Document Document Title
US09031103B2 Temperature measurement and control for laser and light-emitting diodes
The existing diodes in an LED or laser diode package are used to measure the junction temperature of the LED or laser diode. The light or laser emissions of a diode are switched off by removing the operational drive current applied to the diode package. A reference current, which can be lower the operational drive current, is applied to the diode package. The resulting forward voltage of the diode is measured using a voltage measurement circuit. Using the inherent current-voltage-temperature relationship of the diode, the actual junction temperature of the diode can be determined. The resulting forward voltage can be used in a feedback loop to provide temperature regulation of the diode package, with or without determining the actual junction temperature. The measured forward voltage of a photodiode or the emissions diode in a diode package can be used to determine the junction temperature of the emissions diode.
US09031099B2 Fiber with asymmetrical core and method for manufacturing same
An optical active fiber is configured with an asymmetrically-shaped core having at least one long axis and a shortest axis which extends transversely to the long axis. The outmost cladding of the active fiber is configured with a marking indicating the orientation of the short axis. The marking allows for bending the fiber so that the shortest axis extends along and lies in the plane of the bend thereby minimizing distortion of a mode which is guided by the asymmetrically-shaped core as light propagates along the bend.
US09031097B2 MIMO system with multiple spatial multiplexing modes
A MIMO system supports multiple spatial multiplexing modes for improved performance and greater flexibility. These modes may include (1) a single-user steered mode that transmits multiple data streams on orthogonal spatial channels to a single receiver, (2) a single-user non-steered mode that transmits multiple data streams from multiple antennas to a single receiver without spatial processing at a transmitter, (3) a multi-user steered mode that transmits multiple data streams simultaneously to multiple receivers with spatial processing at a transmitter, and (4) a multi-user non-steered mode that transmits multiple data streams from multiple antennas (co-located or non co-located) without spatial processing at the transmitter(s) to receiver(s) having multiple antennas. For each set of user terminal(s) selected for data transmission on the downlink and/or uplink, a spatial multiplexing mode is selected for the user terminal set from among the multiple spatial multiplexing modes supported by the system.
US09031094B2 System and method for local flow control and advisory using a fairness-based queue management algorithm
A data processing device for transmitting network packets comprising: packet classification logic for classifying packets according to different packet service classifications, wherein a packet to be transmitted is stored in one or more transmit queues based on the packet service classifications and wherein each packet is associated with a particular flow; and queue management logic for queuing packets in the one or more transmit queues utilizing a flow control policy implemented on a per-flow basis, wherein a number of queued packets for each flow is monitored and when the number of queued packets for a particular flow reaches a specified threshold, then flow control for that particular flow is turned on, and wherein the queue management logic implements a stochastic fair blue (SFB) algorithm to track the number of packets within each transmit queue.
US09031092B2 Apparatus and method for transmitting LAN signals over a transport system
A computer system and method for transmitting LAN signals over transport systems. LAN signals are generated in any client LAN compliant interface. A transceiver receives the client LAN signal in the LAN format. The client LAN signals are not converted to a SONET transmission format at any time before reaching the transceiver. The transceiver then converts the client LAN signal to an internal electrical LAN signal before re-clocking the internal electrical LAN signal. The re-clocked internal electrical LAN signal is then re-modulated into a second LAN signal. The second LAN signal is then transmitted to a transport system.
US09031091B2 Connection system of building facility device managing system, connection method of building facility device managing system, and connection program of building facility device managing system
Operations of a building facility monitoring device and an IP network monitoring device are coordinated with each other. In a connection system of a building facility device managing system, when a status of the IP network monitoring device is changed, a monitoring-device-status managing unit 301 provides parameter information unique for a BACnet protocol to the changed status and stores it. If the status is not an operation command, a coordinated-packet-generation transmitting/receiving unit 302 generates a packet of the BACnet protocol based on a status and parameter information of a specific IP network monitoring device to transmit it to a building facility device managing system 103. If the status is the operation command, it acquires a status and parameter information of the specific IP network monitoring device from a management database 401, and generates a packet of the BACnet protocol based on the status and the parameter information to transmit it to the building facility device managing system 103.
US09031090B2 Devices for sending and receiving feedback information
An evolved Node B (eNB) for sending feedback information is described. The eNB includes a processor and instructions stored in memory that is in electronic communication with the processor. The eNB determines configuration parameters related to an Enhanced Physical Hybrid-Automatic Repeat reQuest (ARQ) Indicator Channel (EPHICH). The eNB also sends an uplink grant and an associated EPHICH resource indicator based on the configuration parameters. The eNB additionally receives data in a Physical Uplink Shared Channel (PUSCH). The eNB further sends Hybrid Automatic Repeat Request Acknowledgement/Negative Acknowledgement (HARQ-ACK) information based on the configuration parameters.
US09031081B2 Method and system for switching in a virtualized platform
A local manager in a local networking domain may configure a plurality of logical switches by combining switching functions available in network devices and/or network switches in the local networking domain. The configuration may utilize vertical and/or horizontal combinations of the switching functions. The switching functions may comprise network switch-based switching functions, and/or hypervisor-level switching functions and/or network adapter-level switching functions available in network devices which may be configured as virtualized platforms. The local manager may provide interfacing services to enable exposing configured logical switches. The interfacing services may comprise an internal interface, which may be utilized, via the local manager, to control the switching functions corresponding to logical switches and/or to route messages sent to and/or from the logical switches. The interfacing services may also comprise an external interface, which may be used by external entities, such as remote management entities, to manage and/or interact with configured logical switches.
US09031072B2 Methods and apparatus to route fibre channel frames using reduced forwarding state on an FCOE-to-FC gateway
In one embodiment, an apparatus includes a switching policy module configured to define a switching policy associating a Fiber Channel port with a destination Media Access Control (MAC) address. The switching module can be configured to receive a Fiber Channel over Ethernet (FCoE) frame from a network device and send a Fiber Channel frame encapsulated in the FCoE frame to the Fiber Channel port based at least in part on the switching policy and a destination MAC address of the FCoE frame.
US09031071B2 Header elimination for real time internet applications
The disclosed techniques provide for eliminating real-time transport protocol, RTP, extension bit X, marker bit M, time stamp and sequence number information and/or user data protocol, UDP, checksum information from the header of a packet for transmission.
US09031069B2 Method, system, and apparatus for extranet networking of multicast virtual private network
A method, a system, and an apparatus for extranet networking of a multicast Virtual Private Network (VPN) are disclosed in the present invention. The method includes: establishing a multicast tunnel to a source VPN multicast instance and a multicast tunnel interface (MTI) connected to the multicast tunnel according to an added Share-Group address of a source VPN; sending an encapsulated Protocol Independent Multicast (PIM) protocol message to the MTI, forwarding the encapsulated PIM protocol message in a public network, and making the source VPN multicast instance generate a public network multicast data message of a Share-Group of the source VPN according to the encapsulated PIM protocol message; and decapsulating the received public network multicast data message of the Share-Group of the source VPN, and obtaining multicast data from the source VPN multicast instance. The present invention reduces the resource occupation of a router system, and alleviates the network load.
US09031066B2 Casing apparatus having wireless communication function for mobile terminal
The present invention relates to a casing apparatus having the wireless communication function for a mobile terminal, comprising a casing apparatus body, and an antenna, a communication PCBA, and a battery supplying power to the communication PCBA that are arranged in the casing apparatus body; the communication PCBA is integrated with a digital communication module and a WIFI communication module, and the antenna and the battery are respectively connected to the communication PCBA. The casing apparatus according to the present invention transmits a WIFI signal from a tablet computer through the antenna to the WIFI communication module for processing, then transmits the processed signal to the digital communication module for modulation, and finally radiates the modulated signal through the antenna to access a wireless communication network. In this way, the WIFI signal from the tablet computer gets to access the network, thereby realizing the wireless access to the network even though there is no WIFI hotspot available.
US09031060B2 Voice over internet protocol system and method
A voice over internet protocol (VOIP) system and method are provided. The VOIP method includes steps of generating a phone number for a first terminal device, and a domain name corresponding to that phone number, transmitting the domain name and an internet protocol (IP) address to a dynamic domain name service (DDNS) server for registration, applying the same procedure to second and third terminal devices, generating a name of a group for the first, second, and third terminal devices, generating a domain name corresponding to the name of the group, and transmitting the domain name and the IP address for registration, and acquiring the domain name for the required name of the group, thus allowing calls to be made and available within the group.
US09031059B2 Fixed mobile convergence and voice call continuity using a mobile device/docking station
A network mobility device registers with a switch in a telephone network, and receives a first message from a docking station indicating that a mobile device has undocked from the docking station. The docking station includes a Voice over Internet Protocol (VoIP) phone that has a wired connection to a data network, and the mobile device includes a portable digital computing device. The network mobility device receives a call, destined for the mobile device, routed from the switch, and sends an alert message, based on the undocking of the mobile device and the received call, to the mobile device to notify a client of the mobile device of the call. The network mobility device forwards the call, based on the undocking of the mobile device, from the network mobility device to the client at the mobile device via the data network.
US09031053B2 Method and apparatus for communicating in a relay communication network
Techniques for transmitting data in a relay communication network are described. In an aspect, stations in the relay network may be grouped into multiple depths, and stations at each depth may send the same transmission in each time interval. Packets may be transmitted in a pipelined manner in the relay network. Transmissions of a packet may be sent by stations at progressively higher depth in successive time intervals. A station may perform auto-configuration, attempt to decode transmissions from stations at different depths, and determine its depth based on decoding results. In another aspect, stations at each depth may transmit the same synchronization signal, and stations at different depths may transmit different synchronization signals. In one design, the synchronization signals for different depths may be different pilots, which may be generated with different scrambling codes or different orthogonal codes or may be multiplexed in frequency and/or time.
US09031050B2 Using a mobile device to enable another device to connect to a wireless network
A method includes, at a first device while the first device is connected to a wireless local area network (WLAN) and a second device is unconnected to the WLAN, establishing a secure channel to the second device using an EAP exchange. The method also includes sending at least one credential associated with the WLAN to the second device via the secure channel to enable the second device to connect to the WLAN.
US09031048B2 Dual band wireless local area network (WLAN) transceiver
Dual band wireless local area network (WLAN) transceiver. A wireless communication device includes at least two different transceivers (or radios) therein to effectuate communications with other wireless communication devices using at least two respective frequency bands. Each of these two transceivers may have different respective circuitry (e.g., each may have a different respective power amplifier (PA) and/or other circuitry components). Coordination is made regarding when certain components of one transceiver turn on and operate when another transceiver may be transmitting or receiving communications. For example, the turn on of a PA and/or other circuitry components (e.g., such as components using or requiring high current) within one transceiver can be coordinated as to minimize deleterious effects regarding the operation of another transceiver. Moreover, latency existent within each of the respective transceiver chains within the wireless communication device (e.g., including baseband and radio portions) is accounted for regarding their respective concurrent operation.
US09031040B2 Method and device for inter-system handover for packet switch service in dual-mode radio network controller
A method and device for an inter-RAT handover for a PS service in a dual-mode RNC are disclosed in the present invention, which are used to support an inter-RAT handover optimization flow of the PS service in the dual-mode RNC, thereby solving the problem that the current inter-RAT handover optimization flow does not support the PS handover. With the present invention, in the inter-RAT handover optimization flow, an inter-RAT relocation flow and a radio resource allocation flow of a destination system are executed in parallel, and an encryption indication is sent to a central network through inter-RAT relocation required message; a BSC forwards user data to the central network according to the encryption indication.
US09031038B2 System and method for offloading data in a communication system
A method is provided in one example embodiment and includes receiving a data packet over a first link at a first network element; establishing an out-of-band channel over a second link between the first network element and a second network element; and receiving instructions at the first network element to offload the data packet from the first link. In more particular embodiments, the first network element is a mobile enabled router, and the second network element is a gateway general packet radio service support node or a packet data network gateway. The method can also include receiving a discovery message from the second network element, the discovery message triggering the establishment of the out-of-band channel. In certain cases, the data packet is offloaded based on a type of data in the data packet.
US09031036B2 Apparatus and method for supporting intra-base station handover in a multi-hop relay broadband wireless communication system
An apparatus is capable of supporting an intra-BS handover of a Mobile Station (MS) that can distinguish a Relay Station (RS) and a Base Station (BS) in a multi-hop relay broadband wireless communication system. A handover of an MS in a multi-hop relay wireless communication system includes receiving a neighbor advertisement message. When a handover command message that initiates a handover to a target node is received, information on a target node is acquired, and an upper BS of the target node is identified. When the identified upper BS of the target node is the same as an upper BS of the serving node, control information that has been previously used in a serving node is used in the target node, and communication with the target node is performed.
US09031033B2 Wireless radio access network control channel capacity management
Transmission capacity for a control channel sent to multiple mobile wireless devices in a wireless network is increased by transmitting the control channel using multi user multiple input multiple output transmissions (MU MIMO). Received signal quality measured at mobile wireless devices in a radio sector are communicated to a radio node and used to determine one or more sets of mobile wireless devices to share transmission of control channel elements on the same time and frequency resource element. The radio node indicates the use of MU MIMO and the selection of precoding matrices to each of the mobile wireless devices in the each set of mobile wireless devices.
US09031030B2 Method and apparatus for signaling the release of a persistent resource
A method and apparatus for signaling the release of a persistent resource in long term evolution (LTE) are disclosed. An indication of the release of a downlink (DL) persistent resource is received by a wireless transmit receive unit (WTRU) from an evolved Node-B (eNB) via a physical downlink control channel (PDCCH). A positive acknowledgement (ACK) is transmitted by the WTRU which denotes that the indication has been received. The PDCCH or a medium access control (MAC) CE may be used by the eNB to signal the indication. At least one bit may be added to contents of the PDCCH to signal whether the PDCCH is for DL persistent or dynamic resource allocation. The DL persistent resource is then released and an indication that the DL persistent resource has been released is transmitted.
US09031027B2 Method and apparatus for allocating feedback channels in wireless communication system
A base station determines quantities of information to be fed back by a mobile terminal using each of a first feedback channel and a second feedback channel, generates feedback control information used for determining a coding rate based on the determined quantities of information for each of the first feedback channel and the second feedback channel, and transmits, to the mobile terminal, a feedback channel allocation message containing the feedback control information and information on the first feedback channel and the second feedback channel.
US09031026B2 Transmission apparatus and method for generating reference signal
It is an object to provide a sequence allocating method that, while maintaining the number of Zadoff-Chu sequences to compose a sequence group, is configured to make it possible to reduce correlations between different sequential groups. This method includes the steps of setting a standard sequence with a standard sequence length (Nb) and a standard sequence number (rb) in a step (ST101), setting a threshold value (Xth(m)) in accordance with an RB number (m) in a step (ST103), setting a sequence length (N) corresponding to RB number (m) in a step (ST104), judging whether ¦r/N−rb/Nb¦=Xth(m) is satisfied in a step (ST106), including a plurality of Zadoff-Chu sequences with a sequence number (r) and a sequence length (N) in a sequence group (rb) in a step (ST107) if the judgment is positive, and allocating the sequence group (rb) to the same cell in a step (ST112).
US09031024B2 Radio resource management for distributed cellular systems
In a network comprising user devices and signal notes, communication links are scheduled by identifying one or more active signal node/user device pairs, wherein each active pair comprises a signal node that is presently communicating with a respective active user device over a signal channel. Then, one or more inactive signal node/user device pairs is identified; each inactive pair comprises an inactive signal node that is not presently communicating over the signal channel and a potential user device that is capable of communicating with the inactive signal node over the signal channel. One of the inactive pairs is then identified which, when made into an active pair, will achieve the greatest total fairness criterion, the total fairness criterion being a sum of a fairness criterion for the potential user device in the inactive pair in question and a fairness criterion for each of the active user devices in the event that the respective inactive pair becomes an active pair. The fairness criterion for each user device is dependent on the transmission rate achievable between the user device and the signal node in its respective pair.
US09031013B2 Identifier-sharing method for wireless communication devices and wireless communication device and base station using the same
Identifier-sharing methods for wireless communication devices are proposed along with wireless communication devices and base stations using the same method. The proposed methods allow multiple M2M devices to share the same device identifier. The shared device identifier is valid for only one M2M device in a given time interval by a mechanism of assigning the same periodicity value and different offset values to the M2M devices associated with the shared device identifier. The proposed methods can also categorize M2M devices into different classes respectively based on their M2M application types. By adjusting periodicity value associated with the shared device identifier, a class associated with delay-tolerable applications can be allocated with more M2M devices sharing the same device identifier in comparison to the another class associated with delay-sensitive applications.
US09031012B2 Radio base station
A radio base station (eNB) according to the present invention includes: a determination unit (14) configured to determine an assignable OFDM symbol number indicating the number of OFDM symbols in each subcarrier assignable to a control channel in a downlink, in each subframe configured by a predetermined number of OFDM symbols, wherein the determination unit (14) is configured to calculate an OFDM symbol number corresponding to a communication status, in each subframe within a measurement interval, and to set a maximum number of the calculated OFDM symbol numbers to the assignable OFDM symbol number in each subframe within a next control interval that starts after completion of the measurement interval.
US09031008B2 Methods and apparatus for multi-user MIMO transmissions in wireless communication systems
A wireless communication system includes a base station capable of communicating with a plurality of subscriber stations. The base station can transmit control information and data to a subscriber stations. The base station also can identify a set of RS patterns to be used to communicate with the subscriber station, assign a subset of antenna port numbers within the set of RS patterns to the subscriber stations. The base station can indicate the assigned states in a Downlink Control Information (DCI) format transmitted in a Physical Downlink Control Channel (PDCCH). The base station transmits the data using a subset of antenna ports corresponding to the subset of antenna port numbers. The base station also can map reference signals corresponding to the subset of antenna ports according to at least one RS pattern within the set of RS patterns.
US09031007B2 Super frame structure and beacon scheduling method for mesh networking
A super frame structure supporting a mesh network, and a beacon scheduling method. The super frame structure and the beacon scheduling method may support a mesh topology in a beacon enabled mode, may have an algorithm that is simple and easily realized via beacon scheduling using a distribution method, and may easily adapt to changes in a network environment.
US09031005B2 System and method for a reverse invitation in a hybrid peer-to-peer environment
An improved system and method are disclosed for peer-to-peer communications. In one example, the method enables an endpoint to send a reverse invitation in response to an incoming call. The reverse invitation may be used to set up an alternate communication session rather than maintaining the incoming call.
US09031004B2 Method and apparatus for information transmission in wireless communication system
According to one embodiment, a method for transmitting, by a user equipment (UE), information in a wireless communication system includes: determining a first information sequence based on a first cyclically shifted base sequence and a first orthogonal sequence by using a first physical uplink control channel (PUCCH) resource for a first antenna, wherein the first PUCCH resource is obtained based on a channel control element (CCE) index related to a physical downlink control channel (PDCCH) and a parameter configured by a higher layer; determining a second information sequence based on a second cyclically shifted base sequence and a second orthogonal sequence by using a second PUCCH resource for a second antenna, wherein the second PUCCH resource is obtained by adding an offset to the first PUCCH resource; transmitting the first information sequence via the first antenna; and transmitting the second information sequence via the second antenna.
US09030996B2 Layer 2 processing and creation of protocol data units for wireless communications
Enhanced MAC-es PDUs are created by concatenating enhanced MAC-es service data units (SDUs) based on higher layer PDUs and segments thereof, where segmentation information is included in the enhanced MAC-es headers. An enhanced MAC-e header is generated for each enhanced MAC-es PDU to describe information about the enhanced MAC-es PDU. An enhanced MAC-e PDU is created by concatenating enhanced MAC-es PDUs and enhanced MAC-e headers. An enhanced MAC-es header may include a Transmit Sequence Number (TSN) field, a Segmentation Description (SD) field, length (L) fields to indicate the length of each enhanced MAC-es SDU and/or logical channel indicator (LCH-ID) fields. An enhanced MAC-e header may include one or more logical channel indicator (LCH-ID) fields for corresponding enhanced MAC-es PDUs or MAC-s SDUs and length (L) fields.
US09030992B2 Pilot aided data transmission and reception with interference mitigation in wireless systems
Embodiments disclosed herein reduce interference at pilot symbols and also enable good interference measurements by using a combination pilot tones and null tones along with null tones. In this type of system, the receivers can estimate tile channel state information without any interference from the remaining transmitters and at the same time the receiver can measure either the individual interference channel states or the interference covariances from the silent periods. The groups of transmitters are reused in geographically separated region using a frequency reuse structure. In a preferred implementation, pilot signal is precoded using a multi-antenna precoder. The precoder may be same for pilot and data.
US09030989B2 Method and apparatus for broadcasting/multicasting content from mobile user equipment over an MBMS network
A communication system is provided for implementing a wireless packet broadcast or multicast service. The system includes at least one Radio Access Network (RAN) for communicating with a first UE over a first wireless interface and a General Packet Radio Service (GPRS) Support Node (SGSN) for communicating with the RAN over a second wireless packet interface. A gateway GPRS support node (GGSN) is provided for communicating with the SGSN over a third wireless packet interface and for communicating with external packet-switched networks. A UE Broadcast/Multicast (UEBM) session manager is also provided, which is configured to provision a wireless packet broadcast or multicast service initiated by the first UE.
US09030988B2 Method and apparatus for switching between multicast/broadcast and unicast service
Embodiments of the claimed subject matter provide a method and apparatus for switching between multicast/broadcast and unicast service. Some embodiments of the method include determining a number of first users in a first cell receiving one or more first sessions for unicasting content in response to a second user in the first cell requesting the content. Some embodiments of the method also include assigning the first and second users to a second session for broadcasting or multicasting time-aligned content in response to the number of first users being larger than a threshold.
US09030986B2 System and method for discontinuous reception control start time
Methods of combining semi-persistent resource allocation and dynamic resource allocation are provided. Packets, such as VoIP packets, are transmitted on the uplink and downlink using respective semi-persistent resources. For each mobile device, awake periods and sleep periods are defined. The semi-persistent resources are aligned with the awake periods so that most of the time the mobile device can turn off its wireless access radio during the sleep periods. In addition, signalling to request, and to allocate, resources for additional packets are transmitted during the awake periods, and the resources allocated for the additional packets are within the awake periods. Methods of extending the awake periods in various embodiments are also provided. Methods of determining the first on period are also provided.
US09030983B2 Power saving method and device for a cellular radio system
In a method and a device of a cellular radio system the resulting energy consumption if one or many cells are allowed to go to a sleep mode is compared with the current energy consumption. Hereby, a system that continuously can optimize the energy consumption in a cellular radio system can be obtained.
US09030982B2 Method and arrangement for a terminal of a wireless communication network
A method of operating a terminal of a wireless communication network is disclosed, wherein the terminal operates according to a discontinuous reception mode. The wireless communication network comprises one or more wireless network nodes having at least first and second downlink transmission modes, the first downlink transmission mode comprising normal operation of a particular network node and the second downlink transmission mode comprising restricted downlink transmission of the particular network node and being applicable when the number of active terminals in the cell associated with the particular network node is less than or equal to a second mode threshold value. The method comprises detecting a cell identity for a cell associated with a wireless network node of the wireless communication system, determining a current downlink transmission mode of the wireless network node as the first or second downlink transmission mode, and adapting a time pattern based on the determined current downlink transmission mode, wherein the time pattern specifies when a receiver of the terminal is turned on. Corresponding computer program product and arrangement are also disclosed.
US09030978B2 Uplink resynchronization for use in communication systems
A method and apparatus for reusing an uplink control channel configuration associated with an uplink control channel, the method comprising the steps of, at a user agent, receiving an uplink control channel resource configuration assigned by an access device, transmitting to the access device using the control channel resources associated with the received uplink control channel resource configuration and, after a time alignment timer expires, retaining the uplink control channel resource configuration.
US09030977B2 Methods and apparatus for transport block size determination
Methods and apparatus for determining transport block sizes for relaying backhaul subframes from a relay node to a donor base station are described. A transport block size may be adjusted at a relay node by an adjustment factor. The adjustment factor may be based on parameters such as propagation delay between the relay node and donor base station, a multiplexing configuration of control and data information in a relay node subframe, a switching time in a relay node subframe between a downlink and an uplink partition of the subframe, and/or other channel or configuration characteristics.
US09030975B2 Method and apparatus for scheduling downlink transmission
The present invention relates to method and apparatus for scheduling downlink transmission. According to an embodiment of the present invention, a method for scheduling downlink transmission in a wireless communication system is provided. The method comprises: scheduling, in a channel measurement sub-frame, user equipments in a cell according to feedback information that was most recently received from the user equipments, wherein in the channel measurement sub-frame, the user equipments calculate feedback information to be reported; and scheduling, in response to receipt of the feedback information, the user equipments based on a result of scheduling corresponding to the channel measurement sub-frame. According to an embodiment of the present invention, there is also provided a scheduling apparatus, base station device and corresponding computer program product.
US09030973B2 Methods for transmitting and receiving hybrid automatic retransmit request-acknowledgment (HARQ-ACK) index mapping and uplink resource allocation for channel selection transmission in inter-band time division duplex mode, user equipment to transmit HARQ-ACK, and eNODE-B to receive HARQ-ACK
Hybrid Automatic Retransmit ReQuest-Acknowledgment (HARQ-ACK) index mapping and uplink resource allocation is performed and controlled for channel selection transmission. A method for transmitting HARQ-ACK information to an eNode-B (eNB) by a User Equipment (UE) includes identifying KPCell as a number of downlink subframe(s) of a Pcell associated with an uplink subframe and identifying KSCell as a number of downlink subframe(s) of an Scell associated with the uplink subframe; generating Discontinuous Transmission (DTX) response information for a cell having a smaller number of downlink subframes between the Pcell and the Scell; generating HARQ-ACK information including the generated DTX response information and response information on data received by the UE from the eNB; and transmitting the generated HARQ-ACK information to the eNB through the uplink subframe.
US09030972B2 Control signaling in system supporting relayed connections
The present invention presents a solution for controlling data transmission with respect to relayed communication links in a cell of a cellular telecommunication system. A first connection is established as a relayed communication link between a first terminal device and a serving base station through a second terminal device operating as a relay terminal for the relayed communication link, and a second connection is established between the second terminal device and the serving base station. Control messages defining dynamic radio resource allocation for both first connection and second connection are used in signaling exchanged between the serving base station and the relay terminal.
US09030970B2 Method and apparatus for transmitting uplink control information in wireless communication system
A method and apparatus for transmitting uplink control information in a wireless communication system is disclosed. A method for transmitting uplink control information in a mobile station of a wireless communication system includes performing reverse repetition coding with respect to first uplink control information, and performing joint coding with respect to the reverse repetition coded first uplink control information and second uplink control information. The first uplink control information has higher priority than the second uplink control information.
US09030969B2 Wireless communication device capable of utilizing multiple radio access technologies
A wireless communication device is disclosed that is capable of utilizing multiple radio access technologies (RATs) in various coordinated ways so as to optimize, and enhance the versatility, of the device's communication capabilities. One or more RATs may be selected for use, either alone or in cooperation with each other, based on various conditions, such as channel conditions, traffic, data type, and priority. When conditions change, the originally-selected communication scheme may no longer be preferred. Consequently, the device can initiate a handover to another communication scheme. Transmitters corresponding to RATs that are not currently selected are controlled to enter a low-power state in order to conserve power. However, in some circumstances, the device may utilize both RATs simultaneously. For example, redundant communications can be made over both RATs for error-reduction or other purposes, and partial communications can be made over multiple RATs for increased speed and bandwidth, among other reasons.
US09030965B2 Communication system to provide selective access to a wireless communication device
A communication system provides selective access to target wireless communication devices. A naming server system receives naming system registration messages from target wireless communication devices and address requests from user devices. The naming server system determines if the current time is within the access schedule for the target wireless communication device. If the current time is within the access schedule for the target wireless communication device, then the naming server system returns the IP address for the target wireless communication device. If the current time is not within the access schedule for the target wireless communication device, then the naming server system will respond with a timeframe when the target wireless communication device will be available for access.
US09030964B2 Wireless network device
Various wireless network components offer increased flexibility, ease of use, functionality and performance in many demanding applications in diverse fields of use. In particular, a wireless multi-function network device for use on a wireless communication network can serve multiple functions and dynamically switch and reconfigure from a network router into a network coordinator in the event that the originally designated network coordinator is permanently or temporally disabled.
US09030958B2 LTE downlink control channel resource allocation method and base station
A LTE downlink control channel resource allocation method and base state are provided. A base station sends resource scheduling information to a physical layer via a MAC layer; the search space to which resources to be allocated belong is determined according to the scheduling information; when the resources to be allocated belong to dedicated search space of a UE, resources of the current downlink channel are allocated according to the quality level of the current downlink channel.
US09030954B2 Reducing load in a communications network
Apparatus and method for reducing an air interface load in a communication network. A base station is provided with a receiver adapted to receive signals from a terminal via a Dedicated Physical Control Channel (DPCCH) and a second control channel. A measuring unit measures a signal to interference ratio (SIR) of the DPCCH. An effective SIR determining unit determines an effective SIR on the basis of the measured SIR of the DPCCH and an estimate of the SIR of the second control channel. A comparison unit compares the effective SIR with a target SIR, and a power determination unit determines a power control command for controlling power usage for the DPCCH on the basis of the comparison. A transmitter sends a message to the terminal, the message including the power control command. The invention allows the DPCCH power (or DPCCH SIR) operating point to be maintained at a low level.
US09030953B2 System and method providing resilient data transmission via spectral fragments
Systems, methods and apparatus for securely transmitting a data stream by dividing a data stream into a plurality of sub-streams; associating each substream with a respective spectral fragment; encrypting at least some of the sub-streams; and modulating each sub-stream to provide a respective modulated signal adapted for transmission via a respective spectral fragment.
US09030951B2 System and method for improving network convergence via adaptive routing techniques
One embodiment of the present invention sets forth a technique for a node within a network to adjust one or more routing parameters based on certain network parameters. A node monitors certain network metrics such as the mean time between routing drops. In response to changes in these network parameters, the node changes certain routing parameters, such as the holddown time. The node may store network metrics and associated routing parameters that result in preferred network operating conditions. The node may pre-load these beneficial settings upon the occurrence of a particular condition such as a system reset of the node. Moreover, a node may share these beneficial settings with neighboring nodes on the same network. One advantage of this approach is that cost savings are achieved when a node within a network may be installed without preconfiguring the node with specific routing parameters.
US09030945B2 Wireless communication device that is capable of improving data transmission efficiency, associated network, and method
A wireless communication device includes a data transmission and reception section that wirelessly transmits a plurality of test packets; a signal sensing section that senses a power of a spatial radio wave signal on a frequency channel that is the same as the plurality of test packets and outputs sample data of the sensed spatial radio wave signal; a calculation processing section that converts the sample data into time series sample data; a collision detection section that calculates a packet collision rate based on the number of packet collisions and the number of the plurality of test packets if there is a packet collision due to interference of the plurality of test packets with another communication; and a control section that adjusts a parameter that the data transmission and reception section uses based on a calculation result of the collision detection section.
US09030941B2 Power saving procedure in communications network
There is proposed a mechanism for power saving procedures to be conducted in transmission network nodes, such as base stations or the like, in a heterogeneous network environment. A transmission node is set to operate in a sensor mode for conducting traffic monitoring when an operation mode of the transmission node is an inactive state. Information necessary for the traffic monitoring by the transmission node based on detection of random access channel (RACH) signals of neighboring cells is provided. On the basis of results of the monitoring of RACHs of the neighboring cells, it is determined whether the inactive transmission node is to be reactivated.
US09030939B2 Building alternate routes in reactive routing networks
In one embodiment, an intermediate node in a computer network may receive one or more reactive routing route requests (RREQs) from an originating node and, based on those RREQs, may build a first directed acyclic graph (DAG) in the computer network that may be rooted at the originating node. The intermediate node may then forward the RREQs towards a target node in the computer network. The intermediate node may then receive one or more reactive routing route responses (RREPs) from the target node. Based on those RREPs, the intermediate node may then build a second DAG in the computer network that may be rooted at the target node. The intermediate node may then forward the RREPs towards the originating node. In this manner, the intermediate node may then forward traffic from the originating node toward the target node according to the second DAG (with alternate routes to the target node).
US09030937B2 Backplane interface adapter with error control and redundant fabric
A backplane interface adapter with error control and redundant fabric for a high-performance network switch. The error control may be provided by an administrative module that includes a level monitor, a stripe synchronization error detector, a flow controller, and a control character presence tracker. The redundant fabric transceiver of the backplane interface adapter improves the adapter's ability to properly and consistently receive narrow input cells carrying packets of data and output wide striped cells to a switching fabric.
US09030936B2 Flow control with reduced buffer usage for network devices
Methods and apparatus for implementing flow control with reduced buffer usage for network devices. In response to detection of flow control events, transmission of a data unit or segment such as an Ethernet frame is preempted in favor of a flow control message, resulting in aborting transmission of the frame. Data corresponding to the entirety of the frame is buffered at the transmitting station until the frame has been transmitted (or after a delay), enabling retransmission of the aborted frame. Preemption of frames in favor of flow control messages results in earlier responses to flow control events, enabling the size of buffers to be reduced.
US09030933B2 Bi-directional and reverse directional resource reservation setup protocol
A wireless user equipment (UE) configured to initiate a packet based session includes a reservation setup protocol (RSVP) message generator configured to transmit a RSVP PATH message. The RSVP PATH message includes a direction indication. The direction indicator indicates that reservations should be made for the UE to transmit only, to receive only or to both transmit and receive. The UE also includes an RSVP message receiver configured to receive an RSVP RESV message indicating that reservations have been made as a result of the RSVP PATH message.
US09030932B2 Enhanced carrier sense multiple access (CSMA) protocols
Systems and methods for enhanced carrier sense multiple access (CSMA) protocols are described. In various implementations, these systems and methods may be applicable to Power Line Communications (PLC). For example, a method may include attempting to access a communications channel to transmit a frame after a backoff time proportional to a randomly generated number within a contention window (CW), the CW having an initial value carried over from a previous transmission of a different frame. Additionally or alternatively, some of techniques described herein may facilitate the spreading of the time over which devices attempt to transmit packets, thereby reducing the probability of collisions using, for example, Additive Decrease Multiplicative Increase (ADMI) mechanisms.
US09030930B2 Method, apparatus, and system for switching communication path
Embodiments of the present invention provide a method, an apparatus, and a system for switching a communication path. The method for switching a communication path includes: receiving, by an access network device, a data packet for implementing a communication service between a terminal and a first media source; learning, by the access network device, according to the data packet, that a local exchange path between the terminal and the first media source is unavailable; and transferring, by the access network device, the data packet via a detour path, where the data packet is also used by a channel control device on the detour path to control the terminal to disconnect from the detour path and establish a local exchange path between the terminal and a second media source, and where the second media source is in coverage of an access network device currently providing a service for the terminal.
US09030927B2 Methods and devices for optimized cell acquisitions
Access terminals are adapted to blacklist one or more neighboring cells from acquisition attempts. For instance, an access terminal may receive a transmission including a list of neighboring cells to be monitored while connected to a particular serving cell. The access terminal may determine that a predefined number of consecutive acquisition attempts with a particular neighboring cell have failed. In response to failure of the predefined number of consecutive acquisition attempts, the access terminal can blacklist the neighboring cell from subsequent acquisition attempts for a predefined blacklisting period. Following the duration of the blacklisting period, the access terminal may conduct a subsequent acquisition attempt with the neighboring cell. Other aspects, embodiments, and features are also claimed and described.
US09030922B2 Method and apparatus for laser control during recording
The invention relates to recording on a medium, and in particular, to laser control during recording data on an optical medium. A laser control method for dynamically adjusting laser power during recording data onto an optical disc comprises: recording normal data onto the optical disc according to an initial laser power; stopping recording when a trigger is generated; reading back the recorded normal data and generating a first recording quality index; recording a test pattern at a test pattern starting point according to a selected laser power; reading back the test pattern and generating a second recording quality index; and determining an adaptive laser power to continually record the normal data according to the first recording quality index and the second recording quality index.
US09030920B2 Resonator with matched balance spring and balance
A resonator includes a balance spring formed in a single crystal quartz with crystallographic axes x, y, z, where the x axis is an electrical axis and the y axis is a mechanical axis, and cooperating with a balance. A thermal expansion coefficient of the balance is comprised between +6 ppm.° C.−1 and +9.9 ppm.° C.−1 and a cut angle of the balance spring to the z axis of the single crystal quartz is comprised between −5° and +5°, so as to match the balance to the balance spring.
US09030916B2 Method and system for monitoring fire based on detection of sound field variation
Disclosed are a method and a system for monitoring a fire based on a detection of sound field variation. The system for monitoring a fire based on a detection of sound field variation includes: a sound generator outputting a sound wave within a defined space according to input voltage; a sound receiver receiving the sound wave within the defined space and obtaining a sound pressure from the received sound wave; and a fire monitor using a sound transfer function representing a ratio of the sound pressure obtained by the sound receiver to input voltage of the sound generator in a preparation mode to calculate reference sound pressure information, using the sound transfer function in a monitoring mode to calculate current sound pressure information, and comparing the reference sound pressure information with the current sound pressure information to determine whether a fire occurs.
US09030913B2 Method and apparatus for acoustic data transmission in a subterranean well
The disclosure describes a method and apparatus for effectively communicating data along an acoustic transmission path. The method comprises driving an acoustic transmitter to send a data signal along the acoustic transmission path, where the signal is distorted by ambient noise. The distorted signal is input to a spaced apart plurality of sensors so that consequent time-delayed signals provide reinforcement of the basic signal and attenuation of the ambient noise component when combined.
US09030912B2 Method and apparatus for separating and composing seismic waves
An approach is provided for a multi-component seismic data processing that separates P-type and S-type seismic waves in an affine coordinate system. A method for separating and composing seismic waves comprises: determining base vectors of the seismic waves; transforming and separating the seismic wave in an affine coordinate system; and obtaining a signal with true amplitudes and eliminating a mode leakage phenomenon. Therefore, the method achieves the wave separation and recovers the amplitudes of separated waves simultaneously, which reduces noises to provide more precisely seismic data and to satisfy the requirement of seismic data analysis and processing.
US09030908B2 Programmable wavelet tree
An apparatus is provided. In the apparatus, a demultiplexer is configured to receive an input signal, and each of a plurality of sample buffers are coupled to the demultiplexer. A first multiplexer is coupled to each of the sample buffers. A filter is coupled to the first multiplexer. A bypass delay circuit is coupled to the first multiplexer, and a second multiplexer is coupled to the filter and the bypass delay circuit.
US09030907B2 Semiconductor device and semiconductor system with the same
A semiconductor device includes a first internal clock generation unit suitable for generating a first internal clock for synchronizing a first signal in response to a first external clock; a second internal clock generation unit suitable for generating a second internal clock for synchronizing a second signal in response to a second external clock; and a delay amount information provision unit suitable for providing delay amount information corresponding to a phase difference between the first internal clock and the second internal clock to an external device.
US09030905B2 Semiconductor memory device controlling refresh cycle, memory system, and method of operating the semiconductor memory device
A semiconductor memory device includes a memory cell array, a refresh control circuit, an address counter and an address converter. The memory cell array includes a plurality of memory cells. The refresh control circuit is configured to receive a refresh command and output m refresh control signals during one refresh cycle for refreshing all the memory cells of the semiconductor memory device. The address counter is configured to generate counting signals for refreshing memory cells in response to the m refresh control signals. The address converter is configured to receive the counting signals and output refresh addresses by converting the counting signals in response to a cycle select signal. The address converter is configured to output refresh addresses such that the number of m refresh control signals during one refresh cycle is variable.
US09030902B2 Programming memory cells
Methods for programming memory cells. One such method for programming memory cells includes generating an encoded stream using a data stream and programming the memory cells using the encoded stream to represent the data stream. A particular bit position of the encoded stream has a first voltage level when the particular bit position of the data stream has a particular logical state, and the particular bit position of the encoded stream has either a second voltage level or a third voltage level when the particular bit position of the data stream has a logical state other than the particular logical state.
US09030899B2 Memory device with post package repair, operation method of the same and memory system including the same
An operation method of a memory device includes entering a repair mode, changing an input path of setting data from a set path to a repair path in response to the entering of the repair mode, receiving the setting data together with a setting command, ending the repair mode after the receiving is repeated a set number of times, changing the input path of the setting data from the repair path to the set path in response to the ending of the repair mode, and programming a repair address for a defective memory cell of the memory device to a nonvolatile memory using the setting data.
US09030898B2 Semiconductor device
An embodiment of the present invention provides a semiconductor, including a non-volatile storage unit suitable for storing one or more first addresses; an address storage unit suitable for storing the first addresses sequentially received from the non-volatile storage unit as second addresses while deleting previously stored second addresses identical to an input address of the first addresses, in a reset operation; and a cell array suitable for replacing one or more normal cells with one or more redundancy cells based on the second addresses in an access operation.
US09030896B1 Control circuit for bit-line sense amplifier and semiconductor memory apparatus having the same, and operating method thereof
A control circuit for a bit-line sense amplifier may include: a bank active signal generator configured to generate an internal active signal and a bank active signal; and a sense amplifier enable signal generator configured to determine a skew in response to the internal active signal, and set an output time of a sense amplifier enable signal by delaying the bank active signal according to the determined skew.
US09030893B2 Write driver for write assistance in memory device
A write assist driver circuit is provided that assists a memory cell (e.g., volatile memory bit cell) in write operations to keep the voltage at the memory core sufficiently high for correct write operations, even when the supply voltage is lowered. The write assist driver circuit may be configured to provide a memory supply voltage VddM to a bit cell core during a standby mode of operation. In a write mode of operation, the write assist driver circuit may provide a lowered memory supply voltage VddMlower to the bit cell core as well as to at least one of the local write bitline (lwbl) and local write bitline bar (lwblb). Additionally, the write assist driver circuit may also provide a periphery supply voltage VddP to a local write wordline (lwwl), where VddP≧VddM>VddMlower.
US09030888B2 Semiconductor device having output buffer circuit in which impedance thereof can be controlled
A device that includes first and second buffer circuits electrically connected to a terminal and an output control circuit activating the first buffer circuit and deactivating the second buffer circuit in a first state and activating one of the first and second buffer circuits and deactivating the other of the first and second buffer circuits based on input data in a second state. The output control circuit is brought into one of the first and second states.
US09030887B2 Semiconductor memory device and information processing apparatus
A semiconductor memory device includes an address decoder to decode an address specifying pseudo-multiport cells in memory blocks, a first word line driver to output a word line selection signal selecting one of word lines of one of the pseudo-multiport cells based on a row address in the address, and a second word line driver having an output part to output the word line selection signal into one of a pair of the word lines of the pseudo-multiport cell, and a NOR logic part to output NOR of the word line selection signal and a read/write selection signal into the other one of the pair of the word lines, the read/write selection signal selecting writing or reading operations. The second word line driver activates the pair of the word lines for writing data, and activates one of the pair of the word lines for reading data.
US09030885B2 Extended select gate lifetime
A flash memory device may include two or more flash memory cells organized as a NAND string in a block of flash memory cells, and flash cells, coupled to the NAND string at opposite ends, to function as select gates. The flash memory device may be capable of providing information related to a voltage threshold of the select gates to a flash controller, erasing the flash cells that function as select gates in response to a select gate erase command, and programming the flash cells that function as select gates in response to a select gate program command. A flash controller may be coupled to the flash memory device, and is capable of sending the select gate erase commend to the flash memory device if the information provided by the flash memory device indicates that the voltage threshold of at least one of the select gates is above a predetermined voltage level, and sending the select gate program command to the flash memory device if the information provided by the flash memory device indicates that the voltage threshold of at least one of the select gates is outside of a predetermined voltage range.
US09030879B2 Method and system for programming non-volatile memory with junctionless cells
A non-volatile memory system that has junctionless transistors is provided that uses suppression of the formation of an inversion-layer source and drain in the junctionless transistors to cause a discontinuous channel in at least one string. The system may include NAND flash memory cells composed of junctionless transistors, and has a set of wordlines. During program operation, a selected wordline of the set of wordlines is biased at a program voltage, and wordline voltage low enough to suppress the formation of source/drains is applied on at least one word line on a source side of the selected wordline such that a channel isolation occurs thereby causing the discontinuous channel in the at least string.
US09030878B2 Semiconductor memory device including a plurality of cell strings, memory system including the same, and control method thereof
A semiconductor memory device includes first cell strings connected to first bit lines and second cell strings connected to second bit lines corresponding to the first bit lines, respectively. Data is stored in memory cells of the first cell strings, and the second cell strings are configured as a data non-storage region. At least one memory cell of each of the second cell strings is in a programmed state.
US09030876B2 Memory system, program method thereof, and computing system including the same
Disclosed is a memory system and a method of programming a multi-bit flash memory device which includes memory cells configured to store multi-bit data, where the method includes and the system is configured for determining whether data to be stored in a selected memory cell is an LSB data; and if data to be stored in a selected memory cell is not an LSB data, backing up lower data stored in the selected memory cell to a backup memory block of the multi-bit flash memory device.
US09030866B1 Initialization method of a perpendicular magnetic random access memory (MRAM) device
Methods using a sequence of externally generated magnetic fields to initialize the magnetization directions of each of the layers in perpendicular MTJ MRAM elements for data and reference bits when the required magnetization directions are anti-parallel are described. The coercivity of the fixed pinned and reference layers can be made unequal so that one of them can be switched by a magnetic field that will reliably leave the other one unswitched. Embodiments of the invention utilize the different effective coercivity fields of the pinned, reference and free layers to selectively switch the magnetization directions using a sequence of magnetic fields of decreasing strength. Optionally the chip or wafer can be heated to reduce the required field magnitude. It is possible that the first magnetic field in the sequence can be applied during an annealing step in the MRAM manufacture process.
US09030864B2 Magnetic tunnel junction with electronically reflective insulative spacer
Magnetic tunnel junctions having a specular insulative spacer are disclosed. The magnetic tunnel junction includes a free magnetic layer, a reference magnetic layer, an electrically insulating and non-magnetic tunneling barrier layer separating the free magnetic layer from the reference magnetic layer, and an electrically insulating and electronically reflective layer positioned to reflect at least a portion of electrons back into the free magnetic layer.
US09030862B2 Resistive-switching nonvolatile memory elements
Nonvolatile memory elements including resistive switching metal oxides may be formed in one or more layers on an integrated circuit. Each memory element may have a first conductive layer, a metal oxide layer, and a second conductive layer. Electrical devices such as diodes may be coupled in series with the memory elements. The first conductive layer may be formed from a metal nitride. The metal oxide layer may contain the same metal as the first conductive layer. The metal oxide may form an ohmic contact or a Schottky contact with the first conductive layer. The second conductive layer may form an ohmic contact or Schottky contact with the metal oxide layer. The first conductive layer, the metal oxide layer, and the second conductive layer may include sublayers. The second conductive layer may include an adhesion or barrier layer and a workfunction control layer.
US09030860B2 Power up detection system for a memory device
A power up detection method for a memory device and a memory device are disclosed. In a first phase, a test word is read from a read-only memory (ROM) row of a memory array of the memory device, and the test word is compared to predetermined ROM row data. If the test word matches the predetermined ROM row data, a second phase may be performed. In the second phase, first user data is read from a user-programmed row of the memory array at a first time. Second user data is read from the user-programmed row of the memory array at a second time different from the first time. The first user data is compared to the second user data. Successful power up of the memory device is determined when the first user data matches the second user data.
US09030856B2 High voltage inverter device and electrical leakage detector thereof
In a high voltage inverter device switching an input voltage to apply an exciting current to an excitation winding of a transformer and output an alternating-current high voltage from an output winding to supply the high voltage to a load from output lines, a point on the output line is connected to a frame ground. Each of a first and a second winding of the electrical leakage detecting transformer is interposed in series with the output line on a side where current flows out of the point and a side where current flows into the point respectively. A detection voltage Vd outputted from an amplifying winding is compared by a comparison voltage Vref, and an electrical leakage detection signal Sd is outputted when Vd>Vref. The first and second winding are opposite in winding direction to each other and equal in number of turns.
US09030855B2 Semiconductor device, start-up circuit having first and second circuits and a single voltage output terminal coupled to a second node between the semiconductor unit and the first circuit, and operating method for the same
A semiconductor device, a start-up circuit, and an operating method for the same are provided. The start-up circuit comprises a semiconductor unit, a first circuit, a second circuit, a voltage input terminal and a voltage output terminal. The first circuit is constituted by one diode or a plurality of diodes electrically connected to each other in series. The second circuit is constituted by one diode or a plurality of diodes electrically connected to each other in series. The semiconductor unit is coupled to a first node between the first circuit and the second circuit. The voltage input terminal is coupled to the semiconductor unit. The voltage output terminal is coupled to a second node between the semiconductor unit and the first circuit.
US09030850B2 Resonant switching regulator with adaptive dead time
A switching power supply of certain aspects of the invention includes a minimum dead time generating circuit that generates a minimum dead time from an OFF timing of an ON pulse detected from the voltage across an auxiliary winding of the transformer by a differentiating circuit. An ON width-determining means of a voltage control oscillator is started, after this minimum dead time, into operation to determine the ON width of the semiconductor switch.
US09030849B2 Switching power supply device and semiconductor device
In a switching power supply device which intermittently executes a switching operation, a power loss which occurs in resumption of the switching operation is reduced. A semiconductor device works as a control circuit for the switching power supply device, and includes: an intermittent oscillation control circuit which alternately gives an instruction for execution and suspension of the switching operation of a switching element; a bottom detecting circuit which detects a bottom of a ringing voltage that develops when the switching element is OFF; a bottom-monitoring time period timing circuit which times a bottom-monitoring time period starting as soon as the instruction for the execution of the switching operation is given; and a turn-on control circuit which turns ON, before the timing of the bottom-monitoring time period ends, the switching element only when the bottom of the ringing voltage is detected.
US09030836B2 Apparatus capable of selectively using different types of connectors
An apparatus capable of selectively applying different types of connectors to a substrate is disclosed. The memory apparatus includes a substrate having a controller. First and second connector pads may be arranged on edges of top and bottom surfaces of the substrate. A via hole may be arranged between the controller and the first and second connector pads. A first passive device pad may be arranged between the via hole and the first connector pads. A second passive device pad may be arranged between the via hole and the second connector pads. A passive device may be coupled to only one of the first passive device pad or the second passive device pad.
US09030822B2 Power module cooling system
A cooling system is operable to facilitate cooling a power module or other electronic assembly. The cooling system may be configured to facilitate cooling a DC/AC inverter or other electronic assembly where two power modules may be arranged in an opposing relationship relative to a coolant passageway. The opposing relationship may be suitable to minimizing a packaging size and footprint required to facilitate interacting both power modules with the coolant flow.
US09030819B2 Mounting apparatus for data storage device
A mounting apparatus includes a mounting piece and a drive bracket. A first restricting piece is formed on a top side of the mounting piece. A first sliding member is formed on the first restricting piece. The drive bracket includes a side piece which defines a sliding groove. The sliding groove includes a guiding portion and a restricting portion. The drive bracket includes a handle pivotally mounted thereon. The handle includes a locking portion. The locking portion defines a cutout. The handle is rotated between a first position and a second position. In the first position, the cutout is aligned to the guiding portion to receive the first sliding member in the cutout and the guiding portion. In the second position, the sliding member is restricted in the restricting portion by the locking portion to mount the drive bracket on the top side of the mounting piece.
US09030817B2 Handheld computing device
A handheld computing device is disclosed. The handheld computing device includes a seamless housing formed from an extruded metal tube. The extruded tube includes open ends and internal rails which serve as a guide for slidably assembling an operational assembly through the open ends of the extruded tube, a reference surface for positioning the operational assembly relative to an access opening in the seamless housing, and a support structure for supporting the operational assembly during use.
US09030815B2 Computer enclosure and fan mounting apparatus
A computer enclosure includes a sidewall and a fan mounting apparatus. The sidewall defines a ventilation area and four slide slots around the ventilation area. The fan mounting apparatus includes two opposite first position member, and two opposite second position members alternately arranged with the first position members. The first and second position members are slidably connected end to end and cooperatively define a ring. The first and second position plates are moved toward or away from each other. The first and second position members are slidably and respectively connected to the slide slots, to decrease or increase a diameter of the ring for selectively mounting different sized fans.
US09030814B2 Screwless carrying frame for data access devices
A screwless carrying frame for data access devices is fixed to a bottom board and includes a first frame body having an upper structure with an upper vertical plate and an upper transverse plate connected into a step shape. The upper vertical plate has elastic packing elements, and the upper transverse plate has elastic support elements. A second frame body is installed at the bottom board and connected to the first frame body and includes an upper structure with an upper riser plate and an upper horizontal plate connected into a step shape. An upper carrying space is formed between two upper structures of the first and second frame bodies for accommodating the data access device. The elastic packing element is elastically packed at a lateral side of the data access device and the elastic support element is elastically supported at a bottom side of the data access device.
US09030810B2 Rack structure-mounted power distribution unit
A power distribution unit (PDU) mounted within the structure of a rack. A mechanical interface secures the PDU to a portion of the rack structure, such as within a post of the rack. The PDU is configured to provide electrical power to computing assets mounted in the rack. Securing the PDU within the rack structure allows the PDU to be placed in an unobtrusive position that does not occupy space between the rack posts, increasing the space between the rack posts available for mounting computing assets.
US09030805B2 Capacitor and capacitor module using the same
Two electrodes are drawn out from a wound capacitor element by a pair of leads. Each of electrodes forming the capacitor element includes a sheet-like collector, an electrode layer formed on the surface of the collector, and an exposed part provided on one edge of the collector. The electrode layer is not formed on the exposed part. The electrodes are wound such that the exposed parts come to both ends of the capacitor element. Two or more points of at least one of the exposed parts are connected together.
US09030804B2 Accumulator device
Disclosed is an accumulator device that can prevent aluminum forming an outer container from forming an alloy with lithium even when fine lithium metal powder is isolated from a lithium ion supply source to adhere to the outer container.The accumulator device has an outer container at least a part of which is formed of aluminum or an aluminum alloy, a positive electrode and a negative electrode that are arranged in the outer container, and an electrolytic solution injected into the outer container and containing a lithium salt, wherein the negative electrode and/or the positive electrode is doped with a lithium ion by electrochemical contact of a lithium ion supply source arranged in the outer container with the negative electrode and/or the positive electrode, and the portion formed of aluminum or the aluminum alloy in the outer container is set to a positive potential.
US09030803B2 Electrochemical energy storage system
An electrochemical energy storage system includes a positive electrode, a negative electrode disposed proximally to and not in contact with the positive electrode, and a non-aqueous electrolyte, wherein the positive electrode and the negative electrode are immersed in the non-aqueous electrolyte, and a case is presented in the energy storage system to accommodate the non-aqueous electrolyte, the positive electrode, and the negative electrode. The positive electrode has a porous matrix having a plurality of micrometer sized pores and nanostructured metal oxides, wherein the porous matrix is a 3-dimensional (3D) mesoporous metal or a 3D open-structured carbonaceous material, and the nanostructured metal oxides are coated inside the plurality of pores of the porous matrix. The non-aqueous electrolyte includes organic salts having acylamino group and lithium salts characterized as LiX, wherein Li is lithium and X comprises ClO4−, SCN−, PF6−, B(C2O4)2−, N(SO2CF3)2−, CF3SO3−, or the combination thereof.
US09030802B2 Multilayer ceramic electronic component, manufacturing method thereof, and board for mounting the same
A multilayer ceramic electronic component includes a ceramic body including dielectric layers stacked in a thickness direction and satisfying T/W>1.0 when a width thereof is W and a thickness thereof is T; first and second internal electrodes; and first and second external electrodes, wherein when the ceramic body is divided into five regions in a width direction and a central region among the five regions is CW1 and regions adjacent to the central region CW1 are CW2 and CW3, a difference between electrode connectivity of the central region CW1 and electrode connectivity of the region CW2 or CW3 satisfies 0.02≦(CW2 or CW3)−CW1≦0.10.
US09030794B2 Electronic fuse apparatus and method of operating the same
An electronic fuse apparatus is connected between a power side and a system side. The electronic fuse apparatus mainly includes an electronic fuse, a short-circuit protection switch, a current-sensing module, and a digital control module. The current-sensing module detects an operating current which flows from the power side to the system side. The digital control module generates a control signal to control the electronic fuse. When the current-sensing module detects that the operating current is over-current, the digital control module generates the high-level control signal to turn off the electronic fuse, thus providing an over-current protection. When a short-circuit fault occurs at the system side, the short-circuit protection switch is turned on to turn off the electronic fuse, thus providing a short-circuit protection.
US09030790B1 Low-leakage ESD protection circuit
An electrostatic discharge (ESD) protection circuit, set forth by way of example and not limitation, includes an input operative to receive input signals and a primary protection circuit coupled to the input. The protection circuit is operative to provide a single ESD current path for one or more the input signals that are ESD strikes. The currents of positive ESD strikes and negative ESD strikes flow through the single ESD current path, where the single ESD current path is not used by one or more of the input signals that are non-ESD signals.
US09030789B2 Plug tail systems
The present invention is directed to a protective wiring device that includes a rear cover member having a portion substantially defining a line terminal interface region. An electric circuit assembly includes a sensor assembly coupled to a fault detection circuit. A plurality of line terminal interface contacts are disposed in the line terminal interface region, each line terminal interface contact being connected to a termination structure coupled to the rear body member. A conductive pathway is configured to interconnect the termination structure and a corresponding one of the first set of contacts via the sensor assembly. The conductive pathway includes a conductive structure disposed in the rear cover member and mounted to the at least one PCB. The line terminal interface contacts are configured to mate with a removably attachable electrical adapter connected to the plurality of AC power transmitting wires to provide AC power to the electric circuit assembly.
US09030778B1 Magnetic head housing with protection sheet bent to cover transducer and bottom-mounted control circuit board
A magnetic head includes a base, at least one magnetic transducer, at least one protection sheet, and a control circuit board. The magnetic transducer is set on an external surface of the base. The protection sheet is coupled to the external surface of the base and covers the magnetic transducer. The protection sheet covering the magnetic transducer prevents the magnetic transducer from direct exposure. The control circuit board is coupled to a bottom of the base and electrically connected to the magnetic transducer. The control circuit board may be electrically connected with a predetermined control device so that the control circuit board receives a read signal transmitted from the magnetic transducer and transmits the read signal to the predetermined control device. As such, using the magnetic transducer to read data may simplify the conventional magnetic head in respect of complicated components, size, manufacturing time, labor, and cost.
US09030776B1 Magnetic head for perpendicular magnetic recording including a main pole and a shield
A magnetic head includes a main pole, a write shield, and first and second nonmagnetic layers. The main pole has a top surface including an inclined surface portion. The inclined surface portion includes a first portion and a second portion, the first portion being closer to a medium facing surface. The write shield includes an inclined portion facing toward the top surface of the main pole. The first nonmagnetic layer is interposed between the inclined portion and the second portion of the inclined surface portion. The second nonmagnetic layer is interposed between the inclined portion and a combination of the first portion of the inclined surface portion and the first nonmagnetic layer.
US09030774B2 Hard amorphous carbon film containing ultratrace hydrogen for magnetic recording media and magnetic heads
A magnetic recording medium according to one embodiment includes at least a ground layer above a non-magnetic substrate; a magnetic recording layer above the ground layer; and an overcoat above the magnetic recording layer, the overcoat characterized in that said overcoat is an amorphous carbon film, wherein a hydrogen content in the overcoat in a center layer thereof in a film thickness direction of said overcoat is from 0.1 atom % to 1.0 atom %. Additional products and methods are also presented.
US09030773B2 Sensing temperature at a slider protrusion region
An apparatus includes a near-field transducer at or near an air bearing surface of the apparatus. A write pole is disposed at or near the air bearing surface and proximate the near-field transducer, respectively. A thermal sensor is disposed at the air bearing surface and within a protrusion region of the air bearing surface defined relative to at least one of the near-field transducer and the write pole. The thermal sensor is configured to produce a signal indicative of a temperature at the protrusion region.
US09030770B2 Programmable analog feed-forward timer for dynamic wave shaping
A Dynamic Wave-Shaping (DWS) write driver for use in a preamp in a disk drive is described. The DWS write driver includes a Dynamic Current Booster (DCB) that adds a current component (WDCB) to the standard write driver signal (including overshoot) that is a function of the bit spacing in the write data input waveform supplied to the write driver. The invention allows dynamic control of the bit-pattern dependent overshoot amplitude without requiring significant preamp overhead. Embodiments of the Dynamic Current Booster include a programmable analog feed-forward timer at the preamp level. The boost current amplitude is a function of the time between the transitions that represent bits. In embodiments, the polarity of the boost current WDCB can be programmed to be positive or negative.
US09030768B1 Controller, disk apparatus, and control method
According to one embodiment, there is provided a controller including a write control unit. The write control unit is configured to control to, when writing data onto data regions of a magnetic disk, write sync marks to signify beginnings of the data regions such that the sync marks are periodically made different from each other for each neighboring tracks.
US09030762B2 Polyester resin and optical lens
The present invention relates to a polyester resin including a diol constitutional unit and a dicarboxylic acid constitutional unit as main constitutional units, in which the diol constitutional unit contains from 70 to 95% by mol of a constitutional unit derived from ethylene glycol and from 5 to 30% by mol of a constitutional unit derived from tricyclodecane dimethanol or pentacyclopentadecane dimethanol, and the dicarboxylic acid constitutional unit contains 50% by mol or more of a constitutional unit derived from a naphthalenedicarboxylic acid, and an optical lens obtained by molding the polyester resin. According to the present invention, there are provided a polyester resin that has a high refractive index and a low Abbe number and can be molded into a good optical lens, and an optical lens obtained by molding the polyester resin.
US09030760B2 Imaging lens assembly
An imaging lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element and a fourth lens element. The positive first lens element has a convex object-side surface at a paraxial region. The negative second lens element has a concave image-side surface at a paraxial region, wherein the image-side surface thereof has a convex shape at a peripheral region, and the surfaces thereof are aspheric. The positive third lens element has a convex object-side surface at a paraxial region and a convex image-side surface at a paraxial region. The negative fourth lens element has a concave image-side surface at a paraxial region, wherein the image-side surface thereof has a convex shape at a peripheral region, and the surfaces thereof are aspheric. The imaging lens assembly has a total of four lens elements with refractive power.
US09030757B2 Imaging lens and imaging apparatus
An imaging lens includes: a first lens group; an aperture stop; and a second lens group having a positive refractive power, in this order from an object side. The first lens group includes a negative first lens provided most toward the object side. The second lens group includes a positive lens, provided most toward an imaging surface, and a negative lens having a concave surface and an aspherical surface at least toward the object side. The following Conditional Formula are satisfied: 0.03<(|Sagsp1|−|Sagas1|)/Re1<0.35; and 1.819≦NdAB wherein Sagsp1 is the sag of a reference spherical surface at the edge of the effective diameter of the object side surface of the negative lens, Sagas1 is the sag of the aspherical surface of the lens, Re1 is the effective diameter of the object side surface of the lens, and NdAB is the average refractive index of the positive lens and the negative lens.
US09030756B2 Driving apparatus of zoom lens
A driving apparatus of a zoom lens includes a rotary barrel, a fixed barrel, a guiding rail, and a lens frame. The rotary barrel has at least a protrusion on an outer side thereof. The fixed barrel receives the rotary barrel therein, and has at least a guiding slot and a recess on an inner side thereof. The protrusion of the rotary barrel engages the guiding slot of the fixed barrel, and the guiding slot is communicated with the recess. The guiding rail is provided in the recess of the fixed barrel. The lens frame is received in the fixed barrel, and engages the guiding rail to be driven to move along the guiding rail. Therefore, all the elements of the driving apparatus are received in the fixed barrel that it may reduce the size of the driving apparatus.
US09030750B2 Objective lens
An objective lens OL comprises: a first lens group G1 disposed on an object side, having positive refractive power as a whole and having a positive lens (plano-convex lens L1) which is disposed closest to the object and of which lens surface closest to the object is a plane or a surface having a low curvature, and at least one cemented lens (cemented lens CL12 or the like); a second lens group G2 disposed on an image side, having negative refractive power as a whole, and having a concave surface facing the image and a concave surface facing the object, which face each other; and a diffractive optical element GD in which two diffractive element constituents made from different optical materials are cemented, which has a diffractive optical surface D formed with diffraction grating grooves on the cemented surface, and which is disposed closer to the object than a position where a principal ray crosses the optical axis.
US09030742B2 Combination optical filter and diffraction grating and associated systems and methods
Optical components and systems comprising combined optical filters and diffraction gratings are generally described. In certain embodiments, an optical filter is in contact with a diffraction grating. In certain embodiments, the optical filter and the diffraction grating can be used to diffract and direct a first portion of electromagnetic radiation incident upon the grating and filter toward a receiver while filtering a second portion of the electromagnetic radiation incident upon the grating and filter.
US09030739B2 Garnet single crystal, optical isolator and optical processor
The present invention provides a garnet single crystal comprising a terbium aluminum garnet single crystal, wherein a portion of the aluminum is substituted with scandium, and a portion of at least one of the aluminum and terbium is substituted with at least one type selected from the group consisting of thulium, ytterbium and yttrium.
US09030734B2 Scanning microscope, and method for light microscopy imaging of a specimen
A scanning microscope is described, having an illumination unit for emitting an illumination light beam, an objective for generating an elongated illumination focus in a specimen to be imaged, and a scanning apparatus for moving the illumination focus over a target region of the specimen to be illuminated by modifying the direction of incidence in which the illumination light beam is incident into an entrance pupil of the objective. The scanning apparatus directs the illumination light beam onto a sub-region of the entrance pupil offset from the pupil center in order to incline the illumination focus relative to the optical axis of the objective, and modifies the direction of incidence of the illumination light beam within that sub-region in order to move the illumination focus over the target region to be illuminated.
US09030731B2 Quantum entangled photon pair generator
In a quantum entangled photon pair generator selectively generating polarization entangled photon pairs and time-bin entangled photon pairs, an excitation optical pulse shaper receives a linearly polarized optical pulse, and selectively outputs either one of a polarization excitation optical pulse pair to be a seedlight pulse for a polarization entangled photon pair and a consecutive excitation optical pulse pair to be a seedlight pulse for a time-bin entangled photon pair. An optical interferometer receives the polarization excitation optical pulse pair or the consecutive excitation optical pulse pair, and outputs a correlated photon pair forming signal and idler photons through a parametric fluorescence process. A quantum entangled photon pair extractor spatially extracting wavelength components corresponding to photons of the quantum entangled photon pair to output the components as the polarization entangled photon pair or the time-bin entangled photon pair.
US09030730B2 Optical phase-sensitive amplifier for dual-polarization modulation formats
A method for amplifying optical signals includes determining a source optical signal, generating a first resultant signal including a pump signal and the source optical signal, sending the first resultant signal through a non-linear element to generate a second resultant signal including the first resultant signal and an idler signal, and sending the second resultant signal through a non-linear element to perform phase-sensitive amplification. The phase-sensitive amplification results in a third resultant signal including an amplified source optical signal, the pump signal, and the idler signal. The method also includes filtering the third resultant signal to remove the pump signal and the idler signal and outputting the amplified source optical signal.
US09030725B2 Driving thin film switchable optical devices
Controllers and control methods apply a drive voltage to bus bars of a thin film optically switchable device. The applied drive voltage is provided at a level that drives a transition over the entire surface of the optically switchable device but does not damage or degrade the device. This applied voltage produces an effective voltage at all locations on the face of the device that is within a bracketed range. The upper bound of this range is associated with a voltage safely below the level at which the device may experience damage or degradation impacting its performance in the short term or the long term. At the lower boundary of this range is an effective voltage at which the transition between optical states of the device occurs relatively rapidly. The level of voltage applied between the bus bars is significantly greater than the maximum value of the effective voltage within the bracketed range.
US09030714B2 Image processing apparatus and image processing method to set appropriate ink amount for character data and for image data
An image processing apparatus for generating dot data to form an image by forming dots on a recording medium includes a receiving unit, a first, second, and third generating unit, and a correcting unit. The receiving unit receives first and second image data included in image data. The first generating unit generates, per the first image data, first ink color data representing a multi-valued signal value corresponding to an ink color. The second generating unit generates, per the second image data, second ink color data representing a multi-valued signal value corresponding to an ink color. The correcting unit corrects the signal value represented by the generated first and second ink color data. The third generating unit generates, per the first and second ink color data of which the signal values have been corrected, the dot data representing existence of formation of dots to form an image.
US09030713B2 Data processing apparatus and data processing method
Provided is a data processing method that is capable of high-speed processing without using a large cache memory, while correlating 2-dimensional parameters with a plurality of data without damaging the arrangement rule. Therefore, when there is a continuing M-line parameter after a previously read M-line parameter in a 2-dimensional table that is stored in an external memory 406, the contents of the cache memory 404 are updated with this continuing M-line parameter as the new parameter. When there is no continuing M-line parameter after the previously read M-line parameter in the 2-dimensional table, the contents of the cache memory 404 are updated with the continuing M-line parameter after returning to the starting line of the 2-dimensional table as the new parameter. Such an update rule is maintained even when the band, which is the processing unit, is changed, or even in the progress of band processing.
US09030692B2 Image processing apparatus
An image processing apparatus includes: an HDD for storing a plurality of pieces of transmission destination information in correspondence with a short-cut key for instructing image transmission; an operation unit displaying the short-cut key and detecting selection of the short-cut key; and a control unit displaying the plurality of transmission destinations stored in correspondence with the short-cut key if a prescribed condition is satisfied. The operation unit receives a selection operation of selecting a piece of transmission destination information from among the displayed plurality of pieces of transmission destination information, and the control unit determines the selected piece of transmission destination information to be the transmission destination of image transmission made by the selection of the short-cut key. Even if a plurality of transmission destinations are registered with the short-cut key, erroneous transmission to an unintended destination can be prevented.
US09030691B2 Printing system, printing method, and recording medium
In tandem printing, in accordance with a printing process executed in one printing apparatus, the printing process in the other printing apparatus is automatically changed. The first printing apparatus inputs a third print job including a first print job and a second print job. An image is formed on the basis of the first print job, and on the basis of a result of the image formation, a page with a change amount in the characteristic of a recording medium after printing at a predetermined threshold value or more is detected. The second print job in which the information is changed in accordance with the change amount in the characteristic of the detected page is transmitted to the second printing apparatus.
US09030686B2 Display device, image forming apparatus, and method of controlling a display device
A display device has a registration portion which accepts input of a message created by a user, a storage portion which stores the message inputted via the registration portion, a determination portion which extracts information on a display period of the message from the content of the message and which determines, based on the extracted information, an end time of display of the message, a time counting portion which counts time, and a display portion which displays the message stored in the storage portion until the end time determined by the determination portion.
US09030685B2 Printing device, printing system, and printing method
A POS system 1 includes a POS terminal 10, first printer 60, and second printer 20. The first printer 60 includes a USB interface 64 to which a POS terminal 10 connects, and a first printer print unit 71 that prints, and can output information related to the second printer 20 through the USB interface 64 to the POS terminal 10.
US09030684B2 Image forming apparatus, control method of image forming apparatus, and storage medium
An image forming apparatus and method for reading an image of a document and preventing an image from being printed on the document if a sheet type of the document is not suitable for printing. The method includes reading an image of a conveyed document, detecting a sheet type of the conveyed document, and controlling, in a case where the detected sheet type is the predetermined sheet type, an image to be printed on the conveyed document, and controlling, in a case where the detected sheet type is not a predetermined sheet type, an image not to be printed on the conveyed document.
US09030681B2 Methods and devices for identifying devices coupled to a data processing apparatus
A scanner unit changes a first wire included in a pair of wires in Low condition into High condition, sets another second wire in Low condition during the change, and identifies whether a CISM coupled with a resistor is or a CISM coupled with no resistor is by inputting a signal from the second wire afterward. Further, the controller changes the first wire in High condition into Low condition, sets the second wire in High condition during the change, and identifies the CISM by inputting a signal from the second wire. The scanner unit sets the second wire in condition before being changed while changing condition of the first wire so as to prevent an effect of a signal (crosstalk) caused when the condition of the first wire is changed more effectively.
US09030678B2 Recording system, recording apparatus, and option device
Each of a plurality of option devices includes a signal changing unit connected to a first control unit of a recording apparatus without a second control unit of another option device and configured to change a signal supplied from the first control unit, and a communication line configured to connect the first control unit and the second control unit without the second control unit of another option device. The first control unit determines the number of the option devices by inputting a signal to the signal changing unit in each of the plurality of option devices. After that, in the case where communication can be performed between the first and second control units, it is determined that the second control unit of the option device is normal. In the case where the communication cannot be performed, it is determined that the second control unit is faulty.
US09030676B2 Spatial information detection device
The spatial information detection device emits, to a space including an intended area, signal light defined as light modulated with a modulation signal defined as a square wave signal having high and low level periods appearing alternately, each of the periods having its length randomly selected from integral multiples of a unit time period. The device generates signal electric charges by accumulating electric charges generated in response to light from the space in a collection time period determined by a demodulation signal defined as a signal having the same waveform as that of the modulation signal or that of the inverted modulation signal. The device corrects, using correction information regarding an effect caused by light from an unintended area, the amount of signal electric charges as an amount of intended electric charges produced in response to light from the intended area, thereby generating spatial information.
US09030673B2 Circumferential laser crawler
An automated motorized assembly may be utilized to move a laser reflector on inside or outside surfaces, along edges of barrel shape structures. The laser reflector may be used to reflect laser signals back to a laser tracker metrology system locked in on the laser reflector. The laser tracker may follow the laser reflector as it moves along an edge of a barrel shape structure, acquiring circumferential data. The laser reflector may be moved to different positions to enable obtaining different circumferential rows of data. The automated motorized assembly may comprise a movement component that ensures consistent, continued, and/or tight movement along the traversed edge. The movement component may comprise a plurality of wheels and/or rollers, and one or more motors for driving at least some of the wheels and/or rollers. The automated motorized assembly may be controlled by user input, which may be communicated wirelessly.
US09030670B2 Apparatus and method for measuring distance
A method of tracking the position of an object, comprising using reference interference data from first output beam, reference interference data from a second output beam, measurement interference data from the first output beam, measurement interference data from the second output beam, and knowledge of the difference between the absolute phase offset of the first output beam and the absolute phase offset of the second output beam for both a reference interferometer (15′) and a measurement interferometer (15) to calculate a parameter indicative of the absolute phase offset of the measurement interferometer (15) for the first output beam. The calculated parameter is used to calculate the ratio of the optical path differences of the measurement interferometer (15) and the reference interferometer (15′).
US09030668B2 Method for spatially multiplexing two or more fringe projection signals on a single detector
Fringe patterns at first and second spatial frequencies are projected onto a work piece surface and a reference surface, respectively. An image of the projected fringe patterns is obtained and a measurement signal associated with work piece displacements and a reference signal are obtained based on the first and second spatial frequencies. The image of the projected fringe patterns can exhibit substantial or complete overlap of the fringe patterns at the first and second spatial frequencies, and the overlapping patterns can be separated based on the spatial frequencies. Fringe pattern shifts at one or both of the first and second spatial frequencies can be used to adjust a pattern transfer system to permit accurate pattern transfer.
US09030667B2 System and method to measure 3D flow characteristics of a gas
A method to collect 3D measurement data regarding a working fluid in a system, e.g., a turbo-machine, including: arranging sources of beams proximate to a passage of the working fluid in or downstream of the turbo-machine such that beams from the sources are projected through the working fluid; detecting intensities of the beams after they pass through the working fluid, and generating at least a two dimensional (2D) representation of the working fluid based on the detected intensities of the beams.
US09030666B2 Non-dispersive gas analyzer
A non-dispersive gas analyzer comprising a light source, having light that shines through a measuring cuvette containing a measuring gas to be analyzed onto a non selective detector having a downstream evaluation unit, wherein a multi-component gas analysis is made possible using in a simple manner in that the light source is a flash discharge lamp and the evaluation unit is configured to evaluate the temporal pulse curves of the flash shining onto the detector such that it is possible to take advantage of the property of flash discharge lamps in that the emitted wavelength components vary over the duration of the flash.
US09030663B2 Remote absorption spectroscopy by coded transmission
Remote absorption spectroscopy uses coded electromagnetic transmission directed through a medium under investigation to one or more remote receivers. The coded transmission includes at least one wavelength coincident with an absorption band of interest and one wavelength in an off-line band and a predefined relationship between spectral components in and outside the absorption band is controlled. The relationship between spectral components may be evaluated at the receiver to determine whether deviation thereof from the controlled relationship at the transmitter exists at the receiver. The deviation of the received optical signal from the prescribed relationship is processed to indicate the absorption of the radiation in the absorption band.
US09030662B2 Method and apparatus for processing optical signal of spectrometer using sparse nature of signals
An apparatus for processing an optical signal of a spectrometer using sparse nature of a signal spectrum is provided including an optical filter array configured to filter an incident light, an optical sensor array configured to convert the filtered light into charges and a digital signal processing unit configured to perform a digital signal processing on an output from the optical sensor array on the basis of an L1 norm minimization algorithm using sparse nature of a signal spectrum and recover spectrum information of the incident light.
US09030659B2 Spark-induced breakdown spectroscopy electrode assembly
A spark-induced breakdown spectroscopy apparatus can have a housing with an inlet and an outlet that define an analyte flow path. A laser can define a laser pathway generally transverse to an intersecting the analyte flow path. A pair of electrodes, which can have insulating shields, can be mounted within the housing and can define a spark path. An optical detection element defines an optical path. The apparatus can be used to identify an aerosolized analyte.
US09030657B2 Device and method for subaperture stray light detection and diagnosis
A device and method for subaperture stray light detection and diagnosis. A test light beam is generated. Stray light is detected. Based on the detected stray light, potential paths that light may have taken to arrive at the detection surface are determined. A testing device comprises a test light beam source whereby the cross sectional area of the test light beam is made less than the cross sectional area of the system aperture. A relative lateral positioning stage and an angular beam directing stage launch the test light beam into the aperture. A detector and a data processing system produce a data set relating the stray light to the location and directional angles of the test light beam to identify the sources of stray light. A light trap and test light beam delivery system are provided.
US09030654B2 Concentration determination apparatus and concentration determination method for measuring a concentration of a measured component contained in a living body tissue
A first temperature sensor is formed in a first measurement area. A first input part is formed in the first measurement area so that an output surface thereof is exposed to the inner surface of the liquid tank. A first light receiving part receives a reference light through the liquid from the first input part. A second input part causes a second incident light to be incident on a living body. A second light receiving part receives a measurement light from the second input part. Based on the light intensity of the reference light and the measurement light, an absorbance calculation device can detect the absorbance of the liquid and living body tissue. A concentration calculation device compares the absorbance of the liquid with the absorbance of the living body tissue and calculates a concentration of a measured component contained in the living body tissue.
US09030652B2 Non-contact, optical sensor for synchronizing to free rotating sample platens with asymmetry
A method and apparatus for determining the synchronicity of a rotary platen (22) in a vacuum deposition chamber (24). A light source (64) projects a highly collimated light beam (66) onto the rotating platen (22), thereby tracing a circular swept path (67). The swept path (67) passes alternately through samples (20) on the platen (22) and intervening webs (58, 60). The samples (20) are significantly more reflective than the webs (58, 60). The platen (22) includes an asymmetry feature (60) along the swept path (67). A detector (62) measures light signals reflected from the platen (22) along the swept path (67), and generates a unique signal upon encountering the asymmetry feature (60). A microcontroller generates a trigger pulse synchronized to the unique signal.
US09030650B2 Laser rangefinder
A laser rangefinder includes a laser emitter for emitting parallel laser beams, a micro electro mechanical system reflector including a plurality of micro reflecting units and configured for reflecting the parallel laser beams toward different points on an object, a micro electro mechanical system photoreceiver configured for receiving the laser beams reflected by and from the different points on the object, a time interval counter configured for recording the time intervals between a first time when the laser emitter emitting the parallel laser beams and second times when the laser beams are received by the micro electro mechanical system photoreceiver, and a processor configured for calculating the distances to the different points of the object based on the time intervals.
US09030646B2 Exposure apparatus and photomask used therein
In an exposure apparatus, a photomask 3 is provided with a plurality of mask pattern columns 15 formed by arranging a plurality of mask patterns 13 at a predetermined pitch in a direction substantially orthogonal to a conveying direction A of an object to be exposed and a plurality of microlenses 14 formed on a side of the object to be exposed corresponding to the mask patterns 13 to project reduced mask patterns 13 on the object to be exposed The photomask 3 is obtained by forming subsequent mask pattern columns 15b to 15d and the microlenses 14 corresponding to them so as to be shifted by a predetermined dimension in an arranging direction of a plurality of mask patterns 13 from a mask pattern column 15a located downstream in the conveying direction A of the object to be exposed.
US09030643B2 Liquid crystal optical element and image display apparatus including the same
A liquid crystal prism element includes: a first prism array; a second prism array arranged so as to face the first prism array; and a liquid crystal layer provided between the first and second prism arrays. The first prism array is composed of a plurality of first prisms that have ridge lines extending in a Y axis direction and are arranged so as to be spaced apart from each other at predetermined intervals in an X axis direction The second prism array is composed of second prisms that have ridge lines extending in the Y axis direction and are arranged so as to be spaced apart from each other at predetermined intervals in the X axis direction. Each first prism has an inclined surface facing a center side of the liquid crystal layer. Each second prism has an inclined surface facing the center side of the liquid crystal layer.
US09030638B2 Liquid crystal display device
It is an object of the present invention to apply a sufficient electrical field to a liquid crystal material in a horizontal electrical field liquid crystal display device typified by an FFS type. In a horizontal electrical field liquid crystal display, an electrical field is applied to a liquid crystal material right above a common electrode and a pixel electrode using plural pairs of electrodes rather than one pair of electrodes.
US09030636B2 Liquid crystal display apparatus
According to one embodiment, an apparatus includes a first substrate including a pixel electrode including a contact portion, main pixel electrodes extending in a second direction perpendicular to a first direction from two end portions of the contact portion in the first direction, and a connecting portion electrically connecting extended distal ends of the main pixel electrodes, a second substrate including a common electrode including main common electrodes extending substantially parallel to the main pixel electrode on either side of the main pixel electrode, and secondary common electrodes extending between the main common electrodes between the pixel electrodes juxtaposed in the second direction, and a liquid crystal layer.
US09030633B2 Driving method of liquid crystal display device
The present invention provides a liquid crystal display device that can electrically control the viewing angle. A liquid crystal display device according to an aspect of the present invention includes a first electrode group on the lower substrate and a first region of liquid crystals in image drive areas controllable according to an applied voltage, and a second electrode group on the lower substrate and a second region of liquid crystals in viewing angle control areas controllable according to an applied voltage, wherein the first region and the second region may be controlled separately.
US09030625B2 Liquid crystal display
A liquid crystal display, including: a liquid crystal panel including a first display panel and opposing second display panel opposite the first display panel, a backlight assembly configured to provide light to the liquid crystal panel, a receiving member configured to support the backlight assembly, and an adhesive member configured to couple the liquid crystal panel and the receiving member. The first display panel includes a display area configured to display an image, a peripheral area disposed outside the display area, and a plurality of integrated circuit (“IC”) chips disposed in the peripheral area, the plurality of IC chips being configured to apply a driving signal to the display area. The adhesive member is disposed in the peripheral area and does not overlap with the plurality of IC chips.
US09030620B2 Display panel and method of manufacturing the same
A display panel includes a substrate including a plurality of thin-film transistors thereon, a plurality of gate lines respectively connected to a thin film transistor and disposed on the substrate, a color filter layer disposed on the substrate and the gate lines, a black matrix disposed on the color filter and overlapped with the gate lines, and a hole defined in the black matrix and exposing the color filter layer, a first electrode disposed on the color filter and electrically connected to the thin-film transistor and an image displaying layer disposed on the first electrode.
US09030619B2 Semiconductor device, method for manufacturing semiconductor device, and liquid crystal display device
A semiconductor device (100A) according to the present invention includes: a thin-film transistor (10); a first insulating layer (9) which has been formed over the thin-film transistor (10); a second insulating layer (11) which has been formed on the first insulating layer (9) and which has a hole (21a); and an opaque layer (12a) which is arranged so as to overlap an oxide semiconductor layer (5) when viewed along a normal to the substrate (1). The opaque layer (12a) has been formed in the hole (21a). The opaque layer (12a) has a raised and curved upper surface and the upper surface of the second insulating layer (11) is located closer to the substrate (1) than the upper surface of the opaque layer (12a) is.
US09030618B2 Flexible display panel
A flexible display panel includes a first display region that is flat, second display regions located at both sides of the first display region and curved by a predetermined angle, a plurality of pixels formed in the first display region, and a plurality of pixels formed in the second display regions, Each of the plurality of pixels formed in the first display region and the second display regions includes a light-emitting diode and a driving thin-film transistor (TFT) connected to the light-emitting diode, the driving TFT supplying a driving current to the light-emitting diode. A size of the driving TFT varies for each of the plurality of pixels formed in the second display regions so that driving currents supplied by driving TFTs in the second display regions vary in one direction with respect to boundaries between the first display region and the second display regions.
US09030617B2 Liquid crystal display panel and method of manufacturing the same
An LCD panel is disclosed which includes: gate and data lines formed to cross each other and define a pixel region; a thin film transistor connected to the gate and data lines; a plurality of pixel electrodes formed to be in partial contact with a drain electrode of the thin film transistor; a common electrode formed in a shape alternating with the pixel electrodes; and a passivation layer formed between the pixel electrodes and the common electrode, wherein the pixel electrodes and the common electrode are formed through a single process.
US09030614B2 Liquid crystal optical element and stereoscopic image display device
According to one embodiment, a liquid crystal optical element includes a first substrate unit, a second substrate unit, a liquid crystal layer, and spacers. The first substrate unit includes a first substrate, first electrodes, and second electrodes. The first substrate has a first major surface. The first electrodes are provided on the first major surface. One of the second electrodes is provided in a space between the first electrodes. The second substrate unit includes a second substrate, and an opposing electrode. The second substrate has a second major surface opposed to the first major surface. The opposing electrode is provided on the second major surface and opposed to the first and second electrodes. The liquid crystal layer is provided between the first and second substrate units. The spacers are in contact with the liquid crystal layer and define a distance between the first and second substrate units.
US09030612B2 Display apparatus having display driving unit on lower part
A display apparatus having a display driving unit on a lower part is provided. The LCD display apparatus includes a signal processing unit which performs video decoding, video scaling, and conversion into high-quality video on an input video; and a driving unit which is disposed closer to a lower end of the LCD display apparatus than to an upper end of the LCD display apparatus, and drives a liquid crystal display (LCD) panel to display a video output from the signal processing unit on the LCD panel.
US09030611B2 Method for controlling bidirectional remote controller and bidirectional remote controller implementing the method
A method for controlling a bidirectional remote controller is provided. The method includes receiving, at the bidirectional remote controller, menu information from a display apparatus; generating, at the bidirectional remote controller, a menu screen based on the received menu information for controlling the display apparatus; and displaying the generated menu screen on a display of the bidirectional remote controller.
US09030608B2 Digital broadcast receiver and method for processing caption thereof
A digital cable broadcast receiver and a method for automatically processing caption data of various standards and types, is disclosed. The digital broadcast receiver includes: a demultiplexer for dividing a received broadcast stream into video data, audio data, supplementary information; a controller for determining whether caption data included in the video data is digital caption data or analog caption data on the basis of caption information included in the supplementary information, and outputting a control signal according to a result of the determining; a digital caption decoder for extracting and decoding digital caption data from the video data according to the control signal; and an analog caption decoder for extracting and decoding analog caption data from the video data according to the control signal.
US09030607B2 Method and apparatus for restrainng erroneous image colors
A method and related apparatus for restraining erroneous image colors are provided for correcting pixel values of three sequential image fields of a video data while de-interlacing the video data. The method is utilized to correct the video data by detecting whether penetrations from luminance signals into chrominance signals or penetrations from chrominance signals into luminance signals occur in the video data. In embodiments of the present invention, the pixel chrominance signals of image fields with the same polarity are utilized to correct the pixel chrominance signals of another image field. Pattern matching and edge detection are utilized to determine whether penetrations from chrominance signals into luminance signals occur.
US09030606B2 Wireless camera housing illuminators
A camera system includes a wireless indicator that emits light to provide signals to a user. This wireless indicator is attached to a lens casing that covers the front face of the camera to protect components of the camera such as the lens. A wireless signal interface on the front face of the camera is configured to emit ultraviolet light in response to control circuitry within the camera. The ultraviolet light is transmitted through the lens casing to an excitable element. The excitable element produces visible light in response to the ultraviolet light. Any re-emitted visible light that travels back towards the camera lens and image sensor is reflected by a reflective layer, which is configured to transmit ultraviolet light while reflecting visible light. Therefore, the wireless indicator does not cause light artifacts or image flaws to appear in images captured by the image sensor.
US09030605B2 Studio camera adapter and studio camera adapter system
To provide a studio camera adaptor capable of easily controlling a remote controller even when shooting takes place at audience seats in a studio The present invention provides a studio camera adaptor for using a portable video camera as a studio camera, the studio camera adaptor including: a main body unit having: a bottom part for having the portable video camera attached thereto; and a side wall part rising from the bottom part; and a remote controller attachment unit provided to the side wall part for having a remote controller attached thereto, the remote controller being used for adjustment of at least one of zoom, focus, and aperture of the portable video camera.
US09030604B2 Housing for wafer-level camera module
A housing for protecting a wafer-level camera module and fixing the wafer-level camera module to a printed circuit board (PCB) includes: four side plates, defining a quadrilateral frame; four supporting plates each fixed to a lower portion of an inner face of a corresponding one of the four side plates, each supporting plate having a top face supporting a portion of the camera module; and four bottom plates each fixed to a lower portion of an outer face of a corresponding one of the four side plates, each bottom plate having a bottom face fixed to the PCB. The housing is capable of addressing the issues of poor housing-PCB soldering, paint falling off and surface scratching and improving the efficiency in UV lamp-utilized UV adhesive curing.
US09030603B1 Foldable prompting apparatus
The invention provides a prompting apparatus comprising a foldable prompting box which includes two symmetrical opposite walls which can be open and closed, a bottom board which can be folded up and released, and a rear wall, which jointly define a space for housing a two-way see-through mirror and the lens of the camera. The cover defines a space for a user to slide in a tablet device which runs a prompting software application. The pre-designed text is displayed on the tablet device's screen at a speed that the speaker feels comfortable to read. When the apparatus is not in use, the prompting box can be easily folded into a flat compact for the user's convenience to carry.
US09030601B2 Image pickup apparatus
An image pickup apparatus in which a pixel area including arrangement of a plurality of pixels each having a photoelectric conversion portion and a common output portion for sequentially amplifying and outputting signals from the plurality of pixels included in the pixel area are formed on a single semiconductor substrate, comprises a power supply unit for effecting power supply control of the common output portion independently of control on power supply to the pixel area, and a control circuit for effecting control to supply no power to the common output portion in a predetermined period after starting photo charge accumulation in the photoelectric conversion portion and supply the power to the common output portion before the end of a photo charge accumulation period in the photoelectric conversion portion.
US09030600B2 Method and apparatus for controlling flash
A method and an apparatus for controlling a flash are disclosed. The method includes obtaining a statistical gray value of a preview image. If the statistical gray value of the preview image is less than a preset threshold, a corresponding fill light parameter is searched for in a preset dynamic fill light table according to the statistical gray value of the preview image and the fill light drive current is set according to the fill light parameter. The fill light drive current is configured to drive a flash lamp to fire a pre-flash. A corresponding exposure drive current in the preset exposure parameter table is configured according to the fill light parameter and the exposure drive current is configured to drive the flash lamp to flash.
US09030595B2 In-flight auto focus method and system for tunable liquid crystal optical element
An auto-focus system employing a tunable liquid crystal lens is provided that collects images at different optical power values as the liquid crystal molecules are excited between a ground state and a maximum optical power state tracking image focus scores. An image is acquired at a desired optical power value less than maximum optical power established with the liquid crystal molecules closer a fully excited state than the maximum optical power state having the same image focus score. This drive signal employed during image acquisition uses more power than was used to achieve the same optical power value during the auto-focus scan, while actively driving the liquid crystal molecules is fast. A pause due to image transfer/processing delays after acquisition is employed to allow slow relaxation of the liquid crystal molecules back to the ground state in preparation for a subsequent focus search.
US09030593B2 Imaging apparatus and method for controlling the same
An imaging apparatus is capable of preventing unintended shooting setting when a through-image is displayed at a zoom position different from a field angle for reach shooting. The imaging apparatus includes a recording control unit configured to record a zoom position taken before a start of a function for temporarily changing the zoom position as a first position, a zoom control unit configured to perform control to move the zoom position from the first position to a second position when the function is started, and from the second position to the first position when the function is ended, and a control unit configured to perform control, when the zoom position is at the second position by the function, not to make any changes according to an instruction for changing specific shooting setting.
US09030591B2 Determining an in-focus position of a lens
An in-focus lens position may be determined by computing a focus metric value, by counting the number of transition pixels for images of a target captured at different lens positions. Using as little as two frames to compute two focus metric values, a reasonable approximation of the in-focus lens position may be obtained. The approximation of the in-focus lens position may then be used as a starting point for a fine focus search process, to determine an in-focus lens position. An advantage here is that the focus metric values relate to the number of transition pixels and are easy to compute, and yield a reasonable approximation of the in-focus position with just a few frames. Other embodiments are also described.
US09030590B2 Photographing apparatus and method
A photographing apparatus includes: a lens unit; a light transmission adjustment unit that adjusts light transmittance of light that passes through the lens unit; a photographing unit that is disposed a reflected light path of the light transmission adjustment unit and that generates an image data according to received light, and a view finder that is disposed on a transmitted light path of the light transmission unit.
US09030586B2 Solid-state imaging device, drive method thereof and camera system
A solid-state imaging device includes: pixel signal reading lines; a pixel unit in which pixels including photoelectric conversion elements are arranged; and a pixel signal reading unit performing reading of pixel signals from the pixel unit through the pixel signal reading lines, wherein the pixel signal reading unit includes current source circuits each of which includes a load element as a current source connected to the pixel signal reading line forming a source follower, and the current source circuit includes a circuit generating electric current according to a slew rate of the pixel signal reading line and replicating electric current corresponding to the above electric current to flow in the current source.
US09030583B2 Imaging system with foveated imaging capabilites
An electronic device may have a camera module. The camera module may include a camera sensor capable of capturing foveated images. The camera sensor may be hardwired to capture foveated images with fixed regions of different quality levels or may be dynamically-reconfigurable to capture foveated images with selected regions of different quality levels. As one example, the camera module may be hardwired to capture a center region of an image at full resolution and peripheral regions at reduced resolutions, so that a user can merely center objects of interest in the image to capture a foveated image. As another example, the camera module may analyze previous images to identify objects of interest and may then reconfigure itself to capture the identified objects of interest at a high quality level, while capturing other regions at reduced quality levels.
US09030578B2 Image pickup apparatus
An image pickup apparatus includes a plurality of optical systems, each having a different focal length, an image pickup element which picks up an image of an object by the optical system, and a zoom control section which changes an angle of field of an output image by at least one optical system from among the plurality of optical systems, and a part of the angle of field which changes is same as an angle of field of another optical system, and the image pickup apparatus further includes a control section which changes a control position of a display image at the time of zooming to be directed toward an optical-axial center of the another optical system for which the part of the angle of field is same.
US09030575B2 Transformations and white point constraint solutions for a novel chromaticity space
A novel chromaticity space is disclosed that may be used as a framework to implement an auto-white balance solution or other color image processing solutions that take advantage of the particular properties of the novel chromaticity space. The chromaticity space may be defined by using a series of mathematical transformations having parameters that are optimized to adapt to specific sensors' spectral sensitivities. The unique properties of the novel chromaticity space provide a conscious white point constraining strategy with clear physical meaning. In this chromaticity space, the ranges of possible white points under different kinds of lighting conditions can be defined by polygons. Because of the physical meaning the chromaticity space, the projection that is needed to bring an initially “out-of-bounds” white point back into the polygon also carries physical meaning, making the definition of projection behavior and its consequences conceptually clean and predictable.
US09030570B2 Parallel operation histogramming device and microcomputer
A parallel operation histogramming device can handle parallel-input data from a plurality of processors to generate frequency data of a histogram. The processing time for generating frequency data of the histogram is independent of the distribution of histogram values in the input data. The device can also reduce the memory area used for accumulating frequency data of the histogram. The device includes a histogram counter circuit which has a plurality of counters equal in number to the number of histogram bins. The counters count in parallel the number of pieces of data for each type of the operation results from the plurality of processors. The counted values from each counter are accumulated to form the frequencies in a histogram.
US09030558B2 Image processing method for a driver assistance system of a motor vehicle for detecting and classifying at least one portion of at least one predefined image element
In an image processing method for a driver assistance system for detecting and classifying a portion of a predefined image element having a road sign in a digital image captured by an image sensor of the driver assistance system, first scale-invariant image features and their relative geometric arrangement with respect to one another are computed based on at least one image region of the digital image to be searched, after which a classifier compares the first scale-invariant image features and their relative geometric arrangement with respect to one another to stored and/or learned second scale-invariant image features and their relative geometric arrangement with respect to one another which are computed based on the at least one predefined image element.
US09030555B2 Surveillance system
A method of operating a surveillance system having a display unit configured to display a surveillance image includes acquiring the surveillance image from at least one acquisition device. The method also includes setting surveillance event that includes setting a desired surveillance object indicating an attribute of the surveillance event. Further, the method includes displaying the selected surveillance object with the acquired surveillance image on the display unit to indicate the set surveillance event and analyzing the acquired surveillance image to determine whether the set surveillance event has occurred. In addition, the method includes performing an indicating operation in the surveillance system in response to the occurrence of the set surveillance event.
US09030553B2 Projector image correction device and method
Disclosed are projector image correction device and method using a range image camera in order to efficiently use a beam projector in an arbitrary environment. In the projector image correction device, range information of a projected surface is determined by using a range image camera to detect a surface shape of the projected surface and determine a surface state such as a color and a material of the projected surface and a state of a surrounding illumination, thereby efficiently correcting an image to be outputted to perform an efficient image output in an arbitrary environment having various colors and materials.
US09030552B2 Method for calibrating a measurement instrument of an optronic system
A method for calibrating measurement instruments of an optronic system in motion, with positions P1, P2, . . . , Pi, . . . , comprises: a device for acquiring images of a scene comprising a fixed object G0; and means for tracking the fixed object G0 during the acquisition of these images; means for obtaining the positions P1, P2, . . . ; at least one instrument for measuring the distance and/or an instrument for measuring angles of orientation and/or of attitude between this measurement instrument and the fixed object G0, according to a line of sight LoS. It comprises the following steps: acquisition at instants t1, t2, . . . of at least two images, each image being acquired on the basis of different positions P1, P2, . . . of the system, the fixed object G0 being sighted in each image, but its position being unknown; acquisition at the instants t′1, t′2, . . . of measurements of distance and/or of angle; synchronization of the measurements of distance and/or of angle with the positions P1, P2, . . . established at instants t1, t2, . . . ; estimation of the measurement defects which minimize the dispersion of at least two points of intersection Gij between the LoS at the position Pi and the LoS at the position Pj, as a function of said measurements and of the known positions Pi, Pj of the system.
US09030548B2 Correction of a field-of-view overlay in a multi-axis projection imaging system
Two-dimensional scanning array microscope system, which has fields of view of individual objectives overlapping at the object, produces a composite image of the object that is devoid of optical distortions caused by such overlapping. Method for processing imaging data with the system includes precise identification of detector pixels corresponding to different portions of multiple image swaths projected on the detector by the system during the scan of the object, and, based on such identification, allocating or assigning of detector pixels that receive light from the object through more than one objective to only one of objectives, thereby correcting imaging data received in real time to remove a portion of data corresponding to image overlaps.
US09030547B2 Method and measuring system for scanning multiple regions of interest
The invention relates to a method for carrying out measurements on at least one region of interest within a sample via a laser scanning microscope having focusing means for focusing a laser beam and having electro-mechano-optic deflector for deflecting the laser beam, the method comprising: providing a scanning trajectory for the at least one region of interest; providing a sequence of measurements and the corresponding scanning trajectories; providing cross-over trajectories between the scanning trajectories of two consecutive measurements; deflecting the laser beam via the electro-mechano-optic means for moving a focus spot of the focused laser beam along a scanning trajectory at an average scanning speed; and deflecting the laser beam via the electro-mechano-optic means for moving the focus spot of the laser beam along a cross-over trajectory at a cross-over speed having a maximum, the maximum of the cross-over speed being higher than the average scanning speed. The invention further relates to a measuring system for implementing the method according to the invention
US09030545B2 Systems and methods for determining head related transfer functions
A method for determining HRTF includes obtaining a plurality of reference images of different respective ears, one or more of the reference images associated with a corresponding pre-determined HRTF information, obtaining information regarding an input image that includes an image of an ear of a subject, comparing the information regarding the input image with information regarding the reference images using a processor, and selecting one of the pre-determined HRTF information based at least in part on a result of the act of comparing.
US09030544B2 Wireless video transmission system and transmission device
In a transmission device used in a wireless video transmission system in which a medical image is transmitted and received by radio communication, a transmission unit is capable of performing radio communication with a plurality of receiving devices connected to a plurality of display apparatuses. A control unit acquires an identifier for identifying a receiving device connected to a selected single display apparatus when an instruction is received to select one display apparatus on which the medical image is to be displayed from among the display apparatuses, and controls the transmission unit such that the identifier will be used when the medical image is transmitted.
US09030541B2 Endoscope system
An endoscope system includes: a photoelectric conversion element; a contour enhancing section that detects an edge component in a picked-up image subjected to the photoelectric conversion, thereby generating a contour enhancement signal; an electronic zoom region determining section that determines an electronic zoom region in the picked-up image based on a strength of the contour enhancement signal; an instruction section that provides an instruction for enlargement/reduction of the image; a parameter setting section that sets a zoom parameter for an electronic zoom section according to the instruction provided by the instruction section; and the electronic zoom section that performs an electronic zoom of the picked-up image for the electronic zoom region determined, according to the parameter set by the parameter setting section.
US09030539B2 Image processing apparatus, method, program and display
This invention is to provide an image processing apparatus, an image processing method, a program, and a display in which both of a secret image and a public image can be efficiently displayed with high picture quality without reducing contrast of the public image. One of output images is a secret image which displays an input secret image as one of input images in a partial area of a screen, all the output images including the secret image have a relationship to become, when a luminance value of each pixel thereof is totaled, an input public image as one of the input images; and during a period in which at least the secret image is being outputted, shutter glasses disposed between a display to which the image signals are inputted and user's eyes are set to a light transmission state.
US09030538B2 Three dimensional liquid crystal display device and method for driving the same
Disclosed is a three dimensional liquid crystal display device (3D LCD device) which facilitates to improve a picture quality of a three-dimensional image (3D image) by color and luminance corrections, and a method for driving the same, wherein the device comprises an image data analyzer which analyzes a luminance level for each of R, G, and B colors of original image data inputted to display the 3D image; an image data converter which generates color correction data for adjusting a color balance of the R, G, and B colors distorted by the shutter glass, and generates gamma correction data for compensating a luminance reduction, on the basis of luminance analyzing results provided from the image data analyzer; and a timing controller which converts the input image data into image data of a frame unit, reflects the color correction data and the gamma correction data in the image data of the frame unit, and supplies the corrected image data to a data driver.
US09030536B2 Apparatus and method for presenting media content
A system that incorporates teachings of the present disclosure may include, for example, a media processor including a controller to receive a broadcast of media content comprising three-dimensional image content for presentation on a display device operably coupled with the media processor, adjust the broadcast of the media content to comprise two-dimensional image content, and present the media content on a display device, wherein the controller adjusts the media content to comprise the two-dimensional image content during presentation of the broadcast of the media content on the display device. Other embodiments are disclosed.
US09030531B2 Stereoplexing for film and video applications
A method for multiplexing a stream of stereoscopic image source data into a series of left images and a series of right images combinable to form a series of stereoscopic images, both the stereoscopic image source data and series of left images and series of right images conceptually defined to be within frames. The method includes compressing stereoscopic image source data at varying levels across the frame, thereby forming left images and right images, and providing a series of single frames divided into portions, each single frame containing one right image in a first portion and one left image in a second portion. Alternately, single frames may contain two right images in a first two portions of each single frame and two left images in a second two portions of each single frame, wherein each set of right and left images may be processed differently. Multiplexing processes such as staggering, alternating, filtering, variable scaling, and sharpening from original, uncompressed right and left images may be employed.
US09030528B2 Multi-zone imaging sensor and lens array
An imaging module includes a matrix of detector elements formed on a single semiconductor substrate and configured to output electrical signals in response to optical radiation that is incident on the detector elements. A filter layer is disposed over the detector elements and includes multiple filter zones overlying different, respective, convex regions of the matrix and having different, respective passbands.
US09030525B2 Method and apparatus for optimal motion reproduction in stereoscopic digital cinema
A method and apparatus are described including determining an inter-frame object displacement for each object in a left eye image frame pair, determining an inter-frame object displacement for each object in a right eye image frame pair, determining a convergence shifting field between each object in the left eye image and the right eye image pair, determining an amount of motion blur responsive to the inter-frame object displacement for each object in the left eye image frame pair, the inter-frame object displacement for each object in the right eye image frame pair, and the convergence shifting field between each object in the left eye image and the right eye image pair and adjusting the motion blur by the amount of motion blur.
US09030522B2 Apparatus and method for providing media content
A system that incorporates teachings of the present disclosure may include, for example, receive a request for a telepresence seat at an event, obtain media content comprising event images of the event that are captured by an event camera system, receive images that are captured by a camera system at a user location, provide the media content and video content representative of the images to a processor for presentation at a display device utilizing a telepresence configuration that simulates the first and second users being present at the event, where the providing of the first and second video content establishes a communication session between the first and second users. Other embodiments are disclosed.
US09030519B2 Optical writing device and image forming apparatus
An optical writing device includes a light source, an optical deflector that deflects and scans light from the light source, a pre-deflector optical system that guides the light from the light source to the deflector, a post-deflector optical system that guides the scanned light to a target surface, a cover covering the deflector and including a first opening and a second opening provided at different positions, and a housing housing these optical elements. Light traveling from the light source to the deflector and the light scanned by the deflector are transmitted through the first opening but not through the second opening. During the rotation of the deflector, a forced inflow of air flowing from outside to inside the cover is generated in the first opening, and a discharged airflow flowing from inside to outside the cover is generated in the second opening.
US09030517B2 Pixel clock generating device and image forming apparatus
A pixel clock generating device includes a time interval detection unit detecting a time interval between a first signal and a second signal in each of cyclically repeating N (≧2) time periods; a comparing unit cyclically selecting a target value from N target values corresponding to the N time periods and outputting an error indicating a difference between the detected time interval and the selected target value for each of the N time periods; a frequency calculation unit correcting a frequency of the pixel clock signal based on the error and cyclically generating a frequency specification signal indicating the corrected frequency for each of the N time periods; a high-frequency clock generating unit generating a high-frequency clock signal; and a pixel clock generating unit generating a pixel clock signal based on the frequency specification signal and the high-frequency clock signal.
US09030516B2 Printer nonuniformity compensation for halftone screens
Compensation is performed for nonuniformity in a printer. The printer has a photoreceptor and a print head with a plurality of different light sources, each light source capable of producing a plurality of different levels of light. A plurality of stored gain control signals for each light source are related to the light output of that light source. Print job data includes screened pixel levels and a halftone screen specification. The stored gain control signals are adjusted based on the halftone screen specification. The screened pixel levels are modified using the adjusted gain control signals to provide engine pixel levels. Those levels are provided to corresponding light sources to expose the photoreceptor in respective pixel areas with light corresponding to the compensated pixel levels.
US09030511B2 Information processing apparatus, method of controlling thereof, printing system, tape printing apparatus, and computer-readable medium
An information processing apparatus used in connection with a tape printing apparatus has a tape information acquisition section which acquires from the tape printing apparatus tape information about a tape mounted therein, a new standardized tape discrimination section which discriminates whether a new standardized tape having a standard different from an existing standard has been mounted or not based on the tape information, a printing parameter acquisition section which acquires a printing parameter corresponding to the new standardized tape in a case that it is discriminated that the new standardized tape has been mounted, and a data transmission section which transmits the printing parameter acquired by the printing parameter acquisition section to the tape printing apparatus.
US09030506B2 Stable fast programming scheme for displays
A technique for improving the spatial and/or temporal uniformity of a light-emitting display by providing a faster calibration of reference current sources and reducing the noise effect by improving the dynamic range, despite instability and non-uniformity of the transistor devices. A calibration circuit for a display panel having an active area having a plurality of light emitting devices arranged on a substrate, and a peripheral area of the display panel separate from the active area is provided. The calibration circuit includes a first row of calibration current source or sink circuits and a second row of calibration current source or sink circuits. A first calibration control line is configured to cause the first row of calibration current source or sink circuits to calibrate the display panel with a bias current while the second row of calibration current source or sink circuits is being calibrated by a reference current. A second calibration control line is configured to cause the second row of calibration current source or sink circuits to calibrate the display panel with the bias current while the first row of calibration current source or sink circuits is being calibrated by the reference current.
US09030505B2 Method and apparatus for attracting a user's gaze to information in a non-intrusive manner
Methods, apparatuses, and computer program products are herein provided for attracting a user's gaze to information associated with a portion of a display in a non-intrusive manner. A method may include determining to attract a user's gaze to information associated with a portion of a display. The method may further include causing presentation of a visual attractant on the display proximate the portion of the display. The method may further include causing presentation of the visual attractant on the display to be ceased in an instance in which the user's gaze is determined to be moving toward the information. Corresponding apparatuses and computer program products are also provided.
US09030501B2 Methods and systems for modifying a display of a field of view of a robotic device to include zoomed-in and zoomed-out views
Methods and systems for modifying a display of a field of view of a robotic device to include zoomed-in and zoomed-out views are provided. In examples, the robotic device may include a camera to capture images in a field of view of a robotic device, and distance sensors which can provide outputs that may be used to determine a distance of the robotic device to an object in the field of view of the robotic device. A display of the field of view of the robotic device can be generated, and as the distance decreases, the display can be modified to include a zoomed-in view of the object. As the distance increases, the display can be modified to include a zoomed-out view of the object. An amount of zoom of the object may be inversely proportional to the distance.
US09030497B2 Display device and arrangement method of OSD switches
A display device in the invention comprises an OSP section and OSD switches 10 configured to include a plurality of switches for performing various kinds of setting operations using the OSD section. In OSD switches 10, switches 10a and 10b are disposed on a right side of a front bezel 2 and switches 10c and 10d are disposed on a lower side of the front bezel 2. By that, the OSD switches can be disposed so that a switch operation can be visually performed without an uncomfortable feeling, without increasing the thickness of a front bezel even if the front bezel is narrow.
US09030495B2 Augmented reality help
A system and related methods for an augmented reality help system in a head-mounted display device are provided. In one example, the head-mounted display device includes a plurality of sensors and a display system for presenting holographic objects. An augmented reality help program is configured to receive one or more user biometric parameters from the plurality of sensors. Based on the user biometric parameters, the program determines that the user is experiencing a stress response, and presents help content to the user via the head-mounted display device.
US09030493B2 Image processing system, method and apparatus, and computer-readable medium recording image processing program
An example image processing apparatus has a captured image acquisition unit for acquiring a captured image captured by an imaging device, a feature detection unit for detecting the markers from the captured image, a reference acquisition unit for acquiring, based on each of the detected markers, a coordinate system serving as a reference indicating a position and attitude in a space, and a relative relation information acquisition unit for acquiring, based on the captured image in which a plurality of the markers are detected, relative relation information indicating a relative relation in position and attitude of a plurality of coordinate systems acquired for the respective markers.
US09030491B1 System and method for displaying data from multiple devices on a single user interface
A method involves using a first software module loaded within a storage device to publish a first paint method under a first window object, the first window object covering a first portion of a display operatively connected to the storage device, using a second software module loaded within the storage device to publish a second paint method under a second window object, wherein the second window object at least partially overlaps the first window object and at least partially covers the first portion of the display, and displaying data within the first portion of the display by calling the first paint method and the second paint method in order based upon a property, such as a hierarchical-based property, of both the first window object and the second window object, where data originates from more than one hardware devices operatively connected to the storage device.
US09030486B2 System and method for low bandwidth image transmission
An image transmission method (and related system) for obtaining data of a local subject and processing the data of the local subject to fit a local model of at least a region of the local subject and extract parameters of the local model to capture features of the region of the local subject. The method (and related system) may also include obtaining data of at least one remote subject and processing the data of the remote subject to fit at least one of at least one region of the remote subject and extract parameters the remote model to capture features of the region of the remote subject. The method (and related system) may also include transmitting the extracted parameters of the local region to a remote processor and reconstructing the local image based on the extracted parameters of the local region and the extracted parameters of the remote region.
US09030483B2 Image display device displaying multi-primary color and method of driving the same
An image display device includes: a display panel including a plurality of pixels and displaying an image; a color converting portion generating a converted image signal regarding red, green and blue colors and an auxiliary primary color from an original image signal regarding red, green and blue colors using one of a plurality of gains corresponding to the plurality of pixels, respectively; and a data signal generating portion generating a data signal from the converted image signal and supplying the data signal to the display panel.
US09030479B2 System and method for motion editing multiple synchronized characters
Disclosed are a system and a method for motion editing multiple synchronized characters. The motion editing system comprises: a Laplacian motion editor which edits a spatial route of inputted character data according to user conditions, and processes the distortion of the interaction time; and a discrete motion editor which applies a discrete transformation while the character data is processed.
US09030470B2 Method and system for rapid three-dimensional shape measurement
The present invention discloses a non-contact measurement system for measuring the three-dimensional (3D) shape of an object rapidly by using a unique light pattern and the implementation method thereof. The system comprises a pattern generation unit, a projection unit, a sensing unit and a processing unit. The pattern generation unit generates an enhanced color sequence according to predetermined rules. The sensing unit of the system comprises a hybrid sensor which can be operated in fast mode or precise mode. A dedicated decoding method for the present invention is also disclosed.
US09030469B2 Method for generating depth maps from monocular images and systems using the same
Methods for generating depth maps from monocular still image or monocular video and systems using the same are provided. First, an initial depth map is estimated or arbitrary defined. For video inputs, motion information can be used, for still image the initial background can be arbitrary set by default, chosen by the user or can be estimated. Estimation of the initial depth map can be based on a contrast map or a blur map. The initial depth map defines initial depth values for the respective pixels of the monocular image or monocular motion picture frames. The respective pixels of the original image or video frame data are mapped to the initial depth map according to positions of the pixels, in order to obtain corresponding initial depth values. An image data space of the image is subdivided into a plurality of sub-image spaces, and the initial depth value of each of the pixels of the image is filtered according to the initial depth values of the pixels located in the same sub-image space, in order to obtain depth information for the pixels.
US09030466B2 Generation of depth data based on spatial light pattern
Technologies are generally described for generating depth data based on a spatial light pattern. In some examples, a method of generating depth data includes obtaining an image of one or more objects on which a spatial light pattern is projected, wherein blurring of the spatial light pattern in the image monotonously increases or decreases in a depth direction, calculating a value of a spatial frequency component of the image in a local image area around a pixel of interest, and determining depth data corresponding to the calculated value of the spatial frequency component by utilizing a preset relationship between depths and values of the spatial frequency component.
US09030461B2 Large area thin film circuits employing current driven, illumination enhanced, devices
A thin film circuit comprises a plurality of thin film transistors, wherein the output response of the circuit is dependent on at least first (36) and second (34, 22) of the transistors. The first thin film transistor (36) is, in use, exposed to a source of illumination (2) and the second thin film transistor (16) is shielded from the source of illumination. The first thin film transistor (36) is operated in use as an analogue switch which provides an analogue output in response to a control input. The illumination of this transistor reduces the effect of dynamic threshold voltage variations, which can be a limitation to circuit performance.
US09030457B2 Display with wireless charging function, operation method thereof and corresponding portable electronic apparatus
A display with wireless power charging function, an operation method thereof and a corresponding portable electronic apparatus are provided. The display includes a RFID read/write module and is applicable to electrically charge a portable electronic apparatus with a RFID tag. The operation method includes steps of: displaying an image on the display surface of the display panel of the display; transmitting data between the Radio Frequency Identification read/write module of the display and the Radio Frequency Identification tag of the portable electronic apparatus and electrically charging the energy storage unit of the portable electronic apparatus while the portable electronic apparatus is placed in the readable/writable area; and adjusting, while the portable electronic apparatus is placed in the readable/writable area, the image to an updated image having no overlap with the readable/writable area if the image has an overlap with the readable/writable area.
US09030456B2 Driving device and driving method for liquid crystal display
A liquid crystal display of a charge sharing mode comprises a control device for turning on the gates on the gate line in the black frame insertion timing. Each gate line of the liquid crystal display panel is connected with the control device. In the black insertion timing, the control device outputs to the gate line connected thereto a first control signal for controlling the gates on the gate line to be turned on, and the black frame insertion timing is a time when charge sharing is conducted among data lines from the gates on the gate line are turned off in the current frame until they are turned on in the next frame.
US09030453B2 Liquid crystal display driving circuit with less current consumption
An LCD driving circuit includes a first buffer configured to have a terminal for a first voltage, a terminal for a second voltage and a terminal for an intermediate voltage between the first voltage and the second voltage, and be driven in a range from the first voltage to the intermediate voltage; and a second buffer configured to have a terminal for the first voltage, a terminal for the second voltage and a terminal for the intermediate voltage, and be driven in a range from the intermediate voltage to the second voltage. The terminal for the intermediate voltage of the first buffer and the terminal for the intermediate voltage of the second buffer are connected with each other, and the first voltage is a highest voltage, the second voltage is a lowest voltage, and the intermediate voltage is in a range from the first voltage to the second voltage.
US09030452B2 Liquid crystal display and driving method thereof
The described technology relates to a liquid crystal display and a driving method thereof. The liquid crystal display includes a plurality of pixels arranged in a matrix form. The pixels include a liquid crystal capacitor including a pixel electrode and a common electrode as two terminals. A plurality of data lines transfer data to the plurality of pixels. The pixels include a first pixel and a second pixel, which are adjacent to each other. First and second common signals are applied to the common electrode of the first and second pixels, respectively. The second common signal is inverted to the first common signal. The first and second common signals swing between a first voltage and a second voltage. The polarity of the data voltage transferred by a data line with respect to the first common signal or the second common signal is constant during one frame.
US09030449B2 Electro-optical device and electronic apparatus
An electro-optical device includes: a display portion that displays images; a power source portion; a converter that has an antenna receiving wireless signals including display controlling signals and image signals from the external based on a wireless transmission method and that converts the wireless signals received from the antenna into wire signals; and a driving circuit that is electrically connected to the power source portion and the converter, respectively, to display the images on the display portion based on the power supplied from the power source portion and the image signals and the display controlling signals output from the converter.
US09030447B2 Surface acoustic wave touch panel and manufacturing method thereof
A surface acoustic wave touch panel includes a flexible substrate, an acoustic wave transmitting layer, an adhering layer, a piezoelectricity layer, and an electrode layer. The acoustic wave transmitting layer is made of nano-diamond and formed on the flexible substrate. The adhering layer is formed on the acoustic wave transmitting layer. The piezoelectricity layer is formed on the acoustic wave transmitting layer in an interdigitated electrode pattern. The electrode layer is formed on the piezoelectricity layer. A method of manufacturing the surface acoustic wave touch panel is also provided.
US09030446B2 Placement of optical sensor on wearable electronic device
In one embodiment, a wearable device includes a body that includes a touch-sensitive display. The wearable device includes a band coupled to the body and an optical sensor placed on or in the band so that an image of an object displayed on the touch-sensitive display is viewable while the object is also viewable without the wearable device blocking a view of the object.
US09030445B2 Vision-based interactive projection system
Techniques are provided to improve interaction between a user and a projection system. In some embodiments, an image of a user in front of a display screen is captured. An inference can then be made as to whether a user is touching a display screen based on an analysis of shadows and/or variation of brightness (i.e., intensities) across pixels in the image. For example, it may be inferred that the object is: (1) approaching the screen when a region surrounding a top of the object is characterized by a relatively small brightness variation; (2) hovering near the screen when the brightness variation is large and the region includes a dark extremum (caused by a shadow); and (3) touching the screen when the brightness variation is large and the region includes a light extremum.
US09030444B2 Controlling and/or operating a medical device by means of a light pointer
The invention relates to a system for controlling and/or operating a medical device (30) associated with a display (20; 50) on which medical images (24) and/or control and/or operating elements (21, 22, 25) are displayed, wherein the system comprises: —a light pointer (10; 40) which projects a delimited light cursor (14; 44); —a light detection device which is associated with the display and comprises a sensor (23) for determining the presence and location of the light cursor (14; 44) projected by the light pointer (10; 40); and—a converter (26) which converts the captured presence and location information into control and/or operating commands for the medical device. The invention also relates to a method for controlling and/or operating a medical device (30) associated with a display (20; 50) on which medical images (24) and/or control and/or operating elements (21, 22, 25) are displayed, wherein a delimited light cursor (14; 44) is projected onto the display (20; 50) by means of a light pointer (10; 40), wherein the presence and location on the display (20; 50) of the light cursor (14; 44) projected by the light pointer (10; 40) is detected by means of a sensor (23), and wherein the captured presence and location information is converted into control and/or operating commands for the medical device (30).
US09030440B2 Capacitive sensor packaging
An apparatus comprises a fingerprint sensor having a set of capacitive elements configured for capacitively coupling to a user fingerprint. The fingerprint sensor may be disposed under a control button or display element of an electronic device, for example one or more of a control button and a display component. A responsive element is responsive to proximity of the user fingerprint, for example one or both of a first circuit responsive to motion of the control button, and a second circuit responsive to a coupling between the fingerprint and a surface of the display element. The fingerprint sensor is disposed closer to the fingerprint than the responsive element. The control button or display component may include an anisotropic dielectric material, for example sapphire.
US09030438B2 Pixel-aligned micro-wire electrode device
A display device includes a display having an array of pixels, the pixels separated by inter-pixel gaps in at least one dimension and an electrode having a length and width located over the display and extending across at least a portion of the array of pixels, the electrode including a plurality of electrically connected micro-wires formed in a micro-pattern. The micro-pattern includes gap micro-wires located between the pixels in the inter-pixel gaps and substantially extending continuously along the electrode length.
US09030436B2 Information processing apparatus, information processing method, and program for providing specific function based on rate of change of touch pressure intensity
Provided is an information processing apparatus including a pressure intensity detection unit that detects pressure intensity of an operating tool pressing a screen, a change rate detection unit that detects a rate of change of the pressure intensity based on information on the pressure intensity detected by the pressure intensity detection unit, and a function providing unit that provides a specific function in a case the rate of change of the pressure intensity detected by the change rate detection unit is high, and cancels an operation by the operating tool without providing the specific function in a case the rate of change of the pressure intensity is low.
US09030435B2 Touch input device with button function
A touch input device with a button function is provided. The touch input device includes a base member, a touch module, a triggering switch, a linking module, and plural movable pads. The plural movable pads are disposed on the linking module. The linking module is fixed on the base member through a fixing part. Moreover, the linking module is located near the triggering switch, which is disposed on the base member. When the touch module is depressed, the linking module is pushed by the plural movable pads. Consequently, the linking module is swung by using the fixing part as a fulcrum, and the triggering switch is pushed by the linking module. Since the lever arm of the linking module is longer than the lever arm of the prior technology, the touch module is depressed by a smaller force.
US09030433B2 System with a gesture-identification unit
A method is used for operating a system with a touchscreen, a control unit for the touchscreen, a central-processing unit and a gesture-identification unit. In a first method step, a position of one or more physical objects on and/or near the touchscreen is identified by the control unit, and/or a movement of one or more physical objects on and/or near the touchscreen is identified by the control unit. In a further method step, the position and/or the movement of one or more physical objects is associated with a gesture in a gesture set by a first association unit in a gesture-identification unit. Following this, a key combination is transferred by a second association unit to an application, and/or a function of an application is started for the gesture by the second association unit, and/or the gesture is transferred by the second association unit to an application.
US09030432B2 Touch panel and producing method for via electrode
Disclosed herein a touch panel and a producing method for a via electrode. Touch sensitivity may be improved by forming a via hole in a cover glass and then filling a via electrode into the via hole to thereby narrow an interval between a touch point of a user and an electrode layer.
US09030431B2 Display panel and apparatus with capacitive element in auxiliary driver
A display panel includes: display elements; a plurality of drive electrodes; one or more touch detecting electrodes that form a capacitor along with the corresponding drive electrode; a main driver unit that generates a basic drive signal including a pulse part supplied to the drive electrodes; and a first auxiliary driver unit that includes a capacitive element and that exchanges electric charges between the capacitive element and the drive electrodes in synchronization with the pulse part.
US09030426B2 Method of minimizing charges accumulated at common electrode of display panel
A touch system including a display panel associated with a first electrode, a touch panel having a plurality of touch electrodes having a plurality of transmit electrodes and a plurality of receive electrodes, and a voltage generating circuit is provided. When a mutual capacitance between a selected transmit electrode and a selected receive electrode is measured, the voltage generating circuit applies a first voltage of a first polarity to the selected transmit electrode, and substantially concurrently applies a second voltage of a second polarity that is opposite to the first polarity to at least one other transmit electrode for minimizing charges associated with an application of the first voltage to the selected transmit electrode and accumulated at the first electrode.
US09030425B2 Detection of interaction with virtual object from finger color change
Methods, systems, and computer programs are presented for detecting inputs for a computing device. One method includes an operation for receiving images for an area where the hand of a user is situated, and an operation for analyzing the received images to determine the location and the color of a finger of the user. Further, a change in the color of the finger is detected, where the change in the color is caused by contact of the finger with a physical object. In other operation, the method determines the location of the finger when the color change was detected. The determined location is associated with an input for the computing device.
US09030420B2 Display device with touch detection function
A display device includes: a display section having a plurality of pixel electrodes; and a plurality of drive electrodes extending in a first direction and arranged side-by-side in a second direction. Each of the drive electrodes has a width in the second direction corresponding to a size of the two or more pixel electrodes, and has one or more slits extending in the first direction.
US09030419B1 Touch and force user interface navigation
Techniques for navigating through a user interface with a force-sensitive touch sensor are described. In some implementations, the force-sensitive touch sensor is also a display that presents the user interface. Touches on the force-sensitive touch sensor may be interpreted as indicating a vector direction based on the location of the touch and a vector magnitude based on the force of the touch. For instance, when a user navigates through a collection of photographs on a device having a force-sensitive touch sensor, the vector direction may determine if the user is scrolling forwards or backwards through the photographs and the vector magnitude may determine how rapidly the scrolling occurs. The user may also navigate through a hierarchy of folders and files using touch and force. Selection of a folder and application of force exceeding a threshold may result in display of the contents of a most commonly accessed subfolder or file.
US09030407B2 User gesture recognition
An apparatus comprising: at least one processor; and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to perform: determining at least one parameter dependent upon a user gesture wherein the parameter is rotation invariant, having the same value when determined at different arbitrary orientations between the apparatus and the user gesture; and using the at least one parameter to determine an action in response to the user gesture.
US09030400B2 Temperature dependence of charge sharing for a liquid crystal display
A liquid crystal display, including: pixels; a signal controller receiving an input image signal and an input control signal and outputting a processing image signal and a control signal; and a data driver changing the processing image signal to data voltage on the basis of the control signal to supply the data voltage to the pixel and sharing charges of odd channel data voltage of an odd channel and even channel data voltage of an even channel which have different polarities on the basis of a temperature.
US09030396B2 Liquid display panel driving method
A liquid display panel driving method to drive a plurality of pixels of a liquid display panel in a frame period comprising a plurality of data input intervals is provided. Each pixel comprises first and second capacitors coupled to a first and second common electrode respectively. The liquid display panel driving method comprises the steps of: keeping the second common electrode at the same voltage level; modifying the voltage of the first common electrode of each pixel along a row of scan line to perform a first pre-charge before the data input interval; turning on the pixels to make each pixel receive the data voltage from the data lines during the data input interval; and turning off the pixels and modifying the voltage of the first common electrode to further set the voltage of each of the pixels to a target level after the data input interval.
US09030394B2 Display control method used in display
A display control method used in a display with color light sources. Whether at least one of frame gray levels of the colors associated with the frame is less than a frame gray level threshold is determined. When the at least one of the frame gray levels of the colors associated with the frame is less than the frame gray level threshold, the frame gray level of the color less than the frame gray level threshold is increased, and the corresponding color light source of the color of the frame is adjusted to be weak or dark accordingly.
US09030390B2 Electro-optical device and electronic apparatus
An electro-optical device includes one or more control lines that include a scanning line, a data line and a pixel circuit. The pixel circuit has a drive transistor, a write-in transistor with a gate which is electrically connected to the scanning line, a light-emitting element that emits light at a brightness that depends on the size of a current that is supplied through the drive transistor, and a control line which overlaps the gate of the drive transistor when viewed from a direction that is perpendicular to a surface of a substrate on which the pixel circuit is formed is included in the one or more control lines.
US09030386B2 Sound penetrating display apparatus for outputting the sounds having object location effect in a scene
A sound penetrating display apparatus for outputting sound having an object-based position coordinate effect is disclosed, which apparatus comprises a plurality of pixels, a plurality of holes which are distributed in an OLED (Organic Light Emitting Diode) display panel in a certain dense in order for sound from a speaker disposed at a back side of the OLED display panel to penetrate, a driving circuit for driving the OLED display panel, a protecting layer which is attached to a back side of the OLED display panel or is disposed close to the same and is formed of holes matching with the holes of the panel, and a plurality of matrix speakers which are disposed at a back side of the OLED display panel.
US09030385B2 Image processing apparatus, display system, electronic apparatus, and method of processing image
An image processing apparatus which corrects pixel data corresponding to pixels configuring a display image of a display device having light emitting elements includes an information storage unit which, in units of one or a plurality of pixels of the display device, stores information corresponding to operating currents of light emitting elements included in the one or plurality of pixels, and a pixel data correction unit which corrects the pixel data based on the information corresponding to the operating currents stored in the information storage unit.
US09030382B2 Method and device for target designation
The invention relates to a method and a presentation device for presenting information about the angle to a target to a wearer (2) by means of a display (1) worn by the wearer tracking movement of the wearer's head, the wearer's head movements being detected and the angle of the wearer's head relative to a target being indicated on the display. According to the invention, movements of the wearer's (2) head are detected independently of the target, the position of the wearer is determined locally, the position of the target is designated and the display is controlled on the basis of local information about the wearer's head movement, the wearer's position and the position designated as the target in order to indicate the angle of the wearer's head relative to the target.
US09030377B2 Smart device notifications for surface computing
Embodiments of the present invention provide a method and system for smart device notifications in surface computing. In an embodiment of the invention, a method for smart device notifications in surface computing includes registering in memory of a surface computing system, a placement of multiple different smart devices upon a surface of the surface computing system. The method also includes detecting a receipt of a notification in one of the smart devices. Finally, the method includes rendering in a visual display of the surface computing system, an indication of a particular one of the smart devices in which the receipt of the notification is detected.
US09030374B2 Composite display modules
The present invention provides composite display modules which have reduced visible dead space between display modules. This is of particular interest for the price rail, where it is desirable to achieve a long (about 3-4 ft) section of an active module. The present invention is directed to a composite display module comprising: (a) more than one single display module, wherein said single display modules are not edge-sealed and they are mounted on a single back support structure and are kept tightly close to each other right up to their edges; and (b) said composite display module is edge sealed.
US09030371B2 Antenna device and communication terminal apparatus
An antenna device includes an antenna element and an impedance converting circuit connected to the antenna element. The impedance converting circuit is connected to a power-supply end of the antenna element. The impedance converting circuit is interposed between the antenna element and a power-supply circuit. The impedance converting circuit includes a first inductance element connected to the power-supply circuit and a second inductance element coupled to the first inductance element. A first end and a second end of the first inductance element are connected to the power-supply circuit and the antenna, respectively. A first end and a second end of the second inductance element are connected to the antenna element and ground, respectively.
US09030360B2 Electromagnetic band gap structure for enhanced scanning performance in phased array apertures
Embodiments of a phased array antenna having a plurality of unit cells, each unit cell utilizing an improved electromagnetic band gap (EBG) structure and a lossy material in connection with the EBG element are disclosed. The lossy material reduces the undesired coupling between the antenna radiator and the EBG, thus providing enhanced scanning performance in the phased array aperture.
US09030354B2 Imaging architecture with code-division multiplexing for large aperture arrays
A method and structure for a phased-array system. An orthogonal signal generator generates a plurality of signals C(i) that are orthogonal or near-orthogonal, meaning that a cross correlation between any two signals C(i) is lower than autocorrelation, and there is a plurality of phased-array antenna elements, each said antenna element providing a signal Sinp(i). A multiplier multiplies each signal C(i) with the signal Sinp(i) of a corresponding one of the plurality of phased array antenna elements.
US09030345B2 Ring oscillator circuit, A/D conversion circuit, and solid state imaging apparatus
A ring oscillator circuit causing a pulse signal to circulate around a circle to which an even number of inverting circuits are connected in a ring, wherein one of the inverting circuits is a first starting inverting circuit, which drives a first pulse signal according to a control signal, another of the inverting circuits is a second starting inverting circuit, which drives a second pulse signal based on a leading edge of the first pulse signal, still another is a third starting inverting circuit, which drives a third pulse signal based on the leading edge of the first pulse signal after the second pulse signal is driven, and the first to third starting inverting circuits are arranged within the circle of the inverting circuits in order of the third, second, and first pulse signals in traveling directions of the pulse signals.
US09030343B2 Communication device and method capable of power calibration
The present invention discloses a communication device and a communication method capable of power calibration. Said communication device comprises: a digital circuit to provide a digital output signal; a detection circuit to perform a predetermined detection and generate a detection result; a control circuit to generate a digital-end and an analog-end gain adjustment signals according to the detection result; a digital-end gain adjustment circuit to adjust the gain of the digital output signal according to the digital-end gain adjustment signal and generate a digital gain-adjusted output signal; a digital-to-analog converter to generate an analog output signal according to the digital gain-adjusted output signal; and an analog circuit to adjust the gain of the analog output signal according to the analog-end gain adjustment signal and generate an analog gain-adjusted output signal, wherein the detection circuit is operable to detect the influence caused by a peripheral factor to the analog circuit.
US09030341B2 Compensation for lane imbalance in a multi-lane analog-to-digital converter (ADC)
Various multi-lane ADCs are disclosed that substantially compensate for impairments present within various signals that result from various impairments, such as phase offset, amplitude offset, and/or DC offset to provide some examples, such that their respective digital output samples accurately represent their respective analog inputs. Generally, the various multi-lane ADCs determine various statistical relationships, such as various correlations to provide an example, between these various signals and various known calibration signals to quantify the phase offset, amplitude offset, and/or DC offset that may be present within the various signals. The various multi-lane ADCs adjust the various signals to substantially compensate for the phase offset, amplitude offset, and/or DC offset based upon these various statistical relationships such that their respective digital output samples accurately represent their respective analog inputs.
US09030338B2 EMI reduction with specific coding of counter signals
Apparatuses and a method for transmitting a counter signal in an imaging system are provided. Counter states of the counter signal are Gray coded to Gray coded counter states before transmission. Every second Gray coded counter state is inverted to an inverted counter state. The Gray coded counter states inverted in every second counter state are transmitted and are decoded on receipt.
US09030336B2 Method and apparatus for obtaining weather information from road-going vehicles
In one embodiment taught herein, a plurality of road-going vehicles report weather-related data to a weather-determining system. For example, trucks and/or cars having in-vehicle information systems wirelessly transmit one or more items of weather-related data, such that the weather-determining system directly or indirectly receives the transmitted data. In turn, the weather-determining system jointly processes the weather-related data to determine weather information for one or more geographic areas corresponding to reported positions of the road-going vehicles. In one embodiment, the in-vehicle information systems comprise GPS-based position reporting systems installed in on-highway trucks and other fleet vehicles, and the weather-determining system comprises a modified position-tracking system, e.g., a modified network fleet management system. Weather-related data may be collected and processed for large numbers of vehicles across many geographic areas of interest, and the resulting weather information can be fed back to the road-going vehicles and/or provided to other consumers of weather information.
US09030333B2 Advanced metering infrastructure network visualization
Systems and methods for visualization of Advanced Metering Infrastructure (AMI) deployments are disclosed. A status associated with communications towers or metering devices in an AMI deployment can be monitored based on alarms generated by a metering vendor system or based on thresholds specified in the AMI operations database. A user interface can be generated that allows the AMI deployment to be visualized, with status indicators associated with statuses overlaid on a map. The user interface can further facilitate visualization of progress of tasks associated with AMI operations.
US09030332B2 Method and apparatus for generating an indication of an object within an operating ambit of heavy loading equipment
A method, apparatus and system for generating an indication of an object within an operating ambit of heavy loading equipment is disclosed. The system includes a plurality of sensors disposed about a periphery of the loading equipment, each being operable to generate a proximity signal in response to detecting an object within a coverage region of the sensor, the proximity signal including an indication of at least an approximate distance between the sensor and the object. A processor circuit is operably configured to define an alert region extending outwardly and encompassing swinging movements of outer extents of the loading equipment. The processor circuit is operably configured to receive proximity signals from the plurality of sensors, process the signals to determine a location of the object relative to the loading equipment, and initiate an alert when the location falls within the alert region.
US09030331B2 Fluid supply control for patient support surface
A control system of a patient support surface calculates a surface performance index as a function of pressure and shear. The control system also receives information from an electronic medical record (EMR) corresponding to a person's susceptibility of developing at least one of a pressure ulcer and a superficial lesion and adjusts at least one of a component and a characteristic of the person support surface based on the information.
US09030330B1 Carbon monoxide safety device
A carbon monoxide safety device detects levels of carbon monoxide producible by a device and deactivates the device upon detection of a predetermined level of carbon monoxide. The device includes a housing and a processor coupled to the housing. A plurality of wires is electrically coupled to the processor. A sensor is operationally coupled to the processor wherein the sensor measures a level of carbon monoxide. A switch is operationally coupled to the sensor wherein the sensor sends a deactivation signal to the switch to deactivate the source of carbon monoxide upon the sensor detecting a predetermined level of carbon monoxide.
US09030327B2 System and method for detecting radiation emissions
A method includes receiving radiation sensor data from two radiation sensors that are positioned separately from each other about a path. Position information identifying a source of radiation as it passes by the two radiation sensors is received. The sensor data from the two radiation sensors is time shifted to correlate the sensor data to the identified source of radiation. The time shifted sensor signals are summed.
US09030314B2 Method for inspecting and testing notification appliances in alarm systems
A method for inspecting notification appliances in an alarm system. The method may include placing the alarm system in an inspection mode, whereby a verification indicium on each notification appliance being inspected is activated. The method may further include performing a physical inspection of a notification appliance, as well as actuating an input device on the notification appliance whereby the verification indicium on the notification appliance is deactivated. A first alternative method may include placing the alarm system in a test mode, whereby a verification indicium on each notification appliance being inspected and tested is activated. The first alternative method may further include performing a physical inspection of a notification appliance, as well as actuating an input device on the notification appliance whereby the verification indicium on the notification appliance is deactivated and a notification feature of the notification appliance is activated for a predefined amount of time.
US09030310B2 Capacitance-based catalytic converter protection systems and configurations
A proximity-based catalytic converter protection system for a vehicle that includes a controller, and a catalytic converter, both located in the vehicle. The protection system further includes a pair of electrodes that are electrically coupled to the controller and located in proximity to the converter. The controller monitors capacitance between the electrodes to detect movement external to the vehicle near the converter. The controller may activate an alarm element upon detecting a change in capacitance between the electrodes that exceeds a predetermined threshold.
US09030307B1 Apparatus for generating haptic feedback
An apparatus for generating haptic feedback, includes: multiple haptic units placed on a first portion of a body; and a control unit placed on a second portion, near the first portion, of the body, wherein the control unit includes: a first module for acquiring information on relative position (i) among the respective multiple haptic units and (ii) between the respective haptic units and the control unit, a second module for acquiring information on absolute position of the control unit by measuring a position of the control unit in reference to an external reference point, and a haptic command module for creating a command signal by referring to at least one piece of the information on relative position acquired by the first module and the information on absolute position acquired by the second module and delivering the created command signal to a corresponding haptic unit among all the multiple haptic units.
US09030305B2 Method for expressing haptic information using control information, and system for transmitting haptic information
Provided is a method for expressing haptic information using control information, and a system for transmitting haptic information. In the method for expressing haptic information using control information, a tactile video is generated from tactile information for driving a drive array of a tactile device; force feedback data are generated from force feedback information for driving an actuator of a force feedback device; object data are generated to produce a scene descriptor that defines time positions of the tactile video, force feedback data, and multimedia information; and a stream file is generated by encoding the object data and multiplexing the encoded object data. The method comprises: a step of storing control information containing features and specifications of a haptic device including the tactile device and the force feedback device; and a step of expressing information of the scene descriptor through the haptic device with reference to the control information.
US09030303B2 Contactless sensing and control system
This disclosure describes embodiments of a contactless sensing system for controlling operation of a remote device. The sensing system can comprise an actuator and a sensing device, which is responsive to a field the actuator emits. An end user can move the actuator relative to the sensing device to generate an output that reflects a device command that modifies operation of the remote device. In one example, the sensing device comprises an array of sensing elements. The field causes a change in operating parameters in the sensing elements, which the sensing device can identify and associate with the device command. The sensing device can also recognize combinations of one or more of the sensing elements that exhibit changes in the operating parameters to provide a robust control mechanism for the remote device.
US09030302B2 Method and apparatus for three-phase power line communications
Method and apparatus for generating a balanced three-phase power line communication signal. In one embodiment, the method comprises generating a plurality of modulation signals based on at least one data stream; modulating a plurality of carrier signals by the plurality of modulation signals to generate a balanced three-phase PLC signal comprising a first phase signal, a second phase signal, and a third phase signal; and coupling the balanced three-phase PLC signal to a three-phase power line.
US09030301B2 Systems and methods to determine kinematical parameters using RFID tags
Systems and methods to determine kinematical parameters of physical objects using radio frequency identification (RFID) tags attached to the objects. In one embodiment, one of a population of RFID tags is selectively instructed by an RFID reader to backscatter the interrogating electromagnetic wave and thus allow the RFID reader to measure the position, speed, acceleration, jerk of the object to which the tag is attached. The RFID reader combines the signal representing the backscattered interrogating electromagnetic wave and the signal representing the interrogating electromagnetic wave transmitted by the RFID reader to determine or monitor one or more of the kinematical parameters of the object.
US09030290B2 Vicinity-based multi-factor authentication
The invention relates to a wireless device, configured for ensuring authentication of a user, to a reference unit configured for ensuring authentication of a user of the wireless device and to a method for ensuring authentication of a user. The wireless device comprises a checking unit configured for scanning a distance to a reference unit and for checking if the distance scanned lies within a predetermined range such that authentication of the user is ensured. In this way, a wireless device is provided which is simple and cost-effective to realize and increases security by making sure that the rightful owner is available without the need of asking for PIN codes, passwords or other measures, such as biometric recognition, i.e. voice recognition, fingerprint recognition, retina recognition and the like.
US09030288B2 Semiconductor ceramic and resistive element
Provided is a resistive element which is excellent in inrush current resistance even in the case of having a surface-mountable small chip shape. The resistive element has an element main body composed of a semiconductor ceramic in which a main constituent thereof is composed of a Mn compound represented by the general formula (Nd1-xMx)yBazMn2O6 (M is at least one rare-earth element selected from Sm, Gd, Eu, Tb, Dy, Ho, Er, and Y), and x, y, and z respectively meet the conditions of: 0.05≦x≦0.4; 0.80≦y≦1.2; and 0.80≦z≦1.2 in the chemical formula.
US09030274B2 Filter assembly
A filter assembly is provided. The filter assembly includes a printed circuit board (PCB) including a plurality of electronic components, a base disposed under the PCB, and an inductor coupled to the base, the inductor including a core and a coil to which current is applied, wherein the PCB has a through-hole through which at least one portion of the coil pass.
US09030269B1 Tunable microstrip and T-junction
A tunable microstrip having removable contactless tuning stubs is used in the fabrication of a tunable T-junction circuit. Arrays of tuning stubs are formed in proximity to both sides of a microstrip signal trace. Each array of tuning stubs has a shared grounding bus connected by multiple vias to the ground plane. The sinusoidally patterned shape of the tuning stubs and their proximity to the signal trace provides a minimum breakdown voltage of 1.3 kV and a tuning sensitivity of approximately 0.01 dB to 0.02 dB.
US09030266B2 Wave form distortion removing apparatus for a communication network
In a communication network having a first electronic control unit, a second electronic control unit, a transmission path connecting them, and a third electronic control unit connected to a branch path and communicatable with the first and second electronic control units that are each terminated with a termination circuit designed in accordance with a characteristic impedance of the transmission path, it is configured to comprise a connector that is connected to a connection point mounted on a circuit board in which the third electronic control unit is installed so that the third control unit is connected to the branch path via the connector and a conducting wire for removing a waveform distortion connected to the branch path via the connector at one end.
US09030264B2 Current output control device, current output control method, digitally controlled oscillator, digital PLL, frequency synthesizer, digital FLL, and semiconductor device
A current output control device is provided that includes: a current cell array section including plural current cell circuits that are each connected in parallel between a first terminal (power source) and a second terminal (ground) that connect between the first terminal and the second terminal in by operation ON so as to increase control current flowing between the first terminal and the second terminal; and a code conversion section (decoder) that generates signals (row codes, column codes) to ON/OFF control current cells so as to change the number of current cells that connect the first terminal and the second terminal according to change in an externally input code and that inputs the generated signals to the current cell array section.
US09030263B2 Transimpedance amplifier (TIA) circuit and method
A TIA circuit and method are provided that merge the automatic gain control function with the bandwidth adjustment function to allow the TIA circuit to operate over a wide dynamic range at multiple data rates. The TIA circuit has an effective resistance that is adjustable for adjusting the gain and the bandwidth of the TIA circuit. The mechanism of the TIA circuit that is used to adjust the effective resistance, and hence the gain and bandwidth of the TIA circuit, is temperature independent, and as such, the performance of the TIA circuit is not affected by temperature variations.
US09030261B2 Two mode power converter for audio amplifiers
A power converter with positive and negative supply rail outputs for feeding a single ended class D amplifier, the converter comprising a transformer arrangement, a supply pump reduction arrangement connected between the secondary windings and the positive and negative supply rail outputs, and a boost drive mode switching arrangement. A controller is adapted to control the power converter in a negate drive mode and a boost drive mode, wherein the output voltage in the boost mode is increased by means of the transformer and the boost drive mode switching arrangement. The output voltages on the positive and negative rails can be generated at two different output voltage levels without changing the duty cycle or dead time of the control signals.
US09030257B2 Differential circuit compensated with self-heating effect of active device
A differential circuit with a function to compensate unevenness observed in the differential gain thereof is disclosed. The differential circuit provides a low-pass filter in one of the paired transistors not receiving the input signal in addition to another low-pass filter that provides an average of output signals as a reference level of the differential circuit. The cut-off frequency of the filter is preferably set to be equal to the transition frequency at which the self-heating effect explicitly influences the trans-conductance of the transistor.
US09030256B2 Overlay class F choke
Embodiments of the present disclosure relate to an overlay class F choke of a radio frequency (RF) power amplifier (PA) stage and an RF PA amplifying transistor of the RF PA stage. The overlay class F choke includes a pair of mutually coupled class F inductive elements, which are coupled in series between a PA envelope power supply and a collector of the RF PA amplifying transistor. In one embodiment of the RF PA stage, the RF PA stage receives and amplifies an RF stage input signal to provide an RF stage output signal using the RF PA amplifying transistor. The collector of the RF PA amplifying transistor provides the RF stage output signal. The PA envelope power supply provides an envelope power supply signal to the overlay class F choke. The envelope power supply signal provides power for amplification.
US09030255B2 Linearization circuit and related techniques
Circuits and techniques to linearize the operation of an RF power amplifier are described. A linearizer circuit may include a non-amplification signal path which includes a delay line and an amplification signal path which includes at least one amplifier stage. In some embodiments, the amplification signal path may include an odd number of amplification stages. The linearizer may be used to precondition an input signal of an RF power amplifier in a manner that improves the overall linearity of operation.
US09030252B2 High frequency switching device, and bias voltage outputting device
A high frequency switch device includes a branch transmission line corresponding to each output terminal provided with a switching part. In the branch transmission line, the switching part includes a transmission side diode provided in such a manner that a cathode thereof is arranged on a side of an input terminal 41 and an anode thereof is arranged on a side of the output terminal, and a ground side diode provided in such a manner that a cathode thereof is grounded and an anode thereof is electrically connected between the output terminal and the transmission side diode in the branch transmission line. The branch transmission line includes a first capacitor and a second capacitor on the side of the output terminal from the transmission side diode in such a manner that the anode of the ground side diode is connected between the first capacitor and the second capacitor.
US09030250B2 Dual path level shifter
Dual path level shifter methods and devices are described. The described level shifter devices can comprise voltage-to-current and current-to-voltage converters.
US09030245B2 Semiconductor device that can adjust propagation time of internal clock signal
Disclosed herein is a semiconductor device that includes: a measurement circuit which measures propagation time of an internal clock signal; a delay adjustment circuit which adjusts the propagation time of the internal clock signal on the basis of a result of measurement by the measurement circuit; and a data output circuit which outputs a data signal in synchronization with the internal clock signal.
US09030244B1 Clock duty cycle calibration circuitry
An integrated circuit includes a duty cycle detection circuit, a comparator circuit, and a tuning circuit. The duty cycle detection circuit receives a clock signal, such as a system clock signal, and detects the level of duty cycle distortion in the clock signal. The comparator circuit then generates an output based on the level of duty cycle distortion that is detected in the clock signal. The tuning circuit may accordingly adjust the clock signal based on the output generated by the comparator circuit to produce an adjusted clock output signal. As an example, the clock output signal produced by the tuning circuit after the adjustment may have a 50% (or significantly close to 50%) duty cycle.
US09030243B2 Pulse generator
A pulse generator comprising: an input for receiving a trigger; an output node for outputting a signal; a delay line comprising one or more delay units and a plurality of taps; one or more pull-up devices each connected to the output node for increasing the output voltage on the output node; and/or one or more pull-down devices each connected to the output node for decreasing the output voltage on the output node; wherein the taps of the delay line are operably connected to the pull-up and/or pull-down devices such that a trigger passing along the delay line activates one or more of the pull-up and/or one or more of the pull-down devices more than once. Re-use of the pull-up and/or pull-down devices enables longer and more complex pulse shapes, such as high-order Gaussian pulse shapes to be produced while keeping the number of components low, thus reducing chip area, power requirements and parasitic capacitance.
US09030238B2 Semiconductor device and method of cascading matched frequency window tuned LC tank buffers
A tunable buffer circuit has a first tunable buffer cell receiving an input signal. A first transmission line is coupled to the first tunable buffer cell. A second tunable buffer cell is coupled to the first transmission line. A center frequency and bandwidth of the second tunable buffer cell is matched to a center frequency and bandwidth of the first tunable buffer cell to achieve low phase noise with low power. Additional transmission lines and tunable buffer cells can be cascaded in the tunable buffer circuit. Each tunable buffer cell has first and second transistors including first and second conduction terminals and control terminal coupled for receiving the input signal. An inductor and tunable capacitor are coupled between the first conduction terminals of the first and second transistor. A digital signal adjusts the tunable buffer cells in response to an RSSI which monitors the output for proper signal strength.
US09030235B2 Time division multiplexed limited switch dynamic logic
A method for increasing performance in a limited switch dynamic logic (LSDL) circuit includes precharging a dynamic node during a precharge phase of a first and second evaluation clock signal. The dynamic node is evaluated to a first logic value in response to one or more first input signals of a first evaluation tree during an evaluation phase of the first evaluation clock signal. The dynamic node is evaluated to a second logic value in response one or more second input signals of a second evaluation tree during an evaluation phase of the second evaluation clock signal. A signal of the LSDL circuit is outputted in response to the dynamic node according to an output latch clock signal.
US09030234B2 Time division multiplexed limited switch dynamic logic
A limited switch dynamic logic (LSDL) circuit includes a dynamic logic circuit and a static logic circuit. The dynamic logic circuit includes a precharge device configured to precharge a dynamic node during a precharge phase of a first evaluation clock signal and a second evaluation clock signal. A first evaluation tree is configured to evaluate the dynamic node to a first logic value in response to one or more first input signals during an evaluation phase of the first evaluation clock signal. A second evaluation tree is configured to evaluate the dynamic node to a second logic value in response to one or more second input signals during an evaluation phase of the second evaluation clock signal. A static logic circuit is configured to provide an output of the LSDL circuit in response to the dynamic node according to an output latch clock signal.
US09030233B2 Semiconductor device having serializer converting parallel data into serial data to output serial data from output buffer circuit
Disclosed herein is a device that includes first and second buffer circuits connected to a data terminal and a first control circuit controlling the first and second buffer circuits. The first control circuit receives n pairs of first and second internal data signals complementary to each other from 2n input signal lines and outputs a pair of third and fourth internal data signals complementary to each other to first and second output signal lines, where n is a natural number more than one. The first and second buffer circuits are controlled based on the third and fourth internal data signals such that one of the first and second buffer circuits turns on and the other of the first and second buffer circuits turns off.
US09030231B1 Heterogeneous programmable device and configuration software adapted therefor
A method of configuring a programmable integrated circuit device with a user logic design includes analyzing the user logic design to identify unidirectional logic paths within the user logic design and cyclic logic paths within the user logic design, assigning the cyclic logic paths to logic in a first portion of the programmable integrated circuit device that operates at a first data rate, assigning the unidirectional logic paths to logic in a second portion of the programmable integrated circuit device that operates at a second data rate lower than the first data rate, and pipelining the unidirectional data paths in the second portion of the programmable integrated circuit device to compensate for the lower second data rate. A programmable integrated circuit device adapted to carry out such method may have logic regions operating at different rates, including logic regions with programmably selectable data rates.
US09030229B2 Impedance tuning circuit and integrated circuit including the same
An impedance tuning circuit includes a calibration unit and a post-processing unit. The calibration unit generates an initial pull-up code and an initial pull-down code by performing a calibration operation using an external resistor during an initial impedance tuning operation. The post-processing unit outputs the initial pull-up code and the initial pull-down code as a final pull-up code and a final pull-down code during the initial impedance tuning operation, and generates the final pull-up code and the final pull-down code by using the initial pull-up code and the initial pull-down code during a subsequent impedance tuning operation.
US09030226B2 System and methods for generating unclonable security keys in integrated circuits
A system and methods that generates a physical unclonable function (“PUF”) security key for an integrated circuit (“IC”) through use of equivalent resistance variations in the power distribution system (“PDS”) to mitigate the vulnerability of security keys to threats including cloning, misappropriation and unauthorized use.
US09030221B2 Circuit structure of test-key and test method thereof
A circuit structure of a test-key and a test method thereof are provided. The circuit structure comprises a plurality of transistors, a first conductive contact, a plurality of second conductive contacts and a plurality of third conductive contacts. The transistors are arranged in a matrix. The first conductive contact is electrically connected to one source/drain of each transistor in each column of the matrix. Each second conductive contact is electrically connected to the other source/drain of each transistor in a corresponding column of the matrix. Each third conductive contact is electrically connected to the gate of each transistor in a corresponding row of the matrix. In the method, a plurality of driving pulses are provided to the third conductive contacts in sequence, and a plurality of output signals are read from the second conductive contacts to perform an element-character analyzing operation when a row of the transistors is turned on.
US09030219B2 Variable pressure four-point coated probe pin device and method
A variable pressure probe pin device, including: a housing with a channel having a first longitudinal axis; a probe at least partially disposed in the channel and including a plurality of probe pins configured to measure a property of a conductive layer; and a fluid pressure system configured to supply pressurized fluid o the channel to control a position of the probe within the channel. The housing or the probe is displaceable such that the plurality of probe pins contact the conductive layer.
US09030215B2 Real-time, label-free detection of nucleic acid amplification in droplets using impedance spectroscopy and solid-phase substrate
A method for detecting presence of nucleic acid amplification in a test droplet. A set of detection electrodes are provided in contact with a fluidic channel. The test droplet is provided in vicinity of the detection electrodes through the fluidic channel. An alternate current (AC) power at a first frequency is applied across the set of detection electrodes. A first measurement value that reflects electrical impedance of the test droplet at the first frequency is obtained. This value is compared with a corresponding reference value, wherein the corresponding reference value is obtained by measuring a reference droplet containing known amplified nucleic acid or known unamplified nucleic acid at the first frequency. The presence of amplified nucleic acid in the test droplet is thus determined based on the comparison.
US09030214B2 Proximity or touch sensor
A sensor for sensing proximity or touch of an object includes a sensing region, an oscillating signal generator for generating an oscillating signal having an oscillation period, a gating signal generator for generating a gating signal having a gating duration, a controller for controlling the oscillation period or the gating duration and a processor for determining a number N of oscillation periods over the gating duration. The number N is indicative of the object's contact with, or proximity to, the sensing region. The sensor is calibrated by determining an optimal value for the oscillation period or gating duration such that an optimal number N over the gating duration is expected.
US09030212B2 Target sensor
Target sensor comprising: sensor probe having a resonance frequency that changes as the separation of the sensor probe and a target changes. Oscillator arranged to apply a radio frequency (RF) signal to the sensor probe, the oscillator having: control circuitry configured to regulate the frequency of the RF signal applied to the sensor probe to below the resonance frequency of the sensor probe. Detector arranged to detect an electrical characteristic of the oscillator that varies with the impedance of the sensor probe indicating an interaction of the sensor probe with the target.
US09030210B2 Insulation deterioration diagnosis apparatus
The invention is related to an insulation deterioration diagnostic apparatus for an electric path connected between an inverter device and an inverter-driven load device, including: a zero-phase current transformer having an annular magnetic core, a magnetizing coil wound around the magnetic core, and a detecting coil wound around the magnetic core, the transformer being for detecting a zero-phase current of an electric path; a magnetization control circuit for supplying an alternating current having a frequency at least twice as high as a drive frequency of the load device to the magnetizing coil to magnetize the magnetic core; and a frequency extracting circuit for extracting a frequency component identical to the drive frequency fd, from the output signal of the detecting coil, whereby precisely measuring a current leaking from an inverter-driven load device over a wide range of frequencies.
US09030209B2 Failure detecting apparatus for signal detection apparatus
A failure detecting apparatus that detects an isolation failure between a plurality of coils included in a signal detection apparatus. The failure detecting apparatus includes a voltage applying unit that applies a DC voltage to a coil in the plurality of coils; a differential signal generating unit that generates a differential signal from a voltage at the coil and a predetermined voltage; a threshold voltage setting circuit that outputs a threshold voltage; and a comparator that compares the differential signal with the threshold voltage, thereby detecting whether or not an isolation failure exists. The differential signal generating unit includes either first setting unit for setting an absolute value of the differential signal to be amplified with a predetermined gain or second setting unit for setting the predetermined voltage to be different from a ground potential, and the predetermined gain is set to a value different from one and zero.
US09030199B2 Magnetoresistance sensor and fabricating method thereof
An apparatus of a magnetoresistance sensor consisting of a substrate, a conductive unit on the substrate, and a magnetoresistance structure on the conductive unit is provided. The conductive unit includes a first surface and a second surface opposite to each other, and the first surface faces the substrate. The magnetoresistance structure is formed on the second surface of the conductive unit and is electrically connected to the conductive unit. The magnetoresistance sensor has high performance and reliability. A magnetoresistance sensor fabricating method based on this apparatus is also provided.
US09030198B2 Magnetic field sensor and method for producing a magnetic field sensor
A magnetometer is described, having a substrate and a magnetic core, the substrate having an excitation coil for generating a magnetic flux in the magnetic core; and the excitation coil having a coil cross section, which is aligned generally perpendicular to a main plane of extension of the substrate. The magnetic core is situated outside the coil cross section.
US09030197B1 Active compensation for ambient, external magnetic fields penetrating closed loop magnetic cores particularly for a fluxgate current sensor
An apparatus, that is particularly advantageous for compensating for the earth's magnetic field at a fluxgate current sensor. The apparatus and method actively compensate for local anomalies and loop mismatch at local segments distributed around closed loops of ferromagnetic material in order to null out sources of error that arise in the presence of an external magnetic field. External flux nulling circuits null the external magnetic flux at each of a plurality of associated pairs of diagonally opposite segments of coaxial closed loop cores. Each flux nulling circuit has a pair of diagonally opposite segment sensing coils and a pair of diagonally opposite segment cancellation coils. A flux detecting circuit detects the net magnetic flux in associated, diagonally opposite segments. A negative feedback control circuit drives the segment cancellation coils with a current to drive the flux detected by the segment detecting circuit to a minimum.
US09030195B2 Linear structure inspection apparatus and method
An apparatus is provided for sensing anomalies in a long electrically conductive object to be inspected. The object may be a pipeline, or other hollow tube. The apparatus may have a magnetic field generator, and an array of sensors spaced about the field generator. As relative motion in the longitudinal direction occurs between the apparatus and the object to be inspected, the moving magnetic field, or flux, passed from the field generator into the object to be inspected may tend to cause eddy currents to flow in the object. The sensors may be spaced both axially and circumferentially to permit variation in magnetic flux, or eddy current divergence, to be sensed as a function of either or both of axial position relative to the wave front of the magnetic field (or, effectively equivalently any other known datum such as the radial plane of the midpoint of the field generator), and circumferential position about the periphery of the apparatus as measured from an angular datum. Post processing calculation may then tend to permit inferences to be drawn about the location, size, size, shape, and perhaps nature, of anomalies in the object. The sensors, and possibly the entire field generator, may be maintained at a standoff distance from the object to be inspected, as by a sealed housing such as may protect the sensors and reduce the need for and cost of maintenance. The field generator may include two primary poles of like nature held in a non-touching back to back orientation, and may include secondary magnetic circuits placed to bias the flux of the primary magnetic circuit into a more focussed shape with respect to the object to be inspected.
US09030192B2 System and method for calibrating a magnetometer on a mobile device
A method and system are provided for calibrating a magnetometer on a mobile device. The method includes obtaining one or more pairs of magnetometer readings. Each pair includes a first reading and a second reading. For each pair of magnetometer readings, the method also includes determining a rotation axis direction and a rotation angle corresponding to a change in orientation of the mobile device between obtaining the first reading and the second reading and determining a rotation axis for the pair of magnetometer readings using the rotation axis direction and rotation angle. The method also includes determining a calibration parameter based on at least one property of one or more of the rotation axes.
US09030190B2 Measuring device
A measuring device (1) with a housing (2) and two electronic devices (3, 4). To provide a measuring device whose electronics are modular, enabling easy adaptation to self-protection, the measuring device is provided with at least one encapsulated contact element (5) that is designed separately from the electronic units (3, 4) and the housing (2) and is arranged between the two electronic units (3, 4). Furthermore, the contact element (5) has at least one electronic transmission element (6) for creating an electric connection between the two electronic units (3, 4).
US09030187B2 Nanogap device and method of processing signal from the nanogap device
A nanogap device includes a first insulation layer having a nanopore formed therein, a first nanogap electrode which may be formed on the first insulation layer and may be divided into two parts with a nanogap interposed between the two parts, the nanogap facing the nanopore, a second insulation layer formed on the first nanogap electrode, a first graphene layer formed on the second insulation layer, a first semiconductor layer formed on the first graphene layer, a first drain electrode formed on the first semiconductor layer, and a first source electrode formed on the first graphene layer such as to be apart from the first semiconductor layer.
US09030185B2 Power factor correction circuit
A power factor correction circuit includes a first series circuit, a second series circuit, a smoothing capacitor, and a reactor. The power factor correction circuit further includes an input voltage detector that detects an input voltage of at least one end of an AC power source based on one end on a ground side of the smoothing capacitor, and a current detector that detects a reactor current from the AC power source, the current detector having a transformer in which the reactor is a primary side, and first and second switching elements are controlled based at least partially on a reactor current detection signal that is output in accordance with the reactor current from a secondary side of the transformer to supply a desired DC voltage to a load circuit.
US09030181B2 Electric power steering apparatus
An electric power steering apparatus includes a power supply and a power supply management unit that controls an operation of the power supply. The power supply includes a main power supply, an auxiliary power supply connected in series to the main power supply, a boost circuit that charges the auxiliary power supply by boosting an output voltage of the main power supply and applying the boosted output voltage to the auxiliary power supply, and a voltage sensor that detects an output voltage of the auxiliary power supply. When a reduction amount per unit time of the output voltage detected by the voltage sensor exceeds a voltage reduction amount over a predetermined time, the power supply management unit determines that an abnormality has occurred in an output destination of the power supply.
US09030180B2 Switching regulator
In order to provide a switching regulator having high efficiency even under light load, the switching regulator is configured so that ON/OFF of a switching element is controlled by an output signal of an oscillation circuit having an oscillation frequency controlled by an output signal from an error amplifier. Thereby, the oscillation frequency can be suppressed under light load, thus reducing a switching loss.
US09030179B2 Switching regulator with variable compensation
A switching regulator circuit includes a power stage and a compensation network. The compensation network includes a programmable transconductance (gm), having a first selectable transconductance such a closed loop transfer function of the switching regulator circuit may be characterized by a first transfer function having a having a first DC open loop gain and a first bandwidth, and by a second transfer function having a second DC open loop gain and a second bandwidth.
US09030176B2 Semiconductor integrated circuit
A semiconductor integrated circuit includes a plurality of output transistors each controlling the magnitude of an output voltage relative to the magnitude of a load current according to a control value indicated by an impedance control signal applied to a control terminal, a voltage monitor circuit outputting an output voltage monitor value indicating a voltage value of the output voltage, and a control circuit controlling the magnitude of the control value according to the magnitude of an error value between a reference voltage indicating a target value of the output voltage and the output voltage monitor value, and controls based on the control value whether any of such transistors be brought to a conducting state. The control circuit increases a change step of the control value relative to the error value during a predetermined period according to prenotification signals for notifying a change of the load current in advance.
US09030174B2 Current balance control in converter for doubly fed induction generator wind turbine system
Systems and methods for reducing current imbalance between parallel bridge circuits used in a power converter of a doubly fed induction generator (DFIG) system are provided. A control system can monitor the bridge current of each of the bridge circuits coupled in parallel and generate a feedback signal indicative of the difference in bridge current between the parallel bridge circuits. Command signals for controlling the bridge circuits can then be developed based on the feedback signal to reduce current imbalance between the bridge circuits. For instance, the pulse width modulation of switching devices (e.g. IGBTs) used in the bridge circuits can be modified to reduce current imbalance between the parallel bridge circuits.
US09030172B2 Vehicle and method of controlling vehicle
A vehicle allows a power storage device mounted therein to be externally charged using electric power from an external power supply. The vehicle includes an engine, a motor generator and a vehicle ECU. The vehicle allows a motor generator to generate electric power by driving the engine. Then, when charging of the power storage device is not completed within a target charging time period set by the user only using the electric power from the external power supply in the case where external charging is performed, the vehicle ECU charges the power storage device with the electric power from the external power supply additionally using the electric power generated by driving the engine.
US09030163B2 Energy recharging device for a vehicle
The object of the invention is a device for recharging with energy a piece of storage equipment loaded on-board a vehicle comprising at least one power supply device external to the vehicle, at least one power collector fixed on the vehicle, the power collector comprising a central portion provided with at least one friction strip, intended for powering the vehicle when the vehicle is moving, the central portion being laterally extended with at least one horn formed in one piece in a metal material and forming an upper surface. At least one portion of the upper surface of the horn forms a contact area capable of directly coming into contact with a corresponding contact surface of the power supply device when the vehicle is at a standstill in a stop station in order to ensure energy transfer between the power collector and the power supply device via the contact area.
US09030156B2 Power supply system using an assembled battery
In a power supply system provided with an assembled battery supervisory device which supervises an assembled battery composed of storage elements connected in series with one another, the system using the assembled battery is obtained which makes it possible to supply electric power to the assembled battery supervisory device, with a simple arrangement. The arrangement is such that electric power for the assembled battery supervisory device is obtained from a part of storage elements constituting the assembled battery. The cell balancer is driven based on the average consumption electric current of the assembled battery supervisory device so as to suppress a deviation in the amount of charge between those storage elements which supply electric power to the assembled battery supervisory device, and those storage elements which do not supply electric power to the assembled battery supervisory device, resulting from the average consumption electric current of the assembled battery supervisory device.
US09030150B2 Method and circuit arrangement for controlling current in motors
A method and circuit arrangement for controlling the motor current in an electric motor, in particular a stepper motor, by a chopper method is provided. In the method/circuit arrangement, the motor is operated with a coil current that follows a target coil current substantially more accurately at least at the zero crossing of the coil current. The method/circuit arrangement provides a good symmetry of the sinusoidal wave shape of the coil current with respect to the zero crossing of the coil current. The method is achieved in particular by the active control of the coil current both in the direction of a predefined target coil current and opposite the direction of the predefined target coil current with respect to upper or lower desired current values and a lowering or increasing of the upper or lower desired current values.
US09030146B2 Driving apparatus and motor
A digital filter is configured to convert, into a digital value, the duty ratio of a control signal subjected to pulse width modulation according to a target toque to be set for a fan motor to be driven. A sampling circuit is configured to perform sampling of the output value of the digital filter at a sampling timing that is asynchronous with respect to the cycle of the control signal, so as to generate a torque instruction value. A driving circuit is configured to drive the fan motor according to the torque instruction value thus generated.
US09030145B2 Device and method for regulating an increase in the output torque over time of an electric drive motor
A device for regulating an increase in the output torque over time of an electric drive motor, including a monitoring unit for monitoring an operating variable of the electric drive motor, a regulating unit for regulating the operating variable for regulating the increase in output torque over time, a control unit for activating the regulating unit as a function of a time derivation of the monitored operating variable, the regulating unit being designed to be deactivated after a predetermined period of time. A method for regulating an increase in the output torque over time of an electric drive motor is also described. A corresponding tool and a computer program having program code for carrying out the method are also described.
US09030144B2 Monitoring system
Disclosed is an improved system and method for sensing both hard and soft obstructions for a movable panel such as a sunroof. A dual detection scheme is employing that includes an optical sensing as the primary means and electronic sensing of motor current as a secondary means. The secondary means utilizes system empirical precharacterization, fast processing algorithms, motor parameter monitoring including both current sensing and sensorless electronic motor current commutation pulse sensing, and controller memory, to adaptively modify electronic obstacle detection thresholds in real time without the use of templates and cycle averaging techniques.
US09030139B2 System and method for controlling speed of motor
Disclosed herein are a system and a method for controlling a speed of a motor. The method for controlling a speed of a motor includes: receiving a signal from a hall sensor of the motor to measure a current speed of the motor; comparing the current speed of the motor measured with a reference speed to calculate errors; outputting a speed control value of the motor based on the calculated errors; limiting the output speed control value to values within a predetermined range; controlling a duty or a phase of current applied to the motor according to the limited values within the predetermined range; and generating a motor driving signal based on the duty control or the phase control and applying the generated motor driving signal to the motor.
US09030137B2 Electric motor control
A drive system, for a multi-phase brushless electric motor comprising a plurality of phases, comprises: a drive circuit including switch means arranged to vary the phase voltage applied to each of the phases so as to switch the motor between a plurality of active states; and control means. The control means is arranged to control the switch means so as to provide PWM control of the phase voltages to control the mechanical output of the motor. The control means is arranged to define a sequence for all of the active states and, for each PWM period, to allocate state times for the states required for that period to generate a desired net voltage, and to order the required states in the same order as they occur in the sequence.
US09030128B2 LED drive circuit
An LED drive circuit applied between an LED load and an AC power supply is provided. The circuit includes a rectifier, a power conversion module, a voltage regulator, a photo coupler and a controller. The rectifier rectifies and converts an AC voltage outputted from the AC power supply into a DC voltage. The power conversion module converts the DC voltage into a first drive voltage and a second drive voltage. The first drive voltage drives the LED load. The voltage regulator receives and processes the second drive voltage with a voltage regulating process to generate a third drive voltage not exceeding a maximum voltage rating of the controller. The photo coupler generates a feedback signal according to a signal outputted from the LED load. The controller receives the third drive voltage and generates a control signal to control the power conversion module according to the feedback signal.
US09030122B2 Circuits and methods for driving LED light sources
A driving circuit for controlling power of a light-emitting diode (LED) light source includes a transformer, a switch controller, and a dimming controller. The transformer has a primary winding that receives input power from an AC/DC converter and a secondary winding that provides output power to the LED light source. The switch controller coupled between an optical coupler and the primary winding receives a feedback signal indicative of a target level of a current flowing through the LED light source from the optical coupler, and controls input power to the primary winding according to the feedback signal. The dimming controller coupled to the secondary winding receives a switch monitoring signal indicative of an operation of a power switch coupled between an AC power source and the AC/DC converter, and regulates the output power by adjusting the feedback signal according to the switch monitoring signal.
US09030118B2 Single inductor control of multi-color LED systems
A circuit for driving multiple light emitting diodes (LEDs) includes at least two sets of LEDs, each set comprised of one or more LEDs in series. The circuit further includes a single inductor connected in series with the two sets of LEDs. At least one set of LEDs is connected to a shunting transistor connected in parallel with the set of LEDs. The duty cycle of the shunting transistor is controlled by a single controller connected to the shunting transistor and the inductor.
US09030115B2 LED driver with diac-based switch control and dimmable LED driver
An LED driver may use a DIAC oscillator circuit to controls a semiconductor switch in a switching circuit. The DIAC oscillator circuit uses rectified line power and so it does not require a separate power source. An LED driver may uses a zero crossing circuit to provide low level dimming. The zero crossing circuit includes a linear circuit or a constant current circuit that keeps a TRIAC dimmer on and stable during low current levels.
US09030110B2 Light emitting device for AC power operation
Disclosed is an improved light-emitting device for an AC power operation. A conventional light emitting device employs an AC light-emitting diode having arrays of light emitting cells connected in reverse parallel. The arrays in the prior art alternately repeat on/off in response to a phase change of an AC power source, resulting in short light emission time during a ½ cycle and the occurrence of a flicker effect. An AC light-emitting device according to the present invention employs a variety of means by which light emission time is prolonged during a ½ cycle in response to a phase change of an AC power source and a flicker effect can be reduced. For example, the means may be switching blocks respectively connected to nodes between the light emitting cells, switching blocks connected to a plurality of arrays, or a delay phosphor. Further, there is provided an AC light-emitting device, wherein a plurality of arrays having the different numbers of light emitting cells are employed to increase light emission time and to reduce a flicker effect.
US09030109B2 LED current balance driving circuit
A LED current-balance driving circuit having a current-balance coil set, a switching unit, and a control circuit is provided. The current-balance coil set has at least a first coil and a second coil, both of which are in connection with respective LED strings, for balancing currents flowing through the LED strings. The switching unit and a leakage inductance of current-balance coil set are utilized to facilitate the voltage conversion for driving the LED strings. A duty cycle of the switching unit is controlled by the control circuit according to the currents flowing through the LED strings.
US09030108B2 Gaussian surface lens quantum photon converter and methods of controlling LED colour and intensity
This invention is a photon-interactive Gaussian surface lens method means that converts incident photons from a single or a plurality of wide band gap semiconductor class light emitting diode dies, into a secondary emission of photons emanating from a composite photon transparent colloidal stationary suspension of quantum dots, high efficiency phosphors, a combination of quantum dots and high efficiency phosphors and nano-particles of metal, silicon or similar semiconductors from the IIIB and IVB Group of the Periodic Table and any nano-material and/or micro/nano spheres that responds to Rayleigh Scattering and/or Mie Scattering; and a plurality of quantum dots in communication with said nano-particles in said suspension. The apparatus and methods according to the present invention provides in improved narrow pass-band of red, green, and blue photon efficiency over phosphor based conversion. Utilizing the invention's methodology, the white resultant color temperature is stabilized against internal semiconductor thermal fluctuations or ambient thermal variations.
US09030105B2 Light-emitting device
A light-emitting device according to one embodiment of the present invention includes a light-emitting element, a first transistor whose source is electrically connected to an anode of the light-emitting element, a second transistor which controls whether an image signal is input to a gate of the first transistor, a third transistor which controls electrical connection and disconnection between the gate and a drain of the first transistor, a fourth transistor which controls whether a first power supply potential is supplied to the drain of the first transistor, a fifth transistor which controls whether a second power supply potential is supplied to the anode of the light-emitting element, a first capacitor which holds a voltage between the gate and the source of the first transistor, and a second capacitor electrically connected in series with the first capacitor and electrically connected in series with the light-emitting element.
US09030104B2 Method and system for adjusting power supply and display screen brightness of electronic device with thin-film solar panel
A method and system for adjusting power supply and display screen brightness of an electronic device with a thin-film solar panel are introduced. The method includes configuring the electronic device with a first threshold level and a second threshold level, wherein the first threshold level and the second threshold level are voltage levels or current levels; attaching the thin-film solar panel to a casing of the electronic device for enabling the electronic device to convert an external light into a transformed voltage or current; and determining whether the transformed voltage or current lies between the first threshold level and the second threshold level to decide whether to allow the display screen to operate at an existing brightness level thereof continuously. The method and system enable the electronic device to receive the external light for supplementing power supple and sense the external light for adjusting power level.
US09030103B2 Solid state light emitting devices including adjustable scotopic / photopic ratio
Solid state light emitting devices include multiple LED components separately arranged to generate spectral output having different ratios of scotopic to photopic light (S/P ratios) but similar chromaticities preferably within seven MacAdam ellipses. A light emitting device may be controlled to permit transitioning between different modes of operation of multiple LED components, with aggregated output of different modes having different S/P ratios but similar chromaticities. Multiple LED components of a light emitting device may be simultaneously controlled with different dimming profiles to effect increased color rendering at maximum emissive output of the apparatus, and to effect increased aggregated S/P ratio at minimum emissive output of the device.
US09030102B2 LED lighting devices having a control system operative in multiple modes
A lighting device includes an LED light source (20) operable by electric power supplied to the device, and a control system (23) receiving electric power from an external power supply (26) and supplying power to the light source (20). The control system (23) also being operable of operating in a second mode to supply power to the light source (20) only on receipt by the control system (23) via the power supply (26) of a signal identifying said device. Thus the device (24) can be incorporated in a conventional lighting circuit or a circuit in which the devices (24) are individually controlled.
US09030095B2 Organic electro-luminescence display device and manufacturing method thereof
An OLED device is disclosed. The OLED device includes a first substrate including a driver element and a connection electrode connected to the driver element, a second substrate including an organic light emission diode element, a contact spacer electrically connected to the connection electrode, and a sealant disposed into a cavity which is formed by the first and second substrates, the connection electrode, the organic light emission diode element, and the contact space. Herein, the sealant is bonded to the contact spacer and the connection electrode and maintains the electric connection between the contact spacer and the connection electrode. In this manner, the driver element and the organic light emission diode element are protected from external oxygen and/or moisture, and the electric connection between the connection electrode and the contact spacer is reinforced. Accordingly, the contact defect between the connection electrode and the contact spacer can be prevented and the structural strength of the OLED device can be greatly improved.
US09030091B2 Substrate for organic electronic device
Provided are a substrate for an organic electronic device (OED), an OED, and lighting. The substrate capable of forming an OED ensuring excellent performance and reliability because it has excellent performance including light extraction efficiency, penetration of moisture or a gas from an external environment is inhibited, and growth of dark spots is controlled may be provided.
US09030084B2 Light source device of backlight module and light-emitting diode package structure of the light source device
A light source device of a backlight module includes a back frame unit and a light-emitting diode (LED) package structure. The back frame unit includes a thermal conductive base plate, and a casing part having a first plate spaced apart from and parallel to the base plate. The LED package structure is disposed between the base and first plates, and includes a package body having a light-emitting surface, and two lateral surfaces respectively facing the base plate and the first plate. A lead frame unit includes a lead frame partially exposed from the lateral surfaces of the package body to form first and second heat-conducting paths with the base and first plates, respectively.
US09030069B2 Hydrodynamic bearing assembly and spindle motor having the same
There is provided a hydrodynamic bearing assembly including: a shaft; a sleeve disposed to be spaced apart from the shaft by a predetermined interval to form a bearing clearance therewith; and a thrust member installed on the shaft, wherein at least one of the shaft, the sleeve, and the thrust member is provided with a dynamic pressure groove for generating fluid dynamic pressure in a lubricating fluid provided in the bearing clearance, and one side of a portion of the dynamic pressure groove into which the lubricating fluid is introduced is provided with a pressure reduction preventing groove for suppressing a reduction in pressure generated at the time of introduction of the lubricating fluid.
US09030066B2 Electric motor with multiple power access
A motor assembly includes an electric motor having a stator and a rotor. A housing is coupled to the electric motor. The housing includes a terminal housing portion defining a first aperture and a second aperture. A power input terminal is disposed within the terminal housing portion. The power input terminal receives power input connections from at least one of the first aperture and the second aperture. A motor controller is disposed within the housing, the motor controller in communication with the power input terminals and the stator. A human machine interface (HMI) is in communication with the motor controller.
US09030065B2 Electronically commutated electric machine
The invention relates to an electronically commutated electric machine (1), comprising a stator housing (3) which receives a stator (4) in a stator chamber (13) and which delimits a rotor chamber (14) receiving a rotor. According to the invention, the stator housing (3) comprises a main housing (31) and a cover (9), wherein an elastic sealing element (8) is arranged between the main housing (31) and cover (9) and extends into the inside of the stator housing (3) with at least one radial region (30) and forms a tolerance compensating element (19) acting on the stator (4).
US09030064B2 Totally-enclosed fan-cooled motor
The totally-enclosed fan-cooled motor includes the stator; the rotor; the drive side bracket; the counter drive side bracket; a pair of the bearings; the external fan that sends cooling air to the stator; the internal fan; the heat radiator that is arranged on an outer side of the drive side bracket and is mounted on the rotation shaft; the cover that contains a joint, which connects the rotation shaft extending to an outer side of the drive side bracket of the motor and a reduction gear, and is provided in parallel with the joint; and the ventilation path that is arranged between the drive side bracket and an end of the cover, and includes the outlet causes the cooling air induced by rotation of the heat radiator to flow to the heat radiator and discharges the cooling air outside the motor.
US09030063B2 Thermal management system for use with an integrated motor assembly
An integrated drive system assembly is provided that combines an electric motor, a power inverter assembly and a gearbox into a single, multi-piece enclosure. Combining these components into a single enclosure reduces weight, reduces drive system complexity, reduces system volume, simplifies assembly integration into an electric vehicle, reduces manufacturing cost, allows the flexible and lengthy electrical cables between the power inverter and the electric motor to be replaced with short, low loss, rigid bus bars, and simplifies component cooling by allowing the use of a common thermal management system, i.e., a mutual thermal management system. The common thermal management system includes a liquid coolant loop that is thermally coupled to the electric motor, the power inverter assembly and the gearbox.
US09030060B2 Galvanoscanner and laser processing machine
A galvanoscanner including: a rotor including a shaft as a rotational center, and permanent magnets disposed around the shaft and polarized to a plurality of poles in a circumferential direction of the shaft; and a stator disposed in the outside of the rotor through a clearance and including coils, a yoke, and an outer casing so that the rotor swings in a predetermined angle range; wherein: the permanent magnets are provided with grooves which are formed in a direction of the rotation shaft so as to straddle circumferentially adjacent magnetic poles of the permanent magnets; and the permanent magnets are parted into at least two parts per pole by parting lines. Thus, the ratio of the torque constant to the moment of inertia can be improved so that the current required for driving can be reduced and reduction of power consumption at driving time can be attained.
US09030058B2 Vibration generator
A vibration generator includes a coil, a vibrating body, a spring, and a shaft. The coil is arranged to generate magnetic fields. The vibrating body includes a magnet and a weight. The vibrating body is arranged to be vibrated in a thrust direction by an interaction of magnetic fields generated from the magnet and magnetic fields generated from the coil. The spring is arranged to support the vibrating body at one thrust-direction side of the vibrating body. The shaft is extended in the thrust direction through the vibrating body. The shaft is arranged to allow the vibrating body to slide along the shaft in the thrust direction.
US09030057B2 Method and apparatus to allow a plurality of stages to operate in close proximity
According to one aspect of the present invention, a stage apparatus includes a first stage, a first magnet arrangement, and a stator arrangement that includes a first coil having a first width. The first magnet arrangement is associated with the first stage, and includes a first quadrant and a second quadrant or, more generally, a first sub-array and a second sub-array. The first quadrant has at least one first magnet arranged parallel to a first axis, and the second quadrant has at least one second magnet arranged parallel to a second axis. The first quadrant is adjacent to the second quadrant relative to the first axis, and is spaced apart from the second quadrant by a distance relative to the second axis. The stator arrangement is configured to cooperate with the first magnet arrangement to drive the first stage.
US09030054B2 Adaptive gate drive control method and circuit for composite power switch
Provided is a method of controlling a hybrid switch comprising a first individually controllable semiconductor switch operably coupled in parallel to a second individually controllable semiconductor switch. The first semiconductor switch has a faster switching speed and lower power-processing capability than the second semiconductor switch. A first reference value V1REF for a first default turn-on transition time interval ΔT1 and a second reference value V2REF for a second default turn-off transition time interval ΔT2 are accessed for the controllable hybrid switch, which is enabled and controlled so that it operates in accordance with V1REF and V2REF. The duration of the default ΔT1 and ΔT2 used to control operation of the controllable hybrid switch is dynamically adjusted to compensate for at least one of variations in a current to a load operably coupled to the controllable hybrid switch and environmental conditions at the controllable hybrid switch.
US09030053B2 Device for collecting energy wirelessly
A device for collecting energy has first, second, and third capacitive plates, each spaced from, substantially parallel to, and electromagnetically coupled to each other. An inductor is coupled between two of the plates, and a load resistance is inductively coupled to the inductor for drawing energy from electromagnetic field excitation between the plates. In a further embodiment, the inductor includes a first inductor coupled in series with a second inductor, and the load resistance is inductively coupled to the second inductor for drawing energy from electromagnetic field excitation between the plates, and the device further includes a first capacitor coupled in parallel with and spaced apart from the first inductor, and a second capacitor coupled between the first and second capacitive plates. In a still further embodiment, energy is collected by a coaxial transmission feed line.
US09030052B2 Apparatus and method for using near field communication and wireless power transmission
An apparatus and method of using near field communication (NFC) and wireless power transmission (WPT) are provided. A power receiving apparatus includes a resonator configured to receive a power and to output the power. The power receiving apparatus further includes a near field communication (NFC) receiver configured to perform wireless communication using the power output by the resonator. The power receiving apparatus further includes a wireless power transmission (WPT) receiver configured to supply a voltage using the power output by the resonator. The power receiving apparatus further includes a connecting unit configured to selectively connect the resonator to either the NFC receiver or the WPT receiver. The power receiving apparatus further includes a mode selector configured to control the connecting unit to selectively connect the resonator to either the NFC receiver or the WPT receiver based on the power output by the resonator.
US09030050B1 Voltage amplifier
In an embodiment, a voltage amplifier is provided. In this voltage amplifier, a DC/DC boost converter converts an input DC voltage to an output DC voltage, which is higher than the input DC voltage. A DC/AC converter connected to the DC/DC boost converter converts the output DC voltage to an AC pulse-train. A voltage multiplier connected to the DC/AC converter converts the AC pulse-train to an amplified output DC voltage that is higher than the AC pulse-train. A discharger connected to the voltage multiplier can discharge the amplified output DC voltage.
US09030048B2 Uninterruptible power supply systems and methods for communications systems
An uninterruptible power supply for supply electrical power to a load, comprises a connection to a primary source for supplying primary power, a battery system for storing battery power, an inverter, and a controller. The controller controls the inverter to operate in a first mode, a second mode, and in a third mode. In the first mode, power is supplied to the primary load and the battery system based on primary power. In the second mode, power is supplied to the primary load based on battery power. In the third mode, power is supplied to the primary source based on battery power.
US09030047B2 Controlling a fault-tolerant array of converters
A redundant path power subsystem comprises a plurality of phase regulators in a multi-phase power converter. The plurality of phase regulators comprises at least N+2 phase regulators. N phases are sufficient to serve an electrical load coupled with the redundant path power subsystem. The redundant path power subsystem also comprises a plurality of power supplies, and a plurality of input and control paths between the plurality of power supplies and the plurality of phase regulators. The plurality of input and control paths comprises a plurality of multiplexing logic devices and a plurality of phase controllers. The plurality of phase controllers is operable to control the plurality of phase regulators. The plurality of multiplexing logic devices is operable to multiplex control signals from the plurality of power supplies and a microprocessor for the plurality of phase controllers.
US09030046B2 Circuits for DC energy stores
A dc energy store includes auxiliary systems operable in different modes, including self-supporting, island mode and normal modes. In the self-supporting mode a first controller uses a voltage demand signal indicative of desired ac voltage of an AC/DC power converter to control semiconductor power switching devices to achieve the desired level of ac voltage. The voltage demand signal is derived from comparing a voltage feedback signal and a second voltage demand signal preset to provide the desired ac voltage for the auxiliary systems. A second controller uses a current demand signal indicative of the desired dc link current to control the semiconductor power switching devices of a DC/DC power converter to achieve the desired level of dc link current. The current demand signal is derived from comparing a dc link voltage demand signal indicative of a desired dc link voltage and a dc link voltage feedback signal.
US09030041B2 On-vehicle electronic control apparatus
A fourth constant-voltage power circuit directly powered from an on-vehicle battery is connected, in parallel through a serial resistor, to a second constant-voltage power circuit powered from the on-vehicle battery through an output contact of a power relay, and is connected to a drive power terminal of a microprocessor. When the output contact is closed, the microprocessor operates with an output voltage of the second constant-voltage power circuit, and an output current of the fourth constant-voltage power circuit is limited to less than or equal to a predetermined value by the serial resistor. During the operation stop at which a power switch is open, a micro standby current is supplied from the fourth constant-voltage power circuit to the microprocessor.
US09030040B2 Electric connection system
The invention relates to a device for transmitting electrical energy from an agricultural utility vehicle (10) to an attachment (26) which can be reversibly coupled to the utility vehicle (10). The device comprises at least one power electronics system (38, 74) which is arranged on the utility vehicle side, at least one electrical utility vehicle interface (36) and at least one electrical attachment interface (34). The power electronics system (38, 74) can be supplied with electrical energy which can be generated by a generator (16) of the utility vehicle (10). The power electronics system (38, 74) can be connected electrically to the generator (16) and to the utility vehicle interface (36). The attachment (26) has at least one attachment interface (34) and at least one electrical load (30, 102, 104). An agricultural working function can be carried out with the electrical load (30, 102, 104) of the attachment (26). At least one utility vehicle interface (36) can be coupled to at least one attachment interface (34), and in this way at least some of the electrical energy which is generated by the generator (16) of the utility vehicle (10) can be transmitted to the attachment (26) via the utility vehicle interface (36).
US09030039B2 Wind turbine and compressed gas storage system for generating electrical power
A wind turbine and compressed gas storage system for producing electrical energy. A plurality of wind turbines is serially interconnected for staged compression to output high pressure compressed gas. Each wind turbine includes an upper head portion with two or more propellers, a gear box, a rudder and fin assembly, and a propeller feathering and braking system, all pivotally mounted on a lower storage tank portion. The storage tank portion houses a turbine compressor, and one or more internal tanks. Compressed gas, outputted from one or more of such lines, is directed into a reserve tank, comprising a plurality of concentric, scalloped, ring-like tanks, interconnected by pressure-actuated valves. Each tank is adapted for storing compressed gas at stepped pressures, varying from the highest pressure central tank to the lowest pressure outermost ring tank. Compressed gas from the outer ring tank drives one or more air turbines and respective electrical generators.
US09030037B2 Wind generator with wind blade rotating cage for driving multiple generators
A wind generator with a wind blade rotating cage for driving multiple generators is disclosed. Sixteen wind blades (8) manufactured by a stretch extrusion process are mounted on the periphery of the wind blade rotating cage (5) suspended by magnetic force. Inner gears (3) are mounted on the inner edge of the wind blade rotating cage (5). Two of an upper and a lower generator cabins (12) are provided on an upright post (1) and eight generators with an electromagnetic clutch are provided inside each generator cabin (12). A gear (2) engaged with the inner gear (3) on the wind blade rotating cage (5) is mounted on a generator shaft (26) extending outside the generator cabin (12). The wind blade (8) is outward convex and inward concave, 1.5 meters wide and 40 meters high. The wind blade (8) has a large wind receiving area and is mounted on the periphery, so the torque produced is large. Inner gears (3) drive the gears (2) of the generator to rotate and the loss of kinetic energy is small. A lightning rod is also provided on the wind generator. The wind generator has a high wind energy utilization ratio, a simple structure and a low operation cost.
US09030034B2 Stationary power plant, in particular a gas power plant, for generating electricity
The invention concerns a stationary power plant, in particular a gas power plant, to generate electricity; having an internal combustion engine, comprising a fuel medium inlet and an exhaust gas outlet, whereas an exhaust-gas flow of the internal combustion engine is discharged via the exhaust gas outlet; having an electrical generator, which is driven by the internal combustion engine to generate electricity, and which is coupled or can be coupled to an electrical grid, in order to feed the generated electricity into said grid; having a fuel medium supply, which is connected to the fuel medium inlet; wherein a steam circuit, in which a working medium is circulated by means of a feed pump, is provided, comprising a heat exchanger arranged in the exhaust gas flow, by means of which waste heat of the exhaust gas flow is transferred to the working medium for partially or completely evaporating the working medium, further comprising a condenser, in which the working medium partially or completely condenses. The invention is characterized in that a reciprocating piston expander is provided in the steam circuit, in which the working medium expands to produce mechanical work, and the reciprocating piston expander is connected mechanically to the internal combustion engine and/or the electrical generator by means of a releasable clutch.
US09030031B2 Microelectronic assembly with impedance controlled wirebond and reference wirebond
A microelectronic assembly includes a microelectronic device, e.g., semiconductor chip, connected with an interconnection element, e.g., substrate. The reference contacts are connectable to a source of reference potential such as ground or a voltage source used for power. Signal conductors, e.g., wirebonds are connected to device contacts exposed at a surface of the microelectronic device. Reference conductors, e.g., wirebonds can be connected with two reference contacts of the interconnection element. A reference wirebond may extend at a substantially uniform spacing from a signal conductor, e.g., wirebond connected to the microelectronic device over at least a substantial portion of the length of the signal conductor, such that a desired impedance may be achieved for the signal conductor.
US09030027B2 Assembled circuit and electronic component
An assembled circuit is disclosed, wherein the assembled circuit comprises an inductor having a top surface, a bottom surface and side surfaces, wherein each of a plurality of conductors extends from the top surface to the bottom surface via one of the side surfaces of the inductor, wherein a circuit board is disposed over the top surface of the first electronic component and electrically connected to the plurality of conductors and a plurality of pins disposed on the bottom surface of the inductor for connecting to another circuit board.
US09030025B2 Integrated circuit layout
An integrated circuit layout comprises a through silicon via (TSV) configured to couple positive operational voltage VDD (VDD TSV), a through silicon via (TSV) configured to couple operational signals (signal TSV), a plurality of through silicon vias (TSVs) configured to couple operational voltage VSS (VSS TSVs) around the VDD TSV and the signal TSV and one or more backside redistribution lines (RDLs) connecting the VSS TSVs together to form a web-like heat dissipating structure at least surrounding the VDD TSV and the signal TSV.
US09030024B2 Semiconductor device with through-silicon vias
Disclosed is a semiconductor device with through-silicon vias (TSVs) that comprises a primary TSV group, a plurality of signal lines connected to the primary TSV group, a redundant TSV group and connection circuitry responsive to a control signal having a predetermined value to electrically connect the signal lines to the redundant TSV group.
US09030022B2 Packages and methods for forming the same
A device includes a package component having conductive features on a top surface, and a polymer region molded over the top surface of the first package component. A plurality of openings extends from a top surface of the polymer region into the polymer region, wherein each of the conductive features is exposed through one of the plurality of openings. The plurality of openings includes a first opening having a first horizontal size, and a second opening having a second horizontal size different from the first horizontal size.
US09030019B2 Semiconductor device and method of manufacture thereof
A semiconductor device and a method of making a semiconductor device are disclosed. The semiconductor device comprises a redistribution layer arranged over a chip, the redistribution layer comprising a first redistribution line. The semiconductor further comprises an isolation layer disposed over the redistribution layer, the isolation layer having a first opening forming a first pad area and a first interconnect located in the first opening and in contact with the first redistribution line. The redistribution line in the first pad area is arranged orthogonal to a first direction to a neutral point of the semiconductor device.
US09030018B2 Test vehicles for evaluating resistance of thin layers
Provided are test vehicles for evaluating various semiconductor materials. These materials may be used for various integrated circuit components, such as embedded resistors of resistive random access memory cells. Also provided are methods of fabricating and operating these test vehicles. A test vehicle may include two stacks protruding through an insulating body. Bottom ends of these stacks may include n-doped poly-silicon and may be interconnected by a connector. Each stack may include a titanium nitride layer provided over the poly-silicon end, followed by a titanium layer over the titanium nitride layer and a noble metal layer over the titanium layer. The noble metal layer extends to the top surface of the insulating body and forms a contact surface. The titanium layer may be formed in-situ with the noble metal layer to minimize oxidation of the titanium layer, which is used as an adhesion and oxygen getter.
US09030017B2 Z-connection using electroless plating
An assembly includes a substrate having a substrate conductor and a contact at a first surface and a terminal at a second surface for electrically interconnecting the assembly with a component external to the assembly, at least one of the substrate conductor or the contact being electrically connected with the terminal; a first element having a first surface facing the first surface of the substrate and having a first conductor at the first surface and a second conductor at a second surface, an interconnect structure extending through the first element electrically connecting the first and second conductors; an adhesive layer bonding the first surfaces of the first element and the substrate, at least portions of the first conductor and the substrate conductor being disposed beyond an edge of the adhesive layer; and a continuous electroless plated metal region extending between the first conductor and the substrate conductor.
US09030016B2 Semiconductor device with copper interconnects separated by air gaps
A semiconductor device including a plurality of copper interconnects. At least a first portion of the plurality of copper interconnects has a meniscus in a top surface. The semiconductor device also includes a plurality of air gaps, wherein each air gap of the plurality of air gaps is located between an adjacent pair of at least the first portion of the plurality of bit lines.
US09030014B2 Semiconductor device and method of manufacturing the same
An upper surface of a plug (PL1) is formed so as to be higher than an upper surface of an interlayer insulating film (PIL) by forming the interlayer insulating film (PIL) on a semiconductor substrate (1S), completing a CMP method for forming the plug (PL1) inside the interlayer insulating film (PIL), and then, making the upper surface of the interlayer insulating film (PIL) to recede. In this manner, reliability of connection between the plug (PL1) and a wiring (W1) in a vertical direction can be ensured. Also, the wiring (W1) can be formed so as not to be embedded inside the interlayer insulating film (PIL), or a formed amount by the embedding can be reduced.
US09030011B2 Chip package and method for forming the same
An embodiment of the invention provides a chip package which includes: a carrier substrate; a semiconductor substrate having an upper surface and a lower surface, disposed overlying the carrier substrate; a device region or sensing region located on the upper surface of the semiconductor substrate; a conducting pad located on the upper surface of the semiconductor substrate; a conducting layer electrically connected to the conducting pad and extending from the upper surface of the semiconductor substrate to a sidewall of the semiconductor substrate; and an insulating layer located between the conducting layer and the semiconductor substrate.
US09030002B2 Semiconductor device having IPD structure with smooth conductive layer and bottom-side conductive layer
A semiconductor device includes an interface layer, a smooth conductive layer disposed over the interface layer, and a first insulating layer disposed over a first surface of the smooth conductive layer. A first conductive layer is disposed over the first insulating layer and the interface layer, and the first conductive layer contacts the first insulating layer. A second insulating layer is disposed over the second insulating layer and the first conductive layer, and a second conductive layer is disposed below the first conductive layer and contacts a second surface of the smooth conductive layer. The second surface of the smooth conductive layer is opposite the first surface of the smooth conductive layer. A third insulating layer is disposed over the first insulating layer and the first surface of the smooth conductive layer, and a fourth insulating layer is disposed below the second conductive layer and the interface layer.
US09030001B2 Microelectronic packages with nanoparticle joining
A method of making an assembly includes the steps of applying metallic nanoparticles to exposed surfaces of conductive elements of either of or both of a first component and a second component, juxtaposing the conductive elements of the first component with the conductive elements of the second component with the metallic nanoparticles disposed therebetween, and elevating a temperature at least at interfaces of the juxtaposed conductive elements to a joining temperature at which the metallic nanoparticles cause metallurgical joints to form between the juxtaposed conductive elements. The conductive elements of either of or both of the first component and the second component can include substantially rigid posts having top surfaces projecting a height above the surface of the respective component and edge surfaces extending at substantial angles away from the top surfaces thereof.
US09029996B2 Bonding and electrically coupling components
Methods and systems for electrically coupling bonded components, including: a support layer, an electrically conductive wire supported by the support layer, and an electrically conductive adhesive, the electrically conductive adhesive being over the electrically conductive wire, the electrically conductive adhesive being electrically coupled to the electrically conductive wire, the electrically conductive adhesive extending beyond the electrically conductive wire onto the support layer, the electrically conductive adhesive being configured to adhesively bond to the support layer, the electrically conductive adhesive being configured to adhesively bond to one or more additional components above the electrically conductive adhesive, the electrically conductive wire being configured to be electrically coupled to the one or more additional components through the electrically conductive adhesive.
US09029990B2 Integrated circuit package
An integrated circuit (IC) package including a bottom leadframe, an interposer mounted on the bottom leadframe, a flipchip die mounted on the interposer and a top leadframe electrically connected to the interposer. Also, a method of making an integrated circuit (IC) package including electrically and physically attaching a die to an interposer, attaching the interposer to a bottom leadframe, attaching a discrete circuit component to the interposer and attaching a top leadframe to the bottom leadframe.
US09029989B2 Semiconductor package and semiconductor devices with the same
A semiconductor package includes a substrate, a ground circuit supported by the substrate, at least one semiconductor chip disposed on the substrate and a carbon-containing heat-dissipating part disposed on the substrate and electrically connected to the ground circuit. The heat-dissipating part may include carbon fibers and/or carbon cloth.
US09029988B2 Through silicon via in n+ epitaxy wafers with reduced parasitic capacitance
A semiconductor device includes an epitaxy layer formed on semiconductor substrate, a device layer formed on the epitaxy layer, a trench formed within the semiconductor substrate and including a dielectric layer forming a liner within the trench and a conductive core forming a through-silicon via conductor, and a deep trench isolation structure formed within the substrate and surrounding the through-silicon via conductor. A region of the epitaxy layer formed between the through-silicon via conductor and the deep trench isolation structure is electrically isolated from any signals applied to the semiconductor device, thereby decreasing parasitic capacitance.
US09029985B2 Memristor comprising film with comb-like structure of nanocolumns of metal oxide embedded in a metal oxide matrix
Films having a comb-like structure of nanocolumns of Sm2O3 embedded in a SrTiO3 formed spontaneously on a substrate surface by pulsed laser deposition. In an embodiment, the nanocolumns had a width of about 20 nm with spaces between nanocolumns of about 10 nm. The films exhibited memristive behavior, and were extremely uniform and tunable. Oxygen deficiencies were located at vertical interfaces between the nanocolumns and the matrix. The substrates may be single-layered or multilayered.
US09029983B2 Metal-insulator-metal (MIM) capacitor
In one embodiment, a chip comprises a capacitor and a resistor. The capacitor comprises a first capacitor terminal, a second capacitor terminal, and a dielectric layer between the first and second capacitor terminals. The second capacitor terminal and the resistor are both fabricated from a resistor metal layer.
US09029980B2 Trench isolation structure having isolating trench elements
A semiconductor device includes a semiconductor substrate, an element isolating trench structure that includes an element isolating trench formed in one main surface of the semiconductor substrate, an insulating material that is formed within the element isolating trench, element formation regions that are surrounded by the element isolating trench, and semiconductor elements that are respectively formed in the element formation regions. The element isolating trench includes first element isolating trenches extending in a first direction, second element isolating trenches extending in a second direction that are at a right angle to the first direction, and third element isolating trenches extending in a third direction inclined at an angle θ (0°<θ<90°) from the first direction.
US09029975B2 Semiconductor devices with heterojunction barrier regions and methods of fabricating same
An electronic device includes a silicon carbide layer including an n-type drift region therein, a contact forming a junction, such as a Schottky junction, with the drift region, and a p-type junction barrier region on the silicon carbide layer. The p-type junction barrier region includes a p-type polysilicon region forming a P-N heterojunction with the drift region, and the p-type junction barrier region is electrically connected to the contact. Related methods are also disclosed.
US09029973B2 Image sensor and method for fabricating the same
An image sensor includes first impurity regions formed in a substrate, second impurity regions formed in the first impurity regions, wherein the second impurity regions has a junction with the first impurity regions, recess patterns formed over the first impurity regions in contact with the second impurity regions, and transfer gates filling the recess patterns.
US09029970B2 Semiconductor light receiving device and method of manufacturing the same
Provided is a semiconductor light receiving device including: a semiconductor substrate; a semiconductor layer laminated on the semiconductor substrate and including an upper surface portion; a reflecting film formed to cover the upper surface portion of the semiconductor layer and including a principal reflecting region and an upper surface; and an upper electrode formed to cover at least one portion of the upper surface of the reflecting film, and including a junction portion extending through the reflecting file to be provided in contact with the upper surface portion of the semiconductor layer, the junction portion of the upper electrode surrounding a portion of a circumference of the principal reflecting region of the reflecting film, the principal reflecting region being connected to a region of the reflecting film located outside the junction portion, in which the semiconductor light receiving device detects light entering from another side of the semiconductor substrate.
US09029968B2 Optical sensor device
An optical sensor element is mounted in a package which includes a glass substrate having a cavity, and a glass lid substrate bonded to the other substrate to close the cavity. The glass substrate with the cavity has metalized wiring patterns on front and rear surfaces thereof, and a through hole filled with metal to form a through-electrode interconnecting the wiring patterns on the front and rear surfaces. A metalized wiring pattern on the rear surface of the glass lid substrate is electrically connected to the wiring pattern on the front surface of the other substrate with an adhesive containing conductive particles. The glass lid substrate is made either of glass having a filter function or glass having a light shielding property with an opening therethrough filled with glass having a filter function.
US09029966B2 Thin-wafer current sensors
Embodiments relate to IC current sensors fabricated using thin-wafer manufacturing technologies. Such technologies can include processing in which dicing before grinding (DBG) is utilized, which can improve reliability and minimize stress effects. While embodiments utilize face-up mounting, face-down mounting is made possible in other embodiments by via through-contacts. IC current sensor embodiments can present many advantages while minimizing drawbacks often associated with conventional IC current sensors.
US09029965B2 Method and system for providing magnetic junctions having a thermally stable and easy to switch magnetic free layer
A method and system provide a magnetic junction usable in a magnetic device. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The free layer includes a plurality of subregions. Each of the subregions has a magnetic thermal stability constant. The subregions are ferromagnetically coupled such that the free layer has a total magnetic thermal stability constant. The magnetic thermal stability constant is such that the each of the subregions is magnetically thermally unstable at an operating temperature. The total magnetic thermal stability constant is such that the free layer is magnetically thermally stable at the operating temperature. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
US09029961B2 Wafer level method of sealing different pressure levels for MEMS sensors
The present disclosure relates to a method of forming a plurality of MEMs device having a plurality of chambers with different pressures on a substrate, and an associated apparatus. In some embodiments, the method is performed by providing a device wafer having a plurality of microelectromechanical system (MEMs) devices. A cap wafer is bonded onto the device wafer in a first ambient environment having a first pressure. The bonding forms a plurality of chambers abutting the plurality of MEMs devices, which are held at the first pressure. One or more openings are formed in one or more of the plurality of chambers. The one or more openings in the one or more of the plurality of chambers are then sealed in a different ambient environment having a different pressure, thereby causing the one or more of the plurality of chambers to be held at the different pressure.
US09029960B2 Semiconductor device and method of manufacturing the same
The semiconductor device has a sensor unit including a sensing part, and a semiconductor substrate. The semiconductor substrate is bonded to the sensor unit through an insulation film such that the sensing part is disposed in an air-tightly sealed chamber provided between a recessed portion of the semiconductor substrate and the sensor unit. A surface of the semiconductor substrate provided on a periphery of the recessed portion includes a boundary region at a perimeter of the recessed portion and a bonding region on a periphery of the boundary region. The bonding region has an area greater than an area of the boundary region. The bonding region of the semiconductor substrate is bonded to the sensor unit through the insulation film.
US09029959B2 Composite high-k gate dielectric stack for reducing gate leakage
A composite high dielectric constant (high-k) gate dielectric includes a stack of a doped high-k gate dielectric and an undoped high-k gate dielectric. The doped high-k gate dielectric can be formed by providing a stack of a first high-k dielectric material layer and a dopant metal layer and annealing the stack to induce the diffusion of the dopant metal into the first high-k dielectric material layer. The undoped high-k gate dielectric is formed by subsequently depositing a second high-k dielectric material layer. The composite high-k gate dielectric can provide an increased gate-leakage oxide thickness without increasing inversion oxide thickness.
US09029958B2 FinFETs and the methods for forming the same
A method includes forming a gate stack including a gate electrode on a first semiconductor fin. The gate electrode includes a portion over and aligned to a middle portion of the first semiconductor fin. A second semiconductor fin is on a side of the gate electrode, and does not extend to under the gate electrode. The first and the second semiconductor fins are spaced apart from, and parallel to, each other. An end portion of the first semiconductor fin and the second semiconductor fin are etched. An epitaxy is performed to form an epitaxy region, which includes a first portion extending into a first space left by the etched first end portion of the first semiconductor fin, and a second portion extending into a second space left by the etched second semiconductor fin. A first source/drain region is formed in the epitaxy region.
US09029956B2 SRAM cell with individual electrical device threshold control
A static random access memory cell is provided that includes first and second inverters formed on a substrate each having a pull-up and pull-down transistor configured to form a cell node. Each of the pull-down transistors of the first and second inverters resides over first regions below the buried oxide layer and having a first doping level and applied bias providing a first voltage threshold for the pull-down transistors. A pair of passgate transistors is coupled the cell nodes of the first and second inverters, and each is formed over second regions below the buried oxide layer and having a second doping level and applied bias providing a second voltage threshold for the passgate transistors. The first voltage threshold differs from the second voltage threshold providing electrical voltage threshold control between the pull-down transistors and the passgate transistors.
US09029955B2 Integrated circuit on SOI comprising a bipolar transistor with isolating trenches of distinct depths
An integrated circuit includes a semiconductor substrate, a silicon layer, a buried isolating layer arranged between the substrate and the layer, a bipolar transistor comprising a collector and emitter having a first doping, and a base and a base contact having a second doping, the base forming a junction with the collector and emitter, the collector, emitter, base contact, and the base being coplanar, a well having the second doping and plumb with the collector, emitter, base contact and base, the well separating the collector, emitter and base contact from the substrate, having the second doping and extending between the base contact and base, a isolating trench plumb with the base and extending beyond the layer but without reaching a bottom of the emitter and collector, and another isolating trench arranged between the base contact, collector, and emitter, the trench extending beyond the buried layer into the well.
US09029953B2 Semiconductor device and manufacturing method thereof
A semiconductor device includes a base region of a second conduction type provided over a drain region of a first conduction type, an outer peripheral well region of a second conduction type provided to cover the outer peripheral end of the base region and having an impurity concentration lower than that of the base region, a buried electrode buried in the semiconductor substrate not to overlap the outer peripheral well region, plural gate electrodes connected to the buried electrode and buried in the substrate such that each of them is adjacent to a source region, a gate interconnect provided over the substrate to overlap a portion of the outer peripheral well region in a plan view and connected to the buried electrode, and a grounding electrode provided over the substrate and connected to a portion of the outer peripheral well region not overlapping the gate interconnect in a plan view.
US09029948B2 LDMOS device with step-like drift region and fabrication method thereof
An LDMOS device is disclosed. The LDMOS device includes: a substrate having a first type of conductivity; a drift region having a second type of conductivity and being formed in the substrate; a doped region having the first type of conductivity and being formed in the substrate, the doped region being located at a first end of the drift region and laterally adjacent to the drift region; and a heavily doped drain region having the second type of conductivity and being formed in the substrate, the heavily doped drain region being located at a second end of the drift region, wherein the drift region has a step-like top surface with at least two step portions, and wherein a height of the at least two step portions decreases progressively in a direction from the doped region to the drain region. A method of fabricating LDMOS device is also disclosed.
US09029944B2 Super junction semiconductor device comprising implanted zones
In a semiconductor substrate with a first surface and a working surface parallel to the first surface, columnar first and second super junction regions of a first and a second conductivity type are formed. The first and second super junction regions extend in a direction perpendicular to the first surface and form a super junction structure. The semiconductor portion is thinned such that, after the thinning, a distance between the first super junction regions having the second conductivity type and a second surface obtained from the working surface does not exceed 30 μm. Impurities are implanted into the second surface to form one or more implanted zones. The embodiments combine super junction approaches with backside implants enabled by thin wafer technology.
US09029943B2 Semiconductor memory device and method of manufacturing the same
The semiconductor memory device includes a cell transistor having a gate insulating film deposited on an inner surface of a groove formed in an upper surface of the semiconductor substrate, a gate electrode buried in the groove with the gate insulating film formed on the inner surface thereof, and a source region and a drain region formed on an upper surface of the active area of the semiconductor substrate on opposite sides of the gate electrode. The semiconductor memory device includes an MTJ element having a variable resistance that varies with a direction of magnetization that is provided on the source region and electrically connected to the source region at a first end thereof.
US09029942B2 Power transistor device with super junction
The present invention provides a power transistor device with a super junction including a substrate, a first epitaxial layer, a second epitaxial layer, and a third epitaxial layer. The first epitaxial layer is disposed on the substrate, and has a plurality of trenches. The trenches are filled up with the second epitaxial layer, and a top surface of the second epitaxial layer is higher than a top surface of the first epitaxial layer. The second epitaxial layer has a plurality of through holes penetrating through the second epitaxial layer and disposed on the first epitaxial layer. The second epitaxial layer and the first epitaxial layer have different conductivity types. The through holes are filled up with the third epitaxial layer, and the third epitaxial layer is in contact with the first epitaxial layer. The third epitaxial layer and the first epitaxial layer have the same conductivity type.
US09029941B2 Vertical transistor component
A vertical transistor component includes a semiconductor body with first and second surfaces, a drift region, and a source region and body region arranged between the drift region and the first surface. The body region is also arranged between the source region and the drift region. The vertical transistor component further includes a gate electrode arranged adjacent to the body zone, a gate dielectric arranged between the gate electrode and the body region, and a drain region arranged between the drift region and the second surface. A source electrode electrically contacts the source region, is electrically insulated from the gate electrode and arranged on the first surface. A drain electrode electrically contacts the drain region and is arranged on the second surface. A gate contact electrode is electrically insulated from the semiconductor body, extends in the semiconductor body to the second surface, and is electrically connected with the gate electrode.
US09029940B2 Vertical tunneling field-effect transistor cell
A tunneling field-effect transistor (TFET) device is disclosed. The TFET device includes a source contact on the source region, a plurality of gate contacts at a planar portion of a gate stack and a plurality of drain contacts disposed on a drain region. The source contact of the TFET device aligns with other two adjacent source contacts of other two TFET devices such that each source contact locates in one of three angles of an equilateral triangle.
US09029937B2 Semiconductor device and method for manufacturing the same
A transistor in which the state of an interface between an oxide semiconductor layer and an insulating film in contact with the oxide semiconductor layer is favorable and a method for manufacturing the transistor are provided. Nitrogen is added to the vicinity of the interface between the oxide semiconductor layer and the insulating film (gate insulating layer) in contact with the oxide semiconductor layer so that the state of the interface of the oxide semiconductor layer becomes favorable. Specifically, the oxide semiconductor layer has a concentration gradient of nitrogen, and a region containing much nitrogen is provided at the interface with the gate insulating layer. A region having high crystallinity can be formed in the vicinity of the interface with the oxide semiconductor layer by addition of nitrogen, whereby the interface state can be stable.
US09029936B2 Non-volatile memory structure containing nanodots and continuous metal layer charge traps and method of making thereof
A memory device includes a semiconductor channel, a tunnel dielectric layer located over the semiconductor channel, a first charge trap including a plurality of electrically conductive nanodots located over the tunnel dielectric layer, dielectric separation layer located over the nanodots, a second charge trap including a continuous metal layer located over the separation layer, a blocking dielectric located over the second charge trap, and a control gate located over the blocking dielectric.
US09029935B2 Nonvolatile memory device and method for fabricating the same
A nonvolatile memory device includes a floating gate formed over a semiconductor substrate, an insulator formed on a first sidewall of the floating gate, a dielectric layer formed on a second sidewall and an upper surface of the floating gate, and a control gate formed over the dielectric layer.
US09029934B2 Nonvolatile semiconductor memory device including floating gate electrodes formed between control gate electrodes and vertically formed along a semiconductor pillar
A nonvolatile semiconductor memory device includes: forming a stacked body by alternately stacking a plurality of interlayer insulating films and a plurality of control gate electrodes; forming a through-hole extending in a stacking direction in the stacked body; etching a portion of the interlayer insulating film facing the through-hole via the through-hole to remove the portion; forming a removed portion; forming a first insulating film on inner faces of the through-hole and the portion in which the interlayer insulating films are removed; forming a floating gate electrode in the portion in which the interlayer insulating films are removed; forming a second insulating film so as to cover a portion of the floating gate electrode facing the through-hole; and burying a semiconductor pillar in the through-hole.
US09029933B2 Non-volatile memory device and method for manufacturing same
According to an embodiment, a non-volatile memory device includes a memory cell including a semiconductor layer, a charge storage layer provided on the semiconductor layer, and a first insulating film provided between the semiconductor layer and the charge storage layer. The device also includes a first conductive layer provided on the charge storage layer, a second conductive layer provided between the charge storage layer and the first conductive layer, a second insulating film provided between the charge storage layer and the second conductive layer, and a third insulating film provided between the first conductive layer and the second conductive layer.
US09029932B2 Programmable device with improved coupling ratio through trench capacitor and lightly doped drain formation
A programmable device and a method of manufacturing the same are provided. A programmable device comprises a substrate having a source region, a drain region and a diffusion region adjacent to the source region and the drain region; a channel coupling the source region and the drain region; a floating gate formed of a conductive material and positioned on the substrate and corresponding to the channel; and a trench formed in the diffusion region at the substrate, wherein the floating gate extends to the trench, and the conductive material covers a sidewall of the trench.
US09029929B2 Semiconductor memory device and manufacturing method thereof
A memory cell therein includes a first transistor and a capacitor and stores data corresponding to a potential held in the capacitor. The first transistor includes a pair of electrodes, an insulating film in contact with side surfaces of the electrodes, a first gate electrode provided between the electrodes with the insulating film provided between the first gate electrode and each electrode and whose top surface is at a lower level than top surfaces of the electrodes, a first gate insulating film over the first gate electrode, an oxide semiconductor film in contact with the first gate insulating film and the electrodes, a second gate insulating film at least over the oxide semiconductor film, and a second gate electrode over the oxide semiconductor film with the second gate insulating film provided therebetween. The capacitor is connected to the first transistor through one of the electrodes.
US09029923B2 Semiconductor device
A semiconductor device includes a fin-shaped silicon layer and a pillar-shaped silicon layer on the fin-shaped silicon layer, where a width of the pillar-shaped silicon layer is equal to a width of the fin-shaped silicon layer. Diffusion layers reside in upper portions of the pillar-shaped silicon layer and fin-shaped silicon layer and in a lower portion of the pillar-shaped silicon layer to form. A gate insulating film and a metal gate electrode are around the pillar-shaped silicon layer and a metal gate line extends in a direction perpendicular to the fin-shaped silicon layer and is connected to the metal gate electrode. A contact resides on the metal gate line and a nitride film is on an entire top surface of the metal gate electrode and the metal gate line, except for the bottom of the contact.
US09029922B2 Memory device comprising electrically floating body transistor
A semiconductor memory cell comprising an electrically floating body. A method of operating the memory cell is provided.
US09029917B2 Semiconductor integrated circuit device
In a semiconductor integrated circuit device, a plurality of electrode pads for external connection are arranged in a zigzag pattern. Some electrode pads of the electrode pads of the plurality of I/O cells which are closer to a side of the semiconductor chip, each have an end portion closer to the side of the semiconductor chip, the end portion being set at the same position as that of an end portion of the corresponding I/O cell. A power source-side protective circuit and a ground-side protective circuit against discharge of static electricity are provided with the power source-side protective circuit being closer to the scribe region. A distance between a center position of one of the electrode pads and the ground-side protective circuit of the corresponding I/O cell and a distance between a center position of the other one electrode pad and the ground-side protective circuit of the corresponding I/O cell are both short and are substantially equal between each I/O cell.
US09029913B2 Silicon-germanium fins and silicon fins on a bulk substrate
A first silicon-germanium alloy layer is formed on a semiconductor substrate including silicon. A stack of a first silicon layer and a second silicon-germanium alloy layer is formed over a first region of the first silicon-germanium alloy layer, and a second silicon layer thicker than the first silicon layer is formed over a second region of the first silicon-germanium alloy layer. At least one first semiconductor fin is formed in the first region, and at least one second semiconductor fin is formed in the second region. Remaining portions of the first silicon layer are removed to provide at least one silicon-germanium alloy fin in the first region, while at least one silicon fin is provided in the second region. Fin field effect transistors can be formed on the at least one silicon-germanium alloy fin and the at least one silicon fin.
US09029911B2 Light emitting device
Disclosed are a light emitting device, a method of manufacturing the light emitting device, a light emitting device package and a lighting system. The light emitting device includes a silicon substrate; a nitride buffer layer on the silicon substrate; and a gallium nitride epitaxial layer on the nitride buffer layer, wherein the nitride buffer layer includes a first nitride buffer layer having a first aluminum nitride layer on the silicon substrate and a first gallium nitride layer on the first aluminum nitride layer.
US09029909B2 Systems, circuits, devices, and methods with bidirectional bipolar transistors
Methods, systems, circuits, and devices for power-packet-switching power converters using bidirectional bipolar transistors (BTRANs) for switching. Four-terminal three-layer BTRANs provide substantially identical operation in either direction with forward voltages of less than a diode drop. BTRANs are fully symmetric merged double-base bidirectional bipolar opposite-faced devices which operate under conditions of high non-equilibrium carrier concentration, and which can have surprising synergies when used as bidirectional switches for power-packet-switching power converters. BTRANs are driven into a state of high carrier concentration, making the on-state voltage drop very low.
US09029907B2 Optoelectronic semiconductor component
An optoelectronic semiconductor component includes a radiation emitting semiconductor chip having a radiation coupling out area. Electromagnetic radiation generated in the semiconductor chip leaves the semiconductor chip via the radiation coupling out area. A converter element is disposed downstream of the semiconductor chip at its radiation coupling out area. The converter element is configured to convert electromagnetic radiation emitted by the semiconductor chip. The converter element has a first surface facing away from the radiation coupling out area. A reflective encapsulation encapsulates the semiconductor chip and portions of the converter element at side areas in a form-fitting manner. The first surface of the converter element is free of the reflective encapsulation.
US09029905B2 Light emitting diode device
A light emitting diode (LED) device includes: a substrate having a central portion; an LED chip unit formed on the central portion of the substrate; a circuit pattern having a positive electrode and a negative electrode that are formed on the substrate, each of the positive electrode and the negative electrode including an arc portion and at least one extending portion that extends from the arc portion toward the central portion; a wire unit connecting the LED chip unit to the extending portions; a glass layer disposed on the substrate, covering the arc portions and including an opening unit that is aligned with the central portion of the substrate; a dam structure formed on the glass layer and extending along the arc portions; and an encapsulated body disposed substantially within the dam structure to cover the extending portions, the wire unit and the LED chip unit.
US09029903B2 Light emitting diode package and method of manufacturing the same
A light emitting diode package including a package body with a cavity, a plurality of light emitting diode (LED) chips in the cavity, a plurality of wires connected to the plurality of LED chips, and a plurality of lead frames in the package body, wherein the lead frames comprise a first lead frame electrically connected to a first electrode of a first LED chip, a second lead frame electrically connected to a second electrode of the first LED chip and a second electrode of a second LED chip, a third lead frame electrically connected to a first electrode of the second LED chip, and fourth lead frame electrically connected to a second electrode of a third LED chip. Further, ends of the lead frames are exposed outside of the package body and penetrate the package body, and the first electrodes are P electrodes and the second electrodes are N electrodes.
US09029895B2 Ultraviolet light emitting device
Disclosed is a light emitting device including an active layer emitting light with a wavelength band of 200 nm to 405 nm, and a light-transmitting layer disposed on the active layer, the light-transmitting layer having a lower part facing the active layer, wherein at least one of side and upper parts of the light-transmitting layer has a surface-processed pattern portion.
US09029894B2 Lead frame for optical semiconductor device and optical semiconductor device using the same
The present invention relates to a lead frame for an optical semiconductor device including: a lead frame having a first plate part and a second plate part disposed so as to oppose to the first plate part; an optical semiconductor element placed in the second plate part and electrically connected to the second plate part; a wire for electrically connecting the optical semiconductor element and the first plate part to each other; a circumferential reflector formed on the lead frame so as to surround a circumference of the optical semiconductor element; and a transparent resin for encapsulating the optical semiconductor element, filled in a recess formed by the lead frame and an inner periphery of the reflector, in which the lead frame has a contour shape substantially the same as a bottom contour shape of the inner periphery of the reflector for forming the recess.
US09029892B2 Device module
According to one embodiment, a device module includes a mounting substrate, a device, and a bonding agent. The mounting substrate has a mounting surface and a plurality of pads. The device includes a plurality of electrode surfaces arranged in a first direction. The pad has a first width portion and a second width portion. The first width portion has a width in a second direction orthogonal to the first direction. The second width portion is wider than the first width portion and the electrode surfaces in the second direction. One end portion in the first direction of the electrode surface is bonded to the pad on the first width portion via the bonding agent. The other end portion in the first direction of the electrode surface is bonded to the pad on the second width portion via the bonding agent.
US09029882B2 Active device array substrate
An active device array substrate for saving material cost includes a substrate, scan lines, data lines, a thin film transistor, a color filter layer, a transparent conductive layer, an insulating layer and a pixel electrode. The color filter layer covers and contacts the scan lines, data lines and the thin film transistor. The transparent conductive layer is disposed on the color filter layer and electrically isolated from the scan lines, the data lines and the thin film transistor by the color filter layer. The insulating layer covers the transparent conductive layer. The pixel electrode is disposed on the insulating layer and connected to the thin film transistor.
US09029881B2 LED module
In various embodiments, a light emitting diode module is provided. The light emitting diode module may include at least one light emitting diode; wherein the at least one light emitting diode is connected in parallel with at least one first capacitor; wherein the at least one light emitting diode is arranged in a first structural unit, and the at least one first capacitor is arranged in a second structural unit, wherein the first structural unit and the second structural unit are electrically coupled to one another via a first cable.
US09029880B2 Active matrix display panel with ground tie lines
A display panel and a method of forming a display panel are described. The display panel may include a thin film transistor substrate including a pixel area and a non-pixel area. The pixel area includes an array of bank openings and an array of bottom electrodes within the array of bank openings. A ground line is located in the non-pixel area and an array of ground tie lines run between the bank openings in the pixel area and are electrically connected to the ground line in the non-pixel area.
US09029879B2 Phosphor cap for LED die top and lateral surfaces
A method for depositing a layer of phosphor-containing material on a plurality of LED dies includes disposing a template with a plurality of openings on an adhesive tape and disposing each of a plurality of LED dies in one of the plurality of openings of the template. The method also includes forming a patterned dry film photoresist layer over the template and the plurality of LED dies. The photoresist layer has a plurality of openings configured to expose a top surface and side surfaces of each of the LED dies. Next, a phosphor-containing material is disposed on the exposed top surface of each the LED dies. The method further includes removing the photoresist layer and the template.
US09029878B2 Lighting device
A lighting device with front carrier, rear carrier and plurality of light-emitting diode chips, which when in operation emits light and releases waste heat, wherein rear carrier is covered at least in selected locations by front carrier, light-emitting diode chips are arranged between rear carrier and front carrier to form array, light-emitting diodes are contacted electrically by rear and/or front carrier and immobilized mechanically by rear carrier and front carrier, front carrier is coupled thermally conductively to light-emitting diode chips and includes light outcoupling face remote from light-emitting diode chips, which light outcoupling face releases some of waste heat released by light-emitting diode chips into surrounding environment, each light-emitting diode chip is actuated with electrical nominal power of 100 mW or less when lighting device is in operation and has light yield of 100 lm/W or more.
US09029875B2 Light emitting device and method for manufacturing the same
Disclosed are a light emitting device, a method for manufacturing the same, a light emitting device package, and a lighting system. The light emitting device includes a first conductive semiconductor layer, an active layer comprising a well layer and a barrier layer on the first conductive layer, and a second conductive semiconductor layer on the active layer. The well layer includes a first well layer closest to the first conductive semiconductor layer and having a first energy bandgap, a third well layer closest to the second conductive semiconductor layer and having a third energy bandgap, and a second well layer interposed between the first and third well layers and having a second energy bandgap. The third energy bandgap of the third well layer is greater than the second energy bandgap of the second well layer.
US09029869B2 Semiconductor device
One embodiment of a semiconductor device includes: a silicon carbide substrate including first and second principal surfaces; a first-conductive-type silicon carbide layer on the first principal surface; a second-conductive-type first silicon carbide region at a surface of the first silicon carbide layer; a first-conductive-type second silicon carbide region at the surface of the first silicon carbide region; a second-conductive-type third silicon carbide region at the surface of the first silicon carbide region; a second-conductive-type fourth silicon carbide region formed between the first silicon carbide region and the second silicon carbide region, and having an impurity concentration higher than that of the first silicon carbide region; a gate insulator; a gate electrode formed on the gate insulator; an inter-layer insulator; a first electrode connected to the second silicon carbide region and the third silicon carbide region; and a second electrode on the second principal surface.
US09029868B2 Semiconductor apparatus having nitride semiconductor buffer layer doped with at least one of Fe, Si, and C
A semiconductor apparatus includes a substrate; a buffer layer formed on the substrate; a first semiconductor layer formed on the buffer layer; and a second semiconductor layer formed on the first semiconductor layer. Further, the buffer layer is formed of AlGaN and doped with Fe, the buffer layer includes a plurality of layers having different Al component ratios from each other, and the Al component ratio of a first layer is greater than the Al component ratio of a second layer and a Fe concentration of the first layer is less than the Fe concentration of the second layer, the first and second layers being included in the plurality of layers, and the first layer being formed on a substrate side of the second layer.
US09029866B2 Gallium nitride power devices using island topography
A semiconductor device in provided having a substrate and a semiconductor layer formed on a main surface of the substrate. A plurality of first island electrodes and a plurality of second island electrodes are placed over the semiconductor layer. The plurality of first island electrodes and second island electrodes are spaced apart from each other so as to be alternatively arranged to produce two-dimensional active regions in all feasible areas of the semiconductor layer. Each side of the first island electrodes is opposite a side of the second island electrodes. The semiconductor device can also include a plurality of strip electrodes that are formed in the regions between the first island electrodes and the second island electrodes. The strip electrodes serve as the gate electrodes of a multi-island transistor. The first island electrodes serve as the source electrodes of the multi-island transistor. The second island electrodes serve as the drain electrodes of the multi-island transistor. A plurality of connections to the gate electrodes are provided at each interstice defined by corners of the first island electrodes and the second island electrodes.
US09029860B2 Structure including gallium nitride substrate and method of manufacturing the gallium nitride substrate
A structure includes a silicon substrate, a plurality of silicon rods on the silicon substrate, a silicon layer on the plurality of silicon rods, and a GaN substrate on the silicon layer.
US09029857B2 Organic light emitting display device and manufacturing method thereof
An organic light-emitting display device includes a substrate including a rectangular light-emitting area and a circuit area, the circuit area including a thin film transistor, the light-emitting area including an electroluminescent layer produced by a solution deposition process, the light-emitting area being bounded by a first major side, a second major side, a first minor side and a second minor side, the first major side being opposite from and parallel to a second major side, each of these sides having wiring or dummies arranged thereat, and a pixel defining layer arranged on the wirings and on the dummies. In order to produce a uniform thickness electroluminescent layer via a solution deposition process, top surfaces of the pixel defining layer on each of the wirings and dummies that border the light emitting area are arranged in a same plane that is parallel to the substrate.
US09029855B2 Layout for reticle and wafer scanning electron microscope registration or overlay measurements
A method and a resulting device are provided for forming stack overlay and registration monitoring structures for FEOL layers including implant layers and for forming BEOL SEM overlay and registration monitoring structures including BEOL interconnections, respectively. Embodiments include forming an active monitoring structure having first and second edges separated by a first distance in an active layer on a semiconductor substrate; forming a poly monitoring structure having first and second edges separated by a second distance in a poly layer; and forming one or more contact monitoring structures in a contact layer, collectively exposing at least the first and second edges of each of the active and poly monitoring structures; wherein the active, poly, and contact monitoring structures are formed in an area which includes no IC patterns in the active, the poly, and the contact layers, respectively.
US09029854B2 Bulk silicon wafer product useful in the manufacture of three dimensional multigate MOSFETs
A method for preparing a semiconductor structure for use in the manufacture of three dimensional transistors, the structure comprising a silicon substrate and an epitaxial layer, the epitaxial layer comprising an endpoint detection epitaxial region comprising an endpoint detection impurity selected from the group consisting of carbon, germanium, or a combination.
US09029852B2 Semiconductor device
A semiconductor device includes a gate electrode, a gate insulating film which includes oxidized material containing silicon and covers the gate electrode, an oxide semiconductor film provided to be in contact with the gate insulating film and overlap with at least the gate electrode, and a source electrode and a drain electrode electrically connected to the oxide semiconductor film. In the oxide semiconductor film, a first region which is provided to be in contact with the gate insulating film and have a thickness less than or equal to 5 nm has a silicon concentration lower than or equal to 1.0 at. %, and a region in the oxide semiconductor film other than the first region has lower silicon concentration than the first region. At least the first region includes a crystal portion.
US09029847B2 Organic light emitting diode display device and method of fabricating the same
An organic light emitting diode display device is disclosed. The organic light emitting diode display device includes: an element substrate configured to include a plurality of pixel regions; a first passivation layer formed on the element substrate; an organic light emitting diode which includes a first electrode formed on the first passivation layer, a first insulation film formed on the first passivation layer with the first electrode and configured to define an emission region, and an organic layer and a second electrode formed on the first insulation film; a first fixed layer formed on the first passivation layer under an edge of the insulation film and configured to prevent a direct contact of the first passivation layer and the edge of the first insulation film; and a second passivation layer formed on the organic light emitting diode.
US09029845B2 Electrode composite and photoelectric element equipped therewith
The present invention provides an electrode composite that has a reaction interface with a large area and can constitute a photoelectric element having high electron transport properties between the reaction interface and the electrode. The electrode composite of the present invention includes a first electrode and a conductive particle layer stacked on the first electrode. The conductive particle layer includes conductive particles containing acicular particles. The conductive particle layer has a three-dimensional porous network structure that is formed by the interconnection of the conductive particles. The three-dimensional network structure is joined to the first electrode. The conductive particle layer contains pores having a pore size of 50 nm or more in a total volume of 50% or more based on the volume of all pores in the conductive particle layer.
US09029844B2 Organic light emitting diode display and manufacturing method thereof
An organic light emitting diode display and a method of manufacturing the same, the display including a substrate; a plurality of thin film transistors on the substrate; a protective film covering the plurality of thin film transistors; a pixel electrode on the protective film; a pixel defining film on the protective film, the pixel defining film having an opening exposing the pixel electrode; an organic emission layer on the pixel electrode and the pixel defining film; and a common electrode covering the organic emission layer, wherein a cross-section of an opening sidewall of the opening in the pixel defining film has a rounded shape.
US09029839B2 Semiconductor device, method of manufacturing the semiconductor device, and a thin film
A semiconductor device containing a novel cyclosiloxane polymer showing electroconductivity or semiconductivity has a charge transport layer comprising a plasma polymer containing structural units (A) each having a transition metal as a central metal and structural units (B) each situated between structural units (A) adjacent to each other and having a cyclosiloxane skeleton. The charge transport layer is formed by plasma polymerization of an organic metal compound having the transition metal as the central metal and the cyclosiloxane compound in a reactor.
US09029837B2 Photoactive devices including porphyrinoids with coordinating additives
Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.
US09029833B2 Graphene on semiconductor detector
Ultraviolet or Extreme Ultraviolet and/or visible detector apparatus and fabrication processes are presented, in which the detector includes a thin graphene electrode structure disposed over a semiconductor surface to provide establish a potential in the semiconductor material surface and to collect photogenerated carriers, with a first contact providing a top side or bottom side connection for the semiconductor structure and a second contact for connection to the graphene layer.
US09029828B2 Phase-change memory devices including thermally-isolated phase-change layers and methods of fabricating the same
Provided are a phase-change memory device and a method of fabricating the same. The device may include memory cells provided at intersections of word lines and bit lines that extend along first and second directions crossing each other, and a mold layer including thermal insulating regions, such as air gaps, that may be provided between the memory cells to separate the memory cells from each other. Each of the memory cells may include a lower electrode electrically connected to the word line to have a first width in the first direction, an upper electrode electrically connected to the bit line to have a second width greater than the first width in the first direction, and a phase-change layer provided between the lower and upper electrodes to have the first width in the first direction.
US09029825B2 Semiconductor device and manufacturing method for semiconductor device
A semiconductor device includes multilayer interconnects and two variable resistance elements (22a, 22b) that are provided among the multilayer interconnects and that include first electrodes (5), second electrodes (10a, 10b), and variable resistance element films (9a, 9b) that are each interposed between first electrodes (5) and respective second electrodes (10a, 10b). Either the first electrodes (5) or the second electrodes (10a, 10b) of the two variable resistance elements (22a, 22b) are unified.
US09029824B2 Memory device having stitched arrays of 4 F2 memory cells
A memory device comprises a semiconductor substrate having a plurality of parallel trenches therein, a memory region formed in the substrate including an array of memory cells having a plurality of vertical selection transistors with respective channels formed in trench sidewalls, a plurality of buried source electrodes in trench bottoms, a plurality of paired gate electrodes formed on paired trench sidewalls, a first and second stitch region disposed adjacent the memory region along a trench direction including a first and second row of gate contacts, respectively, and a row of source contacts disposed in the first or second stitch region with each of the source contacts coupled to a respective one of the source electrodes. One of each pair of the gate electrodes is coupled to a respective one of the first row of gate contacts and the other one of each pair of gate electrodes is coupled to a respective one of the second row of gate contacts.
US09029820B2 Image storage device including storage phosphor powder, method of forming image storage device, and computed radiography apparatus
An image storage device includes a substrate including a plurality of voids and a septum disposed between the voids, and cells including a storage phosphor powder within the voids. In an embodiment, a computed radiography apparatus includes an image storage device, a stimulating radiation device to generate stimulating radiation, and a photosensor to detect light. In another embodiment, a method of forming an image storage device includes providing a patterned substrate that includes a plurality of voids and a septum disposed between the voids, adding a storage phosphor powder into the voids of the patterned substrate to form cells, and applying a topcoat layer that is substantially free of the storage phosphor powder.
US09029818B2 Optoelectronic device and method of manufacture
An optoelectronic device is disclosed. The optoelectronic device may be employed as a single or multi-channel opto-coupler that electrically isolates one circuit from another circuit. The opto-coupler may include one or more folded leads that establish an enhanced isolation gap. The enhanced isolation gap increases the creepage distance of the opto-coupler and increases operational voltages that can be accommodated by the opto-coupler.
US09029815B2 Collector mirror assembly and extreme ultraviolet light source device using said collector mirror assembly
A deterioration of the collector performance in an extreme ultraviolet light source device due to a heat deformation of the collector mirror assembly is to be prevented. The collector mirror assembly used in the extreme ultraviolet light source device comprises a plurality of reflective shells 21 with different diameters which are shaped as ellipsoids of revolution or hyperboloids of revolution, wherein the reflective shells 21 are arranged in a nested shape and the ends thereof are held by a holding structure 22. A cooling channel, through which a cooling medium flows is mounted at the reflective shell 21 in the axial direction of the reflective shell on the face being the back side of the reflective surface. This cooling channel acts as a reinforcement material and is able to suppress a heat deformation of the reflective shell 21. By using molybdenum as the material for the reflective shells 21, the heat deformation can be suppressed even further, and by providing cooling channels in the holding structure 22, the collector mirror assembly can be cooled even more efficiently and a heat deformation thereof can be suppressed.
US09029812B2 Multi-source plasma focused ion beam system
The present invention provides a plasma ion beam system that includes multiple gas sources and that can be used for performing multiple operations using different ion species to create or alter submicron features of a work piece. The system preferably uses an inductively coupled, magnetically enhanced ion beam source, suitable in conjunction with probe-forming optics sources to produce ion beams of a wide variety of ions without substantial kinetic energy oscillations induced by the source, thereby permitting formation of a high resolution beam.
US09029810B2 Using wafer geometry to improve scanner correction effectiveness for overlay control
Systems and methods for providing improved scanner corrections are disclosed. Scanner corrections provided in accordance with the present disclosure may be referred to as wafer geometry aware scanner corrections. More specifically, wafer geometry and/or wafer shape signature information are utilized to improve scanner corrections. By removing the wafer geometry as one of the error sources that may affect the overlay accuracy, better scanner corrections can be obtained because one less contributing factor needs to be modeled.
US09029803B2 Fluorescent-image acquisition apparatus, fluorescent-image acquisition method and fluorescent-image acquisition program
Disclosed herein is a fluorescent-image acquisition apparatus including an excitement-light source; an objective lens; an image pickup device; focal-point movement control means; and image-pickup control means.
US09029802B2 Substrates, systems and methods for analyzing materials
Substrates, systems and methods for analyzing materials that include waveguide arrays disposed upon or within the substrate such that evanescent fields emanating from the waveguides illuminate materials disposed upon or proximal to the surface of the substrate, permitting analysis of such materials. The substrates, systems and methods are used in a variety of analytical operations, including, inter alia, nucleic acid analysis, including hybridization and sequencing analyses, cellular analyses and other molecular analyses.
US09029795B2 Radiation generating tube, and radiation generating device and apparatus including the tube
A radiation generating tube includes an electron emitting source configured to emit an electron beam; a target configured to generate radiation when the target is irradiated with the electron beam; a rear shield body having a tube-shaped electron passage with openings thereof at each end of the passage, and being located at the side of the electron emitting source with respect to the target, a first opening of the passage facing the electron emitting source and being separated from the electron emitting source, a second opening of the passage facing the target; and a brazing material joining the rear shield body with a peripheral edge of the target, at a position separated from the second opening. A closed space isolated from the electron passage is provided between the target and the rear shield body.
US09029789B2 Method for detecting radiation, device thereof, and positron emission tomography scanner
A light receiver for detecting incident time is installed on the side of a radiation source of a scintillator (including a Cherenkov radiation emitter), and information (energy, incident time, an incident position, etc.) on radiation made incident into the scintillator is obtained by the output of the light receiver. It is, thereby, possible to identify an incident position and others of radiation into the scintillator at high accuracy.
US09029783B2 Multilayered microbolometer film deposition
A microbolometer is disclosed, including a bottom multilayered dielectric, having a first silicon oxynitride layer and a second silicon oxynitride layer disposed above the first silicon oxynitride layer, the first and second silicon oxynitride layers having different refractive indices. The microbolometer further includes a detector layer disposed above the bottom multilayered dielectric, the detector layer comprised of a temperature sensitive resistive material, and a top dielectric disposed above the detector layer.
US09029781B2 Occupancy sensor device design for fixture integration and a light with the same
An occupancy sensor device has a sensor and a fastener. The sensor has a body and a connector. The body has a detector and a lens. The lens covers the detector. The connector is formed on the body. The fastener is connected securely to the connector of the sensor. When the occupancy sensor device is installed on a light, the connector is mounted through a sensor hole of a light cover first, and the fastener is connected securely to the connector. Then the installation is completed and the sensor device is mounted securely on the light cover. Because the sensor has the connector directly formed on the body and the connector can be connected securely to the fastener, the sensor device is easily mounted on various kinds of lights regardless of the structure of the base.
US09029778B1 Short standoff checkpoint detection system
Detecting characteristics of a test subject at a checkpoint. Embodiments may include exposing a single test subject to electromagnetic radiation at a security checkpoint. They may further include determining how the electromagnetic radiation interacts with different portions of the single test subject. They may further include determining different material properties for the different portions of the single test subject by examining how the electromagnetic radiation interacts with the different portions of the single test subject. They may further include providing an indication of the different material properties of the different portions of the single test subject, wherein providing an indication of the different material properties of the different portions of the single test subject comprises distinguishing between different material properties.
US09029776B2 Determining the amount of starch
The invention relates to a method and arrangement for determining the amount of starch used in surface-sizing a cellulose product. In the solution according to the invention, the amount of starch is determined with a transmission method utilizing IR spectroscopy by using absorption wavelengths of cellulose. Absorption values are measured before adding a coating and after it, whereby the amount of starch is determined from the difference between these absorption values.
US09029771B2 Semiconductor device and electronic apparatus employing the same
Disclosed is a semiconductor device, comprising a driver that causes first through third infrared LEDs to emit light sequentially at prescribed times; an infrared light sensor that receives infrared light that is emitted by the first through the third infrared LEDs and reflected by a reflecting object, and generates photoelectric currents at levels corresponding to the intensity of the received infrared light; an amplifier that generates first through third infrared light information, on the basis of the photoelectric current that is generated by the infrared light sensor, and which denote the intensity of the infrared light; an A/D converter; and a linear/logarithmic converter apparatus. It is thus possible to sense the movement of the reflecting object on the basis of the first through the third infrared light information.
US09029770B2 Enhanced direct injection circuit
A charge injection circuit is used to control injection of an electronic charge to be added to a photon-induced charge generated by a detector of a direct integration circuit. The electronic charge can be injected directly to the detector or through a parallel path to the detector. Injection of the electronic charge is controlled through one or more switching transistors
US09029766B2 Scanning electron microscope
To provide a low acceleration scanning electron microscope that can discriminate and detect reflected electrons and secondary electrons even with a low probe current, this scanning electron microscope is provided with an electron gun (29), an aperture (26), a sample table (3), an electron optical system (4-1) for making an electron beam (31) converge on a sample (2), a deflection means (10), a secondary electron detector (8), a reflected electron detector (9), and a cylindrical electron transport means (5) in a position between the electron gun (29) and sample (2). The reflected electron detector (9) is provided within the electron transport means (5) and on a side further away from the electron gun (29) than the secondary electron detector (8) and the deflection means (10). The reception surface (9-1) of the reflected electron detector (9) is electrically wired so as to have the same potential as the electron transport means (5).
US09029764B2 Mass spectrometric ion storage device for different mass ranges
The invention relates to devices and methods for the storage of ions in mass spectrometers. The invention proposes the generation and superposition of two multipole fields of different order, independent of each other, in an RF multipole rod system. In an embodiment with eight pole rods, for example, it is thus possible to jointly store low-energy electrons in a central RF quadrupole field, which effectively acts only on electrons and holds them together radially, on the one hand, and multiply charged heavy positive ions in an RF octopole field, which effectively acts only on the ions, on the other hand, in order to fragment the positive ions by electron capture dissociation (ECD). In a different embodiment, multiply charged positive analyte ions and suitable negative reactant ions can react with each other in an octopole field by electron transfer dissociation (ETD) with a high fragmentation yield, and the fragment ions can subsequently be bundled by a transition to a quadrupole field to form a fine ion beam, which can leave the multipole rod system axially. A mixture of hexapole and dodecapole systems is also possible.
US09029762B2 Downhole spectroscopic detection of carbon dioxide and hydrogen sulfide
The present invention relates to a method for measuring the characteristics of a downhole fluid. The method for measuring the characteristics of a downhole fluid includes passing a downhole fluid sample through an analyzer, analyzing the downhole fluid sample by illuminating the downhole fluid sample with light from a light source and detecting light that interacts with the fluid sample. The method is applicable to detecting carbon dioxide and/or hydrogen sulfide directly in a downhole environment.
US09029757B2 Illumination portion for an adaptable resolution optical encoder
An illumination portion of an optical encoder comprising a scale track extending along a measuring axis direction, an imaging portion, and a detector configuration. The illumination portion comprises: a light source configured to output source light; a collimation portion; and a structured illumination generating portion comprising a beam-separating portion and an illumination grating and configured to input the source light and output structured illumination to the scale track. The beam-separating portion is arranged to input the source light and output a first source light portion and a second source light portion to the illumination grating, such that they form beams that are spaced apart from one another along the measuring axis direction. The illumination grating is configured to diffract the first and second source light portions to the scale track such that only two orders of diffracted light overlap within an imaged region.
US09029756B2 Optical displacement detection apparatus and optical displacement detection method
The present invention discloses an optical displacement detection apparatus and an optical displacement detection method. The optical displacement detection apparatus comprises: at least two light sources for projecting light of different spectrums to a surface under detection, respectively; an image capturing device for receiving light reflected from the surface under detection and converting it into electronic signals; and a processing control circuit for calculating displacement according to the electronic signals from the image capturing device, wherein the processing control circuit is capable of switching between the light sources.
US09029755B2 Imaging system with illumination controller to variably control illumination light
An imaging system includes: an illumination unit configured to emit illumination light for illuminating a subject; a light receiving unit in which pixels are arranged two-dimensionally, each pixel being configured to receive light and generate an electric signal by performing photoelectric conversion of the light; a readout unit configured to sequentially read out the electric signal from the light receiving unit for every horizontal line; and an illumination controller configured to keep intensity of the illumination light emitted from the illumination unit constant in at least a part of a readout period where the readout unit reads out the horizontal line of the light receiving unit in one frame or one field period, and configured to variably control an illumination time of the illumination light emitted from the illumination unit, outside the readout period.
US09029753B2 Optical recognition system and method thereof
The present invention is related to an optical recognition system and a method thereof, and more particularly to an optical recognition system and a method that adopts a single-slope analog-to-digital converter to proceed a single-slope analog-to-digital conversion in order to have an image with a wide dynamic range.
US09029751B2 Image sensor, imaging apparatus, and imaging method
There is provided an image sensor including a normal pixel group composed of a plurality of normal pixels, each of the normal pixels having a photoelectric conversion device for photoelectrically converting an incident light, and a detection pixel configured to detect a light incident from a neighboring pixel by the photoelectric conversion device within an effective pixel area of the normal pixel group.
US09029747B2 Method and system for concentration of solar thermal energy
A solar thermal concentration system has a receiver, a rail system having a plurality of concentric rails circularly disposed about the receiver, a plurality of movable carts connected adjacent one another and spanning two concentric rails of the rail system, motor means on a movable cart dispersed in the plurality of movable carts, a heliostat mirror on a plurality of movable carts, and a controller for tracking the Sun and controlling a position of the array with respect to the receiver and the Sun. The plurality of movable carts over all of the concentric rails define an array of heliostat mirrors having a predetermined arc dimension configured to maximize mirror area based on cosine efficiency principle. Each heliostat mirror and each movable cart having motor means is in communication with the controller for moving the carts and heliostat mirrors with respect to the receiver and the Sun.
US09029744B2 Microwave heating apparatus
A microwave heating apparatus includes, within a heating room, a placement table having a horizontal placement surface for placing an object to be heated, and a plurality of feeding portions which are placed on a wall surface of the heating room for supplying microwave electric power to the heating room. The microwave heating apparatus is adapted to relatively move the position of the straight line connecting two feeding portions to each other, with respect to the object to be heated, through a movement mechanism portion, and to detect a phase difference between the microwave electric powers which minimizes reflected electric power returning from the heating room to the two feeding portions, for detecting the state of placement of the object to be heated on the placement table.
US09029742B2 Method for the production of an electrically conductive resistive layer and heating and/or cooling device
An electrically conductive resistive layer is produced by thermally spraying an electrically conductive material onto the surface of a non-conductive substrate. Initially, the material layer arising therefrom has no desired shape. The material layer is then removed in certain areas so that an electrically conductive resistive layer having said desired shape is produced.
US09029740B2 Air impingement heater
Apparatus and methods for heating of one or more substrates with a plurality of independently controllable heating zones. Pressurized air is provided to each of a plurality of independently controlled heater blocks each including a heating element. The pressurized air is heated in the heater blocks and discharged towards one or more regions of the one or more substrates. The amount of power provided to the heating element in one of the heating blocks may be adjusted relative to the amount of power provided to the heating element in another of the heating blocks. The temperature of one heating zone may thereby be adjusted relative to other heating zones so that the temperature of different heating zones for the one or more substrates may be independently controlled. Heated air may be recovered from the heating zones and recycled. The pressurized air may be preheated by passing through a lift plate.
US09029738B2 Portable container heating system
A bottle includes at least one internal compartment delimited with a bottle casing. The bottle body has at least one filling and/or outlet hole, arranged parallel to the bottle's longitudinal axis, fitted with at least one removable cap. The internal part of the bottle is fitted with at least one heating device connected to a thermal source and/or one partition dividing the internal space of the bottle to at least two mutually separated compartments connected to the filling and/or outlet hole.
US09029736B2 Electronic personal thermal control apparatus and system
An electronic personal thermal control apparatus and method may provide heating and cooling for a user. A power source may provide power to a thermal module that is capable of heating or cooling a heat transfer component to a desired temperature. The heating or cooling may be managed by a controller. The components may be placed in a housing. The apparatus may be placed at any suitable position on a user's body, such as the wrist or ankle(s). The housing of the apparatus may be incorporated or combined with clothing, such as wristband(s), apparel, jackets, footwear, or the like.
US09029735B2 Heating element and a production method thereof
The present invention relates to a heating element comprising: two or more heating units comprising two busbars and a conductive heating means electrically connected to the two busbars, in which the busbars of the heating units are connected with each other in series and power per unit area of each of the heating units in the heating element decreases as a length of the busbar increases, and a method of preparing the same.
US09029733B2 Systems and methods for tubular welding wire
A tubular welding wire includes a granular core and a metal sheath encircling the granular core. Furthermore, the metal sheath includes at least approximately 0.3% manganese by weight and at least approximately 0.05% silicon by weight.
US09029730B2 Laser peening apparatus
Disclosed is a laser peening apparatus, including: a liquid holding head to shape and hold liquid to trap plasma on a local surface of a workpiece; and a laser irradiation head to irradiate the surface with laser through the liquid held in the liquid holding head.
US09029728B2 Methods of and apparatuses for measuring electrical parameters of a plasma process
A sensor apparatus for measuring a plasma process parameter for processing a workpiece. The sensor apparatus includes a base, an information processor supported on or in the base, and at least one sensor supported on or in the base. The at least one sensor includes at least one sensing element configured for measuring an electrical property of a plasma and may include a transducer coupled to the at least one sensing element. The transducer can be configured to receive a signal from the sensing element and convert the signal into a second signal for input to the information processor.
US09029727B2 Arc runners suitable for DC molded case circuit breakers and related methods
Circuit breakers include an arc chamber and an arc chute comprising a plurality of arc plates in the arc chamber. The circuit breakers also include a line conductor assembly with at least one arc runner attached to a line conductor in the arc chamber. The arc runner can extend below but adjacent to a bottom arc plate to thereby guide a respective arc into the arc chute.
US09029724B2 Microparticle sorting device and method for controlling position in microparticle sorting device
A microparticle sorting device that automatically and accurately adjusts the positions of a fluid stream and a collection container is provided.The microparticle sorting device including a pair of deflecting plates that face each other with a passage area of a fluid stream therebetween, a camera that captures the image of the fluid stream, and a fluid stream detection light source that emits light parallel to a direction in which the deflecting plates face each other and that is movable in a direction perpendicular to the fluid stream and the light is provided. In the microparticle sorting device, the collection container that receives the fluid stream is mounted so as to be movable in the direction perpendicular to the fluid stream and the light.
US09029723B2 Keypad apparatus and methods
Keypad apparatus and methods are described herein. An example keypad includes a keypad support having a first surface defining a cavity, and an electrical switch assembly coupled to the keypad support. The electrical switch includes a printed circuit board having at least a portion repositioned relative to a second surface of the printed circuit board. The repositioned portion is located in the cavity and the second surface is located on the first surface of the keypad support when the printed circuit board is coupled to the keypad support. The repositioned portion is attached to the second surface of the printed circuit board. A dome switch is aligned with the repositioned portion of the printed circuit board and is at least partially positioned in the cavity of the keypad support.
US09029722B2 Key assembly and mobile terminal having the same
A mobile terminal includes a terminal body, and a manipulating portion disposed on one side surface of the terminal body, wherein the manipulating portion includes: a substrate having a first contact point and a second contact point; and a conductive dome configured to conduct the first and second contact points when being pressed, wherein the first and second contact points are spaced from each other on the substrate in a first direction, and wherein the second contact point portion is not disposed in a second direction crossing the first direction. Under these configurations, the mobile terminal can have more various designs.
US09029715B1 Universal conduit body assembly
In an aspect, a universal conduit body assembly comprises a universal conduit body having a first port attached thereto. The first port is sized and shaped to connect the conduit body with one or more conduits or plugs. A cavity is at least partially defined by the conduit body, and the cavity comprises at least two open sides and sufficient space for containment of one or more spliced wires within the conduit body. Two or more removable panels each sized and shaped to cover a portion of the universal conduit body and selectively attach to each of the at least two open sides of the cavity are provided. At least one of the two or more panels includes a second port sized and shaped to connect the panel with the one or more conduits or plugs.
US09029713B2 Printed wiring board and method for manufacturing the same
A printed wiring board including a rigid multilayer board, a first substrate having multiple conductors, and a second substrate having multiple conductors electrically connected to the conductors of the first substrate. The conductors of the second substrate have an existing density which is set higher than an existing density of the conductors of the first substrate, and the first substrate and/or the second substrate is embedded in the rigid multilayer board.
US09029708B2 Printed circuit board and method of manufacturing the same
A base insulating layer is formed on a suspension body. Read wiring patterns, write wiring patterns and a ground pattern are formed in parallel on the base insulating layer. A first cover insulating layer is formed on the base insulating layer to cover the read wiring patterns, the write wiring patterns and the ground pattern. A ground layer is formed in a region on the first cover insulating layer above the write wiring patterns. A second cover insulating layer is formed on the first cover insulating layer to cover the ground layer.
US09029707B2 Flat cable and display apparatus including the same
A flat cable for connecting a plurality of devices includes a plurality of signal lines which are divided into a plurality of signal groups, wherein at least a part of the signal groups are separated by a separating section; and a plurality of connectors which are respectively provided at opposite ends of the plurality of signal lines and respectively connectable to the plurality of devices.
US09029704B2 Electric power cable
An electric power sea cable including at least one cable core. The cable core includes an electric conductor, an electric insulation surrounding the conductor, and a protective sheath surrounding the electric insulation and acting as a water barrier. At least one outer layer surrounds the at least one cable core. The protective sheath is made of metal and the electrical power sea cable includes at least one friction reducing layer surrounding the at least one cable core and arranged inside of the at least one outer layer.
US09029703B2 Electronically-controllable woven article with receptacle structure
The present invention relates to an electronically-controllable woven article with receptacle structure for electrically connecting at least one electronic unit. The electronically-controllable woven article includes a first metal yarn strand; a second metal yarn strand, which is arranged at one side of the first metal yarn strand in a side-by-side manner; at least one receptacle structure, which forms a receiving space corresponding to the electronic unit, the first metal yarn strand and the second metal yarn strand extending into the receiving space, the first metal yarn strand having a section corresponding to the receiving space, the second metal yarn strand having a section corresponding to the receiving space, both sections coupled to the receptacle structure; and a power supply unit, which is electrically connected to the first metal yarn strand and the second metal yarn strand.
US09029701B2 Wire harness protector
A splice housing projects from a bottom wall in a space on a side portion of a main pathway of a wire harness, the main pathway being bounded by the bottom wall and a circumferential wall of a main body of a protector. The splice housing includes dividing walls projecting at predetermined intervals and a sealing wall at one end of the dividing walls. A plurality of splice housing chambers are provided in alignment between the dividing walls. A side opposite the sealing wall of each of the splice housing chambers forms an opening for insertion. Each of the splice housing chambers has a height capable of accommodating splices on at least two vertical levels. Of the splices branching from the wire harness, splices having a splice sheet wrapped around an outer circumferential surface thereof and splices covered by an insulating resin cap are accommodated vertically adjacent.
US09029699B2 Liquid-proof structure for wire harness
An outer periphery of a single core conductor having a round rod shape and configuring an electric wire is coated with an insulation film such as enamel, except for a partial conductor exposed part at an end portion of the single core conductor, an end portion of the single core conductor is inserted into a through-hole of a seal member made of an elastic material that is mounted to a waterproof casing with being closely contacted thereto, an inner periphery of the through-hole of the seal member is in close contact with an outer periphery of the coated insulation film, and a connection terminal is provided to the partial conductor exposed part at the end portion of the single core conductor.
US09029681B1 Microsystem enabled photovoltaic modules and systems
A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.
US09029675B2 Percussion instrument mounting apparatus
The invention relates to an apparatus for mounting a percussion instrument onto a stand. The apparatus comprises a support portion and a retaining portion, the support portion comprising a support member arranged for attachment to the stand and including a shaft, the retaining portion comprising a gripping member having a pair of elements spaced apart from each other and one or more spreader means arranged to urge the spaced apart elements away from each other, wherein the support and retaining portions are adapted to mount the percussion instrument therebetween, the shaft engageable with the retaining portion, the elements of the gripping member normally biased to a first position that is capable of retaining the shaft between the elements in a locked position in the said retaining portion, the elements movable to a second position in which the retaining portion can be received on or removed from the first position on the shaft, the elements movable from the first position to the second position by activation of the or each spreader means.
US09029671B1 Tremolo lock
A tremolo lock as provided preferably to allow the operator to engage the lock or stop from the topside of a guitar and tremolo base plate completing a floating double locking tremolo system preferably for electric guitars. Many embodiments also provide calibration adjustments, mounted within the cavity of guitar body, so the operator can make adjustments while the tremolo is floating, to the preset pitch tuning level position of the tremolo system such as, after a string breaks to return the remaining stings back in tune. Calibration adjustments for tuning can also be made when in the lock or stop position therefore altering and adjusting the preset pitch tuning. Many embodiments of the present invention provide the ability to easily disengage the lock or stop and return the tremolo system back to a floating position.
US09029669B2 Cultivar, method for differentiating plant cultivars, and method for causing earlier maturing of rice individual
An object of the present invention is to provide a new rice cultivar that matures earlier than the original cultivar, and a method for causing a rice individual to mature earlier. The present invention relates to a rice cultivar Koshihikari kazusa no. 6 having the cultivar registration application number 25587, a progeny individual obtained by crossbreeding two individuals selected from the group consisting of an individual of the aforementioned cultivar and a progeny individual thereof, and a method for causing a rice individual to mature earlier that comprises replacing a region corresponding to a region containing base number 31,720,064 to base number 31,724,043 of the third chromosome of rice cultivar Nipponbare with a chromosome fragment composed of the corresponding region of rice cultivar Koshihikari kazusa no. 6 or rice cultivar Habataki in the third chromosome of the rice individual.
US09029668B1 Maize inbred PH188P
A novel maize variety designated PH188P and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH188P with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH188P through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH188P or a locus conversion of PH188P with another maize variety.
US09029664B2 Plants and seeds of hybrid corn variety CH740515
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH740515. The invention thus relates to the plants, seeds and tissue cultures of the variety CH740515, and to methods for producing a corn plant produced by crossing a corn plant of variety CH740515 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH740515.
US09029662B2 Plants and seeds of corn variety CV436306
According to the invention, there is provided seed and plants of the corn variety designated CV436306. The invention thus relates to the plants, seeds and tissue cultures of the variety CV436306, and to methods for producing a corn plant produced by crossing a corn plant of variety CV436306 with itself or with another corn plant, such as a plant of another variety. The invention further relates to corn seeds and plants produced by crossing plants of variety CV436306 with plants of another variety, such as another inbred line. The invention further relates to the inbred and hybrid genetic complements of plants of variety CV436306.
US09029661B2 Plants and seeds of corn variety CV931026
According to the invention, there is provided seed and plants of the corn variety designated CV931026. The invention thus relates to the plants, seeds and tissue cultures of the variety CV931026, and to methods for producing a corn plant produced by crossing a corn plant of variety CV931026 with itself or with another corn plant, such as a plant of another variety. The invention further relates to corn seeds and plants produced by crossing plants of variety CV931026 with plants of another variety, such as another inbred line. The invention further relates to the inbred and hybrid genetic complements of plants of variety CV931026.
US09029659B2 Plants and seeds of corn variety CV401927
According to the invention, there is provided seed and plants of the corn variety designated CV401927. The invention thus relates to the plants, seeds and tissue cultures of the variety CV401927, and to methods for producing a corn plant produced by crossing a corn plant of variety CV401927 with itself or with another corn plant, such as a plant of another variety. The invention further relates to corn seeds and plants produced by crossing plants of variety CV401927 with plants of another variety, such as another inbred line. The invention further relates to the inbred and hybrid genetic complements of plants of variety CV401927.
US09029658B2 Sweet corn line SHW 084-5044
The invention provides seed and plants of sweet corn hybrid EX 08745857 R and the parent lines thereof. The invention thus relates to the plants, seeds and tissue cultures of sweet corn hybrid EX 08745857 R and the parent lines thereof, and to methods for producing a sweet corn plant produced by crossing such plants with themselves or with another sweet corn plant, such as a plant of another genotype. The invention further relates to seeds and plants produced by such crossing. The invention further relates to parts of such plants, including the parts of such plants.
US09029657B2 Plants and seeds of hybrid corn variety CH389253
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH389253. The invention thus relates to the plants, seeds and tissue cultures of the variety CH389253, and to methods for producing a corn plant produced by crossing a corn plant of variety CH389253 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH389253.
US09029656B2 Reducing levels of nicotinic alkaloids in plants
Two genes, A622 and NBB1, can be influenced to achieve a decrease of nicotinic alkaloid levels in plants. In particular, suppression of one or both of A622 and NBB1 may be used to decrease nicotine in tobacco plants.
US09029655B2 Cotton variety FM 9250GL
The cotton variety FM 9250GL is disclosed. The invention relates to seeds, plants, plant cells, plant tissue, harvested products and cotton lint as well as to hybrid cotton plants and seeds obtained by repeatedly crossing plants of variety FM 9250GL with other plants. The invention also relates to plants and varieties produced by the method of essential derivation from plants of FM 9250GL and to plants of FM 9250GL reproduced by vegetative methods, including but not limited to tissue culture of regenerable cells or tissue from FM 9250GL.
US09029654B2 Soybean variety A1036442
The invention relates to the soybean variety designated A1036442. Provided by the invention are the seeds, plants and derivatives of the soybean variety A1036442. Also provided by the invention are tissue cultures of the soybean variety A1036442 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety A1036442 with itself or another soybean variety and plants produced by such methods.
US09029651B2 Soybean variety 01046192
The invention relates to the soybean variety designated 01046192. Provided by the invention are the seeds, plants and derivatives of the soybean variety 01046192. Also provided by the invention are tissue cultures of the soybean variety 01046192 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety 01046192 with itself or another soybean variety and plants produced by such methods.
US09029650B2 Soybean variety 01046137
The invention relates to the soybean variety designated 01046137. Provided by the invention are the seeds, plants and derivatives of the soybean variety 01046137. Also provided by the invention are tissue cultures of the soybean variety 01046137 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety 01046137 with itself or another soybean variety and plants produced by such methods.
US09029648B2 Soybean cultivar NE0912640
The present invention is in the field of soybean variety NE0912640 breeding and development. The present invention particularly relates to the soybean variety NE0912640 and its progeny, and methods of making NE0912640.
US09029646B1 Soybean variety XB45T13
A novel soybean variety, designated XB45T13 is provided. Also provided are the seeds of soybean variety XB45T13, cells from soybean variety XB45T13, plants of soybean XB45T13, and plant parts of soybean variety XB45T13. Methods provided include producing a soybean plant by crossing soybean variety XB45T13 with another soybean plant, methods for introgressing a transgenic trait, a mutant trait, and/or a native trait into soybean variety XB45T13, methods for producing other soybean varieties or plant parts derived from soybean variety XB45T13, and methods of characterizing soybean variety XB45T13. Soybean seed, cells, plants, germplasm, breeding lines, varieties, and plant parts produced by these methods and/or derived from soybean variety XB45T13 are further provided.
US09029645B1 Soybean variety XBP16004
A novel soybean variety, designated XBP16004 is provided. Also provided are the seeds of soybean variety XBP16004, cells from soybean variety XBP16004, plants of soybean XBP16004, and plant parts of soybean variety XBP16004. Methods provided include producing a soybean plant by crossing soybean variety XBP16004 with another soybean plant, methods for introgressing a transgenic trait, a mutant trait, and/or a native trait into soybean variety XBP16004, methods for producing other soybean varieties or plant parts derived from soybean variety XBP16004, and methods of characterizing soybean variety XBP16004. Soybean seed, cells, plants, germplasm, breeding lines, varieties, and plant parts produced by these methods and/or derived from soybean variety XBP16004 are further provided.
US09029637B2 Cambium/xylem-preferred promoters and uses thereof
The present invention relates to nucleic acid molecules corresponding to regulatory portions of genes whose expression is predominant in cambium and/or xylem. The invention also relates to compositions and methods of using the same to regulate the expression, in a cambium/xylem-preferred manner, of genes and/or any kind of nucleotide sequences in a plant. Nucleic acid molecules and its compositions include novel nucleotide sequences for cambium/xylem-preferred promoters identified and isolated from poplar (Populus spp). Methods for expressing genes and/or any kind of nucleotide sequences in a plant using the promoter sequences disclosed herein are provided. The methods comprise stably incorporating into the genome of a plant cell a nucleotide sequence operably linked to a cambium/xylem-preferred promoter of the present invention and regenerating a stably transformed plant that expresses the nucleotide sequence.
US09029635B2 Method for increasing sucrose yield in agricultural production of sugar beet and sugar cane
A nucleic acid suitable for reducing the enzymatic activity of an invertase for configuring a sucrose storage organ of a plant, wherein the sucrose concentration is increased relative to the sucrose concentration of an unchanged control sucrose storage organ of the same genotype at a comparable stage of development. The increase in sucrose concentration by X percentage points can thereby lead to a changed or unchanged sucrose storage organ yield, wherein, in the case of a reduction in the sucrose storage organ yield, the reduction is a maximum of 5X percent. The invention further relates to a method for increasing the sucrose yield in agricultural production of sugar beet or sugar cane plants, wherein sugar beet or sugar cane plants are used, the genetic makeup thereof being set up for reducing the enzymatic activity of an invertase.
US09029632B1 Maize inbred PH1M19
A novel maize variety designated PH1M19 and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH1M19 with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH1M19 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH1M19 or a locus conversion of PH1M19 with another maize variety.
US09029630B2 Method of creating a spring Brassica napus
Crossing a winter B. napus line with a rapid-cycle B. rapa line has been discovered to provide an unexpectedly simple and efficient way to create a modified B. napus with a spring flowering habit. In one implementation, such a modified B. napus or its progeny is crossed with a second winter B. napus line to produce a plant having a winter flowering habit. This allows one to significantly shorten the development cycle for winter-flowering B. napus lines by conducting part of the breeding program with spring-flowering time cycles, then migrating the resultant germplasm back into a winter-flowering line.
US09029628B2 Human lambda light chain mice
Genetically modified mice are provided that express human λ variable (hVλ) sequences, including mice that express hVλ sequences from an endogenous mouse λ light chain locus, mice that express hVλ sequences from an endogenous mouse κ light chain locus, and mice that express hVλ sequences from a transgene or an episome wherein the hVλ sequence is linked to a mouse constant sequence. Mice are provided that are a source of somatically mutated human λ variable sequences useful for making antigen-binding proteins. Compositions and methods for making antigen-binding proteins that comprise human λ variable sequences, including human antibodies, are provided.
US09029626B2 Absorbent article
An absorbent article includes a first curved portion and a second curved portion formed on the surface of a topsheet along a longitudinal direction of the absorbent article. The first curved portion is arranged in one pair to be symmetrical to a centerline of the absorbent article in a region in which the contact region is included, the region being an inside region more than each side part in a widthwise direction of the absorbent article, and is formed along a longitudinal direction of the absorbent article. The second curved portion is arranged in one pair in a region in which the contact region is included, the region being an inside region in the widthwise direction of the absorbent article more than the first curved portion, and is formed along the longitudinal direction of the absorbent article. The first curved portion and the second curved portion has a convex shape outward in the widthwise direction of the absorbent article, in the region in which the contact region is included.
US09029625B2 Film dressing with improved application assistance
A film structure having a polymer film and an application system enabling the film structure to be handled in a simple manner. The application system is arranged on a first side of the polymer film and has at least one supporting film to which at least one gripping strip is applied. The polymer film also has at least one first region without a supporting film.
US09029623B2 Process for eliminating or reducing persistent organic pollutants contained in particles
A treatment process of persistent organic pollutants contained in particles is provided. Said process includes reacting persistent organic pollutant in particles under hydrothermal conditions in the presence of Fe2+ and Fe3+. Several beneficial effects can be achieved, including 1) no other additive is needed during the reaction process; 2) Fe2+ and Fe3+ are safe, cheap and extensive sources; 3) because Fe2+ and Fe3+ are dissolved, they can fully disperse into particles, and fully contact can be achieved, thus obtaining a decomposition rate no less than 70% of the persistent organic pollutants is under subcritical conditions.
US09029622B2 Methods for removing weakly basic nitrogen compounds from a hydrocarbon stream using acidic clay
Disclosed is a method for removing weakly basic nitrogen compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with acidic clay to produce a hydrocarbon effluent stream having a lower weakly basic nitrogen compound content relative to the hydrocarbon feed stream. The hydrocarbon feed stream comprises an aromatic compound and a weakly basic nitrogen compound.
US09029621B2 Selective oligomerization of isobutene
A process for oligomerizing isobutene comprises contacting a feedstock comprising isobutene with a catalyst comprising a MCM-22 family molecular sieve under conditions effective to oligomerize the isobutene, wherein said conditions including a temperature from about 45° C. to less than 140° C. The isobutene may be a component of a hydrocarbon feedstock containing at least one additional C4 alkene. In certain aspects, isobutene oligomers are separated from a first effluent of the oligomerization to produce a second effluent comprising at least one n-butene. The second effluent can be contacted with an alkylation catalyst to produce sec-butylbenzene.
US09029610B2 Method for cultivation of Monarda fistulosa
A method for cultivating Monarda fistulosaincludes planting seeds at rates between about 2.5 and about 5 pounds per acre, preferably about 4 pounds per acre. Fuel costs are reduced because seeding, mowing the first season, and harvesting in seasons thereafter are all that is required. Reduction in herbicide use results from the heavy rate of planting, improved germination attributed to rolling, and the plant's natural herbicides which are more highly effective when seeded at the higher rate. The method includes seeding, mowing during a first growing season, and harvesting each season thereafter. This method results in oil without weed contamination and carvacrol levels are high.
US09029608B2 Apparatus for coproducting ISO type reaction products and alcohols from olefins, and method for coproducting them using the apparatus
The present invention relates to an apparatus for coproducting iso-type reaction product and alcohol from olefin, and a method for coproducting using the apparatus, in which the hydroformylation reactor provides a sufficient reaction area due to the broad contact surface area between the olefin and the synthesis gases that are the raw materials by a distributor plate installed in the reactor, and the raw materials can be sufficiently mixed with the reaction mixture due to the circulation of the reaction mixture so that the efficiency of the production of the aldehyde is excellent; and also the hydrogenation reactor suppresses the side reaction so that the efficiency for producing aldehyde and alcohol are all increased, and also iso-type reaction product and alcohol can be efficiently co-produced.
US09029604B2 Low molecular weight cationic lipids for oligonucleotide delivery
The instant invention provides for novel cationic lipids that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver. The present invention employs low molecular weight cationic lipids with one short lipid chain to enhance the efficiency and tolerability of in vivo delivery of siRNA.
US09029601B2 Aryloxyurea compound and pest control agent
The present invention provides a pest control agent, acaricide or fungicide that contains, as the active ingredient thereof, at least one type of compound selected from the aryloxyurea compounds represented by formula (V) (wherein R1 to R5 each independently represents an alkyl group or the like, X is a halogen atom or the like, n is an integer of 0 to 5, and Z is an oxygen atom or sulfur atom) or salts thereof.
US09029599B2 Process for producing (meth)acrylic acid
A process for producing (meth)acrylic acid comprising the step of repeating a crystallization operation “n” times to produce purified (meth)acrylic acid from crude (meth)acrylic acid, wherein: the each crystallization operation comprises a crystallizing step and a melting step; a polymerization inhibitor is not added to a (meth)acrylic acid melt obtained in the melting step of the first to n−1th crystallization operation(s) and a (meth)acrylic acid solution subjected to the crystallizing step of the second to nth crystallization operation(s); and a concentration of a polymerization inhibitor in a (meth)acrylic acid solution subjected to the crystallizing step of the first crystallization operation is adjusted so that a concentration of the polymerization inhibitor in a (meth)acrylic acid solution subjected to the crystallizing step of the nth crystallization operation is 2 ppm by mass or higher.