optical signals into electric signals; an amplitude detection circuit that outputs an output voltage based on the amplitude of the electric signals; an optical attenuator control circuit that outputs signals for controlling an attenuation quantity of the variable optical attenuator based on the output voltage; a signal detection circuit that outputs signal detection output by comparing the output voltage and a signal detection threshold voltage, i.e., reference of signal detection, to each other; and a threshold control circuit, which monitors the output voltage, and which changes the signal detection threshold voltage when an output voltage change state becomes stable with time.
US09762330B2 Optical communication device and method of controlling optical modulator
An optical communication device includes an optical modulator of a Mach-Zehnder type, a low frequency superimposing circuit configured to superimpose a low frequency signal on a substrate bias voltage applied to the optical modulator, a monitor configured to monitor a modulated light output from the optical modulator, and a substrate bias controller configured to control the substrate bias voltage based upon a low frequency component contained in a monitor signal output from the monitor.
US09762320B2 Techniques for enhancing baud rate in light-based communication
Techniques are disclosed for coding light-based communication (LCom) data in a manner that allows for detection thereof, for example, via a standard low-speed (e.g., 30 frames per second) smartphone camera. In accordance with some embodiments, the disclosed techniques can be used, for example, in encoding and decoding LCom data in a manner that: (1) prevents or otherwise minimizes perceivable flicker of the light output by a transmitting LCom-enabled luminaire; and/or (2) avoids or otherwise reduces a need for additional, specialized receiver hardware at the receiver computing device including the camera. In some cases, the disclosed techniques can be used, for example, to enhance the baud rate between a transmitting LCom-enabled luminaire and a receiver device.
US09762316B2 Lightweight pairing and connection transfer protocol via gesture-driven shared secrets
A gesture is performed by a wireless accessory attempting to pair with a device. The gesture comprises a series of user interactions associated with accessory data detected at the accessory and device data detected at the device. The device begins looking for accessories advertising a Bluetooth service indicating they are attempting to pair. Once an accessory is identified, the device compares the device data to the accessory data for that particular accessory. If the accessory data matches the device data, the gesture detected at the device was made by the accessory and a secure connection can be established. Based on the secure connection, a clock associated with the accessory may synchronize with a clock associated with the device for additional security and fidelity.
US09762315B2 Method and apparatus for acquiring information using device in idle state in wireless communication system
A method and apparatus of acquiring information on a primary radio access technology (RAT) system in a wireless communication system is provided. An entity of a secondary RAT system transmits a request for information on the primary RAT system to a multi-RAT device, and upon transmitting the request, starting a waiting timer which has a default value. If it is determined that the information on the primary RAT system cannot be acquired, by the multi-RAT device, until the waiting timer expires, the entity of the secondary RAT system reconfigures the waiting timer by a fixed value or a dynamic value.
US09762313B2 Systems and methods for increasing the transmission speed of a satellite VSAT
Systems and methods are provided for increasing or decreasing the transmission speed of a VSAT used in a satellite network. A VSAT may include an ASIC and an FPGA in a transmission block of the VSAT. The ASIC includes an ASIC transmit modulator configured to modulate an input information signal, and circuitry for bypassing at least a portion of the ASIC transmit modulator. The FPGA includes circuitry for receiving a signal bypassing at least a portion of the ASIC transmit modulator, and an FPGA transmit modulator configured to modulate the bypassed signal. In implementations, the system uses the ASIC to burst format an input information signal with a payload burst segment; bypasses a transmit modulator of the ASIC after burst formatting the input information signal with the ASIC; and uses an FPGA to insert additional burst segments into the ASIC burst-formatted signal.
US09762312B2 Signal testing apparatus and methods for verifying signals in satellite systems
A signal testing apparatus is provided. The signal testing apparatus generally comprises a recording device that is configured to receive a plurality of signals representative of a plurality of electromagnetic waves that correspond to a pre-defined period of time. The recording device is further configured to record a plurality of digital representations of the signals such that each digital representation corresponds to a separate signal. A processing device is coupled to the recording device, wherein the processing device is configured to introduce at least one operational parameter to each of the digital representations. A play-back assembly is coupled to the recording device and to the processing device, wherein the play-back device is configured to play each of the digital representations simultaneously in real-time to facilitate verification of each of the signals.
US09762309B2 Flexible multi-channel amplifiers via wavefront muxing techniques
This invention aims to present a smart and dynamic power amplifier module that features both power combining and power sharing capabilities. The proposed flexible power amplifier (PA) module consists of a pre-processor, N PAs, and a post-processor. The pre-processor is an M-to-N wavefront (WF) multiplexer (muxer), while the post processor is a N-to-M WF de-multiplexer (demuxer), where N≧M≧2. Multiple independent signals can be concurrently amplified by a proposed multi-channel PA module with a fixed total power output, while individual signal channel outputs feature different power intensities with no signal couplings among the individual signals. In addition to basic configurations, some modules can be configured to feature both functions of parallel power amplifiers and also as M-to-M switches. Other programmable features include configurations of power combining and power redistribution functions with a prescribed amplitude and phase distributions, as well as high power PA with a linearizer.
US09762308B2 Paired-beam transponder satellite communication
Systems and methods are described for paired-beam satellite communications in a flexible satellite architecture. Embodiments include one or more “bent pipe” satellites having multiple transponders for servicing a number of spot beams. Implementations include novel types of paired-beam transponders that communicatively couple gateway terminals and user terminals in different spot beams. Some implementations also include loopback transponders that communicatively couple gateway terminals and user terminals in the same spot beam. The transponders can use similar components, can provide for flexible forward-link and return-link spectrum allocation, and/or can provide other features. Certain embodiments further include support for utility gateway terminal service and/or redundancy (e.g., active spares) for one or more active components.
US09762307B2 Communication system and communication control method using interference channel matrix
A communication system includes a plurality of base stations and a plurality of communication terminals. The communication terminal calculates a desired channel matrix based on the reference signal received from the desired base station in communication therewith, also calculates an interference channel matrix based on the reference signal received from the strong interference base station having the strongest power of an interference wave affecting the communication terminal, and notifies the desired base station of the desired channel matrix and the interference channel matrix in an uplink message.
US09762301B2 Base station and terminal for distributed array massive multiple-input and multiple-output (MIMO) communication antenna system
Disclosed are a terminal and a base station for a distributed array massive multiple-input and multiple-output (MIMO) communication antenna system and an operation method thereof, wherein the terminal includes a distribution analog unit receiving a plurality of analog array receive signals based on a terminal antenna transmit signal from a virtual terminal through a plurality of distributed antenna arrays and a digital unit restoring the terminal antenna transmit signal based on the analog array receive signals and a channel parameter, and the base station includes an antenna receiving an analog receive signal based on a transmit beamforming input signal from a plurality of distributed antenna arrays, a virtual terminal restoring the transmit beamforming input signal based on an amplitude of the analog receive signal, and a terminal receive signal mapper mapping the transmit beamforming input signal to a base station transmit signal.
US09762299B1 System and method for self-interference suppression structure
A tapped delay line channel model may be employed to suppress the self-interference that is introduced, at a receiver input, by a signal at a transmitter output. The self-interference may be considered to have components introduced by the internal antenna subsystem of a full duplex MIMO transceiver.
US09762297B2 Beam modulation and demodulation method and apparatus based on beam-space multiple input multiple output (MIMO) antenna system
Provided is a beam modulation and demodulation method and apparatus based on a beam-space multiple input multiple output (MIMO) antenna system, the beam modulation method including generating a preparatory beam list including a plurality of beams, generating a beam combination table of beam combinations of beams selected from the preparatory beam list, generating a beam modulation rule to map the beam combinations and bit data patterns, and determining a beam combination corresponding to input data from the beam combination table based on the beam modulation rule.
US09762296B2 Wireless communication system
[Object]A wireless communication system capable of detecting propagation path modification from the outside and compensating for degradation of quality of communication between transmission and reception with respect to the propagation path modification is provided. A wireless communication system includes a transmitter that transmits electromagnetic waves in which a polarization direction rotates according to a signal in which data is loaded on a carrier, and a receiver that receives the electromagnetic waves and demodulates the data, in which the transmitter imparts angle information indicating a polarization direction for transferring the data to the signal, and sets a rotation frequency of the polarization direction to a frequency lower than a frequency of the carrier, and the receiver changes a polarization direction of the received electromagnetic waves, based on the angle information transferred by the electromagnetic waves. The receiver can detect propagation path modification from the outside using the angle information of the polarization direction, and compensate for degradation in quality of communication between transmission and reception by changing the polarization direction of the received electromagnetic waves when the modification is detected.
US09762295B2 System and method for commissioning devices
According to an aspect of the invention a system for commissioning devices is provided, which system comprises: a first device and a second device; an RFID tag comprised in the first device; a host processor comprised in the first device; wherein the second device is arranged to generate an electromagnetic field; wherein the RFID tag is arranged to detect the electromagnetic field and to wake up the host processor upon detecting said electromagnetic field in order for the second device to communicate with the host processor. Furthermore, a corresponding method for commissioning devices is provided. Since the RFID tag comprised in the first device is arranged to wake up the host processor, an end-user does not have to switch on the first device manually. Therefore, the user interaction is simplified. Furthermore, there is no need for a separate power button on the first device. The latter reduces cost and simplifies the design of the first device.
US09762293B2 Wireless power repeater and wireless power transmitter
Disclosed is a wireless power transmitter which transmits power to a wireless power receiver using resonance. The wireless power transmitter includes a repeating resonant unit and a power source transmitting AC power having a mutual-change resonant frequency, which results from a mutual inductance component between the wireless power receiver and the repeating resonant unit, to the repeating resonant unit.
US09762291B2 Methods and apparatus for consumer testing of an NFC device
Near-field communication (NFC) test apparatus and methods for use by a consumer to confirm the functionality of the NFC circuitry the consumer's NFC-enabled mobile device, and/or to troubleshoot NFC communications problems of the mobile device. In an embodiment, a NFC test apparatus includes a mobile device package, at least one NFC tag configured for communications with NFC circuitry of a mobile device, and a support substrate that has an indicator to ensure correct positioning of the mobile device during a self-testing procedure. In some embodiments, the NFC tag is located on the mobile device package so that an orientation of the mobile device is known during a portion of the mobile device self-testing procedure, and the support substrate is configure for supporting the mobile device during the self-testing procedure.
US09762287B2 Crosstalk reduction in multiplexers
Multiplexers are described in which differential signals on the signal paths associated with unselected differential inputs are converted to common mode signals to reduce crosstalk between unselected signal paths and the multiplexer's active signal path.
US09762283B2 Method and apparatus for antenna calibration
Method and apparatus for antenna calibration have been disclosed. A radio unit (510) is provided. The radio unit (510) may comprise: a plurality of transmit/receive (TX/RX) paths; a plurality of radio frequency (RF) ports (512) connected with the plurality of TX/RX paths; and a coupling unit (516), coupled with the plurality of TX/RX paths and configured to inject an uplink (UL) calibration signal (550) into at least one of the plurality of TX/RX paths and extract a downlink (DL) calibration signal (540) from at least one of the plurality of TX/RX paths. A normal TX/RX path may be reused both for antenna calibration and antenna supervision. Thus, a low cost hardware solution for antenna calibration is provided. An AIR base station (500) comprising such radio unit (510) is also provided.
US09762276B2 Wireless transmission system
A wireless data transmitter including: a data modulator adapted to modulate a data signal based on a frequency signal; and at least one antenna adapted to wirelessly transmit the modulated data signal and the frequency signal independently.
US09762275B2 Super-regenerative receiving method and super-regenerative receiver (SRR) circuit with high frequency selectivity
A super-regenerative receiver (SRR) circuit includes an amplifier configured to amplify an input injection signal and output the amplified injection signal to an oscillator; and a feed-forwarding unit configured to feed-forward, to the oscillator, a filtered signal obtained by filtering the injection signal after converting a frequency of the injection signal to another frequency; wherein the oscillator is configured to receive an input of a signal in which the filtered signal is applied to the injection signal.
US09762267B2 Detection path design for communication systems
Methods and apparatus are provided for detection path design for reflection coefficient estimation. In one novel aspect, a hardware-based phase estimator estimates a phase shift between the forward path signal and the reverse path signal. In one embodiment, a data selector is used to pass only signals above a magnitude threshold. In another embodiment, a modified phase unwrap algorithm stores an unwrapping correction for subsequent samples and updates the stored unwrapping correction upon processing of each sample processed. In another novel aspect, mixed hardware and software solutions are used. In one embodiment, the reference signal and the detection signals are matched such that the modulation signal interference is removed. In some embodiments, one or two power detectors and a cross-correlator are used. In yet another embodiment, two detection measurement paths are used to obtain the reflection coefficient. In one embodiment, fractional timing offset is estimated to obtain the reflection coefficient.
US09762265B2 Methods and systems for enhanced detection of electronic tracking messages
Methods and systems for enhancing the detectability of electronic tracking messages are provided. Transmitters apply error protection encoding to the payload portion of messages to be transmitted. Transmitted messages are received by a satellite or other surveillance platform employing a compatible radio frequency receiver to collect message signals over a large area or great distance. Candidate messages are identified and the error protection encoding decoded to recover messages.
US09762259B1 Sigma-delta analog-to-digital converter with auto tunable loop filter
A notch filter in a sigma-delta modulator loop filter increases SNR by limiting in-band quantization noise around a frequency to which the notch filter is precisely tuned. A tuning mode controller isolates the notch filter from other loop filter stages. A bias voltage is applied to the notch filter, causing it to resonate. Tuning mode switches insert the notch filter into a frequency-locked loop (“FLL”) circuit as a variable frequency oscillator component of the FLL. An ADC operational mode input signal is applied to the FLL as a reference signal. A tuning control component of the FLL adjusts a tunable feedback element in the notch filter to drive the FLL error signal to zero in order to precisely tune the notch filter to the center frequency of the ADC input signal. Tuning inputs to the tunable feedback element are then latched prior to re-inserting the notch filter into the modulator.
US09762252B2 Digitally controlled oscillator
Methods and systems for a digitally controlled oscillator may comprise, for example, an all-digital all digital phase locked loop (ADPLL) for generating an output clock signal from a reference clock signal, the ADPLL comprising a thermometer pulse coder comprising a plurality of frequency control word signal lines. the thermometer pulse coder may be configured to generate a frequency control word from a binary encoded frequency control word, where the frequency control word may comprise hermometer coded signals and a pulse modulated dither signal, and may select a frequency control word signal line over which to transmit the pulse modulated dither signal and may transmit the thermometer coded signals over another of frequency control word signal lines. A digitally controlled oscillator may be configured to receive a frequency control word and generate an output clock signal at a frequency determined using at least the frequency control word.
US09762248B1 Pre-synchronizer
The arrival time of an asynchronous signal from an asynchronous domain at a synchronizer circuit of a synchronous domain is modified by injecting synchronous domain timing into an additional last stage of the asynchronous logic function generating the asynchronous signal. That reduces the probability of metastability by increasing the probability that the asynchronous signal will arrive at the synchronizer at a time that can guarantee the setup time for the flip-flop(s) of the synchronizer.
US09762246B2 Semiconductor device with a storage circuit having an oxide semiconductor
An object is to provide a semiconductor device that can maintain the connection relation between logic circuit units or the circuit configuration of each of the logic circuit units even after supply of power supply voltage is stopped. Another object is to provide a semiconductor device in which the connection relation between logic circuit units or the circuit configuration of each of the logic circuit units can be changed at high speed. In a reconfigurable circuit, an oxide semiconductor is used for a semiconductor element that stores data on the circuit configuration, connection relation, or the like. Specifically, the oxide semiconductor is used for a channel formation region of the semiconductor element.
US09762245B1 Semiconductor structure with back-gate switching
The present disclosure relates to semiconductor structures and, more particularly, to circuits with logical back-gate switching and methods of operation. The circuit includes at least one front-gate contact and digital back-gate potentials for logical function implementation on a back side of at least one device. The digital back-gate potentials are switchable between two logic levels.
US09762241B1 Physically unclonable function circuit including memory elements
Some embodiments include apparatus and methods using a first ring oscillator, a second ring oscillator, and circuit coupled to the first and second ring oscillators. The first ring oscillator includes a first memory cell and a first plurality of stages coupled to the first memory cell. The second ring oscillator includes a second memory cell and a second plurality of stages coupled to the second memory cell. The circuit includes a first input node coupled to an output node of the first ring oscillator and a second input node coupled to an output node of the second ring oscillator. In one of such embodiments, the circuit can operate to generate identification information to authenticate the apparatus.
US09762239B2 Logic circuit, semiconductor device, electronic component, and electronic device
A drive capability of a dynamic logic circuit is improved. A logic circuit includes a dynamic logic circuit, a first output node, a first transistor that is diode-connected, and a capacitor. The dynamic logic circuit includes a second output node. The first transistor and transistors in the dynamic logic circuit have an n-type conductivity or a p-type conductivity. The first output node is electrically connected to a first terminal of the capacitor, and the second output node is electrically connected to a second terminal of the capacitor. A first terminal of the first transistor is electrically connected to the first output node, and a first voltage is input to a second terminal of the first transistor.
US09762237B1 Constant impedance transmitter with variable output voltage limits
A transmitter is provided with a plurality of pull-up legs and a plurality of pull-down legs. A controller controls the pull-up legs and the pull-down legs so that a constant output impedance is provided while supporting a range of logic-high output voltages.
US09762230B2 Method and circuitry for controlling a depletion-mode transistor
In described examples, a first transistor has: a drain coupled to a source of a depletion-mode transistor; a source coupled to a first voltage node; and a gate coupled to a control node. A second transistor has: a drain coupled to a gate of the depletion-mode transistor; a source coupled to the first voltage node; and a gate coupled through at least one first logic device to an input node. A third transistor has: a drain coupled to the gate of the depletion-mode transistor; a source coupled to a second voltage node; and a gate coupled through at least one second logic device to the input node.
US09762225B2 Power supply apparatus and control method thereof
A power switch circuit includes an oscillation circuit that generates a clock signal based on a supplied first voltage. A boosting circuit receiving the clock signal and boosting the first voltage based on the clock signal to output a boosted first voltage as a second voltage is provided. A detection circuit that detects a difference in voltage levels between an input voltage and the first voltage and outputs a voltage selection signal based on the detected difference is provided. A voltage selection circuit that selects one of the first voltage and the second voltage based on the voltage selection signal and outputs the selected voltage is provided. A switching element switching according to a control voltage based on an enable signal and the selected voltage is also provided.
US09762223B2 Circuit and method for generation of a clock signal with duty-cycle adjustment
A clock-signal generator circuit, for generating an output clock signal starting from an input clock signal, includes: a monostable stage having a clock input configured to receive the input clock signal, a control input configured to receive a control signal, and an output configured to supply the output clock signal having a duty cycle variable as a function of the control signal; and a feedback loop, operatively coupled to the monostable stage for generating the control signal as a function of a detected value, and of a desired value, of the duty cycle of the output clock signal.
US09762222B2 Wireless transmission apparatus, phase compensating apparatus and phase compensating method thereof
The invention provides a wireless transmission apparatus, a phase compensating apparatus, and a phase compensating method thereof. The phase compensating apparatus includes main transmission wire, a plurality of capacitors, and at least one phase compensating unit. The main transmission wire is coupled between the output end of the power amplifier and the input end of the impedance matching apparatus. A first end of each of the capacitors is coupled to the main transmission wire. The phase compensating unit has two ends for being coupled to second ends of two of the capacitors.
US09762219B1 Circuitry and methods for operating a switched driver
A switched driver for a power supply includes a high-side switch and a low-side switch coupled to the high-side switch. An output is coupled between the high-side switch and the low-side switch. A switch controller is coupled to either the high-side switch or the low-side switch and has a switch controller input for receiving a switch control signal and an output for controlling a switch. The switch controller initially reduces the resistance of the switch, increases the resistance of the switch, and then reduces the resistance of the switch in response to a signal received at the input.
US09762218B2 Amplifying circuit, AD converter, integrated circuit, and wireless communication apparatus
An amplifying circuit according to an embodiment includes an input terminal, an output terminal, first and second operational amplifiers, first and second input impedance elements, first to third feedback impedance elements, and an adder. The first (second) operational amplifier includes an inversion input terminal connected to a first (third) node and an output terminal connected to a second (fourth) node. The first (second) input impedance element has one end connected to the input terminal and the other end connected to the first (third) node. The first (second) feedback impedance element has one end connected to the first (third) node and the other end connected to the second (fourth) node. The third feedback impedance element has one end connected to the first node and the other end connected to the fourth node. The adder adds output voltages of the first and second operational amplifiers.
US09762216B1 Level shifter circuit using boosting circuit
A level shifter circuit is provided that uses a boosting circuit. The boosting circuit is configured to improve the operation of the level shifter circuit when the high voltages of voltage domains across the level shifter circuit are widely separated. A circuit apparatus includes a core level shifter circuit that changes a first voltage of an input signal to a second voltage of an output signal. The circuit apparatus further includes a first boosting circuit that is coupled to the core level shifter circuit and generates a first transient voltage applied to the core level shifter circuit when the input signal transitions from a low value to a high value. The circuit apparatus also includes a second boosting circuit that is coupled to the core level shifter circuit and generates a second transient voltage applied to the core level shifter circuit when the input signal transitions from a high value to a low value.
US09762215B1 Apparatuses and methods for voltage buffering
An apparatuses and methods for buffering a voltage from a circuit without current drive ability are described. An example apparatus includes a voltage buffer that includes two identical stages. The first stage is configured to receive an input voltage and produce an intermediate voltage as an output. The second stage is configured to receive the intermediate voltage and provide an output voltage that is equal to the input voltage. The voltage buffer may be coupled to a current source. The second stage of the voltage buffer may have current drive ability.
US09762212B1 Initializing scannable and non-scannable latches from a common clock buffer
Aspects include a computer-implemented method for initializing scannable and non-scannable latches from a clock buffer. The method includes receiving a clock signal; receiving control signals including a hold signal, a scan enable signal, and a non-scannable latch force signal; responsive to receiving a low input from the hold signal and the scan enable signal, outputting a high signal from a functional clock port on a next cycle; responsive to receiving a high input from the scan enable signal and a low input from the hold signal, outputting a high slave latch scan clock signal on the next cycle; responsive to receiving a high input from the hold signal and the scan enable signal, outputting a high master latch clock signal on the next clock cycle; and responsive to receiving a high input from the non-scannable latch force signal, outputting a low master latch clock signal on a current cycle.
US09762210B1 Complex exponential modulated filter bank for high frequency reconstruction or parametric stereo
An apparatus and method are disclosed for filtering an audio signal. The apparatus includes an analysis filter bank, a phase shifter, a high frequency reconstructor or parametric stereo processor, and a synthesis filter bank. The analysis filterbank receives real-valued time domain input audio samples and generates complex valued subband samples. The phase shifter shifts a phase of the complex-valued subband samples by an amount. The high frequency reconstructor or parametric stereo processor modifies at least some of the complex valued subband samples. A phase shifter then unshifts a phase of the modified complex-valued subband samples by the amount. The synthesis filter bank receives the modified complex valued subband samples and generates time domain output audio samples.
US09762207B2 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
A SAW resonator which, using a quartz crystal substrate with Euler angles (−1.5°≦φ≦1.5°, 117°≦θ≦142°, and 41.9°≦|ψ|≦49.57°, includes an IDT that excites a stop band upper end mode SAW, and an inter-electrode finger groove provided between electrode fingers configuring the IDT. When a wavelength of the SAW is λ, a first depth of the inter-electrode finger groove is G, a line occupation rate of the IDT is η, and an electrode film thickness of the IDT is H, λ, G, η and H satisfy the relationship of 0
US09762204B2 Piezoelectric resonator
A piezoelectric resonator for use in a sensor arrangement for detecting or measuring an analyte in a medium, comprises a quartz crystal plate, having a first crystal surface and a second crystal surface. The first crystal surface is provided with a first electrode, which has a surface area of less than 15 mm2 and the second crystal surface is provided with a second electrode. The first electrode may have a rectangular surface shape. A flow cell for use in an apparatus for detecting or measuring an analyte in a medium, comprises walls that form a sensing chamber together with the resonator, and inlet and outlet openings for leading a fluid through the sensing chamber. A part of the resonator constitutes one of the walls of the sensing chamber and is arranged such that the first electrode is situated inside the sensing chamber.
US09762201B2 Common mode filter and manufacturing method thereof
Disclosed are a common mode filter and a manufacturing method thereof. The common mode filter in accordance with an aspect of the present invention includes: a substrate; a filter layer including a coil and a dielectric layer and disposed on the substrate and configured to remove a signal noise; and a magnetic layer being laminated on the filter layer, and a surface of the filter layer being joined with the magnetic layer can be formed to be flat by having the coil embedded in a surface of the filter layer being joined with the magnetic layer in such a way that one surface of the coil is exposed.
US09762189B2 Dynamic biasing of power amplifiers
Systems and methods are provided for dynamically biasing power amplifiers. In particular, dynamic biasing of a power amplifier may be controlled, with the controlling comprising receiving an input signal that is to be amplified; processing the input signal; generating based on said processing of the input signal input signal, a plurality of control signals comprising at least one biasing control signal; and applying the plurality of control signals to one or more control elements that are used in driving and/or control of the power amplifier. The one or more control elements may comprise at least one biasing component that adjusts biasing applied to power amplifier.
US09762182B2 Magnetoresistive effect oscillator
A magnetoresistive effect oscillator executes a first step of applying a current, which has a first current density larger than a critical current density JO for oscillation, to a magnetoresistive effect element for a time TP, and then executes a second step of applying a current, which has a second current density JS smaller than the first current density and not smaller than the critical current density JO for oscillation, to the magnetoresistive effect element. The following formulae (1), (2) and (3), or the following formulae (1) and (4) are satisfied on an assumption that an average value of the first current density during the time TP in the first step is JP, a critical current density for magnetization reversal of the magnetoresistive effect element is JR, and a magnetization reversal time of the magnetoresistive effect element is TR: 0.1 × T R ⁡ ( J R - J O ) J p - J S < T p < 0.9 × T R ⁢ J R - J O J S - J O ( 1 ) T P < T R ⁡ ( J R - J O ) J P - J O ( 2 ) J R ≤ J P ( 3 ) J P < J R . ( 4 )
US09762180B2 Voltage controlled oscillator
An oscillator includes a front side voltage divider, a rear side voltage divider, and an oscillation unit. The front side voltage divider includes a first resistor connected between a first and second potential sources, and a first output terminal configured to changeably connect to a connection position in the first resistor so as to vary an obtained output voltage. The rear side voltage divider includes a second resistor connected between the first output terminal and a third potential source; and a second output terminal configured to changeably connect to a connection position in the second resistor so as to vary an obtained output voltage. The oscillation unit includes a variable capacitance element with a capacitance varied according to the output voltage from the second output terminal. The oscillation unit varies an output frequency based on a variation in a resonance point associated with a variation in the capacitance.
US09762178B2 Solar battery control apparatus
There is provided a solar battery control apparatus comprising: a solar battery in a vehicle; a vehicle speed detecting unit; a load circuit capable of be controlled to vary a generated current; and a control unit configured to perform MPPT control while controlling the load circuit to vary the generated current, wherein the control unit varies the generated current within a range having a certain upper limit value upon the speed of the vehicle being detected to be greater than a predetermined speed. The predetermined speed is set to be less than a speed at which the generated current becomes unable to be varied to correspond to a change in an i-V output characteristic of the solar battery, and the certain upper limit value is set to be less than a value of short-circuiting current having been reduced according to the change.
US09762177B1 Roof sealing system
A seal includes an elongated body having a first end and a second end, an interior surface and an exterior surface, and a hole extending from the first end to the second end. The hole defines the interior surface of the body. The seal further includes a first flange disposed adjacent the hole on the first end of the body and a second flange disposed adjacent the hole on the second end of the body.
US09762176B2 Hybrid photovoltaic and piezoelectric fiber
The invention provides hybrid photovoltaic-piezoelectric energy harvesting devices in the form of flexible filaments. The devices harvest energy from ambient light, and also from environmental motions and vibrations. They are particularly suitable for incorporation into fabrics and clothing.
US09762167B2 Computer-readable storage medium, generating method, generating apparatus, driving apparatus, processing apparatus, lithography apparatus, and method of manufacturing article
The present invention provides a computer-readable storage medium which stores a program for causing a computer to generate time-series data of an electric current to be supplied to a motor in order to cause, a control system, including the motor configured to drive an object, to transit from a first state to a second state, the program causing the computer to generate the time-series data so as to satisfy a constraint including a condition to constrain an upper limit value of dispersion of a plurality of state quantities respectively obtained from a plurality of models each of which estimates, from the time-series data, a state quantity of a specific mode of a vibration mode and motion mode of the object, and so that a value of an evaluation function for evaluating the time-series data falls within a tolerance.
US09762166B2 Method for field-oriented control of a frequency converter for a three-phase motor
A method for field-oriented control of a frequency converter for a three-phase motor includes the setting of a new position of the rotary field in the electric motor being performed by voltage pulses for the stator coils. An amplitude and the angle of the rotary field vector are specified by the duration of the voltage pulses for the respective coils and by their temporal offset. The duration and the offset of voltage pulses for the stator coils are the result of the calculation of manipulated variables in a digitally controlled process in a coordinate system fixed in respect of the rotor, depending on the prevailing angular rotation (theta) and the prevailing speed of rotation (omega) as well as on the prevailing current values, a predetermined torque and a predetermined speed of rotation.
US09762164B2 Methods and apparatus for generating current commands for an interior permanent magnet (IPM) motor
In one aspect, an apparatus includes a motor and inverter configured to provide input power to the motor. The apparatus may also include a data store comprising at least one entry including a first torque command, a first motor speed, and a first DC voltage value, where the first torque command and the first motor speed and the first DC voltage value are associated with a first current output and a processor. The processor receives a torque input, a DC voltage input, and a motor speed input and identifies the current output associated with the torque input, the DC voltage input, and the motor speed input based on another motor speed different than the motor speed input and another DC voltage different than the DC voltage input and the motor speed input, and output the determined current output to cause the inverter to provide the input power to the motor.
US09762160B2 Method of controlling multiple parallel-connected generators
A generator system configured to be connected in parallel with other generators is disclosed. The generator system includes an alternator having a stator with an output winding and a quadrature winding and a rotor with a three-phase winding. The rotor of the alternator is rotatably driven by an engine having a controller to regulate the engine speed. An inverter receives power from the quadrature winding and generates an AC voltage for the rotor winding. The inverter receives an input corresponding to the voltage on the output winding of the stator and also receives an input corresponding to the phase angle of a second AC voltage produced by another power source. The inverter controls the frequency of the AC voltage for the rotor winding such that the phase angle of the voltage on the output winding of the stator is synchronized to the phase angle of the second AC voltage.
US09762158B2 Pulse motor driving circuit and method of driving a pulse motor
A pulse motor driving circuit includes a first switch having a terminal connected with a positive terminal of a power source; a second switch having a terminal connected with a negative terminal of the power source; and a capacitor having another terminal connected with positive terminal of the power source and having another terminal of the first switch and another terminal of the second switch. The second switch is a transistor, and is capable of limiting a current flowing from the power source to the capacitor. The first switch is turned on and the second switch is turned off in a current application start period while the current starts to be applied to a pulse motor phase excitation part for exciting the pulse motor. The first switch is turned off and the second switch is turned on in a period other than the current application start period.
US09762157B2 Electronic switch controller, electronic switch control method, electronic switch and electronic device
An electronic switch controller, an electronic switch control method, an electronic switch and an electronic device are disclosed. The processor comprises voltage-stabilized power supplies, a processor and a driving circuit; the processor is connected between the voltage-stabilized power supplies and a measurement device to receive working parameters of the power supply, a load and the electronic switch measured by the measurement device, read duty cycle parameters matching with the working parameters, calculate a new duty cycle with the duty cycle parameters and the working parameters, adjust the current control signal to a PWM signal having the new duty cycle, and send the PWM signal to the driving circuit; and the driving circuit is connected between the voltage-stabilized power supplies and the load to control the rotation speed of the motor in the load. By reducing the volume of an electronic switch and achieving a long low-speed travel, the disclosure enables the user to work at an accurate working point with an electronic device.
US09762156B2 Control apparatus for rotating electric machine
A rotating electric machine is applied to a multilayer winding-type rotating electric machine including a stator and a rotor. The stator includes an armature winding. The rotor includes at least one of a field winding and a permanent magnet for generating a magnetic field that have characteristics of magnetic flux of a non-sinusoidal waveform in relation to a rotation angle of the rotor. The armature winding has winding groups. Each of the winding groups has coils that are connected to an actual neutral point provided for each winding group, and has a first winding group and a second winding group that have a phase difference. A control apparatus detects a rotation angle based on a voltage at the actual neutral point of the first winding group and a voltage at the actual neutral point of the second winding group, and controls the rotating electric machine based on the rotation angle.
US09762154B2 Control system for electric rotating machine
A control system for controlling an electric rotating machine includes an inverter for driving the electric rotating machine, a converter that converts an input voltage thereof to an output voltage equal to a step-up command value, and supplies the output voltage to the inverter, a pulse generation section that generates PWM pulses from a carrier for controlling the inverter in accordance with result of comparison between the carrier and a voltage command to the electric rotating machine, and a command generation section that generates the step-up command value. The command generation section includes a command control section that controls the step-up command value such that a modulation factor defined as an amplitude of the voltage command divided by the output voltage of the converter is changed within a predetermined modulation factor range.
US09762149B2 Drive controller, imaging apparatus and drive control method
There is provided a drive controller including a determination part that compares a target stop position of a movable body, which is driven by a piezoelectric actuator driven by a piezoelectric element expanded and contracted in response to an applied voltage, with a real position of the movable body acquired on the basis of a position sensor, and determines whether or not the target stop position matches with the real position, and a drive control part that turns off energization of the piezoelectric actuator when the target stop position matches with the real position while the movable body is being driven by the piezoelectric actuator.
US09762143B2 Devices and methods for controlling current in inverters
An inverter controller is configured to control inverters connected in parallel. The inverter controller is configured to closes switch of a first inverter and turn on a first switching element provided at the first inverter to charge capacitors of the inverters at the time of starting the inverters, and to close the other switches after the capacitors are charged.
US09762142B2 Electric power converter with a voltage controller and a current controller
An electric power converter for converting AC to DC power or DC to AC power is disclosed. The converter includes a circuit for controlling the voltage and the circuit for controlling the current separately. The voltage is controlled by the switching modules and the up-side controller using the calculated target voltage. The current is controlled by the current controller using the calculated target current.
US09762141B2 Drive circuit for electrical load
A circuit for an electrical load comprises a passive transformer, the secondary of which is connected to power cells for each phase according to the transformer tappings. Each power cell comprises a low cost but efficient power factor correction circuit to produce lower harmonics on the transformer.
US09762138B2 Power conversion device
A power conversion device converts three-phase AC power into DC power by two-arm PWM modulation control and includes a main circuit that is constituted by a plurality of switching elements that are bridge-connected therein; a voltage-command generation unit that generates a voltage command value for the main circuit; a current detection unit that detects at least one of output currents of the main circuit; a power-factor calculation unit that calculates a power factor on the basis of the output current and the voltage command value; a carrier-signal generation unit that generates a carrier signal of a frequency corresponding to the power factor; and a PWM-signal generation unit 6 that compares the voltage command value and the carrier signal to generate a PWM signal that executes switching control on the switching elements.
US09762137B2 Power converter package with integrated output inductor
In one implementation, a semiconductor package includes a first patterned conductive carrier including partially etched segments. The semiconductor package also includes a control FET having a control drain attached to a first partially etched segment of the first patterned conductive carrier. In addition, the semiconductor package includes a sync FET having a sync source and a sync gate attached to respective second and third partially etched segments of the first patterned conductive carrier. The semiconductor package further includes a second patterned conductive carrier having a switch node segment situated over a control source of the control FET and over a sync drain of the sync FET, as well as an inductor coupled between the switch node segment and an output segment of the second patterned conductive carrier.
US09762134B2 Multi-cell power conversion method and multi-cell power converter
A method includes converting power by a power converter comprising a plurality of converter cells, and selectively operating at least one converter cell of the plurality of converter cells in one of an active and an inactive mode based on a level of a power reference signal.
US09762129B2 Techniques for controlling a power converter using multiple controllers
A power converter controller includes a primary controller coupled to operate in a first mode to control a power switch with a primary switching pattern. A secondary controller is galvanically isolated from the primary controller. The secondary controller is coupled to initiate a transition operation with the primary controller to take control of the power switch with one or more control signals through a communication link. The primary controller is coupled to acknowledge receipt of the one or more control signals to the secondary controller and transition from the first mode to a second mode.
US09762127B2 Power converter and power conditioner
A power converter 1 includes a first conversion circuit 10 connected with a first winding n1 of a transformer 40, and a second conversion circuit 20 connected with a second winding n2 of the transformer 40. The first and second conversion circuits 10 and 20 are configured to perform bidirectional power conversion. The power converter further includes a third conversion circuit 30 that is a circuit provided at a pre-stage of the first conversion circuit 10 in a direction of transferring electric power toward the second conversion circuit 20 from the first conversion circuit 10. The third conversion circuit 30 is configured to perform bidirectional power conversion, and function as a boosting chopper circuit upon transferring electric power toward the second conversion circuit 20 from the first conversion circuit 10.
US09762126B2 Electric power converter
An electric power conversion unit of an electric power converter establishes two converter circuits including four switching elements and two batteries and carries out electric power conversion in a parallel mode in which the batteries are connected in parallel with each other. A controller is configured to set a control signal for each of the switching elements, identify a target switching element of which a temperature is suppressed, determine a state having a maximum loss value in correspondence with input-output data, and execute phase control for suppressing the maximum loss value.
US09762117B2 Control device for power conversion apparatus and power conversion apparatus
A sense voltage obtained by feeding a sense current of an IGBT into a sense resistor is input to a comparator, and as the reference voltage of the comparator, a sense voltage immediately before the IGBT is turned off is held by a sample and hold circuit for each switching, and is then divided by a voltage dividing circuit and the divided voltage is input to the comparator. The comparator compares the sense voltage with the voltage based on the sense voltage immediately before the IGBT is turned off, and therefore the comparator may accurately detect the falling edge time of the sense voltage and is used for the control for dissolving the imbalance in current with respect to the other IGBTs connected in parallel.
US09762116B2 Voltage conversion apparatus
A voltage conversion apparatus includes a booster circuit, a boost stop circuit, a Zener diode, and a capacitor. The boost stop circuit includes a transistor. When an overvoltage equal to or larger than a breakdown voltage of the Zener diode is output to an output line of the booster circuit, the Zener diode is turned on. Accordingly, the transistor is turned on and a switching element is turned off to stop a boost operation. Further, the capacitor is charged through the Zener diode. Even when the Zener diode is turned off due to a drop in the output voltage after the stop of the boost operation, the transistor maintains its on state for a certain time by discharge of the capacitor. Thus, the stop of the boost operation is continued.
US09762113B2 Control circuit, control method and flyback converter
In one embodiment, a control circuit can include: a voltage feedback circuit configured to obtain a voltage feedback signal that represents an output voltage of the power stage circuit; a set signal generator configured to output a set signal when a secondary current crosses zero or a voltage sampling signal reaches a valley value; a reset signal generator configured to output a reset signal in a constant on time mode when the voltage feedback signal is greater than a first voltage threshold value, and to output the reset signal in a peak current mode when the voltage feedback signal is less than the first voltage threshold value; and a logic circuit configured to activate a switching control signal according to the set signal, and to deactivate the switching control signal according to the reset signal.
US09762111B2 Linear vibration generation device
Disclosed is a linear vibration generating device including: a stator including a bracket on which a coil is seated, and a case made of a magnetic material which is engaged to the bracket to form an inner space; a vibrator including a permanent magnet for generating a vibration force in cooperation with the coil, and a weight enclosing a circumference of the permanent magnet; a resilient member which is positioned between the vibrator and the stator to resiliently support vertical oscillation of the vibrator; and a plate which is positioned between the resilient member and the vibrator
US09762109B2 Permanent magnet brushless motor
A permanent magnet brushless motor has a stator and a rotor. The stator has a yoke and s teeth extending from the yoke, forming a stator core, where s is an integer greater than four. Coils of a stator winding are wound about the teeth. The rotor has a shaft, a rotor core fixed to the shaft and a permanent magnet mounted to the rotor core. The permanent magnet forms p magnetic poles, where p is an even number greater than 2 but less than s. Each section of the permanent magnet corresponding to a respective magnetic pole is divided into n equal parts by n−1 magnet grooves, where n is an integer greater than 1 and p*n is an integral multiple of s. The magnet grooves significantly increase the detent torque of the motor.
US09762108B2 Method for winding edgewise coil and winding device
Provided is a method for winding an edgewise coil and a winding device capable of saving time and labor when changing a guide. A guide bar is disposed in contact with the side face of the rectangular conductor bent by the bending jig and the rotation center of the guide bar deviates from the rotation center of a bending jig for bending a rectangular conductor. The guide bar rotates in accordance with the action whereby the bending jig bends the rectangular conductor and supports the outside surface of a coil on the side of rotational direction of the bending jig.
US09762102B2 Rotary electric machine and method of manufacturing rotary electric machine
In a rotary electric machine, wound wires are connected to a first terminal and a second terminal. Circuit terminals that are configured from a conductive metal other than aluminum, and the first terminal and the second terminal that are configured from a metal with a principal component of aluminum are joined together inside a circuit chamber that has high water resistant properties. Corrosion is accordingly suppressed at join sites of the circuit terminals with the first terminal and the second terminal. There is therefore no need to coat the join sites with for example a sealing material in order to suppress corrosion at the join sites. Good electrical continuity is accordingly enabled between the circuit terminals and the wound wires while suppressing an increase in costs, even when the wound wire is configured from a metal with a principal component of aluminum.
US09762101B2 Linear bearing for an electromagnetic solenoid and solenoid having said linear bearing
A rolling-element bearing for an electromagnetic solenoid includes a hollow cylindrical cage with a plurality of spherical pockets formed around a first circumference and a second circumference of the cage. The pockets around the first circumference are offset from the pockets around the second circumference. Spherical rolling elements are provided in the spherical pockets and are captured for free rotation in the first pockets and second pockets.
US09762099B2 Segmented stator for an axial field device
An axial rotary energy device including a segmented stator assembly having a plurality of segments arranged in an annular array. Each stator segment is constructed by stacking a plurality of PCB power conductor layers and a plurality of PCB series layers. Each layer having radial conductors extending from an inner via to an outer via. The vias electrically connect selected radial conductors of the series conductor layer and power conductor layer. Each power conductor layer includes a pair of positive and negative terminal vias for one phase of the electric current connected to selected outer vias. A daughter PCB layer electrically connects two adjacent segments together by having a first portion electrically connected to a negative terminal via located in one segment and a second portion electrically connected to a positive terminal via located in an adjacent segment together with a current conductor electrically connecting the two terminal vias together.
US09762097B2 Rotor and motor
A rotor includes a first rotor core, a second rotor core, a first magnet, a second magnet, and an annular magnet. The first magnet is arranged between first extensions of the first rotor core. The annular magnet, which is arranged between second extensions of the second rotor core, is held between the first core base and the second core base. The first magnet and the second magnet are formed integrally.
US09762096B2 Interior permanent magnet motor
An interior permanent magnet motor includes: a rotor; a stator; and a plurality of permanent magnets respectively inserted into a plurality of magnet insertion holes formed in a rotor core, the rotor core being formed by laminating a plurality of magnetic steel sheets, the magnetic steel sheets including first magnetic steel sheets each not having a magnet stopper in the magnet insertion hole, and second magnetic steel sheets each having magnet stoppers at both end portions of the magnet insertion hole, the rotor core including a laminate of the magnetic steel sheets in a lamination mode in which, when Hn represents a distance between an upper end surface of the second magnetic steel sheet and an upper end surface of the n-th second magnetic steel sheet, a progression of differences of Hn is a geometric progression.
US09762083B2 Wireless charging transmitter and wireless charging system using the same
A wireless power transmitter is electromagnetically coupleable to a receiving coil of a wireless power receiver to provide power wirelessly and includes a substantially planar transmitting core. A transmitting coil has a plurality of windings and is disposed on a surface of the transmitting core. The transmitting core may extend beyond the transmitting coil in a planar direction.
US09762072B2 Secondary battery protection circuit, secondary battery protection device, battery pack and method of writing data
A secondary battery protection circuit for protecting a secondary battery including: a power supply terminal; a protection operation circuit configured to monitor a state of the secondary battery through the power supply terminal to generate a signal for turning on/off conduction of a current path between the secondary battery and a load according to a protection state determined by the monitored state of the secondary battery; a nonvolatile memory in which data is written by a writing voltage being provided at the power supply terminal, an operation of the secondary battery protection circuit being controlled by the data; a voltage generation circuit configured to generate a provision voltage which is provided to a low withstand voltage circuit; and a control circuit configured to enable the nonvolatile memory to store the data therein in accordance with the protection state upon an input voltage being greater than a determination threshold voltage.
US09762071B2 Battery management circuit and related techniques using MOSFET power switch with intelligent switch control
A circuit includes a power supply configured to generate a supply voltage, an electrical load coupled to receive the supply voltage from the power supply, and a switching circuit. The switching circuit has a first terminal coupled to a first terminal of the electrical load, a second terminal, and a control terminal. The first terminal and the second terminal of the switching circuit correspond to current conducting terminals of the switching circuit. The circuit also includes a current sensing circuit and at least one battery having a first terminal coupled to a corresponding terminal of the current sensing circuit. The circuit additionally includes a battery measurement circuit having a first terminal coupled to the control terminal of the switching circuit and at least a second terminal coupled to the first terminal and a second terminal opposing the first terminal of the at least one battery.
US09762067B2 Active rectifier for efficient wireless power transfer
Methods, devices, and integrated circuits are disclosed for efficiently receiving a wireless power transfer. In one example, a device configured for receiving a wireless power transfer includes an active rectifier, rectifier input nodes, and a controller. The controller is operatively coupled to the active rectifier and configured to control the active rectifier to modify the impedance at the rectifier input nodes.
US09762065B2 Method and device for controlling electronic devices
The present invention provides a method and a device for controlling electronic devices. The method includes the following steps. According to a triggering signal, a first control signal is generated for controlling a first electronic device to execute a first action. After that, based on whether the first electronic device executes the first action, a first feedback signal is generated. When the first feedback signal indicates that the first electronic device executes the first action, a second control signal is generated for controlling a second electronic device to execute a second action. Therefore, the method and the device of the present invention provide interaction and simultaneous control between the device and a plurality of electronic devices.
US09762064B2 Stable electrical power system with regulated transformer rectifier unit
A method and apparatus for providing power stably for direct current loads. A regulated transformer rectifier unit is controlled to provide regulated direct current power for the direct current loads at an output of the regulated transformer rectifier unit from alternating current power provided by an alternating current power source to an input of the regulated transformer rectifier unit. The direct current loads comprise passive direct current loads and active direct current loads comprising active switching power supplies. The direct current loads have at least one of constant power characteristics, resistive power characteristics, inductive power characteristics, and capacitive power characteristics. A source impedance at the output of the regulated transformer rectifier unit is determined based on an aggregate load impedance of the direct current loads and stability criterion.
US09762061B2 Method and apparatus for transferring electrical power for subsea applications
Methods for transferring electrical power in the sea include: generating AC power; and guiding, at least partially underwater, the AC power through a cable from a first end of the cable to a second end of the cable. A first reactor is connected near the first end of the cable and a second reactor is connected near the second end of the cable. Inductances of the first reactor and the second reactor are selected to at least partially compensate for reactive power generated in the cable.
US09762060B2 Distributed hierarchical control architecture for integrating smart grid assets during normal and disrupted operations
Disclosed herein are representative embodiments of methods, apparatus, and systems for facilitating operation and control of a resource distribution system (such as a power grid). Among the disclosed embodiments is a distributed hierarchical control architecture (DHCA) that enables smart grid assets to effectively contribute to grid operations in a controllable manner, while helping to ensure system stability and equitably rewarding their contribution. Embodiments of the disclosed architecture can help unify the dispatch of these resources to provide both market-based and balancing services.
US09762057B2 Control command apparatus, power system control system and control command method
A control command apparatus in a power system selecting a measuring apparatus according to a power system state, includes: a measuring apparatus extraction unit (112) extracting a measuring apparatus (2) between a first and second control apparatus (3) downstream the first control apparatus (3), or a measuring apparatus (2) downstream the first control apparatus (3) if no second control apparatus (2) exists, when a predetermined condition is satisfied, based on system configuration information (121), and generating measuring apparatus information (123) associating the extracted measuring apparatus (2) and the first control apparatus (3) with each other; and a control command generation unit (114) acquiring a measurement value from the measuring apparatus (2), identifying a control apparatus (3) associated with the measuring apparatus (2) as a the measurement value source based on the measuring apparatus information (123), and calculating and outputting a control parameter to the identified control apparatus (3).
US09762056B1 Electrical outlet unit
An electrical unit outlet device is disclosed for controlling power isolation, based on a pre-determined time, for a device charger, while remaining plugged into a power outlet. A power isolating circuit cuts any power to the charging device off when charge is complete. Multiple embodiments are disclosed including a ground fault interrupted electrical unit outlet that may be controlled by a timer to shut down after batteries have been charged is disclosed and claimed herein. All circuits will subject to ground fault interruption protection and may be subject to surge protection as well. In another embodiment, a lamp with timed charging outlets that shut down when batteries are being charged is disclosed and claimed herein.
US09762050B2 Motor drive device
A motor drive device for driving a motor, which has a plurality of winding pairs, includes a plurality of inverter units for the plurality of winding pairs. The inverter units are coupled in parallel to a power source. A plurality of capacitors provided for the plurality of inverter units, and a plurality of power relays are disposed between the power supply and the inverter units. In particular, a power relay is provided for each of the inverter units. A control unit detects a short failure of the power relay, and simultaneously turns ON the power relays that do not have a short failure. In such manner, damage to the power relays as well as damage to other electronic components of the motor driver device due to a large electric current is prevented.
US09762046B2 Sleeve for shielding electrical joint
A splice for use in high voltage electrical environment employing a combination of cold-shrink and interference fit in a single splice component allowing for the use of a shortened core at a first cold splice end and the absence of a cable adapter at the interference fit second end.
US09762042B2 Cable connector and electrical box
A cable connector is provided for coupling to and mounted within the internal cavity of an electrical box for securing an electrical cable passing through an opening in the electrical box. The cable connector includes a housing having a first end positioned next to or adjacent the cable opening in the electrical box and a second end spaced from the first end and the cable opening. At least one and typically two cable retaining members are positioned in the cable opening of the housing between the front wall and the rear wall. The cable retainer has a body with a plurality of retaining arms extending into an axial passage of the body for gripping the outer surface of a cable.
US09762039B2 Cable installation detection
A method for use in connection with installing a cable into a conduit having a first conduit end and a second conduit end, comprising the steps of —providing the cable with a metallic attribute, —providing within or proximate to the conduit, sensing means for sensing the metallic attribute, —introducing the cable into the first conduit end and driving it towards the second conduit end and —detecting that the sensing means has sensed the metallic attribute by sensing a change in inductance levels of the sensing means.
US09762038B2 Independent shutter system for rack-in breakers
A switchgear interlock system includes a circuit breaker with clusters of connector fingers separated from each other by respective cluster shields. In a connected position, the connector fingers engage respective bus connectors of bus bars for electrical contact. When the circuit breaker is disconnected from the bus bars, independently movable shutters cover access to the bus connectors to prevent inadvertent contact with the bus connectors. Each shutter includes a pedestal with an attached movable mount and movable curtain. As the circuit breaker is moved into the connected position, the mount slides along the pedestal towards the bus connector causing the curtain to open and allow the connector fingers to engage the bus connectors. As the circuit breaker is being disconnected, a return spring causes the mount to slide along the pedestal away from the bus connectors causing the curtain to close and prevent access to the bus connectors.
US09762037B1 High current busbar system for low-profile power shelves
A low profile (1U) power distribution system includes a power shelf assembly having a first side and an opposing second side. First and second bus bars extend across the assembly and substantially in parallel with the first and second sides, the second bar positioned behind the first bar. One row of power supply pins extends from the bars to engage power supply units within the assembly. A first set of pins extends from the first bus, while a second set extends from the second bar and protruding through respective apertures in the first bar. An insulating material may be provided to electrically insulate power supply pins of the second bar from the first bar. The reduced height profile of the bars allows for cooling air to pass through the remaining >50% of the assembly, which may now desirably include additional electrical circuits within the cooling channel.
US09762035B2 Multi-step tube of a ceramic material and gas discharge tube made of the same
A multi-step tube (1) of a ceramic material comprises a tube body (1) of the ceramic material having an inner wall (11) located inside the tube body (1). A surface of the inner wall (11) is formed with a plurality of steps (2). The steps (2) are formed to extend differently far inside the tube (1). A multi-layered gas discharge tube comprises the multi-step tube (1). An inner electrode (31) is disposed on a step (21), and an outer electrode (41) is disposed on an outer surface (13) of the tube body (1). A disc (51) is partially placed on a step (22) and the inner electrode (31) between the inner electrode (31) and the outer electrode (41) so that, in case of an electrostatic discharge, the discharge will only take place in the center of the multi-step tube (1) and not at the border of the isolated ceramic disc (51).
US09762025B2 Temperature insensitive integrated electro-absorption modulator and laser
Apparatuses and methods for a temperature insensitive electro-absorption modulator and laser. The device comprising a laser capable of emitting light. The laser itself includes a laser gain section, a first mirror and a second mirror. Each of the mirrors are coupled to the laser gain section. The laser gain section contains quantum wells. The first mirror and the second mirror have a wavelength bandwidth sufficient for a lasing wavelength range of the laser. A modulator is coupled to the laser to receive the light and is capable of modulating the light to vary the output from the modulator. The modulator contains quantum wells and has a quantum well confinement factor that is greater than 0.1. An output coupler is coupled to the modulator and the output coupler has a back reflection that is less than half of a back reflection of the second mirror. The laser has a lasing wavelength that tracks the absorption spectrum of the modulator. The device is operated at a temperature range comprising a first temperature and a second temperature, wherein the second temperature is greater than the first temperature by at least 15 degrees Celsius.
US09762024B2 Laser apparatus and extreme ultraviolet light generation system
An example of the disclosure is a laser apparatus including a master oscillator capable of outputting a pulse laser beam, a plurality of optical amplifiers disposed on an optical path of the pulse laser beam outputted from the master oscillator and configured to sequentially amplify the pulse laser beam, an optical reflector capable of passing the pulse laser beam therethrough and reflecting a self-oscillation beam generated in one of the plurality of optical amplifiers, and an optical absorber capable of receiving and absorbing the self-oscillation beam reflected by the optical reflector.
US09762020B1 Bi-directionally pumped polarization maintaining fiber amplifier
A bi-directionally pumped PM fiber amplifier includes an amplifier input coupled to a first WDM coupler and a second WDM coupler providing an amplifier output. A doped fiber is between the WDM couplers. A first pump light source emitting at a first wavelength along a first polarization axis is coupled to the WDM coupler through a polarization beam combiner/splitter and a polarization rotator is for downstream pumping of the doped fiber with rotated light relative to the first polarization. The fiber is upstream pumped with light having the first polarization using a second pump light source emitting at the first wavelength/first polarization, by an output of an optical power splitter with its input coupled to the first pump light source, or by a fiber-coupled rotator mirror coupled to the second WDM coupler.
US09762017B2 Power transfer unit
The disclosure relates to a power-transfer unit for a sealing unit of a packaging machine comprising a support, intended to be attached to a sealing unit, a power bar comprising a contact-initiation section, a contact-termination section, and an intermediate section therebetween, the power bar being resiliently suspended in the support and being movable along a first direction being normal to a contact surface of the intermediate section. The power bar is suspended in the support by a first leaf spring.
US09762015B2 Brush holder apparatus and system
A brush holder system includes a stationary support member having at least one groove, and a fork electrical connector. A brush retainment member is configured to be releasably affixed to the stationary support member. The brush retainment member has at least one rail configured to slide along the at least one groove. The brush retainment member has a knife electrical connector configured to mate with the fork electrical connector. A radio frequency identification device (RFID) tag is mounted on the brush retainment member, and the RFID tag is configured to monitor brush wear and communicate brush wear status to a monitoring system. The stationary support member is configured for electrical connection to a collector mount and the brush retainment member is configured to retain at least one brush.
US09762011B2 Engine block heater cord set
An engine block heater cord set. The cord set comprises an electrical power cord engagable with the engine block heater. A connector includes a plurality of power contacts, where the number of power contacts is four or more and a multiple of two. Each of the power contacts is electrically bonded to one of first and second electrical conductors. The power contacts are positioned symmetrically relative to one another on the connector with diagonally opposite contacts having a different polarity and spaced apart by a distance generally equal to the distance between the electrical terminals of the engine block heater.
US09762009B2 Plug connector insertable in two orientations and having a metallic shield plate with arms with hook structures
A plug connector includes an insulative housing with mating slot, contacts disposed in the housing by two sides of the mating slot, and a pair of side arms located by two opposite ends of the mating slot in a horizontal transverse direction. a receptacle connector includes an insulative housing defining a horizontal mating tongue; contacts disposed in the housing with contacting sections exposed upon two opposite surfaces of the mating tongue; and a monolithic horizontal metallic shielding plate disposed and extending substantially fully the mating tongue. The shielding plate defines side protruding edge sections exposed outside of corresponding side edges of the mating tongue and a notch structure on each side protruding edge section, the pair of side arms each defines a hook structure to engagement with the notch structure.
US09762008B2 Coaxial cable connector with integral RFI protection
A coaxial cable connector for coupling an end of a coaxial cable to a terminal is disclosed. The connector has a post assembled with a coupler. The post is adapted to receive an end of the coaxial cable and comprises a front end, an enlarged shoulder at the front end, and a plurality of contacting portions. The contacting portions are of monolithic construction with the post, collectively circumscribe the enlarged shoulder at the front end of the post, and extend in a generally perpendicular orientation with respect to a longitudinal axis of the connector. The coupler is rotatably attached to the post and comprises an internally projecting lip, having a forward facing surface, adapted to couple the connector to the terminal. The contacting portions are configured to contact the forward facing surface of the lip of the coupler.
US09762004B2 Shielded battery receptacle
A shielded receptacle provides faraday shielding across conductive elements of the receptacle; a method of molding conductive materials into a shielded receptacle, and a method of molding nonconductive materials onto a conductive shield are disclosed.
US09761996B2 M.2 interface memory device and M.2 interface connection seat insertedly provided thereof
The invention provides a M.2 interface memory device and a M.2 interface connection seat insertedly provided thereof. The M.2 interface memory device comprises a M.2 interface card and a housing provided with at least one guide groove. The M.2 interface connection seat is disposed on a circuit board, and comprises two arms and a base comprising a M.2 interface slot. At least one arm is provided with a guide rail. An opening direction of the M.2 interface slot is horizontal to a surface of the circuit board. When the M.2 interface card is inserted into the M.2 interface slot in a horizontal direction, the M.2 interface memory device will be fixed within the M.2 interface connection seat by embedding between the guide groove and the guide rail. Thus, M.2 interface memory devices of a variety of specification lengths are able to be inserted into the M.2 interface connection seat.
US09761993B2 Banana plug
A system for containing a strain relief, the system comprising an assembly housing, the assembly housing including: a first outer housing including a connector body; a second outer housing including a rear housing, wherein the first outer housing snaps into the second outer housing and creates a chain of contact points that connect components internal to the assembly housing and prevents internal components from rotating, wherein the assembly housing houses within a banana plug shaft, a strain relief and a solder junction, wherein the solder junction solders a first end of a conductor cable to the banana plug shaft, wherein the first end of the conductor cable is disposed within the assembly housing, and wherein via the chain of contact points, the banana plug shaft presses the strain relief into place and prevents movement of the strain relief and the solder junction.
US09761990B2 Water bonding device and methods of use
Embodiments include a water bonding device for electrically grounding a swimming pool. One embodiment includes a bonding electrode installed in a pool skimmer or pump strainer. The bonding electrode typically resides in a skimmer or strainer cavity, and a ground conductor coupled directly to the electrode extends out of the skimmer or strainer through a port. A plug assembly forms a water tight seal against the port and the ground conductor, providing a water tight access point for the ground conductor to enter the pool skimmer or pump strainer. The ground conductor is typically electrically connected to both the bonding electrode and a ground pole residing at ground potential.
US09761988B1 Waterproof electric connector assembly
A waterproof electric connector assembly includes an electrically insulative housing including an accommodation chamber, a front opening, a recessed bottom chamber and two locating devices at two opposite lateral sides thereof, a metal shielding cover covered on the top side of the rear opening and having plug rods respectively fastened to the locating devices of the electrically insulative housing, an electric connector including an electrically insulative terminal block mounted in the accommodation chamber, a tongue plate extended from the electrically insulative terminal block and a conducting terminal set mounted in the electrically insulative terminal block with conducting terminal contact portions thereof respectively arranged on opposing top and bottom walls of the tongue plate and conducting terminal bonding portions thereof extended out of the recessed bottom chamber of the electrically insulative housing, and a waterproof adhesive sealed up the recessed bottom chamber.
US09761986B2 Retaining clip for electrical connectors
A retaining clip that provides a method for securing electrical connections between male and female electrical connectors is disclosed. Current locking mechanisms are on both the electrical plug and the connector. These locking mechanisms often break when disconnecting the plug. Some embodiments of the present invention eliminate the need for the locking mechanisms. Furthermore, in cases where the mechanisms have been broken, some embodiments provide a method for reusing the electrical plug and/or the connector.
US09761980B2 Battery connector and manufacturing method therefor
A connector comprises an insulating housing (10) defining a plurality of isolated terminal chambers and a plurality of conductive terminals (20) disposed in respective terminal chambers of the insulating housing. Each of the terminal chambers has a bottom portion (101) on one side of the insulating housing and an opening (102) through a surface (103) on the opposite side of the insulating housing. Each of the conductive terminals comprises a fixing portion (201) that is fixed on the bottom portion of a corresponding terminal chamber, a contact portion (203) that is projecting out of the opening, and a middle portion (202) that is connected between the fixing portion and the contact portion and slanting from one end of the fixing portion towards the other end of the fixing portion. The middle portion and the contact portion are configured to move both towards the bottom portion and in a longitudinal direction of the insulating housing in response to pressure imposed on the contact portion.
US09761977B2 Conductive terminal and electrical connector
A conductive terminal and an electrical connector are disclosed. The conductive terminal comprises a mating portion positioned at a front end, a tail portion for connecting a conductive wire and a fixed portion connected between the mating portion and the tail portion. Wherein the fixed portion comprises a bottom wall, two side walls bent upwardly respectively from two sides of the bottom wall, a lock tang obliquely extending rearwardly and upwardly from the middle of the bottom wall and two stopping protrusions protruding inwardly from the two side walls, the two stopping protrusions abut against the lock tang so as to prevent the lock tang from being improperly deformed due to a force applied. The present invention can assure that the conductive terminal is firmly fixed in insulative body of the electrical connector.
US09761975B1 Connector module
A connector module includes a board connector and a cable connector. The board connector includes a board connecting body whereon a slot is formed, conductive terminals disposed on the board connecting body and extending into the slot, and two metal pads disposed on two sides of the board connecting body and each having a resilient buckle. The cable connector includes a cable connecting body including an installation portion and two engaging portions, and a flexible transmission unit installed in the installation portion. Contacts are disposed on a front end of the flexible transmission unit. The front end of the flexible transmission unit is inserted into the slot, the conductive terminals contact with the contacts, and the resilient buckles engage with the engaging portions when the cable connector is connected with the board connector.
US09761966B2 Mold for forming terminal of electric wire
A mold includes a first electrode on which a looped conductor of an electric wire is placed, the looped conductor being an exposed conductor of the electric wire from which a coating is removed and having an overlap portion at which different parts of the exposed conductor overlap each other, a hole forming jig provided upright on the first electrode to extend through an inner hole of the looped conductor, a wire holding jig arranged to surround the first electrode, and a second electrode having a conductor pressing protrusion configured to be fitted in a conductor molding groove defined by the first electrode and the wire holding jig to press and heat the looped conductor. The wire holding jig has a plurality of separable holding jigs configured to hold the looped conductor between the separable holding jigs from a direction perpendicular to an axis of the hole forming jig.
US09761963B1 Connector
A connector includes an inner sleeve through which a central conductor and an insulator of a coaxial cable are passed and an outer sleeve through which the central conductor, the insulator and a shield member of the coaxial cable are passed, the inner sleeve including projection portions that are arranged in a circumferential direction, project outward in a radial direction and are inserted between the insulator and the shield member of the coaxial cable, and at least one of the projection portions is elastically displaceable in the radial direction, the outer sleeve including an inner peripheral surface that covers the projection portions and tapers in a first direction directed toward the front end of the coaxial cable along the coaxial cable, the shield member of the coaxial cable being sandwiched between the projection portions of the inner sleeve and the inner peripheral surface of the outer sleeve.
US09761962B2 Electrical power wet-mate assembly
An electrical power wet-mate assembly includes a compliant-insulated pin assembly and a ceramic-insulated pin assembly. Those pin assemblies are physically and electrically engaged to one another. The compliant-insulating material may be a thermoplastic, and the ceramic-insulating material may be alumina. The electrical power wet-mateable assembly may be used in conjunction with a pressure containing device such as a subsea tree to form a wet-mateable connection system. The electrical power wet-mate assembly is capable of operating in high pressure differential and high temperature environments. A plurality of ceramic-insulated pin assemblies may be welded to a connector body to form a pressure barrier system. The cavities created by the ceramic-insulated pin assemblies and the compliant-insulated pin assemblies may be filled with a dielectric oil. Individual pressure compensators may be dispersed equally between the pin assemblies.
US09761959B2 Ultrasonic weld coaxial connector
A coaxial connector for interconnection with a coaxial cable with a solid outer conductor by ultrasonic welding is provided with a monolithic connector body with a bore. An annular flare seat is angled radially outward from the bore toward a connector end of the connector; the annular flare seat open to the connector end of the connector. The flare seat may be provided with an annular flare seat corrugation.
US09761958B2 Wireless communication antennae for concurrent communication in an access point
One or more access points in a wireless communication system, wherein at least one of those access points includes a set of more than one antennae capable of concurrent communication, and at least one of those more than one antennae is isolated from a remainder of that set of antennae during concurrent communication. Isolation includes one or more of disposed a first antenna in a null region of a second antenna, disposing a first antenna to communicate polarized and substantially orthogonal to a second antenna, disposing a set of antennae to communicate at two or more carrier frequencies, wherein each first antenna adjacent to a second antenna operate at distinct such carrier frequencies, or disposing a set of antennae to communicate using two or more substantially distinct protocols, wherein substantially each first antenna adjacent to a second antenna operate at substantially distinct such protocols.
US09761957B2 Providing wireless service at a venue using horn antennas
A system may include horn antennas arranged at a venue. The horn antennas may be connected to an operator network that provides a wireless service. The horn antennas may provide the wireless service to at least one mobile device at the venue. The horn antennas may be arranged at the venue based on a configuration of the venue.
US09761953B2 Electromagnetic absorber
The invention concerns an electromagnetic absorbent comprising: a metal earth plane, an insulating dielectric substrate, disposed on said metal earth plane, a set of metal resonant elements disposed on said insulating dielectric substrate, the electromagnetic resonant frequency of a resonant element being adjusted by adapting the dimensions of the resonant element, the set of resonant elements comprising resonant elements with different dimensions so as to enable the production, by juxtaposition of different electromagnetic resonant frequencies, of a predetermined electromagnetic absorption band. An elementary pattern formed by a plurality of metal resonant elements can be replaced periodically.
US09761950B2 Dielectric waveguide with embedded antenna
A digital system has a dielectric core waveguide that has a longitudinal dielectric core member. The core member has a body portion and may have a cladding surrounding the dielectric core member. A radiated radio frequency (RF) signal may be received on a first portion of a radiating structure embedded in the end of a dielectric waveguide (DWG). Simultaneously, a derivative RF signal may be launched into the DWG from a second portion of the radiating structure embedded in the DWG.
US09761942B2 Feeding matching apparatus of multiband antenna, multiband antenna, and radio communication device
The present disclosure relates to the field of antenna technologies and discloses a feeding matching apparatus of a multiband antenna, a multiband antenna, and a radio communication device to improve a bandwidth and efficiency of a lower frequency band. The feeding matching apparatus of a multiband antenna includes: a grounding portion; a feeding portion connected to a signal source, where a signal of the signal source is input into the feeding portion; and two or more ground cable branches with different lengths, where one end of each ground cable branch is electrically connected to the feeding portion, the other end is electrically connected to the grounding portion, at least one ground cable branch is connected in series to a signal filtering component, and the signal filtering component is capable of preventing a signal lower than a frequency point corresponding to the signal filtering component from passing through it.
US09761941B2 Directional multiband antenna
There is disclosed A directional multi-band antenna, the antenna comprising: —an optical unit comprising an optical sensor; —an RF unit comprising an RF sensor; —a substantially planar optical lens, the optical lens comprising surface relief elements for beam forming, the lens being arranged to focus optical signal beams, incident along a first optical axis, onto the optical sensor, the optical lens being substantially transparent to RF signals, —an RF beam forming device arranged to receive RF signals incident along the first optical axis and focus such RF signals onto the RF sensor.
US09761938B2 Antenna apparatus for base station and operation method therefor
An antenna apparatus for base station (BS) having at least one cell, includes: two or more antenna units to form antenna beams based on predetermined tilting angles for each of two or more different frequency bands with respect to the cell; and a tilting angle control unit to control tilting angles designated to the two or more antenna units, respectively, to be different from each other, so as to make coverages of the antenna beams of the two or more different frequency bands formed by the two or more antenna units different from each other with respect to the cell.
US09761935B2 HDTV antenna assemblies
Exemplary embodiments are disclosed of HDTV antenna assemblies. In an exemplary embodiment, a high definition television antenna assembly generally includes an antenna element having a generally annular shape with an opening and first and second end portions. First and second arms are spaced apart from the antenna element and extend at least partially along portions of the antenna element. A first member extends between the first arm and the first end portion of the antenna element. A second member extends between the second arm and the second end portion of the antenna element. A substrate supports and/or is coupled to the antenna element, the first and second arms, and the first and second members.
US09761933B2 Millimeter wave antenna and radar apparatus for vehicle
An millimeter wave antenna includes an antenna body adapted to transmit and receive an electromagnetic wave of a millimeter wave band; and a radome that covers a transmitting and receiving surface of the antenna body. The transmitting and receiving surface and the radorm are apart from each other and have a space therebetween. The radome includes a gap adapted to allow the electromagnetic wave of the millimeter wave band to pass through the gap. A radar apparatus for vehicle includes the millimeter wave antenna.
US09761928B2 Mobile terminal and coil antenna module
There is disclosed a mobile terminal including a first case comprising a battery loading portion, a battery loaded in the battery loading portion, a second case coupled to the first case and configured to cover the battery, a coil antenna module arranged between the second case and the battery, and a controller electrically connected to the coil antenna module and configured to transmit and receive a signal or receive an electric power, wherein the coil antenna module includes an insulating sheet, a first coil arranged in a surface of the insulating sheet, a second coil arranged in the first coil, a third coil arranged in the second coil, and a magnetic sheet disposed on the surface of the insulating sheet, and ends of the first, second and third coils are arranged in the surface of the insulating sheet or dividedly arranged in both surfaces of the insulating sheet. The mobile terminal may realize the coil antenna module including a plurality of coils configured to perform diverse manners of wireless communication in a limited area.
US09761924B2 Wired connector and antenna
An antenna can be in a computing device. A connector can be in the computing device and adjacent to the antenna for a wired connection. In one implementation the antenna is connector to a controller to monitor the antenna for wireless signal degradation and compensate for the wireless signal degradation.
US09761921B2 Tunable bandpass filter
The tunable bandpass filter is used for filtering an electromagnetic signal, has a system passband between a first and a second tunable cutoff frequencies, and has a first subfilter and a second subfilter connected to one another in series between an input port and an output port and being complementary to one another in the tunable bandpass filter. At least one of the first subfilter and the second subfilter being connected to operate in reflection.
US09761920B2 Metal-air electrochemical cell with high energy efficiency mode
The present invention relates to a metal-air electrochemical cell with a high energy efficiency mode.
US09761917B2 Battery unit
A battery unit includes the following elements: a battery module that includes a plurality of battery cells and a gas discharge opening for discharging gas jetted from each of the battery cells; and a gas discharge duct in communication with the gas discharge opening and discharging the gas to the outside of the battery module. The gas discharge duct includes at least one duct outlet of which cross-sectional area of the channel in the duct outlet or the sum of cross-sectional areas of the channel in the respective duct outlets is larger than a cross-sectional area of the channel on the upstream side in the flow direction of the gas. The gas discharge duct also includes a temperature reducing member that is fixed to the periphery of the duct outlet so as to block part of the channel and reduces the temperature of the gas going through gaps.
US09761912B2 Safety system for batteries
A battery, particularly a lithium-metal battery or a lithium-ion battery, having at least one galvanic cell surrounded by a cell housing. To increase the safety of the battery and to close up again a cell opened by a safety device or by a leakage, the inner chamber of the cell housing of the at least one cell includes a first chemical component, a chamber bordering on at least one section of the outer side of the housing including a second chemical component; a solid reaction product being developable by the chemical reaction of the first and second chemical components. The first component is containable in the electrolyte of the cell and the second component in a cooling and/or tempering arrangement. Also described is a cooling and/or tempering arrangement based on it, and an electrolyte, an electrolytic liquid, a safety system, a method and a mobile or stationary system.
US09761911B2 Battery pack of improved safety
Disclosed herein is a battery pack including a power supply unit including two or more battery cells or battery modules electrically connected to each other, at least one pressure driven switch configured to cause a short circuit in a portion or the entirety of the battery pack upon detecting expansion in volume of the battery cells or the battery modules when the power supply unit malfunctions, a cut-off portion located at at least one series connection region between the battery cells or the battery modules to interrupt electrical connection in the battery pack when the short circuit occurs in the battery pack, and external input and output terminals connected to electrode terminals located at outermost sides of the power supply unit to supply power to an external device.
US09761905B2 Lithium ion-conducting garnet-like compounds
A lithium ion-conducting compound, having a garnet-like crystal structure, and having the general formula: Lin[A(3-a′-a″)A′(a′)A″(a″)][B(2-b′-b″)B′(b′)B″(b″)][C′(c′)C″(c″)]O12, where A, A′, A″ stand for a dodecahedral position of the crystal structure, where A stands for La, Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and/or Yb, A′ stands for Ca, Sr and/or Ba, A″ stands for Na and/or K, 0
US09761901B2 Three-dimensional batteries and methods of manufacturing the same
Various methods and apparatus relating to three-dimensional battery structures and methods of manufacturing them are disclosed and claimed. In certain embodiments, a three-dimensional battery comprises a battery enclosure, and a first structural layer within the battery enclosure, where the first structural layer has a first surface, and a first plurality of conductive protrusions extend from the first surface. A first plurality of electrodes is located within the battery enclosure, where the first plurality of electrodes includes a plurality of cathodes and a plurality of anodes, and wherein the first plurality of electrodes includes a second plurality of electrodes selected from the first plurality of electrodes, each of the second plurality of electrodes being in contact with the outer surface of one of said first plurality of conductive protrusions. Some embodiments relate to processes of manufacturing energy storage devices with or without the use of a backbone structure or layer.
US09761898B2 Membrane electrode assembly, fuel cell using the same and manufacturing method of membrane electrode assembly
There is provided a technique of preventing degradation of an electrolyte membrane included in a fuel cell. A fuel cell includes a membrane electrode assembly. The membrane electrode assembly is provided as a power generation device where electrodes are arranged on both sides of an electrolyte membrane having proton conductivity. Each of the electrodes has a layered structure of stacking a catalyst layer arranged to support a catalyst and a gas diffusion layer arranged to spread a reactive gas over the entire electrode plane. The outer peripheral edge of the gas diffusion layer is located inward of the outer peripheral edge of the catalyst layer.
US09761895B2 Cell stack device, fuel cell module, fuel cell device, and method of fabricating cell stack device
[Object] To provide a cell stack device, the power generation efficiency of which is improved, and a fuel cell module and a fuel cell device that include the cell stack device.[Solution] A cell stack device 1 includes a cell stack 2 that includes a plurality of fuel cells 3 electrically connected to one another and arranged, the fuel cells 3 that each includes a gas channel through which a reactant gas flows. In the cell stack device 1, the fuel cells 3 of the cell stack 2 are provided in the form of fuel cell groups that each include an arbitrary number of the fuel cells 3. In the cell stack device 1, the fuel cell groups are arranged such that average pressure loss values of the fuel cells 3 of the fuel cell groups increase sequentially from a central portion to an end portion side in a fuel cell 3 arrangement direction. Thus, the power generation efficiency of the cell stack device 1 can be improved.
US09761890B2 Redox flow battery with anisotropic electrode layer
A redox flow battery having reduced internal resistance is provided. The redox flow battery includes a membrane, a bipolar plate, an electrode disposed between the membrane and the bipolar plate, an inlet port for supplying an electrolyte to the electrode, and an outlet port for discharging the electrolyte from the electrode, and performs a charge-discharge reaction by allowing the electrolyte to flow in the electrode. The electrode includes an anisotropic electrode layer having different permeabilities between a direction A1 on a plane of the electrode and a direction A2 orthogonal to the direction A1 on the plane of the electrode. In the anisotropic electrode layer, a permeability K1 in the direction A1 is larger than a permeability K2 in the direction A2. The electrode is disposed such that the direction A1 is substantially parallel to a main flow direction of the electrolyte in the electrode, the main flow direction being determined on the basis of a positional relationship between the inlet port and the outlet port and a shape of a surface of the bipolar plate on the electrode side.
US09761889B2 Fuel cell flow field channel with partially closed end
A device (10) for use in a fuel cell includes a fuel-cell flow-field channel (18) having a channel-inlet section (42) and a channel-outlet section (44). At least one of the channel-inlet section (42) or the channel-outlet section (44) includes an obstruction member (46) that partially blocks flow through the fuel-cell flow-field channel (18).
US09761887B2 Energy storage
An energy storage apparatus having a housing, a plurality of battery cells, a temperature-control system with a liquid temperature-control medium for cooling and/or heating the battery cells in the housing. An absorbent element is arranged spatially between the battery cells and the housing such that any temperature-control medium escaping from the temperature-control system is absorbed by the absorbent element. The absorbent element is separated from the battery cells by an electrically insulating layer, the electrically insulating layer being impermeable to the temperature-control medium.
US09761881B2 Binder and lithium ion battery using the same
The present application discloses a binder for a lithium ion battery, which comprises a polymer obtained through emulsion polymerization of a monomer in the presence of a reactive emulsifying agent. The binder is used in fabrication of a lithium ion electrode plate, whereby a thin film formed on the surface of an electrode membrane and fine channels formed in the electrode membrane with the use of a conventional emulsifying agent during the electrode membrane-forming process are eliminated, and the lithium ion conductivity of the electrode membrane is improved. Meanwhile, with the use of the reactive emulsifying agent, the bonding effect of the binder and the stability of the electrode membrane are improved, thereby greatly improving the charging rate and cycle life of the lithium ion battery.
US09761876B2 Energy storage device and energy storage unit
An energy storage device including a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, wherein the negative electrode includes a negative electrode active material layer containing a non-graphitizable carbon as a negative electrode active material, and the negative electrode active material has a negative electrode active material weight per unit volume of the negative electrode active material layer of 0.92 g/cc or more and 1.13 g/cc or less and a particle size D90 of 4.3 μm or more and 11.5 μm or less, the particle size D90 being a particle size in particle size distribution in which a cumulative volume is 90%.
US09761873B2 Negative electrode active material for nonaqueous electrolyte secondary batteries
A negative electrode active material for nonaqueous secondary batteries is disclosed. The active material contains a silicon solid solution having one or more than one of a group 3 semimetal or metal element, a group 4 semimetal or metal element except silicon, and a group 5 nonmetal or semimetal element incorporated in silicon as a solute element. The solute element is present more on the crystal grain boundaries of the silicon solid solution than inside the grains.
US09761872B2 Rechargeable electrochemical cell
A rechargeable electrochemical battery cell with a housing, a positive electrode, a negative electrode and an electrolyte which contains SO2 and a conducting salt of the active metal of the cell, whereby at least one of the electrodes contains a binder chosen from the group: Binder A, which consists of a polymer, which is made of monomeric structural units of a conjugated carboxylic acid or of the alkali salt, earth alkali salt or ammonium salt of this conjugated carboxylic acid or a combination thereof or binder B which consists of a polymer based on monomeric styrene structural units or butadiene structural units or a mixture of binder A and B.
US09761867B2 Open porous electrically conductive nanocomposite material
Nanocomposits of conductive, nanoparticulate polymer and electronically active material, in particular PEDOT and LiFePO4, were found to be significantly better compared to bare and carbon coated LiFePO4 in carbon black and graphite filled non conducting binder. The conductive polymer containing composite outperformed the other two samples. The performance of PEDOT composite was especially better in the high current regime with capacity retention of 82% after 200 cycles. Hence an electrode based on composite made of conductive, nanoparticulate polymer and electronically active material, in particular LiFePO4 and PEDOT nanostubs, with its higher energy density and increased resistance to harsh charging regimes proved to dramatically extend the high power applicability of materials such as LiFePO4.
US09761866B2 Battery electrode with metal particles and pyrolyzed coating
A method is provided for forming a metal battery electrode with a pyrolyzed coating. The method provides a metallorganic compound of metal (Me) and materials such as carbon (C), sulfur (S), nitrogen (N), oxygen (O), and combinations of the above-listed materials, expressed as MeXCYNZSXXOYY, where Me is a metal such as tin (Sn), antimony (Sb), or lead (Pb), or a metal alloy. The method heats the metallorganic compound, and as a result of the heating, decomposes materials in the metallorganic compound. In one aspect, decomposing the materials in the metallorganic compound includes forming a chemical reaction between the Me particles and the materials. An electrode is formed of Me particles coated by the materials. In another aspect, the Me particles coated with a material such as a carbide, a nitride, a sulfide, or combinations of the above-listed materials.
US09761861B1 Pulse plating of lithium material in electrochemical devices
The present invention is directed to battery system and operation thereof. In an embodiment, lithium material is plated onto the anode region of a lithium secondary battery cell by a pulsed current. The pulse current may have both positive and negative polarity. One of the polarities causes lithium material to plate onto the anode region, and the opposite polarity causes lithium dendrites to be removed. There are other embodiments as well.
US09761860B2 Secondary battery and method for producing secondary battery
Disclosed is a secondary battery capable of preventing damage to a current interrupt device caused by generation and transmission of vibration, and thereby achieving prevention of malfunction of the current interrupt device, and improvement of quality of the secondary battery. In addition, disclosed is a method of manufacturing the secondary battery. Specifically disclosed is a secondary battery, in which a positive electrode terminal is placed on the upper face of a sealing plate, a holder is placed on the lower face of the sealing plate, and the sealing plate is joined to the positive electrode terminal and the holder by a rivet. The secondary battery includes an adhered portion for adhering the holder to the sealing plate.
US09761857B2 Electrode assembly for secondary battery
Provided is an electrode assembly for a secondary battery, including: one or more first electrode plates: one or more second electrode plates stacked alternately with the first electrode plates; first electrode taps extended from the first electrode plates, respectively; second electrode taps extended from the second electrode plates, respectively; a separator disposed between the first electrode plates and the second electrode plates; and a spacer part formed on lateral surfaces formed in a stacking direction of edges of the first electrode plates and the second electrode plates, so that, by including the spacer part, internal short circuits can be prevented and insertability into a pouch type battery case can be improved, thereby improving stability, reliability, and productivity thereof.
US09761855B2 Welding structure between electric storage device and bus bar and method for welding electric storage device and bus bar together
An electric storage apparatus including a welding structure between an electric storage device and a bus bar includes the electric storage device including an external terminal that includes a first connection surface, the bus bar including a second connection surface that overlaps the first connection surface, a first weld portion that is formed extending over the external terminal and the bus bar in a region where the first connection surface and the second connection surface are opposed to each other, and a second weld portion that is formed extending over the external terminal and the bus bar in the region where the first connection surface and the second connection surface are opposed to each other, the second weld portion directly overlapping the first weld portion in a region where the first connection surface and the second connection surface overlap each other.
US09761854B2 Spirally-wound electrode assembly for rechargeable lithium battery and rechargeable lithium battery including same
A spirally-wound electrode assembly for a rechargeable lithium battery includes a positive electrode, a negative electrode and a separator between the positive electrode and the negative electrode, wherein the separator includes a porous film and an adhesive layer on at least one side of the porous film, and the adhesive layer includes a fluorine-based polymer-containing particulate and a binder. A rechargeable lithium battery includes the spirally-wound electrode assembly.
US09761850B2 Multi-cell battery assembly
A battery assembly including: a plurality of prismatic battery cells; first and second fluid manifolds; and a plurality of corrugated flow plates interleaved with the plurality of battery cells, each the flow plates extending from the first manifold to the second manifold and providing an array of flow channels for carrying fluid from the first manifold to the second manifold, wherein each plate of the plurality of corrugated flow plates is an extruded plastic structure comprising first and second fluid impermeable sheets and a plurality of parallel ribs between and connecting the first and second sheets, said plurality of ribs forming the array of flow channels.
US09761849B2 Battery module
A battery module includes a plurality of battery cells arranged in one direction, barriers interposed among the plurality of battery cells, a pair of first and second end plates arranged outside the battery cells, and coupling members that couple the first and second end plates, wherein at least one of the barriers includes at least one protrusion that provides a step difference between the protrusion and a surface of the barrier.
US09761847B2 Packaging and termination structure for a solid state battery
A method for fabricating a solid state battery device. The device can include electrochemically active layers and an overlaying barrier material, with an inter-digitated layer structure configured with a post terminated lead structure. The method can include forming a plurality of battery device cell regions (1-N) formed in a multi-stacked configuration, wherein each of the battery device cell regions comprises a first current collector and a second current collector. The method can also include forming a thickness of a first and second lead material to cause formation of a first and second lead structure to interconnect each of the first and second current collectors associated with each of the plurality of battery device cell regions and to isolate each of the second current collectors extending spatially outside of the battery device cell region within a first and second isolated region, respectively.
US09761843B2 Emissive display with hybrid polarizer
An emissive display comprising an OLED, a first birefringent reflective polarizer, a second birefringent reflective polarizer optically between the OLED and the first birefringent reflective polarizer, a first linear absorbing polarizer having a contrast ratio of less than 100:1 optically between the first birefringent reflective polarizer and the second birefringent reflective polarizer, a second linear absorbing polarizer having a contrast ratio of less than 100:1, where the first birefringent reflective polarizer is optically between the second linear absorbing polarizer and the first linear absorbing polarizer, and a structured optical film optically between the OLED and the second birefringent reflective polarizer.
US09761842B2 Enhancing light extraction of organic light emitting diodes via nanoscale texturing of electrode surfaces
An organic light emitting device is described, having an OLED including an anode, a cathode, and at least one organic layer between the anode and cathode. At least a portion of an electrode surface includes a plurality of scattering structures positioned in a partially disordered pattern resembling nodes of a two dimensional lattice. The scattering structures are positioned around the nodes of the two dimensional lattice with the average distance between the position of each scattering structure and a respective node of the lattice is from 0 to 0.5 of the distance between adjacent lattice nodes. A method of manufacturing an organic light emitting device and a method of enhancing the light-extraction efficiency of an organic light emitting device are also described.
US09761839B2 Display devices using feedback enhanced light emitting diode
Display devices using feedback-enhanced light emitting diodes are disclosed. The display devices include but are not limited to active and passive matrix displays and projection displays. A light emissive element disposed between feedback elements is used as light emitting element in the display devices. The light emissive element may include organic or non-organic material. The feedback elements coupled to an emissive element allow the emissive element to emit collimated light by stimulated emission. In one aspect, feedback elements that provide this function include, but are not limited to, holographic reflectors with refractive index variations that are continuous.
US09761837B2 Method for manufacturing OLED devices
The present invention relates to a display technology field, in specifically, to a method for manufacturing an OLED. The organic material film and inorganic material film are formed on the upper surface of the OLED devices, the inorganic material film covers over the organic material film to absorb the stress, and a protective layer is formed on the inorganic material film in prior to the cutting procedure to protect the encapsulated film from scratching and crushing, so that the mechanical strength of the whole OLED devices is increased, the quality of the display is improved.
US09761835B2 Display device
A display device includes a protective film attached to a display surface as a surface of at least one of a first insulating substrate and a second insulating substrate, and an adhesive material attaching the protective film to the display surface. The display surface includes a display area in which an image is displayed, and a peripheral area surrounding the display area. The adhesive material includes a first adhesive portion and a second adhesive portion. The first adhesive portion is in the peripheral area, and discontinuously surrounds the display area with a disconnected portion. The second adhesive portion is provided in the peripheral area inside or outside the first adhesive portion and the disconnected portion with a gap between the second adhesive portion, and the first adhesive portion and the disconnected portion, so as to be next to the disconnected portion over the entire length thereof.
US09761828B2 Laser welding transparent glass sheets using low melting glass or thin absorbing films
A method of sealing a workpiece comprising forming an inorganic film over a surface of a first substrate, arranging a workpiece to be protected between the first substrate and a second substrate wherein the inorganic film is in contact with the second substrate; and sealing the workpiece between the first and second substrates as a function of the composition of impurities in the first or second substrates and as a function of the composition of the inorganic film by locally heating the inorganic film with a predetermined laser radiation wavelength. The inorganic film, the first substrate, or the second substrate can be transmissive at approximately 420 nm to approximately 750 nm.
US09761826B2 Display panel and method of manufacturing the same, and display device
Embodiments of the present disclosure relates to a display panel and a method of manufacturing the same, and a display device. The display panel comprises: a first substrate and a second substrate, at least one of which is provided with a first sealant, a second sealant and a third sealant; the first sealant is arranged at an outer side of the package region away from the display region, the second sealant is arranged inside the first sealant and at least within a peripheral region at a corner of the display region, and the third sealant is arranged inside the first sealant and fills the package region and the display region except parts thereof where the first sealant and the second sealant are arranged. With the display panel and the method of manufacturing the same, and the display device provided according to embodiments of the present disclosure, the display panel can be appropriately packaged by providing water resistive and/or water absorptive materials outside corners of the display region, so that infiltration of external moisture into the display region to adversely affect display performance of the display region can be alleviated while ensuring light transmittance of the display region, thereby improving image display quality.
US09761824B2 Multilayer light-emitting electrochemical cell device structures
Novel structures and compositions for multilayer light-emitting electrochemical cell devices are described, particularly those that are adapted to work with stable and printable electrode metals, that optimize recombination efficiency, lifetime and turn-on kinetics. In particular, embodiments of the present invention provide improved performance and extended lifetime for doped electronic devices, where ionic doping levels, ionic support materials content, and electronic transport content are advantageously structured within the device. The doping profile of mobile or semi-mobile ionic dopants is intentionally made to be non-uniform to enhance doping in the interface regions of a device where the active layer interfaces with the electrode.
US09761822B2 Light emitting diode and display device including the same
A light emitting diode includes a first electrode, a second electrode facing the first electrode, and a mixture layer between the first electrode and the second electrode. The mixture layer includes a quantum dot, a hole transporting material, and an electron transporting material.
US09761818B2 Method of manufacturing thin film transistor, thin film transistor manufactured by the method, and electronic device comprising the thin film transistor
A method of manufacturing a thin film transistor includes forming a gate electrode, forming a gate insulating layer on the gate electrode, forming an organic semiconductor layer on the gate insulating layer, forming a solvent selective photosensitive layer on the organic semiconductor layer, forming an organic semiconductor pattern and a solvent selective photosensitive pattern by simultaneously patterning the organic semiconductor layer and the solvent selective photosensitive layer, respectively, and forming a source electrode and a drain electrode on the organic semiconductor pattern and the solvent selective photosensitive pattern, the source electrode and the drain electrode being electrically connected to the organic semiconductor pattern.
US09761817B2 Photo-patternable gate dielectrics for OFET
Articles utilizing polymeric dielectric materials for gate dielectrics and insulator materials are provided along with methods for making the articles. The articles are useful in electronics-based devices that utilize organic thin film transistors.
US09761816B2 Flexible organic light-emitting display device and method for manufacturing the same
A flexible organic light-emitting display device and a method of manufacturing the flexible organic light-emitting display device are provided. The flexible organic light-emitting display device comprises a lower flexible substrate assembly and an upper flexible substrate assembly that are bonded by a bonding layer. The lower flexible substrate assembly includes a first flexible substrate, a thin film transistor formed on the first flexible substrate, a white organic light-emitting element formed on the thin film transistor, and an encapsulation layer formed on the white organic light-emitting element. The upper flexible substrate assembly comprises a second flexible substrate, an interlayer and a touch sensing unit formed on the interlayer layer. The interlayer may be at least one of a color filter layer, a transparent resin layer, an insulating film layer and a second flexible substrate.
US09761814B2 Organic light-emitting materials and devices
A novel compound containing two silicon centers with carbazole, dibenzothiophene, or triphenylene building blocks connected to the silicon is disclosed. The disclosed compound is useful as a host material in the emissive layers in phosphorescent OLEDs.
US09761809B2 Compound and organic light-emitting device comprising same
A compound represented by Formula 1 below, and an organic light-emitting device including the compound:
US09761807B2 Organic light emitting diode materials
The present invention relates to novel organic compounds containing a triphenylene and a carbazole. The compounds are useful for organic light-emitting diodes. The compounds are also useful for charge-transport and charge-blocking layers, and as hosts in the light-emissive layer for organic light emitting devices (OLEDs).
US09761806B1 Sensors with integrated data processing circuitry
A system for sensing data includes one or more sensors formed on a substrate, including flexible substrates. A plurality of transistors are coupled to the one or more sensors and formed on the substrate. Each transistor of the plurality of transistors is constructed with a channel formed of a nanoscale material. The plurality of transistors are configured to perform computing tasks such that data processing and classification are performed directly on the sensor substrate. The nanoscale material can include carbon nanotubes.
US09761805B2 Organic semiconductors
The invention relates to novel organic semiconducting oligomers or polymers containing dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene units, methods for their preparation and educts or intermediates used therein, polymers, blends, mixtures and formulations containing them, the use of the oligomers, polymers, blends, mixtures and formulations as semiconductor in organic electronic (OE) devices, especially in organic photovoltaic (OPV) devices, and to OE and OPV devices comprising these oligomers, polymers, blends, mixtures or formulations.
US09761804B2 Oligomeric organic light emitting diode (OLED) materials containing multiple crosslinking functions
OLED materials having the formula: T-A(-S-B(-P-B)m-S-A)n-T where A are independently selected rod-shaped, rigid molecular core units, S are independently selected flexible spacer units, B are polymerisable crosslinking groups independently selected, P are spacer groups independently selected, T are independently selected end groups, m are independently selected from values of from 1 to 4, n is equal to I to 3.
US09761803B2 Semiconductor composition
A semiconductor composition for producing a semiconducting layer with consistently high mobility is disclosed. The semiconductor composition includes a diketopyrrolopyrrole-thiophene copolymer and an aromatic non-halogenated hydrocarbon solvent. The copolymer has a structure disclosed within. The aromatic non-halogenated aromatic hydrocarbon solvent contains sidechains having at least 2 carbon atoms and the aromatic ring contains at least 3 hydrogen atoms.
US09761799B2 Bottom electrode structure for improved electric field uniformity
A method for manufacturing an integrated circuit (IC) is provided. An etch is performed into an upper surface of an insulating layer to form an opening. A plurality of electrode layers is formed filling the opening. Forming the plurality of electrode layers comprises repeatedly forming an electrode layer conformally lining an unfilled region of the opening until the opening is filled. Forming the electrode layer comprises depositing the electrode layer and treating a surface of the electrode layer that faces an interior of the opening. A planarization is performed into the plurality of electrode layers to the upper surface of the insulating layer.
US09761797B2 Methods of forming structures
Some embodiments include methods of forming structures. Spaced-apart features are formed which contain temperature-sensitive material. Liners are formed along sidewalls of the features under conditions which do not expose the temperature-sensitive material to a temperature exceeding 300° C. The liners extend along the temperature-sensitive material and narrow gaps between the spaced-apart features. The narrowed gaps are filled with flowable material which is cured under conditions that do not expose the temperature-sensitive material to a temperature exceeding 300° C. In some embodiments, the features contain memory cell regions over select device regions. The memory cell regions include first chalcogenide and the select device regions include second chalcogenide. The liners extend along and directly against the first and second chalcogenides.
US09761796B2 Storage device and storage unit with ion source layer and resistance change layer
There are provided a storage device and a storage unit capable of improving retention performance of an intermediate resistance value in writing at a low current, and a storage device and a storage unit capable of reducing random telegraph noise. A storage device of one embodiment of the present technology includes a first electrode, a storage layer, and a second electrode in this order, and the storage layer includes: an ion source layer including one or more kinds of chalcogen elements selected from tellurium (Te), sulfur (S), and selenium (Se), and one or more kinds of transition metal elements selected from Group 4 elements, Group 5 elements, and Group 6 elements of the periodic table; and a resistance change layer including boron (B) and oxygen (O). A storage device of another embodiment of the present technology includes the above-described ion source layer and a resistance change layer including one or more kinds of transaction metal elements selected from Group 4 elements, Group 5 elements, and Group 6 elements of the periodic table, and oxygen (O).
US09761795B2 Method and processing apparatus for fabricating a magnetic resistive random access memory device
Methods of fabricating MRAM devices are provided along with a processing apparatus for fabricating the MRAM devices. The methods may include forming a ferromagnetic layer, cooling the ferromagnetic layer to a temperature within a range of between about 50° K to about 300° K, forming and oxidizing one or more Mg layers on the cooled ferromagnetic layer to form an MgO structure, forming a free layer on the MgO structure, and forming a capping layer on the free layer.
US09761794B2 Magnetoresistive sensor, related manufacturing method, and related electronic device
A method for manufacturing a magnetoresistive sensor may include the following steps: forming a trench structure in a substrate, wherein the step of forming the trench structure comprises performing a wet etching process on a substrate material member, wherein the trench structure has a first side, a second side, and a third side, wherein the second side is connected through the first side to the third side, wherein the second side is at a first obtuse angle with respect to a side of the substrate, and wherein the third side is at a second obtuse angle with respect to the side of the substrate; forming a first magnetic element on the first side of the trench structure; forming a second magnetic element on the second side of the trench structure; and forming a third magnetic element on the third side of the trench structure.
US09761787B2 Consensus-based multi-piezoelectric microcantilever sensor
Systems and methods are disclosed that describe a MEMS device and a method of sensing based on a consensus algorithm. The MEMS device is a sensor comprising multiple piezoelectric layers attached to a microcantilever. It can be used to sense deflections or variations in corresponding parameters of systems in micro- and nano-scales. Multiple piezoelectric elements on a microcantilever can provide a more accurate measurement of the microcantilever's deflection. The device can eliminate bulky laser sensors in SPMs and provide additional use as a biosensor, or chemical sensor at the micro- and nano-scale. The consensus sensing algorithm can provide added robustness into the system. If one of the sensing elements or electrodes fails during a sensing process, other elements can compensate and allow for near zero-error measurement.
US09761779B2 Thermoelectric conversion material
A thermoelectric conversion material expressed by a chemical formula X3T3-yT′ySb4 (0.025≦y≦0.5), wherein the X includes one or more elements selected from Zr and Hf, the T includes one or more elements selected from Ni, Pd, and Pt, while including at least Ni, and the T′ includes one or more elements selected from Co, Rh, and Ir.
US09761778B2 Method for manufacturing thermoelectric materials
Disclosed is a method for manufacturing a thermoelectric material having high thermoelectric conversion performance in a broad temperature range. The method for manufacturing a thermoelectric material according to the present disclosure includes forming a mixture by weighing Cu and Se based on the following chemical formula 1 and mixing the Cu and the Se, and forming a compound by thermally treating the mixture: CuxSe where 2
US09761777B2 Thermoelectric materials
Disclosed is a thermoelectric conversion material having excellent performance. The thermoelectric material according to the present disclosure includes a matrix including Cu and Se, and Cu-containing particles.
US09761776B2 Light emitting device, manufacturing method for the light emitting device, and lighting module having the light emitting device
A light emitting device includes: a first support member having an opening; a second support member disposed in the opening of the first support member; an adhesive member disposed between the first and second support members; a first lead electrode disposed on the second support member; a second lead electrode disposed on at least one of the first and second support members; a light emitting chip disposed on the first lead electrode, the light emitting chip being electrically connected to the second lead electrode; and a conductive layer disposed under the second support member, wherein the first support member includes a resin material, the second support member includes a ceramic material, and the first lead electrode is disposed between the light emitting chip and the second support member.
US09761775B2 Semiconductor light source
A light source may comprise a thermally conductive frame comprising a base and a faceted portion extending from the base. The faceted portion may comprise a plurality of facets spaced circumferentially thereabout. Additionally, a hollow passageway may extend through the base and axially through the faceted portion. A plurality of LED chips may be arranged on the plurality of facets to provide an emission of light in an arc of 360 degrees.
US09761771B2 Light-emitting film
The present application relates to a light-emitting film, a method of manufacturing the same, a lighting device and a display device. The present application may provide a light-emitting film capable of providing a lighting device having excellent color purity and efficiency and an excellent color characteristic. The characteristics of the light-emitting film of the present application may be stably and excellently maintained for a long time. The light-emitting film of the present application may be used for various uses including photovoltaic applications, an optical filter or an optical converter, as well as various lighting devices.
US09761770B2 Optoelectronic semiconductor chip encapsulated with an ALD layer and corresponding method for production
An optoelectronic semiconductor chip includes a semiconductor body with an active region provided for generating electromagnetic radiation, a first mirror layer provided for reflecting the electromagnetic radiation, a first encapsulation layer formed with an electrically insulating material, and a carrier provided for mechanically supporting the first encapsulation layer, the first mirror layer and the semiconductor body. The first mirror layer is arranged between the carrier and the semiconductor body. The first encapsulation layer is arranged between the carrier and the first mirror layer. The first encapsulation layer is an ALD layer.
US09761769B2 Assembly that emits electromagnetic radiation and method of producing an assembly that emits electromagnetic radiation
An electromagnetic radiation emitting assembly includes a carrier, an electromagnetic radiation emitting component arranged above the carrier, and a potting material at least partly surrounding the electromagnetic radiation emitting component and into which are embedded phosphor that converts the electromagnetic radiation and heat-conducting particles that conduct heat arising during operation of the electromagnetic radiation emitting assembly, wherein a phosphor concentration in the potting material near the electromagnetic radiation emitting component is greater than a particle concentration of the heat-conducting particles in the potting material near the electromagnetic radiation emitting component, and a particle concentration of the heat-conducting particles in the potting material near the electromagnetic radiation emitting component is greater than in the potting material remote from the electromagnetic radiation emitting component.
US09761764B2 Light emitting device
A light emitting device includes a package and at least one light emitting element. The package includes a recess portion which has a bottom surface, an opening on a front side opposite to the bottom surface in a front direction vertical to the bottom surface, and an inner peripheral wall connecting the bottom surface and the front side. The bottom surface has distances between opposite sides of the bottom surface and has a longest distance among the distances. The at least one light emitting element is disposed on the bottom surface of the recess portion and has a polygonal shape which has five or more sides and which has a longest diagonal line viewed along the front direction. Each internal angle of the polygonal shape is less than 180°. The longest diagonal line of the polygonal shape is parallel to a lateral line along the longest distance.
US09761761B2 Light-emitting element
A light-emitting element includes a semiconductor stacked body, a light transmissive conductive film disposed on the semiconductor stacked body, the light transmissive conductive film including a plurality of through holes, insulation films disposed in the plurality of through holes, the plurality of through holes being disposed on the semiconductor stacked body; and a pad electrode disposed on the light transmissive conductive film and the insulation films.
US09761759B2 Light emitting module
A light emitting module including a plurality of light emitting elements, a plurality of first circuit boards, and a second circuit board is provided. Each of the light emitting elements is disposed on the corresponding first circuit board and is electrically connected to the corresponding first circuit board. The second circuit board is disposed on the first circuit boards, wherein any two adjacent first circuit boards are electrically connected to each other through the second circuit board.
US09761758B2 Semiconductor component comprising an interlayer
An optoelectronic semiconductor component includes a layer sequence including a p-doped layer, an n-doped layer and an active zone that generates electromagnetic radiation arranged between the n-doped layer and the p-doped layer, wherein the n-doped layer includes at least GaN, an interlayer is arranged in the n-doped layer, wherein the interlayer includes AlxGa1-xN, wherein 0
US09761757B2 III-nitride nanowire LED with strain modified surface active region and method of making thereof
A light emitting diode (LED) device includes a semiconductor nanowire core, and an In(Al)GaN active region quantum well shell located radially around the semiconductor nanowire core. The active quantum well shell contains indium rich regions having at least 5 atomic percent higher indium content than indium poor regions in the same shell. The active region quantum well shell has a non-uniform surface profile having at least 3 peaks. Each of the at least 3 peaks is separated from an adjacent one of the at least 3 peaks by a valley, and each of the at least 3 peaks extends at least 2 nm in a radial direction away from an adjacent valley.
US09761753B2 Method for manufacturing light-emitting device
A method for manufacturing a light-emitting device includes providing a soluble member to cover at least one lateral surface of a light-emitting element. The soluble member includes a material soluble in a first solvent. A light-shielding member is provided to cover at least one lateral surface of the soluble member. The light-shielding member includes a light-shielding resin less soluble in the first solvent than the soluble member. The soluble member is removed with the first solvent. A first light-transmissive member is provided in a space formed by removing the soluble member.
US09761751B2 Semiconductor barrier photo-detector
The present invention discloses a photo-detector comprising: an n-type photon absorbing layer of a first energy bandgap; a middle barrier layer, an intermediate layer is a semiconductor structure; and a contact layer of a third energy bandgap, wherein the layer materials are selected such that the first energy bandgap of the photon absorbing layer is narrower than that of said middle barrier layer; wherein the material composition and thickness of said intermediate layer are selected such that the valence band of the intermediate layer lies above the valence band in the barrier layer to create an efficient trapping and transfer of minority carriers from the barrier layer to the contact layer such that a tunnel current through the barrier layer from the contact layer to the photon absorbing layer is less than a dark current in the photo-detector and the dark current from the photon-absorbing layer to said middle barrier layer is essentially diffusion limited and is due to the unimpeded flow of minority carriers, thus reducing generation-recombination (GR) noise of the photo-detector. The principles of the present invention also apply to inverted polarity structures of the form pBp in which all the doping polarities and band alignments described above are reversed.
US09761748B1 Microsystem enabled photovoltaic modules and systems
A photovoltaic (PV) module includes an absorber layer coupled to an optic layer. The absorber layer includes an array of PV elements. The optic layer includes a close-packed array of Keplerian telescope elements, each corresponding to one of an array of pupil elements. The Keplerian telescope substantially couple radiation that is incident on their objective surfaces into the corresponding pupil elements. Each pupil element relays radiation that is coupled into it from the corresponding Keplerian telescope element into the corresponding PV element.
US09761739B2 High speed photosensitive devices and associated methods
High speed optoelectronic devices and associated methods are provided. In one aspect, for example, a high speed optoelectronic device can include a silicon material having an incident light surface, a first doped region and a second doped region forming a semiconductive junction in the silicon material, and a textured region coupled to the silicon material and positioned to interact with electromagnetic radiation. The optoelectronic device has a response time of from about 1 picosecond to about 5 nanoseconds and a responsivity of greater than or equal to about 0.4 A/W for electromagnetic radiation having at least one wavelength from about 800 nm to about 1200 nm.
US09761737B2 Semiconductor device
A highly reliable semiconductor device which uses an oxide semiconductor and in which a change in the electrical characteristics is suppressed is provided. The semiconductor device includes an island-shaped semiconductor layer over a base insulating layer, a pair of electrodes over the semiconductor layer, a barrier layer in contact with undersurfaces of the electrodes, a gate electrode over the semiconductor layer, and a gate insulating layer between the semiconductor layer and the gate electrode. The semiconductor layer contains an oxide semiconductor. The base insulating layer contains silicon oxide or silicon oxynitride. The electrodes each contain Al, Cr, Cu, Ta, Ti, Mo, or W. The barrier layer contains oxide containing one or more metal elements contained in the oxide semiconductor. Furthermore, the electrodes and the barrier layer extend to the outside of the semiconductor layer when seen from above.
US09761732B2 Tunnel thin film transistor with hetero-junction structure
This disclosure provides thin film transistors (TFTs) including p-n hetero-junction structures. A p-n hetero-junction structure may include a junction between a narrow bandgap material and a wide bandgap material. The narrow bandgap material, which may be an oxide, nitride, selenide, or sulfide, is the active channel material of the TFT and may provide relatively high carrier mobility. The hetero-junction structures facilitate band-to-band tunneling and suppression of TFT off-currents. In various implementations, the TFTs may be formed on flexible substrates and have low temperature processing capabilities.
US09761717B2 Stress memorization technique for strain coupling enhancement in bulk finFET device
A method for forming strained fins includes etching trenches in a bulk substrate to form fins, filling the trenches with a dielectric fill and recessing the dielectric fill into the trenches to form shallow trench isolation regions. The fins are etched above the shallow trench isolation regions to form a staircase fin structure with narrow top portions of the fins. Gate structures are formed over the top portions of the fins. Raised source ad drain regions are epitaxially grown on opposite sides of the gate structure. A pre-morphization implant is performed to generate defects in the substrate to couple strain into the top portions of the fins.
US09761715B2 Ferroelectric field effect transistors, pluralities of ferroelectric field effect transistors arrayed in row lines and column lines, and methods of forming a plurality of ferroelectric field effect transistors
A ferroelectric field effect transistor comprises a semiconductive channel comprising opposing sidewalls and an elevationally outermost top. A source/drain region is at opposite ends of the channel. A gate construction of the transistor comprises inner dielectric extending along the channel top and laterally along the channel sidewalls. Inner conductive material is elevationally and laterally outward of the inner dielectric and extends along the channel top and laterally along the channel sidewalls. Outer ferroelectric material is elevationally outward of the inner conductive material and extends along the channel top. Outer conductive material is elevationally outward of the outer ferroelectric material and extends along the channel. Other constructions and methods are disclosed.
US09761713B2 Multi-threshold voltage devices and associated techniques and configurations
Embodiments of the present disclosure describe multi-threshold voltage devices and associated techniques and configurations. In one embodiment, an apparatus includes a semiconductor substrate, a channel body disposed on the semiconductor substrate, a first gate electrode having a first thickness coupled with the channel body and a second gate electrode having a second thickness coupled with the channel body, wherein the first thickness is greater than the second thickness. Other embodiments may be described and/or claimed.
US09761708B2 Method of manufacturing semiconductor device and semiconductor device
A semiconductor device includes a supporting substrate, an insulating film formed in a first region over the supporting substrate, a first semiconductor layer formed over the insulating film, a first epitaxial layer formed in an opening of the insulating film in a second region over the supporting substrate, an element isolation region formed between the first semiconductor layer and the first epitaxial layer, and a semiconductor element formed over each of the first semiconductor layer in the first region and the first epitaxial layer in the second region. The first semiconductor layer and the first epitaxial layer is spaced apart from each other by 5 μm or more.
US09761702B2 Power MOSFET having planar channel, vertical current path, and top drain electrode
In one embodiment, a power MOSFET cell includes an N+ silicon substrate having a drain electrode. An N-type drift layer is grown over the substrate. An N-type layer, having a higher dopant concentration than the drift region, is then formed along with a trench having sidewalls. A P-well is formed in the N-type layer, and an N+ source region is formed in the P-well. A gate is formed over the P-well's lateral channel and has a vertical extension into the trench. A positive gate voltage inverts the lateral channel and increases the vertical conduction along the sidewalls to reduce on-resistance. A vertical shield field plate is also located next to the sidewalls and may be connected to the gate. The field plate laterally depletes the N-type layer when the device is off to increase the breakdown voltage. A buried layer and sinker enable the use of a topside drain electrode.
US09761701B2 Bipolar transistor
A bipolar transistor and a method for fabricating a bipolar transistor are disclosed. In one embodiment the bipolar transistor includes a semiconductor body including a collector region and a base region arranged on top of the collector region, the collector region being doped with dopants of a second doping type and the base region being at least partly doped with dopants of a first doping type and an insulating spacers arranged on top of the base region. The semiconductor body further includes a semiconductor layer including an emitter region arranged on the base region and laterally enclosed by the spacers, the emitter region being doped with dopants of the second doping type forming a pn-junction with the base region, wherein the emitter region is fully located above a horizontal plane through a bottom side of the spacers.
US09761698B2 Air gap contact formation for reducing parasitic capacitance
A functional gate structure is located on a surface of a semiconductor material portion and including a U-shaped gate dielectric portion and a gate conductor portion. A source region is located on one side of the functional gate structure, and a drain region is located on another side of the functional gate structure. The source region and drain region both have a topmost surface that is above a topmost surface of the semiconductor material portion and another surface that touches a portion of the U-shaped gate dielectric. A contact structure is located on the topmost surface of the source region and/or the drain region. A middle-of-the-line air gap contact is located between the contact structure and the functional gate structure and above at least one of the source region and the drain region. The middle-of-the-line air gap contact is sealed by a portion of a conformal dielectric material.
US09761690B2 Semiconductor device and method for fabricating the same
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming an interfacial layer on the substrate; forming a stack structure on the interfacial layer; patterning the stack structure to form a gate structure on the interfacial layer; forming a liner on the interfacial layer and the gate structure; and removing part of the liner and part of the interfacial layer for forming a spacer.
US09761688B2 Method of fabricating semiconductor device with tilted preamorphized implant
A method for fabricating a semiconductor device may include: preparing a semiconductor substrate including a doping region; performing tilt implantation using a first additional dopant to form an amorphous region in the doping region; doping a second additional dopant in the amorphous region; forming a metal layer on the doped amorphous region; and reacting the doped amorphous region with the metal layer to form metal silicide.
US09761683B2 Semiconductor device and manufacturing method thereof
A method of manufacturing a Fin FET includes forming a fin structure including an upper layer. Part of the upper layer is exposed from an isolation insulating layer. A dummy gate structure is formed over part of the fin structure. The dummy gate structure includes a dummy gate electrode layer and a dummy gate dielectric layer. An interlayer insulating layer is formed over the dummy gate structure. The dummy gate structure is removed so that a space is formed. A gate dielectric layer is formed in the space. A first metal layer is formed over the gate dielectric in the space. A second metal layer is formed over the first metal layer in the space. The first and second metal layers are partially removed, thereby reducing a height of the first and second metal layers. A third metal layer is formed over the partially removed first and second metal layers.
US09761682B2 Semiconductor device with silicon nitride film on nitride semiconductor layer and manufacturing method thereof
In order to improve the characteristics of a semiconductor device including: a channel layer and a barrier layer formed above a substrate; and a gate electrode arranged over the barrier layer via a gate insulating film, the semiconductor device is configured as follows. A silicon nitride film is provided over the barrier layer between a source electrode and the gate electrode, and is also provided over the barrier layer between a drain electrode and the gate electrode GE. The surface potential of the barrier layer is reduced by the silicon nitride film, thereby allowing two-dimensional electron gas to be formed. Thus, by selectively forming two-dimensional electron gas only in a region where the silicon nitride film is formed, a normally-off operation can be performed even if a trench gate structure is not adopted.
US09761681B2 Semiconductor device
The semiconductor device includes a gate insulation film covering inner surfaces of the first trench and the second trench, and an inner surface of an intersection, and a gate electrode provided in the first trench and the second trench, and facing the semiconductor substrate via the gate insulation film. Further, the semiconductor device includes an emitter region of an n-type provided in the semiconductor substrate, exposed on the front surface of the semiconductor substrate, being in contact with the gate insulation film in the second trench, and not being in contact with the gate insulation film provided on the inner surface of the intersection of the first trench and the second trench.
US09761679B2 Performance optimized gate structures having memory device and logic device, the memory device with silicided source/drain regions that are raised with respect to silicided source/drain regions of the logic device
A performance optimized CMOS FET structure and methods of manufacture are disclosed. The method includes forming source and drain regions for a first type device and a second type device. The method further includes lowering the source and drain regions for the first type device, while protecting the source and drain regions for the second type device. The method further includes performing silicide processes to form silicide regions on the lowered source and drain regions for the first type device and the source and drain regions for the second type device.
US09761677B2 Gate contact structure of FinFET
An embodiment includes a substrate, wherein a portion of the substrate extends upwards forming a fin, a gate dielectric over a top surface and at least portions of sidewalls of the fin, a gate electrode over the gate dielectric, and a contact over and extending into the gate electrode, wherein the contact has a first width above the gate electrode and a second width within the gate electrode, the first width being smaller than the second width.
US09761673B2 Amorphous p-type oxide for a semiconductor device
A p-type oxide which is amorphous and is represented by the following compositional formula: xAO.yCu2O where x denotes a proportion by mole of AO and y denotes a proportion by mole of Cu2O and x and y satisfy the following expressions: 0≦x<100 and x+y=100, and A is any one of Mg, Ca, Sr and Ba, or a mixture containing at least one selected from the group consisting of Mg, Ca, Sr and Ba.
US09761672B1 Semiconductor component including aluminum silicon nitride layers
There are disclosed herein various implementations of a semiconductor component including one or more aluminum silicon nitride layers. The semiconductor component includes a substrate, a group III-V intermediate body situated over the substrate, a group III-V buffer layer situated over the group III-V intermediate body, and a group III-V device fabricated over the group III-V buffer layer. The group III-V intermediate body includes the one or more aluminum silicon nitride layers.
US09761669B1 Seed-mediated growth of patterned graphene nanoribbon arrays
Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays, and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a seed-mediated, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of a semiconductor substrate and the orientation of the seed particles on the substrate are used to orient the graphene nanoribbon crystals preferentially along a single [110] direction of the substrate.
US09761668B2 Semiconductor device
A semiconductor device includes a first conductivity type semiconductor substrate, a second conductivity type semiconductor layer which is formed on the semiconductor substrate so as to be in contact with the semiconductor substrate, a first conductivity type body region which is formed in a front surface portion of the semiconductor layer, a second conductivity type source region which is formed in a front surface portion of the body region, a second conductivity type drain region which is formed apart from the body region, a gate insulating film which is formed in a front surface of the semiconductor layer so as to be in contact with the body region, a thick insulating film which is formed integrally with the gate insulating film so as to cover the semiconductor layer between the gate insulating film and the drain region and a gate electrode which is opposite to the body region via the gate insulating film. The body region includes a first portion in which a boundary with the semiconductor layer is in contact with the gate insulating film and a second portion in which a boundary with the semiconductor layer is in contact with the thick insulating film.
US09761667B2 Semiconductor structure with a silicon germanium alloy fin and silicon germanium alloy pad structure
A semiconductor structure is provided that includes a silicon germanium alloy fin having a second germanium content located on a first portion of a substrate. The structure further includes a laterally graded silicon germanium alloy material portion located on a second portion of the substrate. The laterally graded silicon germanium alloy material portion is spaced apart from the silicon germanium alloy fin and has end portions having the second germanium content and a middle portion located between the end portions that has a first germanium content that is less than the second germanium content.
US09761661B2 Stacked strained and strain-relaxed hexagonal nanowires
A method for forming nanowires includes forming a plurality of epitaxial layers on a substrate, the layers including alternating material layers with high and low Ge concentration and patterning the plurality of layers to form fins. The fins are etched to form recesses in low Ge concentration layers to form pillars between high Ge concentration layers. The pillars are converted to dielectric pillars. A conformal material is formed in the recesses and on the dielectric pillars. The high Ge concentration layers are condensed to form hexagonal Ge wires with (111) facets. The (111) facets are exposed to form nanowires.
US09761660B2 Manufacturable spin and spin-polaron interconnects
Manufacturable spin and spin-polaron interconnects are disclosed that do not exhibit the same increase in resistivity shown by Cu interconnects associated with decreasing linewidth. These interconnects rely on the transmission of spin as opposed to charge. Two types of graphene based interconnect approaches are explored, one involving the injection and diffusive transport of discrete spin-polarized carriers, and the other involving coherent spin polarization of graphene charge carriers due to exchange interactions with localized substrate spins. Such devices are manufacturable as well as scalable (methods for their fabrication exist, and the interconnects are based on direct growth, rather than physical transfer or metal catalyst formation). Performance at or above 300 K, as opposed to cryogenic temperatures, is the performance criteria.
US09761657B2 Metal-oxide-semiconductor transistor and method of forming gate layout
A metal-oxide-semiconductor transistor includes a substrate, a gate insulating layer disposed on the surface of the substrate layer, a metal gate disposed on the gate insulating layer and having at least one plug hole, at least one dielectric plug disposed in the plug hole, and two diffusion regions disposed at two sides of the metal gate in the substrate. The metal gate is configured to operate under an operation voltage greater than 5 v.
US09761648B2 Image display apparatus
An image display apparatus includes: a first pixel circuit including a driving transistor that drives a light emitting element and includes a gate electrode on a substrate, a semiconductor layer and a pair of source-drain electrodes; a second pixel circuit disposed adjacent to the first pixel circuit; a second pixel electrode that is formed above the second pixel circuit and is electrically connected to one of the pair of source-drain electrodes of the driving transistor of the first pixel circuit; and a top metal electrode that is electrically connected to one of the pair of source-drain electrodes and is formed to cover at least an entire channel region of the semiconductor layer from above.
US09761646B2 Organic light-emitting diode display
An organic light-emitting diode display is disclosed. The display includes a semiconductor layer formed over a substrate, a scan line formed over the semiconductor layer and configured to provide a scan signal, and a light emission control line formed over the semiconductor layer and configured to provide a light emission control signal. The display includes a data line configured to provide a data voltage and a driving voltage line configured to provide a driving voltage, wherein the driving voltage line crosses the scan line and is electrically insulated from the scan line. A switching transistor is electrically connected to the scan line and the data line and includes a switching drain electrode. A driving transistor includes a driving source electrode electrically connected to the switching drain electrode. Any one of the semiconductor layer and the light emission control line includes an extension at least partially overlapping the data line.
US09761643B2 Hybrid display assembly including a solar cell
Assembly for the display of at least one piece of information for a portable object, this display assembly (1) including a first, at least partially transparent, display device (2) which is located on the side of an observer (4) and arranged to display at least a first piece of information, a second, at least partially transparent, display device (6) for displaying at least a second piece of information and a solar cell (10) being disposed in that order underneath the first display device (2), the first and second display devices (2, 6) being capable of switching between an active state in which they display information and a passive state in which they do not display information.
US09761641B2 Color filter substrate and method for manufacturing the same, OLED display panel and display apparatus
Embodiments of the present invention disclose a color filter substrate including: a base plate, and a black matrix layer and a barrier pad layer disposed stackedly in sequence on the base plate, the barrier pad layer including a plurality of barrier pads disposed on the same layer; wherein, an orthographic projection of a pattern of each barrier pad onto the base plate is located within a region where a pattern of the black matrix layer is located; and, a surface of each barrier pad is provided with an auxiliary functional layer for absorption or reflection of a light irradiated on the surface of each barrier pad. Correspondingly, embodiments of the present invention disclose a method for manufacturing a color filter substrate, an OLED display panel and a display apparatus.
US09761638B2 Organic EL display panel, display device using same, and method for producing organic EL display panel
An organic EL display panel includes: a first pixel electrode and a red organic light-emitting layer sequentially disposed in red subpixel region; a second pixel electrode and a green organic light-emitting layer sequentially disposed in green subpixel region; a third pixel electrode and a first blue organic light-emitting layer sequentially disposed in blue subpixel region; a charge generation layer disposed above the red, green, and first blue light-emitting layers; a second blue organic light-emitting layer disposed on the charge generation layer in the entire subpixel regions; a counter electrode disposed above the second blue light-emitting layer in the entire subpixels regions; a first light conversion layer disposed above the second blue light-emitting layer in the red subpixel region, and converts blue light to red light; and a second light conversion layer disposed above the second blue light-emitting layer in the green subpixel region, and converts blue light to green light.
US09761635B1 Selector device for two-terminal memory
Disclosed is a solid state memory having a non-linear current-voltage (I-V) response. By way of example, the solid state memory can be used as a selector device. The selector device can be formed in series with a non-volatile memory device via a monolithic fabrication process. Further, the selector device can provide a substantially non-linear I-V response suitable to mitigate leakage current for the nonvolatile memory device. In various disclosed embodiments, the series combination of the selector device and the non-volatile memory device can serve as one of a set of memory cells in a 1-transistor, many-resistor resistive memory cell array.
US09761634B2 Electronic device
This patent document provides an electronic device capable of improving the characteristics of a variable resistance element. An electronic device in accordance with an implementation of this document includes semiconductor memory, and the semiconductor memory includes a variable resistance element capable of being included in the semiconductor memory, and including a fixed layer, a tunnel barrier layer, and a variable layer laminated therein, wherein the variable resistance element is capable of allowing a slope of a graph of a switching current density as a function of an external magnetic field to be proportional to the square of “H/Hk” when the magnetization directions of the fixed layer and the variable layer are switched from a parallel state to an antiparallel state. In accordance with the electronic device of this patent document, the characteristics of the variable resistance element can be improved.
US09761631B2 Radiation image sensor
A radiation image sensor includes a charge generation section and, a circuit board accumulating and transferring charge generated in the charge generation section. The circuit board includes a semiconductor substrate, a capacitive section accumulating the charge generated in the charge generation section, and a MOS transistor in the semiconductor substrate. The MOS transistor includes one end connected to the capacitive section and another end connected to a wire transferring the charge. The capacitive section includes a partial region of the semiconductor substrate, a conductor layer disposed on the partial region and electrically connected to the charge generation section, and an insulating layer interposed between the partial region and the conductor layer.
US09761629B2 Image sensor device and method
A system and method for reducing cross-talk between photosensitive diodes is provided. In an embodiment a first color filter is formed over a first photosensitive diode and a second color filter is formed over a second photosensitive diode, and a gap is formed between the first color filter and the second color filter. The gap will serve to reflect light that otherwise would have crossed from the first color filter to the second color filter, thereby reducing cross-talk between the first photosensitive diode and the second photosensitive diode. A reflective grid may also be formed between the first photosensitive diode and the second photosensitive diode in order to assist in the reflection and further reduce the amount of cross-talk.
US09761628B2 Imaging element and imaging device
Provided is an imaging element including: a light receiving element 20; and a stacked structure body 130 that is placed on a light incident side of the light receiving element 20 and in which a semiconductor layer 131 and a nanocarbon film 132 to which a prescribed electric potential is applied are stacked from the light receiving element side. The semiconductor layer 131 is made of a wide gap semiconductor with an electron affinity of 3.5 eV or more, or is made of a semiconductor with a band gap of 2.0 eV or more and an electron affinity of 3.5 eV or more.
US09761625B2 Image sensor having overlapping exposure regions and pixels with misaligned photodiodes
In a solid state image sensor which has two photodiodes juxtaposed in a predetermined direction in each pixel and is formed by carrying out divided exposure, that is, exposure treatment of an entire chip by a plurality of times of exposure, image quality is improved and autofocusing speed is increased. Provided is a solid state image sensor having a first exposure region having a first region and a second exposure region having a second region. They overlap with each other in a third region between the first and second regions. In a pixel formed in the third region, a photodiode formed through a mask for first exposure region is placed at a position closer to the side of the second region than another photodiode formed through a mask for second exposure region is.
US09761622B2 CMOS image sensor structure with crosstalk improvement
A semiconductor device includes a substrate, a device layer, a composite grid structure, a passivation layer and color filters. The device layer overlies the substrate. The composite grid structure overlies the device layer. The composite grid structure includes cavities passing through the composite grid structure, and the composite grid structure includes a metal grid layer and a dielectric grid layer stacked on the metal grid layer. The passivation layer conformally covers the composite grid structure. The color filters respectively fill the cavities.
US09761619B2 Curved image sensor, method for fabricating the same, and electronic device having the same
The curved image sensor may include: a first substrate including a plurality of photoelectric conversion elements and having a curved first surface; a bonding pattern formed over a second surface opposite to the first surface of the first substrate, formed along an edge of the first substrate, and having an opening; a second substrate bonded to the second surface of the first substrate by the bonding pattern; and a sealing material filling the opening so that a cavity defined by the first substrate, the second substrate, and the bonding pattern is sealed by the sealing material.
US09761609B2 Structure having group III-V, Ge and SiGe Fins on insulator
A method provides a first substrate supporting an insulator layer having trenches formed therein; filling the trenches using an epitaxial growth process with at least semiconductor material; planarizing tops of the filled trenches; forming a first layer of dielectric material on a resulting planarized surface; inverting the first substrate wafer to place the first layer of dielectric material in contact with a second layer of dielectric material on a second substrate; bonding the first substrate to the second substrate through the first and second layers of dielectric material to form a common layer of dielectric material; and removing the first substrate and a first portion of the filled trenches to leave a second portion of the filled trenches disposed upon the common dielectric layer. The removed first portion of the filled trenches contains dislocation defects. The method then removes the insulator layer to leave a plurality of Fin structures.
US09761607B2 Method for producing strained semi-conductor blocks on the insulating layer of a semi-conductor on insulator substrate
A method for producing a microelectronic device is provided, including forming on an insulating layer of a semi-conductor on insulator type substrate, a first semi-conductor block covered with a first strain zone configured to induce a compressive strain in the first block and a second semi-conductor block covered with a second strain zone configured to induce a tensile strain in the second block, the first block and the second block each being formed of a lower region based on amorphous semi-conductor material, covered with an upper region of crystalline semi-conductor material in contact with one of the strain zones; and recrystallizing the lower region of the first and second blocks while using the upper region of crystalline material as starting zone for a recrystallization front.
US09761605B1 Semiconductor memory device
According to one embodiment, a semiconductor memory device includes a substrate; a stacked body; a first columnar portion; a second columnar portion; and a plurality of first interconnects. The stacked body is provided on the substrate and includes a plurality of electrode layers separately stacked each other. A distance between the first columnar portion and one end of the plurality of electrode layers in the first direction is smaller than a distance between the second columnar portion and the other end of the plurality of electrode layers in the first direction. In the same electrode layer, a first width of a first charge storage film of the first columnar portion is smaller than a second width of a second charge storage film of the second columnar portion.
US09761593B2 Semiconductor device
A semiconductor device includes: a substrate having a plurality of active regions; a plurality of bit lines extending in a first direction, the plurality of bit lines being separate from the substrate with an insulating layer therebetween; a plurality of first insulating lines extending in a second direction that is different from the first direction, wherein the plurality of first insulating lines intersect the plurality of bit lines and have upper surfaces having levels which are higher than those of upper surfaces of the plurality of bit lines relative to the substrate; and a plurality of first contact structures connected to the plurality of active regions, the plurality of first contact structures being disposed in an area defined by the plurality of bit lines and the plurality of first insulating lines.
US09761589B2 Method of operating semiconductor memory device with floating body transistor using silicon controlled rectifier principle
Methods of operating semiconductor memory devices with floating body transistors, using a silicon controlled rectifier principle are provided, as are semiconductor memory devices for performing such operations. A method of maintaining the data state of a semiconductor dynamic random access memory cell is provided, wherein the memory cell comprises a substrate being made of a material having a first conductivity type selected from p-type conductivity type and n-type conductivity type; a first region having a second conductivity type selected from the p-type and n-type conductivity types, the second conductivity type being different from the first conductivity type; a second region having the second conductivity type, the second region being spaced apart from the first region; a buried layer in the substrate below the first and second regions, spaced apart from the first and second regions and having the second conductivity type; a body region formed between the first and second regions and the buried layer, the body region having the first conductivity type; and a gate positioned between the first and second regions and adjacent the body region. The memory cell is configured to store a first data state which corresponds to a first charge in the body region in a first configuration, and a second data state which corresponds to a second charge in the body region in a second configuration. The method includes: providing the memory cell storing one of the first and second data states; and applying a positive voltage to a substrate terminal connected to the substrate beneath the buried layer, wherein when the body region is in the first state, the body region turns on a silicon controlled rectifier device of the cell and current flows through the device to maintain configuration of the memory cell in the first memory state, and wherein when the memory cell is in the second state, the body region does not turn on the silicon controlled rectifier device, current does not flow, and a blocking operation results, causing the body to maintain the second memory state.
US09761587B2 Tall strained high percentage silicon germanium fins for CMOS
A silicon germanium alloy (SiGe) fin having a first germanium content is provided within first and second device regions. Each SiGe fin is located on a sacrificial material stack and an oxide material surrounds each SiGe fin. A germanium layer is formed atop each SiGe fin within one of the device regions, while a SiGe layer having a second germanium content less than the first germanium content is formed atop each SiGe fin within the other device region. An exposed surface of each of the germanium layer and the SiGe layer is then bonded to a base substrate. The sacrificial material stack is removed and thereafter the oxide material is recessed to expose a portion of each SiGe fin in the first and second device regions. Each SiGe fin contacting the germanium layer compressively strained, and each SiGe fin contacting the SiGe layer is tensely strained.
US09761580B1 Methods of forming an array comprising pairs of vertically opposed capacitors and arrays comprising pairs of vertically opposed capacitors
A method of forming an array comprising pairs of vertically opposed capacitors comprises forming an upwardly-open conductive lining in individual capacitor openings in insulative-comprising material. An elevational mid-portion of individual of the conductive linings is removed to form an upper capacitor electrode lining and a lower capacitor electrode lining that are elevationally separate and spaced from one another in the individual capacitor openings. A capacitor insulator is formed radially inward of the upper and lower capacitor electrode linings in the individual capacitor openings. Conductive material is formed radially inward of the capacitor insulator in the individual capacitor openings and elevationally between the capacitor electrode linings. The conductive material is formed to comprise a shared capacitor electrode that is shared by vertically opposed capacitors in individual of the pairs of vertically opposed capacitors. Additional methods and structure independent of method are disclosed.
US09761579B2 C-shaped resistor and semiconductor device including the same
A resistor includes a first conductive layer; a second conductive layer protruding from the first conductive layer; a third conductive layer located above and facing the first conductive layer to face the first conductive layer; and at least two contact plugs electrically coupled to the third conductive layer.
US09761575B1 Integrated circuit containing standard logic cells and library-compatible, NCEM-enabled fill cells, including at least chamfer-short-configured, AACNT-short-configured, GATE-short-configured, and TS-short-configured, NCEM-enabled fill cells
An IC includes logic cells, selected from a standard cell library, and fill cells, configured for compatibility with the standard logic cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The IC includes such NCEM-enabled fill cells configured to enable detection and/or measurement of a variety of short-circuit failure modes, including at least one chamfer-short-related failure mode, one AACNT-short-related failure mode, one GATE-short-related failure mode, and one TS-short-related failure mode.
US09761569B2 Leadframe-based system-in-packages having sidewall-mounted surface mount devices and methods for the production thereof
Embodiments of a method for fabricating System-in-Packages (SiPs) are provided, as are embodiments of a SiP. In one embodiment, the method includes producing a first package including a first molded package body having a sidewall. A first leadframe is embedded within the first molded package body and having a first leadframe lead exposed through the sidewall. In certain implementations, a semiconductor die may also be encapsulated within the first molded package body. A Surface Mount Device (SMD) is mounted to the sidewall of the first molded package body such that a first terminal of the SMD is in ohmic contact with the first leadframe lead exposed through the sidewall.
US09761567B2 Power semiconductor module and composite module
A power semiconductor module includes a wiring member that electrically connects a front surface electrode of a semiconductor element and a circuit board of an insulating substrate in a housing. A resin provided in the housing covers the wiring member, and has a height in the vicinity of the wiring member. A cover covering the periphery of external terminals is provided between the resin and a first lid in the housing. A second lid is provided further outside the first lid in an aperture portion of the housing, and the space between the second lid and the first lid is filled with another resin.
US09761566B1 Multi-die structure and method of forming same
A method includes forming a semiconductor device comprising a semiconductor die surrounded by a molding material, wherein a contact metal of the semiconductor device has an exposed edge, placing the semiconductor device into a tray having an inner wall and an outer wall, wherein the inner wall is underneath the semiconductor device and between an outer edge of the semiconductor device and an outer edge of bumps of the semiconductor device, depositing a metal shielding layer on the semiconductor device and the tray, wherein the metal shielding layer is in direct contact with the exposed edge of the contact metal and separating the semiconductor device from the tray.
US09761564B1 Layout of transmission vias for memory device
Apparatuses and methods for supplying power to a plurality of dies are described. An example apparatus includes: a substrate; first, second and third memory cell arrays arranged in line in a first direction in the substrate; a first set of through electrodes arranged between the first and second memory cell arrays, each of the first set of through electrodes penetrating through the substrate, the first set of through electrodes including first and second through electrodes; and a second set of through electrodes arranged between the second and third memory cell arrays, each of the second set of through electrodes penetrating through the substrate, the second set of through electrodes including third and fourth through electrodes.
US09761559B1 Semiconductor package and fabrication method thereof
A semiconductor package includes a first logic die, a second logic die disposed in close proximity to the first logic die, a bridge memory die coupled to both the first logic die and the second logic die, a redistribution layer (RDL) structure coupled to the first logic die and the second logic die, and a molding compound at least partially encapsulating the first logic die, the second logic die, and the bridge memory die. The first logic die and the second logic die are coplanar.
US09761554B2 Ball bonding metal wire bond wires to metal pads
An apparatus, and methods therefor, relates generally to an integrated circuit package. In such an apparatus, a platform substrate has a copper pad. An integrated circuit die is coupled to the platform substrate. A wire bond wire couples a contact of the integrated circuit die and the copper pad. A first end of the wire bond wire is ball bonded with a ball bond for direct contact with an upper surface of the copper pad. A second end of the wire bond wire is stitch bonded with a stitch bond to the contact.
US09761552B2 Electronic apparatus and method for fabricating the same
An electronic apparatus includes a first electronic part with a first terminal, a second electronic part with a second terminal opposite the first terminal, and a joining portion which joins the first terminal and the second terminal. The joining portion contains a pole-like compound extending in a direction in which the first terminal and the second terminal are opposite to each other. The joining portion contains the pole-like compound, so the strength of the joining portion is improved. When the first terminal and the second terminal are joined, the temperature of one of the first electronic part and the second electronic part is made higher than that of the other. A joining material is cooled and solidified in this state. By doing so, the pole-like compound is formed.
US09761545B2 Isolator and method of manufacturing isolator
An isolator is configured by a transmission circuit, a transformer, and a reception circuit. A first coil of the transformer is disposed on a back surface of a first semiconductor substrate; a transmission circuit and a second coil of the transformer are disposed on a front surface. The first coil is embedded within a coil trench, is led out through an embedded via-metal-film to a substrate front surface, and is electrically connected to the transmission circuit. The second coil is disposed on an insulating layer of the substrate front surface. The reception circuit is disposed on a front surface of a second semiconductor substrate. The second coil and the reception circuit are electrically connected to each other by connecting first and third electrode pads disposed respectively on the front surfaces of the first and second semiconductor substrates through wires.
US09761544B1 Semiconductor device
A semiconductor device is provided with: a semiconductor integrated circuit having a bump mounting surface; and a thin-film capacitor portion connected to the bump mounting surface via a bump. The semiconductor integrated circuit includes a first power supply pad, and a second power supply pad. The thin-film capacitor portion includes a first electrode layer connected to the first power supply pad, a second electrode layer connected to the second power supply pad, and a dielectric layer formed between the first electrode layer and the second electrode layer. The semiconductor device is provided with an electric power supply path configured to supply electric power to the semiconductor integrated circuit, and a thin plate-shaped metal resistor portion provided in the electric power supply path and made from a metal based high-resistance material having a volume resistivity higher than a volume resistivity of the first electrode layer and the second electrode layer.
US09761543B1 Integrated circuits with thermal isolation and temperature regulation
Integrated circuits with a molded package including a cavity and a semiconductor die spaced from an interior surface of the molded package within the cavity. The semiconductor die includes one or more electrical components, a thermal control component to control the temperature of the electrical component, and a driver to provide a current or voltage signal to the thermal control component at least partially according to a setpoint signal.
US09761540B2 Wafer level package and fabrication method thereof
A semiconductor device that includes a redistribution layer (RDL) is disclosed. A chip is mounted on the RDL within a chip mounting area. The RDL is electrically connected to the chip. A molding compound covers and encapsulates the chip. A first stress-relief feature is embedded in the molding compound within a peripheral area adjacent to the chip mounting area. A second stress-relief feature is embedded in the molding compound within the chip mounting area. The first stress-relief feature is composed of a first material. The second stress-relief feature is composed of a second material that is different from the first material.
US09761538B1 Method for making a shielded integrated circuit (IC) package with an electrically conductive polymer layer
A method for making shielded integrated circuit (IC) packages includes providing spaced apart IC dies carried by a substrate and covered by a common encapsulating material, and cutting through the common encapsulating material between adjacent IC dies to define spaced apart IC packages carried by the substrate. An electrically conductive layer is positioned over the spaced apart IC packages and fills spaces between adjacent IC packages. The method further includes cutting through the electrically conductive layer between adjacent IC packages and through the substrate to form the shielded IC packages.
US09761537B2 Shielded radio-frequency module having reduced area
Shielded radio-frequency (RF) module having reduced area. In some embodiments, an RF module can include a packaging substrate configured to receive a plurality of components, and a plurality of shielding wirebonds implemented on the packaging substrate and configured to provide RF shielding functionality for one or more regions on the packaging substrate. The packaging substrate can include a first area associated with implementation of each shielding wirebond. The RF module can further include one or more devices mounted on the packaging substrate. The packaging substrate can further include a second area associated with mounting of each of the one or more devices. Each device can be mounted with respect to a corresponding shielding wirebond such that the second area associated with the device overlaps at least partially with the first area associated with the corresponding shielding wirebond.
US09761535B1 Interposer, semiconductor package with the same and method for preparing a semiconductor package with the same
One aspect of the present disclosure provides an interposer for a semiconductor package. The interposer includes a substrate portion and a wall portion disposed on the substrate portion. The substrate portion has a first side, a second side, and an electrical interconnect structure between the first side and the second side. The substrate portion is substantially free from conductive through vias, and the cost for fabricating through silicon vias (TSV) is very expensive; therefore, the fabrication cost of the interposer can be dramatically reduced. In addition, the wall portion is disposed on the first side and defining an aperture exposing a portion of the electrical interconnect structure. At least one semiconductor die can be bonded to the interposer and inside the aperture. Consequently, the height of the semiconductor package is lower than the design of disposing the semiconductor die on top of the interposer.
US09761534B2 Semiconductor package, semiconductor device using the same and manufacturing method thereof
A semiconductor package includes a package substrate, a first electronic component and a second package body. The package substrate includes a first conductive layer, a first pillar layer, a first package body and a second conductive layer, wherein the first pillar layer is formed on the first conductive layer, the first package body encapsulates the first conductive layer and the first pillar layer, and the second conductive layer electrically connects to the first pillar layer. The first electronic component is disposed above the second conductive layer of the package substrate. The second package body encapsulates the first electronic component and the second conductive layer.
US09761533B2 Interposer-less stack die interconnect
Techniques for providing a semiconductor assembly having an interconnect die for die-to-die interconnection, an IC package, a method for manufacturing, and a method for routing signals in an IC package are described. In one implementation, a semiconductor assembly is provided that includes a first interconnect die coupled to a first integrated circuit (IC) die and a second IC die by inter-die connections. The first interconnect die includes solid state circuitry that provides a signal transmission path between the IC dice.
US09761532B2 Hybrid interconnect structure and electronic device employing the same
A hybrid interconnect structure includes a graphene layer between a non-metallic material layer and a metal layer, and a first interfacial bonding layer between the non-metallic material layer and the graphene layer, or the metal layer and the graphene layer. The graphene layer connects the non-metallic material layer and the metal layer, and the first bonding layer includes a metallic material.
US09761530B2 Graphene wiring and method for manufacturing the same
Graphene wiring of an embodiment has a graphene intercalation compound including a multilayer graphene having graphene sheets stacked therein and an interlayer substance disposed between layers of the multilayer graphene, and an interlayer cross-linked layer connected to a side surface of the multilayer graphene. The interlayer cross-linked layer has a cross-linked molecular structure including multiple bonded molecules cross-linking the graphene sheets included in the multilayer graphene.
US09761522B2 Wireless charging package with chip integrated in coil center
A package includes a device die, and an encapsulating material encapsulating the device die therein. The encapsulating material has a top surface coplanar with a top surface of the device die. A coil extends from the top surface to a bottom surface of the encapsulating material, and the device die is in the region encircled by the coil. At least one dielectric layer is formed over the encapsulating material and the coil. A plurality of redistribution lines is in the at least one dielectric layer. The coil is electrically coupled to the device die through the plurality of redistribution lines.
US09761516B1 Via and trench filling using injection molded soldering
A method includes forming one or more vias in a substrate, forming a first photoresist layer on a top surface of the substrate and a second photoresist layer on a bottom surface of the substrate, patterning the first photoresist layer and the second photoresist layer to remove at least a first portion of the first photoresist layer and at least a second portion of the second photoresist layer, filling the one or more vias, the first portion and the second portion with solder material using injection molded soldering, and removing remaining portions of the first photoresist layer and the second photoresist layer.
US09761514B2 Substrate for integrated circuit devices including multi-layer glass core and methods of making the same
Disclosed are embodiments of a substrate for an integrated circuit (IC) device. The substrate includes a core comprised of two or more discrete glass layers that have been bonded together. A separate bonding layer may be disposed between adjacent glass layers to couple these layers together. The substrate may also include build-up structures on opposing sides of the multi-layer glass core, or perhaps on one side of the core. Electrically conductive terminals may be formed on both sides of the substrate, and an IC die may be coupled with the terminals on one side of the substrate. The terminals on the opposing side may be coupled with a next-level component, such as a circuit board. One or more conductors extend through the multi-layer glass core, and one or more of the conductors may be electrically coupled with the build-up structures disposed over the core. Other embodiments are described and claimed.
US09761513B2 Method of fabricating three dimensional integrated circuit
A method of fabricating a three dimensional integrated circuit comprises forming a redistribution layer on a first side of a packaging component, forming a holding chamber in the redistribution layer, attaching an integrated circuit die on the first side of the packaging component, wherein an interconnect bump of the integrated circuit die is inserted into the holding chamber, applying a reflow process to the integrated circuit die and the packaging component and forming an encapsulation layer on the packaging component.
US09761507B1 Stacked rectifiers in a package
A rectifier package is provided, which comprises a first rectifier die having an anode and a cathode conductively bonded to a first conductive film on a first surface. The rectifier package also comprises a second rectifier die having an anode and a cathode conductively bonded to the first conductive film on a second surface, which is opposite to the first surface. The first conductive film is in contact with both anodes or both cathodes of the first rectifier die and the second rectifier die.
US09761503B2 Packaging mechanisms for dies with different sizes of connectors
Embodiments of mechanisms for testing a die package with multiple packaged dies on a package substrate use an interconnect substrate to provide electrical connections between dies and the package substrate and to provide probing structures (or pads). Testing structures, including daisy-chain structures, with metal lines to connect bonding structures connected to signals, power source, and/or grounding structures are connected to probing structures on the interconnect substrate. The testing structures enable determining the quality of bonding and/or functionalities of packaged dies bonded. After electrical testing is completed, the metal lines connecting the probing structures and the bonding structures are severed to allow proper function of devices in the die package. The mechanisms for forming test structures with probing pads on interconnect substrate and severing connecting metal lines after testing could reduce manufacturing cost.
US09761501B2 Method of manufacturing a semiconductor device and inspecting an electrical characteristic thereof using socket terminals
Improvement in yield of a semiconductor device is obtained. In addition, increase in service life of a socket terminal is obtained. A projecting portion PJ1 and a projecting portion PJ2 are provided in an end portion PU of a socket terminal STE1. Thus, it is possible to enable contact between a lead and the socket terminal STE in which a large current is caused to flow, at two points by a contact using the projecting portion PJ1 and by a contact using the projecting portion PJ2, for example. As a result, the current flowing from the socket terminal STE1 to the lead flows by being dispersed into a path flowing in the projecting portion PJ1 and a path flowing in the projecting portion PJ2. Accordingly, it is possible to suppress increase of temperature of a contact portion between the socket terminal STE1 and the lead even in a case where the large current is caused to flow between the socket terminal STE1 and the lead.
US09761499B2 Semiconductor device structure with 110-PFET and 111-NFET current flow direction
A FinFET comprises a hybrid substrate having a top wafer of (100) silicon, a handle wafer of (110) silicon, and a buried oxide layer between the top wafer and the handle wafer; a first set of fins disposed in the top wafer and oriented in a <110> direction of the (100) silicon; and a second set of fins disposed in the handle wafer and oriented in a <112> direction of the (110) silicon. The first set of fins and the second set of fins are aligned.
US09761498B2 Selective oxidation of buried silicon-germanium to form tensile strained silicon FinFETs
An integrated circuit included n-type FinFETs in an n-region and p-type FinFETs in a p-region. The integrated circuit includes: an n-type fin in the n-region comprising a silicon (Si) fin portion disposed on an oxidized fin portion, the Si fin portion consisting essentially of Si, and the oxidized fin portion consisting essentially of Si, germanium (Ge) and oxygen; and a p-type fin in the p-region consisting essentially of Si and Ge.
US09761497B2 Techniques and configurations to reduce transistor gate short defects
Embodiments of the present disclosure describe techniques and configurations to reduce transistor gate short defects. In one embodiment, a method includes forming a plurality of lines, wherein individual lines of the plurality of lines comprise a gate electrode material, depositing an electrically insulative material to fill regions between the individual lines and subsequent to depositing the electrically insulative material, removing a portion of at least one of the individual lines to isolate gate electrode material of a first transistor device from gate electrode material of a second transistor device. Other embodiments may be described and/or claimed.
US09761495B1 Methods of performing concurrent fin and gate cut etch processes for FinFET semiconductor devices and the resulting devices
A method includes forming a plurality of fins above a substrate. A plurality of gate structures is formed above the plurality of fins. A first mask layer is formed above the plurality of fins and the plurality of gate structures. The first mask layer has at least one fin cut opening and at least one gate cut opening defined therein. A first portion of a first fin of the plurality of fins disposed below the fin cut opening is removed to define a fin cut cavity. A second portion of a first gate structure of the plurality of gate structures disposed below the gate cut opening is removed to define a gate cut cavity. An insulating material layer is concurrently formed in at least a portion of the fin cut cavity and the gate cut cavity.
US09761494B2 Semiconductor structure and method of forming the same
A semiconductor structure includes a gate structure disposed on a substrate. At least one lightly doped region adjoins the gate structure in the substrate. The at least one lightly doped region has a first conductivity type. A source feature and a drain feature are on opposite sides of the gate structure in the substrate. The source feature and the drain feature have the first conductivity type. The source feature is in the at least one lightly doped region. A bulk pick-up region adjoins the source feature in the at least one lightly doped region. The bulk pick-up region has a second conductivity type.
US09761492B2 Processing method of optical device wafer
A processing method for optical device wafers includes a shielded tunnel forming step and a dividing step. In the shielded tunnel forming step, a sapphire substrate is irradiated with a pulse laser beam having such a wavelength as to be transmitted through the sapphire substrate along regions corresponding to planned dividing lines. The light focus point of the beam is positioned inside the substrate from the back surface side of the substrate. Fine pores and amorphous regions that shield the fine pores form shielded tunnels along the planned dividing lines. In the dividing step, an external force is applied to the optical device wafer, and the optical device wafer is divided into individual optical device chips along the planned dividing lines. In the shielded tunnel forming step, a spherical aberration is generated by causing the laser beam to be incident on a condensing lens with a divergence angle.
US09761490B2 Method for forming contact holes in a semiconductor device
A method for forming a semiconductor device includes forming a device structure having a floating gate, control gate, sidewall spacers, and source and drain regions. The device structure includes contact-hole regions and non-contact-hole regions. The method also includes forming a photo resist layer overlying the contact hole regions in the device structure and exposing the non-contact-hole regions, and forming a protective layer overlying the sacrificial layer and the exposed non-contact-hole regions. Next, an interlayer dielectric layer overlying the protective layer, and CMP (chemical mechanical polishing) is used to remove the inter-layer dielectric layer and the protective layer from above the photo resist. The photo resist layer is then removed from the contact-hole regions to expose contact holes.
US09761486B2 Method of chip packaging
A method of forming a chip package portion having a reduced loading effect between various metal lines during a leveling process comprises forming a first layer, a passivation layer over the first layer, a second layer over the passivation layer, and a third layer over the second layer. The method also comprises forming a patterned opening having multiple depths by removing portions of the first layer, the passivation layer, the second layer, and the third layer by way of one or more removal processes that remove portions of the first layer, the passivation layer, the second layer, and the third layer in accordance with one or more patterned photoresist depositions. The method further comprises depositing a material into the patterned opening, and leveling the material deposited into the patterned opening.
US09761485B2 Catalyst layer forming method, catalyst layer forming system, and recording medium
A catalyst layer can be uniformly formed on an entire surface of a substrate and an entire inner surface of a recess. A catalyst layer forming method of forming the catalyst layer on the substrate includes a first supply processing of forming a substrate surface catalyst layer 22A by supplying a catalyst liquid on the entire surface of the substrate 2; and a second supply processing of forming a recess inner surface catalyst layer 22B by supplying the catalyst liquid to a central portion of the substrate 2 while rotating the substrate 2.
US09761484B1 Interconnect structure and fabrication thereof
Interconnect structures and processes generally include creating point defects in exposed surfaces of the dielectric layer to create a point defect region at a relatively shallow depth, wherein the point defect region is a fraction of the dielectric layer and is created with exposure to silicon, carbon, nitrogen, oxygen, or mixtures thereof such that the point defect region contains Si, C, N O, or mixtures containing at least one of the foregoing. A seed layer can be deposited and includes at least one alloying element that is effective to form an in situ self-aligned liner layer with the Si, C, N O, or mixtures containing at least one of the foregoing within the point defect region, which is formed at a depth of less than 10 nanometers. The in situ liner layer within the dielectric layer maximizes the volume fraction of the conductor of the interconnect structure.
US09761478B2 Substrate transport apparatus
A substrate transport apparatus including a frame, an upper arm rotatably mounted to the frame about a shoulder axis, a forearm rotatably mounted to the upper arm about an elbow axis where the forearm includes stacked forearm sections dependent from the upper arm through a common joint, and independent stacked end effectors rotatably mounted to the forearm, the forearm being common to the independent stacked end effectors, wherein at least one end effector is mounted to the stacked forearm sections at a wrist axis, where the forearm is configured such that spacing between the independent stacked end effectors mounted to the stacked forearm sections is decoupled from a height build up between end effectors accommodating pass through instrumentation.
US09761477B2 Pre-package and methods of manufacturing semiconductor package and electronic device using the same
Methods of fabricating semiconductor packages are provided. One of the methods includes forming a protection layer including metal on a first surface of a substrate to cover a semiconductor device disposed on the first surface of the substrate, attaching a support substrate to the protection layer by using an adhesive member, processing a second surface of the substrate opposite to the protection layer to remove a part of the substrate, and detaching the support substrate from the substrate.
US09761476B2 Dicing film and dicing die-bonding film
The present invention relates to a dicing film including: a substrate film; and a cohesive layer, wherein a storage modulus of the cohesive layer at 30° C. is 3*105 to 4*106 Pa, and the cohesive layer has a degree of cross-linking of 80% to 99%, a dicing die-bonding film including the dicing film, and a dicing method of a semiconductor wafer using the dicing die-bonding film.
US09761475B2 Film for semiconductor device production, method for producing film for semiconductor device production, and method for semiconductor device production
The present invention relates to a film for semiconductor device production, which includes: a separator; and a plurality of adhesive layer-attached dicing tapes each including a dicing tape and an adhesive layer laminated on the dicing tape, which are laminated on the separator at a predetermined interval in such a manner that the adhesive layer attaches to the separator, in which the separator has a cut formed along the outer periphery of the dicing tape, and the depth of the cut is at most ⅔ of the thickness of the separator.
US09761473B2 Substrate supporting unit and substrate processing apparatus manufacturing method of the substrate supporting unit
Provided are a substrate supporting unit and a substrate processing apparatus, and a method of manufacturing the substrate supporting unit. The substrate supporting unit includes a susceptor on which a substrate is placed on a top surface thereof, one or more heat absorbing members which are capable of being converted between a mounted position at which the heat absorbing member is disposed on an upper portion of the susceptor to thermally contact the susceptor and a released position at which the heat absorbing member is separated from the upper portion of the susceptor, the one or more heat absorbing members absorbing heat of the susceptor at the mounted position, and an edge ring having a plurality of fixing slots in which the heat absorbing members are selectively inserted and fixed.
US09761466B2 Apparatus and method for cleaning semiconductor substrate
A cleaning apparatus for a semiconductor substrate includes a belt conveyor, a treatment head that executes cleaning, rinsing and drying treatments, a rinse water supplying mechanism that supplies rinse water adjusted to a predetermined pH value to the treatment head and configured to rinse the substrate applies heat to the rinse water to set a rinse water temperature to 70° or above, and an optical mechanism. The treatment head is configured to rinse the substrate. The optical mechanism is configured to recognize a pattern on the semiconductor substrate so that the semiconductor substrate can be automatically placed on the belt conveyor with a direction of the recognized pattern and a feeding direction of the belt conveyor having a predetermined relationship. The treatment head includes a drying treatment mechanism configured to execute both a drying treatment with use of drying solvent and lamp annealing in execution of drying treatment.
US09761464B2 Power MOSFET and manufacturing method thereof
A power MOSFET includes a substrate, a dielectric layer, solder balls, first and second patterned-metal layers. The substrate includes an active surface, a back surface, a source region and a gate region on the active surface, and a drain region on the back surface. The first patterned-metal layer disposed on the active surface includes a source electrode, a gate electrode, a drain electrode and a connecting trace. The source and gate electrodes electrically connect the source and gate regions. The connecting trace located at an edge of the substrate electrically connects the drain electrode. The dielectric layer disposed on the active surface exposes the first patterned-metal layer. The second patterned-metal layer includes UBM layers covering the source, gate and drain electrodes and a connecting metal layer covering the connecting trace and extending to the edge to electrically connect the drain region. The solder balls are disposed on the UBM layers.
US09761461B2 Systems and methods for fabricating a polycrystaline semiconductor resistor on a semiconductor substrate
In accordance with embodiments of the present disclosure, an integrated circuit may include at least one region of shallow-trench isolation field oxide, at least one region of dummy diffusion, and a polycrystalline semiconductor resistor. The at least one region of shallow-trench isolation field oxide may be formed on a semiconductor substrate. The at least one region of dummy diffusion may be formed adjacent to the at least one region of shallow-trench isolation field oxide on the semiconductor substrate. The polycrystalline semiconductor resistor may comprise at least one resistor arm formed with a polycrystalline semiconductor material, wherein the at least one resistor arm is formed over each of the at least one region of shallow-trench isolation field oxide and the at least one region of dummy diffusion.
US09761454B2 Method of polishing SiC substrate
A method of polishing a SiC substrate by supplying a polishing liquid and bringing a polishing pad into contact with the SiC substrate is provided. The polishing liquid contains a permanganate, inorganic salts having an oxidizing ability, and water. The method includes: a first polishing step of polishing the SiC substrate by use of a first polishing pad; and a second polishing step of polishing the SiC substrate by use of a second polishing pad softer than the first polishing pad after the first polishing step.
US09761451B2 Cut last self-aligned litho-etch patterning
The present disclosure relates to a method of performing a semiconductor fabrication process. In some embodiments, the method is performed by forming a spacer material within openings in a first masking layer overlying a second masking layer, and forming a reverse material over a part of the spacer material. A first plurality of openings are formed within the spacer material. The first plurality of openings are separated by the reverse material. A second plurality of openings are formed within the first masking layer. The second plurality of openings are separated by the spacer material. The second masking layer is patterned according to the first plurality of openings and the second plurality of openings.
US09761450B1 Forming a fin cut in a hardmask
A method of fabricating a hard mask structure is provided. According to the method, a hard mask layer is disposed over a substrate. The hard mask layer includes a lower hard mask layer disposed over the substrate and an upper hard mask layer disposed over the lower hard mask layer. The hard mask layer is patterned and the upper hard mask layer is removed by selectively etching the upper hard mask layer until reaching the lower hard mask layer to form a top portion of the hard mask structure having a first dimension. A spacer material is disposed on a sidewall of the top portion of the hard mask structure. The lower hard mask layer is removed by selectively etching the lower mask layer until reaching the substrate to form a bottom portion of the hard mask structure having a second dimension.
US09761446B2 Methods for the synthesis of arrays of thin crystal grains of layered semiconductors SnS2 and SnS at designed locations
Methods of producing arrays of thin crystal grains of layered semiconductors, including the creation of stable atomic-layer-thick to micron-thick membranes of crystalline semiconductors by chemical vapor deposition.
US09761441B2 Physical vapor deposition methods and systems to form semiconductor films using counterbalance magnetic field generators
Embodiments relate generally to semiconductor device fabrication and processes, and more particularly, to systems and methods that implement magnetic field generators configured to generate rotating magnetic fields to facilitate physical vapor deposition (“PVD”). In one embodiment, a system generates a first portion of a magnetic field adjacent a first circumferential portion of a substrate, and can generate a second portion of the magnetic field adjacent to a second circumferential portion of the substrate. The second circumferential portion is disposed at an endpoint of a diameter that passes through an axis of rotation to another endpoint of the diameter at which the first circumferential portion resides. The second peak magnitude can be less than the first peak magnitude. The system rotates the first and second portions of the magnetic fields to decompose a target material to form a plasma adjacent the substrate. The system forms a film upon the substrate.
US09761440B2 Surface passivation on indium-based materials
The present disclosure provides a semiconductor structure in accordance with some embodiments. The semiconductor structure includes a semiconductor feature, a passivation layer that includes indium sulfide formed over a surface of the semiconductor feature. More particularly, the surface of the semiconductor feature comprises indium-based III-V compound semiconductor material.
US09761438B1 Method for manufacturing a semiconductor structure having a passivated III-nitride layer
A semiconductor structure comprising a layer of a III-N material and at least a portion of said layer being covered by a passivation layer, wherein the passivation layer comprises a first layer of SiN formed on said at least a portion of said III-N material layer and a second layer of SiN formed on said first layer of SiN; the first SiN layer having a first thickness and generating tensile stress in the structure and the second SiN layer having a second thickness and generating compressive stress in the structure.
US09761436B2 Mechanisms for forming patterns using multiple lithography processes
The present disclosure provides a method for forming patterns in a semiconductor device. The method includes providing a substrate and a patterning-target layer over the substrate; patterning the patterning-target layer to form a main pattern; forming a middle layer over the patterning-target layer and a hard mask layer over the middle layer; patterning the hard mask layer to form a first cut pattern; patterning the hard mask layer to form a second cut pattern, a combined cut pattern being formed in the hard mask layer as a union of the first cut pattern and the second cut pattern; transferring the combined cut pattern to the middle layer; etching the patterning-target layer using the middle layer as an etching mask to form a final pattern in the patterning-target layer. In some embodiments, the final pattern includes the main pattern subtracting an intersection portion between main pattern and the combined cut pattern.
US09761432B2 Tandem quadrupole mass spectrometer
A dwell time calculation table (51a) showing a correspondence relation between a CID gas pressure inside a collision cell (31) and a dwell time for data collection is stored in a processing condition parameter memory (51) of a controller (50). In the table (51a), as the CID gas pressure becomes higher, the dwell time becomes longer. When an instruction to execute an MRM measurement mode is given, the controller (50) determines the dwell time in accordance with the currently set CID gas pressure, and controls a data collector (41) to accumulate detection signals from an ion detector (34) during the determined dwell time and obtain the accumulated value. If the CID gas pressure inside the collision cell (31) is high, a decrease in ion speed becomes remarkable, and the rising of the ion intensity becomes slow. However, if the dwell time becomes long, influences of the slow rising on the accumulated value are relatively reduced, and the accuracy of the accumulated value is enhanced. Accordingly, the quantitative accuracy can be enhanced.
US09761427B2 System for transferring ions in a mass spectrometer
A system for transporting ions includes: an ion transfer tube having an axis and an internal bore having a width and a height less than the width; and an apparatus comprising a plurality of electrodes, each having a respective ion aperture having an aperture center, the apertures defining an ion channel configured to receive the ions from the ion transfer tube and to transport the ions to an outlet end of the apparatus, wherein at least a subset of the apertures progressively decrease in size in a direction towards the apparatus outlet end, wherein the ion transfer tube is configured such that the ion transfer tube axis is non-coincident with an axis of the ion channel or such that the width dimension of the ion transfer tube bore is parallel to a plane defined by the ion transfer tube axis and the ion channel axis.
US09761426B2 Synchronization of ion generation with cycling of a discontinuous atmospheric interface
The invention generally relates to methods and devices for synchronization of ion generation with cycling of a discontinuous atmospheric interface. In certain embodiments, the invention provides a system for analyzing a sample that includes a mass spectrometry probe that generates sample ions, a discontinuous atmospheric interface, and a mass analyzer, in which the system is configured such that ion formation is synchronized with cycling of the discontinuous atmospheric interface.
US09761425B2 Method of charge reduction of electron transfer dissociation product ions
A mass spectrometer is disclosed wherein highly charged fragment ions resulting from Electron Transfer Dissociation fragmentation of parent ions are reduced in charge state within a Proton Transfer Reaction cell by reacting the fragment ions with a neutral superbase reagent gas such as Octahydropyrimidolazepine.
US09761424B1 Filtered cathodic arc method, apparatus and applications thereof
An apparatus for generating energetic particles and application of coatings in a vacuum comprising a plasma duct surrounded by a magnetic deflecting and focusing system communicating with a primary cathodic arc plasma source in a cathode chamber and a distal anode in a coating chamber. A coating chamber comprises a substrate holder off of an optical axis of the plasma source. A set of baffles are installed along the walls of cathode chambers and the plasma duct not occupied with plasma sources and in some embodiments across the plasma stream to trap macroparticles and neutrals. A plasma duct has a deflecting portion with attached cathode chamber and a tunnel portion attached to the coating chamber. The deflecting system comprises a deflecting coil surrounding the cathode chamber having an off-set deflecting conductor spaced from the plasma duct. In one embodiment a magnetron source is magnetically coupled with cathodic arc source.
US09761422B2 Magnetic material sputtering target and manufacturing method for same
A magnetic material sputtering target characterized in that, in a plane for observing the oxide in the target, oxide grains in the target have an average diameter of 1.5 μm or less, and that 60% or more of the oxide grains in the observing plane of the target have a difference between a maximum diameter and a minimum diameter of 0.4 μm or less, where the maximum diameter is a maximum distance between arbitrary two points on the periphery of an oxide grain, and the minimum diameter is a minimum distance between two parallel lines across the oxide grain. A non-magnetic grain dispersion-type magnetic material sputtering target that can inhibit abnormal discharge due to an oxide causing occurrence of particles during sputtering is obtained.
US09761421B2 Indium cylindrical sputtering target and manufacturing method thereof
Provided are an indium cylindrical sputtering target capable of providing good film thickness distribution and a method for production thereof. The indium cylindrical target comprises crystal grains whose average size is 1 mm to 20 mm over its surface to be sputtered. The method for manufacturing the indium cylindrical target includes the steps of: casting a semi-finished product of an indium cylindrical target integrated with a backing tube; and subjecting the semi-finished product to plastic working in its radial direction, wherein the plastic working is performed with a total thickness reduction rate of at least 10% over its longitudinal direction.
US09761410B2 Apparatus and method for in-situ cleaning in ion beam apparatus
An apparatus may include an electrostatic filter having a plurality of electrodes; a voltage supply assembly coupled to the plurality of electrodes; a cleaning ion source disposed between the electrostatic filter and a substrate position, the cleaning ion source generating a plasma during a cleaning mode, wherein a dose of ions exit the cleaning ion source; and a controller having a first component to generate a control signal for controlling the voltage supply assembly, wherein a negative voltage is applied to at least one of the plurality of electrodes when the plasma is generated.
US09761408B2 Pattern matching using a lamella of known shape for automated S/TEM acquisition and metrology
A method for automatically imaging in an electron microscope (SEM, TEM or STEM) features in a region of interest in a lamella without prior knowledge of the features to be imaged, thereby enabling multiple electron microscope images to be obtained by stepping from the first image location without requiring the use of image recognition of individual image features. By eliminating the need for image recognition, substantial increases in image acquisition rates may be obtained.
US09761403B2 Heat spreader for plasma display panel
A heat spreader for high volume manufacturing of a heat source, having a heat spreader composition which comprises a heat spreader material, an adhesive thereon, and a release material. The adhesive and release material are selected to prevent delamination of the heat spreader material when the release material is removed during the high volume manufacturing process of heat sources.
US09761401B1 Hold-down release apparatus and methods incorporating a fuse wire
A hold-down release apparatus includes a housing, a reciprocating retention member, a release member, bias member(s), and a fuse wire. The retention member moves between retention and release positions and is biased toward the release position. With the retention member in the release position, the release member can move out of the housing; with the retention member in the retention position, the retention member obstructs the release member from moving out of the housing. The fuse wire obstructs movement of the retention member to the release position and holds the retention member in the retention position against the bias force. With an actuation current flowing through the fuse wire, the bias force breaks the fuse wire, allowing the retention member to move to the release position in response to the bias force, and the release member to move out of the housing.
US09761393B2 Method for production of a pole part of a medium-voltage switching device, as well as the pole part itself
A method for production of a pole part of a medium-voltage switching device, and a pole part are provided. To obviate costly pressure reinforcements at least on the switching contact side of the vacuum interrupt chamber in the area of the mold core, while also achieving an optimum injection-molded result, a compensation ring is positioned, before the encapsulation process, as a separate injection-molded seal on or close to the external circumferential line of a vacuum interrupt chamber cover, between the lower cover of the vacuum interrupt chamber and the mold core. The positioned compensation ring is also encapsulated so as to remain in the encapsulation, and the mold core is then removed.
US09761391B2 Rotary knob
A rotary knob includes: a wall member defining a mating hole in which a rotation shaft including a shaft portion whose outer circumferential surface has a flat surface extending parallel with an axis of the rotation shaft can be fitted; and an elastic piece formed in a strip shape and formed on an inner surface of the wall member so as to extend along an axis of the wall member. The elastic piece is in contact with the flat surface and elastically deformed when the rotation shaft is fitted in the mating hole. The elastic piece includes: opposite side portions fixed to the inner surface of the wall member; and a central portion in a widthwise direction perpendicular to the axis of the wall member. The elastic piece includes a convex surface constituted by the central portion which curves inward in a radial direction of the mating hole.
US09761389B2 Low-travel key mechanisms with butterfly hinges
A key mechanism can include one or more butterfly hinges. Each butterfly hinge includes a double wing design operative to move between a depressed position and non-depressed position. Hinged coupling mechanisms couple respective arms of the wings together.
US09761386B2 Encapsulating protective cover for a switch
Methods and devices related to preventing accidental operation of a switch are disclosed. An example device includes a main body, and a latch element rotatably connected to the main body and is configured to move relative to the main body between an unlatched position and a latched position. In the latched position, the main body and the latch element encapsulate the switch. Also, in the latched position, the main body and the latch element form a cavity configured to accommodate wiring to the switch. Further, the main body is configured with a cutout to reveal a status of the switch. The switch has Lock Out Tag Out (LOTO) index pin compatibility.
US09761384B2 Shift assembly structure of switch device
A shift assembly structure of switch device includes a connection seat formed with an assembling hole for rotatably connecting with a main body. A latch section is disposed on the bottom of the connection seat for latching and assembling with a wire-connection module. The connection seat has an arm protruding from the connection seat and an (elastic) restriction section formed on the arm. A shift body is assembled in the connection seat. The shift body is formed with a ridge section and a push/press section. When the shift body is moved from a first position to a second position, the ridge section is permitted to directly pass through the restriction section into a locked state. After the push/press section pushes the restriction section, the main body is unlocked from the connection seat, whereby the assembly of the main body and the connection seat is controllable.
US09761383B2 Manual transfer switch interlock device
A switch interlock device for controlling certain switching operations within a switch panel, the switch interlock device including a bracket and an interlock tripping mechanism. The bracket being configured to be coupled to a housing of the switch panel and comprising a face member coupled with a spanning member extending a depth of the housing, the spanning member operably coupled to a back wall of the housing. The interlock tripping mechanism coupled to the face member of the bracket and positioned between a pair of horizontally adjacent switches housed within the housing of the switch panel, the interlock tripping mechanism configured to: restrict the pair of horizontally adjacent switches from both being in an ON position at the same time; and switch one of the pair of horizontally adjacent switches to an OFF position when the other of the pair of horizontally adjacent switches is switched to the ON position.
US09761382B2 Switch and associated methods
The present invention is related to a switching device having a contactor and an actuator. The contactor has at least a first contactor member and a second contactor member. The actuator is configured to actuate the contactor. At least one of the contactor members has a varying or variable thickness along its length such that the at least one of the contactor members has a relatively thick portion and a relatively thin portion.
US09761378B2 Process to improve coverage and electrical performance of solid electrolytic capacitors
A method for forming a capacitor, a capacitor formed thereby and an improved composition for a conductive coating are described. The method includes providing an anode, forming a dielectric on the anode and forming a cathode layer over the dielectric by applying a monoamine, a weak acid and a conductive polymer.
US09761375B2 Method of assembling a capacitor assembly
A method of assembling a capacitor assembly comprises positioning a plurality of capacitors in respective sockets formed in a non-conductive matrix by vibrating the plurality of capacitors and disposing the array of capacitors and the non-conductive matrix between a positive terminal plate and a negative terminal plate. The capacitors are electrically coupled with the positive terminal plate and the negative terminal plate and mechanically secured between the positive terminal plate and the negative terminal plate. The array of capacitors includes a void cooperating with a first opening in the positive plate and a second opening in the negative plate to form a passage. The void includes a location where at least one capacitor is omitted from the array.
US09761374B2 Joining dissimilar materials using an epoxy resin composition
An epoxy resin composition is disclosed for joining dissimilar materials. The identified epoxy resin compositions can fee used to seal metallic and non-metallic components of a capacitor. Specifically the epoxy resin composition can be applied to joints between a non-metallic capacitor bushing and a metallic tank cover and metallic terminal cap. Once the epoxy resin composition is cored, it can provide a seal that can withstand the stresses and environmental conditions to which a capacitor is subjected.
US09761373B2 Method for producing an induction component and an induction component
The invention proposes a method of producing induction components. A plurality of coils are embedded, with predetermined orientation of the coil ends, in a block made of in particular pulverulent substrate. The block is positioned on a plate having a marking for each coil. The combination made up of block and plate is pressed. The winding ends are exposed by milling and provided with contacts. The block is then sawn up mechanically into individual elements each containing a coil.
US09761370B2 Dual side control for inductive power transfer
An apparatus for dual side control includes a measurement module that measures a voltage and a current of an IPT system. The voltage includes an output voltage and/or an input voltage and the current includes an output current and/or an input current. The output voltage and the output current are measured at an output of the IPT system and the input voltage and the input current measured at an input of the IPT system. The apparatus includes a max efficiency module that determines a maximum efficiency for the IPT system. The max efficiency module uses parameters of the IPT system to iterate to a maximum efficiency. The apparatus includes an adjustment module that adjusts one or more parameters in the IPT system consistent with the maximum efficiency calculated by the max efficiency module.
US09761369B2 Coil and manufacturing method thereof
A coil has multiple coil sections connected to each other and each coil section includes a body portion and at least one direct or protrusive connecting portion disposed at one end of the body portion. Coil sections form at least one spiral path around the central axis of the coil, and on the projection of the coil along the central axis. The protrusive connecting portions protrude out of the path location of the direct connecting portions. Two connected coil sections form only one overlapped surface at the coupled parts of the direct or protrusive connecting portions. Regarding to the body portions in the same spiral path, a first end of one body portion is indirectly connected and disposed adjacent to a second end of another body portion. The second end has one surface with a virtual extension reaching the first end.
US09761368B2 Laminated structures for power efficient on-chip magnetic inductors
Disclosed are magnetic structures, including on-chip inductors comprising laminated layers comprising, in order, a barrier and/or adhesion layer, a antiferromagnetic layer, a magnetic growth layer, a soft magnetic layer, an insulating non-magnetic spacer, a soft magnetic layer, a magnetic growth later, an antiferromagnetic layer. Also disclosed are methods of making such structures.
US09761367B2 Multiplexers using weakly-coupled networks in RF front end circuitry
Multiplexing circuitry is disclosed that includes filtering circuitry, which provides a first transfer function between a common port and a first port and a second transfer function between the common port and a second port. The first transfer function and second transfer function provide a first passband and a second passband, respectively. The first transfer function also has a stopband provided within the second passband of the second transfer function due to the filtering circuitry including a first parallel resonant circuit provided in series in a first filter path being weakly coupled to a second parallel resonant provided in shunt with respect to a second filter path. The weak coupling between the first parallel resonant circuit and the second parallel resonant circuit thus naturally provides a stopband in the first transfer function within the second passband of the second transfer function.
US09761362B2 Magnet and method for handling metal sheets
The present invention relates to a magnet, which comprises a body and a slide that is movably arranged inside a cavity of the body. The slide that comprises a permanent magnet is moved relative to the body by transferring a medium into and out of the cavity. The invention also relates to a method for handling metal sheets.
US09761361B2 Grain-oriented electrical steel sheet
A grain-oriented electrical steel sheet produces reduced noise when worked into a transformer, by setting length d of each plastic strain region in the widthwise direction of the steel sheet to 0.05 mm or more and 0.4 mm or less, and a ratio (Σd/Σw) of a total Σd of the length d to a total Σw of application interval w of each of the above plastic strain regions to 0.2 or more and 0.6 or less.
US09761359B2 Method of producing electrical steel sheet
A method produces a high strength electrical steel sheet in which a cumulative rolling reduction ratio in rough rolling is 73.0% or more, in which in a hot band annealing step, an annealing condition is selected that satisfies an area ratio of recrystallized grains after hot band annealing of 100%, and a recrystallized grain size of 80 μm to 300 μm, under a condition where annealing temperature is 850° C. to 1000° C., and annealing duration is 10 seconds to 10 minutes, and in which in a final annealing step, an annealing condition is selected that satisfies an area ratio of recrystallized grains after the final annealing of 30% to 95%, and a length in the rolling direction of a connected non-recrystallized grain group of 2.5 mm or less, under a condition where annealing temperature is 670° C. to 800° C., and annealing duration is 2 seconds to 1 minute.
US09761356B2 Varistor device
A varistor device includes a main body, a conductive area, a specific-melting-point metallic pin, and an elastic unit. The main body has a first surface, and the conductive area is located at the first surface. The specific-melting-point metallic pin has a first section and a second section. The first section and the second section are one-piece formed. The first section is fixedly disposed on the conductive area. The second section has a specific melting point such that the second section melts when a current flows between the first surface and the second section so as to expose the second section to a temperature greater than the specific melting point. The elastic unit has an end connected to the second section, and the elastic unit provides an elastic force to the second section to break the second section so as to cut off the current when the second section melts.
US09761354B2 Method of manufacturing a nano metal wire
Disclosed is a method of manufacturing a nano metal wire, including: putting a metal precursor solution in a core pipe of a needle; putting a polymer solution in a shell pipe of the needle, wherein the shell pipe surrounds the core pipe; applying a voltage to the needle while simultaneously jetting the metal precursor solution and the polymer solution to form a nano line on a collector, wherein the nano line includes a metal precursor wire surrounded by a polymer tube; chemically reducing the metal precursor wire of the nano line to form a nano line of metal wire surrounded by the polymer tube; and washing out the polymer tube by a solvent.
US09761353B2 High temperature insulated bus pipe
The proposed high temperature insulated bus pipe (busbar section) is equipped with a conductive pipe having end contacts and disposed within electrical insulation, a grounding shield covering the insulation, and a case having a fire-resistant coating. A fire-resistant layer made of a cured composite material is located between the case and the shield. The composite material includes a filler composed of thermally expandable graphite, and a binder configured to form cavities in the fire-resistant layer when the busbar section is exposed to heating. The case is made of a non-magnetic material and is formed as a plain or corrugated vacuum-proof tube. The thickness of fire-resistant layer depends on the cross-section area of conductive pipe and configuration thereof. The binder includes epoxy resin combined with curing agent. The dimension of graphite particles are specified and provided as loose powder or powder whose particles are affixed to a substrate.
US09761351B2 Electrical cable arrangement
An electrical cable arrangement comprises a first electrical cable and a second electrical cable. The first electrical cable comprises first and second conductor sets and a first carrier film. The cable comprises a first pinched portion between the first and second conductor sets. The second electrical cable comprises a third conductor set and a second carrier film. The first and second carrier films include cover portions at least partially covering each of the first and second conductor sets and the third conductor set, respectively, and parallel portions extending from both sides of each of the first and second conductor sets and the third conductor set, respectively. The first electrical cable and the second electrical cable extend in substantially the same direction and are arranged in a nested configuration such that the insulated conductors of the third conductor set are disposed within the first pinched portion of the first electrical cable.
US09761349B2 Electrically conductive paste
The present invention provides an excellent electrically conductive paste which is applicable or printable and stretchable and which ca realize an electrically conductive membrane having high electrical conductivity. An electrically conductive paste wherein a conductive, filler (B) is uniformly dispersed in a resin (A) characterized in that the resin (A) is a rubber (A1) containing sulfur atom and/or a rubber (A2) containing nitrile group, and that the conductive filler (B) is metal powder (B1) having an average particle diameter of 0.5 to 10 μm and a conductive material (B2) having a group selected from mercapto group, amino group and nitrite group on its surface and having an aspect ratio of 10 to 10,000. Instead of having said group on the surface, the conductive filler (B) may be subjected to a surface treatment with a rubber containing sulfide bond and/or nitrite group. Also, the conductive filler (B) may be metal nanowire.
US09761347B2 Process to improve coverage and electrical performance of solid electrolytic capacitor
A method for forming a capacitor, a capacitor formed thereby and an improved composition for a conductive coating are described. The method includes providing an anode, forming a dielectric on the anode and forming a cathode layer over the dielectric by applying an amine, a weak acid and a conductive polymer.
US09761345B2 Transparent conductive film and production method therefor
A transparent conductive film, includes: an organic polymer film substrate; at least one undercoat layer formed on the organic polymer film substrate by a dry process; and a transparent conductive coating provided on at least one surface of the organic polymer film substrate with the undercoat layer interposed therebetween, wherein the transparent conductive coating is a crystalline coating of an indium-based complex oxide having a content of a tetravalent metal element oxide of 7 to 15% by weight as calculated by the formula {(the amount of the tetravalent metal element oxide)/(the amount of the tetravalent metal element oxide+the amount of indium oxide)}×100(%), the transparent conductive coating has a thickness in the range of 10 to 40 nm, and the transparent conductive coating has a specific resistance of 1.3×10−4 to 2.8×10−4 Ω·cm.
US09761343B2 Barium copper sulfur fluoride transparent conductive thin films and bulk material
A p-type transparent conductive material can comprise a thin film of BCSF on a substrate where the film has a conductivity of at least 1 S/cm. The substrate may be a plastic substrate, such as a polyethersulfone, polyethylene terephthalate, polyimide, or some other suitable plastic or polymeric substrate.
US09761339B2 Manifold system for the ventilated storage of high level waste and a method of using the same to store high level waste in a below-grade environment
A system and method for storing multiple canisters containing high level waste below grade that afford adequate ventilation of the spent fuel storage cavity. In one aspect, the invention is a ventilated system for storing high level waste emitting heat, the system comprising: an air-intake shell forming an air-intake cavity; a plurality of storage shells, each storage shell forming a storage cavity; a lid positioned atop each of the storage shells; an outlet vent forming a passageway between an ambient environment and a top portion of each of the storage cavities; and a network of pipes forming hermetically sealed passageways between a bottom portion of the air-intake cavity and at least two different openings at a bottom portion of each of the storage cavities such that blockage of a first one of the openings does not prohibit air from flowing from the air-intake cavity into the storage cavity via a second one of the openings.
US09761338B2 Method and apparatus for preparing spent nuclear fuel for dry storage
A system and method for drying cavities containing spent nuclear fuel is devised. The invention utilizes a non-intrusive procedure that is based on monitoring the dew point temperature of a non-reactive gas that is circulated through the cavity. In one aspect, the invention is a system for drying a cavity loaded with spent nuclear fuel comprising: a canister forming the cavity, the cavity having an inlet and an outlet; a source of non-reactive gas; means for flowing the non-reactive gas from the source of non-reactive gas through the cavity; and means for repetitively measuring the dew point temperature of the non-reactive gas exiting the cavity.
US09761337B2 Method, system, and apparatus for the thermal storage of nuclear reactor generated energy
A method, system, and apparatus for the thermal storage of nuclear reactor generated energy including diverting a selected portion of energy from a portion of a nuclear reactor system to an auxiliary thermal reservoir and, responsive to a shutdown event, supplying a portion of the diverted selected portion of energy to an energy conversion system of the nuclear reactor system.
US09761336B2 Insulated solution injector, system including the same, and method of injecting using the same
An insulated solution injector may include an outer tube and an inner tube arranged within the outer tube. The outer tube and the inner tube may define an annular space therebetween, and the inner tube may define a solution space within. The annular space may be configured so as to insulate the solution within the solution space. As a result, the solution may be kept to a temperature below its decomposition temperature prior to injection. Accordingly, the decomposition of the solution and the resulting deposition of its constituents within the solution space may be reduced or prevented, thereby decreasing or precluding the occurrence of a blockage.
US09761334B2 Multi stage safety injection device and passive safety injection system having the same
The present disclosure may disclose a multi stage safety injection device and a passive safety injection system having the same, including a safety injection tank formed to contain coolant to be injected into a reactor vessel by a gravitational head of water when an accident occurs in which the pressure or water level of the reactor vessel is decreased, a pressure balance line connected to the reactor vessel and safety injection tank to form a pressure balance state between the reactor vessel and the safety injection tank, a safety injection line connected to a lower end portion of the safety injection tank and the reactor vessel to inject coolant to the reactor vessel in a pressure balance state between the reactor vessel and the safety injection tank, and a flow control line extended from the safety injection line to an inner portion of the safety injection tank, and provided with safety injection ports into which coolant is injected at predetermined heights, respectively, to reduce the flow rate of coolant injected into the reactor vessel step by step according to the water level reduction of the safety injection tank, in order to inject coolant to the reactor vessel at multi stages.
US09761324B2 Piezoelectric and logic integrated delay line memory
Delay line memory device, systems and methods are disclosed. In one aspect, a delay line memory device includes a substrate; an electronic unit disposed on the substrate and operable to receive, amplify, and/or synchronize data signals into a bit stream to be transmitted as acoustic pulses carrying data stored in the delay line memory device; a first and a second piezoelectric transducer disposed on the substrate and in communication with the electronic unit, in which the first piezoelectric transducer is operable to transmit the data signals to the acoustic pulses that carry the data through the bulk of the substrate, and the second piezoelectric transducer is operable to transduce the received acoustic pulses to intermediate electrical signals containing the data, which are transferred to the electronic unit via an electrical interconnect to cause refresh of the data in the delay line memory device.
US09761320B1 Reducing hot electron injection type of read disturb during read recovery phase in 3D memory
A memory device and associated techniques for reducing read disturb of memory cells during the last phase of a sensing operation when all voltage signals are ramped down to a steady state voltage. In one aspect, the voltages of the source side word line, WL0, and an adjacent dummy word line, WLDS1, are ramped down after the voltages of remaining word lines are ramped down. This can occur regardless of whether WL0 is the selected word line which is programmed or read. The technique can be applied after the sensing which occurs in a read or program-verify operation. Another option involves elevating the voltage of the selected word line so that all word lines are ramped down from the same level, such as a read pass level. The techniques are particularly useful when the memory device includes an interface in the channel between epitaxial silicon and polysilicon.
US09761316B2 Reconfigurable sense amplifier for a memory device
A memory sense amplifier is configurable on command between a current-sensing mode and a voltage-sensing mode. The sense amplifier is intended, in its current-sensing configuration, to read a datum stored in a memory cell connected to the amplifier, and is intended, in its voltage-sensing configuration, to read a datum stored in a bit-line latch connected to the amplifier.
US09761315B2 Memory device, memory system and method of operating memory device
A memory device is provided as follows. A memory cell region includes a plurality of blocks, each block including a plurality of NAND strings. A control logic divides the plurality of blocks into a plurality of block regions based on a smaller distance of a first distance with respect to a first edge of the memory cell region and a second distance with respect to a second edge of the memory cell region and controls an operation performed on the memory cell region using a plurality of bias sets of operation parameters for the operation. Each bias set is associated with one of the block regions.
US09761309B2 Sensing circuit for resistive memory array
A method and a circuit for reading resistive states of memory elements within crossbar arrays includes a first crossbar array having first sets of row firms and column lines, with memory elements disposed at the intersections between the row lines and the column lines, a second crossbar array having second sets of row lines and column lines, with memory elements disposed at the intersections between the row lines and the column lines, and a comparator having a first input connected to the first crossbar array and a second input connected to the second crossbar array, wherein the first input is configured to receive a sense voltage from as select column in the first crossbar array and the second input is configured to receive a reference voltage from a corresponding select column in the second crossbar array.
US09761307B2 Semiconductor memory device
According to one embodiment, a semiconductor memory device includes a memory cell array, a data storage circuit and a control circuit. The data storage circuit holds first data to be written into the memory cell and holds 1 bit data calculated from the first data. The control circuit writes the data of n bits into the memory cell in a first write operation and then executes a second write operation. The control circuit carries out the following control in the second write operation. It reads data stored in the memory cell in the first write operation. It restores the first data based on the data read from the memory cell and the 1 bit data held in the data storage circuit. It writes the restored first data into the memory cell.
US09761306B1 Resistive memory device and method of programming the same
A semiconductor memory device contains a first memory cell including a first variable resistive element, and a first circuit for controlling a write performed for the first memory cell. The first circuit performs a first write for writing first data in the first memory cell in a first time, determines whether the first write fails or not, and performs a second write for writing the first data in the first memory cell in a second time longer than the first time, if the first write fails.
US09761304B1 Write-bitline control in multicore SRAM arrays
An integrated circuit includes a static random access memory array. The static random access memory array includes at least two cores, wherein only one of the cores is written at a time. The integrated circuit further includes a tristate driver. The tristate driver is configured to apply a high impedance state to one of the cores that is not being written. A corresponding electronic dataset product includes a description for the integrated circuit expressed in a hardware description language. A corresponding computer-implemented method generates an electronic description for the integrated circuit expressed in a hardware description language.
US09761302B1 Static random access memory cell and manufacturing method thereof
A SRAM cell includes a first pass-gate device and a second-pass gate device comprising a first conductivity type, a first pull-down device and a second pull-down device comprising the first conductivity type, and a first pull-up device and a second pull-up device comprising a second conductivity type complementary to the first conductivity type. The first pass-gate device and the second pass-gate device respectively include first lightly-doped drains (hereinafter abbreviated as LDDs. The first pull-down device and the second pull-down device respectively include second LDDs. And a dosage of the first LDDs is different from a dosage of the second LDDs.
US09761298B2 Method, apparatus and system for responding to a row hammer event
Techniques and mechanisms to facilitate an operational mode of a memory device to prepare for a targeted refresh of a row in memory. In an embodiment, the memory device performs one or more operations while in the mode to prepare for a future command from a memory controller, the command to implement, at least in part, a targeted refresh of a row in a first bank of the memory device. Prior to such a command, the memory device services another command from the memory controller. In another embodiment, servicing the other command includes the memory device accessing a second bank of the memory device while the memory device operates in the mode, and before completion of an expected future targeted row refresh.
US09761293B2 Semiconductor storage device
According to one embodiment, a semiconductor storage device includes a first semiconductor storage area; a second semiconductor storage area; a reference circuit; a sense amplifier senses data stored in the first semiconductor storage area and the second semiconductor storage area; and a control circuit.
US09761292B2 Flash memory device, flash memory system, and methods of operating the same during an authentication challenge
Provided are a flash memory device, a flash memory system, and methods of operating the same. A method of operating a flash memory system includes selecting memory cells of a flash memory in response to an authentication challenge, programming pieces of input data into the selected memory cells, respectively, reading the selected memory cells and generating and storing control information, dividing the selected memory cells into at least one first region memory cell and at least one second region memory cell based on the control information, and setting read values of the at least one first region memory cell and the at least one second region memory cell as a first value and a second value, respectively, and generating an authentication response in the response to the authentication challenge.
US09761286B2 Current-mode sense amplifier
A current sense amplifier is provided comprising a reference current input terminal, a control line input terminal, a sense current input terminal and a first output terminal. The amplifier further comprises a first NAND gate comprising first and second gate input terminals, and a second output terminal being coupled to the first output terminal of the amplifier. The amplifier also comprises two cross coupled inverters each comprising an n-FET, an n-FET input terminal, and each n-FET having a respective source. The amplifier further comprises a transmission gate comprising two transmission terminals and a gate terminal. The gate terminal is coupled to the control line terminal.
US09761284B1 Current starved voltage comparator and selector
An apparatus is provided which comprises: a bi-directional switch; and a comparator coupled to the bi-directional switch, the comparator having: a first input coupled to a first terminal of the bi-directional switch; a second input coupled to a second terminal of the bi-directional switch; and an output coupled to a body or substrate of the bi-directional switch.
US09761282B2 Memory system and operating method thereof
There are provided a memory system and an operating method thereof. A memory system includes a memory device suitable for storing data therein; and a memory controller suitable for initializing the memory device, or maintaining or changing a mode of the memory device according to power of the memory device during a wake-up operation.
US09761280B2 Power path controller of a system-on-chip
A power path controller included in a system-on-chip (SoC) is provided. The power path controller is coupled to a first power source and a second power source. The power path controller includes a first switch located between the first power source and a memory core included in the SoC, a second switch located between the second power source and the memory core, a comparator configured to compare a first power supply voltage supplied from the first power source with a second power supply voltage supplied from the second power source, and a switch controller configured to selectively activate the first switch or the second switch according to a comparison result of the comparator.
US09761278B1 Systems and methods for generating recommendations of post-capture users to edit digital media content
Contextual parameters of digital media content may be obtained. The digital media content may be associated with a content capture user and/or an end user. Editing parameters having values defining one or more editing attributes, including one or more selected moments of interest, of an edited version of the digital media content may be received. Individual post-capture user profiles may include expertise attributes associated with individual post-capture users. A set of post-capture users may be identified as potential matches for creating the edited version of the digital media content based upon one or more of values of contextual parameters, editing parameters, one or more expertise attributes of the post-capture user profiles, and/or other information. The set of post-capture users may be presented to the content capture user and/or the end user for selection of one of the post-capture users to create the edited version of the digital media content.
US09761277B2 Playback state control by position change detection
There is provided an information processing apparatus including a position change detecting unit that detects a position change of an operating body on a screen, a playback state control unit that controls a playback state of a content, and a display control unit that at least displays a part or all of a text list in which text data items associated with elapsed times in a playback of the content are sorted in an order of the elapsed times, on the screen. The playback state control unit controls the playback state of the content in response to a continuous position change of the operating body detected by the position change detecting unit on the text list displayed by the display control unit.
US09761273B1 Data storage device encoding and interleaving codewords to improve trellis sequence detection
A data storage device is disclosed comprising a storage medium. First data is encoded into a first codeword, and second data is encoded into a second codeword, wherein a first code rate of the first codeword is less than a second code rate of the second codeword. The first codeword and the second codeword are interleaved to generate an interleaved codeword that is written to the storage medium.
US09761271B1 Workload detection for adjacent track interference mitigation
A storage device includes a controller configured to adjusts direct offline scan (DOS) parameters for a scan of a storage region based on a workload affecting the storage region to mitigate data loss due to adjacent track interference (ATI) while also mitigating performance delays due to DOS execution. In one implementation, a type of workload occurring in a region is determined by assessing a distribution of write track counter values corresponding to data tracks in the region.
US09761265B2 Disc device and disc separation method
A disc device according to the present disclosure is a disc device for supplying a disc to each of a plurality of disc drives, and includes a carrier for retaining a plurality of discs in a stacked state, for separating one disc from the retained plurality of discs above a tray that is ejected from an arbitrary disc drive, and for placing the separated one disc on the tray. The carrier includes a first support claw that is capable of moving forward and backward below the plurality of discs, a second support claw that is capable of moving forward and backward into and out of a gap between a bottom disc and a disc that is adjacent to the bottom disc, among the plurality of discs, and a separation claw that is capable of moving forward and backward into and out of the gap and of pushing the bottom disc downward, where the bottom disc is separated from the retained plurality of discs by moving the first support claw, the second support claw, and the separation claw forward and backward, and pushing the bottom disc downward by the separation claw.
US09761264B2 Optical information recording/reproducing device
A light information recording/reproducing apparatus can improve the optical efficiency of an optical system at the time of reproduction to thereby improve the reproduction transfer rate. An optical element (for example, an optical isolator), which removes a return light beam of a light beam, is arranged such that the light beam passes through the optical element at the time of recording information in an optical information recording medium and such that the light beam does not pass through the optical element at the time of reproducing information from the optical information recording medium.
US09761260B1 Sliders having features in the mid gap
Sliders that include a slider body having an outer side edge, an inner side edge, a trailing edge and a leading edge, and a base; a trailing edge set of features positioned towards the trailing edge of the slider body, the trailing edge set of features having air bearing surfaces, the air bearing surfaces being above the base of the slider body; a leading edge set of features positioned towards the leading edge of the slider body; a gap positioned between the trailing edge set of features and the leading edge set of features, the gap having a gap surface, the gap surface substantially coplanar with the base of the slider body; and a first gap feature and a second gap feature distributed evenly within the gap from the inner side edge to the outer side edge, the first and second gap features each having upper surfaces, the upper surfaces of the first and second gap features being above the base of the slider body but below the air bearing surface of the trailing edge features.
US09761258B2 Servo parameterization for multi-sensor reader
A storage media includes a plurality of servo sectors with embedded servo patterns characterized by one or more servo pattern parameters. Each of the servo sectors has a servo pattern parameter based on a separation between read sensors of a transducer head reading the servo sector.
US09761255B2 Suspension assembly, head suspension assembly and disk device with the same
According to one embodiment, a suspension assembly includes a support plate, a trace member on the support plate and a drive element mounted on the trace member. The trace member includes a metal plate, and a multilayered member on the metal plate. The multilayered member includes a first insulating layer, a conductive layer stacked on the first insulating layer, a second insulating layer stacked on the conductive layer. The multilayered member includes a mount portion on which the drive element is mounted, and a branching portion arranged along the mount portion with a gap therebetween. At least one portion of the branching portion is formed into a thin portion having a thickness less than other portions of the multilayered member.
US09761251B2 Method for manufacturing magnetic core module in magnetic head, magnetic core module in magnetic head and magnetic head
A method for manufacturing a magnetic core module in a magnetic head, the magnetic core module and the magnetic head. The method for manufacturing the magnetic core module includes: a process for placing a magnetic core group in a holder mold cavity as an insert; and a process for injection-molding in the holder mold cavity. A method for manufacturing the magnetic core module allows the magnetic core group and the holder to be integrally injection-molded with a method of injection molding which uses the magnetic core group as an insert. The method simplifies the process of manufacturing a magnetic head to improve production efficiency, and saves labor and production costs. Further, the method prevents failures such as positional displacement and scattering of magnetic cores, which tends to occur when assembling thin and small magnetic cores, and ensures an ideal yield for a product.
US09761249B2 Improving natural language interactions using emotional modulation
Technologies for emotional modulation of natural language responses include a computing device that receives natural language requests from a user. The computing device identifies emotional features of the request and estimates an emotional state of the request by comparing the emotional features to a vocal pattern database. The computing device generates a natural language response and modulates the emotional content of the natural language response based on the emotional state of the request and the vocal pattern database. The computing device may modulate the natural language response to mimic the emotional state of the request, or to oppose the emotional state of the request. Possible emotional states include urgency, certainty, and dominance. Possible emotional features include acoustic, prosodic, and linguistic characteristics of the user request. The computing device may update the vocal pattern database based on the user request to adapt to the user. Other embodiments are described and claimed.
US09761246B2 Method and apparatus for detecting a voice activity in an input audio signal
The disclosure provides a method and an apparatus for detecting a voice activity in an input audio signal composed of frames. A noise attribute of the input signal is determined based on a received frame of the input audio signal. A voice activity detection (VAD) parameter is derived based on the noise attribute of the input audio signal using an adaptive function. The derived VAD parameter is compared with a threshold value to provide a voice activity detection decision. The input audio signal is processed according to the voice activity detection decision.
US09761245B2 Externally estimated SNR based modifiers for internal MMSE calculations
Acoustic noise in an audio signal is reduced by calculating a speech probability presence (SPP) factor using minimum mean square error (MMSE). The SPP factor, which has a value typically ranging between zero and one, is modified or warped responsive to a value obtained from the evaluation of a sigmoid function, the shape of which is determined by a signal-to-noise ratio (SNR), which is obtained by an evaluation of the signal energy and noise energy output from a microphone over time. The shape and aggressiveness of the sigmoid function is determined using an extrinsically-determined SNR, not determined by the MMSE determination.
US09761241B2 System and method for providing network coordinated conversational services
A system and method for providing automatic and coordinated sharing of conversational resources, e.g., functions and arguments, between network-connected servers and devices and their corresponding applications. In one aspect, a system for providing automatic and coordinated sharing of conversational resources includes a network having a first and second network device, the first and second network device each comprising a set of conversational resources, a dialog manager for managing a conversation and executing calls requesting a conversational service, and a communication stack for communicating messages over the network using conversational protocols, wherein the conversational protocols establish coordinated network communication between the dialog managers of the first and second network device to automatically share the set of conversational resources of the first and second network device, when necessary, to perform their respective requested conversational service.
US09761240B2 Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program
An objective of the present invention is to correct a temporal envelope shape of a decoded signal with a small information volume and to reduce perceptible distortions. An audio decoding device which decodes a coded audio signal and outputs an audio signal comprises: a coded series analysis unit that analyzes a coded series which contains the coded audio signal; an audio decoding unit that receives from the coded series analysis unit the coded series which contains the coded audio signal and decodes same, obtaining an audio signal; a temporal envelope shape establishment unit that receives information from the coded series analysis unit and/or the audio decoding unit, and, on the basis of the information, establishes a temporal envelope shape of the decoded audio signal; and a temporal envelope correction unit that, on the basis of the temporal envelope shape which is established with the temporal envelope shape establishment unit, corrects the temporal envelope shape of the decoded audio signal and outputs same.
US09761232B2 Multi-decoding method and multi-decoder for performing same
A multi-decoding method, according to the present invention, comprises the steps of: receiving a plurality of bitstreams, dividing decoding modules for decoding the plurality of bitstreams according to a data amount of an instruction cache, and cross-decoding the plurality of bitstreams using each of the divided decoding modules.
US09761231B2 Methods and devices for joint multichannel coding
Encoding and decoding devices for encoding the channels of an audio system having at least four channels are disclosed. The decoding device has a first stereo decoding component which subjects a first pair of input channels to a first stereo decoding, and a second stereo decoding component which subjects a second pair of input channels to a second stereo decoding. The results of the first and second stereo decoding components are crosswise coupled to a third and a fourth stereo decoding component which each performs stereo decoding on one channel resulting from the first stereo decoding component, and one channel resulting from the second stereo decoding component.
US09761230B2 Frame loss correction by weighted noise injection
A method for processing a digital signal, implemented during decoding of the signal, in order to replace a succession of samples lost during decoding, the method comprising steps of: generating a structure of a signal for replacing the lost succession, this structure comprising spectral components determined from valid samples received during decoding before the succession of lost samples; generating a residue between a digital signal available to the decoder, comprising received valid samples, and a signal generated from the spectral components; and extracting blocks from the residue, method in which window weighted blocks are injected into the structure using an overlap-add approach, the injected blocks partially overlapping in time.
US09761229B2 Systems, methods, apparatus, and computer-readable media for audio object clustering
Systems, methods, and apparatus for grouping audio objects into clusters are described.
US09761226B2 Synchronized transcription rules handling
Methods, systems, and software are disclosed for providing rule handling functionality in a distributed transcription environment. Some embodiments provide client-server workflow management for providing and supporting distributed transcription services. Other embodiments provide audio-to-text synchronization to support certain transcription functionality. Still other embodiments provide logging functionality to support quality, personnel, billing, and/or other enterprise tasks. And other embodiments provide functionality to support rule generation, editing, validation, and/or execution.
US09761224B2 Device and method that posts evaluation information about a facility at which a moving object has stopped off based on an uttered voice
An evaluation information posting device determines a rest state of a vehicle on the basis of rest information, determines a facility at which the vehicle has stopped off by using position information showing a rest position of the vehicle, map information including facility information about facilities located in an area surrounding the position shown by this position information, and a keyword about a facility at the rest position of the vehicle, and, by using both stop-off facility information about the facility which is a result of the determination, and a keyword about an evaluation which is provided for this facility, generates evaluation information about the stop-off facility and posts this evaluation information to an evaluation information managing server.
US09761223B2 Acoustic impulse response simulation
At least one spoken utterance and a stored vehicle acoustic impulse response can be provided to a computing device. The computing device is programmed to provide at least one speech file based at least in part on the spoken utterance and the vehicle acoustic impulse response.
US09761221B2 Order statistic techniques for neural networks
According to some aspects, a method of classifying speech recognition results is provided, using a neural network comprising a plurality of interconnected network units, each network unit having one or more weight values, the method comprising using at least one computer, performing acts of providing a first vector as input to a first network layer comprising one or more network units of the neural network, transforming, by a first network unit of the one or more network units, the input vector to produce a plurality of values, the transformation being based at least in part on a plurality of weight values of the first network unit, sorting the plurality of values to produce a sorted plurality of values, and providing the sorted plurality of values as input to a second network layer of the neural network.
US09761218B2 System and method for distributed voice models across cloud and device for embedded text-to-speech
Systems, methods, and computer-readable storage media for intelligent caching of concatenative speech units for use in speech synthesis. A system configured to practice the method can identify, in a local cache of text-to-speech units for a text-to-speech voice an absent text-to-speech unit which is not in the local cache. The system can request from a server the absent text-to-speech unit. The system can then synthesize speech using the text-to-speech units and a received text-to-speech unit from the server.
US09761217B2 Reducing ambient noise distraction with an electronic personal display
A method and system for reducing ambient noise distraction with an electronic personal display is disclosed. One example determines when the electronic personal display is in reader mode. In addition, ambient noise around the electronic personal display is also detected. Noise cancelling sound waves are generated at the electronic personal display for reducing ambient noise distraction. The noise cancelling sound waves are then output from at least one speaker coupled with the electronic personal display.
US09761211B2 Detachable controller device for musical instruments
A device that can be temporarily attached to a musical instrument and easily detached without permanent modification to the instrument. The device is comprised of a set of controls attached to circuitry that is used to send digital data to a computer or other hardware to be used for music synthesis, manipulation, or production.
US09761208B1 Musical instrument accessory
A musical instrument accessory with a capo carrying an adjustable connector in turn carrying a screen receiving fixture. When the capo is clamped to the neck of a guitar at a first position, the screen receiving fixture may be arranged and oriented for convenient viewing of a screen carried therein by the guitar musician. When moved to second position, viewing the screen necessitates re-orientation of the screen receiving fixture to accommodate geometry of the second position, which re-orientation is conveniently carried out by re-orientation of the adjustable connector.
US09761203B2 Semiconductor device, video display system, and method of processing signal
A semiconductor device includes a first input unit; a second input unit; a first processing unit configured to perform a frequency dispersion processing on a first signal and a second signal; a first output unit configured to output one of the first signal and the second signal or one of the first signal and the second signal on which the first processing unit performs the frequency dispersion processing; a third input unit configured to receive a third signal generated through performing a predetermined image processing with an image processing unit on one of the first signal and the second signal; a second processing unit performing the frequency dispersion processing on the third signal; and a second output unit configured to output an output signal selected from one of the first signal, the second signal, and the third signal.
US09761202B2 Seamless video transitions
This application relates to performing seamless video transitions at a display panel when a video stream changes resolution and/or scale. The video stream can be provided by a host device to a timing controller (TCON). When a parameter of the video stream is going to change, the host device can cause the TCON to enter a panel self refresh (PSR) mode. During the PSR mode, the TCON can drive the display panel using an image frame stored in a memory of the TCON. Additionally, during the PSR mode, the host device can adjust a scaler and/or resolution associated with the TCON. Once the host device has finished adjusting the TCON, the TCON can exit the PSR mode and the host device can provide a new data stream to the TCON without any apparent display artifacts being output by the display panel.
US09761201B2 Liquid-crystal display device and drive method thereof
Provided are a liquid crystal display device and a drive method thereof, capable of promptly making an afterimage, which is visually recognized at refresh time, visually unrecognizable and reducing power consumption during and after a shift to a target refresh rate. At pause drive time until a target refresh rate is reached, a refresh is performed in divided periods of a first refresh period for performing a refresh at least twice, and a second refresh period for performing a refresh while increasing the number of frames in a non-refresh period from a refresh rate at the end of the first refresh period until the refresh rate becomes the target refresh rate, and the second refresh period is finished when the refresh rate in the second refresh period reaches the target refresh rate, and the pause drive is continued at the target refresh rate.
US09761197B2 Communication device
A communication device includes: an inputter that inputs a USB (Universal Serial Bus) signal from an input device; an acquirer that acquires an EDID (Extended Display Identification Data) signal from a monitor; an instructor that gives an instruction to output the EDID signal to another communication device; a switch that selectively switches a first route for outputting the acquired EDID signal to the another communication device and a second route for outputting the inputted USB signal to the another communication device; and a controller that controls the switch so as to switch from the second route to the first route in accordance with the instruction from the instructor.
US09761195B2 Driving circuit for increasing a driving power supply voltage for a display panel
The present invention provides a driving circuit for display panel, which comprises a power supply circuit and a driving unit. The power supply circuit outputs a driving power supply voltage. The driving unit produces a driving signal according to a data signal and the driving power supply voltage for driving the display panel. In addition, the voltage level of the driving power supply voltage increases to a predetermined level. Thereby, during the process of charging the display panel by the data driving circuit, the driving power supply voltage output by the power supply circuit increases from a low level to a predetermined level for reducing the power consumption of the driving circuit.
US09761190B2 Display device
It is an object to provide a display device which can favorably display a image without delayed or distorted signals. The display device includes a first gate driver and a second gate driver. The first gate driver and the second gate driver each include a plurality of flip flop circuits and a plurality of transfer signal generation circuits. Both the flip flop circuit and the transfer signal generation circuit are circuits which output a signal inputted to a first input terminal with a half clock cycle delay. In addition, an output terminal of the transfer signal generation circuit is directly connected to a first input terminal of the flip flop circuit in the next stage. Therefore, delay and distortion of the signal which is inputted from the transfer signal generation circuit to the flip flop circuit can be reduced.
US09761188B2 Content-based VCOM driving
Methods and systems for compensating for VCOM variations include determining a voltage change in pixels between frames to be displayed on an electronic display. Based on the determined voltage change, VCOM variation is calculated based on coupling the VCOM to one or more data lines of the electronic display. VCOM compensation is determined and applied to offset for the VCOM variation. Using the VCOM offset, subsequent pixel content for the one or more pixels is written using the compensated VCOM.
US09761182B2 Foldable display apparatus
A foldable display apparatus that may realize one seamless screen by using two display panels is discussed. The foldable display apparatus can include a first display panel having a first display area; a second display panel having a second display area; and a panel supporter supporting the first and second display panels to mutually fold or unfold the first and second display panels, wherein boundary portions of the first display area of the first display panel and the second display area of the second display panel are matched with each other in a state that the first and second display panels are unfolded.
US09761181B2 Color display device
The present invention is directed to a color display device in which each pixel can display at least six high-quality color states, and an electrophoretic fluid for such an electrophoretic display. The different types of particles exhibit different levels of attraction force to display different color states.
US09761177B2 Organic light emitting display device
An organic light emitting display device including a display panel including a first pixel connected with a first data line and first and second scan lines, a second pixel connected with a second data line and the first and second scan lines, and a reference line connected in common with the first and second pixels; a source driver configured to operate first and second sensing modes for sensing driving characteristic values of the first and second pixels through the reference line; and a scan driver configured to drive the first and second scan lines so as to drive only the first pixel for the first sensing mode or only the second pixel for the second sensing mode.
US09761175B2 Shift register and driving method thereof as well as gate driving circuit
A shift register is proposed, comprising: a first control module connected to an ON voltage access terminal and a first node, for controlling whether to output an ON voltage and a first control signal to the first node; a second control module connected to the ON voltage access terminal, a second node and an output terminal, for controlling whether to output the ON voltage and a voltage of the output terminal to the second node; an output module connected to the first node, the second node, the output terminal, an OFF voltage access terminal, and the ON voltage access terminal, for inputting the ON or OFF voltage to the output terminal according to voltages of the first and second nodes; and an input module connected to an input terminal, for controlling whether to input a signal of the input terminal to the first and second control modules.
US09761174B2 Display apparatus, method of driving a display, and electronic device
In a display apparatus including a switching transistor, a correction voltage for eliminating an effect of a variation in a characteristic of a driving transistor is stored in a storage capacitor. The switching transistor is disposed between one current terminal of the driving transistor and a light emitting element. The switching transistor turns off during the non-light emission period thereby to electrically disconnect the light emitting element from the one current terminal of the driving transistor thereby preventing a leakage current from flowing through the light emitting element during the period in which the correction unit operates, and thus preventing the correction voltage from having an error due to the leakage current.
US09761173B2 AMOLED pixel driving circuit and pixel driving method
The present invention provides an AMOLED pixel driving circuit and a pixel driving method. The AMOLED pixel driving circuit utilizes a 6T2C structure, comprising a first, a second, a third, a fourth, a fifth and a sixth thin film transistors (T1, T2, T3, T4, T5, T6), a first, a second capacitors (C1, C2) and an organic light emitting diode (OLED), and the first thin film transistor (T1) is a drive thin film transistor, and the fifth thin film transistor (T5) is a switch thin film transistor, and the first capacitor (C1) is a coupling capacitor, and the second capacitor (C2) is a storage capacitor; and a first control signal (G1), a second control signal (G2) and a third control signal (G3) are involved, and the three are combined with one another and correspond to a data signal writing stage (1), a whole compensation stage (2), a discharging stage (3) and a light emitting stage (4) one after another. The threshold voltage changes of the drive thin film transistor and the organic light emitting diode can be effectively compensated to make the display brightness of the AMOLED more even and to raise the display quality.
US09761172B2 Organic light emitting diode display device and driving method thereof
An organic light emitting diode display device includes a display unit including a plurality of pixels; a data driver applying data voltage to the pixels; and a power supplier including a first power source providing high-level voltage to the anode electrode of organic light emitting diodes and a second power source providing low-level voltage to the cathode electrode of the organic light emitting diodes included in the pixels, in which the power supplier provides the second power source in a sink method at positive voltage, when the threshold voltage of a driving transistor for driving the organic light emitting diodes shifts to a negative. When gate-source voltage of a driving transistor shifts to negative threshold voltage, it is possible to apply the data voltage at positive voltage and to simplify a driving IC, thereby ensuring wide use, by applying voltage of a second power source ELVSS at positive voltage.
US09761171B2 Pixel array of active matrix organic lighting emitting diode display, method of driving the same, and method of driving dual pixel of active matrix organic lighting emitting diode display
A pixel array includes a plurality of pixels. Each pixel has a first sub-pixel, a second sub-pixel, and a pair of third sub-pixels. The first sub-pixel of each pixel and the first sub-pixels of three adjacent pixels are arranged in a two by two array, the second sub-pixel of each pixel and the second sub-pixels of three adjacent pixels are arranged in a two by two array, and one of each of the third sub-pixels of each pixel and one of the third sub-pixels of three adjacent pixels are arranged in a two by two array. A scan line is connected to a switch unit of each of the sub-pixels in a pixel.
US09761167B2 Drive method and drive device of liquid crystal display
The present invention provides a drive method and a drive device of a liquid crystal display, and the drive method comprises: receiving an image to display; implementing color detection to the image pixels of the image to display to determine a predetermined color pixel; implementing adjustment to the original gray scale values of the respective primary color components of the predetermined color pixel to make that a difference between a relatively higher original gray scale value and a relatively lower original gray scale value before adjustment becomes larger after adjustment for the same predetermined color pixel; implementing color washout compensation to the image to display; driving the liquid crystal panel to show the image to display after the color washout compensation. With the aforesaid arrangement, the present invention can reduce the color washout under large view angle to promote the display effect of the large view angle.
US09761166B2 Display devices and methods for making and driving the same
Display devices and methods for making and driving the display devices. In one example, a device for display includes an array of pixels for display. Each of the pixels includes a first light emitting element and a second light emitting element. The first light emitting element is formed on a substrate. The second light emitting element is formed on the first light emitting element. The first and second light emitting elements share a same electrode.
US09761165B2 Display apparatus, power control module and power control method thereof
A display apparatus includes a power supply for providing power, a circuit board including an integrated circuit (IC) with a central processing unit (CPU) that processes an image signal; and a display configured to display an image corresponding to the image signal; the IC includes a power controller configured to monitor a voltage level of a core voltage provided by the power supply to the IC and adjust a phase margin of a voltage corresponding to a voltage detected by the monitoring. Thus, a phase margin may be adjusted in accordance with a voltage of an IC, thereby compensating for voltage fluctuation due to instantaneously varying ripples and thus stably driving a system.
US09761162B2 Array substrate for display panel and method for inspecting array substrate for display panel
A plurality of source signal lines extend parallel to each other. A plurality of gate signal lines extend parallel to each other and intersect the plurality of source signal lines. At least any one of array inspecting terminals is provided. The one array inspecting terminal is connected to two or more signal lines of the plurality of gate signal lines. The other array inspecting terminal is connected to two or more signal lines of the plurality of source signal lines. To perform an inspection for a unit of the two or more signal lines by detecting a value of a voltage or a current generated in the signal lines, the array inspecting terminals are configured to receive an inspection signal for generating the voltage or the current.
US09761160B2 Image processing device, display apparatus, image processing method, and program
An image processing device includes: a memory section that has memory areas equivalent to data of k rows of an image; a correction section that corrects data of a given pixel belonging to a row designated by a first counter, out of data stored in the memory section, using data of a pixel in a position designated by an offset vector corresponding to the given pixel; an output section that outputs data corrected by the correction section; and a write section that writes data, out of the image, of a row designated by the second counter into a corresponding memory area of the memory section.
US09761159B2 Image processor, image projector, and image processing method
According to one embodiment, an image processor includes: a detector; a calculator; and a corrector. The detector calculates a state signal indicating whether or not an operation is being performed on a projection surface where an image is projected. The calculating is based on information relating to the projection surface. The calculator calculates a correction parameter based on the state signal and the information relating to the projection surface. The corrector generates a corrected image based on the correction parameter and an image to be processed.
US09761157B2 Customized sectional sign assembly kit and method of using kit for construction and installation of same
An electronic sign having at least one sectional sign assembly, the at least one sectional sign assembly having a signage support structure and an associated compound structural frame, wherein the compound structural frame has a unitary structural foam construction with a plurality of display module receiving bays, each configured for removably latching therein a plurality of display modules, the signage support structure and the associated compound structural frame cooperating when secured together to form a natural airflow cooling path extending from the top to the bottom of sectional sign assembly to provide sufficient cooling to the plurality of display modules when removably mounted within their display module receiving bays.
US09761156B2 Systems and methods for a bow label for a beverage container
A bow label for a beverage container is disclosed herein. The bow label may include a first sheet at least partially attached to the beverage container. The bow label also may include a second sheet at least partially attached to the first sheet. The first sheet and the second sheet may include a first configuration and a second configuration. In addition, the bow label may include a pull cord disposed between and at least partially attached to the first sheet and the second sheet. In this manner, movement of the pull cord may move the first sheet and the second sheet between the first configuration and the second configuration. In some instances, the second configuration may include a bow-like shape.
US09761155B2 Skin touch temperature test apparatus and method
A method for simulating an effect of surface temperature of an electronic device on skin of a human being when the electronic device is touched by the human being. The method comprises applying heat to a material within a cavity of a body, the body comprising a first end, a second end, an outer surface, and an inner surface that defines the cavity extending between the first end and the second end. The outer surface and the material have heat and thermal conductivity properties similar to human skin. The method comprises sensing a temperature of the material, and sensing a temperature of at least a portion of the outer surface when the portion of the outer surface contacts the electronic device.
US09761150B2 Hairdressing training aid
A hairdressing training headform has features simulating a face and neck of a human. A flexible scalp with hair has a peripheral lip. A vertex is configured to simulate an upper portion of a human skull and has a periphery with which the peripheral lip of the scalp engages when the flexible scalp is placed over the vertex. A releasable locking means remote from the vertex periphery biases the vertex toward the headform such that the peripheral lip of the scalp is sandwiched between the vertex periphery and the headform.
US09761148B2 Airborne separation assurance system and required time of arrival function cooperation
Methods and systems are provided for enhancing the functionality of an airborne separation assurance system (ASAS) by modifying it to cooperate with a required time of arrival (RTA) functionality. The system comprises an autopilot configured to execute a trajectory of an aircraft and a flight management system (FMS) in operable communication with the autopilot. The FMS includes a required time of arrival (RTA) system that is configured to determine an RTA aircraft trajectory of the aircraft based on a required time of arrival of the aircraft at a waypoint along the flight plan. The system also includes an airborne separation assurance system (ASAS) in operable communication with the RTA and is configured to determine a spacing trajectory based on a spacing interval from a first reference aircraft.
US09761147B2 Commercial and general aircraft avoidance using light pattern detection
This disclosure is directed to a detection and avoidance apparatus for an unmanned aerial vehicle (“UAV”) and systems, devices, and techniques pertaining to automated object detection and avoidance during UAV flight. The system may detect objects within the UAV's airspace through acoustic, visual, infrared, multispectral, hyperspectral, or object detectable signal emitted or reflected from an object. The system may identify the source of the object detectable signal by comparing features of the received signal with known sources signals in a database. The features may be, for example, a light arrangement or number of lights associated with the object. Furthermore, a trajectory envelope for the object may be determined based on characteristic performance parameters for the object such as cursing speed, maneuverability, etc. The UAV may determine an optimized flight plan based on the trajectory envelopes of detected objects within the UAV's airspace to avoid the detected objects.
US09761136B2 Methods and software for managing vehicle priority in a self-organizing traffic control system
Methods and software for managing vehicle priority proximate to a potential travel-priority conflict zone, such as a roadway intersection, where travel conflicts, such as crossing traffic, can arise. Coordination involves forming an ad-hoc network in a region containing the conflict zone using, for example, vehicle-to-vehicle communications and developing a dynamic traffic control plan based on information about vehicles approaching the conflict zone. Instructions based on the dynamic traffic control plan are communicated to devices aboard vehicles in the ad-hoc network, which display one or more virtual traffic signals to the operators of the vehicles and/or control the vehicles (for example, in autonomous vehicles) in accordance with the dynamic traffic control plan, which may account for a priority level associated with one or more of the vehicles.
US09761135B2 Method and system for integrating multiple camera images to track a vehicle
A method and a system for integrating multiple camera images to track a vehicle are provided. In the method, a security request of a vehicle to be tracked is received from a user, in which the security request comprises registration information and position information of the vehicle. Next, images captured by multiple cameras in a specific range around a location of the position information are retrieved. The retrieved images are analyzed according to the registration information, so as to recognize the images comprising the vehicle. Finally, a message is issued when the images comprising the vehicle are recognized.
US09761132B2 Method and apparatus for providing dynamic strength decay for predictive traffic
An approach is provided for determining one or more varying decay rates associated with one or more road segments. The approach involves causing, at least in part, a decaying of real-time traffic data to historical traffic data associated with the one or more road segments based, at least in part, on the one or more varying decay rates. The approach also involves determining one or more traffic predictions for the one or more road segments based, at least in part, on the decaying of the real-time traffic data to the historical traffic data.
US09761130B2 Standby electric power cutoff apparatus for electronic product
A standby electric power cutoff apparatus for an electronic product is disclosed. A power supply/cutoff unit (20) of the present invention comprises: a power switch (SW) for manually turning an input of an AC power source of the electronic product on/off; a pair of photo-triacs (21, 22) which are disposed in parallel to each other between input terminals of the AC power source, and which receive power through the power switch (SW); a photo-coupler (23) which is disposed between the power switch (SW) and the input terminals on one side of the AC power source and comprises a light emitting diode (D3) and a transistor (Q1) for receiving a light emitting signal from the light emitting diode; and a relay means which comprises a relay (K1) connected to a control unit (60) having a microcomputer (u-COM), and which supplies or cuts off the AC supply power to a power supply unit (30) by controlling operations for connecting or disconnecting contact points of the relay according to a control state of the control unit (60). In addition, a standby electric power cutoff apparatus for an electronic product (100) which controls functions using a remote controller (300). A power supply/cutoff unit (400), according to the present invention, comprises: IR-receiving triacs (110) which receive IR signals from the remote controller, and which are turned on so as to transfer the AC supply power to a power supply unit (130) when the IR signals are received; and an IR-receiving unit (120) for receiving the IR signals and transferring the received IR signals as control signals to a control unit (160).
US09761124B2 Multiple procesor hazard detection system
Systems and methods for using multi-criteria state machines to manage alarming states and pre-alarming states of a hazard detection system are described herein. The multi-criteria state machines can include one or more sensor state machines that can control the alarming states and one or more system state machines that can control the pre-alarming states. Each state machine can transition among any one of its states based on sensor data values, hush events, and transition conditions. The transition conditions can define how a state machine transitions from one state to another. The hazard detection system can use a dual processor arrangement to execute the multi-criteria state machines according to various embodiments. The dual processor arrangement can enable the hazard detection system to manage the alarming and pre-alarming states in a manner that promotes minimal power usage while simultaneously promoting reliability in hazard detection and alarming functionality.
US09761122B1 Zoned-alerting control system for augmenting legacy fire station alerting system lacking configurable zone
A microprocessor-based electronic control system allows firefighters and emergency response personnel the ability to assign individual sleeping quarters, dorm rooms or an area of a facility to a specific apparatus/vehicle/unit that is dispatched through an existing electronic fire station alert notification system. The control system controls actuation of devices throughout a building from any location as well as from remote locations. The devices can be anything such as lights, speakers, appliances, watering systems, and other devices. This is accomplished by a network of nodes including a master controller and a plurality of slaves. The system is modular and scalable according to need. It is also flexible for use on various applications. Programmable switches are used for displaying statuses and for selecting various options.
US09761115B2 Method and apparatus for selectively configuring alarms prior to commencing silent mode of operation
A method, apparatus and computer program product are provided to selectively configure alarms prior to commencement of a silent mode of operation. In the context of a method, an indication of at least a start time for a silent mode of operation of a device is received. Responsive to the indication of at least the start time for the silent mode of operation, one or more alarms are identified. Each alarm has an activation mode and an activation time during the silent mode of operation of the device. Responsive to identifying one or more alarms and prior to commencing the silent mode of operation, the method also causes a prompt to be presented regarding a potential change to at least one of the activation mode or the activation time for at least one alarm that was identified.
US09761112B2 Assistance terminal for remotely monitoring a person connected to a medical assistance and monitoring device
The invention relates to an assistance terminal (5, 6a, 6b) including a housing (5) and at least one terminal (6a, 6b) for remotely monitoring a person (1) connected to a medical assistance and/or monitoring device (3). According to the invention, the housing (5) comprises: reception means (8) for receiving a signal from the medical device (3); conditioning means (9) for conditioning the signal received by the reception means (8) of the housing (5); storage means (10) for, in a learning phase prior to a phase of use of the terminal (5, 6a, 6b), storing a range of signals which are sent by the medical device (3), and which are received by the reception means (8) of the housing (5) and which are conditioned by the conditioning means (9); comparison means (11) for, during the phase of use of the terminal (5, 6a, 6b), comparing a signal sent by the medical device (3), received by the reception means (8) and conditioned by the conditioning means (9), with the signals previously stored; transmission means (12) for, during the phase of use, transmitting the signal, if the latter corresponds to a signal previously stored, to the remote terminal (6a, 6b); the terminal (6a, 6b) comprising means for playing back the signal to at least one person to notify him or her of the sending of said signal by the device.
US09761108B2 Apparatus, method and computer program for monitoring positions of objects
An apparatus, method and computer program, the apparatus comprising: processing circuitry; and memory circuitry including computer program code; the memory circuitry and the computer program code configured to, with the processing circuitry, cause the apparatus to, at least in part: obtain information relating to a position of an object relative to a user; determine a field of vision of the user; determine whether or not the object is in the field of vision of the user; and if it is determined that the object is not in the field of vision of the user enable an alert to be provided.
US09761103B2 Portable terminal having video surveillance apparatus, video surveillance method using the portable terminal, and video surveillance system
Provided is an image surveillance method and apparatus. The image surveillance method includes photographing a predetermined place and generating an image signal corresponding to the predetermined place, detecting a change in the image signal by calculating a difference between a current frame and a previous frame of the generated image signal, and generating alarm information corresponding to the detected change in the image signal in order to alarm a user.
US09761099B1 Configurable sensor
Methods and systems, including computer programs encoded on computer storage media, for providing an indication of a direction a person passes through a door in a property, the method including receiving, at a sensing device and from a control panel of an alarm system in a property, instructions to provide an indication of a direction a person passes through a door in the property; obtaining motion data using a motion sensor that is included in the sensing device; detecting the opening of the door using a magnetometer included in the sensing device; based on the obtained motion data and detected opening of the door, determining a direction a person passed through the door; and providing, to the control panel, an indication of the direction the person passed through the door.
US09761095B2 Personal alarm light apparatus and method
A personal alarm light operates as a multi-purpose emergency tool having a power pack of batteries powering a white light beam, as well as a radially emanating red light ring. An audible alarm has a loud, typically high-pitched oscillating sound. A resonance chamber amplifies the sound, which emanates from apertures delivering sound radially away from the resonance chamber. Crowns on each end of the tool provide regions of reduced area and alternating relieved sections about the circumference thereof, in order to provide increased impact pressure from the points when used as hammers to break glass, or as strikers to cut through fabric or other sheet materials.
US09761093B2 Dual strobe expander plate
An output device mounting plate can, in a disclosed embodiment, carry a fixedly mounted strobe unit and a displaced region to releasably attach additional output devices. The additional output devices can include a verbal output device, an audible output device, a visual output device, or an audible/visual output device.
US09761089B2 Method and system for weighting odds to specific gaming entities in a shared bonus event
Methods of weighting odds in shared bonus events and gaming systems and devices configured for weighting odds in shared bonus events. A number of participations or entries by the same gaming machine or player entity may be obtained for a shared bonus event in association with play of a base or primary game, allowing the odds of winning the shared bonus event to be weighted.
US09761088B2 Multiplayer gaming system
The present invention generally relates to gaming systems for playing ball games where a hall is launched into a gaming area. More particularly, the present invention relates to a multiplayer gaming system comprising a ball game device having a launching mechanism for launching a ball into a gaming area to start a game, the gaming system further comprising a start control means for controlling start of the launching mechanism and a plurality of gaming terminals for a plurality of players, said gaming terminals including an input device for inputting a prediction and/or a bet for the outcome of a game. In accordance with the present invention, the input device of each gaming terminal includes start signal input means for inputting a start signal for starting the launching mechanism, wherein the start control means of the gaming system includes a random signal generator for randomly selecting one of the plurality of gaming terminals for each game to generate the start signal and a display signal generator for generating a display signal indicative of the gaming terminal selected for the generation of the start signal.
US09761087B2 Systems and methods for redeeming user activity level for virtual currency
Systems, electronic devices, and methods for redeeming user activity level or other desired user behaviors for virtual currency are disclosed. In some implementations, a method includes: at a computer system, obtaining user activity information indicating an activity level of a user; and computing an in-application credit based on the activity level. The in-application credit can be redeemed by the user in an associated application. The in-application credit can be redeemed by the user for a coupon that can be applied towards out-of-application purchases. In some implementations, the activity level is determined in accordance with (i) a motion parameter reported by an activity sensor of an electronic device associated with the user, (ii) information obtained from a cell phone tower or a GPS device (e.g., using cell tower triangulation techniques); and (iii) self-reported user activity information. In some implementations, the method also includes converting the in-application credit for out-of-application purchases.
US09761082B2 Card selection
Example methods and devices are set forth for playing a game. In some embodiments, an inventory of game indicia is arranged in a random but established, serial order. In some embodiments, for each hand of play the player makes a wager and game indicia are displayed in order from the inventory to define a winning or losing outcome. In some embodiments, a display, as hands are played, displays the remaining constituency of the inventory and the player, before any game, can order re-shuffling and re-constitute of the inventory. Other embodiments are described.
US09761081B2 Integrating video feeds and wagering-game content
A wagering game system and its operations are described herein. In some examples, the operations can include receiving a video feed of a casino wagering game presented live via a first device. The video feed depicts at least one first symbol from a set of wagering game symbols used for outcomes of the casino wagering game. The operations can further include, after receiving the video feed, compositing a computer-generated image with the video feed to generate a composited video feed. The image represents at least one second symbol from the set of wagering game symbols. The operations can further include providing the composited video feed for presentation of the casino wagering game via a second device separate from the first device.
US09761078B1 Vending machine remote sensing of contents apparatus
A vending machine remotes contents sensing apparatus collects information from the actual delivery of a product, sends it on to an MCU, then to a CPU, to the internet, to a remote receiver with a web interface application on a web page for access by a service person for real time delivery information.
US09761077B2 Bank note processing system having a combined florescence and phosphorescence detection system
A bank note processing system having a combined florescence and phosphorescence detection system. The bank note processing system includes a detection module which has a detector housing having a first compartment and a second compartment separated by a light baffle. An illumination source and a first sensor module are disposed in the first compartment of the detector housing and a second sensor module is disposed in the second compartment of the detector housing. The illumination source directs light to the bank note and the first sensor module measures the bank note's florescence at a first point in time. The second sensor module measures the bank note's phosphorescence at a second point in time and the detection module determines whether the bank note is a counterfeit bank note using the measured florescence and the measured phosphorescence.
US09761071B2 Integrated real estate showing scheduling and key management system
A system and method for dispensing a key from a key kiosk disposed at a realtor's office near a real property based on a showing appointment scheduled with a showing scheduling system. The appointment, including a date and time, as well as an authorized user is communicated from the showing scheduling system to the key kiosk. The user then authenticates herself or himself to the kiosk at the appropriate time, and the key is dispensed. The kiosk authenticates the user by scanning a QR code or using the physical location of the user. The kiosk will not dispense the key if the user has a different key that is checked out, but not returned yet. The key can be returned to the kiosk where it is dispensed, or a different key kiosk. The kiosk also dispenses a single common key when the user shows multiple properties.
US09761069B2 Touch capable RFID invention
A hybrid security access device is described herein that combines Radio Frequency Identification RFID technology with a new Touch Access technology that utilizes the body for near field emitter communications. Combining these technologies results in security access tags that can remain in or about a person such as in a wallet, briefcase, purse, etc. and be activated by just touching a touch access equipped RFID reader. The need to extract and hand present an access tag close to a reader as required by RFID technology is eliminated. Efficiency, security compliance, card loss due to handling and convenience is the result of the combination of these two technologies and is the basis of this patent application.
US09761068B2 System of stacked devices
A method of implementing use cases includes associating a use case with each of a plurality of devices capable of being used or accessed by a user. The method also includes providing a plurality of stackable blades, each providing a standard physical interface and being configured to implement a solution to the use case associated with each of the plurality of devices. The method further includes stacking the plurality of stackable blades to form an interconnected stack. Each of the plurality of stackable blades are coupled using the standard physical interface. The method also includes executing a first purpose corresponding to a first use case and executing a second purpose corresponding to a second use case. Embodiments provide an electronic ecosystem featuring ubiquitous connectivity in which a standard contact array in each component of the ecosystem assures interoperability between heterogeneous devices.
US09761065B2 Regenerative braking coaching system
A vehicle includes a regenerative braking system, which may include an electric machine, configured to provide regenerative braking torque to vehicle traction wheels. The vehicle further includes at least one controller configured to provide indicia for display to indicate performance of the regenerative braking system. The indicia represent a comparison of a braking profile that is recorded during a deceleration event and a calculated braking profile that is based on a detected forward object. In various embodiments, the indicia may include a numerical or letter grade representative of a similarity between the recorded braking profile and the calculated braking profile and/or a visual representation of the comparison of the recorded braking profile and the calculated braking profile.
US09761060B2 Parameterized model of 2D articulated human shape
Disclosed are computer-readable devices, systems and methods for generating a model of a clothed body. The method includes generating a model of an unclothed human body, the model capturing a shape or a pose of the unclothed human body, determining two-dimensional contours associated with the model, and computing deformations by aligning a contour of a clothed human body with a contour of the unclothed human body. Based on the two-dimensional contours and the deformations, the method includes generating a first two-dimensional model of the unclothed human body, the first two-dimensional model factoring the deformations of the unclothed human body into one or more of a shape variation component, a viewpoint change, and a pose variation and learning an eigen-clothing model using principal component analysis applied to the deformations, wherein the eigen-clothing model classifies different types of clothing, to yield a second two-dimensional model of a clothed human body.
US09761058B2 Image processing apparatus and image processing method
There is provided an image processing apparatus that includes a coefficient setting section, and a processing section. The coefficient setting section is configured to set a filter coefficient based on a correlation value in a color image. The processing section is configured to perform filter processing on a disparity image of the color image for correction of the disparity image, the filter processing being performed using the filter coefficient set by the coefficient setting section.
US09761052B2 Determining space to display content in augmented reality
A method for improving the placement of virtual content in augmented reality is disclosed. A reference image of the object to be augmented is analyzed for feature density information. The placement of content is based on the at least one location adjacent to where features are concentrated. Accordingly, the chance of the content interfering with an important part of the object is lowered, and object recognition and/or tracking ability is maintained because there are sufficient features nearby the content to enable object recognition and/or tracking.
US09761047B2 Virtual mask fitting system
Apparatus and associated methods relate to determining a fit-quality metric for a mask/face combination based upon a calculated dead-space volume between a virtual mask and a virtual face virtually aligned so as to create an integrity seal circumscribing a mouth and nose region. In an illustrative embodiment, an interactive virtual fitting system may receive a three-dimensional (3D) virtual face associated with a person. The system may retrieve 3D models of various respirators selected by user determined criteria. The system may then compute a fit-quality metric for each of the retrieved 3D models. The potential wearer may then be presented with the metrics for review. The potential wearer may select a respirator based upon these computed metrics. A virtual fitting of many respirators may advantageously reduce the time needed for selecting a properly fitting respirator while simultaneously ensuring that the selected respirator may be comfortable and well fitting.
US09761044B2 Apparatus and method for generation of a light transport map with transparency information
A generator of an image processing apparatus may generate a light transport map (LTM) by sampling depth information from a light to an object based on a transparency of the object, wherein the LTM may be used to compute a visibility of the light with respect to a first point to be rendered.
US09761043B1 Non-multisampled anti-aliasing for clipping paths
Systems and methods provide for non-multisampled anti-aliasing for clipping paths, in which a non-multisampled texture is employed to store anti-aliasing data. In some configurations, clipping paths applied to an input object are processed successively using a non-multi-sampled buffer and non-multisampled texture. Each clipping path is processed by incrementing a stencil buffer value for each pixel covered by the clipping path, computing clipping path coverage data, and storing the clipping path coverage data in the non-multisampled texture. An object is rendered by performing a stencil test and multiplying color values for retained pixels by corresponding texture values from the non-multisampled texture to provide anti-aliasing. Further configurations operate without a stencil buffer but employ a logical stack of non-multisampled textures, one for each clipping path.
US09761040B2 Computer hardware architecture and data structures for ray binning to support incoherent ray traversal
A new hardware architecture defines an indexing and encoding method for accelerating incoherent ray traversal. Accelerating multiple ray traversal may be accomplished by organizing the rays for minimal movement of data, hiding latency due to external memory access, and performing adaptive binning. Rays may be binned into coarse grain and fine grain spatial bins, independent of direction.
US09761035B1 Dynamic user interfaces
Methods and systems for dynamic user interfaces are provided. A user interface allows a user to receive information about a computer system's state and to make changes to state, such as with touch screen devices. Dynamic user interfaces provide advanced methods of interfacing with the computer system, receiving information, and changing computer state. Advanced methods include improved gestural controls like interrupting or fast-forwarding an animated transition. Advanced methods of receiving information from the computer system are also provided, such as real-time data updates mid-animation and meaning conveyed through motion of and/or configuration change of UI elements. Defined animation pathways in the system can have different relative velocities as a function of percentage completion regardless of the duration(s) of the animation pathways, allowing for more fluid UIs. The methods and systems allow for the rapid creation, management, and iteration of meaningful user interfaces and complex animation types.
US09761031B2 Image processing apparatus and image processing method
An apparatus includes a first acquisition unit configured to acquire main object information specifying a main object in generation of a layout image, a second acquisition unit configured to acquire object correlation information specifying an object having a correlation with the main object, an extraction unit configured to extract at least one image including the main object and at least one image including the object having the correlation with the main object from a plurality of images based on the acquired main object information and the acquired object correlation information acquired, and a generation unit configured to generate, using a layout template, a layout image in which the at least one image extracted by the extraction unit and including the main object and the at least one image extracted by the extraction unit and including the object having the correlation with the main object are laid out therein.
US09761027B2 Methods and systems for integrated plot training
A method for correlating data collected from at least one sensor of machinery with a malfunction of the machinery includes storing, in a memory, one or more reference data sets where each reference data set is associated with a malfunction of the machinery. The method also includes receiving measurement data based on measurement information from the at least one sensor and displaying, with a display device, a first plot representing a reference data set of the one or more reference data sets where the first plot has a plot type associated with the reference data set. The method also includes displaying, with the display device, a second plot representing the measurement data where the second plot is plotted using the first plot based at least in part with the association of the plot type with the reference data set. Furthermore, the method includes displaying, with the display device, an explanation of an appearance of the second plot.
US09761026B1 Rendering graphical scenes
A device may receive information that specifies a graphical scene. The graphical scene may include a coordinate axis. Data, to be plotted in the graphical scene, may be plotted with regard to the coordinate axis. The device may generate a structured plurality of objects. One or more objects, of the structured plurality of objects, may store properties that define the graphical scene. A particular object, of the one or more objects, may store properties that define one or more elements of the coordinate axis. The device may receive information identifying a modification to an element of the coordinate axis, of the one or more elements of the coordinate axis. The device may modify a property of the properties that define the one or more elements of the coordinate axis, based on the instruction, to implement the modification specified by the instruction.
US09761023B1 Device and method for iterative reconstruction of images recorded by at least two imaging methods
The present invention relates to a device (100) for iterative reconstruction of images recorded by at least two imaging methods, the device comprising: an extraction module (10), which is configured to extract a first set of patches from a first image recorded by a first imaging method and to extract a second set of patches from a second image recorded by a second imaging method; a generation module (20), which is configured to generate a set of reference patches based on a merging of a first limited number of atoms for the first set of patches and of a second limited number of atoms for the second set of patches; and a regularization module (30), which is configured to perform a regularization of the first image or the second image by means of the generated set of reference patches.
US09761014B2 System and method for registering pre-operative and intra-operative images using biomechanical model simulations
A method and system for registering pre-operative images and intra-operative images using biomechanical simulations is disclosed. A pre-operative image is initially registered to an intra-operative image by estimating deformations of one or more segmented anatomical structures in the pre-operative image, such as the liver, surrounding tissue, and the abdominal wall, using biomechanical gas insufflation model constrained. The initially registered pre-operative image is then refined using diffeomorphic non-rigid refinement.
US09761010B2 Tracking apparatus
A tracking apparatus includes a grouping setting unit, a tracking feature detection unit, a tracking unit. The grouping setting unit groups a plurality of focus detection areas with an in-focus state. The tracking feature detection unit detects a feature amount of the tracking target in areas of the groups grouped. The tracking unit tracks the tracking target in accordance with a first or second tracking position depending on the number of the set groups.
US09761009B2 Motion tracking device control systems and methods
Provided herein are systems and methods for controlling displacement of a location indicator on the display of a controlled computing device in response to movements of a remote controlling object. Various embodiments may further cause the controlled computing device to perform other operations, broadly referred to as command operations, in response to movements of the controlling object. The command operations are distinguishable from the displacement operations. Various embodiments may further distinguish between movement of the controlling object intended to correspond to a displacement operation and movement of the controlling object intended to correspond to a command operation.
US09761008B2 Methods, systems, and computer readable media for visual odometry using rigid structures identified by antipodal transform
The subject matter described herein includes methods for visual odometry using rigid structures identified by an antipodal transform. One exemplary method includes receiving a sequence of images captured by a camera. The method further includes identifying rigid structures in the images using an antipodal transform. The method further includes identifying correspondence between rigid structures in different image frames. The method further includes estimating motion of the camera based on motion of corresponding rigid structures among the different image frames.
US09761006B2 Methods of utilizing image noise information
Image processing methods and related apparatuses (SEG,UV). The apparatuses (SEG,UV) operate to utilize noise signal information in images (IM). According to one aspect, apparatus (SEG) uses the noise information (FX) to control a model based segmentation. According to a further aspect, apparatus (UV) operates, based on the noise information (FX), to visualize the uncertainty of image information that resides at edge portions of the or an image (IM).
US09761005B2 Method and system for mesh segmentation and mesh registration
A system, apparatus and method for mesh registration including an extraction of a preoperative anatomical mesh from a preoperative anatomical image based on a base topology of an anatomical mesh template, an extraction of an intraoperative anatomical mesh from an intraoperative anatomical image based on a preoperative topology of the preoperative anatomical mesh derived from the base topology of an anatomical mesh template, and a registration of the preoperative anatomical image and the intraoperative anatomical image based on a mapping correspondence between the preoperative anatomical mesh and the intraoperative anatomical mesh established by an intraoperative topology of the intraoperative anatomical mesh derived from the preoperative topology of the preoperative anatomical mesh.
US09761004B2 Method and system for automatic detection of coronary stenosis in cardiac computed tomography data
A method and system for automatic coronary stenosis detection in computed tomography (CT) data is disclosed. Coronary artery centerlines are obtained in an input cardiac CT volume. A trained classifier, such as a probabilistic boosting tree (PBT) classifier, is used to detect stenosis regions along the centerlines in the input cardiac CT volume. The classifier classifies each of the control points that define the coronary artery centerlines as a stenosis point or a non-stenosis point.
US09761002B2 Stereo-motion method of three-dimensional (3-D) structure information extraction from a video for fusion with 3-D point cloud data
According to an embodiment, a method for generating a 3-D stereo structure comprises registering and rectifying a first image frame and a second image frame by local correction matching, extracting a first scan line from the first image frame, extracting a second scan line from the second image frame corresponding to the first scan line, calculating a pixel distance between the first scan line and the second scan line for each pixel for a plurality of pixel shifts, calculating a smoothed pixel distance for each pixel for the pixel shifts by filtering the pixel distance for each pixel over the pixel shifts, and determining a scaled height for each pixel of the first scan line, the scaled height comprising a pixel shift from among the pixel shifts corresponding to a minimal distance of the smoothed pixel distance for the pixel.
US09760999B2 Image processing apparatus, imaging apparatus, and image processing method
An image processing apparatus includes an image acquisition unit that acquires a plurality of images, a corresponding point acquisition unit, a first fundamental matrix calculation unit, a depth calculation unit, a corresponding point extraction unit, and a fundamental matrix determination unit. The corresponding point acquisition unit acquires a plurality of first corresponding points of the images. The first fundamental matrix calculation unit calculates a first fundamental matrix based on the first corresponding points. The depth calculation unit calculates depths for the first corresponding points based on the first fundamental matrix. The corresponding point extraction unit extracts a plurality of second corresponding points from the first corresponding points based on the depths. The fundamental matrix determination unit calculates a second fundamental matrix based on the second corresponding points.
US09760998B2 Video processing method and apparatus
The present disclosure discloses a video processing method and apparatus, which belong to the field of data processing technologies. The method includes: acquiring at least one three-dimensional image, and obtaining a to-be-processed video; parsing the to-be-processed video, to obtain at least two video images; fusing each three-dimensional image with each video image separately, to obtain fused video images; and synthesizing the fused video images into a video, to obtain a processed video. The present disclosure separately fuses each acquired three-dimensional image with each video image obtained by parsing an acquired to-be-processed video, and synthesizes fused video images into a video, to obtain a processed video, which implements adding a three-dimensional image to a video, and enables a processed video to display a three-dimensional image, thereby expanding an application range of video processing, and enriching display effects of the processed video.
US09760994B1 Building a three-dimensional composite scene
The capture and alignment of multiple 3D scenes is disclosed. Three dimensional capture device data from different locations is received thereby allowing for different perspectives of 3D scenes. An algorithm uses the data to determine potential alignments between different 3D scenes via coordinate transformations. Potential alignments are evaluated for quality and subsequently aligned subject to the existence of sufficiently high relative or absolute quality. A global alignment of all or most of the input 3D scenes into a single coordinate frame may be achieved. The presentation of areas around a particular hole or holes takes place thereby allowing the user to capture the requisite 3D scene containing areas within the hole or holes as well as part of the surrounding area using, for example, the 3D capture device. The new 3D captured scene is aligned with existing 3D scenes and/or 3D composite scenes.
US09760992B2 Motion compensated iterative reconstruction
A method includes re-sampling current image data representing a reference motion state into a plurality of different groups, each group corresponding to a different motion state of moving tissue of interest, forward projecting each of the plurality of groups, generating a plurality of groups of forward projected data, each group of forward projected data corresponding to a group of the re-sampled current image data, determining update projection data based on a comparison between the forward projected data and the measured projection data, grouping the update projection data into a plurality of groups, each group corresponding to a different motion state of the moving tissue of interest, back projecting each of the plurality of groups, generating a plurality of groups of update image data, re-sampling each group of update image data to the reference motion state of the current image, and generating new current image data based on the current image data and the re-sampled update image data.
US09760991B2 System and method for image intensity bias estimation and tissue segmentation
A system and method for estimating image intensity bias and segmentation tissues is presented. The system and method includes obtaining a first image data set and at least a second image data set, wherein the first and second image data sets are representative of an anatomical region in a subject of interest. Furthermore, the system and method includes generating a baseline bias map by processing the first image data set. The system and method also includes determining a baseline body mask by processing the second image data set. In addition, the system and method includes estimating a bias map corresponding to a sub-region in the anatomical region based on the baseline body mask. Moreover, the system and method includes segmenting one or more tissues in the anatomical region based on the bias map.
US09760985B2 Apparatus and method for highly accurate real-time photoelectric glass substrate identification
The present invention provides an apparatus for highly accurate and real-time photoelectric glass substrate identification. The apparatus includes: a laser device for emitting a laser beam; a glass substrate that has a first surface and a second surface and is configured to receive the laser beam to generate a first laser beam point and a second laser beam point; and, a charged coupled device (CCD) camera inspecting equipment. The first laser beam point has a first point area, and the second laser beam point has a second point area. Once the first point area is moved for a glass distance number and is aligned with the second point area, the CCD camera inspecting equipment can obtain a thickness value of the glass substrate with a resolution value and the glass distance number. In addition, the present invention also provides a method for highly accurate and real-time photoelectric glass substrate identification.
US09760981B2 Image processing part, display apparatus having the same and method of processing an image using the same
An image processing part includes an edge enhancing part, an artifact detecting part and a compensating part. The edge enhancing part emphasizes an edge portion of an object in input image data. The artifact detecting part detects a corner outlier artifact at an area adjacent to the edge portion of the object. The compensating part compensates the corner outlier artifact. Accordingly, the edge portion of the object may be enhanced and the corner outlier artifact is decreased so that the display quality may be improved.
US09760977B2 Method and apparatus for generating a super-resolved image from a single image
Known methods for generating super-resolved images from single input images have various disadvantages. An improved method for generating a super-resolved image from a single low-resolution input image comprises up-scaling the input image to generate an initial version of the super-resolved image, searching, for each patch of the low-resolution input image, similar low-resolution patches in first search windows within down-sampled versions of the input image, and determining, in less down-sampled versions of the input image, high-resolution patches that correspond to the similar low-resolution patches. The determined high-resolution patches are cropped, a second search window is determined in the initial version of the super-resolved image, and a best-matching position for each cropped high-resolution patch is searched within the second search window. Finally, each cropped high-resolution patch is added to the super-resolved image at its respective best-matching position.
US09760976B2 Image processing apparatus and image processing method
An image processing apparatus generates, from the captured image, a plurality of images, which respectively corresponds to ranges of individual subject distances. The apparatus then applies image processing to at least one of the images in accordance with an instruction to change the shooting distance and field angle of the captured image, and generates a combined image that corresponds to the changed shooting distance and field angle. The image processing is applied to at least one of the images such that the size of a primary image in the combined image after changing the shooting distance and the field angle does not change.
US09760975B2 Display device
A display device is disclosed. The display device includes: a housing; at least one roller configured to be positioned within the housing; a display portion including a display panel and a module cover; and a telescopic bar, one end of which is fixed to the interior of the housing and the other end is fixed to the bottom end of the display portion, wherein the display panel and the module cover are either in a first state where the display panel and the module cover are kept wound around the at least one roller or in a second state where the display panel and the module cover are kept unwound from the at least one roller, in contact with each other, and exposed out of the housing. The telescopic bar supports the back of a display portion in conjunction with the display portion, thereby allowing the display portion to remain flat.
US09760973B2 Seam carving based anonymization
As image source attribution techniques have become significantly sophisticated and are now becoming commonplace, there is a growing need for capabilities to anonymize images and videos. Focusing on the photo response non-uniformity noise pattern based sensor fingerprinting technique, this work evaluates the effectiveness of well-established seam carving method to defend against sensor fingerprint matching. We consider ways in which seam-carving based anonymization can be countered and propose enhancements over conventional seam carving method. Our results show that applying geometrical distortion in addition to seam carving will make counter attack very ineffective both in terms of computational complexity and accuracy.
US09760970B2 Video analysis and post processing of multiple video streams
In some examples, a video analysis framework receives one or more video streams including a plurality of video frames. The framework may perform region detection on the frames, and may perform feature detection/extraction on the regions. Based on the extracted features, the individual video frames may be sent to particular pipelines of a plurality of pipelines designated for performing different video analysis tasks. The framework may determine respective indexed profiles to associate with particular detected regions for indexing the individual video frames or regions thereof. In some cases, resources may be allocated among the pipelines based on a priority definition. For instance, the priorities in the priority definition may be updated dynamically based on context of the received frames. Further, a log of recent video analysis results may be maintained to enable indexing, annotation, augmentation, and searching for related content without having to access information in a storage system.
US09760969B2 Graphic processing system and method thereof
A graphic processing system and a method of graphic processing are provided. The graphic processing system has a collector, a plurality of slots, a scheduler, an arbiter and at least an arithmetic logic unit (ALU). The collector is configured to group a plurality of workitems into elementary wavefronts. Each of the elementary wavefronts comprises workitems configured to execute the same kernel code. The scheduler is configured to allocate the elementary wavefronts to the slots. Two or more of the elementary wavefronts exist at one slot to form one of a plurality of macro wavefronts. The arbiter is configured to select one of the macro wavefronts. The ALU is configured to execute workitems of at least an elementary wavefront of the selected macro wavefront and output results of execution of the workitems.
US09760966B2 Parallel processor with integrated correlation and convolution engine
A system and method for performing computer algorithms. The system includes a graphics pipeline operable to perform graphics processing and an engine operable to perform at least one of a correlation determination and a convolution determination for the graphics pipeline. The graphics pipeline is further operable to execute general computing tasks. The engine comprises a plurality of functional units operable to be configured to perform at least one of the correlation determination and the convolution determination. In one embodiment, the engine is coupled to the graphics pipeline. The system further includes a configuration module operable to configure the engine to perform at least one of the correlation determination and the convolution determination.
US09760962B2 Electronic health record web-based platform
A server for facilitating an electronic health record system. Each patient has a unique smart card. A processor: associates a security token with a patient; generates a one-time-use security code for storage based upon a security token; provides the one-time-use security code to the patient for storage on the smart card; applies two-factor authentication with the one-time-use security code for each login to a personal health record website presented by the processor; imports and exports the electronic health records associated with the patient based upon a request from the patient received through the personal health record website; generates a new one-time-use security code after each patient session based upon the respective security token; and provides the new one-time-use security code to the patient for storage on the smart card so that the personal health record website is accessed therewith.
US09760958B2 Techniques for restaurant transaction processing
Techniques for restaurant transaction processing are provided. A handheld device of a waiter is used to automatically associate a check with a table at a restaurant and to recall and modify that check. In an embodiment, two waiters use one or more handheld devices to automatically transfer a customer's check to one another.
US09760952B2 Application service aggregation and management
A method and system for aggregating services is provided. The method includes receiving and processing a service request. The service request is submitted to a service catalog and dispatched to a data integration and API module. The service request is transmitted to a management module and processed with respect to a plurality of service providers. Inter process communications associated with the service request are managed. Additionally, an account associated with the service request and the plurality of service providers is managed.
US09760951B2 Systems and methods for automatically updating data representative of insurance related information
The present disclosure generally relates to systems and methods for automatically updating data representative of insurance related information. In particular, the present disclosure relates to systems and methods for automatically updating data representative of insurance related information based on data, representative of desired updates, entered by a customer and data representative of update rules. The data representative of desired updates may be compared to the data representative of the update rules to generate updates to data representative of insurance related information.
US09760950B2 Algorithmic trading storing rules in a multi-dimensional matrix in a memory
A method of evaluating trading rules. A plurality of trading rules are received. Each trading rule includes at least one respective condition. Each condition includes at least one respective attribute, at least one respective value, and at least one respective operator that describes a relationship between the at least one respective attribute and the at least one respective value. The conditions of the plurality of trading rules are parsed into a collection of conditions so that the collection of conditions does not include duplicate conditions. A mapping is maintained from the collection of conditions to the plurality of trading rules that allows reconstruction of the plurality of trading rules from the collection of conditions. The conditions in the collection of conditions are evaluated. The rules are evaluated by referencing the evaluated conditions and the mapping.
US09760943B2 Methods, systems, and computer readable media for preparing and delivering an ordered product upon detecting a customer presence
Methods, systems, and computer readable media for preparing and delivering an ordered product upon detecting a customer presence are disclosed. In one example, a method includes detecting the presence of a mobile device associated with a customer identifier at a designated area and initiating, upon detecting the presence of the mobile device, the processing of a stored order request associated with the customer identifier for at least one product. The method further includes utilizing the customer identifier to send a notification message to the mobile device indicating that the at least one product is available for pickup or delivery.
US09760942B2 Display apparatus for supporting search service, user terminal for performing search of object, and methods thereof
A method for providing a search service of a display apparatus includes receiving a selection of an object by displaying a screen that displays at least one object, and providing location information adaptive to the user terminal to the user terminal using all location information of the searched object and information regarding a user location. Accordingly, a user may conveniently search a desired object.
US09760941B2 Managing the purchase of multiple items with multiple modes of fulfillment
Processing items is provided. Multiple modes of fulfillment are identified for the items. The items are processed with the multiple modes of fulfillment in a single transaction for a customer.
US09760939B2 System and method for downloading an electronic product to a pin-pad terminal using a directly-transmitted electronic shopping basket entry
A method of downloading an electronic product to a pin-pad terminal involves the pin-pad terminal transmitting to a network gateway a transaction proposal for an electronic product from a network device, and receiving from the network gateway a transaction proposal response generated by the network gateway in response to the transaction proposal. The transaction proposal response includes a transaction pointer associated with the electronic product. The pin-pad terminal electronically directly transmits to an electronic cash register coupled to the pin-pad terminal an indication of a payment amount for the electronic product. The pin-pad terminal receives from the electronic cash register confirmation of entry of the electronic product in an electronic shopping basket maintained by the electronic cash register, and transmits the transaction pointer to the network device via the network gateway. The pin-pad terminal receives the electronic product from the network device via the network gateway.
US09760938B2 Methods and systems for initiating application processes by data capture from rendered documents
Systems, apparatus and methods for implementing transaction applications using a handheld document data capture device are described herein. The handheld device captures information from a rendered document. The captured information is processed to identify an electronic document corresponding to the rendered document. Information captured from the rendered document by the handheld capture device is used to perform a transaction. In one embodiment, a portable scanner is used to select items from a catalog. Information scanned from the catalog is used to identify the catalog, the items to be purchased, and complete an order via the Internet.
US09760933B1 Interactive shopping advisor for refinancing product queries
An interactive shopping advisor receives a natural language query for a product search, generates an initial product recommendation from the natural language query, receives a natural language preference parameter for refining the product search, maps the natural language preference parameter to a product attribute value for the product search, identifies an adjustment orientation of the product attribute value from the natural language preference parameter, and applies the adjustment orientation to the natural language query to provide a refined product recommendation for the product search.
US09760930B1 Generating modified search results based on query fingerprints
A method and system for analyzing user behavior as users search for items within an electronic marketplace is provided. A query is submitted by a user of the electronic marketplace, the query is processed to identify a series of actions or behaviors performed by the user in relation to the query and fingerprint information for the query is determined based at least in part on analyzing the actions. In one embodiment, the electronic marketplace modifies a user experience for the user based on the fingerprint information. Search results presented to the user are modified by arranging items of the search results in accordance with one or more layouts and views based on query fingerprint information. Various categories of items related to a query issued by the user are identified based on fingerprint information and the search results are organized based on categories.
US09760929B2 Managing rights for installed software applications and items purchased therewith
In one example embodiment, a server includes a receiver configured to receive, from a first device, a request to resell an application installed on the first device and an item purchased using the application; a resale manager configured to: issue, to a second device, a resale price of the application and the item, and receive, from the second device, a request to purchase the application and the item; and a rights manager configured to issue, to a user account authenticated on the second device, rights to use the application and the item.
US09760922B2 Monetization of interactive network-based information objects
An information objects is defined that is representative of a real-world entity (e.g., a product or a service). The information object may be stored in a data store. The information object has an associated owner. A communication channel is associated with the information object that is configurable to route communications to a manager assigned to the information object. A party is enabled to obtain management of the information object for a time period. The communication channel is configured to route to the party requests that are made by interacting with the information object during the time period. A plurality of users is enabled to interact with the information object during the time period to input requests to the party over the communication channel.
US09760918B2 System and method for online collection and distribution of retail and shopping related information
A method includes receiving and storing, at a server, retail product data related to a retail product offered for sale at a retailer, the retail product data including text data corresponding to a description of the retail product, price data corresponding to a price of the retail product, and image data corresponding to a graphical image of the retail product. The method also includes receiving, at the server, links to content generated by a content-generating user, the content being associated with retail products. The method also includes identifying, at the server, a link from the plurality of links that corresponds to content associated with the retail product offered for sale at the retailer. The method also includes generating, at the server, a web page that displays the product data, including the text data, the price data, and the image data for the retail product offered for sale at the retailer and that displays the identified link.
US09760917B2 Migrating computing environment entitlement contracts between a seller and a buyer
Mechanisms are provided for migrating a computing environment entitlement contract (CEEC) from one computing resource to another. These mechanisms generate one or more CEEC data structures, each CEEC data structure defining terms of a business level agreement between a contracting party and a provider of the data processing system. A CEEC cohort is generated comprising a collection of CEECs having similar terms. The one or more CEEC data structures are associated with a computing resource cohort and a seller of a CEEC data structure, in the one or more CEEC data structures and a buyer of the CEEC data structure, in the one or more CEEC data structures, is identified. The CEEC data structure is migrated from the seller to the buyer and workloads are executed in accordance with terms specified in the CEEC data structure at the buyer after migrating the CEEC data structure.
US09760916B1 Methods and systems for internet distribution of aggregated media actions
One aspect of the concepts presented herein is aggregation and presentation of useful actions for digital media in general and photographs in particular, coupled with federated distribution of this collection of media actions such as printing and storing. In one embodiment, code is provided for use on any website such that media content on supported professional websites, amateur blogs, or even the entire Internet, is presented with an expanded and consistent set of options that the viewing user can exercise. With a minor update to the code for a particular website, website owners can offer a full suite of media actions and immediately begin earning revenue generated from the use of these actions. The code is set such that sites that offer media services over the Internet can obtain instant distribution and additional consumers for their services. The code is, in one embodiment, distributed by a service that makes this all possible by allowing for account management, measurement of usage, reporting, and control of the presentation so that the Internet image interface continues to improve in terms of end user benefit thereby increasing revenue for website hosts, content owners, and the service provider (such as printing) company as well.
US09760914B2 Determining cost and processing of sensed data
Methods, systems and apparatus for determining a proposed cost for use of sensor resources and selecting a method of processing of sensed data are presented. Such a method includes the steps of: predicting a state of an environment, obtaining at least one criterion related to the use of the sensor resources comprising one or more data sensors, determining the proposed cost for use of the sensor resources, acquiring the sensed data from the one or more data sensors, determining a characteristic of the sensed data, and selecting the method of processing the sensed data according to the determined characteristic and the predicted state. The at least one criterion is based upon the predicted state. The determining of the proposed cost is based on the at least one criterion. One or more of steps are implemented on the processor device.
US09760913B1 Real time usability feedback with sentiment analysis
Providing user software feedback and conflict resolution from a kiosk device. A computer of the kiosk captures audio and visual data from a user during an interaction between the user and software of the kiosk device. The computer analyzes the audio data and visual data to determine at least a sentiment of the user relative to the interaction and determines a score for the interaction. If the score is greater than a threshold, the computer determining at least a portion of the software needs improvement based on the score and the determined sentiment of the user during the interaction.
US09760908B2 System and method for card-linked services
A system and method are disclosed for providing a promotion associated with a transaction account. Target viewer information associated with at least one person targeted to receive an ad is identified. In accordance with the target viewer information and the ad, a probability of the at least one person to accept the promotion is determined. Promotion information associated with the promotion is selected as a function of the determined probability, and the promotion information is transmitted to a computing device associated with the at least one person. An acceptance of the promotion is received from the computing device associated with the at least one person, and processed to associate the promotion with the transaction account.
US09760907B2 Granular data for behavioral targeting
A method of targeting receives several granular events and preprocesses the received granular events thereby generating preprocessed data to facilitate construction of a model based on the granular events. The method generates a predictive model by using the preprocessed data. The predictive model is for determining a likelihood of a user action. The method trains the predictive model. A system for targeting includes granular events, a preprocessor for receiving the granular events, a model generator, and a model. The preprocessor has one or more modules for at least one of pruning, aggregation, clustering, and/or filtering. The model generator is for constructing a model based on the granular events, and the model is for determining a likelihood of a user action. The system of some embodiments further includes several users, a selector for selecting a particular set of users from among the several users, a trained model, and a scoring module.
US09760905B2 Systems and methods to optimize media presentations using a camera
In one aspect, a computing apparatus is configured to: capture first images of customers who have watched a digital sign, using a digital camera attached to the digital sign positioned in vicinity of a retail location; identify characteristics of the customers based on the first images; identify, using the characteristics, a subset of customers who have made payment transactions at the retail location through a transaction handler; determine an aggregated spending profile based on transactions of the subset of customers recorded by the transaction handler; and arrange content on the digital sign based on the aggregated spending profile. The computing apparatus may be further configured to capture second images of the customers who have made payment transactions at the retail location through the transaction handler, using a digital camera attached to a point of sale (POS) station at the retail location, and to correlate the first and second images to identify the subset.
US09760903B2 Loyalty rewards optimization bill payables and receivables service
For several accounts receivable, a reward account is determined as the account that receives the largest deposit to the loyalty reward balance thereof by a payment of the account receivable. For each reward account, a deficient reward account is found if the currency balance for the reward account is not sufficient for the payment of the account payable. For each deficiency reward account, if identified accounts receivables can be deposited such that the currency balance thereof will be sufficient to pay the account payable, then payments are made of: (i) the identified accounts receivables as corresponding deposits to the currency balance of the deficiency reward account such that the currency balance thereof is sufficient for the payment of the account payable; and (ii) the account payable by a withdrawal from the currency balance of the deficiency reward account.
US09760902B2 Ping compensation factor for location updates
In one embodiment, a computing system receives a number of location updates sent by one or more users. These location updates may have different geographic locations, but refer to the same place or point of interest. Each location update corresponds to a user visit to the place or point of interest, and each location update is determined by a mobile client device of the corresponding user. The mobile client device may determine a location update by any one or more of a number of location methods available to the mobile client device. The computing system determines a ping compensation factor to be associated with the place or point of interest. The ping compensation factor is based on a total number of visits to the particular place, versus the subset of visits to the particular place determined by a first location method from the number of location methods.
US09760897B2 Method and system for defining an offlinable view/controller graph
A method and system for defining an offlinable view/controller graph. In one embodiment of the method a first view definition is received from a server via data communication link, wherein the first view definition comprises a first identifier. The first view definition is stored in memory at a location identified by a first universal resource locator (URL). The first URL is mapped to the first identifier in a table.
US09760891B2 Providing targeted advertising content to users of computing devices
A system for providing a user with advertising content is provided. The system includes a presence server, an advertising distribution server, and a profiling and targeting component that interact to provide one or more advertisement objects to a user of a computing device based on presence data generated by the user. The presence server receives presence notification messages from the user's computing device and transmits the presence data to the profiling and targeting component. The profiling and targeting component in turn defines an advertising package that directs the transmittal of advertisement objects from the advertising distribution server to the user's computing device. The profiling and targeting component may also create a user profile based on the presence data for defining the advertising package and may further determine a trend of the user based on historical presence data. A method, apparatus, and computer program product are also provided.
US09760890B2 Permission management apparatus and permission management method
A registration accepting unit accepts registration of a card. A storage unit stores use permission information indicating a disabled state of use permission of the registered card. An instruction accepting unit accepts a use permission enabling instruction of the card from a user terminal. A providing unit provides the user terminal with code information associated with the card for which the use permission enabling instruction has been issued. A changing unit enables the use permission of the card, for which the use permission enabling instruction has been issued and which is stored in the use permission information, for a predetermined period. When receiving the code information from an in-store device installed in a stored, a notifying unit notifies the facility device of whether the use permission of the right that is stored in the use permission information in association with the code information is enabled or disabled.
US09760889B2 Wireless devices for storing a financial account card and methods for storing card data in a wireless device
A wireless device is enabled to receive a financial account card that is inserted into a card slot of the wireless device. The wireless device reads card data from the financial account card when it is inserted into the slot and programs an RFID (radio frequency identification) tag or a memory included in the wireless device. The wireless device may then be used to provide payment by transmitting the card data via radio frequency to a nearby RFID reader using the RFID tag. The financial account card may also be ejected from the wireless device and swiped by a magnetic card reader.
US09760888B2 Secure mobile user interface
The invention provides systems and method for securely inputting user data from a user into a mobile device and also for generating user data to be input by a user into a mobile device. For example, there is provided a mobile device case for securely inputting user data from a user into a mobile device, the case comprising: a microcontroller, a communication module for communicating with the mobile device and a user interface to enable the user to input the user data. The microcontroller is preferably configured to receive the user data which is input by a user via the user interface, process said user data to create processed data and communicate said processed data to said mobile device. Alternatively, the microcontroller is configured to receive a request to generate the user data; generate said user data and display said user data on the user interface.